Powered by Deep Web Technologies
Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Computer cast blast modelling  

SciTech Connect

Cast blasting can be designed to utilize explosive energy effectively and economically for coal mining operations to remove overburden material. The more overburden removed by explosives, the less blasted material there is left to be transported with mechanical equipment, such as draglines and trucks. In order to optimize the percentage of rock that is cast, a higher powder factor than normal is required plus an initiation technique designed to produce a much greater degree of horizontal muck movement. This paper compares two blast models known as DMC (Distinct Motion Code) and SABREX (Scientific Approach to Breaking Rock with Explosives). DMC, applies discrete spherical elements interacted with the flow of explosive gases and the explicit time integration to track particle motion resulting from a blast. The input to this model includes multi-layer rock properties, and both loading geometry and explosives equation-of-state parameters. It enables the user to have a wide range of control over drill pattern and explosive loading design parameters. SABREX assumes that heave process is controlled by the explosive gases which determines the velocity and time of initial movement of blocks within the burden, and then tracks the motion of the blocks until they come to a rest. In order to reduce computing time, the in-flight collisions of blocks are not considered and the motion of the first row is made to limit the motion of subsequent rows. Although modelling a blast is a complex task, the DMC can perform a blast simulation in 0.5 hours on the SUN SPARCstation 10--41 while the new SABREX 3.5 produces results of a cast blast in ten seconds on a 486-PC computer. Predicted percentage of cast and face velocities from both computer codes compare well with the measured results from a full scale cast blast.

Chung, S. [ICI Explosives Canada, North York, ON (Canada); McGill, M. [ICI Explosives USA, Dallas, TX (United States); Preece, D.S. [Sandia National Labs., Albuquerque, NM (United States)

1994-07-01T23:59:59.000Z

2

Typologies of Computation and Computational Models  

E-Print Network (OSTI)

We need much better understanding of information processing and computation as its primary form. Future progress of new computational devices capable of dealing with problems of big data, internet of things, semantic web, cognitive robotics and neuroinformatics depends on the adequate models of computation. In this article we first present the current state of the art through systematization of existing models and mechanisms, and outline basic structural framework of computation. We argue that defining computation as information processing, and given that there is no information without (physical) representation, the dynamics of information on the fundamental level is physical/ intrinsic/ natural computation. As a special case, intrinsic computation is used for designed computation in computing machinery. Intrinsic natural computation occurs on variety of levels of physical processes, containing the levels of computation of living organisms (including highly intelligent animals) as well as designed computational devices. The present article offers a typology of current models of computation and indicates future paths for the advancement of the field; both by the development of new computational models and by learning from nature how to better compute using different mechanisms of intrinsic computation.

Mark Burgin; Gordana Dodig-Crnkovic

2013-12-09T23:59:59.000Z

3

High Performance Computing: Modeling & Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Computing: Modeling & Simulation High Performance Computing: Modeling & Simulation Express Licensing Adaptive Real-Time Methodology for Optimizing Energy-Efficient...

4

Quality Assurance of Computational Model  

NLE Websites -- All DOE Office Websites (Extended Search)

of Computational of Computational Models Presented at the Annual Department of Presented at the Annual Department of Energy Quality Council Meeting Subir K. Sen Sub . Se Office of Quality Assurance, HS-33 December 7, 2011 Outline Outline * Introduction Introduction * GAO Report 11-143 i l h C il * National Research Council Focus * DOE Model Validation/Performance * Summary 2 Introduction Introduction * Computer models are used in EM's massive Computer models are used in EM s massive clean up effort to model physical and biogeochemical processes biogeochemical processes. * Results from these computational models are often used to make costly cleanup decisions often used to make costly cleanup decisions including selection, performance assessment and annual

5

Improved computer models support genetics research  

NLE Websites -- All DOE Office Websites (Extended Search)

Simple computer models unravel genetic stress reactions in cells Simple computer models unravel genetic stress reactions in cells Integrated biological and computational methods...

6

New Computational Methods Determination in Solution  

E-Print Network (OSTI)

engendered by two scien- tific advances: (1) new developments in an exper- imental technique known as Nuclear- ment of the nuclear Overhauser effect (NOE) between resonances, and (3) the use of computer modeling is that of constructing a highway map of the U.S. starting from a table which lists the distances between the major cities

7

Ch. 33 Modeling: Computational Thermodynamics  

Science Conference Proceedings (OSTI)

This chapter considers methods and techniques for computational modeling for nuclear materials with a focus on fuels. The basic concepts for chemical thermodynamics are described and various current models for complex crystalline and liquid phases are illustrated. Also included are descriptions of available databases for use in chemical thermodynamic studies and commercial codes for performing complex equilibrium calculations.

Besmann, Theodore M [ORNL

2012-01-01T23:59:59.000Z

8

Computable General Equilibrium Models for Sustainability Impact...  

Open Energy Info (EERE)

Computable General Equilibrium Models for Sustainability Impact Assessment: Status quo and prospects Jump to: navigation, search Name Computable General Equilibrium Models for...

9

Improved computer models support genetics research  

NLE Websites -- All DOE Office Websites (Extended Search)

February Simple computer models unravel genetic stress reactions in cells Simple computer models unravel genetic stress reactions in cells Integrated biological and...

10

ELECTRONIC ANALOG COMPUTER FOR DETERMINING RADIOACTIVE DISINTEGRATION  

DOE Patents (OSTI)

A computer is presented for determining growth and decay curves for elements in a radioactive disintegration series wherein one unstable element decays to form a second unstable element or isotope, which in turn forms a third element, etc. The growth and decay curves of radioactive elements are simulated by the charge and discharge curves of a resistance-capacitance network. Several such networks having readily adjustable values are connected in series with an amplifier between each successive pair. The time constant of each of the various networks is set proportional to the half-life of a corresponding element in the series represented and the charge and discharge curves of each of the networks simulates the element growth and decay curve.

Robinson, H.P.

1959-07-14T23:59:59.000Z

11

NETL: Computer Software & Databases - Predictive Models  

NLE Websites -- All DOE Office Websites (Extended Search)

Predictive Models DOEBC-881SP. EOR Predictive Models: Handbook for Personal Computer Versions of Enhanced Oil Recovery Predictive Models. BPO Staff. February 1988. 76 pp. NTIS...

12

MODELING IN COMPUTATIONAL BIOLOGY NOTES OF ... - CECM  

E-Print Network (OSTI)

MODELING IN COMPUTATIONAL BIOLOGY. NOTES OF WEEK 9. 1. Fully Observed Markov Model: F. Sometimes we want to model a process of generating ...

13

Computational Procedures for Determining Parameters in Ramberg-Osgood  

Office of Scientific and Technical Information (OSTI)

Computational Procedures for Determining Parameters in Ramberg-Osgood Computational Procedures for Determining Parameters in Ramberg-Osgood Elastoplastic Model Based on Modulus and Damping Versus Strain Tzou-Shin Ueng Jian-Chu Chen July, 1992 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or

14

A security model for distributed computing  

Science Conference Proceedings (OSTI)

This paper presents a multi-tier model for secure computing as a teaching method platform. The security model is based on establishing the trustworthiness and role of each component in a distributed computing environment: trusted users, trusted servers, ...

Iliya K. Georgiev; Ivo I. Georgiev

2001-10-01T23:59:59.000Z

15

Quantum computation beyond the circuit model  

E-Print Network (OSTI)

The quantum circuit model is the most widely used model of quantum computation. It provides both a framework for formulating quantum algorithms and an architecture for the physical construction of quantum computers. However, ...

Jordan, Stephen Paul

2008-01-01T23:59:59.000Z

16

Computational Modeling of Organizations Comes of Age  

Science Conference Proceedings (OSTI)

As they are maturing—i.e., as they are becoming validated, calibrated and refined—computational emulation models of organizations are evolving into: powerful new kinds of organizational design tools for predicting and mitigating organizational ... Keywords: Virtual Design Team, computational modeling and simulation, computational modeling in engineering, computational modeling in natural science, industrial application, organizational engineering, state-of-the-art, synthetic experiments, validation

Raymond E. Levitt

2004-07-01T23:59:59.000Z

17

MHK Reference Model: Relevance to Computer Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

July 9 th , 2012 SAND Number: 2012-5508P MHK Reference Model: Relevance to Computer Simulation Reference Model Partners Oregon State University NNMREC University of...

18

Modeling resource-coupled computations  

Science Conference Proceedings (OSTI)

Increasingly massive datasets produced by simulations beg the question How will we connect this data to the computational and display resources that support visualization and analysis? This question is driving research into new approaches to allocating ... Keywords: coupled computations, data intensive computing, high-performance computing, simulation

Mark Hereld; Joseph A. Insley; Eric C. Olson; Michael E. Papka; Thomas D. Uram; Venkatram Vishwanath

2009-11-01T23:59:59.000Z

19

First Principles Computational Determination of Anisotropic Elastic ...  

Science Conference Proceedings (OSTI)

TiB2 has a hexagonal structure (P6/mmm) with six independent elastic constants. A complete determination of these constants is necessary for understanding ...

20

Determining Memory Use | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Allinea DDT Core File Settings Determining Memory Use Using VNC with a Debugger bgqstack gdb Coreprocessor TotalView on BGQ Systems Performance Tools & APIs Software & Libraries...

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Efficient algorithms for new computational models  

E-Print Network (OSTI)

Advances in hardware design and manufacturing often lead to new ways in which problems can be solved computationally. In this thesis we explore fundamental problems in three computational models that are based on such ...

Ruhl, Jan Matthias, 1973-

2003-01-01T23:59:59.000Z

22

Cupola Furnace Computer Process Model  

Science Conference Proceedings (OSTI)

The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

Seymour Katz

2004-12-31T23:59:59.000Z

23

Computing Models for FPGA-Based Accelerators  

Science Conference Proceedings (OSTI)

Field-programmable gate arrays are widely considered accelerators for compute-intensive applications. A critical phase of FPGA application development is finding and mapping to the appropriate computing model. These models differ from models generally used in programming. For example

Martin C. Herbordt; Yongfeng Gu; Tom VanCourt; Josh Model; Bharat Sukhwani; Matt Chiu

2008-01-01T23:59:59.000Z

24

Computer modeling of piezoelectric transducers  

Science Conference Proceedings (OSTI)

A piezoelectricfinite elementmodeling tool was developed to compute the complete static and dynamic behavior of piezoelectric devices. The exact differential equations governing piezoelectric media are solved numerically. Telephonetransducers

Reinhard Lerch

1990-01-01T23:59:59.000Z

25

LLNL's Saturday lectures explore computational modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

via computer simulation; fusion modeling; menacing microbes; and simulating the human heart on the world's fastest supercomputer. The lectures are free and will be held in the...

26

Computational Modeling of Defect Evolution under Irradiation  

Science Conference Proceedings (OSTI)

Mar 14, 2012 ... Radiation Effects in Ceramic Oxide and Novel LWR Fuels: Computational Modeling of Defect Evolution under Irradiation Sponsored by: The ...

27

Computer Model Addresses Softening Steel Problem - Materials ...  

Science Conference Proceedings (OSTI)

Apr 22, 2013 ... Computer modeling, coupled with experiments, at Sandia National Laboratories has enabled the rapid design of an annealing process to ...

28

PI-23: Multiscale Computational Modeling of Adsorption  

Science Conference Proceedings (OSTI)

Presentation Title, PI-23: Multiscale Computational Modeling of Adsorption ... catalytic cracking, as well as the low pressure storage of natural gas or hydrogen.

29

Computational Modelling for the Materials Professional  

Science Conference Proceedings (OSTI)

After completing his PhD in 1988 he joined Carnegie Mellon University, Pittsburgh, and worked closely with the Steel industry, applying computational modelling ...

30

Key computational modeling issues in Integrated Computational Materials Engineering  

Science Conference Proceedings (OSTI)

Designing materials for targeted performance requirements as required in Integrated Computational Materials Engineering (ICME) demands a combined strategy of bottom-up and top-down modeling and simulation which treats various levels of hierarchical material ... Keywords: Databases, ICME, Materials design, Multiscale modeling, Uncertainty

Jitesh H. Panchal; Surya R. Kalidindi; David L. Mcdowell

2013-01-01T23:59:59.000Z

31

Computer modeling of ORNL storage tank sludge mobilization and mixing  

SciTech Connect

This report presents and analyzes the results of the computer modeling of mixing and mobilization of sludge in horizontal, cylindrical storage tanks using submerged liquid jets. The computer modeling uses the TEMPEST computational fluid dynamics computer program. The horizontal, cylindrical storage tank configuration is similar to the Melton Valley Storage Tanks (MVST) at Oak Ridge National (ORNL). The MVST tank contents exhibit non-homogeneous, non-Newtonian rheology characteristics. The eventual goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents of the tanks.

Terrones, G.; Eyler, L.L.

1993-09-01T23:59:59.000Z

32

Computing and fabricating multilayer models  

E-Print Network (OSTI)

We present a method for automatically converting a digital 3D model into a multilayer model: a parallel stack of high-resolution 2D images embedded within a semi-transparent medium. Multilayer models can be produced quickly ...

Holroyd, Michael

33

Refined computational models for laminated shells  

Science Conference Proceedings (OSTI)

This paper presents refined computational models for non homogeneous, deep, doubly curved shells. The theory is based on a kinematical approach in which the continuity conditions for displacements and shear stresses at layer interfaces and on the bounding ... Keywords: bending-torsion warping coupling, multilayered shells, piezoelectric laminates, shear-membrane refinements, stress computations, triangular C1-C1/2 finite element

M. Touratier

2002-01-01T23:59:59.000Z

34

Modelling energy efficiency for computation  

E-Print Network (OSTI)

/kg, considered independently from the reduction in flight time. Values taken from the BP Hand- book of Products, 2000. http://www.bp.com/liveassets/bp_internet/aviation/air_bp/STAGING/ local_assets/downloads_pdfs/a/air_bp_products_handbook_04004_1.pdf 20 2... per unit computation might be reduced by a factor of 1011 [Koomey et al., 2011]. Improvements since then amount to around 105, and if Koomey’s Law continues, such a limit would be reached sometime in the year 2041. More fundamentally still, Landauer...

Reams, Charles

2012-11-13T23:59:59.000Z

35

Models and languages for parallel computation  

Science Conference Proceedings (OSTI)

We survey parallel programming models and languages using six criteria to assess their suitability for realistic portable parallel programming. We argue that an ideal model should by easy to program, should have a software development methodology, should ... Keywords: general-purpose parallel computation, logic programming languages, object-oriented languages, parallel programming languages, parallel programming models, software development methods, taxonomy

David B. Skillicorn; Domenico Talia

1998-06-01T23:59:59.000Z

36

Integrated Computational Modeling of Welding – Development to ...  

Science Conference Proceedings (OSTI)

Integrated computational modeling is considered as a viable pathway to ... lack of a standard verification and validation (V&V) documents to build a technical case. ... Evolution with the Impact of Anisotropic Grain Boundary Energy and Mobility.

37

Modeling-Computer Simulations | Open Energy Information  

Open Energy Info (EERE)

Modeling-Computer Simulations Modeling-Computer Simulations Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Modeling-Computer Simulations Details Activities (78) Areas (31) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Stress fields and magnitudes Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids Thermal: Thermal conduction and convection patterns in the subsurface Cost Information Low-End Estimate (USD): 85.008,500 centUSD 0.085 kUSD 8.5e-5 MUSD 8.5e-8 TUSD / hour Median Estimate (USD): 195.0019,500 centUSD

38

Modeling of Geothermal Reservoirs: Fundamental Processes, Computer  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Modeling of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Modeling of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Abstract This article attempts to critically evaluate the present state of the art of geothermal reservoir simulation. Methodological aspects of geothermal reservoir modeling are briefly reviewed, with special emphasis on flow in fractured media. We then examine some applications of numerical simulation to studies of reservoir dynamics, well test design and analysis, and modeling of specific fields. Tangible impacts of reservoir simulation

39

Computational Modeling and Simulation of Advanced Materials for ...  

Science Conference Proceedings (OSTI)

Symposium, Computational Modeling and Simulation of Advanced Materials for Energy Applications. Sponsorship, TMS/ASM: Computational Materials Science ...

40

Mathematical Models of Computer Security  

Science Conference Proceedings (OSTI)

In this chapter I present a process algebraic approach to the modelling of security properties and policies. I will concentrate on the concept of secrecy, also known as confidentiality, and in particular on the notion of non-interference. Non-interference ...

Peter Y. A. Ryan

2000-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A Generalized Streaming Model for Concurrent Computing  

E-Print Network (OSTI)

Multicore parallel programming has some very difficult problems such as deadlocks during synchronizations and race conditions brought by concurrency. Added to the difficulty is the lack of a simple, well-accepted computing model for multicore architectures--because of that it is hard to develop powerful programming environments and debugging tools. To tackle the challenges, we promote a generalized stream computing model, inspired by previous researches on stream computing, that unifies parallelization strategies for programming language design, compiler design and operating system design. Our model provides a high-level abstraction in designing language constructs to convey concepts of concurrent operations, in organizing a program's runtime layout for parallel execution, and in scheduling concurrent instruction blocks through runtime and/or operating systems. In this paper, we give a high-level description of the proposed model: we define the foundation of the model, show its simplicity through algebraic/co...

Wang, Yibing

2010-01-01T23:59:59.000Z

42

The Uflow Computational Model and Intermediate Format  

E-Print Network (OSTI)

This report motivates and defines a general-purpose, architecture independent, parallel computational model, which captures the intuitions which underlie the design of the United Functions and Objects programming language. The model has two aspects, which turn out to be a traditional dataflow model and an actor-like model, with a very simple interface between the two. Certain aspects of the model, particularly strictness, maximum parallelism, and lack of suspension are stressed. The implications of introducing stateful objects are carefully spelled out. The model has several purposes, although we largely describe it as it would be used for visualising the execution of programs. The model is embodied in a textual intermediate format, and in a set of UFO data structures. This report also serves as a definition of the intermediate format, and gives a brief overview of the data structures. 1 Introduction This report serves two purposes. Firstly, in sections 1 to 9, the Uflow computational...

John Sargeant; Chris Kirkham; Steve Anderson

1994-01-01T23:59:59.000Z

43

Improved computer models support genetics research  

NLE Websites -- All DOE Office Websites (Extended Search)

February » February » Simple computer models unravel genetic stress reactions in cells Simple computer models unravel genetic stress reactions in cells Integrated biological and computational methods provide insight into why genes are activated. February 8, 2013 When complete, these barriers will be a portion of the NMSSUP upgrade. This molecular structure depicts a yeast transfer ribonucleic acid (tRNA), which carries a single amino acid to the ribosome during protein construction. A combined experimental and computational approach, to better understand signaling pathways that lead to genetic mutations, is at the core of this research. Contact thumbnail of Brian Munsky, PhD Distinguished Postdoctoral Fellow Brian Munsky, PhD Information Services, Advanced Measurement Science

44

Modeling-Computer Simulations (Walker, Et Al., 2005) | Open Energy...  

Open Energy Info (EERE)

Modeling-Computer Simulations (Walker, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations (Walker, Et...

45

Modeling-Computer Simulations At White Mountains Area (Goff ...  

Open Energy Info (EERE)

Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer...

46

Modeling-Computer Simulations At Nw Basin & Range Region (Biasi...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer...

47

Causal sets from simple models of computation  

E-Print Network (OSTI)

Causality among events is widely recognized as a most fundamental structure of spacetime, and causal sets have been proposed as discrete models of the latter in the context of quantum gravity theories, notably in the Causal Set Programme. In the rather different context of what might be called the 'Computational Universe Programme' -- one which associates the complexity of physical phenomena to the emergent features of models such as cellular automata -- a choice problem arises with respect to the variety of formal systems that, in virtue of their computational universality (Turing-completeness), qualify as equally good candidates for a computational, unified theory of physics. This paper proposes Causal Sets as the only objects of physical significance and relevance to be considered under the 'computational universe' perspective, and as the appropriate abstraction for shielding the unessential details of the many different computationally universal candidate models. At the same time, we propose a fully deterministic, radical alternative to the probabilistic techniques currently considered in the Causal Set Programme for growing discrete spacetimes. We investigate a number of computation models by grouping them into two broad classes, based on the support on which they operate; in one case this is linear, like a tape or a string of symbols; in the other, it is a two-dimensional grid or a planar graph. For each model we identify the causality relation among computation events, implement it, and conduct a possibly exhaustive exploration of the associated causal set space, while examining quantitative and qualitative features such as dimensionality, curvature, planarity, emergence of pseudo-randomness, causal set substructures and particles.

