National Library of Energy BETA

Sample records for determination coupled high

  1. Determination of the strong coupling constant ({alpha}{sub s...

    Office of Scientific and Technical Information (OSTI)

    coupling constant (alphasub s) and a test of perturbative QCD using W + jets ... Title: Determination of the strong coupling constant (alphasub s) and a test of ...

  2. Highly damped kinematic coupling for precision instruments

    DOE Patents [OSTI]

    Hale, Layton C.; Jensen, Steven A.

    2001-01-01

    A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.

  3. High precision tune and coupling measurements and tune/coupling feedback in RHIC

    SciTech Connect (OSTI)

    Minty, M.; Curcio, A.; Dawson, C.; Degen, C.; Luo, Y.; Marr, G.; Martin, B.; Marusic, A.; Mernick, K.; Oddo, P.; Russo, T.; Schoefer, V.; Schroeder, R.; Schulthiess, C.; Wilinski, M.

    2010-08-01

    Precision measurement and control of the betatron tunes and betatron coupling in RHIC are required for establishing and maintaining both good operating conditions and, particularly during the ramp to high beam energies, high proton beam polarization. While the proof-of-principle for simultaneous tune and coupling feedback was successfully demonstrated earlier, routine application of these systems has only become possible recently. Following numerous modifications for improved measurement resolution and feedback control, the time required to establish full-energy beams with the betatron tunes and coupling regulated by feedback was reduced from several weeks to a few hours. A summary of these improvements, select measurements benefitting from the improved resolution and a review of system performance are the subject of this report.

  4. High ethylene to ethane processes for oxidative coupling

    DOE Patents [OSTI]

    Chafin, R.B.; Warren, B.K.

    1991-12-17

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  5. High ethylene to ethane processes for oxidative coupling

    DOE Patents [OSTI]

    Chafin, Richard B. (Hurricane, WV); Warren, Barbara K. (Charleston, WV)

    1991-01-01

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  6. Antenna-coupled high T[sub c] superconducting microbolometer

    DOE Patents [OSTI]

    Hu, Q.

    1992-12-15

    A device is provided for measuring radiant energy, the device comprising a substrate; a bolometer formed from a high T[sub c] superconducting material disposed on the substrate in an area that is about 1[times]5 [mu]m[sup 2] and about 0.02 [mu]m in depth; and a planar antenna disposed on the substrate and coupled to receive radiation and to impart the received radiation to the bolometer. 5 figs.

  7. Antenna-coupled high T.sub.c superconducting microbolometer

    DOE Patents [OSTI]

    Hu, Qing (Boston, MA)

    1992-01-01

    A device is provided for measuring radiant energy, the device comprising a substrate; a bolometer formed from a high T.sub.c superconducting material disposed on the substrate in an area that is about 1.times.5 .mu.m.sup.2 and about 0.02 .mu.m in depth; and a planar antenna disposed on the substrate and coupled to receive radiation and to impart the received radiation to the bolometer.

  8. Mile High: Noncompliance Determination (2012-SE-4501)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Mile High Equipment, LLC finding that Ice-O-Matic brand automatic commercial ice maker basic model ICE2106 FW, HW does not comport with the energy conservation standards.

  9. Determination of the Z` Mass and Couplings Below Threshold at the NLC

    SciTech Connect (OSTI)

    Rizzo, Thomas G.

    1996-12-31

    We investigate the capability of the NLC to indirectly determine both the mass as well as the couplings to leptons and b-quarks of a new neutral gauge boson below direct production threshold. By using data collected at several different values of the collide center of mass energy, we demonstrate how this can be done in an anonymous and model- independent manner. The procedure can be easily extended to the top and charm quark couplings.

  10. Determination of the strong coupling constant ({alpha}{sub s}) and a test

    Office of Scientific and Technical Information (OSTI)

    of perturbative QCD using W + jets processes in the D0 detector (Thesis/Dissertation) | SciTech Connect Thesis/Dissertation: Determination of the strong coupling constant ({alpha}{sub s}) and a test of perturbative QCD using W + jets processes in the D0 detector Citation Details In-Document Search Title: Determination of the strong coupling constant ({alpha}{sub s}) and a test of perturbative QCD using W + jets processes in the D0 detector The D0 experiment has accumulated data for a study

  11. Exploration of below threshold Z{sup {prime}} mass and coupling determinations at the NLC

    SciTech Connect (OSTI)

    Rizzo, T.G.

    1997-05-01

    We examine of the capability of the Next Linear Collider to determine the mass as well as the couplings to leptons and b quarks of a new neutral gauge boson Z{sup {prime}} below direct production threshold. By using simulated data collected at several different values of {radical}(s), we demonstrate how this can be done in a model-independent manner via an anonymous case approach. The importance of beam polarization to the success of this program is discussed. The procedure is shown to be easily extended to the case of top and charm quark couplings. {copyright} {ital 1997} {ital The American Physical Society}

  12. Determination of trace amounts of cerium in paint by inductively coupled plasma atomic emission spectrometry

    SciTech Connect (OSTI)

    Wong, K.L.

    1981-11-01

    The determination of Ce in paint by inductively coupled plasma atomic emission spectrometry (ICP-OES) is described, and the detection limit of ICP-OES of 0.0004 ppM is compared with that of other methods. The effects of the major elemental components of paint, Si, Pb, Cr, and Na on the ICP-OES determination of Ce were studied. The interference of 400 ppM of the other ions on the determination of 10 ppM Ce was small (0 to 3% error). The method is applicable to the range of 0.2 to 700 ppM Ce. (BLM)

  13. Coupled Model for Heat and Water Transport in a High Level Waste Repository

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Salt | Department of Energy Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt This report summarizes efforts to simulate coupled thermal-hydrological-chemical (THC) processes occurring within a generic hypothetical high-level waste (HLW) repository in bedded salt; chemical processes of the system allow precipitation and dissolution of salt with elevated temperatures that

  14. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  15. High-energy jet quenching in weakly coupled quark-gluon plasmas

    SciTech Connect (OSTI)

    Arnold, Peter; Xiao Wei

    2008-12-15

    q is the average squared transverse momentum transfer per unit length to a high-energy particle traversing a QCD medium such as a quark-gluon plasma. We find the (UV-regulated) value of q to leading order in the weak coupling limit, {alpha}{sub s}(T)<<1. We then use this value to generalize previous analytic results on the gluon bremsstrahlung and pair production rates for massless high-energy particles in a weakly coupled quark-gluon plasma, at next-to-leading logarithmic order.

  16. High Precision Tune and Coupling Feedback and Beam Transfer Function Measurements in RHIC

    SciTech Connect (OSTI)

    Minty, M.; Curcio, A.; Dawson, C.; Degen, C.; Luo, Y.; Marr, G.; Martin, B.; Marusic, A.; Mernick, K.; Oddo, P.; Russo, T.; Schoefer, V.; Schroeder, R.; Schultheiss, C.; Wilinski, M.

    2010-05-23

    Precision measurement and control of the betatron tunes and betatron coupling in the Relativistic Heavy Ion Collider (RHIC) are required for establishing and maintaining both good operating conditions and, particularly during the ramp to high beam energies, high proton beam polarization. While the proof-of-principle for simultaneous tune and coupling feedback was successfully demonstrated earlier, routine application of these systems has only become possible recently. Following numerous modifications for improved measurement resolution and feedback control, the time required to establish full-energy beams with the betatron tunes and coupling regulated by feedback was reduced from several weeks to a few hours. A summary of these improvements, select measurements benefitting from the improved resolution and a review of system performance are the subject of this report.

  17. Stopping distance for high energy jets in weakly coupled quark-gluon plasmas

    SciTech Connect (OSTI)

    Arnold, Peter; Cantrell, Sean; Xiao Wei

    2010-02-15

    We derive a simple formula for the stopping distance for a high-energy quark traveling through a weakly coupled quark-gluon plasma. The result is given to next-to-leading order in an expansion in inverse logarithms ln(E/T), where T is the temperature of the plasma. We also define a stopping distance for gluons and give a leading-log result. Discussion of stopping distance has a theoretical advantage over discussion of energy loss rates in that stopping distances can be generalized to the case of strong coupling, where one may not speak of individual partons.

  18. Lattice coupling to electronic and magnetic instabilities in high magnetic fields

    SciTech Connect (OSTI)

    Thompson, J.D.; Graf, T.; Hundley, M.; Neumeier, J. [Los Alamos National Lab., NM (United States); Lacerda, A. [National High Magnetic Field Lab., Tallahassee, FL (United States); Lawrence, J. [California Univ., Irvine, CA (United States); Phillips, N. [California Univ., Berkeley, CA (United States)

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project focused on understanding electronic and magnetic instabilities in broad classes of materials in which the instabilities are coupled to the underlying crystallographic structure. Explaining these properties of materials poses outstanding theoretical and experimental challenges that are at the forefront of materials science/condensed matter physics. Very high magnetic fields available at the Los Alamos National High Magnetic Field Laboratory (NHMFL) are a key parameter in helping to provide this understanding. We have developed new experimental capabilities (thermal- expansion/magnetostriction, uniaxial stress and high-field heat capacity) needed to characterize how structure couples to the instabilities.

  19. Tune Determination of Strongly Coupled Betatron Oscillations in a Fast-Ramping Synchrotron

    SciTech Connect (OSTI)

    Alexahin, Y.; Gianfelice-Wendt, E.; Marsh, W; Triplett, K.; /Fermilab

    2012-05-01

    Tune identification -- i.e. attribution of the spectral peak to a particular normal de of oscillations -- can present a significant difficulty in the presence of strong transverse coupling when the normal mode with a lower damping rate dominates spectra of Turn-by-Turn oscillations in both planes. The introduced earlier phased sum algorithm helped to recover the weaker normal mode signal from the noise, but by itself proved to be insufficient for automatic peak identification in the case of close phase advance distribution in both planes. To resolve this difficulty we modified the algorithm by taking and analyzing Turn-by-Turn data for two different ramps with the beam oscillation excited in each plane in turn. Comparison of relative amplitudes of Fourier components allows for correct automatic tune identification. The proposed algorithm was implemented in the Fermilab Booster B38 console application and successfully used for tune, coupling and chromaticity measurements.

  20. Inductively coupled plasma-atomic emission spectroscopy: a computer controlled, scanning monochromator system for the rapid determination of the elements

    SciTech Connect (OSTI)

    Floyd, M.A.

    1980-03-01

    A computer controlled, scanning monochromator system specifically designed for the rapid, sequential determination of the elements is described. The monochromator is combined with an inductively coupled plasma excitation source so that elements at major, minor, trace, and ultratrace levels may be determined, in sequence, without changing experimental parameters other than the spectral line observed. A number of distinctive features not found in previously described versions are incorporated into the system here described. Performance characteristics of the entire system and several analytical applications are discussed.

  1. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNLs work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  2. Raman spectroscopy of graphite in high magnetic fields: Electron-phonon coupling and magnetophonon resonance

    SciTech Connect (OSTI)

    Kim, Younghee; Smirnov, Dmitry; Kalugin, Nikolai G.; Lombardo, Antonio; Ferrari, Andrea C.

    2013-12-04

    The magneto-Raman measurements of graphite were performed in a back-scattering Faraday geometry at temperature 10 K in magnetic fields up to 45 T. The experimental data reveal the rich structure of Raman-active excitations dominated by K-point massive electrons. At high magnetic fields the graphite E{sub 2g} Raman line shows complex multi- component behavior interpreted as magnetophonon resonance coupled electron-phonon modes at graphites K-point. Also we found the clear signature of the fundamental, strongly dumped, n=0 magnetophonon resonance associated with H point massless holes.

  3. Strong exciton-photon coupling with colloidal quantum dots in a high-Q bilayer microcavity

    SciTech Connect (OSTI)

    Giebink, Noel C; Wiederrecht, Gary P.; Wasielewski, Michael R

    2011-01-01

    We demonstrate evanescently coupled bilayer microcavities with Q -factors exceeding 250 fabricated by a simple spin-coating process. The cavity architecture consists of a slab waveguide lying upon a low refractive index spacer layer supported by a glass substrate. For a lossless guide layer, the cavity Q depends only on the thickness of the low index spacer and in principle can reach arbitrarily high values. We demonstrate the versatility of this approach by constructing cavities with a guide layer incorporating CdSe/ZnS core/shell quantum dots, where we observe strong coupling and hybridization between the 1S(e)-1S{sub 3/2} (h) and 1S(e)-2S{sub 3/2} (h) exciton states mediated by the cavity photon. This technique greatly simplifies the fabrication of high-Q planar microcavities for organic and inorganic quantum dot thin films and opens up new opportunities for the study of nonlinear optical phenomena in these materials.

  4. Determination of total chlorine and bromine in solid wastes by sintering and inductively coupled plasma-sector field mass spectrometry

    SciTech Connect (OSTI)

    Osterlund, Helene Rodushkin, Ilia; Ylinenjaervi, Karin; Baxter, Douglas C.

    2009-04-15

    A sample preparation method based on sintering, followed by analysis by inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) for the simultaneous determination of chloride and bromide in diverse and mixed solid wastes, has been evaluated. Samples and reference materials of known composition were mixed with a sintering agent containing Na{sub 2}CO{sub 3} and ZnO and placed in an oven at 560 deg. C for 1 h. After cooling, the residues were leached with water prior to a cation-exchange assisted clean-up. Alternatively, a simple microwave-assisted digestion using only nitric acid was applied for comparison. Thereafter the samples were prepared for quantitative analysis by ICP-SFMS. The sintering method was evaluated by analysis of certified reference materials (CRMs) and by comparison with US EPA Method 5050 and ion chromatography with good agreement. Median RSDs for the sintering method were determined to 10% for both chlorine and bromine, and median recovery to 96% and 97%, respectively. Limits of detection (LODs) were 200 mg/kg for chlorine and 20 mg/kg for bromine. It was concluded that the sintering method is suitable for chlorine and bromine determination in several matrices like sewage sludge, plastics, and edible waste, as well as for waste mixtures. The sintering method was also applied for determination of other elements present in anionic forms, such as sulfur, arsenic, selenium and iodine.

  5. High-performance parallel processors based on star-coupled wavelength division multiplexing optical interconnects

    DOE Patents [OSTI]

    Deri, Robert J. (Pleasanton, CA); DeGroot, Anthony J. (Castro Valley, CA); Haigh, Ronald E. (Arvada, CO)

    2002-01-01

    As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.

  6. One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma

    SciTech Connect (OSTI)

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-12-28

    A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne~ > 5x1019 m–3) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D, with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z,t) and temperature Te(z,t), and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated in order to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pAr = 30-60 mTorr. Lastly, we present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency (RF) antenna.

  7. On equivalence of high temperature series expansion and coupling parameter series expansion in thermodynamic perturbation theory of fluids

    SciTech Connect (OSTI)

    Sai Venkata Ramana, A.

    2014-04-21

    The coupling parameter series expansion and the high temperature series expansion in the thermodynamic perturbation theory of fluids are shown to be equivalent if the interaction potential is pairwise additive. As a consequence, for the class of fluids with the potential having a hardcore repulsion, if the hard-sphere fluid is chosen as reference system, the terms of coupling parameter series expansion for radial distribution function, direct correlation function, and Helmholtz free energy follow a scaling law with temperature. The scaling law is confirmed by application to square-well fluids.

  8. RAPID DETERMINATION OF ACTINIDES IN URINE BY INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY: A HYBRID APPROACH

    SciTech Connect (OSTI)

    Maxwell, S.; Jones, V.

    2009-05-27

    A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are split between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead. Multiple vacuum box locations may be set-up to supply several ICP-MS units with purified sample fractions such that a high sample throughput may be achieved, while still allowing for rapid measurement of short-lived actinides by alpha spectrometry.

  9. Evidence of resonant mode coupling and the relationship between low and high frequencies in a rapidly rotating a star

    SciTech Connect (OSTI)

    Breger, M.; Montgomery, M. H.

    2014-03-10

    In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day{sup –1} (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day{sup –1} in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.

  10. Determination of the magnetoelectric coupling coefficient from temperature dependences of the dielectric permittivity for multiferroic ceramics Bi{sub 5}Ti{sub 3}FeO{sub 15}

    SciTech Connect (OSTI)

    Bartkowska, J. A. Dercz, J.

    2013-11-15

    In the multiferroic materials, the dielectric and magnetic properties are closely correlated through the coupling interaction between the ferroelectric and magnetic order. We attempted to determine the magnetoelectric coupling coefficient from the temperature dependences of the dielectric permittivity for multiferroic Bi{sub 5}Ti{sub 3}FeO{sub 15}. Multiferroic ceramics Bi{sub 5}Ti{sub 3}FeO{sub 15} belong to materials of the Aurivillius-type structure. Multiferroic ceramics Bi{sub 5}Ti{sub 3}FeO{sub 15} was synthesized via sintering the Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} mixture and TiO{sub 2} oxides. The precursor material was ground in a high-energy attritorial mill for 5 hours. This material was obtained by a solid-state reaction process at T = 1313 K. We investigated the temperature dependences of the dielectric permittivity for the different frequencies. From the dielectric measurements, we determined the temperature of phase transition of the ferroelectric-to-paraelectric type at about 1013 K. Based on dielectric measurements and theoretical considerations, the values of the magnetoelectric coupling coefficient were specified.

  11. Relaxed active space: Fixing tailored-CC with high order coupled cluster. II

    SciTech Connect (OSTI)

    Melnichuk, Ann Bartlett, Rodney J.

    2014-02-14

    Due to the steep increase in computational cost with the inclusion of higher-connected cluster operators in coupled-cluster applications, it is usually not practical to use such methods for larger systems or basis sets without an active space partitioning. This study generates an active space subject to unambiguous statistical criteria to define a space whose size permits treatment at the CCSDT level. The automated scheme makes it unnecessary for the user to judge whether a chosen active space is sufficient to correctly solve the problem. Two demanding applications are presented: twisted ethylene and the transition states for the bicyclo[1,1,0]butane isomerization. As bi-radicals both systems require at least a CCSDT level of theory for quantitative results, for the geometries and energies.

  12. Measurement of the Muon Capture Rate in Hydrogen Gas and Determination of the Proton's Pseudoscalar Coupling g{sub P}

    SciTech Connect (OSTI)

    Andreev, V. A.; Ganzha, V. A.; Kravtsov, P. A.; Krivshich, A. G.; Maev, E. M.; Maev, O. E.; Petrov, G. E.; Schapkin, G. N.; Semenchuk, G. G.; Soroka, M. A.; Vasilyev, A. A.; Vorobyov, A. A.; Vznuzdaev, M. E.; Banks, T. I.; Case, T. A.; Crowe, K. M.; Freedman, S. J.; Gray, F. E.; Lauss, B.; Chitwood, D. B.

    2007-07-20

    The rate of nuclear muon capture by the proton has been measured using a new technique based on a time projection chamber operating in ultraclean, deuterium-depleted hydrogen gas, which is key to avoiding uncertainties from muonic molecule formation. The capture rate from the hyperfine singlet ground state of the {mu}p atom was obtained from the difference between the {mu}{sup -} disappearance rate in hydrogen and the world average for the {mu}{sup +} decay rate, yielding {lambda}{sub S}=725.0{+-}17.4 s{sup -1}, from which the induced pseudoscalar coupling of the nucleon, g{sub P}(q{sup 2}=-0.88m{sub {mu}}{sup 2})=7.3{+-}1.1, is extracted.

  13. Vehicle Technologies Office Merit Review 2015: New High-Energy Electrochemical Couple for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about new high-energy...

  14. Vehicle Technologies Office Merit Review 2014: New High-Energy Electrochemical Couple for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a new high-energy...

  15. RAPID DETERMINATION OF 237 NP AND PU ISOTOPES IN WATER BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY

    SciTech Connect (OSTI)

    Maxwell, S.; Jones, V.; Culligan, B.; Nichols, S.; Noyes, G.

    2010-06-23

    A new method that allows rapid preconcentration and separation of plutonium and neptunium in water samples was developed for the measurement of {sup 237}Np and Pu isotopes by inductively-coupled plasma mass spectrometry (ICP-MS) and alpha spectrometry; a hybrid approach. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via peak tailing. The method provide enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then moving Pu to DGA resin for additional removal of uranium. The decontamination factor for uranium from Pu is almost 100,000 and the decontamination factor for U from Np is greater than 10,000. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration is performed using a streamlined calcium phosphate precipitation method. Purified solutions are split between ICP-MS and alpha spectrometry so that long and short-lived Pu isotopes can be measured successfully. The method allows for simultaneous extraction of 20 samples (including QC samples) in 4 to 6 hours, and can also be used for emergency response. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu, {sup 238}Pu, and {sup 239}Pu were measured by alpha spectrometry.

  16. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient

    SciTech Connect (OSTI)

    Wang, Wenbo; He, Xingli; Ye, Zhi E-mail: jl2@bolton.ac.uk; Wang, Xiaozhi; Mayrhofer, Patrick M.; Gillinger, Manuel; Bittner, Achim; Schmid, Ulrich

    2014-09-29

    AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0%???2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are much higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.

  17. Determination of total and isotopic uranium by inductively coupled plasma-mass spectrometry at the Fernald Environmental Management Project

    SciTech Connect (OSTI)

    Miller, F.L.; Bolin, R.N.; Feller, M.T.; Danahy, R.J.

    1995-04-01

    At the Fernald Environmental Management Project (FEMP) in southwestern Ohio, ICP-mass spectrometry (ICP-MS), with sample introduction by peristaltic pumping, is used to determine total and isotopic uranium (U-234, U-235, U-236 and U-238) in soil samples. These analyses are conducted in support of the environmental cleanup of the FEMP site. Various aspects of the sample preparation and instrumental analysis will be discussed. Initial sample preparation consists of oven drying to determine moisture content, and grinding and rolling to homogenize the sample. This is followed by a nitric/hydrofluoric acid digestion to bring the uranium in the sample into solution. Bismuth is added to the sample prior to digestion to monitor for losses. The total uranium (U-238) content of this solution and the U{sup 235}/U{sup 238} ratio are measured on the first pass through the ICP-MS. To determine the concentration of the less abundant U{sup 234} and U{sup 236} isotopes, the digestate is further concentrated by using Eichrom TRU-Spec extraction columns before the second pass through the ICP-MS. Quality controls for both the sample preparation and instrumental protocols will also be discussed. Finally, an explanation of the calculations used to report the data in either weight percent or activity units will be given.

  18. Coupled high fidelity thermal hydraulics and neutronics for reactor safety simulations

    SciTech Connect (OSTI)

    Vincent A. Mousseau; Hongbin Zhang; Haihua Zhao

    2008-09-01

    This work is a continuation of previous work on the importance of accuracy in the simulation of nuclear reactor safety transients. This work is qualitative in nature and future work will be more quantitative. The focus of this work will be on a simplified single phase nuclear reactor primary. The transient of interest investigates the importance of accuracy related to passive (inherent) safety systems. The transient run here will be an Unprotected Loss of Flow (ULOF) transient. Here the coolant pump is turned off and the unSCRAMed reactor transitions from forced to free convection (Natural circulation). Results will be presented that show the difference that the first order in time truncation physics makes on the transient. The purpose of this document is to illuminate a possible problem in traditional reactor simulation approaches. Detailed studies need to be done on each simulation code for each transient analyzed to determine if the first order truncation physics plays an important role.

  19. Highly frustrated spin-lattice models of magnetism and their quantum phase transitions: A microscopic treatment via the coupled cluster method

    SciTech Connect (OSTI)

    Bishop, R. F.; Li, P. H. Y.; Campbell, C. E.

    2014-10-15

    We outline how the coupled cluster method of microscopic quantum many-body theory can be utilized in practice to give highly accurate results for the ground-state properties of a wide variety of highly frustrated and strongly correlated spin-lattice models of interest in quantum magnetism, including their quantum phase transitions. The method itself is described, and it is shown how it may be implemented in practice to high orders in a systematically improvable hierarchy of (so-called LSUBm) approximations, by the use of computer-algebraic techniques. The method works from the outset in the thermodynamic limit of an infinite lattice at all levels of approximation, and it is shown both how the 'raw' LSUBm results are themselves generally excellent in the sense that they converge rapidly, and how they may accurately be extrapolated to the exact limit, m ? ?, of the truncation index m, which denotes the only approximation made. All of this is illustrated via a specific application to a two-dimensional, frustrated, spin-half J{sub 1}{sup XXZ}?J{sub 2}{sup XXZ} model on a honeycomb lattice with nearest-neighbor and next-nearest-neighbor interactions with exchange couplings J{sub 1} > 0 and J{sub 2} ? ?J{sub 1} > 0, respectively, where both interactions are of the same anisotropic XXZ type. We show how the method can be used to determine the entire zero-temperature ground-state phase diagram of the model in the range 0 ? ? ? 1 of the frustration parameter and 0 ? ? ? 1 of the spin-space anisotropy parameter. In particular, we identify a candidate quantum spin-liquid region in the phase space.

  20. Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor

    SciTech Connect (OSTI)

    C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

    2005-06-01

    The Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the hightemperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant, may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. Seven possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermalhydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermalhydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The evaluations determined which configurations and coolants are the most promising from thermal-hydraulic and efficiency points of view. These evaluations also determined which configurations and options do not appear to be feasible at the current time.

  1. ISSUANCE 2015-12-02: Energy Conservation Program: Energy Conservation Standards for High-Intensity Discharge Lamps, Final Determination

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for High-Intensity Discharge Lamps, Final Determination

  2. High-resolution rovibrational study of the Coriolis-coupled nu(12) and nu(15) modes of [1.1.1]propellane

    SciTech Connect (OSTI)

    Kirkpatrick, Robynne W.; Masiello, Tony; Jariyasopit, Narumol; Nibler, Joseph W.; Maki, Arthur G.; Blake, Thomas A.; Weber, Alfons

    2009-01-02

    Infrared spectra of the small strained cage molecule [1.1.1]propellane have been obtained at high resolution (0.0015 cm-1) and the J and K, l rovibrational structure has been resolved for the first time. We recently used combination-differences to obtain ground state parameters for propellane; over 4,100 differences from five fundamental and four combination bands were used in this process. The combination-difference approach eliminated errors due to localized perturbations in the upper state levels of the transitions and gave well-determined ground state parameters. In the current work, these ground state parameters were used in a determination of the upper state parameters for the v12(e?) perpendicular and v15(a2?) parallel bands. Over 4000 infrared transitions were fitted for each band, with J, K values ranging up to 71, 51 and 92, 90 respectively. While the transition frequencies for both bands can be fit nicely using separate analyses for each band, the strong intensity perturbations observed in the weaker v12 band indicated that Coriolis coupling between the two modes was significant and should be included. Due to correlations with other parameters, the Coriolis coupling parameter Zy15z,12x for the v15 and v12 interaction is poorly determined by a transition frequency fit alone. However, by combining the frequency fit with a fit of experimental intensities, a value of -0.42 was obtained, quite close to that predicted from the ab initio calculation (-0.44). This intensity fit also yielded a (dz/dQ15z)/(dx/dQ12x) dipole derivative ratio of 36.5, in reasonable agreement with a value of 29.2 predicted by Gaussian ab initio density functional calculations using a cc-pVTZ basis. This ratio is unusually high due to large charge movement as the novel central Caxial-Caxial bond is displaced along the symmetry axis of the molecule for the v15 mode.

  3. Determination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination of a Minimum Soiling Level to Affect Photovoltaic Devices Patrick D. Burton and Bruce H. King Sandia National Laboratories, Albuquerque, NM 87185 USA pdburto@sandia.gov Abstract-Soil accumulation on photovoltaic (PV) modules presents a challenge to long-term performance prediction and lifetime estimates due to the inherent difficulty in quantifying small changes over an extended period. Low mass loadings of soil are a common occurrence, but remain difficult to quantify. In order to

  4. Final report for SciDAC grant Physics and dynamics coupling across scales in the next generation CESM: Meeting the challenge of high resolution.

    SciTech Connect (OSTI)

    Larson, Vincent

    2015-02-21

    This is a final report for a SciDAC grant supported by BER, "Physics and dynamics coupling across scales in the next generation CESM: Meeting the challenge of high resolution." The project implemented a novel technique for coupling small-scale dynamics and microphysics into a community climate model. The technique uses subcolumns that are sampled in Monte Carlo fashion from a distribution of subgrid variability. The resulting global simulations show several improvements over the status quo.

  5. Method and apparatus for digitally based high speed x-ray spectrometer for direct coupled use with continuous discharge preamplifiers

    DOE Patents [OSTI]

    Warburton, William K. (1300 Mills St., Menlo Park, CA 94025)

    1998-01-01

    A high speed, digitally based, signal processing system which accepts directly coupled input data from a detector with a continuous discharge type preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system's principal elements are an analog signal conditioning section, a combinatorial logic section which implements digital triangular filtering and pileup inspection, and a microprocessor which accepts values captured by the logic section and uses them to compute x-ray energy values. Operating without pole-zero correction, the system achieves high resolution by capturing, in conjunction with each peak value from the digital filter, an associated value of the unfiltered signal, and using this latter signal to correct the former for errors which arise from its local slope terms. This correction greatly reduces both energy resolution degradation and peak centroid shifting in the output spectrum as a function of input count rate. When the noise of this correction is excessive, a modification allows two filtered averages of the signal to be captured and a corrected peak amplitude computed therefrom.

  6. Method and apparatus for digitally based high speed x-ray spectrometer for direct coupled use with continuous discharge preamplifiers

    DOE Patents [OSTI]

    Warburton, W.K.

    1998-06-30

    A high speed, digitally based, signal processing system is disclosed which accepts directly coupled input data from a detector with a continuous discharge type preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system`s principal elements are an analog signal conditioning section, a combinatorial logic section which implements digital triangular filtering and pileup inspection, and a microprocessor which accepts values captured by the logic section and uses them to compute x-ray energy values. Operating without pole-zero correction, the system achieves high resolution by capturing, in conjunction with each peak value from the digital filter, an associated value of the unfiltered signal, and using this latter signal to correct the former for errors which arise from its local slope terms. This correction greatly reduces both energy resolution degradation and peak centroid shifting in the output spectrum as a function of input count rate. When the noise of this correction is excessive, a modification allows two filtered averages of the signal to be captured and a corrected peak amplitude computed therefrom. 14 figs.

  7. Spin-lattice coupling in uranium dioxide probed by magnetostriction measurements at high magnetic fields (P08358-E001-PF)

    SciTech Connect (OSTI)

    Gofryk, K.; Jaime, M.

    2014-12-01

    Our preliminary magnetostriction measurements have already shown a strong interplay of lattice dynamic and magnetism in both antiferromagnetic and paramagnetic states, and give unambiguous evidence of strong spin- phonon coupling in uranium dioxide. Further studies are planned to address the puzzling behavior of UO2 in magnetic and paramagnetic states and details of the spin-phonon coupling.

  8. Determining Cloud Ice Water Path from High-Frequency Microwave Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determining Cloud Ice Water Path from High-Frequency Microwave Measurements G. Liu Department of Meteorology Florida State University Tallahassee, Florida Introduction A better understanding of cloud water content and its large-scale distribution is important to climate research for improving our ability to parameterize and validate cloud/precipitation processes in global climate models. The goal of this study is to determine the distribution and large-scale advection of cloud ice/liquid water

  9. Optimization of a coupling scheme between MCNP5 and SUBCHANFLOW for high fidelity modeling of LWR reactors

    SciTech Connect (OSTI)

    Ivanov, A.; Sanchez, V.; Imke, U.; Ivanov, K.

    2012-07-01

    In order to increase the accuracy and the degree of spatial resolution of core design studies, coupled Three-Dimensional (3D) neutronics (deterministic and Monte Carlo) and 3D thermal hydraulics (CFD and sub-channel) codes are being developed worldwide. In this paper the optimization of a coupling between MCNP5 code and an in-house development thermal-hydraulics code SUBCHANFLOW is presented. Various improvements of the coupling methodology are presented. With the help of novel interpolation tool a consistent methodology for the preparation of thermal scattering data library have been developed, ensuring that inelastic scattering from bound nuclei is treated at the correct moderator temperature. Trough the utilization of a hybrid coupling with discrete energy Monte-Carlo code KENO a methodology for acceleration of the coupled calculation is being demonstrated. In this approach an additional coupling between KENO and SUBCHANFLOW was developed, the converged results of which are used as initial conditions for the MCNP-SUBCHANFLOW coupling. Acceleration of fission source distribution convergence, by sampling fission source distribution from the power distribution obtained by KENO is also demonstrated. (authors)

  10. Thermoacoustic couple

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-10-04

    An apparatus and method for determining acoustic power density level and its direction in a fluid using a single sensor are disclosed. The preferred embodiment of the apparatus, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  11. High-precision determination of low-energy effective parameters for a two-dimensional Heisenberg quantum antiferromagnet

    SciTech Connect (OSTI)

    Jiang, F.-J.; Wiese, U.-J.

    2011-04-15

    The two-dimensional (2D) spin-(1/2) Heisenberg antiferromagnet with exchange coupling J is investigated on a periodic square lattice of spacing a at very small temperatures using the loop-cluster algorithm. Monte Carlo data for the staggered and uniform susceptibilities are compared with analytic results obtained in the systematic low-energy effective field theory for the staggered magnetization order parameter. The low-energy parameters of the effective theory, i.e., the staggered magnetization density M{sub s}=0.307 43(1)/a{sup 2}, the spin stiffness {rho}{sub s}=0.180 81(11)J, and the spin wave velocity c=1.6586(3)Ja, are determined with very high precision. Our study may serve as a test case for the comparison of lattice quantum chromodynamics Monte Carlo data with analytic predictions of the chiral effective theory for pions and nucleons, which is vital for the quantitative understanding of the strong interaction at low energies.

  12. Couples Magnetic and Structural Transitions in High-Purity Dy and Gd5SbxGe4-x

    SciTech Connect (OSTI)

    Alexander S. Chernyshov

    2006-08-09

    Magnetic materials exhibiting magnetic phase transitions simultaneously with structural rearrangements of their crystal lattices hold a promise for numerous applications including magnetic refrigeration, magnetomechanical devices and sensors. We undertook a detailed study of a single crystal of dysprosium metal, which is a classical example of a system where magnetic and crystallographic sublattices can be either coupled or decoupled from one another. Magnetocaloric effect, magnetization, ac magnetic susceptibility, and heat capacity of high purity single crystals of dysprosium have been investigated over broad temperature and magnetic field intervals with the magnetic field vector parallel to either the a- or c-axes of the crystal. Notable differences in the behavior of the physical properties when compared to Dy samples studied in the past have been observed between 110 K and 125 K, and between 178 K and {approx}210 K. A plausible mechanism based on the formation of antiferromagnetic clusters in the impure Dy has been suggested in order to explain the reduction of the magnetocaloric effect in the vicinity of the Neel point. Experimental and theoretical investigations of the influence of commensurability effects on the magnetic phase diagram and the value of the magnetocaloric effect have been conducted. The presence of newly found anomalies in the physical properties has been considered as evidence of previously unreported states of Dy. The refined magnetic phase diagram of dysprosium with the magnetic field vector parallel to the a-axis of a crystal has been constructed and discussed. The magnetic and crystallographic properties of Gd{sub 5}Sb{sub x}Ge{sub 4-x} pseudo-binary system were studied by x-ray diffraction (at room temperature), heat capacity, ac-magnetic susceptibility, and magnetization in the temperature interval 5-320 K in magnetic fields up to 100 kOe. The magnetic properties of three composition (x = 0.5, 1,2) were examined in detail. The Gd{sub 5}Sb{sub 2}Ge{sub 2} compound that adopts Tm{sub 5}Sb{sub 2}Si{sub 2}-type of structure (space group is Cmca), shows a second order FM-PM transition at 200 K, whereas Gd{sub 5}Sb{sub x}Ge{sub 4-x} compounds for x = 0.5 and x = 1 (Sm{sub 5}Ge{sub 4}-type of structure, space group is Pnma) exhibit first order phase transformations at 45 K and 37 K, respectively.

  13. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOE Patents [OSTI]

    Atac, M.; McKay, T.A.

    1998-04-21

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD. 13 figs.

  14. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOE Patents [OSTI]

    Atac, Muzaffer (Wheaton, IL); McKay, Timothy A. (Ann Arbor, MI)

    1998-01-01

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD.

  15. Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan

    2015-05-14

    Properties of the Higgs boson with mass near 125 GeV are measured in proton-proton collisions with the CMS experiment at the LHC. Comprehensive sets of production and decay measurements are combined. The decay channels include ??, ZZ, WW, ??, bb, and ?? pairs. The data samples were collected in 2011 and 2012 and correspond to integrated luminosities of up to 5.1 fb? at 7 TeV and up to 19.7 fb? at 8 TeV. From the high-resolution ?? and ZZ channels, the mass of the Higgs boson is determined to be 125.02\\,+0.26-0.27(stat)+0.14-0.15(syst) GeV. For this mass value, the event yields obtainedmorein the different analyses tagging specific decay channels and production mechanisms are consistent with those expected for the standard model Higgs boson. The combined best-fit signal relative to the standard model expectation is 1.00 0.09 (stat), +0.08 -0.07 (theo) 0.07 (syst) at the measured mass. The couplings of the Higgs boson are probed for deviations in magnitude from the standard model predictions in multiple ways, including searches for invisible and undetected decays. No significant deviations are found.less

  16. Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-05-14

    Properties of the Higgs boson with mass near 125 GeV are measured in proton-proton collisions with the CMS experiment at the LHC. Comprehensive sets of production and decay measurements are combined. The decay channels include ??, ZZ, WW, ??, bb, and ?? pairs. The data samples were collected in 2011 and 2012 and correspond to integrated luminosities of up to 5.1 fb? at 7 TeV and up to 19.7 fb? at 8 TeV. From the high-resolution ?? and ZZ channels, the mass of the Higgs boson is determined to be 125.02\\,+0.26-0.27(stat)+0.14-0.15(syst) GeV. For this mass value, the event yields obtained in the different analyses tagging specific decay channels and production mechanisms are consistent with those expected for the standard model Higgs boson. The combined best-fit signal relative to the standard model expectation is 1.00 0.09 (stat), +0.08 -0.07 (theo) 0.07 (syst) at the measured mass. The couplings of the Higgs boson are probed for deviations in magnitude from the standard model predictions in multiple ways, including searches for invisible and undetected decays. No significant deviations are found.

  17. Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 $$\\,\\text {TeV}$$

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan

    2015-05-14

    Properties of the Higgs boson with mass near 125GeV are measured in proton-proton collisions with the CMS experiment at the LHC. Comprehensive sets of production and decay measurements are combined. The decay channels include γγ, ZZ, WW, ττ, bb, and μμ pairs. The data samples were collected in 2011 and 2012 and correspond to integrated luminosities of up to 5.1fb-1 at 7TeV and up to 19.7fb-1 at 8TeV. From the high-resolution γγ and ZZ channels, the mass of the Higgs boson is determined to be 125.02+0.26–0.27 (stat) +0.14–0.15 (syst) GeV. For this mass value, the event yields obtained in themore » different analyses tagging specific decay channels and production mechanisms are consistent with those expected for the standard model Higgs boson. The combined best-fit signal relative to the standard model expectation is 1.00 ± 0.09(stat)+0.08–0.07 (theo) ± 0.07(syst) at the measured mass. The couplings of the Higgs boson are probed for deviations in magnitude from the standard model predictions in multiple ways, including searches for invisible and undetected decays. As a result, no significant deviations are found.« less

  18. Helix coupling

    DOE Patents [OSTI]

    Ginell, W.S.