Tommaso Bolognesi

2010-04-19T23:59:59.000Z

48

Modeling Computations in a Semantic Network  

E-Print Network (OSTI)

Semantic network research has seen a resurgence from its early history in the cognitive sciences with the inception of the Semantic Web initiative. The Semantic Web effort has brought forth an array of technologies that support the encoding, storage, and querying of the semantic network data structure at the world stage. Currently, the popular conception of the Semantic Web is that of a data modeling medium where real and conceptual entities are related in semantically meaningful ways. However, new models have emerged that explicitly encode procedural information within the semantic network substrate. With these new technologies, the Semantic Web has evolved from a data modeling medium to a computational medium. This article provides a classification of existing computational modeling efforts and the requirements of supporting technologies that will aid in the further growth of this burgeoning domain.

Marko A. Rodriguez; Johan Bollen

2007-05-31T23:59:59.000Z

49

Revisions to the hydrogen gas generation computer model  

DOE Green Energy (OSTI)

Waste Management Technology has requested SRTC to maintain and extend a previously developed computer model, TRUGAS, which calculates hydrogen gas concentrations within the transuranic (TRU) waste drums. TRUGAS was written by Frank G. Smith using the BASIC language and is described in the report A Computer Model of gas Generation and Transport within TRU Waste Drums (DP- 1754). The computer model has been partially validated by yielding results similar to experimental data collected at SRL and LANL over a wide range of conditions. The model was created to provide the capability of predicting conditions that could potentially lead to the formation of flammable gas concentrations within drums, and to assess proposed drum venting methods. The model has served as a tool in determining how gas concentrations are affected by parameters such as filter vent sizes, waste composition, gas generation values, the number and types of enclosures, water instrusion into the drum, and curie loading. The success of the TRUGAS model has prompted an interest in the program`s maintenance and enhancement. Experimental data continues to be collected at various sites on such parameters as permeability values, packaging arrangements, filter designs, and waste contents. Information provided by this data is used to improve the accuracy of the model`s predictions. Also, several modifications to the model have been made to enlarge the scope of problems which can be analyzed. For instance, the model has been used to calculate hydrogen concentrations inside steel cabinets containing retired glove boxes (WSRC-RP-89-762). The revised TRUGAS computer model, H2GAS, is described in this report. This report summarizes all modifications made to the TRUGAS computer model and provides documentation useful for making future updates to H2GAS.

Jerrell, J.W.

1992-08-31T23:59:59.000Z

50

Computer Models of Vocal Tract Evolution: An Overview and Critique  

Science Conference Proceedings (OSTI)

Human speech has been investigated with computer models since the invention of digital computers, and models of the evolution of speech first appeared in the late 1960s and early 1970s. Speech science and computer models have a long shared history because ... Keywords: computer modeling, descended larynx, evolution of speech, vocal tract evolution

Bart De Boer; W. Tecumseh Fitch

2010-02-01T23:59:59.000Z

51

Cloud computing and electricity: beyond the utility model  

Science Conference Proceedings (OSTI)

Assessing the strengths, weaknesses, and general applicability of the computing-as-utility business model.

Erik Brynjolfsson; Paul Hofmann; John Jordan

2010-05-01T23:59:59.000Z

52

VALIDATION OF COMPUTER MODELS FOR RADIOACTIVE MATERIAL SHIPPING PACKAGES  

Science Conference Proceedings (OSTI)

Computer models are abstractions of physical reality and are routinely used for solving practical engineering problems. These models are prepared using large complex computer codes that are widely used in the industry. Patran/Thermal is such a finite element computer code that is used for solving complex heat transfer problems in the industry. Finite element models of complex problems involve making assumptions and simplifications that depend upon the complexity of the problem and upon the judgment of the analysts. The assumptions involve mesh size, solution methods, convergence criteria, material properties, boundary conditions, etc. that could vary from analyst to analyst. All of these assumptions are, in fact, candidates for a purposeful and intended effort to systematically vary each in connection with the others to determine there relative importance or expected overall effect on the modeled outcome. These kinds of models derive from the methods of statistical science and are based on the principles of experimental designs. These, as all computer models, must be validated to make sure that the output from such an abstraction represents reality [1,2]. A new nuclear material packaging design, called 9977, which is undergoing a certification design review, is used to assess the capability of the Patran/Thermal computer model to simulate 9977 thermal response. The computer model for the 9977 package is validated by comparing its output with the test data collected from an actual thermal test performed on a full size 9977 package. Inferences are drawn by performing statistical analyses on the residuals (test data--model predictions).

Gupta, N; Gene Shine, G; Cary Tuckfield, C

2007-05-07T23:59:59.000Z

53

Computer modeling of the Schottky electron source  

Science Conference Proceedings (OSTI)

A computer modeling program that is able to imitate the polyhedral shape of the ZrO/W(100) Schottky cathode is used to compute emission parameters such as the electric field distribution and reduced brightness Br for the various observed end form shapes. This program includes the electron–electron interactions in the beam and their effect on Br. A relationship between the axial field factor ??=?F/Ve and the axial lens factor K?=?(I?/J)1/2 (where F

Lynwood W. Swanson; Gregory A. Schwind; Sean M. Kellogg; Kun Liu

2012-01-01T23:59:59.000Z

54

Computer Aided Design Modeling for Heterogeneous Objects  

E-Print Network (OSTI)

Heterogeneous object design is an active research area in recent years. The conventional CAD modeling approaches only provide geometry and topology of the object, but do not contain any information with regard to the materials of the object and so can not be used for the fabrication of heterogeneous objects (HO) through rapid prototyping. Current research focuses on computer-aided design issues in heterogeneous object design. A new CAD modeling approach is proposed to integrate the material information into geometric regions thus model the material distributions in the heterogeneous object. The gradient references are used to represent the complex geometry heterogeneous objects which have simultaneous geometry intricacies and accurate material distributions. The gradient references helps in flexible manipulability and control to heterogeneous objects, which guarantees the local control over gradient regions of developed heterogeneous objects. A systematic approach on data flow, processing, computer visualizat...

Gupta, Vikas; Tandon, Puneet

2010-01-01T23:59:59.000Z

55

Revisions to the hydrogen gas generation computer model  

DOE Green Energy (OSTI)

Waste Management Technology has requested SRTC to maintain and extend a previously developed computer model, TRUGAS, which calculates hydrogen gas concentrations within the transuranic (TRU) waste drums. TRUGAS was written by Frank G. Smith using the BASIC language and is described in the report A Computer Model of gas Generation and Transport within TRU Waste Drums (DP- 1754). The computer model has been partially validated by yielding results similar to experimental data collected at SRL and LANL over a wide range of conditions. The model was created to provide the capability of predicting conditions that could potentially lead to the formation of flammable gas concentrations within drums, and to assess proposed drum venting methods. The model has served as a tool in determining how gas concentrations are affected by parameters such as filter vent sizes, waste composition, gas generation values, the number and types of enclosures, water instrusion into the drum, and curie loading. The success of the TRUGAS model has prompted an interest in the program's maintenance and enhancement. Experimental data continues to be collected at various sites on such parameters as permeability values, packaging arrangements, filter designs, and waste contents. Information provided by this data is used to improve the accuracy of the model's predictions. Also, several modifications to the model have been made to enlarge the scope of problems which can be analyzed. For instance, the model has been used to calculate hydrogen concentrations inside steel cabinets containing retired glove boxes (WSRC-RP-89-762). The revised TRUGAS computer model, H2GAS, is described in this report. This report summarizes all modifications made to the TRUGAS computer model and provides documentation useful for making future updates to H2GAS.

Jerrell, J.W.

1992-08-31T23:59:59.000Z

56

On the Sequential Determination of Model Misfit  

E-Print Network (OSTI)

On the Sequential Determination of Model Misfit Peter Whaite and Frank P. Ferrie TR-CIM-94-6319 Telex: 05 268510 FAX: 514 398-7348 Email: cim@cim.mcgill.ca #12;On the Sequential Determination of Model

Dudek, Gregory

57

COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS  

Science Conference Proceedings (OSTI)

Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.

Ibrahim, Essam A

2013-01-09T23:59:59.000Z

58

Interlanguages and synchronic models of computation  

E-Print Network (OSTI)

A novel language system has given rise to promising alternatives to standard formal and processor network models of computation. An interstring linked with a abstract machine environment, shares sub-expressions, transfers data, and spatially allocates resources for the parallel evaluation of dataflow. Formal models called the a-Ram family are introduced, designed to support interstring programming languages (interlanguages). Distinct from dataflow, graph rewriting, and FPGA models, a-Ram instructions are bit level and execute in situ. They support sequential and parallel languages without the space/time overheads associated with the Turing Machine and l-calculus, enabling massive programs to be simulated. The devices of one a-Ram model, called the Synchronic A-Ram, are fully connected and simpler than FPGA LUT's. A compiler for an interlanguage called Space, has been developed for the Synchronic A-Ram. Space is MIMD. strictly typed, and deterministic. Barring memory allocation and compilation, modules are ref...

Berka, Alexander Victor

2010-01-01T23:59:59.000Z

59

Computational social dynamic modeling of group recruitment.  

SciTech Connect

The Seldon software toolkit combines concepts from agent-based modeling and social science to create a computationally social dynamic model for group recruitment. The underlying recruitment model is based on a unique three-level hybrid agent-based architecture that contains simple agents (level one), abstract agents (level two), and cognitive agents (level three). This uniqueness of this architecture begins with abstract agents that permit the model to include social concepts (gang) or institutional concepts (school) into a typical software simulation environment. The future addition of cognitive agents to the recruitment model will provide a unique entity that does not exist in any agent-based modeling toolkits to date. We use social networks to provide an integrated mesh within and between the different levels. This Java based toolkit is used to analyze different social concepts based on initialization input from the user. The input alters a set of parameters used to influence the values associated with the simple agents, abstract agents, and the interactions (simple agent-simple agent or simple agent-abstract agent) between these entities. The results of phase-1 Seldon toolkit provide insight into how certain social concepts apply to different scenario development for inner city gang recruitment.

Berry, Nina M.; Lee, Marinna; Pickett, Marc; Turnley, Jessica Glicken (Sandia National Laboratories, Albuquerque, NM); Smrcka, Julianne D. (Sandia National Laboratories, Albuquerque, NM); Ko, Teresa H.; Moy, Timothy David (Sandia National Laboratories, Albuquerque, NM); Wu, Benjamin C.

2004-01-01T23:59:59.000Z

60

Empirical Validation of a Transient Computer Model for ...  

Science Conference Proceedings (OSTI)

Page 1. _— EMPIRICAL VALIDATION OF A lRANSIENT COMPUTER MODEL FOR COMBINED HEAT AND MOISTURE TRANSFER ...

1997-09-03T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Modeling-Computer Simulations At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration...

62

Modeling-Computer Simulations At Dixie Valley Geothermal Field...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Wisian & Blackwell, 2004)...

63

Modeling-Computer Simulations At Desert Peak Area (Wisian & Blackwell...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Desert Peak Area (Wisian & Blackwell, 2004) Exploration Activity...

64

Computational models of intergroup competition and warfare.  

SciTech Connect

This document reports on the research of Kenneth Letendre, the recipient of a Sandia Graduate Research Fellowship at the University of New Mexico. Warfare is an extreme form of intergroup competition in which individuals make extreme sacrifices for the benefit of their nation or other group to which they belong. Among animals, limited, non-lethal competition is the norm. It is not fully understood what factors lead to warfare. We studied the global variation in the frequency of civil conflict among countries of the world, and its positive association with variation in the intensity of infectious disease. We demonstrated that the burden of human infectious disease importantly predicts the frequency of civil conflict and tested a causal model for this association based on the parasite-stress theory of sociality. We also investigated the organization of social foraging by colonies of harvester ants in the genus Pogonomyrmex, using both field studies and computer models.

Letendre, Kenneth (University of New Mexico); Abbott, Robert G.

2011-11-01T23:59:59.000Z

65

Computable General Equilibrium Models for Sustainability Impact Assessment:  

Open Energy Info (EERE)

Computable General Equilibrium Models for Sustainability Impact Assessment: Computable General Equilibrium Models for Sustainability Impact Assessment: Status quo and prospects Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Computable General Equilibrium Models for Sustainability Impact Assessment: Status quo and prospects Agency/Company /Organization: DG Joint Research Centre, European Commission, University of Heidelberg Topics: Co-benefits assessment Resource Type: Guide/manual, Publications, Software/modeling tools User Interface: Other Website: iatools.jrc.ec.europa.eu/docs/ecol_econ_2006.pdf Computable General Equilibrium Models for Sustainability Impact Assessment: Status quo and prospects Screenshot References: Computable general equilibrium models[1] Abstract "Sustainability Impact Assessment (SIA) of economic, environmental, and

66

Parallel Computing for Terrestrial Ecosystem Carbon Modeling  

Science Conference Proceedings (OSTI)

Terrestrial ecosystems are a primary component of research on global environmental change. Observational and modeling research on terrestrial ecosystems at the global scale, however, has lagged behind their counterparts for oceanic and atmospheric systems, largely because the unique challenges associated with the tremendous diversity and complexity of terrestrial ecosystems. There are 8 major types of terrestrial ecosystem: tropical rain forest, savannas, deserts, temperate grassland, deciduous forest, coniferous forest, tundra, and chaparral. The carbon cycle is an important mechanism in the coupling of terrestrial ecosystems with climate through biological fluxes of CO{sub 2}. The influence of terrestrial ecosystems on atmospheric CO{sub 2} can be modeled via several means at different timescales. Important processes include plant dynamics, change in land use, as well as ecosystem biogeography. Over the past several decades, many terrestrial ecosystem models (see the 'Model developments' section) have been developed to understand the interactions between terrestrial carbon storage and CO{sub 2} concentration in the atmosphere, as well as the consequences of these interactions. Early TECMs generally adapted simple box-flow exchange models, in which photosynthetic CO{sub 2} uptake and respiratory CO{sub 2} release are simulated in an empirical manner with a small number of vegetation and soil carbon pools. Demands on kinds and amount of information required from global TECMs have grown. Recently, along with the rapid development of parallel computing, spatially explicit TECMs with detailed process based representations of carbon dynamics become attractive, because those models can readily incorporate a variety of additional ecosystem processes (such as dispersal, establishment, growth, mortality etc.) and environmental factors (such as landscape position, pest populations, disturbances, resource manipulations, etc.), and provide information to frame policy options for climate change impact analysis.

Wang, Dali [ORNL; Post, Wilfred M [ORNL; Ricciuto, Daniel M [ORNL; Berry, Michael [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

67

Final technical report for DOE Computational Nanoscience Project: Integrated Multiscale Modeling of Molecular Computing Devices  

Science Conference Proceedings (OSTI)

This document reports the outcomes of the Computational Nanoscience Project, "Integrated Multiscale Modeling of Molecular Computing Devices". It includes a list of participants and publications arising from the research supported.

Cummings, P. T.

2010-02-08T23:59:59.000Z

68

Unsolicited Projects in 2012: Research in Computer Architecture, Modeling,  

Office of Science (SC) Website

2: Research in Computer Architecture, 2: Research in Computer Architecture, Modeling, and Evolving MPI for Exascale Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) Computational Science Graduate Fellowship (CSGF) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301)

69

MMA, A Computer Code for Multi-Model Analysis  

Science Conference Proceedings (OSTI)

This report documents the Multi-Model Analysis (MMA) computer code. MMA can be used to evaluate results from alternative models of a single system using the same set of observations for all models. As long as the observations, the observation weighting, and system being represented are the same, the models can differ in nearly any way imaginable. For example, they may include different processes, different simulation software, different temporal definitions (for example, steady-state and transient models could be considered), and so on. The multiple models need to be calibrated by nonlinear regression. Calibration of the individual models needs to be completed before application of MMA. MMA can be used to rank models and calculate posterior model probabilities. These can be used to (1) determine the relative importance of the characteristics embodied in the alternative models, (2) calculate model-averaged parameter estimates and predictions, and (3) quantify the uncertainty of parameter estimates and predictions in a way that integrates the variations represented by the alternative models. There is a lack of consensus on what model analysis methods are best, so MMA provides four default methods. Two are based on Kullback-Leibler information, and use the AIC (Akaike Information Criterion) or AICc (second-order-bias-corrected AIC) model discrimination criteria. The other two default methods are the BIC (Bayesian Information Criterion) and the KIC (Kashyap Information Criterion) model discrimination criteria. Use of the KIC criterion is equivalent to using the maximum-likelihood Bayesian model averaging (MLBMA) method. AIC, AICc, and BIC can be derived from Frequentist or Bayesian arguments. The default methods based on Kullback-Leibler information have a number of theoretical advantages, including that they tend to favor more complicated models as more data become available than do the other methods, which makes sense in many situations.

Eileen P. Poeter and Mary C. Hill

2007-08-20T23:59:59.000Z

70

Diving decompression models and bubble metrics: Modern computer syntheses  

Science Conference Proceedings (OSTI)

A quantitative summary of computer models in diving applications is presented, underscoring dual phase dynamics and quantifying metrics in tissue and blood. Algorithms covered include the multitissue, diffusion, split phase gradient, linear-exponential, ... Keywords: Bubble metrics, Computer algorithms, Decompression models, Dive computers, Diver staging

B. R. Wienke

2009-04-01T23:59:59.000Z

71

Periodic surface modeling for computer aided nano design  

Science Conference Proceedings (OSTI)

Current solid and surface modeling methods based on Euclidean geometry in traditional computer aided design are not efficient in constructing a large number of atoms and particles. In this paper, we propose a periodic surface model for computer aided ... Keywords: Computer aided nano design, Hyperbolic geometry, Minimal surface, Periodic surface

Yan Wang

2007-03-01T23:59:59.000Z

72

Climate Change Modeling:Computational Opportunities and Challenges  

SciTech Connect

High- delity climate models are the workhorses of modern climate change sciences. In this article, the authors focus on several computational issues associated with climate change modeling, covering simulation methodologies, temporal and spatial modeling restrictions, the role of high-end computing, as well as the importance of data-driven regional climate impact modeling.

Wang, Dali [ORNL; Post, Wilfred M [ORNL; Wilson, Bruce E [ORNL

2011-01-01T23:59:59.000Z

73

Engineering computation under uncertainty - Capabilities of non-traditional models  

Science Conference Proceedings (OSTI)

This paper provides a review of various non-traditional uncertainty models for engineering computation and responds to the criticism of those models. This criticism imputes inappropriateness in representing uncertain quantities and an absence of numerically ... Keywords: Computational efficiency, Fuzzy models, Fuzzy randomness, Imprecise probabilities, Interval analysis, Uncertainty modeling

Bernd Möller; Michael Beer

2008-05-01T23:59:59.000Z

74

Enhanced absorption cycle computer model. Final report  

DOE Green Energy (OSTI)

Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperatures boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorptions systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system`s components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H{sub 2}O triple-effect cycles, LiCl-H{sub 2}O solar-powered open absorption cycles, and NH{sub 3}-H{sub 2}O single-effect and generator-absorber heat exchange cycles. An appendix contains the User`s Manual.

Grossman, G.; Wilk, M. [Technion-Israel Inst. of Tech., Haifa (Israel). Faculty of Mechanical Engineering

1993-09-01T23:59:59.000Z

75

LANL computer model boosts engine efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Feature Stories Public Reading Room: Environmental Documents, Reports LANL Home Phonebook Calendar Video Newsroom News Stories September LANL computer...

76

Computational Modeling of Uranium Hydriding and Complexes  

DOE Green Energy (OSTI)

Uranium hydriding is one of the most important processes that has received considerable attention over many years. Although many experimental and modeling studies have been carried out concerning thermochemistry, diffusion kinetics and mechanisms of U-hydriding, very little is known about the electronic structure and electronic features that govern the U-hydriding process. Yet it is the electronic feature that controls the activation barrier and thus the rate of hydriding. Moreover the role of impurities and the role of the product UH{sub 3} on hydriding rating are not fully understood. An early study by Condon and Larson concerns with the kinetics of U-hydrogen system and a mathematical model for the U-hydriding process. They proposed that diffusion in the reactant phase by hydrogen before nucleation to form hydride phase and that the reaction is first order for hydriding and zero order for dehydriding. Condon has also calculated and measures the reaction rates of U-hydriding and proposed a diffusion model for the U-hydriding. This model was found to be in excellent agreement with the experimental reaction rates. From the slopes of the Arrhenius plot the activation energy was calculated as 6.35 kcal/mole. In a subsequent study Kirkpatrick formulated a close-form for approximate solution to Condon's equation. Bloch and Mintz have proposed the kinetics and mechanism for the U-H reaction over a wide range of pressures and temperatures. They have discussed their results through two models, one, which considers hydrogen diffusion through a protective UH{sub 3} product layer, and the second where hydride growth occurs at the hydride-metal interface. These authors obtained two-dimensional fits of experimental data to the pressure-temperature reactions. Kirkpatrick and Condon have obtained a linear solution to hydriding of uranium. These authors showed that the calculated reaction rates compared quite well with the experimental data at a hydrogen pressure of 1 atm. Powell et al. have studied U-hydriding in ultrahigh vacuum and obtained the linear rate data over a wide range of temperatures and pressures. They found reversible hydrogen sorption on the UH{sub 3} reaction product from kinetic effects at 21 C. This demonstrates restarting of the hydriding process in the presence of UH{sub 3} reaction product. DeMint and Leckey have shown that Si impurities dramatically accelerate the U-hydriding rates. We report our recent results of relativistic computations that vary from complete active space multi-configuration interaction (CAS-MCSCF) followed by multi-reference configuration interaction (MRSDCI) computations that included up to 50 million configurations for modeling of uranium-hydriding with cluster models will be presented.

Balasubramanian, K; Siekhaus, W J; McLean, W

2003-02-03T23:59:59.000Z

77

Camera Models and Fundamental Concepts Used in Geometric Computer Vision  

Science Conference Proceedings (OSTI)

This survey is mainly motivated by the increased availability and use of panoramic image acquisition devices, in computer vision and various of its applications. Different technologies and different computational models thereof exist and algorithms and ...

Peter Sturm; Srikumar Ramalingam; Jean-Philippe Tardif; Simone Gasparini; João Barreto

2011-01-01T23:59:59.000Z

78

Integration of engineering models in computer-aided preliminary design  

E-Print Network (OSTI)

The problems of the integration of engineering models in computer-aided preliminary design are reviewed. This paper details the research, development, and testing of modifications to Paper Airplane, a LISP-based computer ...

Lajoie, Ronnie M.

79

COMPUTATIONAL FLUID DYNAMICS MODELING ANALYSIS OF COMBUSTORS  

DOE Green Energy (OSTI)

In the current fiscal year FY01, several CFD simulations were conducted to investigate the effects of moisture in biomass/coal, particle injection locations, and flow parameters on carbon burnout and NO{sub x} inside a 150 MW GEEZER industrial boiler. Various simulations were designed to predict the suitability of biomass cofiring in coal combustors, and to explore the possibility of using biomass as a reburning fuel to reduce NO{sub x}. Some additional CFD simulations were also conducted on CERF combustor to examine the combustion characteristics of pulverized coal in enriched O{sub 2}/CO{sub 2} environments. Most of the CFD models available in the literature treat particles to be point masses with uniform temperature inside the particles. This isothermal condition may not be suitable for larger biomass particles. To this end, a stand alone program was developed from the first principles to account for heat conduction from the surface of the particle to its center. It is envisaged that the recently developed non-isothermal stand alone module will be integrated with the Fluent solver during next fiscal year to accurately predict the carbon burnout from larger biomass particles. Anisotropy in heat transfer in radial and axial will be explored using different conductivities in radial and axial directions. The above models will be validated/tested on various fullscale industrial boilers. The current NO{sub x} modules will be modified to account for local CH, CH{sub 2}, and CH{sub 3} radicals chemistry, currently it is based on global chemistry. It may also be worth exploring the effect of enriched O{sub 2}/CO{sub 2} environment on carbon burnout and NO{sub x} concentration. The research objective of this study is to develop a 3-Dimensional Combustor Model for Biomass Co-firing and reburning applications using the Fluent Computational Fluid Dynamics Code.

Mathur, M.P.; Freeman, Mark (U.S. DOE National Energy Technology Laboratory); Gera, Dinesh (Fluent, Inc.)

2001-11-06T23:59:59.000Z

80

Computer modeling of jet mixing in INEL waste tanks  

SciTech Connect

The objective of this study is to examine the feasibility of using submerged jet mixing pumps to mobilize and suspend settled sludge materials in INEL High Level Radioactive Waste Tanks. Scenarios include removing the heel (a shallow liquid and sludge layer remaining after tank emptying processes) and mobilizing and suspending solids in full or partially full tanks. The approach used was to (1) briefly review jet mixing theory, (2) review erosion literature in order to identify and estimate important sludge characterization parameters (3) perform computer modeling of submerged liquid mixing jets in INEL tank geometries, (4) develop analytical models from which pump operating conditions and mixing times can be estimated, and (5) analyze model results to determine overall feasibility of using jet mixing pumps and make design recommendations.

Meyer, P.A.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS  

SciTech Connect

The objective if this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The computed time averaged particle velocities and concentrations agree with PIV measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. This phase of the work was presented at the Chemical Reaction Engineering VIII: Computational Fluid Dynamics, August 6-11, 2000 in Quebec City, Canada. To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV technique. The results together with simulations will be presented at the annual meeting of AIChE in November 2000.

Paul Lam; Dimitri Gidaspow

2000-09-01T23:59:59.000Z

82

Department of Computing CSP||B modelling for railway verification  

E-Print Network (OSTI)

University of Surrey Department of Computing Computing Sciences Report CS-12-03 CSP||B modelling Schneider Helen Treharne March 30th 2012 #12;CSP||B modelling for railway verification: the double junction work in verifying railway systems through CSP k B modelling and analysis. In particular we consider

Doran, Simon J.

83

Global sensitivity analysis of stochastic computer models with joint metamodels  

Science Conference Proceedings (OSTI)

The global sensitivity analysis method used to quantify the influence of uncertain input variables on the variability in numerical model responses has already been applied to deterministic computer codes; deterministic means here that the same set of ... Keywords: Computer experiment, Gaussian process, Generalized additive model, Joint modeling, Sobol indices, Uncertainty

Amandine Marrel; Bertrand Iooss; Sébastien Veiga; Mathieu Ribatet

2012-05-01T23:59:59.000Z

84

Integrated Computational Modeling of Materials Joining and ...  

Science Conference Proceedings (OSTI)

... well as, progress made due to high performance computing infrastructure with examples. The examples will range from predictions of heat- and mass-transfer, ...

85

On the Sequential Determination of Model Misfit  

E-Print Network (OSTI)

On the Sequential Determination of Model Misfit Peter Whaite and Frank P. Ferrie TR­CIM­94) 398­6319 Telex: 05 268510 FAX: (514) 398­7348 Email: cim@cim.mcgill.ca #12; On the Sequential

Dudek, Gregory

86

Modeling-Computer Simulations At Nevada Test And Training Range...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL...

87

Computational Modeling of Materials, Minerals and Metals Processing  

Science Conference Proceedings (OSTI)

R.S. Bellur-Ramaswamy, R. Haber, N.A. Sobh and D.A. Tortorelli. Computational Modelling of Thermomechanical Phenomena....................................................85.

88

Microsoft PowerPoint - Murray --- GAO Computer Modelling -- EM...  

NLE Websites -- All DOE Office Websites (Extended Search)

Director Office of Standards and Quality Assurance May 26, 2011 Print Close GAO-11-143 DOE Needs a Comprehensive Strategy and Guidance on Computer Models that Support...

89

NEAMS ToolKit: advanced computational tools for modeling & simulation...  

NLE Websites -- All DOE Office Websites (Extended Search)

NEAMS ToolKit: advanced computational tools for modeling & simulation of advanced reactor systems Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures &...

90

Modeling-Computer Simulations At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration...

91

Modeling-Computer Simulations At Walker-Lane Transitional Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Walker-Lane Transitional Zone Region (Biasi, Et Al., 2009) Exploration...

92

Modeling-Computer Simulations At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Blackwell, Et Al., 2003) Exploration...

93

Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett, 2004) Jump to: navigation, search...

94

Modeling-Computer Simulations At Walker-Lane Transitional Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Walker-Lane Transitional Zone Region (Pritchett, 2004) Exploration...

95

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

96

Modeling-Computer Simulations At Long Valley Caldera Area (Farrar...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity...

97

Modeling-Computer Simulations At San Juan Volcanic Field Area...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At San Juan Volcanic Field Area (Clarkson & Reiter, 1987) Jump to:...

98

Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation,...

99

Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity...

100

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Goff & Decker, 1983) Exploration...

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Modeling-Computer Simulations At Valles Caldera - Redondo Area...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At Valles Caldera - Redondo Area (Roberts, Et Al., 1995) Jump to:...

102

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area (Roberts, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

103

Modeling-Computer Simulations At Chocolate Mountains Area (Alm...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation,...

104

Modeling-Computer Simulations At Long Valley Caldera Area (Newman...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Newman, Et Al., 2006) Exploration Activity...

105

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Heiken & Goff, 1983) Exploration...

106

Modeling-Computer Simulations At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

107

Scientists use world's fastest computer to model materials under...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials under extreme conditions Scientists use world's fastest computer to model materials under extreme conditions Materials scientists are for the first time attempting to...

108

Modeling-Computer Simulations At Dixie Valley Geothermal Field...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009)...

109

Modeling-Computer Simulations At Stillwater Area (Wisian & Blackwell...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At Stillwater Area (Wisian & Blackwell, 2004) Jump to: navigation, search...

110

Modeling-Computer Simulations At Valles Caldera - Redondo Area...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

111

Modeling-Computer Simulations At The Needles Area (Bell & Ramelli...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At The Needles Area (Bell & Ramelli, 2009) Jump to: navigation, search...

112

Modeling-Computer Simulations At Dixie Valley Geothermal Field...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

113

Utilization of Computer Modeling in Superalloy Forging ... - TMS  

Science Conference Proceedings (OSTI)

Computer simulation of superalloy metal forming is now an integral part of forging design. Process modeling is being used for tasks such as definition of preform ...

114

Modeling-Computer Simulations At Kilauea East Rift Area (Rudman...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Kilauea East Rift Area (Rudman & Epp, 1983) Exploration Activity...

115

Math 496: Mathematical Models in Computational Biology ... - CECM  

E-Print Network (OSTI)

Math 496: Mathematical Models in Computational Biology. Lecture Notes for May 17 th. Section 1: Genome Rearrangements. During the process of an ...

116

Development of Medical Simulation Computer Models: Medical Ice...  

NLE Websites -- All DOE Office Websites (Extended Search)

Application in Advanced Laparoscopic Procedures Application in Emergency Response Current Research on Medical Slurry Cooling Development of Medical Simulation Computer Models...

117

New Computer Model Pinpoints Prime Materials for Carbon Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

release and compression, and then developed a computer model to calculate this energy consumption for any material. Smit then obtained a database of 4 million zeolite...

118

Potential formal models for autonomic computing applications  

Science Conference Proceedings (OSTI)

An analysis of the potential formalism, used in the hierarchical system theory is performed, addressing the autonomic computing system design. In that manner, self management of the overall autonomic system can be achieved by influencing the local resources ... Keywords: autonomic computing systems, control theory, hierarchical system theory, optimization

Todor Stoilov; Krasimira Stoilova

2010-06-01T23:59:59.000Z

119

Scaling up transit priority modelling using high-throughput computing  

Science Conference Proceedings (OSTI)

The optimization of Road Space Allocation (RSA) from a network perspective is computationally challenging. An analogue to the Network Design Problem (NDP), RSA can be classified NP-hard. In large-scale networks when the number of alternatives increases ... Keywords: genetic algorithm, high-performance computing, high-throughput computing, transport modelling

Mahmoud Mesbah, Majid Sarvi, Jefferson Tan, Fateme Karimirad

2012-01-01T23:59:59.000Z

120

Stochastic computational models for accurate reliability evaluation of logic circuits  

Science Conference Proceedings (OSTI)

As reliability becomes a major concern with the continuous scaling of CMOS technology, several computational methodologies have been developed for the reliability evaluation of logic circuits. Previous accurate analytical approaches, however, have a ... Keywords: fault tolerance, logic circuits, reliability evaluation, stochastic computation, stochastic computational model

Hao Chen; Jie Han

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A leasing instances based billing model for cloud computing  

Science Conference Proceedings (OSTI)

As a new technology in IT industry, cloud computing has been much focused by both academia and industry. And many topics in cloud computing are under study. However, as one of the most important issue, billing and pricing has been not so much concerned. ... Keywords: billing model, cloud computing, leasing instances, pricing

Qin Yuan; Zhixiang Liu; Junjie Peng; Xing Wu; Jiandun Li; Fangfang Han; Qing Li; Wu Zhang; Xinjin Fan; Shengyuan Kong

2011-05-01T23:59:59.000Z

122

A Computational Model of Mitigating Disease Spread in Spatial Networks  

Science Conference Proceedings (OSTI)

This study examines the problem of disease spreading and containment in spatial networks, where the computational model is capable of detecting disease progression to initiate processes mitigating infection spreads. This paper focuses on disease spread ... Keywords: Computational Epidemiology, Computer Viruses, Disease Progression, Forest Fires, Spatial Networks

Taehyong Kim; Kang Li; Aidong Zhang; Surajit Sen; Murali Ramanathan

2011-04-01T23:59:59.000Z

123

Los Alamos CCS (Center for Computer Security) formal computer security model  

SciTech Connect

This paper provides a brief presentation of the formal computer security model currently being developed at the Los Alamos Department of Energy (DOE) Center for Computer Security (CCS). The initial motivation for this effort was the need to provide a method by which DOE computer security policy implementation could be tested and verified. The actual analytical model was a result of the integration of current research in computer security and previous modeling and research experiences. The model is being developed to define a generic view of the computer and network security domains, to provide a theoretical basis for the design of a security model, and to address the limitations of present models. Formal mathematical models for computer security have been designed and developed in conjunction with attempts to build secure computer systems since the early 70's. The foundation of the Los Alamos DOE CCS model is a series of functionally dependent probability equations, relations, and expressions. The mathematical basis appears to be justified and is undergoing continued discrimination and evolution. We expect to apply the model to the discipline of the Bell-Lapadula abstract sets of objects and subjects. 5 refs.

Dreicer, J.S.; Hunteman, W.J. (Los Alamos National Lab., NM (USA))

1989-01-01T23:59:59.000Z

124

Three-dimensional computer modeling of hydrogen injection and combustion  

DOE Green Energy (OSTI)

The hydrodynamics of hydrogen gas injection into a fixed-volume combustion chamber is analyzed and simulated using KIVA-3, a three-dimensional, reactive flow computer code. Comparisons of the simulation results are made to data obtained at the Combustion Research Facility at Sandia National Laboratory-California (SNL-CA). Simulation of the gas injection problem is found to be of comparable difficulty as the liquid fuel injection in diesel engines. The primary challenge is the large change of length scale from the flow of gas in the orifice to the penetration in the combustion chamber. In the current experiments, the change of length scale is about 4,000. A reduction of the full problem is developed that reduces the change in length scale in the simulation to about 400, with a comparable improvement in computational times. Comparisons of the simulation to the experimental data shows good agreement in the penetration history and pressure rise in the combustion chamber. At late times the comparison is sensitive to the method of determination of the penetration in the simulations. In a comparison of the combustion modeling of methane and hydrogen, hydrogen combustion is more difficult to model, and currently available kinetic models fail to predict the observed autoignition delay at these conditions.

Johnson, N.L.; Amsden, A.A. [Los Alamos National Lab., NM (United States). Theoretical Division; Naber, J.D.; Siebers, D.L. [Sandia National Lab., Livermore, CA (United States)

1995-02-01T23:59:59.000Z

125

3.320 Atomistic Computer Modeling of Materials, Spring 2003  

E-Print Network (OSTI)

Theory and application of atomistic computer simulations to model, understand, and predict the properties of real materials. Energy models, from classical potentials to first-principles approaches. Density-functional theory ...

Marzari, Nicola

126

Overview of ASC Capability Computing System Governance Model  

SciTech Connect

This document contains a description of the Advanced Simulation and Computing Program's Capability Computing System Governance Model. Objectives of the Governance Model are to ensure that the capability system resources are allocated on a priority-driven basis according to the Program requirements; and to utilize ASC Capability Systems for the large capability jobs for which they were designed and procured.

Doebling, Scott W. [Los Alamos National Laboratory

2012-07-11T23:59:59.000Z

127

Random matrix theory for modeling uncertainties in computational mechanics  

E-Print Network (OSTI)

Random matrix theory for modeling uncertainties in computational mechanics C. Soize Laboratory of Engineering Mechanics, University of Marne-la-Vall´ee, 5 boulevard Descartes, 77454 Marne-la-Vallée, France, e in computational mechanics. If data uncertainties can be modeled by parametric probabilistic methods, for a given

Paris-Sud XI, Université de

128

Applying High Performance Computing to Analyzing by Probabilistic Model Checking  

E-Print Network (OSTI)

Applying High Performance Computing to Analyzing by Probabilistic Model Checking Mobile Cellular on the use of high performance computing in order to analyze with the proba- bilistic model checker PRISM. The Figure Generation Script 22 2 #12;1. Introduction We report in this paper on the use of high performance

Schneider, Carsten

129

2006 Special Issue: Synthetic computational models of selective attention  

Science Conference Proceedings (OSTI)

Computational modeling plays an important role to understand the mechanisms of attention. In this framework, synthetic computational models can uniquely contribute to integrate different explanatory levels and neurocognitive findings, with special reference ... Keywords: Awareness, Meditation states, Processing levels, Selective attention, Synchronization

Antonino Raffone

2006-11-01T23:59:59.000Z

130

Overview of ASC Capability Computing System Governance Model  

SciTech Connect

This document contains a description of the Advanced Simulation and Computing Program's Capability Computing System Governance Model. Objectives of the Governance Model are to ensure that the capability system resources are allocated on a priority-driven basis according to the Program requirements; and to utilize ASC Capability Systems for the large capability jobs for which they were designed and procured.

Doebling, Scott W. [Los Alamos National Laboratory

2012-07-11T23:59:59.000Z

131

Forecast Combinations of Computational Intelligence and Linear Models for the  

E-Print Network (OSTI)

Forecast Combinations of Computational Intelligence and Linear Models for the NN5 Time Series Forecasting competition Robert R. Andrawis Dept Computer Engineering Cairo University, Giza, Egypt robertrezk@eg.ibm.com November 6, 2010 Abstract In this work we introduce a forecasting model with which we participated

Atiya, Amir

132

Pultrusion manufacturing process development by computational modelling and methods  

Science Conference Proceedings (OSTI)

This paper deals with the modelling and development of computational schemes to simulate pultrusion processes. Two different computational methods, finite differences and elements, are properly developed and critically analyzed. The methods are applied ... Keywords: Degree of cure, Finite difference method, Finite element method, Numerical modelling, Pultrusion, Temperature

P. Carlone; G. S. Palazzo; R. Pasquino

2006-10-01T23:59:59.000Z

133

Implementing and assessing computational modeling in introductory mechanics  

E-Print Network (OSTI)

Students taking introductory physics are rarely exposed to computational modeling. In a one-semester large lecture introductory calculus-based mechanics course at Georgia Tech, students learned to solve physics problems using the VPython programming environment. During the term 1357 students in this course solved a suite of fourteen computational modeling homework questions delivered using an online commercial course management system. Their proficiency with computational modeling was evaluated in a proctored environment using a novel central force problem. The majority of students (60.4%) successfully completed the evaluation. Analysis of erroneous student-submitted programs indicated that a small set of student errors explained why most programs failed. We discuss the design and implementation of the computational modeling homework and evaluation, the results from the evaluation and the implications for instruction in computational modeling in introductory STEM courses.

Caballero, Marcos D; Schatz, Michael F

2011-01-01T23:59:59.000Z

134

An Integrated Computational Model for Additive Manufacturing ...  

Science Conference Proceedings (OSTI)

As part of this integrated model, this paper describes a macroscopic thermo- mechanical modeling approach to simulate the layer-by-layer AM process to build ...

135

HELIOS: a computational model for solar concentrators  

DOE Green Energy (OSTI)

HELIOS is a computer code for mathematically simulating the behavior of the flux pattern from the concentrator field for a solar central receiver power station. Statistical methods are used to incorporate nondeterministic factors. The code is described, and some examples of its output are given.

Biggs, F.; Vittitoe, C.N.