    1989-04-25

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  19. Helix coupling

    DOE Patents [OSTI]

    Ginell, W.S.

    1982-03-17

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the U sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  20. Translation-coupling systems

    DOE Patents [OSTI]

    Pfleger, Brian; Mendez-Perez, Daniel

    2015-05-19

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  1. Translation-coupling systems

    DOE Patents [OSTI]

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  2. Structure of Low-Lying Excited States of Guanine in DNA and Solution: Combined Molecular Mechanics and High-Level Coupled Cluster Studies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kowalski, Karol; Valiev, Marat

    2007-01-01

    High-level ab-initio equation-of-motion coupled-cluster methods with singles, doubles, and noniterative triples are used, in conjunction with the combined quantum mechanical molecular mechanics approach, to investigate the structure of low-lying excited states of the guanine base in DNA and solvated environments. Our results indicate that while the excitation energy of the first excited state is barely changed compared to its gas-phase counterpart, the excitation energy of the second excited state is blue-shifted by 0.24 eV.

  3. TRITIUM PERMEATION AND TRANSPORT IN THE GASOLINE PRODUCTION SYSTEM COUPLED WITH HIGH TEMPERATURE GAS-COOLED REACTORS (HTGRS)

    SciTech Connect (OSTI)

    Chang H. Oh; Eung S. Kim; Mike Patterson

    2011-05-01

    This paper describes scoping analyses on tritium behaviors in the HTGR-integrated gasoline production system, which is based on a methanol-to-gasoline (MTG) plant. In this system, the HTGR transfers heat and electricity to the MTG system. This system was analyzed using the TPAC code, which was recently developed by Idaho National Laboratory. The global sensitivity analyses were performed to understand and characterize tritium behaviors in the coupled HTGR/MTG system. This Monte Carlo based random sampling method was used to evaluate maximum 17,408 numbers of samples with different input values. According to the analyses, the average tritium concentration in the product gasoline is about 3.0510-3 Bq/cm3, and 62 % cases are within the tritium effluent limit (= 3.7x10-3 Bq/cm3[STP]). About 0.19% of released tritium is finally transported from the core to the gasoline product through permeations. This study also identified that the following four parameters are important concerning tritium behaviors in the HTGR/MTG system: (1) tritium source, (2) wall thickness of process heat exchanger, (3) operating temperature, and (4) tritium permeation coefficient of process heat exchanger. These four parameters contribute about 95 % of the total output uncertainties. This study strongly recommends focusing our future research on these four parameters to improve modeling accuracy and to mitigate tritium permeation into the gasol ine product. If the permeation barrier is included in the future study, the tritium concentration will be significantly reduced.

  4. The model coupling toolkit.

    SciTech Connect (OSTI)

    Larson, J. W.; Jacob, R. L.; Foster, I.; Guo, J.

    2001-04-13

    The advent of coupled earth system models has raised an important question in parallel computing: What is the most effective method for coupling many parallel models to form a high-performance coupled modeling system? We present our solution to this problem--The Model Coupling Toolkit (MCT). We explain how our effort to construct the Next-Generation Coupler for NCAR Community Climate System Model motivated us to create this toolkit. We describe in detail the conceptual design of the MCT and explain its usage in constructing parallel coupled models. We present preliminary performance results for the toolkit's parallel data transfer facilities. Finally, we outline an agenda for future development of the MCT.

  5. Oxidative homo-coupling reactions of aryl boronic acids using a porous copper metal-organic framework as a highly efficient heterogeneous catalyst

    DOE Patents [OSTI]

    Yaghi, Omar M.; Czaja, Alexander U.; Wang, Bo; Lu, Zheng

    2015-06-02

    The disclosure provides methods for the use of open metal frameworks to catalyze coupling reactions.

  6. High-precision method for determining the position of laser beam focal plane

    SciTech Connect (OSTI)

    Malashko, Ya I; Kleimenov, A N; Potemkin, I B; Khabibulin, V M

    2013-12-31

    The method of wavefront doubled-frequency spherical modulation for determining the laser beam waist position has been simulated and experimentally studied. The error in determining the focal plane position is less than 10{sup -5} D. The amplitude of the control doubled-frequency electric signal is experimentally found to correspond to 12% of the total radiation power. (laser beams)

  7. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    SciTech Connect (OSTI)

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James; Liyu, Andrey V.; Sears, Jesse A.; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R.; Ahring, Birgitte K.; Majors, Paul D.

    2014-06-20

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequency of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  8. Chemical Characterization of Crude Petroleum Using Nanospray Desorption Electrospray Ionization Coupled with High-Resolution Mass Spectrometry

    SciTech Connect (OSTI)

    Eckert, Peter A.; Roach, Patrick J.; Laskin, Alexander; Laskin, Julia

    2012-02-07

    Nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was used for the first time for the analysis of liquid petroleum crude oil samples. The analysis was performed in both positive and negative ionization modes using three solvents one of which (acetonitrile/toluene mixture) is commonly used in petroleomics studies while two other polar solvents (acetonitrile/water and methanol/water mixtures) are generally not compatible with petroleum characterization using mass spectrometry. The results demonstrate that nano-DESI analysis efficiently ionizes petroleum constituents soluble in a particular solvent. When acetonitrile/toluene is used as a solvent, nano-DESI generates electrospray-like spectra. In contrast, strikingly different spectra were obtained using acetonitrile/water and methanol/water. Comparison with the literature data indicates that these solvents selectively extract water-soluble constituents of the crude oil. Water-soluble compounds are predominantly observed as sodium adducts in nano-DESI spectra indicating that addition of sodium to the solvent may be a viable approach for efficient ionization of water-soluble crude oil constituents. Nano-DESI enables rapid screening of different classes of compounds in crude oil samples using solvents that are rarely used for petroleum characterization.

  9. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    SciTech Connect (OSTI)

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  10. Determination of the Average Aromatic Cluster Size of Fossil Fuels by Solid-State NMR at High Magnetic Field

    SciTech Connect (OSTI)

    Mao, Kanmi; Kennedy, Gordon J.; Althaus, Stacey M.; Pruski, Marek

    2013-01-07

    We show that the average aromatic cluster size in complex carbonaceous materials can be accurately determined using fast magic-angle spinning (MAS) NMR at a high magnetic field. To accurately quantify the nonprotonated aromatic carbon, we edited the 13C spectra using the recently reported MAS-synchronized spinecho, which alleviated the problem of rotational recoupling of 1H-13C dipolar interactions associated with traditional dipolar dephasing experiments. The dependability of this approach was demonstrated on selected Argonne Premium coal standards, for which full sets of basic structural parameters were determined with high accuracy.

  11. Sealing coupling

    DOE Patents [OSTI]

    Pardini, John A. (Brookfield, IL); Brubaker, Robert C. (Naperville, IL); Rusnak, John J. (Orland Park, IL)

    1985-01-01

    Disclosed is a remotely operable releasable sealing coupling which provides fluid-tight joinder of upper and a lower conduit sections. Each conduit section has a concave conical sealing surface adjacent its end portion. A tubular sleeve having convex spherical ends is inserted between the conduit ends to form line contact with the concave conical end portions. An inwardly projecting lip located at one end of the sleeve cooperates with a retaining collar formed on the upper pipe end to provide swivel capture for the sleeve. The upper conduit section also includes a tapered lower end portion which engages the inside surface of the sleeve to limit misalignment of the connected conduit sections.

  12. Determination of Band Offsets between the High-k Dielectric LaAlO3...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    found that band gaps of high-k dielectric films are also significantly affected by film growth conditions. Therefore, we can not rely on previously published LaAlO3 band gap...

  13. Design of Low-Noise Output Amplifiers for P-channel Charge-Coupled Devices Fabricated on High-Resistivity Silicon

    SciTech Connect (OSTI)

    Haque, S.; Frost, F. Dion R.; Groulx, R.; Holland, S.E.; Karcher, A.; Kolbe, W.F.; Roe, N. A.; Wang, G.; Yu, Y.

    2011-12-22

    We describe the design and optimization of low-noise, single-stage output amplifiers for p-channel charge-coupled devices (CCDs) used for scientific applications in astronomy and other fields. The CCDs are fabricated on high-resistivity, 40005000 -cm, n-type silicon substrates. Single-stage amplifiers with different output structure designs and technologies have been characterized. The standard output amplifier is designed with an n{sup +} polysilicon gate that has a metal connection to the sense node. In an effort to lower the output amplifier readout noise by minimizing the capacitance seen at the sense node, buried-contact technology has been investigated. In this case, the output transistor has a p{sup +} polysilicon gate that connects directly to the p{sup +} sense node. Output structures with buried-contact areas as small as 2 ?m 2 ?m are characterized. In addition, the geometry of the source-follower transistor was varied, and we report test results on the conversion gain and noise of the various amplifier structures. By use of buried-contact technology, better amplifier geometry, optimization of the amplifier biases and improvements in the test electronics design, we obtain a 45% reduction in noise, corresponding to 1.7 e{sup ?} rms at 70 kpixels/sec.

  14. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    SciTech Connect (OSTI)

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making process regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.

  15. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making processmore » regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.« less

  16. Experimental determination of lead carbonate solubility at high ionic strengths: A Pitzer model description

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiong, Yongliang

    2015-05-06

    In this article, solubility measurements of lead carbonate, PbCO3(cr), cerussite, as a function of total ionic strengths are conducted in the mixtures of NaCl and NaHCO3 up to I = 1.2 mol•kg–1 and in the mixtures of NaHCO3 and Na2CO3 up to I = 5.2 mol•kg–1, at room temperature (22.5 ± 0.5 °C). The solubility constant (log Ksp) for cerussite, PbCO3(cr) = Pb2+ + CO32- was determined as –13.76 ± 0.15 (2σ) with a set of Pitzer parameters describing the specific interactions of PbCO3(aq), Pb(CO3)22-, and Pb(CO3)Cl– with the bulk-supporting electrolytes, based on the Pitzer model. The model developed inmore » this work can reproduce the experimental results including model-independent solubility values from the literature over a wide range of ionic strengths with satisfactory accuracy. The model is expected to find applications in numerous fields, including the accurate description of chemical behavior of lead in geological repositories, the modeling of formation of oxidized Pb–Zn ore deposits, and the environmental remediation of lead contamination.« less

  17. Experimental Determination of DT Yield in High Current DD Dense Plasma Focii

    SciTech Connect (OSTI)

    Lowe, D. R.; Hagen, E. C.; Meehan, B. T.; Springs, R. K.; O'Brien, R. J.

    2013-06-18

    Dense Plasma Focii (DPF), which utilize deuterium gas to produce 2.45 MeV neutrons, may in fact also produce DT fusion neutrons at 14.1 MeV due to the triton production in the DD reaction. If beam-target fusion is the primary producer of fusion neutrons in DPFs, it is possible that ejected tritons from the first pinch will interact with the second pinch, and so forth. The 2 MJ DPF at National Security Technologies Losee Road Facility is able to, and has produced, over 1E12 DD neutrons per pulse, allowing an accurate measurement of the DT/DD ratio. The DT/DD ratio was experimentally verified by using the (n,2n) reaction in a large piece of praseodymium metal, which has a threshold reaction of 8 MeV, and is widely used as a DT yield measurement system1. The DT/DD ratio was experimentally determined for over 100 shots, and then compared to independent variables such as tube pressure, number of pinches per shot, total current, pinch current and charge voltage.

  18. Coupled dual loop absorption heat pump

    DOE Patents [OSTI]

    Sarkisian, Paul H. (Watertown, MA); Reimann, Robert C. (Lafayette, NY); Biermann, Wendell J. (Fayetteville, NY)

    1985-01-01

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  19. Determination of uranium and thorium in semiconductor memory materials by high fluence neutron activation analysis

    SciTech Connect (OSTI)

    Dyer, F.F.; Emery, J.F.; Northcutt, K.J.; Scott, R.M.

    1981-01-01

    Uranium and thorium were measured by absolute neutron activation analysis in high-purity materials used to manufacture semiconductor memories. The main thrust of the study concerned aluminum and aluminum alloys used as sources for thin film preparation, evaporated metal films, and samples from the Czochralski silicon crystal process. Average levels of U and Th were found for the source alloys to be approx. 65 and approx. 45 ppB, respectively. Levels of U and Th in silicon samples fell in the range of a few parts per trillion. Evaporated metal films contained about 1 ppB U and Th, but there is some question about these results due to the possibility of contamination.

  20. Determination of the top-quark pole mass and strong coupling constant from the t t-bar production cross section in pp collisions at $$\\sqrt{s}$$ = 7 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chatrchyan, Serguei

    2014-08-21

    The inclusive cross section for top-quark pair production measured by the CMS experiment in proton-proton collisions at a center-of-mass energy of 7 TeV is compared to the QCD prediction at next-to-next-to-leading order with various parton distribution functions to determine the top-quark pole mass,more » $$m_t^{pole}$$, or the strong coupling constant, $$\\alpha_S$$. With the parton distribution function set NNPDF2.3, a pole mass of 176.7$$^{+3.0}_{-2.8}$$ GeV is obtained when constraining $$\\alpha_S$$ at the scale of the Z boson mass, $m_Z$, to the current world average. Alternatively, by constraining $$m_t^{pole}$$ to the latest average from direct mass measurements, a value of $$\\alpha_S(m_Z)$$ = 0.1151$$^{+0.0028}_{-0.0027}$$ is extracted. This is the first determination of $$\\alpha_S$$ using events from top-quark production.« less

  1. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, D.G.; Miller, J.L.

    1993-02-23

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  2. Coupling apparatus for a metal vapor laser

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Miller, John L. (Dublin, CA)

    1993-01-01

    Coupling apparatus for a large bore metal vapor laser is disclosed. The coupling apparatus provides for coupling high voltage pulses (approximately 40 KV) to a metal vapor laser with a high repetition rate (approximately 5 KHz). The coupling apparatus utilizes existing thyratron circuits and provides suitable power input to a large bore metal vapor laser while maintaining satisfactory operating lifetimes for the existing thyratron circuits.

  3. Simulation Study of Near-Surface Coupling of Nuclear Devices...

    Office of Scientific and Technical Information (OSTI)

    Coupling of Nuclear Devices vs. Equivalent High-Explosive Charges Citation Details In-Document Search Title: Simulation Study of Near-Surface Coupling of Nuclear Devices vs. ...

  4. Quick torque coupling

    DOE Patents [OSTI]

    Luft, Peter A. (El Cerrito, CA)

    2009-05-12

    A coupling for mechanically connecting modular tubular struts of a positioning apparatus or space frame, comprising a pair of toothed rings (10, 12) attached to separate strut members (16), the teeth (18, 20) of the primary rings (10, 12) mechanically interlocking in both an axial and circumferential manner, and a third part comprising a sliding, toothed collar (14) the teeth (22) of which interlock the teeth (18, 20) of the primary rings (10, 12), preventing them from disengaging, and completely locking the assembly together. A secondary mechanism provides a nesting force for the collar, and/or retains it. The coupling is self-contained and requires no external tools for installation, and can be assembled with gloved hands in demanding environments. No gauging or measured torque is required for assembly. The assembly can easily be visually inspected to determine a "go" or "no-go" status. The coupling is compact and relatively light-weight. Because of it's triply interlocking teeth, the connection is rigid. The connection does not primarily rely on clamps, springs or friction based fasteners, and is therefore reliable in fail-safe applications.

  5. Lateral transport and far-infrared radiation of electrons in In{sub x}Ga{sub 1-x}As/GaAs heterostructures with the double tunnel-coupled quantum wells in a high electric field

    SciTech Connect (OSTI)

    Baidus, N. V.; Belevskii, P. A.; Biriukov, A. A.; Vainberg, V. V.; Vinoslavskii, M. N.; Ikonnikov, A. V.; Zvonkov, B. N.; Pylypchuk, A. S.; Poroshin, V. N.

    2010-11-15

    It is shown that the far-infrared radiation of electrons in the selectively doped heterostructures with double tunnel-coupled quantum wells in high lateral electric fields strongly depends on the level of doping of the wells. At a high impurity concentration in a narrow well, higher than (1-2) x 10{sup 11} cm{sup -2}, the radiation is caused only by indirect intrasubband electron transitions. At a lower concentration, along with the indirect transitions, the direct intersubband transitions also contribute to the radiation. These transitions become possible in high electric fields due to the real-space electron transfer between the quantum wells.

  6. Determination of gene expression patterns using high-throughput RNA in situ hybridizaion to whole-mount Drosophila embryos

    SciTech Connect (OSTI)

    Weiszmann, R.; Hammonds, A.S.; Celniker, S.E.

    2009-04-09

    We describe a high-throughput protocol for RNA in situ hybridization (ISH) to Drosophila embryos in a 96-well format. cDNA or genomic DNA templates are amplified by PCR and then digoxigenin-labeled ribonucleotides are incorporated into antisense RNA probes by in vitro transcription. The quality of each probe is evaluated before ISH using a RNA probe quantification (dot blot) assay. RNA probes are hybridized to fixed, mixed-staged Drosophila embryos in 96-well plates. The resulting stained embryos can be examined and photographed immediately or stored at 4oC for later analysis. Starting with fixed, staged embryos, the protocol takes 6 d from probe template production through hybridization. Preparation of fixed embryos requires a minimum of 2 weeks to collect embryos representing all stages. The method has been used to determine the expression patterns of over 6,000 genes throughout embryogenesis.

  7. Long-Gradient Separations Coupled with Selected Reaction Monitoring for Highly Sensitive, Large Scale Targeted Protein Quantification in a Single Analysis

    SciTech Connect (OSTI)

    Shi, Tujin; Fillmore, Thomas L.; Gao, Yuqian; Zhao, Rui; He, Jintang; Schepmoes, Athena A.; Nicora, Carrie D.; Wu, Chaochao; Chambers, Justin L.; Moore, Ronald J.; Kagan, Jacob; Srivastava, Sudhir; Liu, Alvin Y.; Rodland, Karin D.; Liu, Tao; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2013-10-01

    Long-gradient separations coupled to tandem MS were recently demonstrated to provide a deep proteome coverage for global proteomics; however, such long-gradient separations have not been explored for targeted proteomics. Herein, we investigate the potential performance of the long-gradient separations coupled with selected reaction monitoring (LG-SRM) for targeted protein quantification. Direct comparison of LG-SRM (5 h gradient) and conventional LC-SRM (45 min gradient) showed that the long-gradient separations significantly reduced background interference levels and provided an 8- to 100-fold improvement in LOQ for target proteins in human female serum. Based on at least one surrogate peptide per protein, an LOQ of 10 ng/mL was achieved for the two spiked proteins in non-depleted human serum. The LG-SRM detection of seven out of eight endogenous plasma proteins expressed at ng/mL or sub-ng/mL levels in clinical patient sera was also demonstrated. A correlation coefficient of >0.99 was observed for the results of LG-SRM and ELISA measurements for prostate-specific antigen (PSA) in selected patient sera. Further enhancement of LG-SRM sensitivity was achieved by applying front-end IgY14 immunoaffinity depletion. Besides improved sensitivity, LG-SRM offers at least 3 times higher multiplexing capacity than conventional LC-SRM due to ~3-fold increase in average peak widths for a 300-min gradient compared to a 45-min gradient. Therefore, LG-SRM holds great potential for bridging the gap between global and targeted proteomics due to its advantages in both sensitivity and multiplexing capacity.

  8. A method to determine fault vectors in 4H-SiC from stacking sequences observed on high resolution transmission electron microscopy images

    SciTech Connect (OSTI)

    Wu, Fangzhen; Wang, Huanhuan; Raghothamachar, Balaji; Dudley, Michael; Mueller, Stephan G.; Chung, Gil; Sanchez, Edward K.; Hansen, Darren; Loboda, Mark J.; Zhang, Lihua; Su, Dong; Kisslinger, Kim; Stach, Eric

    2014-09-14

    A new method has been developed to determine the fault vectors associated with stacking faults in 4H-SiC from their stacking sequences observed on high resolution TEM images. This method, analogous to the Burgers circuit technique for determination of dislocation Burgers vector, involves determination of the vectors required in the projection of the perfect lattice to correct the deviated path constructed in the faulted material. Results for several different stacking faults were compared with fault vectors determined from X-ray topographic contrast analysis and were found to be consistent. This technique is expected to applicable to all structures comprising corner shared tetrahedra.

  9. Vehicle Technologies Office Merit Review 2015: New High Energy Electrochemical Couple for Automotive Application: ANL IC3P Research Focus on Diagnostic Studies at BNL

    Broader source: Energy.gov [DOE]

    Presentation given by Brookhaven National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about new high...

  10. Inductively coupled helium plasma torch

    DOE Patents [OSTI]

    Montaser, Akbar (Potomac, MD); Chan, Shi-Kit (Washington, DC); Van Hoven, Raymond L. (Alexandria, VA)

    1989-01-01

    An inductively coupled plasma torch including a base member, a plasma tube and a threaded insert member within the plasma tube for directing the plasma gas in a tangential flow pattern. The design of the torch eliminates the need for a separate coolant gas tube. The torch can be readily assembled and disassembled with a high degree of alignment accuracy.

  11. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPES Provides Direct Evidence of Spin-Wave Coupling Print The electronic properties of a metal are determined by the dynamical behavior of its conduction electrons. Conventional...

  12. Three tooth kinematic coupling

    DOE Patents [OSTI]

    Hale, Layton C. (Livermore, CA)

    2000-01-01

    A three tooth kinematic coupling based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.

  13. Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler

    SciTech Connect (OSTI)

    Parker, Danny S; Sherwin, John R; Raustad, Richard

    2014-04-10

    The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonal energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.

  14. Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan

    2015-05-01

    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb$^{-1}$ collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD atmorenext-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to parameters of the theory such as the parton distribution functions of the proton and the strong coupling constant $\\alpha_S$ is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of $\\alpha_S(M_\\mathrm{Z})$ = 0.1171 $\\pm$ 0.0013 (exp) $^{+0.0073}_{-0.0047}$ (theo).less

  15. Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-05-01

    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb$^{-1}$ collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to parameters of the theory such as the parton distribution functions of the proton and the strong coupling constant $\\alpha_S$ is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of $\\alpha_S(M_\\mathrm{Z})$ = 0.1171 $\\pm$ 0.0013 (exp) $^{+0.0073}_{-0.0047}$ (theo).

  16. Measurement of the inclusive 3-jet production differential cross section in proton–proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan

    2015-05-01

    This article presents a measurement of the inclusive 3-jet production differential cross section at a proton–proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5fb–1 collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445–3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leadingmore » order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to the strong coupling constant αS is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of αS(MZ) = 0.1171 ± 0.0013(exp)+0.0073–0.0047(theo).« less

  17. Earth coupled cooling techniques

    SciTech Connect (OSTI)

    Grondzik, W.T.; Boyer, L.L.; Johnston, T.L.

    1981-01-01

    Earth coupled cooling is an important consideration for residential and commercial designers, owners, and builders in many regions of the country. The potential benefits which can be expected from passive earth contact cooling are reviewed. Recommendations for the design of earth sheltered structures incorporating earth coupled cooling strategies are also presented.

  18. Pipeline coating impedance effects on powerline fault current coupling

    SciTech Connect (OSTI)

    Dabkowski, J.

    1989-12-01

    Prior research leading to the development of predictive electromagnetic coupling computer codes has shown that the coating conductance is the principal factor in determining the response of a pipeline to magnetic induction from an overhead power transmission line. Under power line fault conditions, a high voltage may stress the coating causing a significant change in its conductance, and hence, the coupling response. Based upon laboratory experimentation and analysis, a model has been developed which allows prediction of the modified coating characteristics when subjected to high voltage during fault situations. Another program objective was the investigation of a method to determine the high voltage behavior of an existing coating from low voltage in situ field measurements. Such a method appeared conceptually feasible for non-porous coatings whose conductance is primarily a result of current leakage through existing holidays. However, limited testing has shown that difficulties in determining the steel-electrolyte capacitance limit the application of the method Methods for field measurement of the pipeline coating conductance were also studied for both dc ad ac signal excitation. Ac techniques offer the advantage that cathodic protection current interruption is not required, thus eliminating depolarization effects. However, ac field measurement techniques need additional refinement before these methods can be generally applied. 53 figs.

  19. Insidious vapors: infrared determination of NO/sub 2/ generated in a high-voltage electric arc

    SciTech Connect (OSTI)

    Carlson, E.M.; LeFevre, P.G.; Williams, R.C.

    1984-11-01

    A study of the quantities of nitrogen dioxide generated by a high-voltage electric discharge was conducted. The amount of nitrogen dioxide present was measured using infrared spectroscopy. Paraffin was used to protect the KBr sample cell from damage and NO/sub 2/. The relative toxicities of phosgene and NO/sub 2/, both generated by arcing of electrical equipment, are presented. 10 references, 2 figures, 2 tables.

  20. Coupling in the Tevatron

    SciTech Connect (OSTI)

    Gelfand, N.M.

    1994-12-01

    The performance of the Fermilab Tevatron Collider at the commencement of run Ib was far below expectations. After a frustrating period of several months, a low-{beta} quad downstream of the interaction point at B0 was found to be rolled. This rolled quadrupole coupled the horizontal and vertical motion of the Tevatron beams. It also made matching the beam from the Main Ring to the Tevatron impossible, resulting in emittance blow up on injection. The net result of the roll was a significant reduction in the Tevatron luminosity. When the roll in the quadrupole was corrected the performance of the Tevatron improved dramatically. This note will discuss the experimental data indicating the presence of coupling and subsequent calculations which show how coupling an affect the luminosity. It is not intended to exhaust a discussion of coupling, which hopefully will be understood well enough to be discussed in a subsequent note.

  1. Novel Flux Coupling Machine without Permanent Magnets - U Machine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Magnets Novel Flux Coupling Machine without Permanent Magnets Vehicle Technologies Office Merit Review 2014: Alternative High-Performance Motors with Non-Rare Earth Materials...

  2. Experiments and Simulations of the Use of Time-Correlated Thermal Neutron Counting to Determine the Multiplication of an Assembly of Highly Enriched Uranium

    SciTech Connect (OSTI)

    David L. Chichester; Mathew T. Kinlaw; Scott M. Watson; Jeffrey M. Kalter; Eric C. Miller; William A. Noonan

    2014-11-01

    A series of experiments and numerical simulations using thermal-neutron time-correlated measurements has been performed to determine the neutron multiplication, M, of assemblies of highly enriched uranium available at Idaho National Laboratory. The experiments used up to 14.4 kg of highly-enriched uranium, including bare assemblies and assemblies reflected with high-density polyethylene, carbon steel, and tungsten. A small 252Cf source was used to initiate fission chains within the assembly. Both the experiments and the simulations used 6-channel and 8-channel detector systems, each consisting of 3He proportional counters moderated with polyethylene; data was recorded in list mode for analysis. 'True' multiplication values for each assembly were empirically derived using basic neutron production and loss values determined through simulation. A total of one-hundred and sixteen separate measurements were performed using fifty-seven unique measurement scenarios, the multiplication varied from 1.75 to 10.90. This paper presents the results of these comparisons and discusses differences among the various cases.

  3. Closed inductively coupled plasma cell

    DOE Patents [OSTI]

    Manning, T.J.; Palmer, B.A.; Hof, D.E.

    1990-11-06

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

  4. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPES Provides Direct Evidence of Spin-Wave Coupling ARPES Provides Direct Evidence of Spin-Wave Coupling Print Wednesday, 30 March 2005 00:00 The electronic properties of a metal are determined by the dynamical behavior of its conduction electrons. Conventional band theory accounts for the interaction of the electrons with the static ion lattice. However, coupling to further microscopic degrees of freedom can alter the electron dynamics considerably. For example, "conventional"

  5. Magnetic coupling device

    DOE Patents [OSTI]

    Nance, Thomas A. (Aiken, SC)

    2009-08-18

    A quick connect/disconnect coupling apparatus is provided in which a base member is engaged by a locking housing through a series of interengagement pins. The pins maintain the shaft in a locked position. Upon exposure to an appropriately positioned magnetic field, pins are removed a sufficient distance such that the shaft may be withdrawn from the locking housing. The ability to lock and unlock the connector assembly requires no additional tools or parts apart from a magnetic key.

  6. Strongly Coupled Data Assimilation Using Leading Averaged Coupled

    Office of Scientific and Technical Information (OSTI)

    Covariance (LACC). Part II: CGCM experiments (Journal Article) | SciTech Connect Strongly Coupled Data Assimilation Using Leading Averaged Coupled Covariance (LACC). Part II: CGCM experiments Citation Details In-Document Search Title: Strongly Coupled Data Assimilation Using Leading Averaged Coupled Covariance (LACC). Part II: CGCM experiments Authors: Liu, Feiyu ; Liu, Zhengyu ; Zhang, S. ; Liu, Y. ; Jacob, Robert L. Publication Date: 2015-11-01 OSTI Identifier: 1237902 DOE Contract Number:

  7. Delineating parton distributions and the strong coupling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jimenez-Delgado, P.; Reya, E.

    2014-04-29

    In this study, global fits for precision determinations of parton distributions, together with the highly correlated strong coupling ?s, are presented up to next-to-next-to- leading order (NNLO) of QCD utilizing most world data (charm and jet production data are used where theoretically possible), except Tevatron gauge boson production data and LHC data which are left for genuine predictions. This is done within the 'dynamical' (valencelike input at Q02 = 0.8 GeV2 ) and 'standard' (input at Q02 = 2 GeV2) approach. The stability and reliability of the results are ensured by including nonperturbative higher-twist terms, nuclear corrections as well asmoretarget mass corrections, and by applying various (Q2, W2) cuts on available data. In addition, the Q02 dependence of the results is studied in detail. Predictions are given, in particular for LHC, on gauge and Higgs boson as well as for top-quark pair production. At NNLO the dynamical approach results in ?s(MZ2) = 0.1136 0.0004, whereas the somewhat less constrained standard fit gives ?s(MZ2) = 0.1162 0.0006.less

  8. Determination of the effect of different additives in coking blends using a combination of in situ high-temperature {sup 1}H NMR and rheometry

    SciTech Connect (OSTI)

    Miguel C. Diaz; Karen M. Steel; Trevor C. Drage; John W. Patrick; Colin E. Snape

    2005-12-01

    High-temperature {sup 1}H NMR and rheometry measurements were carried out on 4:1 wt/wt blends of a medium volatile bituminous coal with two anthracites, two petroleum cokes, charcoal, wood, a low-temperature coke breeze, tyre crumb, and active carbon to determine the effects on fluidity development to identify the parameters responsible for these effects during pyrolysis and to study possible relationships among the parameters derived from these techniques. Positive, negative, and neutral effects were identified on the concentration of fluid material. Small positive effects (ca. 5-6%) were caused by blending the coal with petroleum cokes. Charcoal, wood, and active carbon all exerted negative effects on concentration (18-27% reduction) and mobility (12-25% reduction in T2) of the fluid phase, which have been associated with the inert character and high surface areas of these additives that adsorb the fluid phase of the coal. One of the anthracites and the low-temperature coke breeze caused deleterious effects to a lesser extent on the concentration (7-12%) and mobility (13-17%) of the fluid material, possibly due to the high concentration of metals in these additives (ca. 11% ash). Despite the high fluid character of tyre crumb at the temperature of maximum fluidity of the coal (73%), the mobility of the fluid phase of the blend was lower than expected. The comparison of {sup 1}H NMR and rheometry results indicated that to account for the variations in minimum complex viscosity for all the blends, both the maximum concentration of fluid phase and the maximum mobility of the fluid material had to be considered. For individual blends, two exponential relationships have been found between the complex viscosity and the concentration of solid phase in both the softening and resolidification stages but the parameters are different for each blend. 30 refs., 8 figs., 5 tabs.

  9. Sealing coupling. [LMFBR

    DOE Patents [OSTI]

    Pardini, J.A.; Brubaker, R.C.; Rusnak, J.J.

    1982-09-20

    Disclosed is a remotely operable releasable sealing coupling which provides fluid-tight joinder of upper and a lower conduit sections. Each conduit section has a concave conical sealing surface adjacent its end portion. A tubular sleeve having convex spherical ends is inserted between the conduit ends to form line contact with the concave conical end portions. An inwardly projecting lip located at one end of the sleeve cooperates with a retaining collar formed on the upper pipe end to provide swivel capture for the sleeve. The upper conduit section also includes a tapered lower end portion which engages the inside surface of the sleeve to limit misalignment of the connected conduit sections.

  10. Multiphysics Application Coupling Toolkit

    Energy Science and Technology Software Center (OSTI)

    2013-12-02

    This particular consortium implementation of the software integration infrastructure will, in large part, refactor portions of the Rocstar multiphysics infrastructure. Development of this infrastructure originated at the University of Illinois DOE ASCI Center for Simulation of Advanced Rockets (CSAR) to support the center's massively parallel multiphysics simulation application, Rocstar, and has continued at IllinoisRocstar, a small company formed near the end of the University-based program. IllinoisRocstar is now licensing these new developments as free, openmore » source, in hopes to help improve their own and others' access to infrastructure which can be readily utilized in developing coupled or composite software systems; with particular attention to more rapid production and utilization of multiphysics applications in the HPC environment. There are two major pieces to the consortium implementation, the Application Component Toolkit (ACT), and the Multiphysics Application Coupling Toolkit (MPACT). The current development focus is the ACT, which is (will be) the substrate for MPACT. The ACT itself is built up from the components described in the technical approach. In particular, the ACT has the following major components: 1.The Component Object Manager (COM): The COM package provides encapsulation of user applications, and their data. COM also provides the inter-component function call mechanism. 2.The System Integration Manager (SIM): The SIM package provides constructs and mechanisms for orchestrating composite systems of multiply integrated pieces.« less

  11. Novel Flux Coupling Machine without Permanent Magnets - U Machine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Magnets - U Machine Novel Flux Coupling Machine without Permanent Magnets - U Machine 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon apep_07_hsu.pdf More Documents & Publications Novel Flux Coupling Machine without Permanent Magnets Novel Flux Coupling Machine without Permanent Magnets Vehicle Technologies Office Merit Review 2014: Alternative High-Performance

  12. On coupling impedances of pumping holes

    SciTech Connect (OSTI)

    Kurennoy, S.

    1993-04-01

    Coupling impedances of a single small hole in vacuum-chamber walls have been calculated at low frequencies. To generalize these results for higher frequencies and/or larger holes one needs to solve coupled integral equations for the effective currents. These equations are solved for two specific hole shapes. The effects of many holes at high frequencies where the impedances are not additive are studied using a perturbation-theory method. The periodic versus random distributions of the pumping holes in the Superconducting Super Collider liner are compared.

  13. Magnetically Coupled Adjustable Speed Motor Drives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Magnetically Coupled Adjustable Speed Motor Drives Alternating current electric motors rotate at a nearly constant speed that is determined by motor design and line frequency. Energy savings of 50% or more may be available when fxed speed systems are modifed to allow for variable load requirements of a centrifugal fan or pump. 1 Loads that vary by 30% of full load over time offer good opportunities for cost-effective adjustable speed drive (ASD) retrofts. Market assessment studies indicate that

  14. Coupled-cavity drift-tube linac

    DOE Patents [OSTI]

    Billen, J.H.

    1996-11-26

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the {pi}-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is {beta}{lambda}, where {lambda} is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a {pi}/2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range. 5 figs.

  15. Status report on SHARP coupling framework.

    SciTech Connect (OSTI)

    Caceres, A.; Tautges, T. J.; Lottes, J.; Fischer, P.; Rabiti, C.; Smith, M. A.; Siegel, A.; Yang, W. S.; Palmiotti, G.

    2008-05-30

    This report presents the software engineering effort under way at ANL towards a comprehensive integrated computational framework (SHARP) for high fidelity simulations of sodium cooled fast reactors. The primary objective of this framework is to provide accurate and flexible analysis tools to nuclear reactor designers by simulating multiphysics phenomena happening in complex reactor geometries. Ideally, the coupling among different physics modules (such as neutronics, thermal-hydraulics, and structural mechanics) needs to be tight to preserve the accuracy achieved in each module. However, fast reactor cores in steady state mode represent a special case where weak coupling between neutronics and thermal-hydraulics is usually adequate. Our framework design allows for both options. Another requirement for SHARP framework has been to implement various coupling algorithms that are parallel and scalable to large scale since nuclear reactor core simulations are among the most memory and computationally intensive, requiring the use of leadership-class petascale platforms. This report details our progress toward achieving these goals. Specifically, we demonstrate coupling independently developed parallel codes in a manner that does not compromise performance or portability, while minimizing the impact on individual developers. This year, our focus has been on developing a lightweight and loosely coupled framework targeted at UNIC (our neutronics code) and Nek (our thermal hydraulics code). However, the framework design is not limited to just using these two codes.

  16. Black hole temperature: Minimal coupling vs conformal coupling

    SciTech Connect (OSTI)

    Fazel, Mohamadreza; Mirza, Behrouz; Mansoori, Seyed Ali Hosseini

    2014-05-15

    In this article, we discuss the propagation of scalar fields in conformally transformed spacetimes with either minimal or conformal coupling. The conformally coupled equation of motion is transformed into a one-dimensional Schrdinger-like equation with an invariant potential under conformal transformation. In a second stage, we argue that calculations based on conformal coupling yield the same Hawking temperature as those based on minimal coupling. Finally, it is conjectured that the quasi normal modes of black holes are invariant under conformal transformation.

  17. Magnetoelastic Coupling and Symmetry Breaking in the Frustrated Antiferromagnet {alpha}-NaMnO{sub 2}

    SciTech Connect (OSTI)

    Giot, Maud; Chapon, Laurent C.; Radaelli, Paolo G.; Androulakis, John; Lappas, Alexandros; Green, Mark A.

    2007-12-14

    The magnetic and crystal structures of the {alpha}-NaMnO{sub 2} have been determined by high-resolution neutron powder diffraction. The system maps out a frustrated triangular spin lattice with anisotropic interactions that displays two-dimensional spin correlations below 200 K. Magnetic frustration is lifted through magneto-elastic coupling, evidenced by strong anisotropic broadening of the diffraction profiles at high temperature and ultimately by a structural phase transition at 45 K. In this low-temperature regime a three-dimensional antiferromagnetic state is observed with a propagation vector k=((1/2),(1/2),0)

  18. Mobility platform coupling device and method for coupling mobility platforms

    DOE Patents [OSTI]

    Shirey, David L. (Albuquerque, NM); Hayward, David R. (Albuquerque, NM); Buttz, James H. (Albuquerque, NM)

    2002-01-01

    A coupling device for connecting a first mobility platform to a second mobility platform in tandem. An example mobility platform is a robot. The coupling device has a loose link mode for normal steering conditions and a locking position, tight link mode for navigation across difficult terrain and across obstacles, for traversing chasms, and for navigating with a reduced footprint in tight steering conditions.

  19. Alternative RF coupling configurations for H{sup ?} ion sources

    SciTech Connect (OSTI)

    Briefi, S.; Fantz, U.; Gutmann, P.