1977-01-01T23:59:59.000Z

136

Integrating Numerical Computation into the Modeling Instruction Curriculum  

E-Print Network (OSTI)

We describe a way to introduce physics high school students with no background in programming to computational problem-solving experiences. Our approach builds on the great strides made by the Modeling Instruction reform curriculum. This approach emphasizes the practices of "Developing and using models" and "Computational thinking" highlighted by the NRC K-12 science standards framework. We taught 9th-grade students in a Modeling-Instruction-based physics course to construct computational models using the VPython programming environment. Numerical computation within the Modeling Instruction curriculum provides coherence among the curriculum's different force and motion models, links the various representations which the curriculum employs, and extends the curriculum to include real-world problems that are inaccessible to a purely analytic approach.

Caballero, Marcos D; Aiken, John M; Douglas, Scott S; Scanlon, Erin M; Thoms, Brian; Schatz, Michael F

2012-01-01T23:59:59.000Z

137

Computationally efficient nonlinear predictive control based on neural Wiener models  

Science Conference Proceedings (OSTI)

This paper describes a computationally efficient nonlinear model predictive control (MPC) algorithm based on neural Wiener models and its application. The model contains a linear dynamic part in series with a steady-state nonlinear part which is realised ... Keywords: Linearisation, Model predictive control, Neural networks, Optimisation, Process control, Wiener systems

Maciej ?awry?czuk

2010-12-01T23:59:59.000Z

138

Modeling-Computer Simulations (Combs, Et Al., 1999) | Open Energy  

Open Energy Info (EERE)

Modeling-Computer Simulations (Combs, Et Al., 1999) Modeling-Computer Simulations (Combs, Et Al., 1999) Exploration Activity Details Location Unspecified Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Various models/simulations used to analyze data obtained from slimhole drilling. References Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen, Gene Polik (1999) Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Testing In Geothermal Exploration Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_(Combs,_Et_Al.,_1999)&oldid=387232" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties

139

Property:Data Comparison to Computational Models | Open Energy Information  

Open Energy Info (EERE)

Comparison to Computational Models Comparison to Computational Models Jump to: navigation, search Property Name Data Comparison to Computational Models Property Type Text Pages using the property "Data Comparison to Computational Models" Showing 14 pages using this property. A Alden Large Flume + Designed as needed Alden Small Flume + Designed as needed Alden Tow Tank + Velocity, flow characteristics Alden Wave Basin + Wave height, period, length, velocity D Davidson Laboratory Tow Tank + Comparisons to validate and improve CFD models are made periodically. M MHL Free Surface Channel + Custom MHL Data Acquisition System includes graphical displays for the results of each sampling channel. MHL Tow Tank + Custom MHL Data Acquisition System includes graphical displays for the results of each sampling channel.

140

Transforming High School Physics with Modeling and Computation  

E-Print Network (OSTI)

The Engage to Excel (PCAST) report, the National Research Council's Framework for K-12 Science Education, and the Next Generation Science Standards all call for transforming the physics classroom into an environment that teaches students real scientific practices. This work describes the early stages of one such attempt to transform a high school physics classroom. Specifically, a series of model-building and computational modeling exercises were piloted in a ninth grade Physics First classroom. Student use of computation was assessed using a proctored programming assignment, where the students produced and discussed a computational model of a baseball in motion via a high-level programming environment (VPython). Student views on computation and its link to mechanics was assessed with a written essay and a series of think-aloud interviews. This pilot study shows computation's ability for connecting scientific practice to the high school science classroom.

Aiken, John M

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Several Computational Opportunities and Challenges Associated with Climate Change Modeling  

SciTech Connect

One of the key factors in the improved understanding of climate science is the development and improvement of high fidelity climate models. These models are critical for projections of future climate scenarios, as well as for highlighting the areas where further measurement and experimentation are needed for knowledge improvement. In this paper, we focus on several computing issues associated with climate change modeling. First, we review a fully coupled global simulation and a nested regional climate model to demonstrate key design components, and then we explain the underlying restrictions associated with the temporal and spatial scale for climate change modeling. We then discuss the role of high-end computers in climate change sciences. Finally, we explain the importance of fostering regional, integrated climate impact analysis. Although we discuss the computational challenges associated with climate change modeling, and we hope those considerations can also be beneficial to many other modeling research programs involving multiscale system dynamics.

Wang, Dali [ORNL; Post, Wilfred M [ORNL; Wilson, Bruce E [ORNL

2010-01-01T23:59:59.000Z

142

Computer program for determining the thermodynamic properties of water  

DOE Green Energy (OSTI)

This program was written to be used as a subroutine. The program determines the thermodynamic properties of water given any of the following pairs of knowns to define a thermodynamic state: pressure and entropy, pressure and enthalpy, pressure and quality, temperature and pressure, or temperature and quality. These five pairs of knowns allow the user to evaluate any thermodynamic cycle using water, as a working fluid. The basic equations came from Keenan, Keyes, Hill and Moore, Steam Tables, John Wiley and Sons, 1969. A complete derivation of equations, program listing, program symbol description, a complete set of flow charts and a sample steam turbine calculation are included.

Riemer, D.H.; Jacobs, H.R.; Boehm, R.F.

1976-07-01T23:59:59.000Z

143

Computational mechanical modeling of the behavior of carbon nanotubes  

Science Conference Proceedings (OSTI)

This paper presents a computational method for the mechanical simulation of carbon nanotubes, whose complexity is linear on the number of atoms. The regularity of a graphene lattice at its energy ground permits the definition of a tiling scheme that ... Keywords: carbon nanotubes, computational method, mathematical modeling, molecular dynamics, numerical simulation

Maria Morandi Cecchi; Alberto Giovanni Busetto

2007-08-01T23:59:59.000Z

144

Serial model for attack tree computations  

Science Conference Proceedings (OSTI)

In this paper we extend the standard attack tree model by introducing temporal order to the attacker's decision making process. This will allow us to model the attacker's behaviour more accurately, since this way it is possible to study his actions related ...

Aivo Jürgenson; Jan Willemson

2009-12-01T23:59:59.000Z

145

Systems, methods and computer-readable media to model kinetic performance of rechargeable electrochemical devices  

DOE Patents (OSTI)

A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics. The computing system also analyzes the cell information of the electrochemical cell with a Butler-Volmer (BV) expression modified to determine exchange current density of the electrochemical cell by including kinetic performance information related to pulse-time dependence, electrode surface availability, or a combination thereof. A set of sigmoid-based expressions may be included with the modified-BV expression to determine kinetic performance as a function of pulse time. The determined exchange current density may be used with the modified-BV expression, with or without the sigmoid expressions, to analyze other characteristics of the electrochemical cell. Model parameters can be defined in terms of cell aging, making the overall kinetics model amenable to predictive estimates of cell kinetic performance along the aging timeline.

Gering, Kevin L.

2013-01-01T23:59:59.000Z

146

Computer program for determining the thermodynamic properties of Freon refrigerants  

DOE Green Energy (OSTI)

This program was written to be used as a subroutine. The program determines the thermodynamics of Freon refrigerants. The following refrigerants can be analyzed F-11, F-12, F-13, F-14, F-21, F-22, F-23, F-113, and F-114. The subroutine can evaluate a thermodynamic state for these refrigerants given any of the following pairs of state quantities: pressure and quality, pressure and entropy, pressure and enthalpy, temperature and quality, temperature and specific volume, and temperature and pressure. These six pairs of knowns allow the user to analyze any thermodynamic cycle utilizing a refrigerant as the working fluid. The Downing form of the Martin equation of state was used. This report contains a brief description, flow chart and listing of all subroutines required.

Riemer, D.H.; Jacobs, H.R.; Boehm, R.F.

1977-12-01T23:59:59.000Z

147

Computer program for determining the thermodynamic properties of freon refrigerants  

DOE Green Energy (OSTI)

This program was written to be used as a subroutine. The program determines the thermodynamics of Freon refrigerants. The following refrigerants can be analyzed F-11, F-12, F-13, F-14, F-21, F-22, F-23, F-113, and F-114. The subroutine can evaluate a thermodynamic state for these refrigerants given any of the following pairs of state quantities: pressure and quality, pressure and entropy, pressure and enthalpy, temperature and quality, temperature and specific volume and temperature and pressure. These six pairs of knowns allow the user to analyze any thermodynamic cycle utilizing a refrigerant as the working fluid. The Downing form of the Martin equation of state was used. A brief description, flow chart, and listing of all subroutines required are presented.

Riemer, D.H.; Jacobs, H.R.; Boehm, R.F.

1976-07-01T23:59:59.000Z

148

Computer program for determining the thermodynamic properties of light hydrocarbons  

DOE Green Energy (OSTI)

This program was written to be used as a subroutine. The program determines the thermodynamics of light hydrocarbons. The following light hydrocarbons can be analyzed: butane, ethane, ethylene, heptane, hexane, isobutane, isopentane, methane, octane, pentane, propane and propylene. The subroutine can evaluate a thermodynamic state for the light hydrocarbons given any of the following pairs of state quantities: pressure and quality, pressure and enthalpy, pressure and entropy, temperature and pressure, temperature and quality and temperature and specific volume. These six pairs of knowns allow the user to analyze any thermodynamic cycle utilizing a light hydrocarbon as the working fluid. The Starling--Benedict--Webb--Rubin equation of state was used. A brief description, flowchart, listing and required equations for each subroutine are included.

Riemer, D.H.; Jacobs, H.R.; Boehm, R.F.; Cook, D.S.

1976-01-01T23:59:59.000Z

149

Computer program for determining the thermodynamic properties of light hydrocarbons  

DOE Green Energy (OSTI)

This program was written to be used as a subroutine. The program determines the thermodynamics of light hydrocarbons. The following light hydrocarbons can be analyzed: butane, ethane, ethylene, heptane, hexane, isobutane, isopentane, methane, octane, pentane, propane and propylene. The subroutine can evaluate a thermodynamic state for the light hydrocarbons given any of the following pairs of state quantities: pressure and quality, pressure and enthalpy, pressure and entropy, temperature and pressure, temperature and quality and temperature and specific volume. These six pairs of knowns allow the user to analyze any thermodynamic cycle utilizing a light hydrocarbon as the working fluid. The Starling-Benedict-Webb-Rubin equation of state was used. This report contains a brief description, flowchart, listing and required equations for each subroutine.

Riemer, D.H.; Jacobs, H.R.; Boehm, R.F.; Cook, D.S.

1976-07-01T23:59:59.000Z

150

Computer simulation and topological modeling of radiation effects in zircon  

E-Print Network (OSTI)

The purpose of this study is to understand on atomic level the structural response of zircon (ZrSiO4) to irradiation using molecular dynamics (MD) computer simulations, and to develop topological models that can describe ...

Zhang, Yi, 1979-

2006-01-01T23:59:59.000Z

151

DOE Issues Funding Opportunity for Advanced Computational and Modeling  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding Opportunity for Advanced Computational and Funding Opportunity for Advanced Computational and Modeling Research for the Electric Power System DOE Issues Funding Opportunity for Advanced Computational and Modeling Research for the Electric Power System May 23, 2012 - 8:36am Addthis The objective of this Funding Opportunity Announcement (FOA) is to leverage scientific advancements in mathematics and computation for application to power system models and software tools, with the long-term goal of enabling real-time protection and control based on wide-area sensor measurements. Specifically, this FOA focuses on two foundational research challenges: 1) handling of large data sets to improve suitability for operational (and/or planning) models and analysis; and 2) "faster than real-time" simulations that improve understanding of

152

Low Dose Radiation Research Program: Use of Computational Modeling to  

NLE Websites -- All DOE Office Websites (Extended Search)

Use of Computational Modeling to Evaluate Hypotheses about the Use of Computational Modeling to Evaluate Hypotheses about the Molecular and Cellular Mechanisms of Bystander Effects Authors: Yuchao “Maggie” Zhao and Rory Conolly Institutions: CIIT Centers for Health Research, 6 Davis Drive, Research Triangle Park, North Carolina A detailed understanding of the biological mechanisms of radiation-induced damage at the molecular and cellular levels is needed for accurate assessment of the shape of the dose-response curve for radiationinduced health effects in the intact organism. Computational models can contribute to the improved understanding of mechanisms through integration of data and quantitative evaluation of hypotheses. We propose to develop a novel computational model of bystander effects elicited by oxidative stress and a

153

LANL researchers use computer modeling to study HIV | National Nuclear  

National Nuclear Security Administration (NNSA)

researchers use computer modeling to study HIV | National Nuclear researchers use computer modeling to study HIV | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LANL researchers use computer modeling to study HIV LANL researchers use computer modeling to study HIV Posted By Office of Public Affairs Los Alamos National Laboratory researchers are investigating the complex

154

15.094 Systems Optimization: Models and Computation, Spring 2002  

E-Print Network (OSTI)

A computational and application-oriented introduction to the modeling of large-scale systems in a wide variety of decision-making domains and the optimization of such systems using state-of-the-art optimization software. ...

Freund, Robert Michael

155

Computational model design and performance estimation in registration brake control  

Science Conference Proceedings (OSTI)

Electric motorcycles are applicable to both toys and real motorcycles, and also is a reference for constructing larger electrical vehicles. A design computational model of regenerative braking control of electric motorcycles and an experimental identification ...

P. S. Pa; S. C. Chang

2009-06-01T23:59:59.000Z

156

OREMPdb: a semantic dictionary of computational pathway models  

E-Print Network (OSTI)

Background The information coming from biomedical ontologies and computational pathway models is expanding continuously: research communities keep this process up and their advances are generally shared by means of dedicated ...

Umeton, Renato

157

COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS  

Science Conference Proceedings (OSTI)

The objective of this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed and is appended in this report. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The details are presented in the attached paper titled ''CFD Simulation of Flow and Turbulence in a Slurry Bubble Column''. This phase of the work is in press in a referred journal (AIChE Journal, 2002) and was presented at the Fourth International Conference on Multiphase Flow (ICMF 2001) in New Orleans, May 27-June 1, 2001 (Paper No. 909). The computed time averaged particle velocities and concentrations agree with Particle Image Velocimetry (PIV) measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. To better understand turbulence we studied fluidization in a liquid-solid bed. This work was also presented at the Fourth International Conference on Multiphase Flow (ICMF 2001, Paper No. 910). To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV technique. This report summarizes the measurements and simulations completed so far. This work will continue under the sponsorship of the National Science Foundation and Dow Corning Corporation. This phase of the work is part of the DOE/Industry/University Multiphase Fluid Dynamics Research Consortium. Optimization of the LaPorte pilot plant reactor was attempted by rearranging the heat exchangers. The paper accepted for presentation at the Sixth World Congress of Chemical Engineering, Melbourne, Australia, September 23-27, 2001 is a part of this report.

Paul C.K. Lam; Isaac K. Gamwo; Dimitri Gidaspow

2002-05-01T23:59:59.000Z

158

Computational Modeling of Materials, Minerals, and Metals  

Science Conference Proceedings (OSTI)

Feb 1, 2002 ... 249-250]A Model of the Cathode Dynamics in Electric Field-Enhanced Smelting and Refining of Steel[pp. ... TMS Student Member price: 721.00.

159

Earthquake ground motion modeling on parallel computers  

Science Conference Proceedings (OSTI)

We describe the design and discuss the performance of a parallel elastic wave propagation simulator that is being used to model and study earthquake-induced ground motion in large sedimentary basins. The components of the system include mesh generators, ...

Hesheng Bao; Jacobo Bielak; Omar Ghattas; Loukas F. Kallivokas; David R. O'Hallaron; Jonathan R. Shewchuk; Jifeng Xu

1996-11-01T23:59:59.000Z

160

Modeling-Computer Simulations At Coso Geothermal Area (1999) | Open Energy  

Open Energy Info (EERE)

Modeling-Computer Simulations At Coso Geothermal Area (1999) Modeling-Computer Simulations At Coso Geothermal Area (1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Coso Geothermal Area (1999) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1999 Usefulness not indicated DOE-funding Unknown Exploration Basis To analyze attenuation and source properties Notes A multiple-empirical Green's function method was used to determine source properties of small (M -0.4 to 1.3) earthquakes and P-wave and S-wave attenuation at the Coso Geothermal Field. Source properties of a previously identified set of clustered events from the Coso geothermal region are first analyzed using an empirical Green's function (EGF) method.

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices  

SciTech Connect

A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.

Gering, Kevin L

2013-08-27T23:59:59.000Z

162

Interactive computational models of particle dynamics using virtual reality  

DOE Green Energy (OSTI)

An increasing number of industrial applications rely on computational models to reduce costs in product design, development, and testing cycles. Here, the authors discuss an interactive environment for the visualization, analysis, and modification of computational models used in industrial settings. In particular, they focus on interactively placing massless, massed, and evaporating particulate matter in computational fluid dynamics applications.they discuss the numerical model used to compute the particle pathlines in the fluid flow for display and analysis. They briefly describe the toolkits developed for vector and scalar field visualization, interactive particulate source placement, and a three-dimensional GUI interface. This system is currently used in two industrial applications, and they present the tools in the context of these applications. They summarize the current state of the project and offer directions for future research.

Canfield, T.; Diachin, D.; Freitag, L.; Heath, D.; Herzog, J. [Argonne National Lab., IL (United States); Michels, W. [Nalco Fuel Tech, Naperville, IL (United States)

1996-12-31T23:59:59.000Z

163

Computational load in model physics of the parallel NCAR community climate model  

SciTech Connect

Maintaining a balance of computational load over processors is a crucial issue in parallel computing. For efficient parallel implementation, complex codes such as climate models need to be analyzed for load imbalances. In the present study we focus on the load imbalances in the physics portion of the community climate model`s (CCM2) distributed-memory parallel implementation on the Intel Touchstone DELTA computer. We note that the major source of load imbalance is the diurnal variation in the computation of solar radiation. Convective weather patterns also cause some load imbalance. Land-ocean contrast is seen to have little effect on computational load in the present version of the model.

Michalakes, J.G.; Nanjundiah, R.S.

1994-11-01T23:59:59.000Z

164

Modeling-Computer Simulations (Ozkocak, 1985) | Open Energy Information  

Open Energy Info (EERE)

Ozkocak, 1985) Ozkocak, 1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations (Ozkocak, 1985) Exploration Activity Details Location Unspecified Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes CONTRIBUTION OF THE LATEST ADVANCES IN GEOLOGY, GEOCHEMISTRY AND GEOPHYSICS TO GEOTHERMAL PROSPECTING. Twenty-five papers were received on this topic, 14 of them concerning geology, four geochemistry and seven geophysics. The papers dealing with geology describe attempts to build models of underground geothermal activity and study the factors that control the formation of reservoir and cap rocks (regional plate tectonics, local tectonics, stratigraphy, geochemistry and volcanism) and the relations

165

Computational Fuel Cell Research and SOFC Modeling at Penn State  

E-Print Network (OSTI)

Computational Fuel Cell Research and SOFC Modeling at Penn State Chao-Yang Wang Professor of PEM Fuel Cells SOFC Modeling & Simulation Fuel Cell Controls Summary #12;ECEC Overview Vision: provide, DMFC, and SOFC #12;ECEC Facilities (>5,000 sq ft) Fuel Cell/Battery Experimental Labs Fuel Cell

166

DYNASTORE - A Computer Model for Quantifying Dynamic Energy Storage Benefits  

Science Conference Proceedings (OSTI)

Now in development, the DYNASTORE computer model is the first production cost model designed to accurately represent changes in the utility daily load. By quantifying the dynamic benefits of energy storage, it highlights the significant cost savings linked with this technology.

1987-12-16T23:59:59.000Z

167

Computational challenges in large-scale air pollution modelling  

Science Conference Proceedings (OSTI)

Many difficulties must be overcome when large-scale air pollution models are treated numerically, because the physical and chemical processes in the atmosphere are very fast. This is why it is necessary to use a large space domain in order ... Keywords: air pollution models, finite elements, ordinary differential equations, parallel computational, partial differential equations, quasi-steady-state-approximation

Tzvetan Ostromsky; Wojciech Owczarz; Zahari Zlatev

2001-06-01T23:59:59.000Z

168

A computationally efficient method of identifying generic fuzzy models  

Science Conference Proceedings (OSTI)

There is on-going interest in the application of adaptive fuzzy model-based predictive control techniques which attempt to formulate and solve the control problem when the systems are uncertain and non-linear. This paper proposes a computational efficient ... Keywords: Adaptive control, Air-conditioning system, Fuzzy control, Fuzzy relations, Fuzzy system models

Yue Wu; Arthur Dexter

2009-09-01T23:59:59.000Z

169

Modelling of a Utility Boiler Using Parallel Computing  

Science Conference Proceedings (OSTI)

A mathematical model for the simulation of the turbulent reactive flow and heat transfer in a power station boiler has been parallelized. The mathematical model is based on the numerical solution of the governing equations for mass, momentum, energy ... Keywords: boilers, computational fluid dynamics, discrete ordinates, parallel processing, radiative heat transfer, turbulent reactive flows

P. J. Coelho; P. A. Novo; M. G. Carvalho

1999-03-01T23:59:59.000Z

170

Computational approaches to model the phase behaviour of  

E-Print Network (OSTI)

system with uniform physical and chemical characteristics . #12;The phase diagram of water 15 ice of water models (i.e.various conditions, ice phases)! #12;Less attention received for solid water untilComputational approaches to model the phase behaviour of molecular liquids and solids: water

Kjelstrup, Signe

171

A computer simulation model for examining cogeneration alternatives  

Science Conference Proceedings (OSTI)

The purpose of this paper is to describe a computer simulation model that was used to analyze the technical and economic aspects of specific cogeneration applications. The model was coded in the APL language and runs on the Scientific Time Sharing System. ...

P. F. Schweizer; R. E. Sieck

1978-12-01T23:59:59.000Z

172

DEUS Computer Evaluation Model, Volume 1: Program Descriptive Manual  

Science Conference Proceedings (OSTI)

This report presents DEUS, a computer simulation model of duel energy use systems. The model is designed for the evaluation of cogeneration systems and is a useful tool for utilities as well as cogenerators. Volume 1 describes the program methodology and its data base; Volume 2 is a user's manual.

1982-12-01T23:59:59.000Z

173

Increasing NOAA's computational capacity to improve global forecast modeling  

E-Print Network (OSTI)

1 Increasing NOAA's computational capacity to improve global forecast modeling A NOAA of the NWS's forecast products, even its regional forecast products, are constrained by the limitations of NOAA's global forecast model. Unfortunately, our global forecasts are less accurate than those from

Hamill, Tom

174

Decreasing Computational Time of Urban Cellular Automata Through Model Portability  

Science Conference Proceedings (OSTI)

This paper investigates how portability of a model between different computer operating systems can lead to increased efficiency in code execution. The portability problem is not a trivial one, as many geographic models are designed to be run inside ... Keywords: Calibration, Cellular automata, Portability

Charles Dietzel; Keith C. Clarke

2006-06-01T23:59:59.000Z

175

Modeling-Computer Simulations (Lewicki & Oldenburg, 2004) | Open Energy  

Open Energy Info (EERE)

Modeling-Computer Simulations (Lewicki & Oldenburg, Modeling-Computer Simulations (Lewicki & Oldenburg, 2004) Exploration Activity Details Location Unspecified Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes In this section we present numerical simulations of CO2 migration, seepage, and atmospheric dispersion. The purpose of these simulations is to evaluate the magnitudes and form of anomalous CO2 concentrations and fluxes that might be expected to emanate from a given model hidden geothermal system. From this information, we can design and evaluate potential monitoring and detection methods. References Jennifer L. Lewicki, Curtis M. Oldenburg (2004) Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Monitoring Retrieved from

176

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Wilt & Haar, 1986) Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes A computer program capable of two-dimensional modeling of gravity data was used in interpreting gravity observations along profiles A--A' and B--B' (Talwani et al., 1959). Densities of 2.12, 2.40, and 2.65 g/cm a were used for modeling the near-surface caldera fill, the underlying volcanics, and the basement sections, respectively (Fig. 8). Although correlation with well data was done whenever possible, there is some uncertainty to the

177

How to Determine if Your Computer is Part of a Domain -Windows XP Page 1 of 3 How to Determine if Your Computer is Part of a Domain -Windows XP  

E-Print Network (OSTI)

How to Determine if Your Computer is Part of a Domain - Windows XP Page 1 of 3 How to Determine if Your Computer is Part of a Domain - Windows XP Last Update: 11/28/2011 1. Click the Windows Start: #12;How to Determine if Your Computer is Part of a Domain - Windows XP Page 2 of 3 4. From the popup

Mladenoff, David

178

Low Dose Radiation Research Program: Computational Modeling of Biochemical  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Modeling of Biochemical Pathways Linking Ionizing Computational Modeling of Biochemical Pathways Linking Ionizing Radiation to Cell Cycle Arrest, Apoptosis, and Tumor Incidence Authors: Yuchao Maggie Zhao and Rory Conolly Institutions: Center for Computational Systems Biology CIIT Centers for Health Research Long-Range Goal: To develop an integrated, computational framework for the prediction of low-dose-response to ionizing radiation (IR) in people. Methodology: To provide a flexible framework to evaluate mechanisms of cellular adaptive responses after exposure to IR, three progressively more complicated descriptions of biochemical pathways linking DNA damage with cell-cycle checkpoint control and apoptosis were developed. These descriptions focus on p53-dependent checkpoint arrest and apoptosis, p73-dependent apoptosis, and Chk2-dependent checkpoint arrest,

179

Methodology for characterizing modeling and discretization uncertainties in computational simulation  

SciTech Connect

This research effort focuses on methodology for quantifying the effects of model uncertainty and discretization error on computational modeling and simulation. The work is directed towards developing methodologies which treat model form assumptions within an overall framework for uncertainty quantification, for the purpose of developing estimates of total prediction uncertainty. The present effort consists of work in three areas: framework development for sources of uncertainty and error in the modeling and simulation process which impact model structure; model uncertainty assessment and propagation through Bayesian inference methods; and discretization error estimation within the context of non-deterministic analysis.

ALVIN,KENNETH F.; OBERKAMPF,WILLIAM L.; RUTHERFORD,BRIAN M.; DIEGERT,KATHLEEN V.

2000-03-01T23:59:59.000Z

180

Develop baseline computational model for proactive welding stress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Develop baseline computational model for proactive welding stress Develop baseline computational model for proactive welding stress management to suppress helium induced cracking during weld repair Develop baseline computational model for proactive welding stress management to suppress helium induced cracking during weld repair There are over 100 nuclear power plants operating in the U.S., which generate approximately 20% of the nation's electricity. These plants range from 15 to 40 years old. Extending the service lives of the current fleet of nuclear power plants beyond 60 years is imperative to allow for the environmentally-sustainable energy infrastructure being developed and matured. Welding repair of irradiated nuclear reactor materials (such as austenitic stainless steels) is especially challenging because of the

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Carbonaceous Chemistry for Computational Modeling Licensing and Partnership Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry for Computational Modeling Chemistry for Computational Modeling Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) has developed a software platform entitled Carbonaceous Chemistry for Computational Modeling (C3M) that is used to access a variety of kinetic processes and reaction mechanisms typically found in coal gasification, gas clean-up, and carbon capture processes. This unique software provides the user the ability to conduct virtual kinetic experiments using leading kinetic packages and available experimental data to evaluate kinetic predictions as a function of fuel and sorbent type and/or operating conditions. A Patent Cooperation Treaty application was filed in June 2008. NETL is seeking non-exclusive licensing partners interested in implementing

182

Computer modeling reveals how surprisingly potent hepatitis C drug works  

NLE Websites -- All DOE Office Websites (Extended Search)

Hepatitis C computer modeling Hepatitis C computer modeling Computer modeling reveals how surprisingly potent hepatitis C drug works A study reveals how daclatasvir targets one of its proteins and causes the fastest viral decline ever seen with anti-HCV drugs - within 12 hours of treatment. February 19, 2013 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

183

Modeling-Computer Simulations (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

Modeling-Computer Simulations (Laney, 2005) Modeling-Computer Simulations (Laney, 2005) Exploration Activity Details Location Unspecified Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Design of Sampling Strategies to Detect CO2 Emissions From Hidden Geothermal Systems, Lewicki, Oldenburg and Kennedy. The objective of this project is to investigate geothermal CO2 monitoring in the near surface as a tool to discover hidden geothermal reservoirs. A primary goal of this project is to develop an approach that places emphasis on cost and time-efficient near-surface exploration methods and yields results to guide and focus more cost-intensive geophysical measurements, installation of deep wells, and geochemical analyses of deep fluids. To this end, we

184

The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report  

SciTech Connect

In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

2009-10-12T23:59:59.000Z

185

Cross-cooled dehumidifier model test results and computer simulations  

DOE Green Energy (OSTI)

Research on the development of a solar operated cross-cooled desiccant cooling system is described. A 15 cm x 15 cm x 15 cm (6'' x 6'' x 6'') cross-cooled silica gel desiccant dehumidifier model was designed, built and tested. The process of producing the silica gel sheets, the design and construction of the unit, the test setup and the test procedures are described in detail. A total of twenty tests were performed to determine the effect of inlet process stream dew point, process stream and cooling stream flowrates and regeneration stream temperature and dew point, on the performance of the unit. The test results show that the unit performance improves with increasing regeneration temperature, process stream flowrate and process air inlet dew point. The unit performance decreases with increase of the regeneration stream dew point. The results clearly show that the process stream inlet dew point is the dominating factor and that the concept of cross-cooling works very well. With moderate cross-cooling, the unit performance can increase over 50%. All tests were simulated by a computer program. The experimental and theoretical results are in very good agreement.

Mei, V.; Lavan, Z.

1979-11-01T23:59:59.000Z

186

Agent-based computational models and generative social science  

E-Print Network (OSTI)

This article argues that the agent-based computational model permits a distinctive approach to social science for which the term “generative ” is suitable. In defending this terminology, features distinguishing the approach from both “inductive ” and “deductive ” science are given. Then, the following specific contributions to social science are discussed: The agent-based computational model is a new tool for empirical research. It offers a natural environment for the study of connectionist phenomena in social science. Agent-based modeling provides a powerful way to address certain enduring—and especially interdisciplinary—questions. It allows one to subject certain core theories—such as neoclassical microeconomics—to important types of stress (e.g., the effect of evolving preferences). It permits one to study how rules of individual behavior give rise—or “map up”—to macroscopic regularities and organizations. In turn, one can employ laboratory behavioral research findings to select among competing agent-based (“bottom up”) models. The agent-based approach may well have the important effect of decoupling individual rationality from macroscopic equilibrium and of separating decision science from social science more generally. Agent-based modeling offers powerful new forms of hybrid theoretical-computational work; these are particularly relevant to the study of non-equilibrium systems. The agentbased approach invites the interpretation of society as a distributed computational device, and in turn the interpretation of social dynamics as a type of computation. This interpretation raises important foundational issues in social science—some related to intractability, and some to undecidability proper. Finally, since “emergence” figures prominently in this literature, I take up the connection between agent-based modeling and classical emergentism, criticizing the latter and arguing that the two are incompatible. ? 1999 John Wiley &

Joshua M. Epstein

1999-01-01T23:59:59.000Z

187

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Roberts, Et Al., 1995) Roberts, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area (Roberts, Et Al., 1995) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Modeling of the amplitude data, using the Aki-Lamer method, confirmed that this anomaly exists and we estimated quantitative parameters defining it. All model parameters were physically meaningful except for one. The value for Q inside the anomaly, required to explain the data, was unrealistically low. This was probably due to the inability to include additional structural complexity within the low-Q zone that would account for a

188

Modeling-Computer Simulations At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Area Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Using a simple one-dimensional steady-state fluid flow model, the helium content and isotopic composition imply vertical fluid flow rates from the mantle of _7 mm/yr. This is a strict lower limit to the fluid flow rate: the one-dimensional model does not consider diffusive re-distribution of helium or mixing with water containing only a crustal helium component and

189

Applications of computer modeling at Wrightson, Johnson, Haddon & Williams, Inc  

Science Conference Proceedings (OSTI)

Computer modeling has become useful as an investigative tool and as a client communication and explanation tool in the field of acoustical consulting. A variety of in?house developed and commercially available applications is in constant use at the firm of Wrightson

2002-01-01T23:59:59.000Z

190

innovati nNREL Computer Models Integrate Wind Turbines with  

E-Print Network (OSTI)

innovati nNREL Computer Models Integrate Wind Turbines with Floating Platforms Far off the shores for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective

191

Computer Modeling of Carbon Metabolism Enables Biofuel Engineering (Fact Sheet)  

DOE Green Energy (OSTI)

In an effort to reduce the cost of biofuels, the National Renewable Energy Laboratory (NREL) has merged biochemistry with modern computing and mathematics. The result is a model of carbon metabolism that will help researchers understand and engineer the process of photosynthesis for optimal biofuel production.

Not Available

2011-09-01T23:59:59.000Z

192

Modeling-Computer Simulations At Yellowstone Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Yellowstone Region (Laney, 2005) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Localized Strain as a Discriminator of Hidden Geothermal Systems, Vasco and Foxall, 2005. Recent work has focused on (1) collaborating with Alessandro Ferretti to use Permanent Scatterer (PS) InSAR data to infer strain at depth, (2) working with Lane Johnson to develop a dynamic faulting model, and (3) acquiring InSAR data for the region surrounding the Dixie Valley fault zone in collaboration with Dr. William Foxall of LLNL. The InSAR data

193

Modeling-Computer Simulations At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dixie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of

194

A Soft Computing Model for Physicians' Decision Process  

E-Print Network (OSTI)

In this paper the author presents a kind of Soft Computing Technique, mainly an application of fuzzy set theory of Prof. Zadeh [16], on a problem of Medical Experts Systems. The choosen problem is on design of a physician's decision model which can take crisp as well as fuzzy data as input, unlike the traditional models. The author presents a mathematical model based on fuzzy set theory for physician aided evaluation of a complete representation of information emanating from the initial interview including patient past history, present symptoms, and signs observed upon physical examination and results of clinical and diagnostic tests.

Biswas, Siddharths Sankar

2010-01-01T23:59:59.000Z

195

COMPUTER MODEL AND SIMULATION OF A GLOVE BOX PROCESS  

Science Conference Proceedings (OSTI)

The development of facilities to deal with the disposition of nuclear materials at an acceptable level of Occupational Radiation Exposure (ORE) is a significant issue facing the nuclear community. One solution is to minimize the worker's exposure though the use of automated systems. However, the adoption of automated systems for these tasks is hampered by the challenging requirements that these systems must meet in order to be cost effective solutions in the hazardous nuclear materials processing environment. Retrofitting current glove box technologies with automation systems represents potential near-term technology that can be applied to reduce worker ORE associated with work in nuclear materials processing facilities. Successful deployment of automation systems for these applications requires the development of testing and deployment strategies to ensure the highest level of safety and effectiveness. Historically, safety tests are conducted with glove box mock-ups around the finished design. This late detection of problems leads to expensive redesigns and costly deployment delays. With wide spread availability of computers and cost effective simulation software it is possible to discover and fix problems early in the design stages. Computer simulators can easily create a complete model of the system allowing a safe medium for testing potential failures and design shortcomings. The majority of design specification is now done on computer and moving that information to a model is relatively straightforward. With a complete model and results from a Failure Mode Effect Analysis (FMEA), redesigns can be worked early. Additional issues such as user accessibility, component replacement, and alignment problems can be tackled early in the virtual environment provided by computer simulation. In this case, a commercial simulation package is used to simulate a lathe process operation at the Los Alamos National Laboratory (LANL). The Lathe process operation is indicative of most glove box operations and demonstrates the ability and advantages of advance computer based modeling. The three-dimensional model also enables better comprehension of problems to non-technical staff. There are many barriers to the seamless integration between the initial design specifications and a computer simulation. Problems include the lack of a standard model and inexact manufacturing of components used in the glove box. The benefits and drawbacks are discussed; however, the results are useful.

C. FOSTER; ET AL

2001-01-01T23:59:59.000Z

196

Martin Karplus and Computer Modeling for Chemical Systems  

Office of Scientific and Technical Information (OSTI)

Martin Karplus and Computer Modeling for Chemical Systems Martin Karplus and Computer Modeling for Chemical Systems Resources with Additional Information · Karplus Equation Martin Karplus ©Portrait by N. Pitt, 9/10/03 Martin Karplus, the Theodore William Richards Professor of Chemistry Emeritus at Harvard, is one of three winners of the 2013 Nobel Prize in chemistry... The 83-year-old Vienna-born theoretical chemist, who is also affiliated with the Université de Strasbourg, Strasbourg, France, is a 1951 graduate of Harvard College and earned his Ph.D. in 1953 at the California Institute of Technology. While there, he worked with two-time Nobel laureate Linus Pauling, whom Karplus described as an important early influence. He shared the Nobel with researchers Michael Levitt of Stanford University and Arieh Warshel of the University of Southern California, Los Angeles. Warshel was once a postdoctoral student of Karplus ...

197

Scientists model brain structure to help computers recognize objects  

NLE Websites -- All DOE Office Websites (Extended Search)

Do you see what I see? Do you see what I see? Scientists model brain structure to help computers recognize objects The team tried developing a computer model based on human neural structure and function, to do what we do, and possibly do it better. December 20, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

198

Use of high performance computing resources for underwater acoustic modeling.  

Science Conference Proceedings (OSTI)

The majority of standard underwater propagation models provide a two?dimensional (range and depth) acoustic field for a single frequency point source. Computational resource demand increases considerably when the three?dimensional acoustic field of a broad?band spatially extended source is of interest. An upgrade of the standard parabolic equationmodel RAM for use in a high?performance computing (HPC) environment is discussed. A benchmarked upgraded version of RAM is used in the Louisiana Optical Network Initiative HPC?environment to model the three?dimensional acoustic field of a seismic airgun array. Four?dimensional visualization (time and space) of the generated data volume is also addressed. [Research supported by the Louisiana Optical Network Initiative

Anca M. Niculescu; Natalia A. Sidorovskaia; Peter Achi; Arslan M. Tashmukhambetov; George E. Ioup; Juliette W. Ioup

2009-01-01T23:59:59.000Z

199

Hydrogen program combustion research: Three dimensional computational modeling  

DOE Green Energy (OSTI)

We have significantly increased our computational modeling capability by the addition of a vertical valve model in KIVA-3, code used internationally for engine design. In this report the implementation and application of the valve model is described. The model is shown to reproduce the experimentally verified intake flow problem examined by Hessel. Furthermore, the sensitivity and performance of the model is examined for the geometry and conditions of the hydrogen-fueled Onan engine in development at Sandia National Laboratory. Overall the valve model is shown to have comparable accuracy as the general flow simulation capability in KIVA-3, which has been well validated by past comparisons to experiments. In the exploratory simulations of the Onan engine, the standard use of the single kinetic reaction for hydrogen oxidation was found to be inadequate for modeling the hydrogen combustion because of its inability to describe both the observed laminar flame speed and the absence of autoignition in the Onan engine. We propose a temporary solution that inhibits the autoignition without sacrificing the ability to model spark ignition. In the absence of experimental data on the Onan engine, a computational investigation was undertaken to evaluate the importance of modeling the intake flow on the combustion and NO{sub x} emissions. A simulation that began with the compression of a quiescent hydrogen-air mixture was compared to a simulation of the full induction process with resolved opening and closing of the intake valve. Although minor differences were observed in the cylinder-averaged pressure, temperature, bulk-flow kinetic energy and turbulent kinetic energy, large differences where observed in the hydrogen combustion rate and NO{sub x} emissions. The flow state at combustion is highly heterogeneous and sensitive to the details of the bulk and turbulent flow and that an accurate simulation of the Onan engine must include the modeling of the air-fuel induction.

Johnson, N.L.; Amsden, A.A.; Butler, T.D.

1995-05-01T23:59:59.000Z

200

Computer-Based Model of the MIT Research Reactor  

SciTech Connect

A description is given of a model of the Massachusetts Institute of Technology Research Reactor (MITR) in which both the reactor's neutronic and thermal-hydraulic behaviors are replicated. The purpose of the model is to support control studies and the development of techniques for the automated diagnosis of reactivity transients. In particular, comparison of the model's predictions with actual measurements from the reactor will allow determination of whether the reactor is functioning as expected.

John A. Bernard; Lin-Wen Hu

2000-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NEPA CX Determination SS-SC-12-03 for the Stanford Research Computer Facility (SRCF)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 for the Stanford Research Computer Facility (SRCF) 3 for the Stanford Research Computer Facility (SRCF) National Environmental Policy Act (NEPA) Categorical Exclusion (CX) Determination A. SSO NEPA Control #: SS-SC-12-03 AN12038 B. Brief Description of Proposed Action: The project scope includes the construction of a new computer facility (21,500 square feet) capable of providing 3 MW of data center potential. The new two-story facility will provide infrastructure for a multitude of server racks. There are three fenced service yards outside the building, one for chillers, one for new electrical substation equipment, and one for emergency generators. The ground floor will be utilized for electrical and receiving area; the second floor will have a server room, mechanical room, conference

202

Application of computer blast modeling to oil shale mining  

SciTech Connect

In recent years there has been considerable interest in the development of computer models to describe rock fragmentation by blasting. The interest for this work has come primarily for application to large scale coal or mineral surface mines. However, the basic models developed for these applications are equally applicable for examining typical underground oil shale operations. Models that can predict blasting results starting from first principles can impact room and pillar mining in a number of ways including optimizing round design, control of particle size, evaluation of new explosives, minimizing pillar damage, and developing blasting schemes that can be used in conjunction with continuous miners. In this study, the authors explore how these codes can be used to model the blasting geometry encountered in room and pillar mining operations.