    2015-04-08

    RF heated sources for negative hydrogen ions both for fusion and accelerators require very high RF powers in order to achieve the required H{sup ?} current what poses high demands on the RF generators and the RF circuit. Therefore it is highly desirable to improve the RF efficiency of the sources. This could be achieved by applying different RF coupling concepts than the currently used inductive coupling via a helical antenna, namely Helicon coupling or coupling via a planar ICP antenna enhanced with ferrites. In order to investigate the feasibility of these concepts, two small laboratory experiments have been set up. The PlanICE experiment, where the enhanced inductive coupling is going to be investigated, is currently under assembly. At the CHARLIE experiment systematic measurements concerning Helicon coupling in hydrogen and deuterium are carried out. The investigations show that a prominent feature of Helicon discharges occurs: the so-called low-field peak. This is a local improvement of the coupling efficiency at a magnetic field strength of a few mT which results in an increased electron density and dissociation degree. The full Helicon mode has not been achieved yet due to the limited available RF power and magnetic field strength but it might be sufficient for the application of the coupling concept to ion sources to operate the discharge in the low-field-peak region.

  20. Weak-coupling of the neutron hole in {sup 207}Pb to dipole excitations of {sup 208}Pb

    SciTech Connect (OSTI)

    Fritzsche, M.; Pietralla, N.; Savran, D.; Zweidinger, M.; Ahmed, M. W.; Rusev, G.; Tonchev, A. P.; Weller, H. R.

    2009-01-28

    With the nearly monochromatic, linearly polarized photon beam at the High Intensity {gamma}-ray source (HI{gamma}S) at DFELL photon scattering experiments on {sup 206,207,208}pb have been performed. With these experiments Pb({yields}{gamma},{gamma}') photon scattering reactions could be used to determine spin and parity quantum numbers and therefore study the v(3p{sub 1/2}{sup -1}-hole coupling of {sup 207}Pb to dipole excitations in {sup 208}Pb.

  1. CX-007561: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    561: Categorical Exclusion Determination CX-007561: Categorical Exclusion Determination A High Performance Computing "Cyber Wind Facility" Incorporating Fully-Coupled CFD/CSD for Turbine-Platform-Wake Interactions with the Atmosphere and Ocean CX(s) Applied: A9, A11 Date: 01/18/2012 Location(s): Pennsylvania Offices(s): Golden Field Office Pennsylvania State University (PSU) would utilize DOE and cost share funds to develop and integrate central modules of the PSU Cyber Wind Facility

  2. QCD coupling constants and VDM

    SciTech Connect (OSTI)

    Erkol, G.; Ozpineci, A.; Zamiralov, V. S.

    2012-10-23

    QCD sum rules for coupling constants of vector mesons with baryons are constructed. The corresponding QCD sum rules for electric charges and magnetic moments are also derived and with the use of vector-meson-dominance model related to the coupling constants. The VDM role as the criterium of reciprocal validity of the sum rules is considered.

  3. Effects of the running of the QCD coupling on the energy loss in the quark-gluon plasma

    SciTech Connect (OSTI)

    Braun, Jens; Pirner, Hans-Juergen

    2007-03-01

    Finite temperature modifies the running of the QCD coupling {alpha}{sub s}(k,T) with resolution k. After calculating the thermal quark and gluon masses self-consistently, we determine the quark-quark and quark-gluon cross sections in the plasma based on the running coupling. We find that the running coupling enhances these cross sections by factors of two to four depending on the temperature. We also compute the energy loss (dE/dx) of a high-energy quark in the plasma as a function of temperature. Our study suggests that, beside t-channel processes, inverse Compton scattering is a relevant process for a quantitative understanding of the energy loss of an incident quark in a hot plasma.

  4. Magnetically Coupled Adjustable Speed Motor Drives | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Alternating current electric motors rotate at a nearly constant speed that is determined by motor design and line frequency. Energy savings of 50% or more may be available when fixed speed systems are modified to allow the motor speed to match variable load requirements of a centrifugal fan or pump. This tip sheet describes the advantages of magnetically coupled ASDs and provides suggested actions. Motor Systems Tip Sheet #13 PDF icon Magnetically Coupled Adjustable Speed Motor Drives (November

  5. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPES Provides Direct Evidence of Spin-Wave Coupling Print The electronic properties of a metal are determined by the dynamical behavior of its conduction electrons. Conventional band theory accounts for the interaction of the electrons with the static ion lattice. However, coupling to further microscopic degrees of freedom can alter the electron dynamics considerably. For example, "conventional" superconductivity emerges as a result of the electrons' interaction with lattice

  6. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPES Provides Direct Evidence of Spin-Wave Coupling Print The electronic properties of a metal are determined by the dynamical behavior of its conduction electrons. Conventional band theory accounts for the interaction of the electrons with the static ion lattice. However, coupling to further microscopic degrees of freedom can alter the electron dynamics considerably. For example, "conventional" superconductivity emerges as a result of the electrons' interaction with lattice

  7. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPES Provides Direct Evidence of Spin-Wave Coupling Print The electronic properties of a metal are determined by the dynamical behavior of its conduction electrons. Conventional band theory accounts for the interaction of the electrons with the static ion lattice. However, coupling to further microscopic degrees of freedom can alter the electron dynamics considerably. For example, "conventional" superconductivity emerges as a result of the electrons' interaction with lattice

  8. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPES Provides Direct Evidence of Spin-Wave Coupling Print The electronic properties of a metal are determined by the dynamical behavior of its conduction electrons. Conventional band theory accounts for the interaction of the electrons with the static ion lattice. However, coupling to further microscopic degrees of freedom can alter the electron dynamics considerably. For example, "conventional" superconductivity emerges as a result of the electrons' interaction with lattice

  9. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPES Provides Direct Evidence of Spin-Wave Coupling Print The electronic properties of a metal are determined by the dynamical behavior of its conduction electrons. Conventional band theory accounts for the interaction of the electrons with the static ion lattice. However, coupling to further microscopic degrees of freedom can alter the electron dynamics considerably. For example, "conventional" superconductivity emerges as a result of the electrons' interaction with lattice

  10. Top Quark Anomalous Couplings at the International Linear Collider (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Quark Anomalous Couplings at the International Linear Collider Citation Details In-Document Search Title: Top Quark Anomalous Couplings at the International Linear Collider We present a study of the experimental determination of the forward-backward asymmetry in the process e{sup +}e{sup -} {yields} t{bar t} and in the subsequent t {yields} Wb decay, studied in the context of the International Linear Collider. This process probes the elementary couplings of the top

  11. Heralding efficiency and correlated-mode coupling of near-IR fiber coupled photon pairs

    SciTech Connect (OSTI)

    Dixon, P. Ben; Rosenberg, Danna; Stelmakh, Veronika; Grein, Matthew E.; Bennink, Ryan S; Dauler, Eric A.; Kerman, Andrew J.; Molnar, Richard J.; Wong, Franco N. C.

    2014-01-01

    We report on a systematic experimental study of heralding efficiency and generation rate of telecom-band infrared photon pairs generated by spontaneous parametric down-conversion and coupled to single mode optical fibers. We define the correlated-mode coupling efficiency--an inherent source efficiency--and explain its relation to heralding efficiency. For our experiment, we developed a reconfigurable computer controlled pump-beam and collection-mode optical apparatus which we used to measure the generation rate and correlated-mode coupling efficiency. The use of low-noise, high-efficiency superconducting-nanowire single-photon-detectors in this setup allowed us to explore focus configurations with low overall photon flux. The measured data agree well with theory and we demonstrated a correlated-mode coupling efficiency of 97 +-2%, which is the highest efficiency yet achieved for this type of system. These results confirm theoretical treatments and demonstrate that very high overall heralding efficiencies can, in principle, be achieved in quantum optical systems. It is expected that these results and techniques will be widely incorporated into future systems that require, or benefit from, a high heralding efficiency.

  12. CX-100363 Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-100363 Categorical Exclusion Determination Marine Algae Industrialization Consortium (MAGIC): Combining biofuel and high-value bioproducts to...

  13. ANTENNA-COUPLED LIGHT-MATTER INTERACTIONS

    SciTech Connect (OSTI)

    NOVOTNY, LUKAS

    2014-01-10

    This project is focused on antenna-coupled photon emission from single quantum emitters. The properties of optical antennas are tailored to control different photophysical parameters, such as the excited state lifetime, the saturation intensity, and the quantum yield [3]. Using a single molecule coupled to an optical antenna whose position and properties can be controllably adjusted we established a detailed and quantitative understanding of light-matter interactions in nanoscale environments. We have studied various quantum emitters: single molecules [11], quantum dots [7], rareearth ions [2], and NV centers in diamond [19]. We have systematically studied the interaction of these emitters with optical antennas. The overall objective was to establish a high-level of control over the light-matter interaction. In order to eliminate the coupling to the environment, we have taken a step further and explored the possibility of levitating the quantum emitter in high vacuum. What started as a side-project soon became a main activity in our research program and led us to the demonstration of vacuum trapping and cooling of a nanoscale particle [14].

  14. CX-011104: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Coupled Thermo-Mechanical and Photo-Chemical Degradation Mechanisms that Determine the Reliability and Operational Lifetimes for Concentrated Photovoltaic Technologies CX(s) Applied: A9, B3.6 Date: 08/29/2013 Location(s): California Offices(s): Golden Field Office

  15. Coupling MM5 with ISOLSM:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yun (Helen) He 1 Coupling MM5 with ISOLSM: Development, Testing, and Application W.J. Riley, H.S. Cooley, Y. He*, M.S. Torn Lawrence Berkeley National Laboratory June 2003 Yun (Helen) He 2 Outline ! Introduction ! Model Integration ! Model Configuration ! Model Testing ! Simulation and Impacts of Winter Wheat Harvest ! Conclusions ! Observations and Future Work June 2003 Yun (Helen) He 3 Introduction ! CO 2 fluxes and other trace-gas exchanges are tightly coupled to the surface water and energy

  16. Full counting statistics as a probe of quantum coherence in a side-coupled double quantum dot system

    SciTech Connect (OSTI)

    Xue, Hai-Bin

    2013-12-15

    We study theoretically the full counting statistics of electron transport through side-coupled double quantum dot (QD) based on an efficient particle-number-resolved master equation. It is demonstrated that the high-order cumulants of transport current are more sensitive to the quantum coherence than the average current, which can be used to probe the quantum coherence of the considered double QD system. Especially, quantum coherence plays a crucial role in determining whether the super-Poissonian noise occurs in the weak inter-dot hopping coupling regime depending on the corresponding QD-lead coupling, and the corresponding values of super-Poissonian noise can be relatively enhanced when considering the spins of conduction electrons. Moreover, this super-Poissonian noise bias range depends on the singly-occupied eigenstates of the system, which thus suggests a tunable super-Poissonian noise device. The occurrence-mechanism of super-Poissonian noise can be understood in terms of the interplay of quantum coherence and effective competition between fast-and-slow transport channels. -- Highlights: The FCS can be used to probe the quantum coherence of side-coupled double QD system. Probing quantum coherence using FCS may permit experimental tests in the near future. The current noise characteristics depend on the quantum coherence of this QD system. The super-Poissonian noise can be enhanced when considering conduction electron spin. The side-coupled double QD system suggests a tunable super-Poissonian noise device.

  17. Suppression of Rayleigh Taylor instability in strongly coupled plasmas

    SciTech Connect (OSTI)

    Das, Amita; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2014-06-15

    The Rayleigh Taylor instability in a strongly coupled plasma medium has been investigated using the equations of generalized hydrodynamics. It is demonstrated that the visco-elasticity of the strongly coupled medium due to strong inter particle correlations leads to a suppression of the Rayleigh Taylor instability unless certain threshold conditions are met. The relevance of these results to experiments on laser compression of matter to high densities including those related to inertial confinement fusion using lasers has also been shown.

  18. Enhanced Soundings for Local Coupling Studies: 2015 ARM Climate Research

    Office of Scientific and Technical Information (OSTI)

    Facility Field Campaign (Program Document) | SciTech Connect Program Document: Enhanced Soundings for Local Coupling Studies: 2015 ARM Climate Research Facility Field Campaign Citation Details In-Document Search Title: Enhanced Soundings for Local Coupling Studies: 2015 ARM Climate Research Facility Field Campaign Matching observed diurnal cycles is a fundamental yet extremely complex test for models. High temporal resolution measurements of surface turbulent heat fluxes and boundary layer

  19. Extremely high frequency RF effects on electronics.

    SciTech Connect (OSTI)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  20. Planar slot coupled microwave hybrid

    DOE Patents [OSTI]

    Petter, Jeffrey K. (Williston, VT)

    1991-01-01

    A symmetrical 180.degree. microwave hybrid is constructed by opening a slot line in a ground plane below a conducting strip disposed on a dielectric substrate, creating a slot coupled conductor. Difference signals propagating on the slot coupled conductor are isolated on the slot line leaving sum signals to propagate on the microstrip. The difference signal is coupled from the slot line onto a second microstrip line for transmission to a desired location. The microstrip branches in a symmetrical fashion to provide the input/output ports of the 180.degree. hybrid. The symmetry of the device provides for balance and isolation between sum and difference signals, and provides an advantageous balance between the power handling capabilities and the bandwidth of the device.

  1. Starter for inductively coupled plasma tube

    DOE Patents [OSTI]

    Hull, D.E.; Bieniewski, T.M.

    1988-08-23

    A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initiate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation. 1 fig.

  2. Starter for inductively coupled plasma tube

    DOE Patents [OSTI]

    Hull, Donald E. (969 Nambe Loop, Los Alamos, NM 87544); Bieniewski, Thomas M. (285 Donna Ave., Los Alamos, NM 87544)

    1988-01-01

    A starter assembly is provided for use with an inductively coupled plasma (ICP) tube to reliably initate a plasma at internal pressures above about 30 microns. A conductive probe is inserted within the inductor coil about the tube and insulated from the tube shield assembly. A capacitive circuit is arranged for momentarily connecting a high voltage radio-frequency generator to the probe while simultaneously energizing the coil. When the plasma is initiated the probe is disconnected from the generator and electrically connected to the shield assembly for operation.

  3. Perovskite catalysts for oxidative coupling

    DOE Patents [OSTI]

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  4. Perovskite catalysts for oxidative coupling

    DOE Patents [OSTI]

    Campbell, K.D.

    1991-06-25

    Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  5. Magnetically coupled system for mixing

    DOE Patents [OSTI]

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2014-04-01

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  6. Magnetically coupled system for mixing

    DOE Patents [OSTI]

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2015-09-22

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  7. Determination of the effects caused by different polymers on coal fluidity during carbonization using high-temperature {sup 1}H NMR and rheometry

    SciTech Connect (OSTI)

    Miguel Castro Diaz; Lucky Edecki; Karen M. Steel; John W. Patrick; Colin E. Snape

    2008-01-15

    The effects of blending polyethylene (PE), polystyrene (PS), poly(ethyleneterephthalate) (PET), a flexible polyurethane (FPU), and a car shredded fluff waste (CSF) on fluidity development of a bituminous coal during carbonization have been studied by means of high-torque, small-amplitude controlled-strain rheometry and in situ high-temperature {sup 1}H NMR spectroscopy. The most detrimental effects were caused by PET and PS, which completely destroyed the fluidity of the coal. The CSF had a deleterious effect on coal fluidity similar to that of PET, although the deleterious effect on the viscoelastic properties of the coal were less pronounced than those of PET and PS. On the contrary, the addition of 10 wt % PE caused a slight reduction in the concentration of fluid hydrogen and an increase in the minimum complex viscosity, and the addition of 10 wt % FPU reduced the concentration of fluid hydrogen without changing the viscoelastic properties of the coal. Although these results suggest that these two plastics could potentially be used as additives in coking blends without compromising coke porosity, it was found that the semicoke strengths were reduced by adding 2 wt % FPU and 5 wt % PE. Therefore, it is unlikely that more than 2 wt % of a plastic waste could be added to a coal blend without deterioration in coke quality. 35 refs., 11 figs., 3 tabs.

  8. Soft x-ray shock loading and momentum coupling in meteorite and planetary

    Office of Scientific and Technical Information (OSTI)

    materials. (Technical Report) | SciTech Connect Technical Report: Soft x-ray shock loading and momentum coupling in meteorite and planetary materials. Citation Details In-Document Search Title: Soft x-ray shock loading and momentum coupling in meteorite and planetary materials. X-ray momentum coupling coefficients, C{sub M}, were determined by measuring stress waveforms in planetary materials subjected to impulsive radiation loading from the Sandia National Laboratories Z-machine. Results

  9. Atomic arrangement at ZnTe/CdSe interfaces determined by high resolution scanning transmission electron microscopy and atom probe tomography

    SciTech Connect (OSTI)

    Bonef, Bastien; Rouvire, Jean-Luc; Jouneau, Pierre-Henri; Bellet-Amalric, Edith; Grard, Lionel; Mariette, Henri; Andr, Rgis; Bougerol, Catherine; Grenier, Adeline

    2015-02-02

    High resolution scanning transmission electron microscopy and atom probe tomography experiments reveal the presence of an intermediate layer at the interface between two binary compounds with no common atom, namely, ZnTe and CdSe for samples grown by Molecular Beam Epitaxy under standard conditions. This thin transition layer, of the order of 1 to 3 atomic planes, contains typically one monolayer of ZnSe. Even if it occurs at each interface, the direct interface, i.e., ZnTe on CdSe, is sharper than the reverse one, where the ZnSe layer is likely surrounded by alloyed layers. On the other hand, a CdTe-like interface was never observed. This interface knowledge is crucial to properly design superlattices for optoelectronic applications and to master band-gap engineering.

  10. Additive Manufacturing/Diagnostics via the High Frequency Induction Heating of Metal Powders: The Determination of the Power Transfer Factor for Fine Metallic Spheres

    SciTech Connect (OSTI)

    Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George; Holcomb, Matthew

    2015-03-11

    Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulation improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.

  11. Verification of Multiphysics software: Space and time convergence studies for nonlinearly coupled applications

    SciTech Connect (OSTI)

    Jean C. Ragusa; Vijay Mahadevan; Vincent A. Mousseau

    2009-05-01

    High-fidelity modeling of nuclear reactors requires the solution of a nonlinear coupled multi-physics stiff problem with widely varying time and length scales that need to be resolved correctly. A numerical method that converges the implicit nonlinear terms to a small tolerance is often referred to as nonlinearly consistent (or tightly coupled). This nonlinear consistency is still lacking in the vast majority of coupling techniques today. We present a tightly coupled multiphysics framework that tackles this issue and present code-verification and convergence analyses in space and time for several models of nonlinear coupled physics.

  12. Method for determining gene knockouts

    DOE Patents [OSTI]

    Maranas, Costas D.; Burgard, Anthony R.; Pharkya, Priti

    2011-09-27

    A method for determining candidates for gene deletions and additions using a model of a metabolic network associated with an organism, the model includes a plurality of metabolic reactions defining metabolite relationships, the method includes selecting a bioengineering objective for the organism, selecting at least one cellular objective, forming an optimization problem that couples the at least one cellular objective with the bioengineering objective, and solving the optimization problem to yield at least one candidate.

  13. Method for determining gene knockouts

    DOE Patents [OSTI]

    Maranas, Costa D; Burgard, Anthony R; Pharkya, Priti

    2013-06-04

    A method for determining candidates for gene deletions and additions using a model of a metabolic network associated with an organism, the model includes a plurality of metabolic reactions defining metabolite relationships, the method includes selecting a bioengineering objective for the organism, selecting at least one cellular objective, forming an optimization problem that couples the at least one cellular objective with the bioengineering objective, and solving the optimization problem to yield at least one candidate.

  14. Rotational and translational temperature equilibrium in an inductively coupled plasma

    SciTech Connect (OSTI)

    Shimada, Masashi; Tynan, George R.; Cattolica, Robert

    2006-09-15

    Rotational temperature has been used widely as neutral gas temperature measurement in different types of plasmas (electron cyclotron resonance, inductively coupled plasma, helicon, hollow cathode, etc.), and has been assumed to be in equilibrium with translational temperature. The direct experimental comparison of rotational and translational temperature in low-temperature plasmas has not been reported. In this research, optical emission spectroscopy is used to measure the neutral gas rotational temperature, T{sub rot}, from the second-positive band of a nitrogen molecule (380 nm). The results are compared with the Doppler-broadened translational temperature, T{sub trans}, of Ar (750 nm) and He (587 nm), determined with a high-resolution spectrometer at various partial pressures of N{sub 2} in Ar/N{sub 2} and He/N{sub 2} plasmas. The results demonstrated that T{sub rot} and T{sub trans} are in equilibrium in the conditions [10{sup 10}

  15. North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations

    SciTech Connect (OSTI)

    Koracin, Darko; Cerovecki, Ivana; Vellore, Ramesh; Mejia, John; Hatchett, Benjamin; McCord, Travis; McLean, Julie; Dorman, Clive

    2013-04-11

    Executive summary The main objective of the study was to investigate atmospheric and ocean interaction processes in the western Pacific and, in particular, effects of significant ocean heat loss in the Kuroshio and Kuroshio Extension regions on the lower and upper atmosphere. It is yet to be determined how significant are these processes are on climate scales. The understanding of these processes led us also to development of the methodology of coupling the Weather and Research Forecasting model with the Parallel Ocean Program model for western Pacific regional weather and climate simulations. We tested NCAR-developed research software Coupler 7 for coupling of the WRF and POP models and assessed its usability for regional-scale applications. We completed test simulations using the Coupler 7 framework, but implemented a standard WRF model code with options for both one- and two-way mode coupling. This type of coupling will allow us to seamlessly incorporate new WRF updates and versions in the future. We also performed a long-term WRF simulation (15 years) covering the entire North Pacific as well as high-resolution simulations of a case study which included extreme ocean heat losses in the Kuroshio and Kuroshio Extension regions. Since the extreme ocean heat loss occurs during winter cold air outbreaks (CAO), we simulated and analyzed a case study of a severe CAO event in January 2000 in detail. We found that the ocean heat loss induced by CAOs is amplified by additional advection from mesocyclones forming on the southern part of the Japan Sea. Large scale synoptic patterns with anomalously strong anticyclone over Siberia and Mongolia, deep Aleutian Low, and the Pacific subtropical ridge are a crucial setup for the CAO. It was found that the onset of the CAO is related to the breaking of atmospheric Rossby waves and vertical transport of vorticity that facilitates meridional advection. The study also indicates that intrinsic parameterization of the surface fluxes within the WRF model needs more evaluation and analysis.

  16. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, Barbara K. (Charleston, WV)

    1991-01-01

    Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  17. Polarity of annealing and structural analysis of the RNase H resistant alpha-5'-d(TACACA). beta-5'-r(AUGUGU) hybrid determined by high-field sup 1 H, sup 13 C, and sup 31 P NMR analysis

    SciTech Connect (OSTI)

    Gmeiner, W.H.; Rao, K.E.; Rayner, B.; Vasseur, J.J.; Morvan, F.; Imbach, J.L.; Lown, J.W. )

    1990-11-13

    The novel hybrid duplex alpha-5'-d(TACACA)-3'.beta-5'-r(AUGUGU)-3' was analyzed extensively by 1D and 2D NMR methods. Two forms of the duplex exist in about an 80:20 ratio. Analysis of the exchangeable imino protons of the major component revealed that three AU and one AT base pair are present in addition to two GC base pairs, confirming that the duplex anneals in parallel orientation. The presence of the AT base pair, which can only be accounted for by a parallel duplex, was confirmed by a selective INEPT experiment, which correlated the thymidine imino proton to its C5 carbon. The lesser antiparallel form could be detected by exchangeable and nonexchangeable proton resonances in both strands. An exchange peak was observed in the NOESY spectrum for the thymidine methyl group resonance in both the predominant and lesser conformations, indicating the lifetime of the individual structures was on the millisecond time scale. The nonexchangeable protons of the predominant duplex were assigned by standard methods. The sugar pucker of the ribonucleosides was determined to be of the S type by a pseudorotation analysis according to Altona, with the J-couplings measured from the multiplet components of the phase-sensitive COSY experiment. The NOE pattern observed for the alpha-deoxynucleosides also suggested an S-type sugar pucker. The adoption of an S-type sugar pucker for both strands indicates that, in contrast to RNA.DNA duplexes formed exclusively from beta-nucleotides, the alpha-DNA.beta-RNA duplex may form a B-type helix. The 31P resonances of the alpha and beta strands have very different chemical shifts in the hybrid duplex and the difference persists above the helix melting temperature, indicating an intrinsic difference in 31P chemical shift for nucleotides differing only in the configuration about the glycosidic bond.

  18. Coupling device for pressurized fluid connections

    DOE Patents [OSTI]

    van Boxtel, R.P.; Yayanos, A.A.

    1984-01-01

    Quick-coupling device for high pressure connections, comprising a cylindrical adapter member, closed at an outer end thereof, the opposite end being attachable to a pressure fitting, and an aperture therein spaced from the closed end of the adapter member. The device also comprises a coupler body having a first passageway therein for slidably receiving the outer end of the adapter, a central portion of said passageway being in communication with the adapter aperture, a pair of seal members disposed on opposite sides of the central portion of the passageway to provide a seal between the coupler body and the adapter member, and a second passageway in said coupler body in communication with said central portion.

  19. Coupling effects in inductive discharges with radio frequency substrate biasing

    SciTech Connect (OSTI)

    Schulze, J.; Schuengel, E.; Czarnetzki, U.

    2012-01-09

    Low pressure inductively coupled plasmas (ICP) operated in neon at 27.12 MHz with capacitive substrate biasing (CCP) at 13.56 MHz are investigated by phase resolved optical emission spectroscopy, voltage, and current measurements. Three coupling mechanisms are found potentially limiting the separate control of ion energy and flux: (i) Sheath heating due to the substrate biasing affects the electron dynamics even at high ratios of ICP to CCP power. At fixed CCP power, (ii) the substrate sheath voltage and (iii) the amplitude as well as frequency of plasma series resonance oscillations of the RF current are affected by the ICP power.

  20. Strong-Coupling Resistivity in the Kondo Model

    SciTech Connect (OSTI)

    Lesage, F.; Saleur, H.

    1999-05-01

    By applying methods of integrable quantum field theory to the Kondo problem, we develop a systematic perturbation expansion near the IR (strong coupling) fixed point. This requires knowledge of an infinity of irrelevant operators and their couplings, which we determine exactly. A low temperature expansion (i.e., all the corrections to Fermi liquid theory) of the resistivity follows, extending the well-known Nozi{grave e}res T{sup 2} result in the exactly screened case to arbitrary order. The example of the ordinary Kondo model is worked out in detail: We determine {rho} up to order T{sup 6} and compare the result with available numerical data. {copyright} {ital 1999} {ital The American Physical Society}

  1. Erratum to: Constraining couplings of top quarks to the Z boson in $$ t\\overline{t} $$ + Z production at the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Röntsch, Raoul; Schulze, Markus

    2015-09-21

    We study top quark pair production in association with a Z boson at the Large Hadron Collider (LHC) and investigate the prospects of measuring the couplings of top quarks to the Z boson. To date these couplings have not been constrained in direct measurements. Such a determination will be possible for the first time at the LHC. Our calculation improves previous coupling studies through the inclusion of next-to-leading order (NLO) QCD corrections in production and decays of all unstable particles. We treat top quarks in the narrow-width approximation and retain all NLO spin correlations. To determine the sensitivity of amore » coupling measurement we perform a binned log-likelihood ratio test based on normalization and shape information of the angle between the leptons from the Z boson decay. The obtained limits account for statistical uncertainties as well as leading theoretical systematics from residual scale dependence and parton distribution functions. We use current CMS data to place the first direct constraints on the ttbZ couplings. We also consider the upcoming high-energy LHC run and find that with 300 inverse fb of data at an energy of 13 TeV the vector and axial ttbZ couplings can be constrained at the 95% confidence level to C_V=0.24^{+0.39}_{-0.85} and C_A=-0.60^{+0.14}_{-0.18}, where the central values are the Standard Model predictions. This is a reduction of uncertainties by 25% and 42%, respectively, compared to an analysis based on leading-order predictions. We also translate these results into limits on dimension-six operators contributing to the ttbZ interactions beyond the Standard Model.« less

  2. Erratum to: Constraining couplings of top quarks to the Z boson in $ t\\overline{t} $ + Z production at the LHC

    SciTech Connect (OSTI)

    Röntsch, Raoul; Schulze, Markus

    2015-09-21

    We study top quark pair production in association with a Z boson at the Large Hadron Collider (LHC) and investigate the prospects of measuring the couplings of top quarks to the Z boson. To date these couplings have not been constrained in direct measurements. Such a determination will be possible for the first time at the LHC. Our calculation improves previous coupling studies through the inclusion of next-to-leading order (NLO) QCD corrections in production and decays of all unstable particles. We treat top quarks in the narrow-width approximation and retain all NLO spin correlations. To determine the sensitivity of a coupling measurement we perform a binned log-likelihood ratio test based on normalization and shape information of the angle between the leptons from the Z boson decay. The obtained limits account for statistical uncertainties as well as leading theoretical systematics from residual scale dependence and parton distribution functions. We use current CMS data to place the first direct constraints on the ttbZ couplings. We also consider the upcoming high-energy LHC run and find that with 300 inverse fb of data at an energy of 13 TeV the vector and axial ttbZ couplings can be constrained at the 95% confidence level to C_V=0.24^{+0.39}_{-0.85} and C_A=-0.60^{+0.14}_{-0.18}, where the central values are the Standard Model predictions. This is a reduction of uncertainties by 25% and 42%, respectively, compared to an analysis based on leading-order predictions. We also translate these results into limits on dimension-six operators contributing to the ttbZ interactions beyond the Standard Model.

  3. Two photon couplings of the lightest isoscalars from BELLE data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, Ling -Yun; Pennington, Michael R.

    2014-07-07

    Amplitude Analysis of two photon production of ?? and KK, using S-matrix constraints and fitting all available data, including the latest precision results from Belle, yields a single partial wave solution up to 1.4 GeV. The two photon couplings of the ?/f0(500), f0(980) and f2(1270) are determined from the residues of the resonance poles.

  4. Two photon couplings of the lightest isoscalars from BELLE data

    SciTech Connect (OSTI)

    Dai, Ling -Yun; Pennington, Michael R.

    2014-07-07

    Amplitude Analysis of two photon production of ?? and KK, using S-matrix constraints and fitting all available data, including the latest precision results from Belle, yields a single partial wave solution up to 1.4 GeV. The two photon couplings of the ?/f0(500), f0(980) and f2(1270) are determined from the residues of the resonance poles.

  5. Mobile inductively coupled plasma system

    DOE Patents [OSTI]

    D'Silva, Arthur P. (Ames, IA); Jaselskis, Edward J. (Ames, IA)

    1999-03-30

    A system for sampling and analyzing a material located at a hazardous site. A laser located remote from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer.

  6. Welding shield for coupling heaters

    DOE Patents [OSTI]

    Menotti, James Louis (Dickinson, TX)

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  7. Mobile inductively coupled plasma system

    DOE Patents [OSTI]

    D`Silva, A.P.; Jaselskis, E.J.

    1999-03-30

    A system is described for sampling and analyzing a material located at a hazardous site. A laser located remotely from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer. 10 figs.

  8. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Print Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that often takes years into a matter of days. The Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the ALS has implemented the world's highest-throughput biological-solution x-ray scattering beamline enabling genomic-scale protein-structure characterization. Coupling brilliant x rays from one of the

  9. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Print Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that often takes years into a matter of days. The Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the ALS has implemented the world's highest-throughput biological-solution x-ray scattering beamline enabling genomic-scale protein-structure characterization. Coupling brilliant x rays from one of the

  10. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Print Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that often takes years into a matter of days. The Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the ALS has implemented the world's highest-throughput biological-solution x-ray scattering beamline enabling genomic-scale protein-structure characterization. Coupling brilliant x rays from one of the

  11. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Print Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that often takes years into a matter of days. The Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the ALS has implemented the world's highest-throughput biological-solution x-ray scattering beamline enabling genomic-scale protein-structure characterization. Coupling brilliant x rays from one of the

  12. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Print Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that often takes years into a matter of days. The Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the ALS has implemented the world's highest-throughput biological-solution x-ray scattering beamline enabling genomic-scale protein-structure characterization. Coupling brilliant x rays from one of the

  13. Coupled Fluid Energy Solute Transport

    Energy Science and Technology Software Center (OSTI)

    1992-02-13

    CFEST is a Coupled Fluid, Energy, and Solute Transport code for the study of a multilayered, nonisothermal ground-water system. It can model discontinuous as well as continuous layers, time-dependent and constant source/sinks, and transient as well as steady-state flow. The finite element method is used for analyzing isothermal and nonisothermal events in a confined aquifer system. Only single-phase Darcian flow is considered. In the Cartesian coordinate system, flow in a horizontal plane, in a verticalmore » plane, or in a fully three-dimensional region can be simulated. An option also exists for the axisymmetric analysis of a vertical cross section. The code employs bilinear quadrilateral elements in all two dimensional analyses and trilinear quadrilateral solid elements in three dimensional simulations. The CFEST finite element formulation can approximate discontinuities, major breaks in slope or thickness, and fault zones in individual hydrogeologic units. The code accounts for heterogeneity in aquifer permeability and porosity and accommodates anisotropy (collinear with the Cartesian coordinates). The variation in the hydraulic properties is described on a layer-by-layer basis for the different hydrogeologic units. Initial conditions can be prescribed hydraulic head or pressure, temperature, or concentration. CFEST can be used to support site, repository, and waste package subsystem assessments. Some specific applications are regional hydrologic characterization; simulation of coupled transport of fluid, heat, and salinity in the repository region; consequence assessment due to natural disruption or human intrusion scenarios in the repository region; flow paths and travel-time estimates for transport of radionuclides; and interpretation of well and tracer tests.« less

  14. Rapid determination of actinides in seawater samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.; Utsey, Robin C.; McAlister, Daniel R.

    2014-03-09

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti+3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used tomoreseparate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 12 weeks and provide chemical yields of ~3060 %. This new sample preparation method can be performed in 48 h with tracer yields of ~8595 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort.less

  15. CAN COUPLED DARK ENERGY SPEED UP THE BULLET CLUSTER?

    SciTech Connect (OSTI)

    Lee, Jounghun; Baldi, Marco E-mail: marco.baldi@universe-cluster.de

    2012-03-01

    It has been recently shown that the observed morphological properties of the Bullet Cluster can be accurately reproduced in hydrodynamical simulations only when the infall pairwise velocity V{sub c} of the system exceeds 3000 km s{sup -1} (or at least possibly 2500 km s{sup -1}) at the pair separation of 2R{sub vir}, where R{sub vir} is the virial radius of the main cluster, and that the probability of finding such a bullet-like system is extremely low in the standard {Lambda} cold dark matter ({Lambda}CDM) cosmology. We suggest here the fifth force mediated by coupled dark energy (cDE) as a possible velocity-enhancing mechanism and investigate its effect on the infall velocities of bullet-like systems from the Coupled Dark Energy Cosmological Simulations public database. Five different cDE models are considered: three with constant coupling and exponential potential, one with exponential coupling and exponential potential, and one with constant coupling and supergravity potential. For each model, after identifying the bullet-like systems, we determine the probability density distribution of their infall velocities at pair separations of (2-3)R{sub vir}. Approximating each probability density distribution as a Gaussian, we calculate the cumulative probability of finding a bullet-like system with V{sub c} {>=} 3000 km s{sup -1} or V{sub c} {>=} 2500 km s{sup -1}. Our results show that in all of the five cDE models the cumulative probabilities increase compared to the {Lambda}CDM case and that in the model with exponential coupling P(V{sub c} {>=} 2500 km s{sup -1}) exceeds 10{sup -4}. The physical interpretations and cosmological implications of our results are provided.

  16. Graphene-coated coupling coil for AC resistance reduction

    DOE Patents [OSTI]

    Miller, John M

    2014-03-04

    At least one graphene layer is formed to laterally surround a tube so that the basal plane of each graphene layer is tangential to the local surface of the tube on which the graphene layer is formed. An electrically conductive path is provided around the tube for providing high conductivity electrical path provided by the basal plane of each graphene layer. The high conductivity path can be employed for high frequency applications such as coupling coils for wireless power transmission to overcome skin depth effects and proximity effects prevalent in high frequency alternating current paths.

  17. Dense strongly coupled plasma in double laser pulse ablation of lithium: Experiment and simulation

    SciTech Connect (OSTI)

    Kumar, Ajai; Sivakumaran, V.; Ganesh, R.; Joshi, H. C. [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India)] [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India); Ashwin, J. [Weizmann Institute of Science, Rehovot - 76100 (Israel)] [Weizmann Institute of Science, Rehovot - 76100 (Israel)

    2013-08-15

    In a simple method of low power nano-second double pulsed laser ablation experiment in collinear geometry, formation of high density strongly coupled plasma is demonstrated. Using time-resolved measurements of the Stark broadened line width and line intensity ratio of the emission lines, the density and temperature of the plasma were estimated respectively. In this experiment, it is shown that ions are strongly coupled (ion-ion coupling parameter comes out to be >4). For comparison, both single and double pulsed laser ablations are presented. For the estimated experimental plasma parameters, first principle Langevin dynamics simulation corroborates the existence of a strongly coupled regime.

  18. Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling

    SciTech Connect (OSTI)

    Liu, Yonghao; Chadha, Arvinder; Zhao, Deyin; Shuai, Yichen; Menon, Laxmy; Yang, Hongjun; Zhou, Weidong; Piper, Jessica R.; Fan, Shanhui; Jia, Yichen; Xia, Fengnian; Ma, Zhenqiang

    2014-11-03

    We demonstrate experimentally close to total absorption in monolayer graphene based on critical coupling with guided resonances in transfer printed photonic crystal Fano resonance filters at near infrared. Measured peak absorptions of 35% and 85% were obtained from cavity coupled monolayer graphene for the structures without and with back reflectors, respectively. These measured values agree very well with the theoretical values predicted with the coupled mode theory based critical coupling design. Such strong light-matter interactions can lead to extremely compact and high performance photonic devices based on large area monolayer graphene and other twodimensional materials.

  19. CX-004249: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-004249: Categorical Exclusion Determination Low Cost High Concentration Photovoltaic ... (Amonix 7700 High Concentration Photovoltaic systems) for field testing at SolarTac ...

  20. Interface effect in coupled quantum wells

    SciTech Connect (OSTI)

    Hao, Ya-Fei

    2014-06-28

    This paper intends to theoretically investigate the effect of the interfaces on the Rashba spin splitting of two coupled quantum wells. The results show that the interface related Rashba spin splitting of the two coupled quantum wells is both smaller than that of a step quantum well which has the same structure with the step quantum well in the coupled quantum wells. And the influence of the cubic Dresselhaus spin-orbit interaction of the coupled quantum wells is larger than that of a step quantum well. It demonstrates that the spin relaxation time of the two coupled quantum wells will be shorter than that of a step quantum well. As for the application in the spintronic devices, a step quantum well may be better than the coupled quantum wells, which is mentioned in this paper.

  1. Joint used for coupling long heaters

    DOE Patents [OSTI]

    Menottie, James Louis

    2013-02-26

    Systems for coupling ends of elongated heaters and methods of using such systems to treat a subsurface formation are described herein. A system may include two elongated heaters with an end portion of one heater abutted or near to an end portion of the other heater and a core coupling material. The core coupling material may extend between the two elongated heaters. The elongated heaters may include cores and at least one conductor substantially concentrically surrounds the cores. The cores may have a lower melting point than the conductors. At least one end portion of the conductor may have a beveled edge. The gap formed by the beveled edge may be filled with a coupling material for coupling the one or more conductors. One end portion of at least one core may have a recessed opening and the core coupling material may be partially inside the recessed opening.