Hommert, P.J.; Preece, D.S.; Thorne, B.J. (Sandia National Labs., Albuquerque, NM (USA))

1989-01-01T23:59:59.000Z

203

Introduction to the Report "Interlanguages and Synchronic Models of Computation."  

E-Print Network (OSTI)

A novel language system has given rise to promising alternatives to standard formal and processor network models of computation. An interstring linked with a abstract machine environment, shares sub-expressions, transfers data, and spatially allocates resources for the parallel evaluation of dataflow. Formal models called the a-Ram family are introduced, designed to support interstring programming languages (interlanguages). Distinct from dataflow, graph rewriting, and FPGA models, a-Ram instructions are bit level and execute in situ. They support sequential and parallel languages without the space/time overheads associated with the Turing Machine and l-calculus, enabling massive programs to be simulated. The devices of one a-Ram model, called the Synchronic A-Ram, are fully connected and simpler than FPGA LUT's. A compiler for an interlanguage called Space, has been developed for the Synchronic A-Ram. Space is MIMD. strictly typed, and deterministic. Barring memory allocation and compilation, modules are ref...

Berka, Alexander Victor

2010-01-01T23:59:59.000Z

204

Advances in bayesian modelling and computation: spatio-temporal processes, model assessment and adaptive mcmc  

Science Conference Proceedings (OSTI)

The modelling and analysis of complex stochastic systems with increasingly large data sets, state-spaces and parameters provides major stimulus to research in Bayesian nonparametric methods and Bayesian computation. This dissertation presents ...

Chunlin Ji / Mike West

2009-01-01T23:59:59.000Z

205

A computer program to determine the specific power of prismatic-core reactors  

DOE Green Energy (OSTI)

A computer program has been developed to determine the maximum specific power for prismatic-core reactors as a function of maximum allowable fuel temperature, core pressure drop, and coolant velocity. The prismatic-core reactors consist of hexagonally shaped fuel elements grouped together to form a cylindrically shaped core. A gas coolant flows axially through circular channels within the elements, and the fuel is dispersed within the solid element material either as a composite or in the form of coated pellets. Different coolant, fuel, coating, and element materials can be selected to represent different prismatic-core concepts. The computer program allows the user to divide the core into any arbitrary number of axial levels to account for different axial power shapes. An option in the program allows the automatic determination of the core height that results in the maximum specific power. The results of parametric specific power calculations using this program are presented for various reactor concepts.

Dobranich, D.

1987-05-01T23:59:59.000Z

206

Modeling the fracture of ice sheets on parallel computers.  

SciTech Connect

The objective of this project is to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. Dramatic illustrations of fracture-induced phenomena most notably include the recent collapse of ice shelves in Antarctica (e.g. partial collapse of the Wilkins shelf in March of 2008 and the diminishing extent of the Larsen B shelf from 1998 to 2002). Other fracture examples include ice calving (fracture of icebergs) which is presently approximated in simplistic ways within ice sheet models, and the draining of supraglacial lakes through a complex network of cracks, a so called ice sheet plumbing system, that is believed to cause accelerated ice sheet flows due essentially to lubrication of the contact surface with the ground. These dramatic changes are emblematic of the ongoing change in the Earth's polar regions and highlight the important role of fracturing ice. To model ice fracture, a simulation capability will be designed centered around extended finite elements and solved by specialized multigrid methods on parallel computers. In addition, appropriate dynamic load balancing techniques will be employed to ensure an approximate equal amount of work for each processor.

Waisman, Haim (Columbia University); Bell, Robin (Columbia University); Keyes, David (Columbia University); Boman, Erik Gunnar; Tuminaro, Raymond Stephen

2010-03-01T23:59:59.000Z

207

Poster: performance modeling and computational quality of service (CQoS) in synergia2 accelerator simulations  

Science Conference Proceedings (OSTI)

High-precision accelerator modeling is essential for particle accelerator design and optimization. However, this modeling presents a significant computational challenge. We discuss performance modeling of and computational quality of service (CQoS) results ... Keywords: accelerator simulation, computational quality of service, performance modeling, synergia

Steve Goldhaber; Stefan Muszala; Nanbor Wang; James F. Amundson; Eric G. Stern; Boyana Norris; Daihee Kim

2011-11-01T23:59:59.000Z

208

Developments in computation, modeling and experimentation: Impacts on R D  

SciTech Connect

The original objective was to document the feasibility of the coordinated research program sponsored by ECUT called Materials-by-Design (MBD).'' The MBD program funds research to develop hierarchical models to predict materials' performance based on microstructural information. This paper was specifically prepared for this meeting to help technical staff and their managers justify and plan for an advanced computer infrastructure within their companies. In order to do this, several additional objectives for this paper are (1) to foster an appreciation of the dramatic increase in computational power that have occurred over the last forty years, (2) to encourage better utilization of supercomputing in current scientific research by identifying current issues and opportunities, and (3) to promote anticipation and enthusiasm for the dramatic changes supercomputers currently being developed will offer scientists in the near future.

Young, J.K.

1989-10-01T23:59:59.000Z

209

The new computer program for three dimensional relativistic hydrodynamical model  

E-Print Network (OSTI)

An effective computer program for three dimensional relativistic hydrodynamical model has been developed. It implements a new approach to the early hot phase of relativistic heavy-ion collisions. The computer program simulates time-space evolution of nuclear matter in terms of ideal-fluid dynamics. Equations of motions of hydrodynamics are solved making use of finite difference methods. Commonly-used algorithms of numerical relativistic hydrodynamics RHLLE and MUSTA-FORCE have been applied in simulations. To speed-up calculations, parallel processing has been made available for solving hydrodynamical equations. The test results of simulations for 3D, 2D and Bjorken expansion are reported in this paper. As a next step we plan to implement the hadronization algorithm by implementing the continuous particle emission for freeze-out and comparing it with Cooper-Frye formula.

Daniel Kikola; Wiktor Peryt; Yuri M. Sinyukov; Marcin Slodkowski; Marek Szuba

2006-01-30T23:59:59.000Z

210

Foam computer model helps in analysis of underbalanced drilling  

Science Conference Proceedings (OSTI)

A new mechanistic model attempts to overcome many of the problems associated with existing foam flow analyses. The model calculates varying Fanning friction factors, rather than assumed constant factors, along the flow path. Foam generated by mixing gas and liquid for underbalanced drilling has unique rheological characteristics, making it very difficult to accurately predict the pressure profile. A user-friendly personal-computer program was developed to solve the mechanical energy balance equation for compressible foam flow. The program takes into account influxes of gas, liquid, and oil from formations. The pressure profile, foam quality, density, and cuttings transport are predicted by the model. A sensitivity analysis window allows the user to quickly optimize the hydraulics program by selecting the best combination of injection pressure, back pressure, and gas/liquid injection rates. This new model handles inclined and horizontal well bores and provides handy engineering and design tools for underbalanced drilling, well bore cleanout, and other foam operations. The paper describes rheological models, foam flow equations, equations of state, mechanical energy equations, pressure drop across nozzles, influx modeling, program operation, comparison to other models, to lab data, and to field data, and results.

Liu, G.; Medley, G.H. Jr. [Maurer Engineering Inc., Houston, TX (United States)

1996-07-01T23:59:59.000Z

211

Computing Models of CDF and D0 in Run II  

SciTech Connect

The next collider run of the Fermilab Tevatron, Run II, is scheduled for autumn of 1999. Both experiments, the Collider Detector at Fermilab (CDF) and the D0 experiment are being modified to cope with the higher luminosity and shorter bunch spacing of the Tevatron. New detector components, higher event complexity, and an increased data volume require changes from the data acquisition systems up to the analysis systems. In this paper we present a summary of the computing models of the two experiments for Run II.

Lammel, S.

1997-05-01T23:59:59.000Z

212

SHADE: a computer model for evaluating the optical performance of two-axis tracking parabolic concentrators  

DOE Green Energy (OSTI)

A computer model SHADE (Selection of Heliostat Arrangement for Distributed Engines) has been developed at the Pacific Northwest Laboratory to aid in determining the optical performance of two-axis tracking parabolic concentrators. The shading of individual mirror assemblies in a field of parabolic dishes determines the optimal field arrangement and the most efficient method of plant operation. SHADE provides a simple and inexpensive analytical tool for examining certain design aspects of solar thermal power systems using a network of point-focusing parabolic concentrators.

Apley, W. J.

1979-05-01T23:59:59.000Z

213

A Two-Cylinder Model of Cumulus Cells and Its Application in Computing Cumulus Transports  

Science Conference Proceedings (OSTI)

A two-cylinder model suitable for computing vertical transports in cumulus cells is formulated. The model includes explicit computation of perturbation pressure and allows the study of the evolution of raindrop size spectra. Sensitivity tests ...

Man Kong Yau

1980-11-01T23:59:59.000Z

214

Computer Modeling Illuminates Degradation Pathways of Cations in Alkaline Membrane Fuel Cells (Fact Sheet)  

DOE Green Energy (OSTI)

Cation degradation insights obtained by computational modeling could result in better performance and longer lifetime for alkaline membrane fuel cells.

Not Available

2012-08-01T23:59:59.000Z

215

Increasing the chemical content of turbulent flame models through the use of parallel computing  

DOE Green Energy (OSTI)

This report outlines the effort to model a time-dependent, 2- dimensional, turbulent, nonpremixed flame with full chemistry with the aid of parallel computing tools. In this study, the mixing process and the chemical reactions occurring in the flow field are described in terms of the single-point probability density function (PDF), while the turbulent viscosity is determined by the standard kappa-epsilon model. The initial problem solved is a H[sub 2]/Air flame whose chemistry is described by 28 elementary reactions involving 9 chemical species.

Yam, C.G.; Armstrong, R.; Koszykowski, M.L. [Sandia National Labs., Livermore, CA (United States); Chen, J.Y. [California Univ., Berkeley, CA (United States); Bui-Pham, M.N. [Lawrence Berkeley National Lab., CA (United States)

1996-10-01T23:59:59.000Z

216

Plutonium explosive dispersal modeling using the MACCS2 computer code  

Science Conference Proceedings (OSTI)

The purpose of this paper is to derive the necessary parameters to be used to establish a defensible methodology to perform explosive dispersal modeling of respirable plutonium using Gaussian methods. A particular code, MACCS2, has been chosen for this modeling effort due to its application of sophisticated meteorological statistical sampling in accordance with the philosophy of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.145, ``Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants``. A second advantage supporting the selection of the MACCS2 code for modeling purposes is that meteorological data sets are readily available at most Department of Energy (DOE) and NRC sites. This particular MACCS2 modeling effort focuses on the calculation of respirable doses and not ground deposition. Once the necessary parameters for the MACCS2 modeling are developed and presented, the model is benchmarked against empirical test data from the Double Tracks shot of project Roller Coaster (Shreve 1965) and applied to a hypothetical plutonium explosive dispersal scenario. Further modeling with the MACCS2 code is performed to determine a defensible method of treating the effects of building structure interaction on the respirable fraction distribution as a function of height. These results are related to the Clean Slate 2 and Clean Slate 3 bunkered shots of Project Roller Coaster. Lastly a method is presented to determine the peak 99.5% sector doses on an irregular site boundary in the manner specified in NRC Regulatory Guide 1.145 (1983). Parametric analyses are performed on the major analytic assumptions in the MACCS2 model to define the potential errors that are possible in using this methodology.

Steele, C.M.; Wald, T.L.; Chanin, D.I.

1998-11-01T23:59:59.000Z

217

Computational Fluid Dynamics Modeling of Atmospheric Flow Applied to Wind Energy Research.  

E-Print Network (OSTI)

??High resolution atmospheric flow modeling using computational fluid dynamics (CFD) has many applications in the wind energy industry. A well designed model can accurately calculate… (more)

Russell, Alan

2009-01-01T23:59:59.000Z

218

Ubiquitous Computing Acceptance Model: end user concern about security, privacy and risk  

Science Conference Proceedings (OSTI)

This study integrates cognitive and affective attitudes as the primary factors of influence to formulate a Ubiquitous Computing Acceptance Model (UCAM), which is intended to predict whether potential users will accept ubiquitous computing (u-computing). ... Keywords: UCAM, behavioural intention, mobile communications, perceived ease of use, perceived risk, pervasive computing, privacy, security, trust, ubiquitous city, ubiquitous computing acceptance model, ubiquitous u-city, usefulness, user attitudes, user intentions

Dong-Hee Shin

2010-02-01T23:59:59.000Z

219

Computational fluid dynamic modeling of fluidized-bed polymerization reactors  

SciTech Connect

Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

Rokkam, Ram [Ames Laboratory

2012-11-02T23:59:59.000Z

220

Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Computing Computing and Storage Requirements Computing and Storage Requirements for FES J. Candy General Atomics, San Diego, CA Presented at DOE Technical Program Review Hilton Washington DC/Rockville Rockville, MD 19-20 March 2013 2 Computing and Storage Requirements Drift waves and tokamak plasma turbulence Role in the context of fusion research * Plasma performance: In tokamak plasmas, performance is limited by turbulent radial transport of both energy and particles. * Gradient-driven: This turbulent transport is caused by drift-wave instabilities, driven by free energy in plasma temperature and density gradients. * Unavoidable: These instabilities will persist in a reactor. * Various types (asymptotic theory): ITG, TIM, TEM, ETG . . . + Electromagnetic variants (AITG, etc). 3 Computing and Storage Requirements Fokker-Planck Theory of Plasma Transport Basic equation still

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Review: Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review  

Science Conference Proceedings (OSTI)

The past decade has seen a rapid increase of numerical simulation studies on photobioreactors (PBRs). Developments in computational fluid dynamics (CFD) and the availability of more powerful computers have paved the way for the modeling and designing ... Keywords: Computational fluid dynamics (CFD), Computer simulation, Microalgae, Photobioreactors

J. P. Bitog; I. -B. Lee; C. -G. Lee; K. -S. Kim; H. -S. Hwang; S. -W. Hong; I. -H. Seo; K. -S. Kwon; E. Mostafa

2011-05-01T23:59:59.000Z

222

Computation Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers  

Science Conference Proceedings (OSTI)

Forced outages and boiler unavailability of coal-fired fossil plants is most often caused by fire-side corrosion of boiler waterwalls and tubing. Reliable coatings are required for Ultrasupercritical (USC) application to mitigate corrosion since these boilers will operate at a much higher temperatures and pressures than in supercritical (565 C {at} 24 MPa) boilers. Computational modeling efforts have been undertaken to design and assess potential Fe-Cr-Ni-Al systems to produce stable nanocrystalline coatings that form a protective, continuous scale of either Al{sub 2}O{sub 3} or Cr{sub 2}O{sub 3}. The computational modeling results identified a new series of Fe-25Cr-40Ni with or without 10 wt.% Al nanocrystalline coatings that maintain long-term stability by forming a diffusion barrier layer at the coating/substrate interface. The computational modeling predictions of microstructure, formation of continuous Al{sub 2}O{sub 3} scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. Advanced coatings, such as MCrAl (where M is Fe, Ni, or Co) nanocrystalline coatings, have been processed using different magnetron sputtering deposition techniques. Several coating trials were performed and among the processing methods evaluated, the DC pulsed magnetron sputtering technique produced the best quality coating with a minimum number of shallow defects and the results of multiple deposition trials showed that the process is repeatable. scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. The cyclic oxidation test results revealed that the nanocrystalline coatings offer better oxidation resistance, in terms of weight loss, localized oxidation, and formation of mixed oxides in the Al{sub 2}O{sub 3} scale, than widely used MCrAlY coatings. However, the ultra-fine grain structure in these coatings, consistent with the computational model predictions, resulted in accelerated Al diffusion from the coating into the substrate. An effective diffusion barrier interlayer coating was developed to prevent inward Al diffusion. The fire-side corrosion test results showed that the nanocrystalline coatings with a minimum number of defects have a great potential in providing corrosion protection. The coating tested in the most aggressive environment showed no evidence of coating spallation and/or corrosion attack after 1050 hours exposure. In contrast, evidence of coating spallation in isolated areas and corrosion attack of the base metal in the spalled areas were observed after 500 hours. These contrasting results after 500 and 1050 hours exposure suggest that the premature coating spallation in isolated areas may be related to the variation of defects in the coating between the samples. It is suspected that the cauliflower-type defects in the coating were presumably responsible for coating spallation in isolated areas. Thus, a defect free good quality coating is the key for the long-term durability of nanocrystalline coatings in corrosive environments. Thus, additional process optimization work is required to produce defect-free coatings prior to development of a coating application method for production parts.

J. Shingledecker; D. Gandy; N. Cheruvu; R. Wei; K. Chan

2011-06-21T23:59:59.000Z

223

Soft computing approach for modeling power plant with a once-through boiler  

Science Conference Proceedings (OSTI)

In this paper, a soft computing approach is presented for modeling electrical power generating plants in order to characterize the essential dynamic behavior of the plant subsystems. The structure of the soft computing method consists of fuzzy logic, ... Keywords: Experimental data, Fuzzy modeling, Genetic algorithm, Neural network, Once-through boiler, Power plant, Soft computing

Ali Ghaffari; Ali Chaibakhsh; Caro Lucas

2007-09-01T23:59:59.000Z

224

Molecular Computation Models in ACL2: a Simulation of Lipton's Experiment Solving SAT.  

E-Print Network (OSTI)

Molecular Computation Models in ACL2: a Simulation of Lipton's Experiment Solving SAT. F.J. Mart Abstract In this paper we present an ACL2 formalization of a molecular computing model: Adle- man to build a prototype of a molecular computer. In 1995, R.J. Lipton [7] solved an instance

Alonso, José A.

225

Probabilistic versus possibilistic risk assessment models for optimal service level agreements in grid computing  

Science Conference Proceedings (OSTI)

We present a probabilistic and a possibilistic model for assessing the risk of a service level agreement for a computing task in a cluster/grid environment. These models can also be applied to cloud computing. Using the predictive probabilistic approach ... Keywords: Grid and cloud computing, Predictive possibilities, Predictive probabilities, Service level agreement (SLA)

Christer Carlsson; Robert Fullér

2013-03-01T23:59:59.000Z

226

How to choose the simulation model for computer experiments: a local approach  

Science Conference Proceedings (OSTI)

In many scientific areas, non-stochastic simulation models such as finite element simulations replace real experiments. A common approach is to fit a meta-model, for example a Gaussian process model, a radial basis function interpolation, or a kernel ... Keywords: Gaussian process model, computer code validation, computer experiment, kernel interpolation, sheet metal forming

Thomas Mühlenstädt; Marco Gösling; Sonja Kuhnt

2012-07-01T23:59:59.000Z

227

A Comparison of Methods for Computing the Sigma-Coordinate Pressure Gradient Force for Flow over Sloped Terrain in a Hybrid Theta-Sigma Model  

Science Conference Proceedings (OSTI)

Five methods for computing the pressure gradient force within a sigma domain of a hybrid model are compared for flow over a steeply sloped terrain. The comparison includes pressure gradient calculations determined from a direct transformation to ...

Donald R. Johnson; Louis W. Uccellini

1983-04-01T23:59:59.000Z

228

CAPE-OPEN compliant stochastic modeling and reduced-order model computation capability for APECS system  

Science Conference Proceedings (OSTI)

APECS (Advanced Process Engineering Co-Simulator) is an integrated software suite that combines the power of process simulation with high-fidelity, computational fluid dynamics (CFD) for improved design, analysis, and optimization of process engineering systems. The APECS system uses commercial process simulation (e.g., Aspen Plus) and CFD (e.g., FLUENT) software integrated with the process-industry standard CAPE-OPEN (CO) interfaces. This breakthrough capability allows engineers to better understand and optimize the fluid mechanics that drive overall power plant performance and efficiency. The focus of this paper is the CAPE-OPEN complaint stochastic modeling and reduced order model computational capability around the APECS system. The usefulness of capabilities is illustrated with coal fired, gasification based, FutureGen power plant simulation. These capabilities are used to generate efficient reduced order models and optimizing model complexities.