  2. Advanced Multiphysics Coupling for LWR Fuel Performance Analysis

    SciTech Connect (OSTI)

    J. D. Hales; M. R. Tonks; F. N. Gleicher; B. W. Spencer; S. R. Novascone; R. L. Williamson; G. Pastore; D. M. Perez

    2015-10-01

    Even the most basic nuclear fuel analysis is a multiphysics undertaking, as a credible simulation must consider at a minimum coupled heat conduction and mechanical deformation. The need for more realistic fuel modeling under a variety of conditions invariably leads to a desire to include coupling between a more complete set of the physical phenomena influencing fuel behavior, including neutronics, thermal hydraulics, and mechanisms occurring at lower length scales. This paper covers current efforts toward coupled multiphysics LWR fuel modeling in three main areas. The first area covered in this paper concerns thermomechanical coupling. The interaction of these two physics, particularly related to the feedback effect associated with heat transfer and mechanical contact at the fuel/clad gap, provides numerous computational challenges. An outline is provided of an effective approach used to manage the nonlinearities associated with an evolving gap in BISON, a nuclear fuel performance application. A second type of multiphysics coupling described here is that of coupling neutronics with thermomechanical LWR fuel performance. DeCART, a high-fidelity core analysis program based on the method of characteristics, has been coupled to BISON. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during a depletion or a fast transient simulation. Two-way coupling between these codes was achieved by mapping fission rate density and fast neutron flux fields from DeCART to BISON and the temperature field from BISON to DeCART while employing a Picard iterative algorithm. Finally, the need for multiscale coupling is considered. Fission gas production and evolution significantly impact fuel performance by causing swelling, a reduction in the thermal conductivity, and fission gas release. The mechanisms involved occur at the atomistic and grain scale and are therefore not the domain of a fuel performance code. However, it is possible to use lower length scale models such as those used in the mesoscale MARMOT code to compute average properties, e.g. swelling or thermal conductivity. These may then be used by an engineering-scale model. Examples of this type of multiscale, multiphysics modeling are shown.

  3. Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

    SciTech Connect (OSTI)

    Littlewood, David John; Silling, Stewart A.; Mitchell, John A.; Seleson, Pablo D.; Bond, Stephen D.; Parks, Michael L.; Turner, Daniel Z.; Burnett, Damon J.; Ostien, Jakob; Gunzburger, Max

    2015-09-01

    Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for dramatically improved consistency at domain boundaries, and an enhancement to the meshfree discretization applied to peridynamic models that removes irregularities at the limit of the nonlocal length scale and dramatically improves conver- gence behavior. Finally, a novel approach for modeling ductile failure has been developed, moti- vated by the desire to apply coupled local-nonlocal models to a wide variety of materials, including ductile metals, which have received minimal attention in the peridynamic literature. Software im- plementation of the partial-stress coupling strategy, the position-aware peridynamic constitutive models, and the strategies for improving the convergence behavior of peridynamic models was completed within the Peridigm and Albany codes, developed at Sandia National Laboratories and made publicly available under the open-source 3-clause BSD license.

  4. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, B.K.

    1991-12-17

    Volatilized metal compounds are described which are capable of retarding vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  5. Double perovskite catalysts for oxidative coupling

    DOE Patents [OSTI]

    Campbell, Kenneth D.

    1991-01-01

    Alkali metal doped double perovskites containing manganese and at least one of cobalt, iron and nickel are useful in the oxidative coupling of alkane to higher hydrocarbons.

  6. Development of capabilities to simulate the coupled

    Office of Scientific and Technical Information (OSTI)

    the coupled thermal-hydrological-mechanical-chemical (THMC) processes during in situ oil shale production Pawar, Rajesh J. Los Alamos National Laboratory 02 PETROLEUM; 04 OIL...

  7. Vacuum coupling of rotating superconducting rotor

    DOE Patents [OSTI]

    Shoykhet, Boris A.; Zhang, Burt Xudong; Driscoll, David Infante

    2003-12-02

    A rotating coupling allows a vacuum chamber in the rotor of a superconducting electric motor to be continually pumped out. The coupling consists of at least two concentric portions, one of which is allowed to rotate and the other of which is stationary. The coupling is located on the non-drive end of the rotor and is connected to a coolant supply and a vacuum pump. The coupling is smaller in diameter than the shaft of the rotor so that the shaft can be increased in diameter without having to increase the size of the vacuum seal.

  8. Multielectron Oxidation in a Ferromagnetically Coupled Dinickel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a Ferromagnetically Coupled Dinickel(II) Triple Mesocate Previous Next List Ferrando-Soria, Jesus; Fabelo, Oscar; Castellano, Maria; Cano, Joan;Fordham, Stephen; and...

  9. Quintessence with quadratic coupling to dark matter

    SciTech Connect (OSTI)

    Boehmer, Christian G.; Chan, Nyein; Caldera-Cabral, Gabriela; Lazkoz, Ruth; Maartens, Roy

    2010-04-15

    We introduce a new form of coupling between dark energy and dark matter that is quadratic in their energy densities. Then we investigate the background dynamics when dark energy is in the form of exponential quintessence. The three types of quadratic coupling all admit late-time accelerating critical points, but these are not scaling solutions. We also show that two types of coupling allow for a suitable matter era at early times and acceleration at late times, while the third type of coupling does not admit a suitable matter era.

  10. Probing the Higgs Couplings to Photons in h→4l at the LHC ...

    Office of Scientific and Technical Information (OSTI)

    the potential to probe both the CP nature as well as the overall sign of the Higgs coupling to photons well before the end of high-luminosity LHC running (sim3 ab-1). ...

  11. Effective field theory: A modern approach to anomalous couplings

    SciTech Connect (OSTI)

    Degrande, Cline; Centre for Particle Physics and Phenomenology , Universit Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve ; Greiner, Nicolas; Max-Planck-Institut fr Physik, Fhringer Ring 6, 80805 Mnchen ; Kilian, Wolfgang; University of Siegen, Fachbereich Physik, D-57068 Siegen ; Mattelaer, Olivier; Mebane, Harrison; Stelzer, Tim; Willenbrock, Scott; Zhang, Cen; Centre for Particle Physics and Phenomenology , Universit Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve

    2013-08-15

    We advocate an effective field theory approach to anomalous couplings. The effective field theory approach is the natural way to extend the standard model such that the gauge symmetries are respected. It is general enough to capture any physics beyond the standard model, yet also provides guidance as to the most likely place to see the effects of new physics. The effective field theory approach also clarifies that one need not be concerned with the violation of unitarity in scattering processes at high energy. We apply these ideas to pair production of electroweak vector bosons. -- Highlights: We discuss the advantages of effective field theories compared to anomalous couplings. We show that one need not be concerned with unitarity violation at high energy. We discuss the application of effective field theory to weak boson physics.

  12. Why should we care about the top quark Yukawa coupling?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shapshnikov, Mikhail; Bezrukov, Fedor

    2015-04-15

    In the cosmological context, for the Standard Model to be valid up to the scale of inflation, the top quark Yukawa coupling yt should not exceed the critical value ytcrit , coinciding with good precision (about 0.2‰) with the requirement of the stability of the electroweak vacuum. So, the exact measurements of yt may give an insight on the possible existence and the energy scale of new physics above 100 GeV, which is extremely sensitive to yt. In this study, we overview the most recent theoretical computations of and the experimental measurements of ytcrit and the experimental measurements ofmore » yt. Within the theoretical and experimental uncertainties in yt, the required scale of new physics varies from 10⁷ GeV to the Planck scale, urging for precise determination of the top quark Yukawa coupling.« less

  13. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, Philip D. (Rocky Point, NY)

    1982-01-01

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  14. Methods and apparatus for twist bend coupled (TCB) wind turbine blades

    DOE Patents [OSTI]

    Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee

    2006-10-10

    A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.

  15. Partitioning of Eu between augite and a highly spiked martian basalt composition as a function of oxygen fugacity (IW-1 to QFM): Determination of Eu[superscript 2+]/Eu[superscript 3+] ratios by XANES

    SciTech Connect (OSTI)

    Karner, J.M.; Papike, J.J.; Sutton, S.R.; Burger, P.V.; Shearer, C.K.; Le, L.; Newville, M.; Choi, Y.

    2010-03-16

    We have determined D{sub Eu} between augite and melt in samples that crystallized from a highly spiked martian basalt composition at four f{sub O{sub 2}} conditions. D{sub Eu} augite/melt shows a steady increase with f{sub O{sub 2}} from 0.086 at IW-1 to 0.274 at IW+3.5. This increase is because Eu{sup 3+} is more compatible than Eu{sup 2+} in the pyroxene structure; thus increasing f{sub O{sub 2}} leads to greater Eu{sup 3+}/Eu{sup 2+} in the melt and more Eu (total) can partition into the crystallizing pyroxene. This interpretation is supported by direct determinations of Eu valence state by XANES, which show a steady increase of Eu{sup 3+}/Eu{sup 2+} with increasing f{sub O{sub 2}} in both pyroxene (0.38 to 14.6) and glass (0.20 to 12.6) in the samples. Also, pyroxene Eu{sup 3+}/Eu{sup 2+} is higher than that of adjacent glass in all the samples, which verifies that Eu{sup 3+} is more compatible than Eu{sup 2+} in the pyroxene structure. Combining partitioning data with XANES data allows for the calculation of specific valence state D-values for augite/melt where D{sub Eu{sup 3+}} = 0.28 and D{sub Eu{sup 2+}} = 0.07.

  16. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, Carl A. (Albuquerque, NM)

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  17. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  18. Synchronous Behavior of Two Coupled Biological Neurons

    SciTech Connect (OSTI)

    Elson, R.C.; Selverston, A.I.; Elson, R.C.; Selverston, A.I.; Huerta, R.; Rulkov, N.F.; Rabinovich, M.I.; Abarbanel, H.D.; Selverston, A.I.; Huerta, R.; Abarbanel, H.D.

    1998-12-01

    We report experimental studies of synchronization phenomena in a pair of biological neurons that interact through naturally occurring, electrical coupling. When these neurons generate irregular bursts of spikes, the natural coupling synchronizes slow oscillations of membrane potential, but not the fast spikes. By adding artificial electrical coupling we studied transitions between synchrony and asynchrony in both slow oscillations and fast spikes. We discuss the dynamics of bursting and synchronization in living neurons with distributed functional morphology. {copyright} {ital 1998} {ital The American Physical Society}

  19. Measurements of deuterium quadrupole coupling in propiolic acid and fluorobenzenes using pulsed-beam Fourier transform microwave spectrometers

    SciTech Connect (OSTI)

    Sun, Ming; Sargus, Bryan A.; Carey, Spencer J.; Kukolich, Stephen G.

    2015-04-21

    The pure rotational spectra of deuterated propiolic acids (HCCCOOD and DCCCOOH), 1-fluorobenzene (4-d{sub 1}), and 1,2-difluorobenzene (4-d{sub 1}) in their ground states have been measured using two Fourier transform microwave (FTMW) spectrometers at the University of Arizona. For 1-fluorobenzene (4-d{sub 1}), nine hyperfine lines of three different ?J = 0 and 1 transitions were measured to check the synthesis method and resolution. For 1,2-difluorobenzene (4-d{sub 1}), we obtained 44 hyperfine transitions from 1 to 12 GHz, including 14 different ?J = 0, 1 transitions. Deuterium quadrupole coupling constants along the three principal inertia axes were well determined. For deuterated propiolic acids, 37 hyperfine lines of Pro-OD and 59 hyperfine lines of Pro-CD, covering 11 and 12 different ?J = ? 1, 0, 1 transitions, respectively, were obtained from 5 to 16 GHz. Deuterium quadrupole coupling constants along the three inertia axes were well resolved for Pro-OD. For Pro-CD, only eQq{sub aa} was determined due to the near coincidence of the CD bond and the least principal inertia axis. Some measurements were made using a newer FTMW spectrometer employing multiple free induction decays as well as background subtraction. For 1-fluorobenzene (4-d{sub 1}) and 1,2-difluorobenzene (4-d{sub 1}), a very large-cavity (1.2 m mirror dia.) spectrometer yielded very high resolution (2 kHz) spectra.

  20. A high-order discontinuous Galerkin method for wave propagation...

    Office of Scientific and Technical Information (OSTI)

    A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media Citation Details In-Document Search Title: A high-order discontinuous ...

  1. Fast high-temperature superconductor switch for high current applications

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Fast high-temperature superconductor switch for high current applications Citation Details In-Document Search Title: Fast high-temperature superconductor switch for high current applications Reversible operation of a high current superconductor switch based on the quench of high-resistance second generation high temperature superconducting wire is demonstrated. The quench is induced by a burst of an ac field generated by an inductively coupled

  2. Resonances in coupled ?K, ?K scattering from lattice QCD

    SciTech Connect (OSTI)

    Wilson, David J.; Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.

    2015-03-10

    Coupled-channel ?K and ?K scattering amplitudes are determined by studying the finite-volume energy spectra obtained from dynamical lattice QCD calculations. Using a large basis of interpolating operators, including both those resembling a qq-bar construction and those resembling a pair of mesons with relative momentum, a reliable excited-state spectrum can be obtained. Working at m? = 391 MeV, we find a gradual increase in the JP = 0+ ?K phase-shift which may be identified with a broad scalar resonance that couples strongly to ?K and weakly to ?K. The low-energy behavior of this amplitude suggests a virtual bound-state that may be related to the ? resonance. A bound state with JP = 1- is found very close to the ?K threshold energy, whose coupling to the ?K channel is compatible with that of the experimental K*(892). Evidence is found for a narrow resonance in JP = 2+. Isospin3/2 ?K scattering is also studied and non-resonant phase-shifts spanning the whole elastic scattering region are obtained.

  3. Waste Determination Equivalency - 12172

    SciTech Connect (OSTI)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposed of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)

  4. Energy flux density in a thermoacoustic couple

    SciTech Connect (OSTI)

    Cao, N.; Chen, S. |; Olson, R.; Swift, G.W.

    1996-06-01

    The hydro- and thermodynamical processes near and within a thermoacoustic couple are simulated and analyzed by numerical solution of the compressible Navier-Stokes, continuity, and energy equations for an ideal gas, concentrating on the time-averaged energy flux density in the gas. The numerical results show details of the heat sink at one end of the plates in the thermoacoustic couple. 15 refs., 10 figs., 1 tab.

  5. Characterization of Coupled Hydrologic-Biogeochemical Processes Using Geophysical Data

    SciTech Connect (OSTI)

    Hubbard, Susan

    2005-06-01

    Biogeochemical and hydrological processes are naturally coupled and variable over a wide range of spatial and temporal scales. Many remediation approaches also induce dynamic transformations in natural systems, such as the generation of gases, precipitates and biofilms. These dynamic transformations are often coupled and can reduce the hydraulic conductivity of the geologic materials, making it difficult to introduce amendments or to perform targeted remediation. Because it is difficult to predict these transformations, our ability to develop effective and sustainable remediation conditions at contaminated sites is often limited. Further complicating the problem is the inability to collect the necessary measurements at a high enough spatial resolution yet over a large enough volume for understanding field-scale transformations.

  6. Coupling Schemes in Terahertz Planar Metamaterials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roy Chowdhury, Dibakar; Singh, Ranjan; Taylor, Antoinette J.; Chen, Hou-Tong; Zhang, Weili; Azad, Abul K.

    2012-01-01

    We present a review of the different coupling schemes in a planar array of terahertz metamaterials. The gap-to-gap near-field capacitive coupling between split-ring resonators in a unit cell leads to either blue shift or red shift of the fundamental inductive-capacitive ( LC ) resonance, depending on the position of the split gap. The inductive coupling is enhanced by decreasing the inter resonator distance resulting in strong blue shifts of the LC resonance. We observe the LC resonance tuning only when the split-ring resonators are in close proximity of each other; otherwise, they appear to be uncoupled. Conversely, the higher-ordermore » resonances are sensitive to the smallest change in the inter particle distance or split-ring resonator orientation and undergo tremendous resonance line reshaping giving rise to a sharp subradiant resonance mode which produces hot spots useful for sensing applications. Most of the coupling schemes in a metamaterial are based on a near-field effect, though there also exists a mechanism to couple the resonators through the excitation of lowest-order lattice mode which facilitates the long-range radiative or diffractive coupling in the split-ring resonator plane leading to resonance line narrowing of the fundamental as well as the higher order resonance modes.« less

  7. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    SciTech Connect (OSTI)

    Perdian, David C.

    2009-08-19

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  8. Development of a coupled thermo-hydro-mechanical model in discontinuous media for carbon sequestration

    SciTech Connect (OSTI)

    Fang, Yilin; Nguyen, Ba Nghiep; Carroll, Kenneth C.; Xu, Zhijie; Yabusaki, Steven B.; Scheibe, Timothy D.; Bonneville, Alain

    2013-09-12

    Geomechanical alteration of porous media is generally ignored for most shallow subsurface applications, whereas CO2 injection, migration, and trapping in deep saline aquifers will be controlled by coupled multifluid flow, energy transfer, and geomechanical processes. The accurate assessment of the risks associated with potential leakage of injected CO2 and the design of effective injection systems requires that we represent these coupled processes within numerical simulators. The objectives of this study were to develop a coupled thermal-hydro-mechanical model into a single software, and to examine the coupling of thermal, hydrological, and geomechanical processes for simulation of CO2 injection into the subsurface for carbon sequestration. A numerical model is developed to couple nonisothermal multiphase hydrological and geomechanical processes for prediction of multiple interconnected processes for carbon sequestration in deep saline aquifers. The geomechanics model was based on Rigid Body-Spring Model (RBSM), one of the discrete methods to model discontinuous rock system. Poissons effect that was often ignored by RBSM was considered in the model. The simulation of large-scale and long-term coupled processes in carbon capture and storage projects requires large memory and computational performance. Global Array Toolkit was used to build the model to permit the high performance simulations of the coupled processes. The model was used to simulate a case study with several scenarios to demonstrate the impacts of considering coupled processes and Poissons effect for the prediction of CO2 sequestration.

  9. Axial couplings and strong decay widths of heavy hadrons

    SciTech Connect (OSTI)

    William Detmold, C.-J. David Lin, Stefan Meinel

    2012-04-01

    We calculate the axial couplings of mesons and baryons containing a heavy quark in the static limit using lattice QCD. These couplings determine the leading interactions in heavy hadron chiral perturbation theory and are central quantities in heavy quark physics, as they control strong decay widths and the light-quark mass dependence of heavy hadron observables. Our analysis makes use of lattice data at six different pion masses, 227 MeV < m{sub {pi}} < 352 MeV, two lattice spacings, a = 0.085, 0.112 fm, and a volume of (2.7 fm){sup 3}. Our results for the axial couplings are g{sub 1} = 0.449(51), g{sub 2} = 0.84(20), and g{sub 3} = 0.71(13), where g{sub 1} governs the interaction between heavy-light mesons and pions and g{sub 2,3} are similar couplings between heavy-light baryons and pions. Using our lattice result for g{sub 3}, and constraining 1/m{sub Q} corrections in the strong decay widths with experimental data for {Sigma}{sub c}{sup (*)} decays, we obtain {Gamma}[{Sigma}{sub b}{sup (*)} {yields} {Lambda}{sub b} {pi}{sup {+-}}] = 4.2(1.0), 4.8(1.1), 7.3(1.6), 7.8(1.8) MeV for the {Sigma}{sub b}{sup +}, {Sigma}{sub b}{sup -}, {Sigma}{sub b}{sup *+}, {Sigma}{sub b}{sup *-} initial states, respectively. We also derive upper bounds on the widths of the {Xi}{sub b}{sup prime(*)} baryons.

  10. CX-009154: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    54: Categorical Exclusion Determination CX-009154: Categorical Exclusion Determination Scale-up of Novel Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch CX(s)...

  11. CX-100242 Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination CX-100242 Categorical Exclusion Determination High Efficiency Solid-State Heat Pump Module Award Number: DE-EE0007044 CX(s) Applied: A9, B1.13, B3.6 Building...

  12. PRISMATIC CORE COUPLED TRANSIENT BENCHMARK

    SciTech Connect (OSTI)

    J. Ortensi; M.A. Pope; G. Strydom; R.S. Sen; M.D. DeHart; H.D. Gougar; C. Ellis; A. Baxter; V. Seker; T.J. Downar; K. Vierow; K. Ivanov

    2011-06-01

    The Prismatic Modular Reactor (PMR) is one of the High Temperature Reactor (HTR) design concepts that have existed for some time. Several prismatic units have operated in the world (DRAGON, Fort St. Vrain, Peach Bottom) and one unit is still in operation (HTTR). The deterministic neutronics and thermal-fluids transient analysis tools and methods currently available for the design and analysis of PMRs have lagged behind the state of the art compared to LWR reactor technologies. This has motivated the development of more accurate and efficient tools for the design and safety evaluations of the PMR. In addition to the work invested in new methods, it is essential to develop appropriate benchmarks to verify and validate the new methods in computer codes. The purpose of this benchmark is to establish a well-defined problem, based on a common given set of data, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events. The benchmark-working group is currently seeking OECD/NEA sponsorship. This benchmark is being pursued and is heavily based on the success of the PBMR-400 exercise.

  13. Far off-resonant coupling between photonic crystal microcavity and single quantum dot with resonant excitation

    SciTech Connect (OSTI)

    Banihashemi, Mehdi; Ahmadi, Vahid, E-mail: v-ahmadi@modares.ac.ir [Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-194 (Iran, Islamic Republic of)] [Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-194 (Iran, Islamic Republic of); Nakamura, Tatsuya; Kojima, Takanori; Kojima, Kazunobu; Noda, Susumu [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)] [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2013-12-16

    In this paper, we experimentally demonstrate that with sub-nanowatt coherent s-shell excitation of a single InAs quantum dot, off-resonant coupling of 4.1?nm is possible between L3 photonic crystal microcavity and the quantum dot at 50?K. This resonant excitation reduces strongly the effect of surrounding charges to quantum dot, multiexciton complexes and pure dephasing. It seems that this far off-resonant coupling is the result of increased number of acoustical phonons due to high operating temperature of 50?K. The 4.1?nm detuning is the largest amount for this kind of coupling.

  14. Gluon scattering in N=4 super-Yang-Mills theory fromweak to strong coupling

    SciTech Connect (OSTI)

    Dixon, Lance J.; /SLAC

    2008-03-25

    I describe some recent developments in the understanding of gluon scattering amplitudes in N = 4 super-Yang-Mills theory in the large-N{sub c} limit. These amplitudes can be computed to high orders in the weak coupling expansion, and also now at strong coupling using the AdS/CFT correspondence. They hold the promise of being solvable to all orders in the gauge coupling, with the help of techniques based on integrability. They are intimately related to expectation values for polygonal Wilson loops composed of light-like segments.

  15. Results of U-xMo (x=7, 10, 12 wt.%) Alloy versus Al-6061 Cladding Diffusion Couple Experiments Performed at 500, 550 and 600 Degrees C

    SciTech Connect (OSTI)

    Emmanuel Perez; Dennis D. Keiser, Jr.; Yongho Sohn

    2013-04-01

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been developing low enrichment fuel systems encased in Al 6061 for use in research and test reactors. UMo alloys in contact with Al and Al alloys can undergo diffusional interactions that can result in the development of interdiffusion zones with complex fine-grained microstructures composed of multiple phases. A monolithic fuel currently being developed by the RERTR program has local regions where the UMo fuel plate is in contact with the Al 6061 cladding and, as a result, the program finds information about interdiffusion zone development at high temperatures of interest. In this study, the microstructural development of diffusion couples consisting of U-7wt.%Mo, U-10wt.%Mo, and U-12wt.%Mo vs. Al 6061 (or 6061 aluminum) cladding, annealed at 500, 550, 600 degrees C for 1, 5, 20, 24, or 132 hours, was analyzed by backscatter electron microscopy and x-ray energy dispersive spectroscopy on a scanning electron microscope. Concentration profiles were determined by standardized wavelength dispersive spectroscopy and standardless x-ray energy dispersive spectroscopy. The results of this work shows that the presence of surface layers at the UMo/Al 6061 interface can dramatically impact the overall interdiffusion behavior in terms of rate of interaction and uniformity of the developed interdiffusion zones. It further reveals that relatively uniform interaction layers with higher Si concentrations can develop in UMo/Al 6061 couples annealed at shorter times and that longer times at temperature result in the development of more non-uniform interaction layers with more areas that are enriched in Al. At longer annealing times and relatively high temperatures, UMo/Al 6061 couples can exhibit more interaction compared to UMo/pure Al couples. The minor alloying constituents in Al 6061 cladding can result in the development of many complex phases in the interaction layer of UMo/Al6061 cladding couples, and some phases in the interdiffusion zones of UMo/Al6061 cladding couples are likely similar to those observed for UMo/pure Al couples.

  16. Coupled cluster channels in the homogeneous electron gas

    SciTech Connect (OSTI)

    Shepherd, James J. E-mail: jamesjshepherd@gmail.com; Henderson, Thomas M.; Scuseria, Gustavo E.

    2014-03-28

    We discuss diagrammatic modifications to the coupled cluster doubles (CCD) equations, wherein different groups of terms out of rings, ladders, crossed-rings, and mosaics can be removed to form approximations to the coupled cluster method, of interest due to their similarity with various types of random phase approximations. The finite uniform electron gas (UEG) is benchmarked for 14- and 54-electron systems at the complete basis set limit over a wide density range and performance of different flavours of CCD is determined. These results confirm that rings generally overcorrelate and ladders generally undercorrelate; mosaics-only CCD yields a result surprisingly close to CCD. We use a recently developed numerical analysis [J. J. Shepherd and A. Grneis, Phys. Rev. Lett. 110, 226401 (2013)] to study the behaviours of these methods in the thermodynamic limit. We determine that the mosaics, on forming the Brueckner one-body Hamiltonian, open a gap in the effective one-particle eigenvalues at the Fermi energy. Numerical evidence is presented which shows that methods based on this renormalisation have convergent energies in the thermodynamic limit including mosaic-only CCD, which is just a renormalised MP2. All other methods including only a single channel, namely, ladder-only CCD, ring-only CCD, and crossed-ring-only CCD, appear to yield divergent energies; incorporation of mosaic terms prevents this from happening.

  17. Comparison of LHC and ILC Capabilities for Higgs Boson Coupling

    Office of Scientific and Technical Information (OSTI)

    LHC and ILC Capabilities for Higgs Boson Coupling Measurements Peskin, Michael E.; SLAC 43 PARTICLE ACCELERATORS; ACCURACY; BOSONS; COUPLING CONSTANTS; DECOUPLING; FERMIONS;...

  18. Generation of even harmonics in coupled quantum dots (Journal...

    Office of Scientific and Technical Information (OSTI)

    Generation of even harmonics in coupled quantum dots Citation Details In-Document Search Title: Generation of even harmonics in coupled quantum dots Using the spatial-temporal...

  19. Covalent agonists for studying G protein-coupled receptor activation...

    Office of Scientific and Technical Information (OSTI)

    Covalent agonists for studying G protein-coupled receptor activation Citation Details In-Document Search Title: Covalent agonists for studying G protein-coupled receptor activation ...

  20. Top quark anomalous couplings at the International Linear Collider...

    Office of Scientific and Technical Information (OSTI)

    Top quark anomalous couplings at the International Linear Collider Citation Details In-Document Search Title: Top quark anomalous couplings at the International Linear Collider ...

  1. Sandia Energy - Control of Strong Light-Matter Coupling Using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control of Strong Light-Matter Coupling Using the Capacitance of Metamaterial Nanocavities Home Highlights - Energy Research Control of Strong Light-Matter Coupling Using the...

  2. Evidence for coupling between collective state and phonons in...

    Office of Scientific and Technical Information (OSTI)

    for coupling between collective state and phonons in two-dimensional charge-density-wave systems Citation Details In-Document Search Title: Evidence for coupling between...

  3. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ape034hsu2011p.pdf More Documents & Publications Integration of Novel Flux Coupling Motor and Current Source Inverter Novel Flux Coupling Machine without Permanent Magnets John...

  4. A Generalized Boltzmann Fokker-Planck Method for Coupled Charged Particle

    Office of Scientific and Technical Information (OSTI)

    Transport (Technical Report) | SciTech Connect A Generalized Boltzmann Fokker-Planck Method for Coupled Charged Particle Transport Citation Details In-Document Search Title: A Generalized Boltzmann Fokker-Planck Method for Coupled Charged Particle Transport The goal of this project was to develop and investigate the performance of reduced-physics formulations of high energy charged particle (electrons, protons and heavier ions) transport that are computationally more efficient than not only

  5. 2015 Secretarial Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretarial Determination 2015 Secretarial Determination On May 1, 2015, the Secretary of Energy determined that continued uranium transfers for cleanup services at the Portsmouth Gaseous Diffusion Plant and for down-blending of highly-enriched uranium to low-enriched uranium will not have an adverse material impact on the domestic uranium mining, conversion, or enrichment industry ("2015 Secretarial Determination"). This Determination covers continued transfers at the rates specified

  6. CX-100245 Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-100245 Categorical Exclusion Determination Hydrogen Adsorbents with High Volumetric Density: New Materials and System Projections Award Number: DE-EE0007046 CX(s) Applied: A9,...

  7. Cosmology of bigravity with doubly coupled matter

    SciTech Connect (OSTI)

    Comelli, D.; Crisostomi, M.; Koyama, K.; Pilo, L.; Tasinato, G.

    2015-04-20

    We study cosmology in the bigravity formulation of the dRGT model where matter couples to both metrics. At linear order in perturbation theory two mass scales emerge: an hard one from the dRGT potential, and an environmental dependent one from the coupling of bigravity with matter. At early time, the dynamics is dictated by the second mass scale which is of order of the Hubble scale. The set of gauge invariant perturbations that couples to matter follow closely the same behaviour as in GR. The remaining perturbations show no issue in the scalar sector, while problems arise in the tensor and vector sectors. During radiation domination, a tensor mode grows power-like at super-horizon scales. More dangerously, the only propagating vector mode features an exponential instability on sub-horizon scales. We discuss the consequences of such instabilities and speculate on possible ways to deal with them.

  8. Triple-effect absorption refrigeration system with double-condenser coupling

    DOE Patents [OSTI]

    DeVault, Robert C. (Knoxville, TN); Biermann, Wendell J. (Fayetteville, NY)

    1993-01-01

    A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

  9. Triple-effect absorption refrigeration system with double-condenser coupling

    DOE Patents [OSTI]

    DeVault, R.C.; Biermann, W.J.

    1993-04-27

    A triple effect absorption refrigeration system is provided with a double-condenser coupling and a parallel or series circuit for feeding the refrigerant-containing absorbent solution through the high, medium, and low temperature generators utilized in the triple-effect system. The high temperature condenser receiving vaporous refrigerant from the high temperature generator is double coupled to both the medium temperature generator and the low temperature generator to enhance the internal recovery of heat within the system and thereby increase the thermal efficiency thereof.

  10. Simulation Study of Near-Surface Coupling of Nuclear Devices vs. Equivalent

    Office of Scientific and Technical Information (OSTI)

    High-Explosive Charges (Technical Report) | SciTech Connect Simulation Study of Near-Surface Coupling of Nuclear Devices vs. Equivalent High-Explosive Charges Citation Details In-Document Search Title: Simulation Study of Near-Surface Coupling of Nuclear Devices vs. Equivalent High-Explosive Charges Authors: Fournier, K B ; Walton, O R ; Benjamin, R ; Dunlop, W H Publication Date: 2014-09-29 OSTI Identifier: 1171337 Report Number(s): LLNL-TR-662280 DOE Contract Number: DE-AC52-07NA27344

  11. Coupled-channel scattering on a torus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Peng; Dudek, Jozef Jon; Edwards, Robert G.; Szczepaniak, Adam Pawel

    2013-07-01

    Based on the Hamiltonian formalism approach, a generalized Luscher's formula for two particle scattering in both the elastic and coupled-channel cases in moving frames is derived from a relativistic Lippmann-Schwinger equation. Some strategies for extracting scattering amplitudes for a coupled-channel system from the discrete finite-volume spectrum are discussed and illustrated with a toy model of two-channel resonant scattering. This formalism will, in the near future, be used to extract information about hadron scattering from lattice QCD computations.

  12. Portable high precision pressure transducer system

    DOE Patents [OSTI]

    Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.

    1994-04-26

    A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.

  13. Portable high precision pressure transducer system

    DOE Patents [OSTI]

    Piper, Thomas C. (Idaho Falls, ID); Morgan, John P. (Idaho Falls, ID); Marchant, Norman J. (Idaho Falls, ID); Bolton, Steven M. (Pocatello, ID)

    1994-01-01

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.

  14. CX-001062: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination High-Temperature, High-Pressure Devices for Zonal Isolation in Geothermal Wells CX(s) Applied: A9, B3.6 Date: 03102010 Location(s): Lafayette, Colorado...

  15. Spatially indirect excitons in coupled quantum wells

    SciTech Connect (OSTI)

    Lai, Chih-Wei Eddy

    2004-03-01

    Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer){sup 2} were observed. The spatial and energy distributions of optically active excitons were used as thermodynamic quantities to construct a phase diagram of the exciton system, demonstrating the existence of distinct phases. Optical and electrical properties of the CQW sample were examined thoroughly to provide deeper understanding of the formation mechanisms of these cold exciton systems. These insights offer new strategies for producing cold exciton systems, which may lead to opportunities for the realization of BEC in solid-state systems.

  16. Synchronous behavior of two coupled electronic neurons

    SciTech Connect (OSTI)

    Pinto, R. D.; Varona, P.; GNB, Departamento Ingenieria Informatica, Universidad Autonoma de Madrid, 28049 Madrid, ; Volkovskii, A. R.; Szuecs, A.; Abarbanel, Henry D. I.; Department of Physics and Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0402 ; Rabinovich, M. I.

    2000-08-01

    We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four-dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four-dimensional ENs, which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators. (c) 2000 The American Physical Society.

  17. Torque-balanced vibrationless rotary coupling

    DOE Patents [OSTI]

    Miller, Donald M. (Sunnyside, WA)

    1980-01-01

    This disclosure describes a torque-balanced vibrationless rotary coupling for transmitting rotary motion without unwanted vibration into the spindle of a machine tool. A drive member drives a driven member using flexible connecting loops which are connected tangentially and at diametrically opposite connecting points through a free floating ring.

  18. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    SciTech Connect (OSTI)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  19. A coupled theory of tropical climatology: Warm pool, cold tongue, and Walker circulation

    SciTech Connect (OSTI)

    Zhengyu Liu; Boyin Huang

    1997-07-01

    Based on results from analytic and general circulation models, the authors propose a theory for the coupled warm pool, cold tongue, and Walker circulation system. The intensity of the coupled system is determined by the coupling strength, the local equilibrium time, and latitudinal differential heating. Most importantly, this intensity is strongly regulated in the coupled system, with a saturation level that can be reached at a modest coupling strength. The saturation west-east sea surface temperature difference (and the associated Walker circulation) corresponds to about one-quarter of the latitudinal differential equilibrium temperature. This regulation is caused primarily by the decoupling of the SST gradient from a strong ocean current. The author`s estimate suggests that the present Pacific is near the saturation state. Furthermore, the much weaker Walker circulation system in the Atlantic Ocean is interpreted as being the result of the influence of the adjacent land, which is able to extend into the entire Atlantic to change the zonal distribution of the trade wind. The theory is also applied to understand the tropical climatology in coupled GCM simulations, in the Last Glacial Maximum climate, and in the global warming climate, as well as in the regulation of the tropical sea surface temperature. 41 refs., 15 figs.

  20. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect (OSTI)

    Colwell, Frederick; Radtke, Corey; Newby, Deborah; Delwiche, Mark; Crawf, Ronald L.; Paszczynski, Andrzej; Strap, Janice; Conrad, Mark; Brodic, Eoin; Starr, Robert; Lee, Hope

    2006-04-05

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires 'lines of evidence' indicating that the wastes are effectively destroyed. Our research will study the coupled biogeochemical processes that dictate the rate of TCE co-metabolism in contaminated aquifers first at the Idaho National Laboratory and then at Paducah or the Savannah River Site, where natural attenuation of TCE is occurring. We will use flow-through in situ reactors to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. We will use new approaches (e.g., stable isotope probing, enzyme activity probes, real-time reverse transcriptase polymerase chain reaction, proteomics) to assay the TCE co-metabolic rates, and interpret these rates in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different methane concentrations and groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites that are contaminated with chlorinated hydrocarbons.

  1. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect (OSTI)

    Rick Colwell; Corey Radtke; Mark Delwiche; Deborah Newby; Lynn Petzke; Mark Conrad; Eoin Brodie; Hope Lee; Bob Starr; Dana Dettmers; Ron Crawford; Andrzej Paszczynski; Nick Bernardini; Ravi Paidisetti; Tonia Green

    2006-06-01

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires different ?lines of evidence? indicating that the wastes are effectively destroyed. We are studying the coupled biogeochemical processes that dictate the rate of TCE co-metabolism first in the medial zone (TCE concentration: 1,000 to 20,000 ?g/L) of a plume at the Idaho National Laboratory?s Test Area North (TAN) site and then at Paducah or the Savannah River Site. We will use flow-through in situ reactors (FTISR) to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. TCE co-metabolic rates at TAN are being assessed and interpreted in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial co-metabolism relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites contaminated with chlorinated hydrocarbons.

  2. High efficiency incandescent lighting

    DOE Patents [OSTI]

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  3. CX-008738: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determination of Microstructure and Chemical State Changes in Ion-Irradiated Fuels and Structural Components with a High Kinetic Energy Electron Detector Illinois Institute of Technology CX(s) Applied: B3.6 Date: 05/22/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  4. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, Carol Maryanne (Aiken, SC); Pickett, John Butler (Aiken, SC); Brown, Kevin George (Augusta, GA); Edwards, Thomas Barry (Aiken, SC)

    1998-01-01

    A process for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, .DELTA.G.sub.p, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, .DELTA.G.sub.a, based upon the free energy associated with weak acid dissociation, .DELTA.G.sub.a.sup.WA, and accelerated matrix dissolution at high pH, .DELTA.G.sub.a.sup.SB associated with solution strong base formation, and determining a final hydration free energy, .DELTA.G.sub.f. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log.sub.10 (N C.sub.i (g/L))=a.sub.i +b.sub.i .DELTA.G.sub.f. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained.

  5. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, C.M.; Pickett, J.B.; Brown, K.G.; Edwards, T.B.

    1998-12-08

    A process is described for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, {Delta}G{sub p}, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, {Delta}G{sub a}, based upon the free energy associated with weak acid dissociation, {Delta}G{sub a}{sup WA}, and accelerated matrix dissolution at high pH, {Delta}G{sub a}{sup SB} associated with solution strong base formation, and determining a final hydration free energy, {Delta}G{sub f}. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log{sub 10}(N C{sub i}(g/L))=a{sub i} + b{sub i}{Delta}G{sub f}. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained. 4 figs.

  6. Categorical Exclusion Determinations: Idaho Operations Office | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Idaho Operations Office Categorical Exclusion Determinations: Idaho Operations Office Categorical Exclusion Determinations issued by Idaho Operations Office. DOCUMENTS AVAILABLE FOR DOWNLOAD March 24, 2014 CX-012097: Categorical Exclusion Determination Microgrid Demonstration Project CX(s) Applied: B5.15 Date: 03/24/2014 Location(s): Idaho Offices(s): Idaho Operations Office January 22, 2014 CX-011843: Categorical Exclusion Determination Enhanced Shielding Performance of High Level

  7. Categorical Exclusion Determinations: Kentucky | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kentucky Categorical Exclusion Determinations: Kentucky Location Categorical Exclusion Determinations issued for actions in Kentucky. DOCUMENTS AVAILABLE FOR DOWNLOAD December 1, 2014 CX-100119 Categorical Exclusion Determination No Heat Spray Drying Technology Award Number: DE-EE0005774 CX(s) Applied: A9, B3.6 Date: 12/01/2014 Location(s): KY Office(s): Golden Field Office December 5, 2013 CX-011735: Categorical Exclusion Determination UHV Technologies, Inc. - Low Cost High Throughput In-Line

  8. Categorical Exclusion Determinations: Maine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maine Categorical Exclusion Determinations: Maine Location Categorical Exclusion Determinations issued for actions in Maine. DOCUMENTS AVAILABLE FOR DOWNLOAD April 29, 2015 CX-100230 Categorical Exclusion Determination Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices Award Number: DE-EE0006397 CX(s) Applied: B5.25 Water Program Date: 04/29/15 Location(s): ME Office(s): Golden Field Office March 23, 2015 CX-100200 Categorical Exclusion Determination Stereo-Optic High

  9. Polished Downhole Transducer Having Improved Signal Coupling

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2006-03-28

    Apparatus and methods to improve signal coupling in downhole inductive transmission elements to reduce the dispersion of magnetic energy at the tool joints and to provide consistent impedance and contact between transmission elements located along the drill string. A transmission element for transmitting information between downhole tools is disclosed in one embodiment of the invention as including an annular core constructed of a magnetically conductive material. The annular core forms an open channel around its circumference and is configured to form a closed channel by mating with a corresponding annular core along an annular mating surface. The mating surface is polished to provide improved magnetic coupling with the corresponding annular core. An annular conductor is disposed within the open channel.

  10. Synthetic magnetoelectric coupling in a nanocomposite multiferroic

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jain, P.; Wang, Q.; Roldan, M.; Glavic, A.; Lauter, V.; Urban, C.; Bi, Z.; Ahmed, T.; Zhu, J.; Varela, M.; et al

    2015-03-13

    Given the paucity of single phase multiferroic materials (with large ferromagnetic moment), composite systems seem an attractive solution to realize magnetoelectric coupling between ferromagnetic and ferroelectric order parameters. Despite having antiferromagnetic order, BiFeO₃ (BFO) has nevertheless been a key material due to excellent ferroelectric properties at room temperature. We studied a superlattice composed of 8 repetitions of 6 unit cells of La₀.₇Sr₀.₃MnO₃ (LSMO) grown on 5 unit cells of BFO. Significant net uncompensated magnetization in BFO, an insulating superlattice, is demonstrated using polarized neutron reflectometry. Remarkably, the magnetization enables magnetic field to change the dielectric properties of the superlattice, whichmore » we cite as an example of synthetic magnetoelectric coupling. Importantly, controlled creation of magnetic moment in BFO is a much needed path toward design and implementation of integrated oxide devices for next generation magnetoelectric data storage platforms.« less

  11. High brightness electron accelerator

    DOE Patents [OSTI]

    Sheffield, Richard L. (Los Alamos, NM); Carlsten, Bruce E. (Los Alamos, NM); Young, Lloyd M. (Los Alamos, NM)

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  12. Sensitivity analysis of coupled criticality calculations

    SciTech Connect (OSTI)

    Perko, Z.; Kloosterman, J. L.; Lathouwers, D.

    2012-07-01

    Perturbation theory based sensitivity analysis is a vital part of todays' nuclear reactor design. This paper presents an extension of standard techniques to examine coupled criticality problems with mutual feedback between neutronics and an augmenting system (for example thermal-hydraulics). The proposed procedure uses a neutronic and an augmenting adjoint function to efficiently calculate the first order change in responses of interest due to variations of the parameters describing the coupled problem. The effect of the perturbations is considered in two different ways in our study: either a change is allowed in the power level while maintaining criticality (power perturbation) or a change is allowed in the eigenvalue while the power is constrained (eigenvalue perturbation). The calculated response can be the change in the power level, the reactivity worth of the perturbation, or the change in any functional of the flux, the augmenting dependent variables and the input parameters. To obtain power- and criticality-constrained sensitivities power- and k-reset procedures can be applied yielding identical results. Both the theoretical background and an application to a one dimensional slab problem are presented, along with an iterative procedure to compute the necessary adjoint functions using the neutronics and the augmenting codes separately, thus eliminating the need of developing new programs to solve the coupled adjoint problem. (authors)

  13. Synthesis report on thermally driven coupled processes

    SciTech Connect (OSTI)

    Hardin, E.L.

    1997-10-15

    The main purpose of this report is to document observations and data on thermally coupled processes for conditions that are expected to occur within and around a repository at Yucca Mountain. Some attempt is made to summarize values of properties (e.g., thermal properties, hydrologic properties) that can be measured in the laboratory on intact samples of the rock matrix. Variation of these properties with temperature, or with conditions likely to be encountered at elevated temperature in the host rock, is of particular interest. However, the main emphasis of this report is on direct observation of thermally coupled processes at various scales. Direct phenomenological observations are vitally important in developing and testing conceptual models. If the mathematical implementation of a conceptual model predicts a consequence that is not observed, either (1) the parameters or the boundary conditions used in the calculation are incorrect or (2) the conceptual basis of the model does not fit the experiment; in either case, the model must be revised. For example, the effective continuum model that has been used in thermohydrology studies combines matrix and fracture flow in a way that is equivalent to an assumption that water is imbibed instantaneously from fractures into adjacent, partially saturated matrix. Based on this approximation, the continuum-flow response that is analogous to fracture flow will not occur until the effective continuum is almost completely saturated. This approximation is not entirely consistent with some of the experimental data presented in this report. This report documents laboratory work and field studies undertaken in FY96 and FY97 to investigate thermally coupled processes such as heat pipes and fracture-matrix coupling. In addition, relevant activities from past years, and work undertaken outside the Yucca Mountain project are summarized and discussed. Natural and artificial analogs are also discussed to provide a convenient source of material documenting the conceptual and mathematical basis for modeling coupled phenomena. The actual models and codes, and their specific empirical and theoretical bases, will be documented in a separate report to be delivered in FY99.

  14. Radio frequency coupling apparatus and method for measuring minority carrier lifetimes in semiconductor materials

    DOE Patents [OSTI]

    Johnston, Steven W.; Ahrenkiel, Richard K.

    2002-01-01

    An apparatus for measuring the minority carrier lifetime of a semiconductor sample using radio-frequency coupling. The measuring apparatus includes an antenna that is positioned a coupling distance from a semiconductor sample which is exposed to light pulses from a laser during sampling operations. A signal generator is included to generate high frequency, such as 900 MHz or higher, sinusoidal waveform signals that are split into a reference signal and a sample signal. The sample signal is transmitted into a sample branch circuit where it passes through a tuning capacitor and a coaxial cable prior to reaching the antenna. The antenna is radio-frequency coupled with the adjacent sample and transmits the sample signal, or electromagnetic radiation corresponding to the sample signal, to the sample and receives reflected power or a sample-coupled-photoconductivity signal back. To lower impedance and speed system response, the impedance is controlled by limiting impedance in the coaxial cable and the antenna reactance. In one embodiment, the antenna is a waveguide/aperture hybrid antenna having a central transmission line and an adjacent ground flange. The sample-coupled-photoconductivity signal is then transmitted to a mixer which also receives the reference signal. To enhance the sensitivity of the measuring apparatus, the mixer is operated to phase match the reference signal and the sample-coupled-photoconductivity signal.

  15. Spectroscopy diagnostic of dual-frequency capacitively coupled CHF{sub 3}/Ar plasma

    SciTech Connect (OSTI)

    Liu, Wen-Yao; Du, Yong-Quan [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024 (China); Liu, Yong-Xin; Liu, Jia; Zhao, Tian-Liang; Wang, You-Nian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Xu, Yong; Li, Xiao-Song; Zhu, Ai-Min [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024 (China) [Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-11-15

    A combined spectroscopic method of absorption, actinometry, and relative optical emission intensity is employed to determine the absolute CF{sub 2} density, the relative F and H densities, H atom excitation temperature and the electron density in dual-frequency (60/2 MHz) capacitively coupled CHF{sub 3}/Ar plasmas. The effects of different control parameters, such as high-frequency (HF) power, low-frequency (LF) power, gas pressure, gap length and content of CHF{sub 3}, on the concentration of radical CF{sub 2}, F, and H and excitation temperature are discussed, respectively. It is found that the concentration of CF{sub 2} is strongly dependent on the HF power, operating pressure and the proportion of CHF{sub 3} in feed gas, while it is almost independent of the LF power and the gap length. A higher concentration ratio of F to CF{sub 2} could be obtained in dual-frequency discharge case. Finally, the generation and decay mechanisms of CF{sub 2} and F were also discussed.

  16. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    SciTech Connect (OSTI)

    Middleton, Bobby; Pasch, James Jay; Kruizenga, Alan Michael; Walker, Matthew

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related to both Helium and to sCO2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation

  17. Derivative couplings between TDDFT excited states obtained by direct differentiation in the Tamm-Dancoff approximation

    SciTech Connect (OSTI)

    Ou, Qi; Fatehi, Shervin; Alguire, Ethan; Subotnik, Joseph E.; Shao, Yihan

    2014-07-14

    Working within the Tamm-Dancoff approximation, we calculate the derivative couplings between time-dependent density-functional theory excited states by assuming that the Kohn-Sham superposition of singly excited determinants represents a true electronic wavefunction. All Pulay terms are included in our derivative coupling expression. The reasonability of our approach can be established by noting that, for closely separated electronic states in the infinite basis limit, our final expression agrees exactly with the Chernyak-Mukamel expression (with transition densities from response theory). Finally, we also validate our approach empirically by analyzing the behavior of the derivative couplings around the T{sub 1}/T{sub 2} conical intersection of benzaldehyde.

  18. Transient analysis of an FHR coupled to a helium Brayton power cycle

    SciTech Connect (OSTI)

    Chen, Minghui; Kim, In Hun; Sun, Xiaodong; Christensen, Richard; Utgikar, Vivek; Sabharwall, Piyush

    2015-08-01

    The Fluoride salt-cooled High-temperature Reactor (FHR) features a passive decay heat removal system and a high-efficiency Brayton cycle for electricity generation. It typically employs an intermediate loop, consisting of an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX), to couple the primary system with the power conversion unit (PCU). In this study, a preliminary dynamic system model is developed to simulate transient characteristics of a prototypic 20-MWth Fluoride salt-cooled High-temperature Test Reactor (FHTR). The model consists of a series of differential conservation equations that are numerically solved using the MATLAB platform. For the reactor, a point neutron kinetics model is adopted. For the IHX and SHX, a fluted tube heat exchanger and an offset strip-fin heat exchanger are selected, respectively. Detailed geometric parameters of each component in the FHTR are determined based on the FHTR nominal steady-state operating conditions. Three initiating events are simulated in this study, including a positive reactivity insertion, a step increase in the mass flow rate of the PCU helium flow, and a step increase in the PCU helium inlet temperature to the SHX. The simulation results show that the reactor has inherent safety features for those three simulated scenarios. It is observed that the increase in the temperatures of the fuel pebbles and primary coolant is mitigated by the decrease in the reactor power due to negative temperature feedbacks. The results also indicate that the intermediate loop with the two heat exchangers plays a significant role in the transient progression of the integral reactor system.

  19. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    SciTech Connect (OSTI)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For example, the excavation-damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability (Tsang et al., 2005). Because of clay's swelling and shrinkage behavior (depending on whether the clay is in imbibition or drainage processes), fracture properties in the EDZ are quite dynamic and evolve over time as hydromechanical conditions change. To understand and model the coupled processes and their impact on repository performance is critical for the defensible performance assessment of a clay repository. Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at DOE's Office of Nuclear Energy, LBNL's research activities have focused on understanding and modeling such coupled processes. LBNL provided a report in this April on literature survey of studies on coupled processes in clay repositories and identification of technical issues and knowledge gaps (Tsang et al., 2010). This report will document other LBNL research activities within the natural system work package, including the development of constitutive relationships for elastic deformation of clay rock (Section 2), a THM modeling study (Section 3) and a THC modeling study (Section 4). The purpose of the THM and THC modeling studies is to demonstrate the current modeling capabilities in dealing with coupled processes in a potential clay repository. In Section 5, we discuss potential future R&D work based on the identified knowledge gaps. The linkage between these activities and related FEPs is presented in Section 6.

  20. Spin-phonon coupling in scandium doped gallium ferrite

    SciTech Connect (OSTI)

    Chakraborty, Keka R. E-mail: smyusuf@barc.gov.in; Mukadam, M. D.; Basu, S.; Yusuf, S. M. E-mail: smyusuf@barc.gov.in; Paul, Barnita; Roy, Anushree; Grover, Vinita; Tyagi, A. K.

    2015-03-28

    We embarked on a study of Scandium (Sc) doped (onto Ga site) gallium ferrite (GaFeO{sub 3}) and found remarkable magnetic properties. In both doped as well as parent compounds, there were three types of Fe{sup 3+} ions (depending on the symmetry) with the structure conforming to space group Pna2{sub 1} (Sp. Grp. No. 33) below room temperature down to 5?K. We also found that all Fe{sup 3+} ions occupy octahedral sites, and carry high spin moment. For the higher Sc substituted sample (Ga{sub 1?x}Sc{sub x}FeO{sub 3}: x?=?0.3), a canted magnetic ordered state is found. Spin-phonon coupling below Nel temperature was observed in doped compounds. Our results indicated that Sc doping in octahedral site modifies spin-phonon interactions of the parent compound. The spin-phonon coupling strength was estimated for the first time in these Sc substituted compounds.

  1. Magnetoelectric coupling tuned by competing anisotropies in Mn...

    Office of Scientific and Technical Information (OSTI)

    Magnetoelectric coupling tuned by competing anisotropies in Mn 1 - x Ni x TiO 3 Prev Next Title: Magnetoelectric coupling tuned by competing anisotropies in Mn 1 - x Ni x TiO ...

  2. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPES Provides Direct Evidence of Spin-Wave Coupling ARPES Provides Direct Evidence of Spin-Wave Coupling Print Wednesday, 30 March 2005 00:00 The electronic properties of a metal...

  3. Non-minimal derivative couplings of the composite metric (Journal...

    Office of Scientific and Technical Information (OSTI)

    Non-minimal derivative couplings of the composite metric Citation Details In-Document Search Title: Non-minimal derivative couplings of the composite metric In the context of ...

  4. Detection of J-coupling using atomic magnetometer

    DOE Patents [OSTI]

    Ledbetter, Micah P.; Crawford, Charles W.; Wemmer, David E.; Pines, Alexander; Knappe, Svenja; Kitching, John; Budker, Dmitry

    2015-09-22

    An embodiment of a method of detecting a J-coupling includes providing a polarized analyte adjacent to a vapor cell of an atomic magnetometer; and measuring one or more J-coupling parameters using the atomic magnetometer. According to an embodiment, measuring the one or more J-coupling parameters includes detecting a magnetic field created by the polarized analyte as the magnetic field evolves under a J-coupling interaction.

  5. Change of translational-rotational coupling in liquids revealed...

    Office of Scientific and Technical Information (OSTI)

    OSTI Identifier: 22416020 Resource Type: Journal Article Resource Relation: Journal ... Subject: 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CHLOROFORM; COUPLING; ...

  6. Coupling Schemes in Terahertz Planar Metamaterials (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Journal Article: Coupling Schemes in Terahertz Planar Metamaterials Citation Details In-Document Search Title: Coupling Schemes in Terahertz Planar Metamaterials We present a review of the different coupling schemes in a planar array of terahertz metamaterials. The gap-to-gap near-field capacitive coupling between split-ring resonators in a unit cell leads to either blue shift or red shift of the fundamental inductive-capacitive ( LC ) resonance, depending on the position of

  7. Applications of molecular replacement to G protein-coupled receptors

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Applications of molecular replacement to G protein-coupled receptors Citation Details In-Document Search Title: Applications of molecular replacement to G protein-coupled receptors The use of molecular replacement in solving the structures of G protein-coupled receptors is discussed, with specific examples being described in detail. G protein-coupled receptors (GPCRs) are a large class of integral membrane proteins involved in regulating virtually every

  8. Determination of linear optics functions from TBT data

    SciTech Connect (OSTI)

    Alexahin, Y.; Gianfelice-Wendt, E.; /Fermilab

    2006-05-01

    A method for evaluation of coupled optics functions, detection of strong perturbing elements, determination of BPM calibration errors and tilts using turn-by-turn (TBT) data is presented as well as the new version of the Hamiltonian perturbation theory of betatron oscillations the method is based upon. An example of application of the considered method to the Tevatron is given.

  9. Gluons and the NJL coupling constant

    SciTech Connect (OSTI)

    Braghin, Fbio L.; Barros Jr, Ednaldo; Paulo Jr, Ademar

    2014-11-11

    The QCD origin of the NJL model is re-analysed by considering the gluon condensate of order two . The key point is the treatment of the gluon interactions. To linearize the action the auxiliary variable method is employed to introduce a scalar variable ?(x) that yield such condensate by means of its value in the vacuum, and then another auxiliary variable that corresponds to an antisymmetric gluon configuration ?(x). For that, besides that, two different possible limits of the fourth order non local quark interaction that may contribute to the NJL coupling are compared.

  10. Magnetic switch coupling to synchronize magnetic modulators

    DOE Patents [OSTI]

    Reed, Kim W. (Albuquerque, NM); Kiekel, Paul (Albuquerque, NM)

    1999-01-01

    Apparatus for synchronizing the output pulses from a pair of magnetic switches. An electrically conductive loop is provided between the pair of switches with the loop having windlings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself.

  11. Magnetic switch coupling to synchronize magnetic modulators

    DOE Patents [OSTI]

    Reed, K.W.; Kiekel, P.

    1999-04-27

    Apparatus for synchronizing the output pulses from a pair of magnetic switches is disclosed. An electrically conductive loop is provided between the pair of switches with the loop having windings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself. 13 figs.

  12. Effect of fractons in strongly coupled superconductors

    SciTech Connect (OSTI)

    Tewari, S.P.; Gumber, P.K. )

    1990-02-01

    The effect of fractons on strongly coupled superconductors has been studied using both McMillan's equation and Kresin's equation which is valid for any arbitrary value of {lambda}. Contrary to common belief it is found that there is no significant increase in {ital T}{sub {ital c}} when the crystal lattice is changed into a fractal lattice. However, under certain conditions there may be a substantial increase in the critical temperature in the fractal superconductor over its value in the corresponding crystalline superconductor.

  13. The Role of Solvent Heterogeneity in Determining the Dispersion Interaction

    Office of Scientific and Technical Information (OSTI)

    Between Nanoassemblies (Journal Article) | SciTech Connect The Role of Solvent Heterogeneity in Determining the Dispersion Interaction Between Nanoassemblies Citation Details In-Document Search Title: The Role of Solvent Heterogeneity in Determining the Dispersion Interaction Between Nanoassemblies Understanding fundamental nanoassembly processes on intermediate scales beween the molecular and the continuum requires an in-depth analysis of the coupling between particle interactions and

  14. CX-007563: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    63: Categorical Exclusion Determination CX-007563: Categorical Exclusion Determination Development of Tools for Coupled lnSAR and Seismicity Monitoring of Enhanced Geothermal System Reservoir Development and Management CX(s) Applied: A9, B3.1 Date: 01/18/2012 Location(s): Pennsylvania Offices(s): Golden Field Office Temple University would utilize DOE and cost share funds to develop an integrated set of tools to monitor the evolution of permeability and fluid flow within an enhanced geothermal

  15. Method and apparatus for determining vertical heat flux of geothermal field

    DOE Patents [OSTI]

    Poppendiek, Heinz F. (LaJolla, CA)

    1982-01-01

    A method and apparatus for determining vertical heat flux of a geothermal field, and mapping the entire field, is based upon an elongated heat-flux transducer (10) comprised of a length of tubing (12) of relatively low thermal conductivity with a thermopile (20) inside for measuring the thermal gradient between the ends of the transducer after it has been positioned in a borehole for a period sufficient for the tube to reach thermal equilibrium. The transducer is thermally coupled to the surrounding earth by a fluid annulus, preferably water or mud. A second transducer comprised of a length of tubing of relatively high thermal conductivity is used for a second thermal gradient measurement. The ratio of the first measurement to the second is then used to determine the earth's thermal conductivity, k.sub..infin., from a precalculated graph, and using the value of thermal conductivity thus determined, then determining the vertical earth temperature gradient, b, from predetermined steady state heat balance equations which relate the undisturbed vertical earth temperature distributions at some distance from the borehole and earth thermal conductivity to the temperature gradients in the transducers and their thermal conductivity. The product of the earth's thermal conductivity, k.sub..infin., and the earth's undisturbed vertical temperature gradient, b, then determines the earth's vertical heat flux. The process can be repeated many times for boreholes of a geothermal field to map vertical heat flux.

  16. High frequency reference electrode

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  17. High frequency reference electrode

    DOE Patents [OSTI]

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  18. Tightly Coupled Multiphysics Algorithm for Pebble Bed Reactors

    SciTech Connect (OSTI)

    HyeongKae Park; Dana Knoll; Derek Gaston; Richard Martineau

    2010-10-01

    We have developed a tightly coupled multiphysics simulation tool for the pebble-bed reactor (PBR) concept, a type of Very High-Temperature gas-cooled Reactor (VHTR). The simulation tool, PRONGHORN, takes advantages of the Multiphysics Object-Oriented Simulation Environment library, and is capable of solving multidimensional thermal-fluid and neutronics problems implicitly with a Newton-based approach. Expensive Jacobian matrix formation is alleviated via the Jacobian-free Newton-Krylov method, and physics-based preconditioning is applied to minimize Krylov iterations. Motivation for the work is provided via analysis and numerical experiments on simpler multiphysics reactor models. We then provide detail of the physical models and numerical methods in PRONGHORN. Finally, PRONGHORN's algorithmic capability is demonstrated on a number of PBR test cases.

  19. Electric field geometries dominate quantum transport coupling in silicon nanoring

    SciTech Connect (OSTI)

    Lee, Tsung-Han E-mail: sfhu.hu@gmail.com; Hu, Shu-Fen E-mail: sfhu.hu@gmail.com

    2014-03-28

    Investigations on the relation between the geometries of silicon nanodevices and the quantum phenomenon they exhibit, such as the AharonovBohm (AB) effect and the Coulomb blockade, were conducted. An arsenic doped silicon nanoring coupled with a nanowire by electron beam lithography was fabricated. At 1.47?K, Coulomb blockade oscillations were observed under modulation from the top gate voltage, and a periodic AB oscillation of ?B?=?0.178?T was estimated for a ring radius of 86?nm under a high sweeping magnetic field. Modulating the flat top gate and the pointed side gate was performed to cluster and separate the many electron quantum dots, which demonstrated that quantum confinement and interference effects coexisted in the doped silicon nanoring.

  20. Multiphysics Integrated Coupling Environment (MICE) User Manual

    SciTech Connect (OSTI)

    Varija Agarwal; Donna Post Guillen

    2013-08-01

    The complex, multi-part nature of waste glass melters used in nuclear waste vitrification poses significant modeling challenges. The focus of this project has been to couple a 1D MATLAB model of the cold cap region within a melter with a 3D STAR-CCM+ model of the melter itself. The Multiphysics Integrated Coupling Environment (MICE) has been developed to create a cohesive simulation of a waste glass melter that accurately represents the cold cap. The one-dimensional mathematical model of the cold cap uses material properties, axial heat, and mass fluxes to obtain a temperature profile for the cold cap, the region where feed-to-glass conversion occurs. The results from Matlab are used to update simulation data in the three-dimensional STAR-CCM+ model so that the cold cap is appropriately incorporated into the 3D simulation. The two processes are linked through ModelCenter integration software using time steps that are specified for each process. Data is to be exchanged circularly between the two models, as the inputs and outputs of each model depend on the other.

  1. CO{sub 2} Geologic Storage: Coupled Hydro-Chemo-Thermo-Mechanical Phenomena - From Pore-scale Processes to Macroscale Implications -

    SciTech Connect (OSTI)

    Santamarina, J. Carlos

    2013-05-31

    Global energy consumption will increase in the next decades and it is expected to largely rely on fossil fuels. The use of fossil fuels is intimately related to CO{sub 2} emissions and the potential for global warming. Geological CO{sub 2} storage aims to mitigate the global warming problem by sequestering CO{sub 2} underground. Coupled hydro-chemo-mechanical phenomena determine the successful operation and long term stability of CO{sub 2} geological storage. This research explores coupled phenomena, identifies different zones in the storage reservoir, and investigates their implications in CO{sub 2} geological storage. In particular, the research: Explores spatial patterns in mineral dissolution and precipitation (comprehensive mass balance formulation); experimentally determines the interfacial properties of water, mineral, and CO{sub 2} systems (including CO{sub 2}-water-surfactant mixtures to reduce the CO{sub 2}- water interfacial tension in view of enhanced sweep efficiency); analyzes the interaction between clay particles and CO{sub 2}, and the response of sediment layers to the presence of CO{sub 2} using specially designed experimental setups and complementary analyses; couples advective and diffusive mass transport of species, together with mineral dissolution to explore pore changes during advection of CO{sub 2}-dissolved water along a rock fracture; upscales results to a porous medium using pore network simulations; measures CO{sub 2} breakthrough in highly compacted fine-grained sediments, shale and cement specimens; explores sealing strategies; and experimentally measures CO{sub 2}-CH{sub 4} replacement in hydrate-bearing sediments during. Analytical, experimental and numerical results obtained in this study can be used to identify optimal CO{sub 2} injection and reservoir-healing strategies to maximize the efficiency of CO{sub 2} injection and to attain long-term storage.

  2. Improving LER Coupling and PEP-II Luminosity with Model-Independent

    Office of Scientific and Technical Information (OSTI)

    Analysis (Journal Article) | SciTech Connect Journal Article: Improving LER Coupling and PEP-II Luminosity with Model-Independent Analysis Citation Details In-Document Search Title: Improving LER Coupling and PEP-II Luminosity with Model-Independent Analysis The PEP-II storage ring at SLAC houses electrons (in the High-Energy Ring, or HER) and positrons (in the Low-Energy Ring, or LER) for collision. The goal of this project was to improve the linear optics of the LER in order to decrease

  3. Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement

    SciTech Connect (OSTI)

    Shuai, Yichen; Zhao, Deyin; Singh Chadha, Arvinder; Zhou, Weidong; Seo, Jung-Hun; Ma, Zhenqiang; Yang, Hongjun; Semerane, Inc., Arlington, Texas 76010 ; Fan, Shanhui

    2013-12-09

    We present here ultra-compact high-Q Fano resonance filters with displaced lattices between two coupled photonic crystal slabs, fabricated with crystalline silicon nanomembrane transfer printing and aligned e-beam lithography techniques. Theoretically, with the control of lattice displacement between two coupled photonic crystal slabs layers, optical filter Q factors can approach 211?000?000 for the design considered here. Experimentally, Q factors up to 80?000 have been demonstrated for a filter design with target Q factor of 130?000.

  4. High voltage coaxial switch

    DOE Patents [OSTI]

    Rink, J.P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure. 3 figs.

  5. High voltage coaxial switch

    DOE Patents [OSTI]

    Rink, John P. (Los Alamos, NM)

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure.

  6. Measurement of Muon Capture on the Proton to 1% Precision and Determination

    Office of Scientific and Technical Information (OSTI)

    of the Pseudoscalar Coupling gP (Journal Article) | SciTech Connect Muon Capture on the Proton to 1% Precision and Determination of the Pseudoscalar Coupling gP Citation Details In-Document Search Title: Measurement of Muon Capture on the Proton to 1% Precision and Determination of the Pseudoscalar Coupling gP Authors: Andreev, V. A. ; Banks, T. I. ; Carey, R. M. ; Case, T. A. ; Clayton, S. M. ; Crowe, K. M. ; Deutsch, J. ; Egger, J. ; Freedman, S. J. ; Ganzha, V. A. ; Gorringe, T. ; Gray,

  7. Categorical Exclusion (CX) Determinations By Date | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Highly Active, Durable, and Ultra-low PGM NSTF Thin Film ORR Catalysts and Supports Award Number: DE-FOA-0007270 CX(s) Applied: A9, B3.6...

  8. Categorical Exclusion Determinations: Golden Field Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Highly Active, Durable, and Ultra-low PGM NSTF Thin Film ORR Catalysts and Supports Award Number: DE-FOA-0007270 CX(s) Applied: A9, B3.6...

  9. Categorical Exclusion Determinations: Minnesota | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minnesota Categorical Exclusion Determinations: Minnesota Location Categorical Exclusion Determinations issued for actions in Minnesota. DOCUMENTS AVAILABLE FOR DOWNLOAD December 3, 2015 CX-100414 Categorical Exclusion Determination Highly Active, Durable, and Ultra-low PGM NSTF Thin Film ORR Catalysts and Supports Award Number: DE-FOA-0007270 CX(s) Applied: A9, B3.6 Fuel Cell Technologies Office Date: 12/03/2015 Location(s): MN Office(s): Golden Field Office October 20, 2015 CX-100391

  10. Categorical Exclusion Determinations: West Valley Demonstration Project |

    Office of Environmental Management (EM)

    Department of Energy Valley Demonstration Project Categorical Exclusion Determinations: West Valley Demonstration Project Categorical Exclusion Determinations issued by West Valley Demonstration Project. DOCUMENTS AVAILABLE FOR DOWNLOAD September 19, 2013 CX-011236: Categorical Exclusion Determination North Parking Lot High Level Waste Canister Fabrication and Concrete Pad Construction CX(s) Applied: B1.15, B1.23 Date: 09/19/2013 Location(s): New York Offices(s): West Valley Demonstration

  11. Employing Twin Crabbing Cavities to Address Variable Transverse Coupling of Beams in the MEIC

    SciTech Connect (OSTI)

    Castilla, Alejandro; Delayen, Jean R.; Morozov, Vasiliy; Satogata, Todd

    2014-07-01

    The design strategy of the Medium Energy Electron-Ion Collider (MEIC) at Jefferson Lab contemplates both matching of the emittance aspect ratios and a 50 mrad crossing angle along with crab crossing scheme for both electron and ion beams over the energy range (?s=20-70 GeV) to achieve high luminosities at the interaction points (IPs). However, the desired locations for placing the crabbing cavities may include regions where the transverse degrees of freedom of the beams are coupled with variable coupling strength that depends on the collider rings magnetic elements (solenoids and skew quadrupoles). In this work we explore the feasibility of employing twin rf dipoles that produce a variable direction crabbing kick to account for a range of transverse coupling of both beams.

  12. Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity

    SciTech Connect (OSTI)

    Lee, Jonathan C.; Cui, Shanying; Zhang, Xingyu; Russell, Kasey J.; Magyar, Andrew P.; Hu, Evelyn L.; Bracher, David O.; Ohno, Kenichi; McLellan, Claire A.; Alemn, Benjamin; Bleszynski Jayich, Ania; Andrich, Paolo; Awschalom, David; Aharonovich, Igor

    2014-12-29

    The negatively charged nitrogen vacancy center (NV) in diamond has generated significant interest as a platform for quantum information processing and sensing in the solid state. For most applications, high quality optical cavities are required to enhance the NV zero-phonon line (ZPL) emission. An outstanding challenge in maximizing the degree of NV-cavity coupling is the deterministic placement of NVs within the cavity. Here, we report photonic crystal nanobeam cavities coupled to NVs incorporated by a delta-doping technique that allows nanometer-scale vertical positioning of the emitters. We demonstrate cavities with Q up to ?24?000 and mode volume V???0.47(?/n){sup 3} as well as resonant enhancement of the ZPL of an NV ensemble with Purcell factor of ?20. Our fabrication technique provides a first step towards deterministic NV-cavity coupling using spatial control of the emitters.

  13. Rf capacitively-coupled electrodeless light source

    DOE Patents [OSTI]

    Manos, Dennis M. (Williamsburg, VA); Diggs, Jessie (Norfolk, VA); Ametepe, Joseph D. (Roanoke, VA); Fugitt, Jock A. (Livingston, TX)

    2000-01-01

    An rf capacitively-coupled electrodeless light source is provided. The light source comprises a hollow, elongated chamber and at least one center conductor disposed within the hollow, elongated chamber. A portion of each center conductor extends beyond the hollow, elongated chamber. At least one gas capable of forming an electronically excited molecular state is contained within each center conductor. An electrical coupler is positioned concentric to the hollow, elongated chamber and the electrical coupler surrounds the portion of each center conductor that extends beyond the hollow, elongated chamber. A rf-power supply is positioned in an operable relationship to the electrical coupler and an impedance matching network is positioned in an operable relationship to the rf power supply and the electrical coupler.

  14. Temperature determination using pyrometry

    DOE Patents [OSTI]

    Breiland, William G.; Gurary, Alexander I.; Boguslavskiy, Vadim

    2002-01-01

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  15. Rotational viscometer for high-pressure high-temperature fluids

    DOE Patents [OSTI]

    Carr, Kenneth R. (Knoxville, TN)

    1985-01-01

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer includes a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. An output is generated indicative of the phase difference between the two waveforms.

  16. Design and Construction of a Prototype Solenoid Coil for MICE Coupling Magnets

    SciTech Connect (OSTI)

    Wang, Li; Pan, Heng; Guo, XingLong; Xu, FengYu; Liu, XiaoKun; Wu, Hong; Zheng, ShiXian; Green, Michael A; Li, Derun; Virostek, Steve; Zisman, Michael

    2010-06-28

    A superconducting coupling solenoid mounted around four conventional RF cavities, which produces up to 2.6 T central magnetic field to keep the muons within the cavities, is to be used for the Muon Ionization Cooling Experiment (MICE). The coupling coil made from copper matrix NbTi conductors is the largest of three types of magnets in MICE both in terms of 1.5 m inner diameter and about 13MJ stored magnetic energy at full operation current of 210A. The stress induced inside the coil assembly during cool down and magnet charging is relatively high. In order to validate the design method and develop the coil winding technique with inside-wound SC splices required for the coupling coil, a prototype coil made from the same conductor and with the same diameter and thickness but only one-fourth long as the coupling coil was designed and fabricated by ICST. The prototype coil was designed to be charged to strain conditions that are equivalent or greater than would be encountered in the coupling coil. This paper presents detailed design of the prototype coil as well as developed coil winding skills. The analyses on stress in the coil assembly and quench process were carried out.

  17. NEPA Determination Complete

    Broader source: Energy.gov [DOE]

    DOE has determined that this proposed project is a major Federal action that may significantly affect the quality of the human environment. To comply with the National Environmental Policy Act ...

  18. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E. (Hempfield Township, Westmoreland County, PA)

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  19. RAPID FUSION METHOD FOR DETERMINATION OF PLUTONIUM ISOTOPES IN LARGE RICE SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.

    2013-03-01

    A new rapid fusion method for the determination of plutonium in large rice samples has been developed at the Savannah River National Laboratory (Aiken, SC, USA) that can be used to determine very low levels of plutonium isotopes in rice. The recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid, reliable radiochemical analyses for radionuclides in environmental and food samples. Public concern regarding foods, particularly foods such as rice in Japan, highlights the need for analytical techniques that will allow very large sample aliquots of rice to be used for analysis so that very low levels of plutonium isotopes may be detected. The new method to determine plutonium isotopes in large rice samples utilizes a furnace ashing step, a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a column separation process with TEVA Resin? cartridges. The method can be applied to rice sample aliquots as large as 5 kg. Plutonium isotopes can be determined using alpha spectrometry or inductively-coupled plasma mass spectrometry (ICP-MS). The method showed high chemical recoveries and effective removal of interferences. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory plutonium particles are effectively digested. The MDA for a 5 kg rice sample using alpha spectrometry is 7E-5 mBq g{sup -1}. The method can easily be adapted for use by ICP-MS to allow detection of plutonium isotopic ratios.

  20. High thermal conductivity connector having high electrical isolation

    DOE Patents [OSTI]

    Nieman, Ralph C. (Downers Grove, IL); Gonczy, John D. (Oak Lawn, IL); Nicol, Thomas H. (St. Charles, IL)

    1995-01-01

    A method and article for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection. The connection method involves clamping, by thermal interference fit, an electrically isolating cylinder between an outer metallic ring and an inner metallic disk. The connection provides durable coupling of a heat sink and a heat source.

  1. Coupling the core analysis program DeCART to the fuel performance application BISON

    SciTech Connect (OSTI)

    Gleicher, F. N.; Spencer, B.; Novascone, S.; Williamson, R.; Martineau, R. C. [Idaho National Laboratory, 2525 N. Fremont Avenue, Idaho Falls, ID 83415 (United States); Rose, M.; Downar, T. J.; Collins, B. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48105 (United States)

    2013-07-01

    The 3D neutron transport and core analysis program DeCART was coupled to the fuels performance application BISON to provide a higher fidelity tool for fuel performance simulation. This project is motivated by the desire to couple a high fidelity core analysis program (based on the method of characteristics) to a high fidelity fuel performance program, both of which can simulate 3D problems. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during burnup or a fast transient. BISON implicitly solves coupled thermomechanical equations for the fuel on a sub-millimeter level finite element mesh. A method was developed for mapping the fission rate density and fast neutron flux from DeCART to BISON. Multiple depletion cases were run with one-way data transfer from DeCART to BISON. The one-way data transfer of fission rate density is shown to agree with the fission rate density obtained from an internal Lassman-style model in BISON. One-way data transfer was also demonstrated in a 3D case in which azimuthal asymmetry was induced in the fission rate density profile of a fuel rod modeled in DeCART. Two-way data transfer was established by mapping the temperature distribution from BISON to DeCART. A Picard iterative algorithm was developed for the loose coupling with two-way data transfer. (authors)

  2. Integration of Novel Flux Coupling Motor and Current Source Inverter |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape034_hsu_2011_p.pdf More Documents & Publications Integration of Novel Flux Coupling Motor and Current Source Inverter Novel Flux Coupling Machine without Permanent Magnets John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines and Switched Reluctance Motors to Replace Permanent Magnets in Electric Vehicles

  3. Computational and experimental techniques for coupled acoustic/structure

    Office of Scientific and Technical Information (OSTI)

    interactions. (Technical Report) | SciTech Connect Computational and experimental techniques for coupled acoustic/structure interactions. Citation Details In-Document Search Title: Computational and experimental techniques for coupled acoustic/structure interactions. This report documents the results obtained during a one-year Laboratory Directed Research and Development (LDRD) initiative aimed at investigating coupled structural acoustic interactions by means of algorithm development and

  4. Dynamic simulation of kinematic Stirling engines: Coupled and decoupled

    Office of Scientific and Technical Information (OSTI)

    analysis (Conference) | SciTech Connect Dynamic simulation of kinematic Stirling engines: Coupled and decoupled analysis Citation Details In-Document Search Title: Dynamic simulation of kinematic Stirling engines: Coupled and decoupled analysis A coupled analysis modelling method of Stirling engines is presented. The main feature of this modelling method is the use of a software package combining the capabilities of a pre-/post-processor with a differential algebraic equations solver. As a

  5. Brian K. Kobilka and G-protein-coupled Receptors (GPCR)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brian K. Kobilka and G-protein-coupled Receptors (GPCR) Resources with Additional Information Brian K. Kobilka Credit: Linda A. Cicero Stanford News Service 'Thanks in part to research performed at the U.S. Department of Energy's (DOE) Argonne National Laboratory, the 2012 Nobel Prize in Chemistry was awarded today to Americans Brian Kobilka and Robert Lefkowitz for their work on G-protein-coupled receptors. G-protein-coupled receptors, or GPCRs, are a large family of proteins embedded in a

  6. Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials for Automotive Energy Recovery | Department of Energy Couple Demonstration of (In, Ce)-based Skutterudite Materials for Automotive Energy Recovery Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite Materials for Automotive Energy Recovery Presents recent accomplishments and couple test results with these (In, Ce)-based skutterudite TE materials and potential impacts TE power system performance in military and commercial applications PDF icon hendricks_pm.pdf More

  7. Towards an optical potential for rare-earths through coupled channels

    SciTech Connect (OSTI)

    Nobre, G. P. A.; Herman, M.; Palumbo, A.; Hoblit, S.; Brown, D.; Dietrich, F. S.