Diwekar, Urmila (Vishwamitra Research Institute, Clarendon Hills, IL); Shastri, Yogendra (Vishwamitra Research Institute Clarendon Hills, IL); Subrmanyan, Karthik (Vishwamitra Research Institute, Clarendon Hills, IL); Zitney, S.E.

2007-11-04T23:59:59.000Z

229

Integrating “depth first” and “breadth first” models of computing curricula  

Science Conference Proceedings (OSTI)

Traditional undergraduate Computer Science curricula have been increasingly challenged on a host of grounds: undergraduate computing education is attracting fewer majors, is not producing graduates who satisfy the needs of either graduate programs or ...

Russell L. Shackelford; Richard J. LeBlanc

1994-03-01T23:59:59.000Z

230

ANEMIC: automatic interface enabler for model integrated computing  

Science Conference Proceedings (OSTI)

A domain-specific language provides domain experts with a familiar abstraction for creating computer programs. As more and more domains embrace computers, programmers are tapping into this power by creating their own languages fitting the particular ...

Steve Nordstrom; Shweta Shetty; Kumar Gaurav Chhokra; Jonathan Sprinkle; Brandon Eames; Akos Ledeczi

2003-09-01T23:59:59.000Z

231

HIV virus spread and evolution studied through computer modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

differential equations on the computer; this is done for computational speed, because an agent-based component is much more demanding. Once a person is infected, heshe becomes an...

232

Computer system performance problem detection using time series models  

Science Conference Proceedings (OSTI)

Computer systems require monitoring to detect performance anomalies such as runaway processes, but problem detection and diagnosis is a complex task requiring skilled attention. Although human attention was never ideal for this task, as networks of computers ...

Peter Hoogenboom; Jay Lepreau

1993-06-01T23:59:59.000Z

233

A Model for Fast Analog Computation Based on Unreliable Synapses  

Science Conference Proceedings (OSTI)

We investigate through theoretical analysis and computer simulations the consequences of unreliable synapses for fast analog computations in networks of spiking neurons, with analog variables encoded by the current firing activities of pools of spiking ...

Wolfgang Maass; Thomas Natschläger

2000-07-01T23:59:59.000Z

234

Model discovery for energy-aware computing systems: An experimental evaluation  

Science Conference Proceedings (OSTI)

We present a model-discovery methodology for energy-aware computing systems that achieves high prediction accuracy. Model discovery, or system identification, is a critical first step in designing advanced controllers that can dynamically manage the ... Keywords: SISO model, energy aware computing system, model discovery methodology, energy performance trade off, multiple inputs multiple outputs model, single input single output model, representative server workload, MIMO model

Zhichao Li; R. Grosu; K. Muppalla; S. A. Smolka; S. D. Stoller; E. Zadok

2011-07-01T23:59:59.000Z

235

Reduced-order, trajectory piecewise-linear models for nonlinear computational fluid dynamics  

E-Print Network (OSTI)

Computational fluid dynamics (CFD) is now widely used throughout the fluid dynamics community and yields accurate models for problems of interest. However, due to its high computational cost, CFD is limited for some ...

Gratton, David, 1979-

2004-01-01T23:59:59.000Z

236

Economic model for height determination of high-rise buildings  

E-Print Network (OSTI)

At present, no clear concise method of optimal height determination for high-rise buildings is being practiced. The primary scope of this dissertation is to see if a practical model, decision making process and list of ...

Zafiris, Christopher

1984-01-01T23:59:59.000Z

237

AIR INGRESS ANALYSIS: PART 2 – COMPUTATIONAL FLUID DYNAMIC MODELS  

Science Conference Proceedings (OSTI)

The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

2011-01-01T23:59:59.000Z

238

Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers  

SciTech Connect

Forced outages and boiler unavailability in conventional coal-fired fossil power plants is most often caused by fireside corrosion of boiler waterwalls. Industry-wide, the rate of wall thickness corrosion wastage of fireside waterwalls in fossil-fired boilers has been of concern for many years. It is significant that the introduction of nitrogen oxide (NOx) emission controls with staged burners systems has increased reported waterwall wastage rates to as much as 120 mils (3 mm) per year. Moreover, the reducing environment produced by the low-NOx combustion process is the primary cause of accelerated corrosion rates of waterwall tubes made of carbon and low alloy steels. Improved coatings, such as the MCrAl nanocoatings evaluated here (where M is Fe, Ni, and Co), are needed to reduce/eliminate waterwall damage in subcritical, supercritical, and ultra-supercritical (USC) boilers. The first two tasks of this six-task project-jointly sponsored by EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)-have focused on computational modeling of an advanced MCrAl nanocoating system and evaluation of two nanocrystalline (iron and nickel base) coatings, which will significantly improve the corrosion and erosion performance of tubing used in USC boilers. The computational model results showed that about 40 wt.% is required in Fe based nanocrystalline coatings for long-term durability, leading to a coating composition of Fe-25Cr-40Ni-10 wt.% Al. In addition, the long term thermal exposure test results further showed accelerated inward diffusion of Al from the nanocrystalline coatings into the substrate. In order to enhance the durability of these coatings, it is necessary to develop a diffusion barrier interlayer coating such TiN and/or AlN. The third task 'Process Advanced MCrAl Nanocoating Systems' of the six-task project jointly sponsored by the Electric Power Research Institute, EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)- has focused on processing of advanced nanocrystalline coating systems and development of diffusion barrier interlayer coatings. Among the diffusion interlayer coatings evaluated, the TiN interlayer coating was found to be the optimum one. This report describes the research conducted under the Task 3 workscope.

David W. Gandy; John P. Shingledecker

2011-04-11T23:59:59.000Z

239

CDIAC catalog of numeric data packages and computer model packages  

Science Conference Proceedings (OSTI)

The Carbon Dioxide Information Analysis Center acquires, quality-assures, and distributes to the scientific community numeric data packages (NDPs) and computer model packages (CMPs) dealing with topics related to atmospheric trace-gas concentrations and global climate change. These packages include data on historic and present atmospheric CO{sub 2} and CH{sub 4} concentrations, historic and present oceanic CO{sub 2} concentrations, historic weather and climate around the world, sea-level rise, storm occurrences, volcanic dust in the atmosphere, sources of atmospheric CO{sub 2}, plants` response to elevated CO{sub 2} levels, sunspot occurrences, and many other indicators of, contributors to, or components of climate change. This catalog describes the packages presently offered by CDIAC, reviews the processes used by CDIAC to assure the quality of the data contained in these packages, notes the media on which each package is available, describes the documentation that accompanies each package, and provides ordering information. Numeric data are available in the printed NDPs and CMPs, in CD-ROM format, and from an anonymous FTP area via Internet. All CDIAC information products are available at no cost.

Boden, T.A. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; O`Hara, F.M. Jr. [O`Hara (Fred M., Jr.), Oak Ridge, TN (US); Stoss, F.W. [Univ. of Tennessee, Knoxville, TN (US). Energy, Environment, and Resources Center

1993-05-01T23:59:59.000Z

240

A comparative study of model selection criteria for computer vision applications  

Science Conference Proceedings (OSTI)

During last three decades many model selection techniques have been developed, many of those have also been employed in computer vision applications. Interestingly, most of those criteria are based upon assumptions that are rarely realised in practical ... Keywords: Model selection, Model-based computer vision, Motion segmentation, Range segmentation

Niloofar Gheissari; Alireza Bab-Hadiashar

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Investigating the properties of adaptation in a computational model of the olfactory sensory neuron  

Science Conference Proceedings (OSTI)

We developed a detailed computational model of an olfactory sensory neuron to investigate the functional properties of the sensory adaptation in the peripheral olfactory system. The model consists of a system of first-order differential equations that ... Keywords: Adaptation, Computational model, Olfactory code, Olfactory epithelium, Olfactory sensory neuron, Sniffing

Fabio M. Simoes de Souza; Gabriela Antunes

2007-06-01T23:59:59.000Z

242

Computational modeling and design of actively-cooled microvascular materials Soheil Soghrati a,b  

E-Print Network (OSTI)

were used for the calibration and validation of the 2D IGFEM model. Water was used as the coolantComputational modeling and design of actively-cooled microvascular materials Soheil Soghrati a a c t The computational modeling and design of an actively-cooled microvascular fin specimen

Braun, Paul

243

Computational tools for experimental determination and theoretical prediction of protein structure  

SciTech Connect

This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. The authors intend to review the state of the art in the experimental determination of protein 3D structure (focus on nuclear magnetic resonance), and in the theoretical prediction of protein function and of protein structure in 1D, 2D and 3D from sequence. All the atomic resolution structures determined so far have been derived from either X-ray crystallography (the majority so far) or Nuclear Magnetic Resonance (NMR) Spectroscopy (becoming increasingly more important). The authors briefly describe the physical methods behind both of these techniques; the major computational methods involved will be covered in some detail. They highlight parallels and differences between the methods, and also the current limitations. Special emphasis will be given to techniques which have application to ab initio structure prediction. Large scale sequencing techniques increase the gap between the number of known proteins sequences and that of known protein structures. They describe the scope and principles of methods that contribute successfully to closing that gap. Emphasis will be given on the specification of adequate testing procedures to validate such methods.

O`Donoghue, S.; Rost, B.

1995-12-31T23:59:59.000Z

244

Mathematical modelling, analysis and computation of some complex and nonlinear flow problems.  

E-Print Network (OSTI)

???This thesis consists of two parts: (I) modelling, analysis and computation of sweat transport in textile media; (II) unconditional convergence and optimal error analysis of… (more)

Li, Buyang (???)

2012-01-01T23:59:59.000Z

245

Modeling-Computer Simulations At U.S. West Region (Williams ...  

Open Energy Info (EERE)

Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At U.S. West Region (Williams & Deangelo, 2008) Jump to: navigation, search GEOTHERMAL...

246

Modeling-Computer Simulations At U.S. West Region (Sabin, Et...  

Open Energy Info (EERE)

Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At U.S. West Region (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL...

247

Computer model of a kidney being cooled by ice slurry (Quicktime...  

NLE Websites -- All DOE Office Websites (Extended Search)

> Videos Detection & Diagnostic Systems: Computer model of a kidney being cooled by ice slurry Quicktime format Quicktime Format - Mid Bandwidth | Size: 1.12 MB | Bit Rate:...

248

Computation of Grid-Point Values of the Wind Components in Spectral Models  

Science Conference Proceedings (OSTI)

This note presents a method for computing the grid point values of the wind components in spectral models, which is much simpler than the methods generally used.

Michel Rochas

1983-08-01T23:59:59.000Z

249

final report for Center for Programming Models for Scalable Parallel Computing  

SciTech Connect

This is the final report of the work on parallel programming patterns that was part of the Center for Programming Models for Scalable Parallel Computing

Johnson, Ralph E.

2013-04-10T23:59:59.000Z

250

New Set of Computational Tools and Models Expected to Help Enable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools and Models Expected to Help Enable Rapid Development and Deployment of Carbon Capture Technologies Washington, D.C. - An eagerly anticipated suite of 21 computational...

251

A situation-aware computational trust model for selecting partners  

Science Conference Proceedings (OSTI)

Trust estimation is a fundamental process in several multiagent systems domains, from social networks to electronic business scenarios. However, the majority of current computational trust systems is still too simplistic and is not situation-aware, jeopardizing ... Keywords: computational trust systems, dynamics of trust, multi-agent systems, situationaware trust

Joana Urbano; Ana Paula Rocha; Eugénio Oliveira

2011-01-01T23:59:59.000Z

252

Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett,  

Open Energy Info (EERE)

Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett, Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown References J. W. Pritchett (2004) Finding Hidden Geothermal Resources In The Basin And Range Using Electrical Survey Techniques- A Computational Feasibility Study Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Northern_Basin_%26_Range_Region_(Pritchett,_2004)&oldid=401423"

253

Quantum Computing and Lie Theory Feynman's suggestion that the only effective way to model quantum phe-  

E-Print Network (OSTI)

Quantum Computing and Lie Theory Feynman's suggestion that the only effective way to model quantum phe- nomena on a computer would be to build a computer that made use of quantum mechanics was one of the cornerstones of the birth of quantum com- puting. In his later years he studied both classical and quantum

D'Agnolo, Andrea

254

COMFAR III: Computer Model for Feasibility Analysis and Reporting | Open  

Open Energy Info (EERE)

COMFAR III: Computer Model for Feasibility Analysis and Reporting COMFAR III: Computer Model for Feasibility Analysis and Reporting Jump to: navigation, search Tool Summary Name: COMFAR III: Computer Model for Feasibility Analysis and Reporting Agency/Company /Organization: United Nations Industrial Development Organization Focus Area: Industry Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.unido.org/index.php?id=o3470 Language: "Arabic, Chinese, English, French, German, Japanese, Portuguese, Russian, Spanish; Castilian" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

255

Building an advanced climate model: Program plan for the CHAMMP (Computer Hardware, Advanced Mathematics, and Model Physics) Climate Modeling Program  

SciTech Connect

The issue of global warming and related climatic changes from increasing concentrations of greenhouse gases in the atmosphere has received prominent attention during the past few years. The Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP) Climate Modeling Program is designed to contribute directly to this rapid improvement. The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numerical approaches to represent physical, biogeochemical, and ecological processes, that fully utilizes the hardware and software capabilities of new computer architectures, that probes the limits of climate predictability, and finally that can be used to address the challenging problem of understanding the greenhouse climate issue through the ability of the models to simulate time-dependent climatic changes over extended times and with regional resolution.

1990-12-01T23:59:59.000Z

256

GEOCITY: a computer model for systems analysis of geothermal district heating and cooling costs  

DOE Green Energy (OSTI)

GEOCITY is a computer-simulation model developed to study the economics of district heating/cooling using geothermal energy. GEOCITY calculates the cost of district heating/cooling based on climate, population, resource characteristics, and financing conditions. The basis for our geothermal-energy cost analysis is the unit cost of energy which will recover all the costs of production. The calculation of the unit cost of energy is based on life-cycle costing and discounted-cash-flow analysis. A wide variation can be expected in the range of potential geothermal district heating and cooling costs. The range of costs is determined by the characteristics of the resource, the characteristics of the demand, and the distance separating the resource and the demand. GEOCITY is a useful tool for estimating costs for each of the main parts of the production process and for determining the sensitivity of these costs to several significant parameters under a consistent set of assumptions.

Fassbender, L.L.; Bloomster, C.H.

1981-06-01T23:59:59.000Z

257

A versatile computer model for the design and analysis of electric and hybrid vehicles  

E-Print Network (OSTI)

The primary purpose of the work reported in this thesis was to develop a versatile computer model to facilitate the design and analysis of hybrid vehicle drive-trains. A hybrid vehicle is one in which power for propulsion comes from two distinct sources, usually an internal combustion engine and an electric motor. Because of the design flexibility inherent in a propulsion system that has more than one source of energy, computer er modeling is necessary to identify which parameters are mainly responsible for the performance of the power-plant and to determine which designs are most viable. The modeling system described i@ this thesis was developed to accommodate a wide range of vehicle components and modeling techniques. The modeling framework to which the drive-train component models are attached emphasizes the functional role of components and not their implementation. This creates a uniform component interface which limits access to the inner workings of a component model and improves compatibility between various types of models. Conceptual levels of abstraction are identified in this thesis which can be used to organize information in a hybrid vehicle model. By incorporating these levels into the modeling system, the tasks associated with creating a hybrid vehicle are separated allowing the designer to focus on one aspect at a time. The modeling of the various levels occurs at independent locations in the model and the interfaces between the conceptual levels are defined so that changing the implementation of a particular level does not affect its interaction with other levels. A simulation study is then detailed to show how the model can be used to create and analyze hybrid vehicle designs. The study focuses on two control algorithms which implement a sustainable, electrically-peaking, parallel hybrid design. The first algorithm reduces fuel consumption by minimizing the amount of time that the internal combustion engine is operated. The second algorithm reduces the load on the electric motor by operating the internal combustion engine over its entire speed range. The simulation results indicate that both algorithms can successfully maintain the battery state of charge over the given drive-cycle. Finally, conclusions about the model and recommendations for future studies are discussed.

Stevens, Kenneth Michael

1996-01-01T23:59:59.000Z

258

Determination of Internal Target Volume From a Single Positron Emission Tomography/Computed Tomography Scan in Lung Cancer  

SciTech Connect

Purpose: The use of four-dimensional computed tomography (4D-CT) to determine the tumor internal target volume (ITV) is usually characterized by high patient radiation exposure. The objective of this study was to propose and evaluate an approach that relies on a single static positron emission tomography (PET)/CT scan to determine the ITV, thereby eliminating the need for 4D-CT and thus reduce patient radiation dose. Methods and Materials: The proposed approach is based on the concept that the observed PET image is the result of a joint convolution of an ideal PET image (free from motion and partial volume effect) with a motion-blurring kernel (MBK) and partial volume effect. In this regard, the MBK and tumor ITV are then estimated from the deconvolution of this joint model. To test this technique, phantom and patient studies were performed using different sphere/tumor sizes and motion trajectories. In all studies, a 4D-CT and a PET/CT image of the sphere/tumor were acquired. The ITV from the proposed technique was then compared to the maximum intensity projection (MIP) volume of the 4D-CT images. A Dice coefficient of the two volumes was calculated to represent the similarity between the two ITVs. Results: The average ITVs of the proposed technique were 97.2% {+-} 0.3% and 81.0% {+-} 16.7% similar to the MIP volume in the phantom and patient studies, respectively. The average dice coefficients were 0.87 {+-} 0.05 and 0.73 {+-} 0.16, respectively, for the two studies. Conclusion: Using the proposed approach, a single static PET/CT scan has the potential to replace a 4D-CT to determine the tumor ITV. This approach has the added advantage of reducing patient radiation exposure and determining the tumor MBK compared to 4D-CT/MIP-CT.

Chang Guoping; Chang Tingting [Department of Electrical and Computer Engineering, Rice University, Houston, Texas (United States); Pan Tinsu [Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Clark, John W. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas (United States); Mawlawi, Osama R., E-mail: OMawlawi@mdanderson.org [Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

2012-05-01T23:59:59.000Z

259

Enhanced oil recovery. DOE (U. S. Department of Energy) develops computer models for three enhanced oil recovery techniques  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) is developing computer models that eventually will aid operators in deciding whether to go ahead with enhanced oil recovery projects in particular fields. At its Bartlesville Energy Technology Center in Oklahoma, DOE has developed models for 3 enhanced oil recovery (EOR) techniques. Operators can feed reservoir data into these models to determine what methods are amenable to a particular reservoir and to estimate whether a full-scale EOR project would be economically feasible. So far, DOE has developed models for CO/sub 2/ miscible flooding, chemical injection, and steamflooding.

Wash, R.

1983-04-01T23:59:59.000Z

260

Analysis of deformable image registration accuracy using computational modeling  

SciTech Connect

Computer aided modeling of anatomic deformation, allowing various techniques and protocols in radiation therapy to be systematically verified and studied, has become increasingly attractive. In this study the potential issues in deformable image registration (DIR) were analyzed based on two numerical phantoms: One, a synthesized, low intensity gradient prostate image, and the other a lung patient's CT image data set. Each phantom was modeled with region-specific material parameters with its deformation solved using a finite element method. The resultant displacements were used to construct a benchmark to quantify the displacement errors of the Demons and B-Spline-based registrations. The results show that the accuracy of these registration algorithms depends on the chosen parameters, the selection of which is closely associated with the intensity gradients of the underlying images. For the Demons algorithm, both single resolution (SR) and multiresolution (MR) registrations required approximately 300 iterations to reach an accuracy of 1.4 mm mean error in the lung patient's CT image (and 0.7 mm mean error averaged in the lung only). For the low gradient prostate phantom, these algorithms (both SR and MR) required at least 1600 iterations to reduce their mean errors to 2 mm. For the B-Spline algorithms, best performance (mean errors of 1.9 mm for SR and 1.6 mm for MR, respectively) on the low gradient prostate was achieved using five grid nodes in each direction. Adding more grid nodes resulted in larger errors. For the lung patient's CT data set, the B-Spline registrations required ten grid nodes in each direction for highest accuracy (1.4 mm for SR and 1.5 mm for MR). The numbers of iterations or grid nodes required for optimal registrations depended on the intensity gradients of the underlying images. In summary, the performance of the Demons and B-Spline registrations have been quantitatively evaluated using numerical phantoms. The results show that parameter selection for optimal accuracy is closely related to the intensity gradients of the underlying images. Also, the result that the DIR algorithms produce much lower errors in heterogeneous lung regions relative to homogeneous (low intensity gradient) regions, suggests that feature-based evaluation of deformable image registration accuracy must be viewed cautiously.