    2014-11-11

    The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations, defined by nuclear deformations. Proper treatment of such excitations is often essential to the accurate description of reaction experimental data. Previous works have applied different models to specific nuclei with the purpose of determining angular-integrated cross sections. In this work, we present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions in a consistent manner for neutron-induced reactions on nuclei in the rare-earth region. This specific subset of the nuclide chart was chosen precisely because of a clear static deformation pattern. We analyze the convergence of the coupled-channel calculations regarding the number of states being explicitly coupled. Inspired by the work done by Dietrich et al., a model for deforming the spherical Koning-Delaroche optical potential as function of quadrupole and hexadecupole deformations is also proposed. We demonstrate that the obtained results of calculations for total, elastic and inelastic cross sections, as well as elastic and inelastic angular distributions correspond to a remarkably good agreement with experimental data for scattering energies above around a few MeV.

  8. Gearbox Reliability Collaborative Analytic Formulation for the Evaluation of Spline Couplings

    SciTech Connect (OSTI)

    Guo, Y.; Keller, J.; Errichello, R.; Halse, C.

    2013-12-01

    Gearboxes in wind turbines have not been achieving their expected design life; however, they commonly meet and exceed the design criteria specified in current standards in the gear, bearing, and wind turbine industry as well as third-party certification criteria. The cost of gearbox replacements and rebuilds, as well as the down time associated with these failures, has elevated the cost of wind energy. The National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) was established by the U.S. Department of Energy in 2006; its key goal is to understand the root causes of premature gearbox failures and improve their reliability using a combined approach of dynamometer testing, field testing, and modeling. As part of the GRC program, this paper investigates the design of the spline coupling often used in modern wind turbine gearboxes to connect the planetary and helical gear stages. Aside from transmitting the driving torque, another common function of the spline coupling is to allow the sun to float between the planets. The amount the sun can float is determined by the spline design and the sun shaft flexibility subject to the operational loads. Current standards address spline coupling design requirements in varying detail. This report provides additional insight beyond these current standards to quickly evaluate spline coupling designs.

  9. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation

    SciTech Connect (OSTI)

    Tchelepi, Hamdi

    2014-11-14

    A multiscale linear-solver framework for the pressure equation associated with flow in highly heterogeneous porous formations was developed. The multiscale based approach is cast in a general algebraic form, which facilitates integration of the new scalable linear solver in existing flow simulators. The Algebraic Multiscale Solver (AMS) is employed as a preconditioner within a multi-stage strategy. The formulations investigated include the standard MultiScale Finite-Element (MSFE) andMultiScale Finite-Volume (MSFV) methods. The local-stage solvers include incomplete factorization and the so-called Correction Functions (CF) associated with the MSFV approach. Extensive testing of AMS, as an iterative linear solver, indicate excellent convergence rates and computational scalability. AMS compares favorably with advanced Algebraic MultiGrid (AMG) solvers for highly detailed three-dimensional heterogeneous models. Moreover, AMS is expected to be especially beneficial in solving time-dependent problems of coupled multiphase flow and transport in large-scale subsurface formations.

  10. Application of coupled codes for safety analysis and licensing issues

    SciTech Connect (OSTI)

    Langenbuch, S.; Velkov, K.

    2006-07-01

    An overview is given on the development and the advantages of coupled codes which integrate 3D neutron kinetics into thermal-hydraulic system codes. The work performed within GRS by coupling the thermal-hydraulic system code ATHLET and the 3D neutronics code QUABOX/CUBBOX is described as an example. The application of the coupled codes as best-estimate simulation tools for safety analysis is discussed. Some examples from German licensing practices are given which demonstrate how the improved analytical methods of coupled codes have contributed to solve licensing issues related to optimized and more economical use of fuel. (authors)

  11. Modeling shear failure and permeability enhancement due to coupled...

    Office of Scientific and Technical Information (OSTI)

    model the coupled thermal-hydrologic-mechanical (THM) processes in fractured geological formations is critical in effective EGS reservoir development and management strategies. ...

  12. Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of (In, Ce)-based Skutterudite Materials for Automotive Energy Recovery Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite Materials for Automotive...

  13. Microscale Electrode Design Using Coupled Kinetic, Thermal and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Coupled Kinetic, Thermal, and Mechanical Modeling of FIB Micro-machined...

  14. Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications track 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review Coupled Thermal-Hydrological-Mechanical-Chemical Model and Experiments for...

  15. Microscale Electrode Design Using Coupled Kinetic, Thermal and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer Coupled Kinetic, Thermal, and Mechanical Modeling of FIB ...

  16. optimal initial conditions for coupling ice sheet models to earth...

    Office of Scientific and Technical Information (OSTI)

    optimal initial conditions for coupling ice sheet models to earth system models Perego, Mauro Sandia National Laboratories Sandia National Laboratories; Price, Stephen F. Dr...

  17. Mechanical coupling for a rotor shaft assembly of dissimilar materials

    DOE Patents [OSTI]

    Shi, Jun (Glastonbury, CT); Bombara, David (New Hartford, CT); Green, Kevin E. (Broad Brook, CT); Bird, Connic (Rocky Hill, CT); Holowczak, John (South Windsor, CT)

    2009-05-05

    A mechanical coupling for coupling a ceramic disc member to a metallic shaft includes a first wedge clamp and a second wedge clamp. A fastener engages a threaded end of a tie-bolt to sandwich the ceramic disc between the wedge clamps. An axial spring is positioned between the fastener and the second wedge clamp to apply an axial preload along the longitudinal axis. Another coupling utilizes a rotor shaft end of a metallic rotor shaft as one wedge clamp. Still another coupling includes a solid ceramic rotor disc with a multiple of tie-bolts radially displaced from the longitudinal axis to exert the preload on the solid ceramic rotor disc.

  18. Spectral function of a fermion coupled with a massive vector...

    Office of Scientific and Technical Information (OSTI)

    temperature in a gauge invariant formalism Citation Details In-Document Search Title: Spectral function of a fermion coupled with a massive vector boson at finite temperature in ...

  19. ENERGY PARTITIONING, ENERGY COUPLING (EPEC) EXPERIMENTS AT THE...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: ENERGY PARTITIONING, ENERGY COUPLING (EPEC) EXPERIMENTS AT THE NATIONAL IGNITION FACILITY Citation Details In-Document Search Title: ENERGY PARTITIONING, ENERGY...

  20. Prospects for Higgs coupling measurements in SUSY with radiatively...

    Office of Scientific and Technical Information (OSTI)

    Title: Prospects for Higgs coupling measurements in SUSY with radiatively-driven naturalness Authors: Bae, Kyu Jung ; Baer, Howard ; Nagata, Natsumi ; Serce, Hasan Publication ...

  1. Simultaneous linear optics and coupling correction for storage...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data Citation Details In-Document Search Title:...

  2. Dynamic simulation of kinematic Stirling engines: Coupled and...

    Office of Scientific and Technical Information (OSTI)

    Dynamic simulation of kinematic Stirling engines: Coupled and decoupled analysis Citation ... Subject: 42 ENGINEERING NOT INCLUDED IN OTHER CATEGORIES; STIRLING ENGINES; MATHEMATICAL ...

  3. ARPES Provides Direct Evidence of Spin-Wave Coupling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    behavior of its conduction electrons. Conventional band theory accounts for the interaction of the electrons with the static ion lattice. However, coupling to further...

  4. Coupling through tortuous path narrow slot apertures into complex...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 IEEE TRANSACTIONS ON ANTENNAS AND PROPOGATION, VOL. 48, NO. 3, MARCH 2000 Coupling Through Tortuous Path Narrow Slot Apertures into Complex Cavities Russell P. Jedlicka, Senior...

  5. ARM - Field Campaign - Enhanced Soundings for Local Coupling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsEnhanced Soundings for Local Coupling Studies Campaign Links Science Plan ARM Data Discovery Browse Data Related Campaigns Scintillometry and Soil Moisture Remote...

  6. AC Loss Analysis on the Superconducting Coupling Magnet in MICE

    SciTech Connect (OSTI)

    Wu, Hong; Wang, Li; Green, Michael; Li, LanKai; Xu, FengYu; Liu, XiaoKun; Jia, LinXinag

    2008-07-08

    A pair of coupling solenoids is used in MICE experiment to generate magnetic field which keeps the muons within the iris of thin RF cavity windows. The coupling solenoids have a 1.5-meter inner diameter and will produce 7.4 T peak magnetic field. Three types of AC losses in coupling solenoid are discussed. The affect of AC losses on the temperature distribution within the cold mass during charging and rapid discharging process is analyzed also. The analysis result will be further confirmed by the experiment of the prototype solenoid for coupling solenoid, which will be designed, fabricated and tested at ICST.

  7. John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines and Switched Reluctance Motors to Replace Permanent Magnets in Electric Vehicles John Hsu, Oak Ridge National...

  8. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current Source Inverters for HEVs and FCVs Vehicle Technologies Office Merit Review 2014: Wireless Charging Integration of Novel Flux Coupling Motor and Current Source Inverter...

  9. Comparison of LHC and ILC Capabilities for Higgs Boson Coupling...

    Office of Scientific and Technical Information (OSTI)

    I estimate the accuracies on Higgs boson coupling constants that experiments at the Large Hadron Collider and the International Linear Collider are capable of reaching over the ...

  10. Translation-Coupling Cassette for Quickly and Reliably Monitoring...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Translation-Coupling Cassette for Quickly and Reliably Monitoring Protein Translation in Host Cells Inventors: Brian Pfleger, Daniel Mendez Perez Great Lakes Bioenergy Research...

  11. Top Quark Anomalous Couplings at the International Linear Collider...

    Office of Scientific and Technical Information (OSTI)

    the tbar tZ and Wtbar b couplings. Authors: Devetak, Erik ; Nomerotski, Andrei ; Oxford U. ; Peskin, Michael ; SLAC Publication Date: 2011-08-15 OSTI Identifier: 1022544...

  12. Dynamics of dark energy with a coupling to dark matter

    SciTech Connect (OSTI)

    Boehmer, Christian G.; Caldera-Cabral, Gabriela; Maartens, Roy; Lazkoz, Ruth

    2008-07-15

    Dark energy and dark matter are the dominant sources in the evolution of the late universe. They are currently only indirectly detected via their gravitational effects, and there could be a coupling between them without violating observational constraints. We investigate the background dynamics when dark energy is modeled as exponential quintessence and is coupled to dark matter via simple models of energy exchange. We introduce a new form of dark sector coupling, which leads to a more complicated dynamical phase space and has a better physical motivation than previous mathematically similar couplings.

  13. Acoustically determined linear piezoelectric response of lithium niobate up to 1100?V

    SciTech Connect (OSTI)

    Patel, N.; Branch, D. W.; Cular, S.; Schamiloglu, E.

    2014-04-21

    We present a method to measure high voltages using the piezoelectric crystal lithium niobate without using voltage dividers. A 36 Y-X cut lithium niobate crystal was coupled to two acoustic transducers, where direct current voltages were applied from 1281100?V. The time-of-flight through the crystal was determined to be linearly dependent on the applied voltage. A model was developed to predict the time-delay in response to the applied voltage. The results show a sensitivity of 17 fs/V with a measurement error of 1 fs/V was achievable using this method. The sensitivity of this method can be increased by measuring the acoustic wave after multiple passes through the crystal. This method has many advantages over traditional techniques such as: favorable scalability for larger voltages, ease of use, cost effectiveness, and compactness.

  14. Mesh infrastructure for coupled multiprocess geophysical simulations

    SciTech Connect (OSTI)

    Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; Berndt, Markus; Lipnikov, Konstantin; Coon, Ethan; Moulton, John D.; Painter, Scott L.

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about the mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.

  15. Three-dimensional charge coupled device

    DOE Patents [OSTI]

    Conder, Alan D.; Young, Bruce K. F.

    1999-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  16. Process for fabricating a charge coupled device

    DOE Patents [OSTI]

    Conder, Alan D.; Young, Bruce K. F.

    2002-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  17. Mesh infrastructure for coupled multiprocess geophysical simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Garimella, Rao V.; Perkins, William A.; Buksas, Mike W.; Berndt, Markus; Lipnikov, Konstantin; Coon, Ethan; Moulton, John D.; Painter, Scott L.

    2014-01-01

    We have developed a sophisticated mesh infrastructure capability to support large scale multiphysics simulations such as subsurface flow and reactive contaminant transport at storage sites as well as the analysis of the effects of a warming climate on the terrestrial arctic. These simulations involve a wide range of coupled processes including overland flow, subsurface flow, freezing and thawing of ice rich soil, accumulation, redistribution and melting of snow, biogeochemical processes involving plant matter and finally, microtopography evolution due to melting and degradation of ice wedges below the surface. In addition to supporting the usual topological and geometric queries about themore » mesh, the mesh infrastructure adds capabilities such as identifying columnar structures in the mesh, enabling deforming of the mesh subject to constraints and enabling the simultaneous use of meshes of different dimensionality for subsurface and surface processes. The generic mesh interface is capable of using three different open source mesh frameworks (MSTK, MOAB and STKmesh) under the hood allowing the developers to directly compare them and choose one that is best suited for the application's needs. We demonstrate the results of some simulations using these capabilities as well as present a comparison of the performance of the different mesh frameworks.« less

  18. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic {beta}-cell mass

    SciTech Connect (OSTI)

    Cline, Gary W.; Zhao, Xiaojian; Jakowski, Amy B.; Soeller, Walter C.; Treadway, Judith L.

    2011-09-02

    Highlights: {yields} We screened G-protein coupled receptors for imaging pancreatic. {yields} Database mining and immunohistochemistry identified GPCRs enriched in {beta}-cells. {yields} In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. {yields} GPCR candidates for imaging of {beta}-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic {beta}-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity to islet {beta}-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 {approx} GLP-1R > mGluR5. Favorable islet selectivity and biodistribution characteristics suggest several GPCRs as potential targets for PET imaging of pancreatic BCM.

  19. Exploring electronic structure through high-resolution hard x...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Modern high brilliance beamlines coupled with recent advances in hard-x-ray optics are establishing high-resolution hard x-ray spectroscopies as a powerful analytical...

  20. High antiferromagnetic transition temperature of a honeycomb compound SrRu2O6

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tian, Wei; Svoboda, Chris; Ochi, M.; Matsuda, M.; Cao, Huibo; Cheng, J. -G.; Sales, B. C.; Mandrus, D.; Arita, R.; Trivedi, Nandini; et al

    2015-09-14

    We study the high-temperature magnetic order in a quasi-two-dimensional honeycomb compound SrRu2O6 by measuring magnetization and neutron powder diffraction with both polarized and unpolarized neutrons. SrRu2O6 crystallizes into the hexagonal lead antimonate (PbSb2O6, space group P31m) structure with layers of edge-sharing RuO6 octahedra separated by Sr2+ ions. SrRu2O6 is found to order at TN = 565 K with Ru moments coupled antiferromagnetically both in plane and out of plane. The magnetic moment is 1.30(2) μB/Ru at room temperature and is along the crystallographic c axis in the G-type magnetic structure. We perform density functional calculations with constrained random-phase approximation (RPA)more » to obtain the electronic structure and effective intra- and interorbital interaction parameters. The projected density of states shows strong hybridization between Ru 4d and O 2p. By downfolding to the target t2g bands we extract the effective magnetic Hamiltonian and perform Monte Carlo simulations to determine the transition temperature as a function of interand intraplane couplings. We find a weak interplane coupling, 3% of the strong intraplane coupling, permits three-dimensional magnetic order at the observed TN .« less

  1. CX-007565: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Mooring-Anchor Program in Public Domain for Coupling with Floater Program for Floating Offshore Wind Turbines CX(s) Applied: A9 Date: 01/11/2012 Location(s): Texas Offices(s): Golden Field Office

  2. CX-007564: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Mooring-Anchor Program in Public Domain for Coupling with Floater Program for Floating Offshore Wind Turbines CX(s) Applied: A9 Date: 01/11/2012 Location(s): Texas Offices(s): Golden Field Office

  3. CX-012538: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    A Coupled Geomechanical, Acoustic, Transport and Sorption Study of Caprick Integrity in CO2 Seq. CX(s) Applied: A9, B3.6Date: 41836 Location(s): New MexicoOffices(s): National Energy Technology Laboratory

  4. CX-007160: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pinnacle Peak Substation Coupling Capacitor Voltage Transformer InstallationCX(s) Applied: B4.6Date: 05/10/2010Location(s): Maricopa County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  5. CX-012537: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A Coupled Geomechanical, Acoustic, Transport and Sorption Study of Caprick Integrity in CO2 Seq. CX(s) Applied: A1, A9Date: 41836 Location(s): ColoradoOffices(s): National Energy Technology Laboratory

  6. CX-011583: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Improving the Understanding of the Coupled Thermal-Mechanical-Hydrologic Behavior of Consolidating Granular Salt CX(s) Applied: B3.6 Date: 11/07/2013 Location(s): New Mexico Offices(s): Idaho Operations Office

  7. CX-012271: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Quantitative Characterization of Impacts of Couple Geomechanics and Flow - Lab Experiments/Modeling CX(s) Applied: B3.6 Date: 06/25/2014 Location(s): California Offices(s): National Energy Technology Laboratory

  8. CX-012270: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Quantitative Characterization of Impacts of Couple Geomechanics and Flow - Lab Experiments/Modeling CX(s) Applied: B3.6 Date: 06/25/2014 Location(s): Colorado Offices(s): National Energy Technology Laboratory

  9. CX-012611: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Operation and Maintenance of Inductively Coupled Plasma Mass Spectrometry Method in 773-A, C150 CX(s) Applied: B3.6Date: 41807 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  10. CX-008637: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Operation and Maintenance of Inductively Coupled Plasma Mass Spectrometry Method in 773, B142 CX(s) Applied: B3.6 Date: 05/29/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  11. CX-011334: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Operation and Maintenance of Inductively Coupled Plasma Mass Spectrometry Method in 773, B142 CX(s) Applied: B3.6 Date: 09/23/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  12. CX-012714: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Inductively Coupled Plasma Optical Emission Spectrometer for Nuclear Energy-Related Teaching and Research - Washington State University CX(s) Applied: B1.31Date: 41849 Location(s): WashingtonOffices(s): Nuclear Energy

  13. CX-012709: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Inductively Coupled Plasma Optical Emission Spectrometer for Nuclear Energy-Related Teaching and Research Ohio State University CX(s) Applied: B1.31Date: 41858 Location(s): OhioOffices(s): Nuclear Energy

  14. Categorical Exclusion Determinations: Environmental Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consolidated Business Service Center Categorical Exclusion Determinations: Environmental Management Consolidated Business Service Center Categorical Exclusion Determinations issued...

  15. Accurate gradient approximation for complex interface problems in 3D by an improved coupling interface method

    SciTech Connect (OSTI)

    Shu, Yu-Chen, E-mail: ycshu@mail.ncku.edu.tw [Department of Mathematics, National Cheng Kung University, Tainan 701, Taiwan (China); Mathematics Division, National Center for Theoretical Sciences (South), Tainan 701, Taiwan (China); Chern, I-Liang, E-mail: chern@math.ntu.edu.tw [Department of Applied Mathematics, National Chiao Tung University, Hsin Chu 300, Taiwan (China); Department of Mathematics, National Taiwan University, Taipei 106, Taiwan (China); Mathematics Division, National Center for Theoretical Sciences (Taipei Office), Taipei 106, Taiwan (China); Chang, Chien C., E-mail: mechang@iam.ntu.edu.tw [Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan (China); Department of Mathematics, National Taiwan University, Taipei 106, Taiwan (China)

    2014-10-15

    Most elliptic interface solvers become complicated for complex interface problems at those exceptional points where there are not enough neighboring interior points for high order interpolation. Such complication increases especially in three dimensions. Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify these exceptional points and propose two recipes to maintain order of accuracy there, aiming at improving the previous coupling interface method [26]. Yet the idea is also applicable to other interface solvers. The main idea is to have at least first order approximations for second order derivatives at those exceptional points. Recipe 1 is to use the finite difference approximation for the second order derivatives at a nearby interior grid point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a ghost state so that a second-order method can be applied. This ghost state is a smooth extension of the solution at the exceptional point from the other side of the interface. The original state is recovered by a post-processing using nearby states and jump conditions. The choice of recipes is determined by a classification scheme of the exceptional points. The method renders the solution and its gradient uniformly second-order accurate in the entire computed domain. Numerical examples are provided to illustrate the second order accuracy of the presently proposed method in approximating the gradients of the original states for some complex interfaces which we had tested previous in two and three dimensions, and a real molecule ( (1D63)) which is double-helix shape and composed of hundreds of atoms.

  16. Signal and noise transfer properties of CMOS based active pixel flat panel imager coupled to structured CsI:Tl

    SciTech Connect (OSTI)

    Arvanitis, C. D.; Bohndiek, S. E.; Blakesley, J.; Olivo, A.; Speller, R. D.

    2009-01-15

    Complementary metal-oxide-semiconductors (CMOS) active pixel sensors can be optically coupled to CsI:Tl phosphors forming a indirect active pixel flat panel imager (APFPI) for high performance medical imaging. The aim of this work is to determine the x-ray imaging capabilities of CMOS-based APFPI and study the signal and noise transfer properties of CsI:Tl phosphors. Three different CsI:Tl phosphors from two different vendors have been used to produce three system configurations. The performance of each system configuration has been studied in terms of the modulation transfer function (MTF), noise power spectra, and detective quantum efficiency (DQE) in the mammographic energy range. A simple method to determine quantum limited systems in this energy range is also presented. In addition, with aid of monochromatic synchrotron radiation, the effect of iodine characteristic x-rays of the CsI:Tl on the MTF has been determined. A Monte Carlo simulation of the signal transfer properties of the imager is also presented in order to study the stages that degrade the spatial resolution of our current system. The effect of using substrate patterning during the growth of CsI:Tl columnar structure was also studied, along with the effect of CsI:Tl fixed pattern noise due to local variations in the scintillation light. CsI:Tl fixed pattern noise appears to limit the performance of our current system configurations. All the system configurations are quantum limited at 0.23 {mu}C/kg with two of them having DQE (0) equal to 0.57. Active pixel flat panel imagers are shown to be digital x-ray imagers with almost constant DQE throughout a significant part of their dynamic range and in particular at very low exposures.

  17. CRDIAC: Coupled Reactor Depletion Instrument with Automated Control

    SciTech Connect (OSTI)

    Steven K. Logan

    2012-08-01

    When modeling the behavior of a nuclear reactor over time, it is important to understand how the isotopes in the reactor will change, or transmute, over that time. This is especially important in the reactor fuel itself. Many nuclear physics modeling codes model how particles interact in the system, but do not model this over time. Thus, another code is used in conjunction with the nuclear physics code to accomplish this. In our code, Monte Carlo N-Particle (MCNP) codes and the Multi Reactor Transmutation Analysis Utility (MRTAU) were chosen as the codes to use. In this way, MCNP would produce the reaction rates in the different isotopes present and MRTAU would use cross sections generated from these reaction rates to determine how the mass of each isotope is lost or gained. Between these two codes, the information must be altered and edited for use. For this, a Python 2.7 script was developed to aid the user in getting the information in the correct forms. This newly developed methodology was called the Coupled Reactor Depletion Instrument with Automated Controls (CRDIAC). As is the case in any newly developed methodology for modeling of physical phenomena, CRDIAC needed to be verified against similar methodology and validated against data taken from an experiment, in our case AFIP-3. AFIP-3 was a reduced enrichment plate type fuel tested in the ATR. We verified our methodology against the MCNP Coupled with ORIGEN2 (MCWO) method and validated our work against the Post Irradiation Examination (PIE) data. When compared to MCWO, the difference in concentration of U-235 throughout Cycle 144A was about 1%. When compared to the PIE data, the average bias for end of life U-235 concentration was about 2%. These results from CRDIAC therefore agree with the MCWO and PIE data, validating and verifying CRDIAC. CRDIAC provides an alternative to using ORIGEN-based methodology, which is useful because CRDIAC's depletion code, MRTAU, uses every available isotope in its depletion, unlike ORIGEN, which only depletes the isotopes specified by the user. This means that depletions done by MRTAU more accurately reflect reality. MRTAU also allows the user to build new isotope data sets, which means any isotope with nuclear data could be depleted, something that would help predict the outcomes of nuclear reaction testing in materials other than fuel, like beryllium or gold.

  18. Higgs coupling constants as a probe of new physics

    SciTech Connect (OSTI)

    Kanemura, Shinya; Okada, Yasuhiro; Senaha, Eibun; Yuan, C.-P.

    2004-12-01

    We study new physics effects on the couplings of weak gauge bosons with the lightest CP-even Higgs boson (h), hZZ, and the trilinear coupling of the lightest Higgs boson, hhh, at the one-loop order, as predicted by the two Higgs doublet model. Those renormalized coupling constants can deviate from the standard model (SM) predictions due to two distinct origins: the tree level mixing effect of Higgs bosons and the quantum effect of additional particles in loop diagrams. The latter can be enhanced in the renormalized hhh coupling constant when the additional particles show the nondecoupling property. Therefore, even in the case where the hZZ coupling is close to the SM value, deviation in the hhh coupling from the SM value can become as large as plus 100%, while that in the hZZ coupling is at most minus 1% level. Such large quantum effect on the Higgs trilinear coupling is distinguishable from the tree level mixing effect, and is expected to be detectable at a future linear collider.

  19. Mesoscale Modeling of Fuel Swelling and Restructuring: Coupling

    Office of Scientific and Technical Information (OSTI)

    Microstructure evolution and Mechanical Localization. (Conference) | SciTech Connect Conference: Mesoscale Modeling of Fuel Swelling and Restructuring: Coupling Microstructure evolution and Mechanical Localization. Citation Details In-Document Search Title: Mesoscale Modeling of Fuel Swelling and Restructuring: Coupling Microstructure evolution and Mechanical Localization. Abstract not provided. Authors: Dingreville, Remi Philippe Michel ; Robbins, Joshua ; Bartel, Timothy James Publication

  20. Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular

    Office of Environmental Management (EM)

    Salt Consolidation, Constitutive Model and Micromechanics | Department of Energy Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics The report addresses granular salt reconsolidation from three vantage points: laboratory testing, modeling, and petrofabrics. The experimental data 1)

  1. A Novel Coupled Resonator Photonic Crystal Design in Lithium Niobate for Electrooptic Applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ozturk, Birol; Yavuzcetin, Ozgur; Sridhar, Srinivas

    2015-01-01

    High-aspect-ratio photonic crystal air-hole fabrication on bulk Lithium Niobate (LN) substrates is extremely difficult due to its inherent resistance to etching, resulting in conical structures and high insertion losses. Here, we propose a novel coupled resonator photonic crystal (CRPC) design, combining a coupled resonator approach with that of Bragg gratings. CRPC design parameters were optimized by analytical calculations and FDTD simulations. CRPC structures with optimized parameters were fabricated and electrooptically tested on bulk LN annealed proton exchange waveguides. Low insertion loss and large electrooptic effect were observed with the fabricated devices, making the CRPC design a promising structure for electroopticmore » device applications.« less

  2. Coupled Neutronics Thermal-Hydraulic Solution of a Full-Core PWR Using VERA-CS

    SciTech Connect (OSTI)

    Clarno, Kevin T; Palmtag, Scott; Davidson, Gregory G; Salko, Robert K; Evans, Thomas M; Turner, John A; Belcourt, Kenneth; Hooper, Russell; Schmidt, Rodney

    2014-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a core simulator called VERA-CS to model operating PWR reactors with high resolution. This paper describes how the development of VERA-CS is being driven by a set of progression benchmark problems that specify the delivery of useful capability in discrete steps. As part of this development, this paper will describe the current capability of VERA-CS to perform a multiphysics simulation of an operating PWR at Hot Full Power (HFP) conditions using a set of existing computer codes coupled together in a novel method. Results for several single-assembly cases are shown that demonstrate coupling for different boron concentrations and power levels. Finally, high-resolution results are shown for a full-core PWR reactor modeled in quarter-symmetry.

  3. Numerical Verification of the Power Transfer and Wakefield Coupling in the Clic Two-Beam Accelerator

    SciTech Connect (OSTI)

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

    2011-08-19

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator (TBA) concept envisions complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC's parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.

  4. Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center

    SciTech Connect (OSTI)

    Liebermeister, Lars Petersen, Fabian; Münchow, Asmus v.; Burchardt, Daniel; Hermelbracht, Juliane; Tashima, Toshiyuki; Schell, Andreas W.; Benson, Oliver; Meinhardt, Thomas; Krueger, Anke; Stiebeiner, Ariane; Rauschenbeutel, Arno; Weinfurter, Harald; Weber, Markus

    2014-01-20

    A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency of (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.

  5. Award Fee Determination Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 CH2M Hill Plateau Remediation Company Contract Number: DE-AC06-08RL14788 Final Fee Determination for Base funded Performance Measures Basis of Evaluation: Completion of Performance Measures contained in Section J, Attachment J.4, Performance Evaluation and Measurement Plan, according to the identified completion criteria. Evaluation Results: FY 2012 Base Period Fee Available Fee allocated to FY 2012* Performance Measures $10,399,033.60 Incremental Fee $4,490,000.00 Provisional Fee

  6. Award Fee Determination Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 CH2M Hill Plateau Remediation Company Contract Number: DE-AC06-08RL14788 Final Fee Determination for Base funded and American Recovery and Reinvestment Act (Recovery) funded Performance Measures Basis of Evaluation: Completion of Performance Measures contained in Section J, AttachmentJ.4, Performance Evaluation and Measurement Plan, according to the identified completion criteria. Evaluation Results: Fiscal Year 2011 (Oct 1, 2010 - Sept 30, 2011) Base Funded Fee Recovery Funded Fee Available

  7. Interim Action Determination

    Office of Environmental Management (EM)

    Interim Action Determination Processing of Plutonium Materials from the DOE Standard 3013 Surveillance Program in H-Canyon at the Savannah River Site The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS, DOE/EIS-0283-S2). DOE is evaluating alternatives for disposition of non-pit plutonium that is surplus to the national security needs of the United States. Although the Deputy Secretary of Energy approved Critical

  8. Non-minimal derivative couplings of the composite metric

    SciTech Connect (OSTI)

    Heisenberg, Lavinia

    2015-11-04

    In the context of massive gravity, bi-gravity and multi-gravity non-minimal matter couplings via a specific composite effective metric were investigated recently. Even if these couplings generically reintroduce the Boulware-Deser ghost, this composite metric is unique in the sense that the ghost reemerges only beyond the decoupling limit and the matter quantum loop corrections do not detune the potential interactions. We consider non-minimal derivative couplings of the composite metric to matter fields for a specific subclass of Horndeski scalar-tensor interactions. We first explore these couplings in the mini-superspace and investigate in which scenario the ghost remains absent. We further study these non-minimal derivative couplings in the decoupling-limit of the theory and show that the equation of motion for the helicity-0 mode remains second order in derivatives. Finally, we discuss preliminary implications for cosmology.

  9. Reactor physics simulations with coupled Monte Carlo calculation and computational fluid dynamics.

    SciTech Connect (OSTI)

    Seker, V.; Thomas, J. W.; Downar, T. J.; Purdue Univ.

    2007-01-01

    A computational code system based on coupling the Monte Carlo code MCNP5 and the Computational Fluid Dynamics (CFD) code STAR-CD was developed as an audit tool for lower order nuclear reactor calculations. This paper presents the methodology of the developed computer program 'McSTAR'. McSTAR is written in FORTRAN90 programming language and couples MCNP5 and the commercial CFD code STAR-CD. MCNP uses a continuous energy cross section library produced by the NJOY code system from the raw ENDF/B data. A major part of the work was to develop and implement methods to update the cross section library with the temperature distribution calculated by STARCD for every region. Three different methods were investigated and implemented in McSTAR. The user subroutines in STAR-CD are modified to read the power density data and assign them to the appropriate variables in the program and to write an output data file containing the temperature, density and indexing information to perform the mapping between MCNP and STAR-CD cells. Preliminary testing of the code was performed using a 3x3 PWR pin-cell problem. The preliminary results are compared with those obtained from a STAR-CD coupled calculation with the deterministic transport code DeCART. Good agreement in the k{sub eff} and the power profile was observed. Increased computational capabilities and improvements in computational methods have accelerated interest in high fidelity modeling of nuclear reactor cores during the last several years. High-fidelity has been achieved by utilizing full core neutron transport solutions for the neutronics calculation and computational fluid dynamics solutions for the thermal-hydraulics calculation. Previous researchers have reported the coupling of 3D deterministic neutron transport method to CFD and their application to practical reactor analysis problems. One of the principal motivations of the work here was to utilize Monte Carlo methods to validate the coupled deterministic neutron transport and CFD solutions. Previous researchers have successfully performed Monte Carlo calculations with limited thermal feedback. In fact, much of the validation of the deterministic neutronics transport code DeCART in was performed using the Monte Carlo code McCARD which employs a limited thermal feedback model. However, for a broader range of temperature/fluid applications it was desirable to couple Monte Carlo to a more sophisticated temperature fluid solution such as CFD. This paper focuses on the methods used to couple Monte Carlo to CFD and their application to a series of simple test problems.

  10. Design and Construction of Test Coils for the MICE Coupling Solenoid Magnet

    SciTech Connect (OSTI)

    Wang, Li; Pan, Heng; Xu, F.Y.; Liu, XioaKun; Chen, AnBin; Li, LanKai; Gou, XingLong; Wu, Hong; Green, Michael; Li, Darun; Strauss, Bruce

    2008-08-08

    The superconducting coupling solenoid to be applied in the Muon Ionization Cooling Experiment (MICE) is made from copper matrix Nb-Ti conductors with inner radius of 750 mm, length of 285 mm and thickness of 102.5 mm at room temperature. The magnetic field up to 2.6 T at the magnet centerline is to keep the muons within the MICE RF cavities. Its self inductance is around 592 H and its magnet stored energy is about 13 MJ at a full current of 210 A for the worst operation case of the MICE channel. The stress induced inside the coil during cool down and charging is relatively high. Two test coils are to build and test in order to validate the design method and develop the fabrication technique required for the coupling coil winding, one is 350 mm inner diameter and full length same as the coupling coil, and the other is one-quarter length and 1.5 m diameter. The 1.5 m diameter coil will be charged to strain conditions that are greater than would be encountered in the coupling coil. This paper presents detailed design of the test coils as well as developed winding skills. The analyses on stress in coil assemblies, AC loss, and quench process are carried out.

  11. Coaxial Coupling Scheme for TESLA/ILC-type Cavities

    SciTech Connect (OSTI)

    J.K. Sekutowicz, P. Kneisel

    2010-05-01

    This paper reports about our efforts to develop a flangeable coaxial coupler for both HOM and fundamental coupling for 9-cell TESLA/ILC-type cavities. The cavities were designed in early 90s for pulsed operation with a low duty factor, less than 1 %. The proposed design of the coupler has been done in a way, that the magnetic flux B at the flange connection is minimized and only a field of <5 mT would be present at the accelerating field Eacc of ~ 36 MV/m (B =150 mT in the cavity). Even though we achieved reasonably high Q-values at low field, the cavity/coupler combination was limited in the cw mode to only ~ 7 MV/m, where a thermally initiated degradation occurred. We have improved the cooling conditions by initially drilling radial channels every 30 degrees, then every 15 degrees into the shorting plate. The modified prototype performed well up to 9 MV/m in cw mode. This paper reports about our experiences with the further modified coaxial coupler and about test results in cw and low duty cycle pulsed mode, similar to the TESLA/ILC operation conditions.

  12. X-ray compass for determining device orientation

    DOE Patents [OSTI]

    Da Silva, L.B.; Matthews, D.L.; Fitch, J.P.; Everett, M.J.; Colston, B.W.; Stone, G.F.

    1999-06-15

    An apparatus and method for determining the orientation of a device with respect to an x-ray source are disclosed. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source. 25 figs.

  13. X-ray compass for determining device orientation

    DOE Patents [OSTI]

    Da Silva, Luiz B. (Danville, CA); Matthews, Dennis L. (Moss Beach, CA); Fitch, Joseph P. (Livermore, CA); Everett, Matthew J. (Pleasanton, CA); Colston, Billy W. (Livermore, CA); Stone, Gary F. (Livermore, CA)

    1999-01-01

    An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.

  14. A scenario for inflationary magnetogenesis without strong coupling problem

    SciTech Connect (OSTI)

    Tasinato, Gianmassimo

    2015-03-23

    Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.

  15. Initial Coupling of the RELAP-7 and PRONGHORN Applications

    SciTech Connect (OSTI)

    J. Ortensi; D. Andrs; A.A. Bingham; R.C. Martineau; J.W. Peterson

    2012-10-01

    Modern nuclear reactor safety codes require the ability to solve detailed coupled neutronic- thermal fluids problems. For larger cores, this implies fully coupled higher dimensionality spatial dynamics with appropriate feedback models that can provide enough resolution to accurately compute core heat generation and removal during steady and unsteady conditions. The reactor analysis code PRONGHORN is being coupled to RELAP-7 as a first step to extend RELAPs current capabilities. This report details the mathematical models, the type of coupling, and the testing results from the integrated system. RELAP-7 is a MOOSE-based application that solves the continuity, momentum, and energy equations in 1-D for a compressible fluid. The pipe and joint capabilities enable it to model parts of the power conversion unit. The PRONGHORN application, also developed on the MOOSE infrastructure, solves the coupled equations that define the neutron diffusion, fluid flow, and heat transfer in a full core model. The two systems are loosely coupled to simplify the transition towards a more complex infrastructure. The integration is tested on a simplified version of the OECD/NEA MHTGR-350 Coupled Neutronics-Thermal Fluids benchmark model.

  16. Coupled Monte Carlo neutronics and thermal hydraulics for power reactors

    SciTech Connect (OSTI)

    Bernnat, W.; Buck, M.; Mattes, M.; Zwermann, W.; Pasichnyk, I.; Velkov, K.

    2012-07-01

    The availability of high performance computing resources enables more and more the use of detailed Monte Carlo models even for full core power reactors. The detailed structure of the core can be described by lattices, modeled by so-called repeated structures e.g. in Monte Carlo codes such as MCNP5 or MCNPX. For cores with mainly uniform material compositions, fuel and moderator temperatures, there is no problem in constructing core models. However, when the material composition and the temperatures vary strongly a huge number of different material cells must be described which complicate the input and in many cases exceed code or memory limits. The second problem arises with the preparation of corresponding temperature dependent cross sections and thermal scattering laws. Only if these problems can be solved, a realistic coupling of Monte Carlo neutronics with an appropriate thermal-hydraulics model is possible. In this paper a method for the treatment of detailed material and temperature distributions in MCNP5 is described based on user-specified internal functions which assign distinct elements of the core cells to material specifications (e.g. water density) and temperatures from a thermal-hydraulics code. The core grid itself can be described with a uniform material specification. The temperature dependency of cross sections and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. Applications will be shown for the stationary part of the Purdue PWR benchmark using ATHLET for thermal- hydraulics and for a generic Modular High Temperature reactor using THERMIX for thermal- hydraulics. (authors)

  17. Fully Coupled Simulation of Lithium Ion Battery Cell Performance

    SciTech Connect (OSTI)

    Trembacki, Bradley L.; Murthy, Jayathi Y.; Roberts, Scott Alan

    2015-09-01

    Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulated and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.

  18. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operationAn alternate approach

    SciTech Connect (OSTI)

    Sudhir, Dass; Bandyopadhyay, M. Chakraborty, A.; Kraus, W.; Gahlaut, A.; Bansal, G.

    2014-01-15

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (?100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.

  19. Coupled ππ, KK¯ scattering in P-wave and the ρ resonance from lattice QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wilson, David J.; Briceño, Raúl A.; Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.

    2015-11-02

    In this study, we determine elastic and coupled-channel amplitudes for isospin-1 meson-meson scattering inmore » $P$-wave, by calculating correlation functions using lattice QCD with light quark masses such that $$m_\\pi = 236$$ MeV in a cubic volume of $$\\sim (4 \\,\\mathrm{fm})^3$$. Variational analyses of large matrices of correlation functions computed using operator constructions resembling $$\\pi\\pi$$, $$K\\overline{K}$$ and $$q\\bar{q}$$, in several moving frames and several lattice irreducible representations, leads to discrete energy spectra from which scattering amplitudes are extracted. In the elastic $$\\pi\\pi$$ scattering region we obtain a detailed energy-dependence for the phase-shift, corresponding to a $$\\rho$$ resonance, and we extend the analysis into the coupled-channel $$K\\overline{K}$$ region for the first time, finding a small coupling between the channels.« less

  20. Generation of even harmonics in coupled quantum dots

    SciTech Connect (OSTI)

    Guo Shifang; Duan Suqing; Yang Ning; Chu Weidong; Zhang Wei

    2011-07-15

    Using the spatial-temporal symmetry principle we developed recently, we propose an effective scheme for even-harmonics generation in coupled quantum dots. The relative intensity of odd and even harmonic components in the emission spectrum can be controlled by tuning the dipole couplings among the dots, which can be realized in experiments by careful design of the nanostructures. In particular, pure 2nth harmonics and (2n+1)th harmonics (where n is an integer) can be generated simultaneously with polarizations in two mutual perpendicular directions in our systems. An experimental design of the coupled dots system is presented.

  1. ARM - Field Campaign - Pajarito Aerosol Coupling to Ecosystems PACE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsPajarito Aerosol Coupling to Ecosystems PACE ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Pajarito Aerosol Coupling to Ecosystems PACE 2011.12.16 - 2012.04.29 Lead Scientist : Manvendra Dubey For data sets, see below. Abstract The primary goal of the Pajarito Aerosol Couplings to Ecosystems (PACE) IOP is to demonstrate routine MAOS field operations and finesse instrumental and operational

  2. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect (OSTI)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  3. Couplings between changes in the climate system and biogeochemistry

    SciTech Connect (OSTI)

    Menon, Surabi; Denman, Kenneth L.; Brasseur , Guy; Chidthaisong, Amnat; Ciais, Philippe; Cox, Peter M.; Dickinson, Robert E.; Hauglustaine, Didier; Heinze, Christoph; Holland, Elisabeth; Jacob , Daniel; Lohmann, Ulrike; Ramachandran, Srikanthan; Leite da Silva Dias, Pedro; Wofsy, Steven C.; Zhang, Xiaoye

    2007-10-01

    The Earth's climate is determined by a number of complex connected physical, chemical and biological processes occurring in the atmosphere, land and ocean. The radiative properties of the atmosphere, a major controlling factor of the Earth's climate, are strongly affected by the biophysical state of the Earth's surface and by the atmospheric abundance of a variety of trace constituents. These constituents include long-lived greenhouse gases (LLGHGs) such as carbon dioxide (CO{sub 2}), methane (CH{sub 4}) and nitrous oxide (N{sub 2}O), as well as other radiatively active constituents such as ozone and different types of aerosol particles. The composition of the atmosphere is determined by processes such as natural and anthropogenic emissions of gases and aerosols, transport at a variety of scales, chemical and microphysical transformations, wet scavenging and surface uptake by the land and terrestrial ecosystems, and by the ocean and its ecosystems. These processes and, more generally the rates of biogeochemical cycling, are affected by climate change, and involve interactions between and within the different components of the Earth system. These interactions are generally nonlinear and may produce negative or positive feedbacks to the climate system. An important aspect of climate research is to identify potential feedbacks and assess if such feedbacks could produce large and undesired responses to perturbations resulting from human activities. Studies of past climate evolution on different time scales can elucidate mechanisms that could trigger nonlinear responses to external forcing. The purpose of this chapter is to identify the major biogeochemical feedbacks of significance to the climate system, and to assess current knowledge of their magnitudes and trends. Specifically, this chapter will examine the relationships between the physical climate system and the land surface, the carbon cycle, chemically reactive atmospheric gases and aerosol particles. It also presents the current state of knowledge on budgets of important trace gases. Large uncertainties remain in many issues discussed in this chapter, so that quantitative estimates of the importance of the coupling mechanisms discussed in the following sections are not always available. In addition, regional differences in the role of some cycles and the complex interactions between them limit our present ability to provide a simple quantitative description of the interactions between biogeochemical processes and climate change.

  4. Theoretical investigation of phase-controlled bias effect in capacitively coupled plasma discharges

    SciTech Connect (OSTI)

    Kwon, Deuk-Chul; Yoon, Jung-Sik [Convergence Plasma Research Center, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)

    2011-07-15

    We theoretically investigated the effect of phase difference between powered electrodes in capacitively coupled plasma (CCP) discharges. Previous experimental result has shown that the plasma potential could be controlled by using a phase-shift controller in CCP discharges. In this work, based on the previously developed radio frequency sheath models, we developed a circuit model to self-consistently determine the bias voltage from the plasma parameters. Results show that the present theoretical model explains the experimental results quite well and there is an optimum value of the phase difference for which the V{sub dc}/V{sub pp} ratio becomes a minimum.

  5. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    SciTech Connect (OSTI)

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  6. Pedestal Fueling Simulations with a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    SciTech Connect (OSTI)

    D.P. Stotler, C.S. Chang, S.H. Ku, J. Lang and G.Y. Park

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  7. The effect of interelement dipole coupling in patterned ultrathin single crystal Fe square arrays

    SciTech Connect (OSTI)

    Sun Li; Zhai Ya; Wong Pingkwanj; Zhang Wen; Xu Yongbing; Zou Xiao; Wu Jing; Luo Linqiang; Zhai Hongru

    2011-02-01

    The correlation between the magnetic properties and the interelement separation in patterned arrays of ultrathin single crystal Fe films of 12 monolayers (ML) grown on GaAs(100) has been studied. The critical condition to form single domain remanent states in the square elements was found to be 10 {mu}m in size and 20 {mu}m for the interelement separation. The coercivity was also found to increase with the increasing interelement separation in the patterned arrays. These results are attributed to the competition between the large in-plane uniaxial anisotropy, the demagnetizing field, and interelement dipole coupling as determined semiqualitatively by the ferromagnetic resonance measurements.

  8. Scalable parallel solution coupling for multi-physics reactor simulation.

    SciTech Connect (OSTI)

    Tautges, T. J.; Caceres, A.; Mathematics and Computer Science

    2009-01-01

    Reactor simulation depends on the coupled solution of various physics types, including neutronics, thermal/hydraulics, and structural mechanics. This paper describes the formulation and implementation of a parallel solution coupling capability being developed for reactor simulation. The coupling process consists of mesh and coupler initialization, point location, field interpolation, and field normalization. We report here our test of this capability on an example problem, namely, a reflector assembly from an advanced burner test reactor. Performance of this coupler in parallel is reasonable for the chosen problem size and range of processor counts. The runtime is dominated by startup costs, which amortize over the entire coupled simulation. Future efforts will include adding more sophisticated interpolation and normalization methods, to accommodate different numerical solvers used in various physics modules and to obtain better conservation properties for certain field types.

  9. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  10. Kondo effect in coupled quantum dots under magnetic fields

    SciTech Connect (OSTI)

    Aono, Tomosuke; Eto, Mikio

    2001-08-15

    The Kondo effect in coupled quantum dots is investigated theoretically under magnetic fields. We show that the magnetoconductance (MC) illustrates the peak structures of Kondo resonant spectra. When the dot-dot tunneling coupling V{sub C} is smaller than the dot-lead coupling {Delta} (level broadening), Kondo resonant levels appear at the Fermi level (E{sub F}). The Zeeman splitting of the levels weakens the Kondo effect, which results in a negative MC. When V{sub C} is larger than {Delta}, the Kondo resonances form bonding and antibonding levels, located below and above E{sub F}, respectively. We observe a positive MC since the Zeeman splitting increases the overlap between the levels at E{sub F}. In the presence of antiferromagnetic spin coupling between the dots, the sign of the MC can change as a function of the gate voltage.

  11. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, Jerome B. (Fredericksburg, VA); Boothe, Richard W. (Roanoke, VA); Konrad, Charles E. (Roanoke, VA)

    1995-01-01

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  12. Quantum transport, anomalous dephasing, and spin-orbit coupling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum transport, anomalous dephasing, and spin-orbit coupling in an open ballistic bismuth nanocavity Home Author: B. Hackens, J. P. Minet, S. Faniel, G. Farhi, C. Gustin, J. P....

  13. Method of processing materials using an inductively coupled plasma

    DOE Patents [OSTI]

    Hull, Donald E. (Los Alamos, NM); Bieniewski, Thomas M. (Los Alamos, NM)

    1990-01-01

    A method for making fine power using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The starting material used in the method is in solid form.

  14. Interfacial Electron-Phonon Coupling as the Cause of Enhanced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interfacial Electron-Phonon Coupling as the Cause of Enhanced Tc in Single-layer FeSe Films on SrTiO3 Friday, February 27, 2015 In the past several years, multiple studies have...

  15. Transverse coupling property of beam from ECR ion sources

    SciTech Connect (OSTI)

    Yang, Y.; Yuan, Y. J.; Sun, L. T.; Feng, Y. C.; Fang, X.; Cao, Y.; Lu, W.; Zhang, X. Z.; Zhao, H. W.

    2014-11-15

    Experimental evidence of the property of transverse coupling of beam from Electron Cyclotron Resonance (ECR) ion source is presented. It is especially of interest for an ECR ion source, where the cross section of extracted beam is not round along transport path due to the magnetic confinement configuration. When the ions are extracted and accelerated through the descending axial magnetic field at the extraction region, the horizontal and vertical phase space strongly coupled. In this study, the coupling configuration between the transverse phase spaces of the beam from ECR ion source is achieved by beam back-tracking simulation based on the measurements. The reasonability of this coupling configuration has been proven by a series of subsequent simulations.

  16. CASL - VERA-CS Coupled Multi-physics Capability demonstrated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VERA-CS Coupled Multi-physics Capability demonstrated in a Full Core Simulation In December, CASL reported on the latest results from its Watts Bar reactor progression problem...

  17. The Integrated Plasma Simulator: A Flexible Python Framework for Coupled Multiphysics Simulation

    SciTech Connect (OSTI)

    Foley, Samantha S [ORNL; Elwasif, Wael R [ORNL; Bernholdt, David E [ORNL

    2011-11-01

    High-fidelity coupled multiphysics simulations are an increasingly important aspect of computational science. In many domains, however, there has been very limited experience with simulations of this sort, therefore research in coupled multiphysics often requires computational frameworks with significant flexibility to respond to the changing directions of the physics and mathematics. This paper presents the Integrated Plasma Simulator (IPS), a framework designed for loosely coupled simulations of fusion plasmas. The IPS provides users with a simple component architecture into which a wide range of existing plasma physics codes can be inserted as components. Simulations can take advantage of multiple levels of parallelism supported in the IPS, and can be controlled by a high-level ``driver'' component, or by other coordination mechanisms, such as an asynchronous event service. We describe the requirements and design of the framework, and how they were implemented in the Python language. We also illustrate the flexibility of the framework by providing examples of different types of simulations that utilize various features of the IPS.

  18. Scalable Nonlinear Solvers for Fully Implicit Coupled Nuclear Fuel Modeling. Final Report

    SciTech Connect (OSTI)

    Cai, Xiao-Chuan; Keyes, David; Yang, Chao; Zheng, Xiang; Pernice, Michael

    2014-09-29

    The focus of the project is on the development and customization of some highly scalable domain decomposition based preconditioning techniques for the numerical solution of nonlinear, coupled systems of partial differential equations (PDEs) arising from nuclear fuel simulations. These high-order PDEs represent multiple interacting physical fields (for example, heat conduction, oxygen transport, solid deformation), each is modeled by a certain type of Cahn-Hilliard and/or Allen-Cahn equations. Most existing approaches involve a careful splitting of the fields and the use of field-by-field iterations to obtain a solution of the coupled problem. Such approaches have many advantages such as ease of implementation since only single field solvers are needed, but also exhibit disadvantages. For example, certain nonlinear interactions between the fields may not be fully captured, and for unsteady problems, stable time integration schemes are difficult to design. In addition, when implemented on large scale parallel computers, the sequential nature of the field-by-field iterations substantially reduces the parallel efficiency. To overcome the disadvantages, fully coupled approaches have been investigated in order to obtain full physics simulations.

  19. Resonances in coupled πK, ηK scattering from lattice QCD

    SciTech Connect (OSTI)

    Wilson, David J.; Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.

    2015-03-10

    Coupled-channel πK and ηK scattering amplitudes are determined by studying the finite-volume energy spectra obtained from dynamical lattice QCD calculations. Using a large basis of interpolating operators, including both those resembling a qq-bar construction and those resembling a pair of mesons with relative momentum, a reliable excited-state spectrum can be obtained. Working at mπ = 391 MeV, we find a gradual increase in the JP = 0+ πK phase-shift which may be identified with a broad scalar resonance that couples strongly to πK and weakly to ηK. The low-energy behavior of this amplitude suggests a virtual bound-state that may be related to the κ resonance. A bound state with JP = 1- is found very close to the πK threshold energy, whose coupling to the πK channel is compatible with that of the experimental K*(892). Evidence is found for a narrow resonance in JP = 2+. Isospin–3/2 πK scattering is also studied and non-resonant phase-shifts spanning the whole elastic scattering region are obtained.

  20. Resonances in coupled πK, ηK scattering from lattice QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wilson, David J.; Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.

    2015-03-10

    Coupled-channel πK and ηK scattering amplitudes are determined by studying the finite-volume energy spectra obtained from dynamical lattice QCD calculations. Using a large basis of interpolating operators, including both those resembling a qq-bar construction and those resembling a pair of mesons with relative momentum, a reliable excited-state spectrum can be obtained. Working at mπ = 391 MeV, we find a gradual increase in the JP = 0+ πK phase-shift which may be identified with a broad scalar resonance that couples strongly to πK and weakly to ηK. The low-energy behavior of this amplitude suggests a virtual bound-state that may bemore » related to the κ resonance. A bound state with JP = 1- is found very close to the πK threshold energy, whose coupling to the πK channel is compatible with that of the experimental K*(892). Evidence is found for a narrow resonance in JP = 2+. Isospin–3/2 πK scattering is also studied and non-resonant phase-shifts spanning the whole elastic scattering region are obtained.« less

  1. Resonances in coupled pi K, eta K scattering from lattice QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wilson, David J.; Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.

    2015-03-10

    Coupled-channel ?K and ?K scattering amplitudes are determined by studying the finite-volume energy spectra obtained from dynamical lattice QCD calculations. Using a large basis of interpolating operators, including both those resembling a qq-bar construction and those resembling a pair of mesons with relative momentum, a reliable excited-state spectrum can be obtained. Working at m? = 391 MeV, we find a gradual increase in the JP = 0+ ?K phase-shift which may be identified with a broad scalar resonance that couples strongly to ?K and weakly to ?K. The low-energy behavior of this amplitude suggests a virtual bound-state that may bemorerelated to the ? resonance. A bound state with JP = 1- is found very close to the ?K threshold energy, whose coupling to the ?K channel is compatible with that of the experimental K*(892). Evidence is found for a narrow resonance in JP = 2+. Isospin3/2 ?K scattering is also studied and non-resonant phase-shifts spanning the whole elastic scattering region are obtained.less

  2. Rashba spin-orbit coupling effects in armchair graphene nanoribbons

    SciTech Connect (OSTI)

    Prabhakar, S.; Melnik, R.; Sebetci, A.

    2015-03-30

    We study the influence of the Rashba spin-orbit coupling effects on the electronic properties of armchair graphene nanoribbons (GNRs). By utilizing both analytical and numerical schemes, we show that the finite width of the graphene nanoribbon breaks its energy spectrum into an infinite number of bands. By considering the Rashba spin-orbit coupling term as a perturbation, we show that zero energy bands between electron and hole states at Dirac points are lifted into a finite bandgap.

  3. Average dynamics of a finite set of coupled phase oscillators

    SciTech Connect (OSTI)

    Dima, Germn C. Mindlin, Gabriel B.

    2014-06-15

    We study the solutions of a dynamical system describing the average activity of an infinitely large set of driven coupled excitable units. We compared their topological organization with that reconstructed from the numerical integration of finite sets. In this way, we present a strategy to establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by the dynamics of its infinitely large surrogate.

  4. Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers Parallel and Antiparallel Interfacial Coupling in AF-FM Bilayers Print Wednesday, 30 August 2006 00:00 Cooling an antiferromagnetic-ferromagnetic bilayer in a magnetic field typically results in a remanent (zero-field) magnetization in the ferromagnet (FM) that is always in the direction of the field during cooling (positive Mrem). Strikingly, when FeF2 is the antiferromagnet (AF), cooling in a field can lead to a remanent

  5. Key-and-keyway coupling for transmitting torque

    DOE Patents [OSTI]

    Blue, S.C.; Curtis, M.T.; Orthwein, W.C.; Stitt, D.H.

    1975-11-18

    The design of an improved key-and-keyway coupling for the transmission of torque is given. The coupling provides significant reductions in stress concentrations in the vicinity of the key and keyway. The keyway is designed with a flat-bottomed u-shaped portion whose inboard end terminates in a ramp which is dished transversely, so that the surface of the ramp as viewed in transverse section defines an outwardly concave arc.

  6. Modeling shear failure and permeability enhancement due to coupled

    Office of Scientific and Technical Information (OSTI)

    Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs (Conference) | SciTech Connect Modeling shear failure and permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs Citation Details In-Document Search Title: Modeling shear failure and permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs The connectivity and accessible surface area of flowing

  7. Computational and experimental techniques for coupled acoustic/structure

    Office of Scientific and Technical Information (OSTI)

    interactions. (Technical Report) | SciTech Connect Computational and experimental techniques for coupled acoustic/structure interactions. Citation Details In-Document Search Title: Computational and experimental techniques for coupled acoustic/structure interactions. × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to

  8. Covalent agonists for studying G protein-coupled receptor activation

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Covalent agonists for studying G protein-coupled receptor activation Citation Details In-Document Search Title: Covalent agonists for studying G protein-coupled receptor activation Authors: Weichert, Dietmar ; Kruse, Andrew C. ; Manglik, Aashish ; Hiller, Christine ; Zhang, Cheng ; Hübner, Harald ; Kobilka, Brian K. ; Gmeiner, Peter [1] ; Nürnberg) [2] + Show Author Affiliations (Stanford-MED) ( Publication Date: 2015-02-06 OSTI Identifier: 1164196

  9. Direct in situ measurement of coupled magnetostructural evolution in a

    Office of Scientific and Technical Information (OSTI)

    ferromagnetic shape memory alloy and its theoretical modeling (Journal Article) | SciTech Connect in situ measurement of coupled magnetostructural evolution in a ferromagnetic shape memory alloy and its theoretical modeling Citation Details In-Document Search This content will become publicly available on October 14, 2016 Title: Direct in situ measurement of coupled magnetostructural evolution in a ferromagnetic shape memory alloy and its theoretical modeling In this study, ferromagnetic

  10. Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer

    Office of Scientific and Technical Information (OSTI)

    on Nanocrystalline Thin Films and Single Crystal (Technical Report) | SciTech Connect Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal Citation Details In-Document Search Title: Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal The long-term goal of the proposed research is to understand electron transfer dynamics in nanoparticle/liquid interface.

  11. Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer

    Office of Scientific and Technical Information (OSTI)

    on Nanocrystalline Thin Films and Single Crystal (Technical Report) | SciTech Connect Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal Citation Details In-Document Search Title: Electronic Coupling Dependence of Ultrafast Interfacial Electron Transfer on Nanocrystalline Thin Films and Single Crystal × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's

  12. A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic

    Office of Scientific and Technical Information (OSTI)

    disks: distorted viscous vortex (Journal Article) | DOE PAGES DOE PAGES Search Results Accepted Manuscript: A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex « Prev Next » Title: A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting

  13. Direct in situ measurement of coupled magnetostructural evolution in a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ferromagnetic shape memory alloy and its theoretical modeling (Journal Article) | DOE PAGES Direct in situ measurement of coupled magnetostructural evolution in a ferromagnetic shape memory alloy and its theoretical modeling This content will become publicly available on October 14, 2016 Title: Direct in situ measurement of coupled magnetostructural evolution in a ferromagnetic shape memory alloy and its theoretical modeling In this study, ferromagnetic shape memory alloys (FSMAs) have shown

  14. Exact solutions for a coupled nonlocal model of nanobeams

    SciTech Connect (OSTI)

    Marotti de Sciarra, Francesco E-mail: raffaele.barretta@unina.it; Barretta, Raffaele E-mail: raffaele.barretta@unina.it

    2014-10-06

    BERNOULLI-EULER nanobeams under concentrated forces/couples with the nonlocal constitutive behavior proposed by ERINGEN do not exhibit small-scale effects. A new model obtained by coupling the ERINGEN and gradient models is formulated in the present note. A variational treatment is developed by imposing suitable thermodynamic restrictions for nonlocal models and the ensuing differential and boundary conditions of elastic equilibrium are provided. The nonlocal elastostatic problem is solved in a closed-form for nanocantilever and clamped nanobeams.

  15. Implicitly-Coupled Electromechanical and Electromagnetic Transient Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using a Frequency Dependent Network Equivalent | Argonne National Laboratory Implicitly-Coupled Electromechanical and Electromagnetic Transient Analysis using a Frequency Dependent Network Equivalent Title Implicitly-Coupled Electromechanical and Electromagnetic Transient Analysis using a Frequency Dependent Network Equivalent Publication Type Journal Article Year of Publication 2015 Authors Zhang, X, Flueck, AJ, Abhyankar, S Journal IEEE Transactions on Power Delivery Volume PP Issue 99

  16. Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the Newberry Volcano EGS Demonstration Site | Department of Energy Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of Enhanced Geothermal System Development And Production: Evaluation of Stimulation at the Newberry Volcano EGS Demonstration Site Coupled Thermal-Hydrological-Mechanical-Chemical Model And Experiments For Optimization Of Enhanced Geothermal

  17. Top Quark Anomalous Couplings at the International Linear Collider (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Top Quark Anomalous Couplings at the International Linear Collider Citation Details In-Document Search Title: Top Quark Anomalous Couplings at the International Linear Collider × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and

  18. Top quark anomalous couplings at the International Linear Collider (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Top quark anomalous couplings at the International Linear Collider Citation Details In-Document Search Title: Top quark anomalous couplings at the International Linear Collider Authors: Devetak, Erik ; Nomerotski, Andrei ; Peskin, Michael Publication Date: 2011-08-17 OSTI Identifier: 1100572 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information: Journal Volume: 84; Journal Issue: 3; Journal ID: ISSN 1550-7998

  19. Ultrafast all-optical manipulation of interfacial magnetoelectric coupling

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Ultrafast all-optical manipulation of interfacial magnetoelectric coupling Citation Details In-Document Search Title: Ultrafast all-optical manipulation of interfacial magnetoelectric coupling Authors: Sheu, Yu-Miin [1] + Show Author Affiliations Los Alamos National Laboratory [Los Alamos National Laboratory Publication Date: 2014-04-24 OSTI Identifier: 1129830 Report Number(s): LA-UR-14-22829 DOE Contract

  20. Uncertainty Reduction in Power Generation Forecast Using Coupled

    Office of Scientific and Technical Information (OSTI)

    Wavelet-ARIMA (Conference) | SciTech Connect Conference: Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA Citation Details In-Document Search Title: Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA In this paper, we introduce a new approach without implying normal distributions and stationarity of power generation forecast errors. In addition, it is desired to more accurately quantify the forecast uncertainty by reducing prediction

  1. CP violating anomalous top-quark couplings at the LHC

    SciTech Connect (OSTI)

    Gupta, Sudhir Kumar; Mete, Alaettin Serhan; Valencia, G.

    2009-08-01

    We study the T odd correlations induced by CP violating anomalous top-quark couplings at both production and decay level in the process gg{yields}tt{yields}(b{mu}{sup +}{nu}{sub {mu}})(b{mu}{sup -}{nu}{sub {mu}}). We consider several counting asymmetries at the parton level and find the ones with the most sensitivity to each of these anomalous couplings at the LHC.

  2. Point kinetics calculations with fully coupled thermal fluids reactivity feedback

    SciTech Connect (OSTI)

    Zhang, H.; Zou, L.; Andrs, D.; Zhao, H.; Martineau, R.

    2013-07-01

    The point kinetics model has been widely used in the analysis of the transient behavior of a nuclear reactor. In the traditional nuclear reactor system safety analysis codes such as RELAP5, the reactivity feedback effects are calculated in a loosely coupled fashion through operator splitting approach. This paper discusses the point kinetics calculations with the fully coupled thermal fluids and fuel temperature feedback implemented into the RELAP-7 code currently being developed with the MOOSE framework. (authors)

  3. Report on Modeling Coupled Processes in the Near Field of a Clay Repository

    Broader source: Energy.gov [DOE]

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world. Coupled thermal, hydrological, mechanical, and chemical (THMC) processes have a significant impact on the long-term safety of a clay repository. This report documents results from three R&D activities: (1) implementation and validation of constitutive relationships, (2) development of a discrete fracture network (DFN) model for investigating coupled processes in the excavation damaged zone, and (3) development of a THM model for the Full-Scale Emplacement Experiment tests at Mont Terri, Switzerland, for the purpose of model validation. One major goal is to provide a better understanding of the evolution of the excavation damage zone in clay repositories.

  4. Method and apparatus for coupling seismic sensors to a borehole wall

    DOE Patents [OSTI]

    West, Phillip B.

    2005-03-15

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  5. Coupling mid-infrared light from a photonic crystal waveguide to metallic transmission lines

    SciTech Connect (OSTI)

    Blanco-Redondo, Andrea E-mail: r.hillenbrand@nanogune.eu; Dpto. Electronica y Telecom., E.T.S. Ingeniera Bilbao, UPV Sarriugarte, Paulo; Garcia-Adeva, Angel; Zubia, Joseba; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Bizkaia

    2014-01-06

    We propose and theoretically study a hybrid structure consisting of a photonic crystal waveguide (PhC-wg) and a two-wire metallic transmission line (TL), engineered for efficient transfer of mid-infrared (mid-IR) light between them. An efficiency of 32% is obtained for the coupling from the transverse magnetic (TM) photonic mode to the symmetric mode of the TL, with a predicted intensity enhancement factor of 53 at the transmission line surface. The strong coupling is explained by the small phase velocity mismatch and sufficient spatial overlapping between the modes. This hybrid structure could find applications in highly integrated mid-IR photonic-plasmonic devices for biological and gas sensing, among others.

  6. Higgs self-coupling measurements at a 100 TeV hadron collider

    SciTech Connect (OSTI)

    Barr, Alan J.; Dolan, Matthew J.; Englert, Christoph; Ferreira de Lima, Enoque Danilo; Spannowsky, Michael

    2015-02-03

    An important physics goal of a possible next-generation high-energy hadron collider will be precision characterisation of the Higgs sector and electroweak symmetry breaking. A crucial part of understanding the nature of electroweak symmetry breaking is measuring the Higgs self-interactions. We study dihiggs production in proton-proton collisions at 100 TeV centre of mass energy in order to estimate the sensitivity such a machine would have to variations in the trilinear Higgs coupling around the Standard Model expectation. We focus on the bb¯γγ final state, including possible enhancements in sensitivity by exploiting dihiggs recoils against a hard jet. In conclusion, we find that it should be possible to measure the trilinear self-coupling with 40% accuracy given 3/ab and 12% with 30/ab of data.

  7. Couplings between dipole and quadrupole vibrations in tin isotopes

    SciTech Connect (OSTI)

    Simenel, C.; Chomaz, Ph.

    2009-12-15

    We study the couplings between collective vibrations such as the isovector giant dipole and isoscalar giant quadrupole resonances in tin isotopes in the framework of the time-dependent Hartree-Fock theory with a Skyrme energy density functional. These couplings are a source of anharmonicity in the multiphonon spectrum. In particular, the residual interaction is known to couple the isovector giant dipole resonance with the isoscalar giant quadrupole resonance built on top of it, inducing a nonlinear evolution of the quadrupole moment after a dipole boost. This coupling also affects the dipole motion in a nucleus with a static or dynamical deformation induced by a quadrupole constraint or boost, respectively. Three methods associated with these different manifestations of the coupling are proposed to extract the corresponding matrix elements of the residual interaction. Numerical applications of the different methods to {sup 132}Sn are in good agreement with each other. Finally, several tin isotopes are considered to investigate the role of isospin and mass number on this coupling. A simple 1/A dependence of the residual matrix elements is found with no noticeable contribution from the isospin. This result is interpreted within the Goldhaber-Teller model.

  8. CX-001190: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    An Integrated Experimental and Numerical Study: Developing a Reaction Transport Model that Couples Chemical Reactions of Mineral Dissolution/Precipitation with Spatial and Temporal Flow Variations in Carbon Dioxide/Brine/Rock SystemsCX(s) Applied: A9, B3.6Date: 03/21/2010Location(s): Minneapolis, MinnesotaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  9. CX-007562: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Tools for Coupled lnSAR and Seismicity Monitoring of Enhanced Geothermal System Reservoir Development and Management CX(s) Applied: A9, B3.1 Date: 01/10/2012 Location(s): Pennsylvania Offices(s): Golden Field Office

  10. CX-010459: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Metal Oxides for Chemical Looping Combustion of Coal via Coupled Computational-Experimental Study CX(s) Applied: A9, B3.6 Date: 06/12/2013 Location(s): North Carolina Offices(s): National Energy Technology Laboratory

  11. CX-004679: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Enhanced Oil Recovery from the Bakken Shale Using Surfactant Imbibition Couple with Gravity DrainageCX(s) Applied: B3.6Date: 12/08/2010Location(s): Grand Forks, North DakotaOffice(s): Fossil Energy, National Energy Technology Laboratory

  12. CX-010976: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Thermal-Hydrological-Chemical-Mechanical (THCM) Coupled Model for Hydrate-Bearing Sediments: Data Analysis and Design of New Field Experiments CX(s) Applied: A9 Date: 09/16/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

  13. CX-010977: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Thermal-Hydrological-Chemical-Mechanical (THCM) Coupled Model for Hydrate-Bearing Sediments: Data Analysis and Design of New Field Experiments CX(s) Applied: A9 Date: 09/16/2013 Location(s): Georgia Offices(s): National Energy Technology Laboratory

  14. CX-011363: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Correlating Thermal, Mechanical, and Electrical Coupling Based Multi-Physics Behavior of Nuclear Materials Through In-situ Measurement CX(s) Applied: B3.6 Date: 10/30/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  15. CX-002034: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Road Prison Geothermal Earth Coupled Heating, Ventilation, and Air Conditioning UpgradeCX(s) Applied: B3.1, A9Date: 04/20/2010Location(s): Escambia County, FloridaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  16. CX-003856: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Road Prison Geothermal Earth Coupled Heating, Ventilation and Air Conditioning (HVAC) UpgradeCX(s) Applied: B5.1Date: 09/07/2010Location(s): Escambia County, FloridaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  17. CX-100381 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low-Energy, Low-Cost Production of Ethylene by Low-Temperature Oxidative Coupling of Methane Award Number: DE-EE0005769 CX(s) Applied: A9, B3.6 Advanced Manufacturing Office Date: 09/21/2015 Location(s): California Office(s): Golden Field Office

  18. CX-002373: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Validation of Coupled Models and Optimization of Materials for Offshore Wind StructuresCX(s) Applied: B3.1, A9Date: 05/13/2010Location(s): Gulf of Maine, MaineOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  19. CX-100572 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of tools for coupled InSAR and Seismicity monitoring of EGS reservoir development and management Award Number: DE-EE0005510 CX(s) Applied: A9 Geothermal Technologies Office Date: 03/21/2016 Location(s): PA Office(s): Golden Field Office

  20. CX-002154: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery Act: DeepCwind Consortium National Research Program: Validation of Coupled Models and Optimization of Materials for Offshore Wind StructuresCX(s) Applied: B3.1, B3.3, B3.6, A9Date: 01/21/2010Location(s): MaineOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  1. CX-000542: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lithium Separation from Environmental Samples for Inductively Coupled Plasma Mars (ICP-MS) AnalysisCX(s) Applied: B3.6Date: 11/16/2009Location(s): Aiken, South CarolinaOffice(s): Environmental Management, Savannah River Operations Office

  2. CX-004805: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    773-A C-150 and B-142/146 Inductively Coupled Plasma Mass Spectrometer (ICP-MS) InstallationCX(s) Applied: B3.6Date: 11/12/2010Location(s): Aiken, South CarolinaOffice(s): Savannah River Operations Office

  3. CX-003713: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Validation of Coupled Models and Optimization of Materials for Offshore Wind StructuresCX(s) Applied: A9, B3.1, B3.3, B3.6Date: 09/09/2010Location(s): MaineOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  4. CX-011505: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Operation, Maintenance, and End of Life of Leeman Prodigy Inductively Coupled Plasma Emission Spectrometers (ICPES) Unit and Perkin Elmer Optima 3000 ICPES Unit CX(s) Applied: B3.6 Date: 10/22/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  5. CX-010651: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Operation, Maintenance, and End-of-Life of Leeman Prodigy Inductively Coupled Plasma Emission Spectrometers (ICPES) Unit and Perkin Elmer Optima 3000 ICPES Unit CX(s) Applied: B3.6 Date: 06/26/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  6. CX-000446: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Coupled Hydro-Chemo-Thermo-Mechanical Phenomena for Pore Scale Processes to Macro Scale ImplicationsCX(s) Applied: A9, B3.1, B3.6Date: 11/24/2009Location(s): Atlanta, GeorgiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  7. High output lamp with high brightness

    DOE Patents [OSTI]

    Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.

    2002-01-01

    An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.

  8. Categorical Exclusion Determinations: South Carolina | Department of Energy

    Office of Environmental Management (EM)

    South Carolina Categorical Exclusion Determinations: South Carolina Location Categorical Exclusion Determinations issued for actions in South Carolina. DOCUMENTS AVAILABLE FOR DOWNLOAD February 22, 2016 CX-100476 Categorical Exclusion Determination Fully Integrated High Speed Megawatt Class Motor and High Frequency Variable Speed Drive System Award Number: DE-EE0007254 CX(s) Applied: A9, B3.6 Advanced Manufacturing Office Date: 02/11/2016 Location(s): SC Office(s): Golden Field Office April 6,

  9. Demountable direct injection high efficiency nebulizer for inductively coupled plasma mass spectrometry

    DOE Patents [OSTI]

    Montaser, Akbar; Westphal, Craig S.; Kahen, Kaveh; Rutkowski, William F.; Acon, Billy W.

    2006-12-05

    A nebulizer adapted for adjusting a position of a capillary tube contained within the nebulizer is provided. The nebulizer includes an elongated tubular shell having a gas input port and a gas output port, a capillary adjustment adapter for displacing the capillary tube in a lateral direction via a rotational force, and a connector for connecting the elongated tubular shell, the capillary adjustment adapter and the capillary tube.

  10. Coupled Model for Heat and Water Transport in a High Level Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and dissolutionprecipitation of the salt in the brine inclusion are simulated; effects of initial inclusion size and temperature gradient on the brine behavior are investigated. ...

  11. Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock

    SciTech Connect (OSTI)

    Zheng, Liange; Rutqvist, Jonny; Kim, Kunhwi; Houseworth, Jim

    2015-07-01

    The focus of research within the UFD Campaign is on repository-induced interactions that may affect the key safety characteristics of an argillaceous rock. These include thermal-hydrological-mechanical-chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer minerals and petrophysical characteristics, particularly the impacts of induced temperature rise caused by waste heat.

  12. Coupling Electric Vehicles and Power Grid through Charging-In-Motion and Connected Vehicle Technology

    SciTech Connect (OSTI)

    Li, Jan-Mou; Jones, Perry T; Onar, Omer C; Starke, Michael R

    2014-01-01

    A traffic-assignment-based framework is proposed to model the coupling of transportation network and power grid for analyzing impacts of energy demand from electric vehicles on the operation of power distribution. Although the reverse can be investigated with the proposed framework as well, electricity flowing from a power grid to electric vehicles is the focus of this paper. Major variables in transportation network (including link flows) and power grid (including electricity transmitted) are introduced for the coupling. Roles of charging-in-motion technology and connected vehicle technology have been identified in the framework of supernetwork. A linkage (i.e. individual energy demand) between the two networks is defined to construct the supernetwork. To determine equilibrium of the supernetwork can also answer how many drivers are going to use the charging-in-motion services, in which locations, and at what time frame. An optimal operation plan of power distribution will be decided along the determination simultaneously by which we have a picture about what level of power demand from the grid is expected in locations during an analyzed period. Caveat of the framework and possible applications have also been discussed.

  13. Measuring anomalous couplings in H→WW* decays at the International...

    Office of Scientific and Technical Information (OSTI)

    Measuring anomalous couplings in HWW* decays at the International Linear Collider Citation Details In-Document Search Title: Measuring anomalous couplings in HWW* decays at ...

  14. Modified T4 Lysozyme Fusion Proteins Facilitate G Protein-Coupled...

    Office of Scientific and Technical Information (OSTI)

    Facilitate G Protein-Coupled Receptor Crystallogenesis Citation Details In-Document Search Title: Modified T4 Lysozyme Fusion Proteins Facilitate G Protein-Coupled Receptor ...

  15. Ultrafast spin exchange-coupling torque via photo-excited charge...

    Office of Scientific and Technical Information (OSTI)

    Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes Citation Details In-Document Search Title: Ultrafast spin exchange-coupling torque via ...

  16. Enhancements to the SHARP Build System and NEK5000 Coupling

    SciTech Connect (OSTI)

    McCaskey, Alex; Bennett, Andrew R.; Billings, Jay Jay

    2014-10-01

    The SHARP project for the Department of Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program provides a multiphysics framework for coupled simulations of advanced nuclear reactor designs. It provides an overall coupling environment that utilizes custom interfaces to couple existing physics codes through a common spatial decomposition and unique solution transfer component. As of this writing, SHARP couples neutronics, thermal hydraulics, and structural mechanics using PROTEUS, Nek5000, and Diablo respectively. This report details two primary SHARP improvements regarding the Nek5000 and Diablo individual physics codes: (1) an improved Nek5000 coupling interface that lets SHARP achieve a vast increase in overall solution accuracy by manipulating the structure of the internal Nek5000 spatial mesh, and (2) the capability to seamlessly couple structural mechanics calculations into the framework through improvements to the SHARP build system. The Nek5000 coupling interface now uses a barycentric Lagrange interpolation method that takes the vertex-based power and density computed from the PROTEUS neutronics solver and maps it to the user-specified, general-order Nek5000 spectral element mesh. Before this work, SHARP handled this vertex-based solution transfer in an averaging-based manner. SHARP users can now achieve higher levels of accuracy by specifying any arbitrary Nek5000 spectral mesh order. This improvement takes the average percentage error between the PROTEUS power solution and the Nek5000 interpolated result down drastically from over 23 % to just above 2 %, and maintains the correct power profile. We have integrated Diablo into the SHARP build system to facilitate the future coupling of structural mechanics calculations into SHARP. Previously, simulations involving Diablo were done in an iterative manner, requiring a large amount manual work, and left only as a task for advanced users. This report will detail a new Diablo build system that was implemented using GNU Autotools, mirroring much of the current SHARP build system, and easing the use of structural mechanics calculations for end-users of the SHARP multiphysics framework. It lets users easily build and use Diablo as a stand-alone simulation, as well as fully couple with the other SHARP physics modules. The top-level SHARP build system was modified to allow Diablo to hook in directly. New dependency handlers were implemented to let SHARP users easily build the framework with these new simulation capabilities. The remainder of this report will describe this work in full, with a detailed discussion of the overall design philosophy of SHARP, the new solution interpolation method introduced, and the Diablo integration work. We will conclude with a discussion of possible future SHARP improvements that will serve to increase solution accuracy and framework capability.

  17. Coupled Thermal and Electrical Analysis of Obstructed RTGs

    SciTech Connect (OSTI)

    Schock, Alfred; Noravian, Heros; Or, Chuen T.

    1990-01-01

    A Radioisotope Thermoelectric Generator (RTG) with an unsymmetrically obstructed heat rejection path can have significant axial and circumferential variations in the temperatures, currents, and voltages of its thermoelectric couple network. The present paper describes a methodology for analyzing the thermal and electrical performance of such an RTG, and the development of a computer code for implementing that emthodology. The code derives coupled solutions of the RTG's thermal, thermoelectric, and electrical equations. It accounts for the Peltier effect, Ohmic heating, and the Thomson effect, and treats the electrical power produced in each couple as an effective heat sink. It satisfies the condition that all parallel couples produce the same voltage, and that all series-connected couple groups produce the same current. Finally, the paper illustrates the use of the code by applying it to the detailed analysis of the RTGs for the CRAF and Cassini missions. In each of these, there are two adjacent RTGs which are obstructed by each other and by the nearby spacecraft. The results of the analysis will be used by the spacecraft designers in selecting the location, orientation, and spacing of the two RTGs. There are two copies in the file.

  18. Extracting Effective Higgs Couplings in the Golden Channel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Yi; Vega-Morales, Roberto

    2014-04-08

    Kinematic distributions in Higgs decays to four charged leptons, the so called ‘golden channel, are a powerful probe of the tensor structure of its couplings to neutral electroweak gauge bosons. In this study we construct the first part of a comprehensive analysis framework designed to maximize the information contained in this channel in order to perform direct extraction of the various possible Higgs couplings. We first complete an earlier analytic calculation of the leading order fully differential cross sections for the golden channel signal and background to include the 4e and 4μ final states with interference between identical final states.more » We also examine the relative fractions of the different possible combinations of scalar-tensor couplings by integrating the fully differential cross section over all kinematic variables as well as show various doubly differential spectra for both the signal and background. From these analytic expressions we then construct a ‘generator level’ analysis framework based on the maximum likelihood method. Then, we demonstrate the ability of our framework to perform multi-parameter extractions of all the possible effective couplings of a spin-0 scalar to pairs of neutral electroweak gauge bosons including any correlations. Furthermore, this framework provides a powerful method for study of these couplings and can be readily adapted to include the relevant detector and systematic effects which we demonstrate in an accompanying study to follow.« less

  19. Self locking coupling mechanism for engaging and moving a load

    DOE Patents [OSTI]

    Wood, Richard L. (Livermore, CA); Casamajor, Alan B. (Pleasanton, CA); Parsons, Richard E. (Orinda, CA)

    1982-01-01

    Coupling mechanism (11) for engaging and lifting a load (12) has a housing (19) with a guide passage (18) for receiving a knob (13) which is secured to the load (12) through a neck (15) of smaller diameter. A hollow ball (23) in the housing (19) has an opening (27) which receives the knob (13) and the ball (23) is then turned to displace the opening (27) from the housing passage (18) and to cause the neck (15) to enter a slot (29) in the ball (23) thereby securing the load (12) to the coupling mechanism (11) as elements (49) of the housing (19) block travel of the neck (15) back into the opening (27) when the ball (23) is turned to the load holding orientation. As engagement of the load (12) and locking of the coupling mechanism are accomplished simultaneously by the same ball (23) motion, operation is simplified and reliability is greatly increased. The ball (23) is preferably turned by a motor (32) through worm gearing (36) and the coupling mechanism (11) may be controlled from a remote location. Among other uses, the coupling mechanism (11) is adaptable to the handling of spent nuclear reactor fuel elements (12).

  20. Self locking coupling mechanism for engaging and moving a load

    DOE Patents [OSTI]

    Wood, R.L.; Casamajor, A.B.; Parsons, R.E.

    1980-09-12

    A coupling mechanism for engaging and lifting a load has a housing with a guide passage for receiving a knob which is secured to the load through a neck of smaller diameter. A hollow ball in the housing has an opening which receives the knob and the ball is then turned to displace the opening from the housing passage and to cause the neck to enter a slot in the ball thereby securing the load to the coupling mechanism as elements of the housing block travel of the neck back into the opening when the ball is turned to the load holding orientation. As engagement of the load and locking of the coupling mechanism are accomplished simultaneously by the same ball motion, operation is simplified and reliability is greatly increased. The ball is preferably turned by a motor through worm gearing and the coupling mechanism may be controlled from a remote location. Among other uses, the coupling mechanism is adaptable to the handling of spent nuclear reactor fuel elements.

  1. Fluid simulations with atomistic resolution: a hybrid multiscale method with field-wise coupling

    SciTech Connect (OSTI)

    Borg, Matthew K. [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom)] [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Lockerby, Duncan A., E-mail: duncan.lockerby@warwick.ac.uk [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Reese, Jason M., E-mail: jason.reese@strath.ac.uk [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom)

    2013-12-15

    We present a new hybrid method for simulating dense fluid systems that exhibit multiscale behaviour, in particular, systems in which a NavierStokes model may not be valid in parts of the computational domain. We apply molecular dynamics as a local microscopic refinement for correcting the NavierStokes constitutive approximation in the bulk of the domain, as well as providing a direct measurement of velocity slip at bounding surfaces. Our hybrid approach differs from existing techniques, such as the heterogeneous multiscale method (HMM), in some fundamental respects. In our method, the individual molecular solvers, which provide information to the macro model, are not coupled with the continuum grid at nodes (i.e. point-wise coupling), instead coupling occurs over distributed heterogeneous fields (here referred to as field-wise coupling). This affords two major advantages. Whereas point-wise coupled HMM is limited to regions of flow that are highly scale-separated in all spatial directions (i.e. where the state of non-equilibrium in the fluid can be adequately described by a single strain tensor and temperature gradient vector), our field-wise coupled HMM has no such limitations and so can be applied to flows with arbitrarily-varying degrees of scale separation (e.g. flow from a large reservoir into a nano-channel). The second major advantage is that the position of molecular elements does not need to be collocated with nodes of the continuum grid, which means that the resolution of the microscopic correction can be adjusted independently of the resolution of the continuum model. This in turn means the computational cost and accuracy of the molecular correction can be independently controlled and optimised. The macroscopic constraints on the individual molecular solvers are artificial body-force distributions, used in conjunction with standard periodicity. We test our hybrid method on the Poiseuille flow problem for both Newtonian (Lennard-Jones) and non-Newtonian (FENE) fluids. The multiscale results are validated with expensive full-scale molecular dynamics simulations of the same case. Very close agreement is obtained for all cases, with as few as two micro elements required to accurately capture both the Newtonian and non-Newtonian flowfields. Our multiscale method converges very quickly (within 34 iterations) and is an order of magnitude more computationally efficient than the full-scale simulation.

  2. A high-order discontinuous Galerkin method for wave propagation through

    Office of Scientific and Technical Information (OSTI)

    coupled elastic-acoustic media (Journal Article) | SciTech Connect A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media Citation Details In-Document Search Title: A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in coupled elastic-acoustic media. A

  3. Determining the radiative properties of pulverized-coal particles from experiments. Final report

    SciTech Connect (OSTI)

    Menguec, M.P.

    1992-02-01

    A comprehensive coupled experimental-theoretical study has been performed to determine the effective radiative properties of pulverized-coal/char particles. The results obtained show that the ``effective`` scattering phase function of coal particles are highly forward scattering and show less sensitivity to the size than predicted from the Lorenz-Mie theory. The main reason for this is the presence of smaller size particles associated with each larger particle. Also, the coal/char particle clouds display more side scattering than predicted for the same size range spheres, indicating the irregular shape of the particles and fragmentation. In addition to these, it was observed that in the visible wavelength range the coal absorption is not gray, and slightly vary with the wavelength. These two experimental approaches followed in this study are unique in a sense that the physics of the problem are not approximated. The properties determined include all uncertainties related to the particle shape, size distribution, inhomogeneity and spectral complex index of refraction data. In order to obtain radiative property data over a wider wavelength spectrum, additional ex-situ experiments have been carried out using a Fourier Transform Infrared (FT-IR) Spectrometer. The spectral measurements were performed over the wavelength range of 2 to 22 {mu}m. These results were interpreted to obtain the ``effective`` efficiency factors of coal particles and the corresponding refractive index values. The results clearly show that the coal/char radiative properties display significant wavelength dependency in the infrared spectrum.

  4. Oximeter for reliable clinical determination of blood oxygen saturation in a fetus

    DOE Patents [OSTI]

    Robinson, Mark R. (Albuquerque, NM); Haaland, David M. (Albuquerque, NM); Ward, Kenneth J. (Madison, WI)

    1996-01-01

    With the crude instrumentation now in use to continuously monitor the status of the fetus at delivery, the obstetrician and labor room staff not only over-recognize the possibility of fetal distress with the resultant rise in operative deliveries, but at times do not identify fetal distress which may result in preventable fetal neurological harm. The invention, which addresses these two basic problems, comprises a method and apparatus for non-invasive determination of blood oxygen saturation in the fetus. The apparatus includes a multiple frequency light source which is coupled to an optical fiber. The output of the fiber is used to illuminate blood containing tissue of the fetus. In the preferred embodiment, the reflected light is transmitted back to the apparatus where the light intensities are simultaneously detected at multiple frequencies. The resulting spectrum is then analyzed for determination of oxygen saturation. The analysis method uses multivariate calibration techniques that compensate for nonlinear spectral response, model interfering spectral responses and detect outlier data with high sensitivity.

  5. Progress on Design and Construction of a MuCool Coupling Solenoid Magnet

    SciTech Connect (OSTI)

    Wang, L.; Liu, Xiao Kun; Xu, FengYu; Li, S.; Pan, Heng; Wu, Hong; Guo, Xinglong; Zheng, ShiXian; Li, Derun; Virostek, Steve; Zisman, Mike; Green, M.A.

    2010-06-28

    The MuCool program undertaken by the US Neutrino Factory and Muon Collider Collaboration is to study the behavior of muon ionization cooling channel components. A single superconducting coupling solenoid magnet is necessary to pursue the research and development work on the performance of high gradient, large size RF cavities immersed in magnetic field, which is one of the main challenges in the practical realization of ionization cooling of muons. The MuCool coupling magnet is to be built using commercial copper based niobium titanium conductors and cooled by two cryo-coolers with each cooling capacity of 1.5 W at 4.2 K. The solenoid magnet will be powered by using a single 300A power supply through a single pair of binary leads that are designed to carry a maximum current of 210A. The magnet is to be passively protected by cold diodes and resistors across sections of the coil and by quench back from the 6061 Al mandrel in order to lower the quench voltage and the hot spot temperature. The magnet is currently under construction. This paper presents the updated design and fabrication progress on the MuCool coupling magnet.

  6. Effective Yukawa couplings and flavor-changing Higgs boson decays at linear colliders

    SciTech Connect (OSTI)

    Gabrielli, E.; Mele, B.

    2011-04-01

    We analyze the advantages of a linear-collider program for testing a recent theoretical proposal where the Higgs boson Yukawa couplings are radiatively generated, keeping unchanged the standard-model mechanism for electroweak-gauge-symmetry breaking. Fermion masses arise at a large energy scale through an unknown mechanism, and the standard model at the electroweak scale is regarded as an effective field theory. In this scenario, Higgs boson decays into photons and electroweak gauge-boson pairs are considerably enhanced for a light Higgs boson, which makes a signal observation at the LHC straightforward. On the other hand, the clean environment of a linear collider is required to directly probe the radiative fermionic sector of the Higgs boson couplings. Also, we show that the flavor-changing Higgs boson decays are dramatically enhanced with respect to the standard model. In particular, we find a measurable branching ratio in the range (10{sup -4}-10{sup -3}) for the decay H{yields}bs for a Higgs boson lighter than 140 GeV, depending on the high-energy scale where Yukawa couplings vanish. We present a detailed analysis of the Higgs boson production cross sections at linear colliders for interesting decay signatures, as well as branching-ratio correlations for different flavor-conserving/nonconserving fermionic decays.

  7. Coupled-cluster representation of Green function employing modified spectral resolutions of similarity transformed Hamiltonians

    SciTech Connect (OSTI)

    Kowalski, Karol; Bhaskaran-Nair, Kiran; Shelton, William A.

    2014-09-07

    In this paper we discuss a new formalism for producing an analytic coupled-cluster (CC) Greens function that renders a highly scalable computational accurate method for producing an analytic coupled-cluster Greens function for an N-electron system by shifting the poles of similarity transformed Hamiltonians represented in N?1 and N +1 electron Hilbert spaces. Simple criteria are derived for the states in N ?1 and N + 1 electron spaces that are then corrected in the spectral resolution of the cor- responding matrix representations of the similarity transformed Hamiltonian. The accurate description of excited state processes within a Greens function formalism would be of significant importance to a number of scientific communities ranging from physics and chemistry to engineering and the biological sciences. This is because the Greens function methodology provides a direct path for not only calculating prop- erties whose underlying origins come from coupled many-body interactions but it also provides a straightforward path for calculating electron transport, response and correlation functions that allows for a direct link with experiment. As a special case of this general formulation, we discuss the application of this technique for Greens function defined by the CCSD (CC with singles and doubles) representation of the ground-state wave function.

  8. Electro-optic device with gap-coupled electrode

    DOE Patents [OSTI]

    Deri, Robert J.; Rhodes, Mark A.; Bayramian, Andrew J.; Caird, John A.; Henesian, Mark A.; Ebbers, Christopher A.

    2013-08-20

    An electro-optic device includes an electro-optic crystal having a predetermined thickness, a first face and a second face. The electro-optic device also includes a first electrode substrate disposed opposing the first face. The first electrode substrate includes a first substrate material having a first thickness and a first electrode coating coupled to the first substrate material. The electro-optic device further includes a second electrode substrate disposed opposing the second face. The second electrode substrate includes a second substrate material having a second thickness and a second electrode coating coupled to the second substrate material. The electro-optic device additionally includes a voltage source electrically coupled to the first electrode coating and the second electrode coating.

  9. Coupling coefficients for tensor product representations of quantum SU(2)

    SciTech Connect (OSTI)

    Groenevelt, Wolter

    2014-10-15

    We study tensor products of infinite dimensional irreducible {sup *}-representations (not corepresentations) of the SU(2) quantum group. We obtain (generalized) eigenvectors of certain self-adjoint elements using spectral analysis of Jacobi operators associated to well-known q-hypergeometric orthogonal polynomials. We also compute coupling coefficients between different eigenvectors corresponding to the same eigenvalue. Since the continuous spectrum has multiplicity two, the corresponding coupling coefficients can be considered as 2 2-matrix-valued orthogonal functions. We compute explicitly the matrix elements of these functions. The coupling coefficients can be considered as q-analogs of Bessel functions. As a results we obtain several q-integral identities involving q-hypergeometric orthogonal polynomials and q-Bessel-type functions.

  10. Ab-initio modeling of electromechanical coupling at Si surfaces

    SciTech Connect (OSTI)

    Hoppe, Sandra; Mller, Stefan; Michl, Anja; Weissmller, Jrg

    2014-08-21

    The electromechanical coupling at the silicon (100) and (111) surfaces was studied via density functional theory by calculating the response of the ionization potential and the electron affinity to different types of strain. We find a branched strain response of those two quantities with different coupling coefficients for negative and positive strain values. This can be attributed to the reduced crystal symmetry due to anisotropic strain, which partially lifts the degeneracy of the valence and conduction bands. Only the Si(111) electron affinity exhibits a monotonously linear strain response, as the conduction band valleys remain degenerate under strain. The strain response of the surface dipole is linear and seems to be dominated by volume changes. Our results may help to understand the mechanisms behind electromechanical coupling at an atomic level in greater detail and for different electronic and atomic structures.

  11. Principles of ground relaying for high voltage and extra high voltage transmission lines

    SciTech Connect (OSTI)

    Griffin, C.H.

    1983-02-01

    This paper is a tutorial discussion of the basic principles of ground relaying for high voltage and extra high voltage transmission lines. Three different HV configurations are considered: Long lines, lines with a weak mid-point station, and mutually-coupled lines. Application criteria for EHV circuits are also discussed, and specific setting calculations are included where appropriate.

  12. Reinventing atomic magnetic simulations with spin-orbit coupling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perera, Meewanage Dilina N.; Eisenbach, Markus; Nicholson, Don M.; Stocks, George Malcolm; Landau, David P.

    2016-02-10

    We propose a powerful extension to the combined molecular and spin dynamics method that fully captures the coupling between the atomic and spin subsystems via spin-orbit interactions. Moreover, the foundation of this method lies in the inclusion of the local magnetic anisotropies that arise as a consequence of the lattice symmetry breaking due to phonons or crystallographic defects. By using canonical simulations of bcc iron with the system coupled to a phonon heat bath, we show that our extension enables the previously unachievable angular momentum exchange between the atomic and spin degrees of freedom.

  13. Nuclear-Coupled Flow Instabilities and Their Effects on Dryout

    SciTech Connect (OSTI)

    M. Ishii; X. Sunn; S. Kuran

    2004-09-27

    Nuclear-coupled flow/power oscillations in boiling water reactors (BWRs) are investigated experimentally and analytically. A detailed literature survey is performed to identify and classify instabilities in two-phase flow systems. The classification and the identification of the leading physical mechanisms of the two-phase flow instabilities are important to propose appropriate analytical models and scaling criteria for simulation. For the purpose of scaling and the analysis of the nonlinear aspects of the coupled flow/power oscillations, an extensive analytical modeling strategy is developed and used to derive both frequency and time domain analysis tools.

  14. Change of translational-rotational coupling in liquids revealed by

    Office of Scientific and Technical Information (OSTI)

    field-cycling {sup 1}H NMR (Journal Article) | SciTech Connect Change of translational-rotational coupling in liquids revealed by field-cycling {sup 1}H NMR Citation Details In-Document Search Title: Change of translational-rotational coupling in liquids revealed by field-cycling {sup 1}H NMR Applying the field-cycling nuclear magnetic resonance technique, the frequency dependence of the {sup 1}H spin-lattice relaxation rate, R{sub 1}(ω)=T{sub 1}{sup -1}(ω), is measured for propylene

  15. Physical + Digital: The New Power Couple |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physical + Digital = the New Power Couple Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Physical + Digital = the New Power Couple Birthed from the marriage of physical and digital industrial concepts, Digital Twin is GE's foundational analytic that aims to bring increased insight, understanding, and added value to

  16. Cosmic expansion histories in massive bigravity with symmetric matter coupling

    SciTech Connect (OSTI)

    Enander, Jonas; Mrtsell, Edvard [Oskar Klein Center, Stockholm University, Albanova University Center, 106 91 Stockholm (Sweden); Solomon, Adam R. [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Rd., Cambridge CB3 0WA (United Kingdom); Akrami, Yashar, E-mail: enander@fysik.su.se, E-mail: a.r.solomon@damtp.cam.ac.uk, E-mail: yashar.akrami@astro.uio.no, E-mail: edvard@fysik.su.se [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway)

    2015-01-01

    We study the cosmic expansion history of massive bigravity with a viable matter coupling which treats both metrics on equal footing. We derive the Friedmann equation for the effective metric through which matter couples to the two metrics, and study its solutions. For certain parameter choices, the background cosmology is identical to that of ?CDM. More general parameters yield dynamical dark energy, which can still be in agreement with observations of the expansion history. We study specific parameter choices of interest, including minimal models, maximally-symmetric models, and a candidate partially-massless theory.

  17. Non-minimal Kinetic coupling to gravity and accelerated expansion

    SciTech Connect (OSTI)

    Granda, L.N.

    2010-07-01

    We study a scalar field with kinetic term coupled to itself and to the curvature, as a source of dark energy, and analyze the role of this new coupling in the accelerated expansion at large times. In the case of scalar field dominance, the scalar field and potential giving rise to power-law expansion are found in some cases, and a dynamical equation of state is calculated for a given solution of the field equations. A behavior very close to that of the cosmological constant was found.

  18. Scale-Invariance and the Strong Coupling Problem (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Scale-Invariance and the Strong Coupling Problem Citation Details In-Document Search Title: Scale-Invariance and the Strong Coupling Problem Authors: Baumann, Daniel ; /Princeton, Inst. Advanced Study ; Senatore, Leonardo ; /Stanford U., ITP /KIPAC, Menlo Park ; Zaldarriaga, Matias ; /Princeton, Inst. Advanced Study Publication Date: 2013-06-06 OSTI Identifier: 1082791 Report Number(s): SLAC-PUB-15530 arXiv:1101.3320 DOE Contract Number: AC02-76SF00515 Resource Type: Journal

  19. Unusual Layer-Dependent Charge Distribution, Collective Mode Coupling, and

    Office of Scientific and Technical Information (OSTI)

    Superconductivity in Multilayer Cuprate Ba2Ca3Cu4O8F2 (Journal Article) | SciTech Connect Layer-Dependent Charge Distribution, Collective Mode Coupling, and Superconductivity in Multilayer Cuprate Ba2Ca3Cu4O8F2 Citation Details In-Document Search Title: Unusual Layer-Dependent Charge Distribution, Collective Mode Coupling, and Superconductivity in Multilayer Cuprate Ba2Ca3Cu4O8F2 Low energy ultrahigh momentum resolution angle resolved photoemission spectroscopy study on four-layer self-doped

  20. Unusual layer-dependent charge distribution, collective mode coupling, and

    Office of Scientific and Technical Information (OSTI)

    superconductivity in multilayer cuprate Ba2Ca3Cu4O8F2 (Journal Article) | SciTech Connect layer-dependent charge distribution, collective mode coupling, and superconductivity in multilayer cuprate Ba2Ca3Cu4O8F2 Citation Details In-Document Search Title: Unusual layer-dependent charge distribution, collective mode coupling, and superconductivity in multilayer cuprate Ba2Ca3Cu4O8F2 Low energy ultrahigh momentum resolution angle resolved photoemission spectroscopy study on four-layer self-doped

  1. Entropic uncertainty relations for the ground state of a coupled system

    SciTech Connect (OSTI)

    Santhanam, M.S.

    2004-04-01

    There is a renewed interest in the uncertainty principle, reformulated from the information theoretic point of view, called the entropic uncertainty relations. They have been studied for various integrable systems as a function of their quantum numbers. In this work, focussing on the ground state of a nonlinear, coupled Hamiltonian system, we show that approximate eigenstates can be constructed within the framework of adiabatic theory. Using the adiabatic eigenstates, we estimate the information entropies and their sum as a function of the nonlinearity parameter. We also briefly look at the information entropies for the highly excited states in the system.

  2. Final Report: Mechanisms of sputter ripple formation: coupling among energetic ions, surface kinetics, stress and composition

    SciTech Connect (OSTI)

    Chason, Eric; Shenoy, Vivek

    2013-01-22

    Self-organized pattern formation enables the creation of nanoscale surface structures over large areas based on fundamental physical processes rather than an applied template. Low energy ion bombardment is one such method that induces the spontaneous formation of a wide variety of interesting morphological features (e.g., sputter ripples and/or quantum dots). This program focused on the processes controlling sputter ripple formation and the kinetics controlling the evolution of surfaces and nanostructures in high flux environments. This was done by using systematic, quantitative experiments to measure ripple formation under a variety of processing conditions coupled with modeling to interpret the results.

  3. Independent control of electron energy and density using a rotating magnetic field in inductively coupled plasmas

    SciTech Connect (OSTI)

    Kondo, Takahiro; Ohta, Masayuki; Ito, Tsuyohito; Okada, Shigefumi

    2013-09-21

    Effects of a rotating magnetic field (RMF) on the electron energy distribution function (EEDF) and on the electron density are investigated with the aim of controlling the radical composition of inductively coupled plasmas. By adjusting the RMF frequency and generation power, the desired electron density and electron energy shift are obtained. Consequently, the amount and fraction of high-energy electrons, which are mostly responsible for direct dissociation processes of raw molecules, will be controlled externally. This controllability, with no electrode exposed to plasma, will enable us to control radical components and their flux during plasma processing.

  4. Neutronic/Thermalhydraulic Coupling Technigues for Sodium Cooled Fast Reactor Simulations

    SciTech Connect (OSTI)

    Jean Ragusa; Andrew Siegel; Jean-Michel Ruggieri

    2010-09-28

    The objective of this project was to test new coupling algorithms and enable efficient and scalable multi-physics simulations of advanced nuclear reactors, with considerations regarding the implementation of such algorithms in massively parallel environments. Numerical tests were carried out to verify the proposed approach and the examples included some reactor transients. The project was directly related to the Sodium Fast Reactor program element of the Generation IV Nuclear Energy Systems Initiative and the Advanced Fuel cycle Initiative, and, supported the requirement of high-fidelity simulation as a mean of achieving the goals of the presidential Global Nuclear Energy Partnership (GNEP) vision.

  5. Using LGI experiments to achieve better understanding of pedestal-edge coupling in NSTX-U

    SciTech Connect (OSTI)

    Wang, Zhehui

    2015-02-23

    PowerPoint presentation. Latest advances in granule or dust injection technologies, fast and high-resolution imaging, together with micro-/nano-structured material fabrication, provide new opportunities to examine plasma-material interaction (PMI) in magnetic fusion environment. Some of our previous work in these areas is summarized. The upcoming LGI experiments in NSTX-U will shed new light on granular matter transport in the pedestal-edge region. In addition to particle control, these results can also be used for code validation and achieving better understanding of pedestal-edge coupling in fusion plasmas in both NSTX-U and others.

  6. Temperature-induced sign change of the magnetic interlayer coupling in Ni/Ni{sub 25}Mn{sub 75}/Ni trilayers on Cu{sub 3}Au(001)

    SciTech Connect (OSTI)

    Shokr, Y. A.; Zhang, B.; Sandig, O.; Kuch, W.; Erkovan, M.; Wu, C.-B.

    2015-05-07

    We investigated the magnetic interlayer coupling between two ferromagnetic (FM) Ni layers through an antiferromagnetic (AFM) Ni{sub 25}Mn{sub 75} layer and the influence of this coupling on the exchange bias phenomenon. The interlayer coupling energy of an epitaxial trilayer of 14 atomic monolayers (ML) Ni/45 ML Ni{sub 25}Mn{sub 75}/16 ML Ni on Cu{sub 3}Au(001) was extracted from minor-loop magnetization measurements using in-situ magneto-optical Kerr effect. The interlayer coupling changes from ferromagnetic to antiferromagnetic when the temperature is increased above 300?K. This sign change is interpreted as the result of the competition between an antiparallel Ruderman-Kittel-Kasuya-Yosida (RKKY)-type interlayer coupling, which dominates at high temperature, and a stronger direct exchange coupling across the AFM layer, which is present only below the Nel temperature of the AFM layer.

  7. Leap Frog and Time Step Sub-Cycle Scheme for Coupled Neutronics and Thermal-Hydraulic Codes

    SciTech Connect (OSTI)

    Lu, S.

    2002-07-01

    As the result of the advancing TCP/IP based inter-process communication technology, more and more legacy thermal-hydraulic codes have been coupled with neutronics codes to provide best-estimate capabilities for reactivity related reactor transient analysis. Most of the coupling schemes are based on closely coupled serial or parallel approaches. Therefore, the execution of the coupled codes usually requires significant CPU time, when a complicated system is analyzed. Leap Frog scheme has been used to reduce the run time. The extent of the decoupling is usually determined based on a trial and error process for a specific analysis. It is the intent of this paper to develop a set of general criteria, which can be used to invoke the automatic Leap Frog algorithm. The algorithm will not only provide the run time reduction but also preserve the accuracy. The criteria will also serve as the base of an automatic time step sub-cycle scheme when a sudden reactivity change is introduced and the thermal-hydraulic code is marching with a relatively large time step. (authors)

  8. A Local Incident Flux Response Expansion Transport Method for Coupling to the Diffusion Method in Cylindrical Geometry

    SciTech Connect (OSTI)

    Dingkang Zhang; Farzad Rahnema; Abderrafi M. Ougouag

    2013-09-01

    A local incident flux response expansion transport method is developed to generate transport solutions for coupling to diffusion theory codes regardless of their solution method (e.g., fine mesh, nodal, response based, finite element, etc.) for reactor core calculations in both two-dimensional (2-D) and three-dimensional (3-D) cylindrical geometries. In this approach, a Monte Carlo method is first used to precompute the local transport solution (i.e., response function library) for each unique transport coarse node, in which diffusion theory is not valid due to strong transport effects. The response function library is then used to iteratively determine the albedo coefficients on the diffusion-transport interfaces, which are then used as the coupling parameters within the diffusion code. This interface coupling technique allows a seamless integration of the transport and diffusion methods. The new method retains the detailed heterogeneity of the transport nodes and naturally constructs any local solution within them by a simple superposition of local responses to all incoming fluxes from the contiguous coarse nodes. A new technique is also developed for coupling to fine-mesh diffusion methods/codes. The local transport method/module is tested in 2-D and 3-D pebble-bed reactor benchmark problems consisting of an inner reflector, an annular fuel region, and a controlled outer reflector. It is found that the results predicted by the transport module agree very well with the reference fluxes calculated directly by MCNP in both benchmark problems.

  9. Coupling Mechanical with Electrochemical-Thermal Models for Batteries under Abuse

    SciTech Connect (OSTI)

    Wierzbicki, Tomasz; Sahraei, Elham; Dajka, Stephen; Li, Genong; Santhanagopalan, Shriram; Zhang, Chao; Kim, Gi-Heon; Sprague, Michael A.

    2015-06-09

    This presentation provides an update on coupled mechanical-electrochemical-thermal models for batteries under abuse.

  10. 3D neutronic/thermal-hydraulic coupled analysis of MYRRHA

    SciTech Connect (OSTI)

    Vazquez, M.; Martin-Fuertes, F.

    2012-07-01

    The current tendency in multiphysics calculations applied to reactor physics is the use of already validated computer codes, coupled by means of an iterative approach. In this paper such an approach is explained concerning neutronics and thermal-hydraulics coupled analysis with MCNPX and COBRA-IV codes using a driver program and file exchange between codes. MCNPX provides the neutronic analysis of heterogeneous nuclear systems, both in critical and subcritical states, while COBRA-IV is a subchannel code that can be used for rod bundles or core thermal-hydraulics analysis. In our model, the MCNP temperature dependence of nuclear data is handled via pseudo-material approach, mixing pre-generated cross section data set to obtain the material with the desired cross section temperature. On the other hand, COBRA-IV has been updated to allow for the simulation of liquid metal cooled reactors. The coupled computational tool can be applied to any geometry and coolant, as it is the case of single fuel assembly, at pin-by-pin level, or full core simulation with the average pin of each fuel-assembly. The coupling tool has been applied to the critical core layout of the SCK-CEN MYRRHA concept, an experimental LBE cooled fast reactor presently in engineering design stage. (authors)

  11. Coupling Between An Optical Phonon and the Kondo Effect

    SciTech Connect (OSTI)

    Burch, Kenneth; Chia, Elbert E. M.; Talbayev, D.; Sales, Brian C; Mandrus, David; Taylor, A. J.; Averitt, R. D.

    2008-01-01

    We explore the ultrafast optical response of Yb14MnSb11, providing further evidence that this Zintl compound is one of the first examples of a ferromagnetic under-screened Kondo lattice. These experiments also provide the first demonstration of coupling between an optical phonon and the Kondo effect.

  12. Bimetric gravity doubly coupled to matter: theory and cosmological implications

    SciTech Connect (OSTI)

    Akrami, Yashar; Koivisto, Tomi S.; Mota, David F.; Sandstad, Marit E-mail: t.s.koivisto@astro.uio.no E-mail: marit.sandstad@astro.uio.no

    2013-10-01

    A ghost-free theory of gravity with two dynamical metrics both coupled to matter is shown to be consistent and viable. Its cosmological implications are studied, and the models, in particular in the context of partially massless gravity, are found to explain the cosmic acceleration without resorting to dark energy.

  13. Study on the Mechanical Instability of MICE Coupling Magnets

    SciTech Connect (OSTI)

    Wang, Li; Pan, Heng; Gou, Xing Long; Wu, Hong; Zheng, Shi Xian; Green, Michael A

    2011-05-04

    The superconducting coupling solenoid magnet is one of the key equipment in the Muon Ionization Cooling Experiment (MICE). The coil has an inner radius of 750 mm, length of 281 mm and thickness of 104 mm at room temperature. The peak induction in the coil is about 7.3 T with a full current of 210 A. The mechanical disturbances which might cause the instability of the impregnated superconducting magnet involve the frictional motion between conductors and the cracking of impregnated materials. In this paper, the mechanical instability of the superconducting coupling magnet was studied. This paper presents the numerical calculation results of the minimum quench energy (MQE) of the coupling magnet, as well as the dissipated strain energy in the stress concentration region when the epoxy cracks and the frictional energy caused by 'stick-slip' of the conductor based on the bending theory of beam happens. Slip planes are used in the coupling coil and the frictional energy due to 'slow slip' at the interface of the slip planes was also investigated. The dissipated energy was compared with MQE, and the results show that the cracking of epoxy resin in the region of shear stress concentration is the main factor for premature quench of the coil.

  14. Integration of Novel Flux Coupling Motor and Current Source Inverter |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape034_ozpineci_2012_o.pdf More Documents & Publications Current Source Inverters for HEVs and FCVs Vehicle Technologies Office Merit Review 2014: Wireless Charging Integration of Novel Flux Coupling Motor and Current Source Inverter

  15. Method of processing materials using an inductively coupled plasma

    DOE Patents [OSTI]

    Hull, Donald E. (Los Alamos, NM); Bieniewski, Thomas M. (Los Alamos, NM)

    1989-01-01

    A method for coating surfaces or implanting ions in an object using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The coating material or implantation material is intitially in solid form.

  16. Electrical and Quench Performance of the First MICE Coupling Coil

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tartaglia, M. A.; Carcagno, R.; Makulski, A.; Nogiec, Jerzy; Orris, D.; Pilipenko, R.; Sylvester, C.; Caspi, S.; Pan, H.; Prestemon, S.; et al

    2014-11-10

    The first MICE Coupling Coil has been tested in a conduction-cooled environment in the new Solenoid Test Facility at Fermilab. We present an overview of the power and quench protection scheme, and report on the electrical and quench performance results obtained during cold power tests of the magnet.

  17. Status report on high fidelity reactor simulation.

    SciTech Connect (OSTI)

    Palmiotti, G.; Smith, M.; Rabiti, C.; Lewis, E.; Yang, W.; Leclere,M.; Siegel, A.; Fischer, P.; Kaushik, D.; Ragusa, J.; Lottes, J.; Smith, B.

    2006-12-11

    This report presents the effort under way at Argonne National Laboratory toward a comprehensive, integrated computational tool intended mainly for the high-fidelity simulation of sodium-cooled fast reactors. The main activities carried out involved neutronics, thermal hydraulics, coupling strategies, software architecture, and high-performance computing. A new neutronics code, UNIC, is being developed. The first phase involves the application of a spherical harmonics method to a general, unstructured three-dimensional mesh. The method also has been interfaced with a method of characteristics. The spherical harmonics equations were implemented in a stand-alone code that was then used to solve several benchmark problems. For thermal hydraulics, a computational fluid dynamics code called Nek5000, developed in the Mathematics and Computer Science Division for coupled hydrodynamics and heat transfer, has been applied to a single-pin, periodic cell in the wire-wrap geometry typical of advanced burner reactors. Numerical strategies for multiphysics coupling have been considered and higher-accuracy efficient methods proposed to finely simulate coupled neutronic/thermal-hydraulic reactor transients. Initial steps have been taken in order to couple UNIC and Nek5000, and simplified problems have been defined and solved for testing. Furthermore, we have begun developing a lightweight computational framework, based in part on carefully selected open source tools, to nonobtrusively and efficiently integrate the individual physics modules into a unified simulation tool.

  18. CX-012200: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determination of Excess Real Property CX(s) Applied: B1.36 Date: 05/01/2014 Location(s): Colorado Offices(s): Legacy Management

  19. CX-010689: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Generic CX Determination for Financial Assistance Awards CX(s) Applied: Unknown Date: 07/17/2013 Location(s): Illinois Offices(s): Chicago Office

  20. Categorical Exclusion Determinations: Connecticut | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 27, 2016 CX-100460 Categorical Exclusion Determination Additive Manufacturing and the Environment: A Special Issue of the Journal of Industrial Ecology Award Number: ...