Zhong Hualiang; Kim, Jinkoo; Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 (United States)

2010-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Dose Reconstruction Using Computational Modeling of Handling a Particular Arsenic-73/Arsenic-74 Source  

E-Print Network (OSTI)

A special work evolution was performed at Los Alamos National Laboratory (LANL) with a particular 73As/74As source but the worker’s extremity dosimeter did not appear to provide appropriate dosimetric information for the tasks performed. This prompted a reconstruction of the dose to the worker’s hands. The computer code MCNP was chosen to model the tasks that the worker performed to evaluate the potential nonuniform hand dose distribution. A model was constructed similar to the worker’s hands to represent the performed handling tasks. The model included the thumb, index finger, middle finger, and the palm. The dose was calculated at the 7 mg cm-2 skin depth. To comply with the Code of Federal Regulations, 10 CFR 835, the 100 cm2 area that received the highest dose must be calculated. It could be determined if the dose received by the worker exceeded any regulatory limit. The computer code VARSKIN was also used to provide results to compare with those from MCNP where applicable. The results from the MCNP calculations showed that the dose to the worker’s hands did not exceed the regulatory limit of 0.5 Sv (50 rem). The equivalent nonuniform dose was 0.126 Sv (12.6 rem) to the right hand and 0.082 Sv (8.2 rem) to the left hand.

Stallard, Alisha M.

2010-05-01T23:59:59.000Z

262

Cloud computing adoption model for governments and large enterprises  

E-Print Network (OSTI)

Cloud Computing has held organizations across the globe spell bound with its promise. As it moves from being a buzz word and hype into adoption, organizations are faced with question of how to best adopt cloud. Existing ...

Trivedi, Hrishikesh

2013-01-01T23:59:59.000Z

263

Resource allocation in cloud computing: model and algorithm  

Science Conference Proceedings (OSTI)

This paper provides an optimal approach to satisfy cloud user requests and schedule resources within cloud computing environment. The paper exploits the market concept into the interaction among the Software as a Service SaaS services providers, service ...

Chunlin Li; Layuan Li

2013-05-01T23:59:59.000Z

264

Performance of Massively Parallel Computers for Spectral Atmospheric Models  

Science Conference Proceedings (OSTI)

Massively parallel processing (MPP) computer systems use high-speed interconnection networks to link hundreds or thousands of RISC microprocessors. With each microprocessor having a peak performance of 100 or more megaflops per second, there is ...

Ian T. Foster; Brian Toonen; Patrick H. Worley

1996-10-01T23:59:59.000Z

265

Ontology-based models in pervasive computing systems  

Science Conference Proceedings (OSTI)

Pervasive computing is by its nature open and extensible, and must integrate the information from a diverse range of sources. This leads to a problem of information exchange, so sub-systems must agree on shared representations. Ontologies potentially ...

Juan Ye; Lorcan Coyle; Simon Dobson; Paddy Nixon

2007-12-01T23:59:59.000Z

266

Modeling-Computer Simulations At Raft River Geothermal Area (1977) | Open  

Open Energy Info (EERE)

Raft River Geothermal Area (1977) Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Simulate reservoir performance Notes Computer models describing both the transient reservoir pressure behavior and the time dependent temperature response of the wells were developed. A horizontal, two-dimensional, finite-difference model for calculating pressure effects was constructed to simulate reservoir performance. Vertical, two-dimensional, finite-difference, axisymmetric models for each

267

A computer model of gas generation and transport within TRU waste drums  

DOE Green Energy (OSTI)

A computer model has been developed to predict radiolytic gas generation and transport within Transuranic (TRU) waste drums and surrounding enclosures. Gas generation from the radiolytic decomposition of organic material contaminated with plutonium is modeled and the concentrations of gas throughout the waste drum and enclosures are determined using a diffusional transport model. The model accurately reproduces experimentally measured gas concentrations. With polyethylene waste in unvented drums, the model predicts that the concentration of hydrogen gas can exceed 4 mole percent (lower flammable limit) with only about 5 curies of plutonium. If the drum liner is punctured and an unrestricted 0.75-in. carbon composite filter vent is installed in the drum lid, the plutonium loading can be increased to 240 Ci without generating flammable gas mixtures. Larger diameter filters can be used to increase the curie loading. The model has been used to show that shipments of 1000 Ci of plutonium-238 contaminated waste from Savannah River to the WIPP site are feasible using the TRUPACT shipping container. 10 refs., 17 figs., 6 tabs.

Smith, F.G. III

1988-06-01T23:59:59.000Z

268

Beyond validation: alternative uses and associated assessments of goodness for computational social models  

Science Conference Proceedings (OSTI)

This discussion challenges classic notions of validation, suggesting that ‘validity' is not just an attribute of a model. It is a function of the relationship of a particular characteristic of the model (the probability that the model will produce ... Keywords: computational models, social modeling, validation

Jessica Glicken Turnley; Peter A. Chew; Aaron S. Perls

2012-04-01T23:59:59.000Z

269

Putting the organization back into computational organization theory: a complex Perrowian model of organizational action  

Science Conference Proceedings (OSTI)

At best, computational models that study organizations incorporate only one perspective of how organizations are known to act within their environments. Such single-perspective models are limited in their generalizability and applicability to the real ... Keywords: Agent-based simulation, Computational organization theory, Organization theory, Organizational complexity

Brian W. Kulik; Timothy Baker

2008-06-01T23:59:59.000Z

270

Computationally efficient modelling of pattern dependencies in the micro-embossing of thermoplastic polymers  

Science Conference Proceedings (OSTI)

We present a highly computationally efficient way to simulate the deformation of a polymeric layer when embossed with an arbitrarily patterned stamp. Two simplified material models are considered: a purely elastic model, which is useful when the material ... Keywords: Computer-aided design, Hot micro-embossing, PMMA, Pattern dependencies, Simulation

Hayden Taylor; Duane Boning; Ciprian Iliescu; Bangtao Chen

2008-05-01T23:59:59.000Z

271

Application of soft computing models to hourly weather analysis in southern Saskatchewan, Canada  

Science Conference Proceedings (OSTI)

Accurate weather forecasts are necessary for planning our day-to-day activities. However, dynamic behavior of weather makes the forecasting a formidable challenge. This study presents a soft computing model based on a radial basis function network (RBFN) ... Keywords: Artificial neural networks, Decision support, Forecasting, Modeling, Simulation, Soft computing, Weather

Imran Maqsood; Muhammad Riaz Khan; Guo H. Huang; Rifaat Abdalla

2005-02-01T23:59:59.000Z

272

Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et  

Open Energy Info (EERE)

Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Al., 2009) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Northern_Basin_%26_Range_Region_(Biasi,_Et_Al.,_2009)&oldid=40142

273

Computer modeling and experimental verification of figure-eight-shaped null-flux coil suspension system  

DOE Green Energy (OSTI)

This report discusses the computer modeling and experimental verification of the magnetic forces associated with a figure-eight-shaped null-flux coil suspension system. A set of computer codes called COILGDWY, were developed on the basis of the dynamic circuit model and verified by means of a laboratory model. The experimental verification was conducted with a rotating PVC drum, the surface of which held various types of figure-eight-shaped null-flux coils that interacted with a stationary permanent magnet. The transient and dynamic magnetic forces between the stationary magnet and the rotating conducting coils were measured and compared with results obtained from the computer model. Good agreement between the experimental results and computer simulations was obtained. The computer model can also be used to calculate magnetic forces in a large-scale magnetic-levitation system.

He, J.L.; Mulcahey, T.M.; Rote, D.M.; Kelly, T.

1994-12-01T23:59:59.000Z

274

Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing Based Approach  

SciTech Connect

For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent- and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required {approx}100 hours until termination, whereas a parallel approach required only {approx}2.5 hours (42 compute nodes) - a 40x speed-up. Tools developed for this parallel execution are discussed.

Fillippi, Anthony [Texas A& M University; Bhaduri, Budhendra L [ORNL; Naughton, III, Thomas J [ORNL; King, Amy L [ORNL; Scott, Stephen L [ORNL; Guneralp, Inci [Texas A& M University

2012-01-01T23:59:59.000Z

275

Hyperspectral Aquatic Radiative Transfer Modeling Using a High-Performance Cluster Computing-Based Approach  

SciTech Connect

Abstract For aquatic studies, radiative transfer (RT) modeling can be used to compute hyperspectral above-surface remote sensing reflectance that can be utilized for inverse model development. Inverse models can provide bathymetry and inherent-and bottom-optical property estimation. Because measured oceanic field/organic datasets are often spatio-temporally sparse, synthetic data generation is useful in yielding sufficiently large datasets for inversion model development; however, these forward-modeled data are computationally expensive and time-consuming to generate. This study establishes the magnitude of wall-clock-time savings achieved for performing large, aquatic RT batch-runs using parallel computing versus a sequential approach. Given 2,600 simulations and identical compute-node characteristics, sequential architecture required ~100 hours until termination, whereas a parallel approach required only ~2.5 hours (42 compute nodes) a 40x speed-up. Tools developed for this parallel execution are discussed.

Filippi, Anthony M [ORNL; Bhaduri, Budhendra L [ORNL; Naughton, III, Thomas J [ORNL; King, Amy L [ORNL; Scott, Stephen L [ORNL; Guneralp, Inci [Texas A& M University

2012-01-01T23:59:59.000Z

276

Computer Models Design for Teaching and Learning using Easy Java Simulation  

E-Print Network (OSTI)

We are teachers who have benefited from the Open Source Physics (Brown, 2012; Christian, 2010; Esquembre, 2012) community's work and we would like to share some of the computer models and lesson packages that we have designed and implemented in five schools grade 11 to 12 classes. In a ground-up teacher-leadership (MOE, 2010) approach, we came together to learn, advancing the professionalism (MOE, 2009) of physics educators and improve students' learning experiences through suitable blend (Jaakkola, 2012) of real equipment and computer models where appropriate . We will share computer models that we have remixed from existing library of computer models into suitable learning environments for inquiry of physics customized (Wee & Mak, 2009) for the Advanced Level Physics syllabus (SEAB, 2010, 2012). We hope other teachers would find these computer models useful and remix them to suit their own context, design better learning activities and share them to benefit all humankind, becoming citizens for the world...

Wee, Loo Kang Lawrence; Goh, Khoon Song Aloysius; LyeYE, Sze Yee; Lee, Tat Leong; Xu, Weiming; Goh, Giam Hwee Jimmy; Ong, Chee Wah; Ng, Soo Kok; Lim, Ee-Peow; Lim, Chew Ling; Yeo, Wee Leng Joshua; Ong, Matthew; LimI, Kenneth Y T

2012-01-01T23:59:59.000Z

277

Electrical utilities model for determining electrical distribution capacity  

Science Conference Proceedings (OSTI)

In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at the minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.

Fritz, R.L., Westinghouse Hanford, Richland, WA

1997-09-03T23:59:59.000Z

278

Modeling-Computer Simulations At Stillwater Area (Wisian & Blackwell, 2004)  

Open Energy Info (EERE)

Stillwater Area (Wisian & Blackwell, 2004) Stillwater Area (Wisian & Blackwell, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Stillwater Area (Wisian & Blackwell, 2004) Exploration Activity Details Location Stillwater Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown References Kenneth W. Wisian, David D. Blackwell (2004) Numerical Modeling Of Basin And Range Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Stillwater_Area_(Wisian_%26_Blackwell,_2004)&oldid=387304" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages Printable version

279

Modeling and analysis of transient vehicle underhood thermo- hydrodynamic events using computational fluid dynamics and high performance computing.  

DOE Green Energy (OSTI)

This work has explored the preliminary design of a Computational Fluid Dynamics (CFD) tool for the analysis of transient vehicle underhood thermo-hydrodynamic events using high performance computing platforms. The goal of this tool will be to extend the capabilities of an existing established CFD code, STAR-CD, allowing the car manufacturers to analyze the impact of transient operational events on the underhood thermal management by exploiting the computational efficiency of modern high performance computing systems. In particular, the project has focused on the CFD modeling of the radiator behavior during a specified transient. The 3-D radiator calculations were performed using STAR-CD, which can perform both steady-state and transient calculations, on the cluster computer available at ANL in the Nuclear Engineering Division. Specified transient boundary conditions, based on experimental data provided by Adapco and DaimlerChrysler were used. The possibility of using STAR-CD in a transient mode for the entire period of time analyzed has been compared with other strategies which involve the use of STAR-CD in a steady-state mode at specified time intervals, while transient heat transfer calculations would be performed for the rest of the time. The results of these calculations have been compared with the experimental data provided by Adapco/DaimlerChrysler and recommendations for future development of an optimal strategy for the CFD modeling of transient thermo-hydrodynamic events have been made. The results of this work open the way for the development of a CFD tool for the transient analysis of underhood thermo-hydrodynamic events, which will allow the integrated transient thermal analysis of the entire cooling system, including both the engine block and the radiator, on high performance computing systems.

Tentner, A.; Froehle, P.; Wang, C.; Nuclear Engineering Division

2004-01-01T23:59:59.000Z

280

Modeling and analysis of transient vehicle underhood thermo - hydrodynamic events using computational fluid dynamics and high performance computing.  

DOE Green Energy (OSTI)

This work has explored the preliminary design of a Computational Fluid Dynamics (CFD) tool for the analysis of transient vehicle underhood thermo-hydrodynamic events using high performance computing platforms. The goal of this tool will be to extend the capabilities of an existing established CFD code, STAR-CD, allowing the car manufacturers to analyze the impact of transient operational events on the underhood thermal management by exploiting the computational efficiency of modern high performance computing systems. In particular, the project has focused on the CFD modeling of the radiator behavior during a specified transient. The 3-D radiator calculations were performed using STAR-CD, which can perform both steady-state and transient calculations, on the cluster computer available at ANL in the Nuclear Engineering Division. Specified transient boundary conditions, based on experimental data provided by Adapco and DaimlerChrysler were used. The possibility of using STAR-CD in a transient mode for the entire period of time analyzed has been compared with other strategies which involve the use of STAR-CD in a steady-state mode at specified time intervals, while transient heat transfer calculations would be performed for the rest of the time. The results of these calculations have been compared with the experimental data provided by Adapco/DaimlerChrysler and recommendations for future development of an optimal strategy for the CFD modeling of transient thermo-hydrodynamic events have been made. The results of this work open the way for the development of a CFD tool for the transient analysis of underhood thermo-hydrodynamic events, which will allow the integrated transient thermal analysis of the entire cooling system, including both the engine block and the radiator, on high performance computing systems.

Froehle, P.; Tentner, A.; Wang, C.

2003-09-05T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Efficient thermal field computation in phase-field models  

Science Conference Proceedings (OSTI)

We solve the phase-field equations in two dimensions to simulate crystal growth in the low undercooling regime. The novelty is the use of a fast solver for the free space heat equation to compute the thermal field. This solver is based on the efficient ... Keywords: Crystal growth, Dendritic solidification, Diffusion equation, Fast solvers, Integral representation, Phase-field, Unbounded domain

Jing-Rebecca Li; Donna Calhoun; Lucien Brush

2009-12-01T23:59:59.000Z

282

A basic model for proactive event-driven computing  

Science Conference Proceedings (OSTI)

During the movie "Source Code" there is a shift in the plot; from (initially) reacting to a train explosion that already occurred and trying to eliminate further explosions, to (later) changing the reality to avoid the original train explosion. Whereas ... Keywords: decision making, event processing, proactive computing

Yagil Engel; Opher Etzion; Zohar Feldman

2012-07-01T23:59:59.000Z

283

Computational methods for kinetic models of magnetically confined plasmas  

SciTech Connect

In this book authors present various types of nonlinear Fokker-Planck equations which require solution for the realistic computer simulation of magnetically confined plasmas. They present detailed mathematical arguements leading to numerically tractable simplifications and provide examples and applications bearing directly on the most recent technology in plasma research.

Killeeen, J.; Kerbel, G.D.; Mc Coy, M.G.; Mirin, A.A.

1986-01-01T23:59:59.000Z

284

An integrated computer model of a solar updraft power plant  

Science Conference Proceedings (OSTI)

Renewable energy technologies are generally complex, requiring nonlinear simulation concepts. This holds true especially for solar updraft power plants, the scope of this treatment, which starts with a short introduction into their functioning. Then ... Keywords: Excel-Solver, Fast computer algorithms, Simulation of nonlinear processes, Solar electricity generation, Solar updraft power technology, Strong numerical nonlinearities

Wilfried B. KräTzig

2013-08-01T23:59:59.000Z

285

COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS  

SciTech Connect

The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

JACKSON VL

2011-08-31T23:59:59.000Z

286

Modeling-Computer Simulations At Akutan Fumaroles Area (Kolker, Et Al.,  

Open Energy Info (EERE)

Modeling-Computer Simulations At Akutan Fumaroles Area (Kolker, Et Al., Modeling-Computer Simulations At Akutan Fumaroles Area (Kolker, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Akutan Fumaroles Area (Kolker, Et Al., 2010) Exploration Activity Details Location Akutan Fumaroles Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes "Conceptual Model: Based on conceptual models built primarily from MT and geochemical datasets, it appears that development of the Akutan geothermal resource for power and/or direct use may be feasible. These datasets point to a shallow, tabular aquifer(s) of 155-180degrees C (i.e., "outflow zone") and a deeper, hotter resource of >220degrees C (i.e., "upflow zone") that

287

Modeling-Computer Simulations At Raft River Geothermal Area (1983) | Open  

Open Energy Info (EERE)

Modeling-Computer Simulations At Raft River Geothermal Area (1983) Modeling-Computer Simulations At Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1983 Usefulness useful DOE-funding Unknown Exploration Basis Predict flow rate and porosity Notes The objectives of the physical modeling effort are to: (1) evaluate injection-backflow testing for fractured reservoirs under conditions of known reservoir parameters (porosity, fracture width, etc.); (2) study the mechanisms controlling solute transport in fracture systems; and (3) provide data for validation of numerical models that explicitly simulate

288

Modeling-Computer Simulations At Valles Caldera - Redondo Area (Roberts, Et  

Open Energy Info (EERE)

Modeling-Computer Simulations At Valles Caldera - Redondo Area (Roberts, Et Modeling-Computer Simulations At Valles Caldera - Redondo Area (Roberts, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Redondo Area (Roberts, Et Al., 1995) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Modeling of the amplitude data, using the Aki-Lamer method, confirmed that this anomaly exists and we estimated quantitative parameters defining it. All model parameters were physically meaningful except for one. The value for Q inside the anomaly, required to explain the data, was unrealistically low. This was probably due to the inability to include additional

289

Modeling-Computer Simulations At San Juan Volcanic Field Area (Clarkson &  

Open Energy Info (EERE)

Modeling-Computer Simulations At San Juan Volcanic Field Area (Clarkson & Modeling-Computer Simulations At San Juan Volcanic Field Area (Clarkson & Reiter, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At San Juan Volcanic Field Area (Clarkson & Reiter, 1987) Exploration Activity Details Location San Juan Volcanic Field Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes In this study we combine thermal maturation models, based on the level of maturation of the Fruitland Formation coals, and time-dependet temperature models, based on heat-flow data in the San Juan region, to further investigate both the thermal history of the region and the nature of the influence of the San Juan volcanic field thermal source on the thermal

290

Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al.,  

Open Energy Info (EERE)

Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al., Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes "Shallow temperature gradient drilling began at the CMAGR in January of 2010. 13 temperature gradient holes were completed to a depth of 500' below ground surface. Sites were selected based on the compilation of previous exploration and resulting data is being integrated into the most recent geologic model. This model will form the basis for the selection of a

291

BWRVIP-228: BWR Vessel and Internals Project, A Computational Modeling Tool for Welding Repair of Irradiated Materials  

Science Conference Proceedings (OSTI)

Repair welding on highly irradiated stainless steel BWR internals can lead to cracking in the heat-affected zone (HAZ) of the weld region. EPRI and participating Boiling Water Reactor Vessel and Internals Project (BWRVIP) members have sponsored development of a computational modeling tool to assist in determining appropriate welding process conditions (heat input and process selection) to produce crack-free welds on irradiated materials. This tool integrates a finite-element-based welding temperature and...

2009-11-30T23:59:59.000Z

292

Computer Vision and Human-Computer Interaction: artificial vision techniques and use cases with creating interfaces and interaction models.  

E-Print Network (OSTI)

??Here is described how Computer Vision could give improvements to Human-Computer Interaction. Starting from a brief description of computers and human beings, follows a description… (more)

Comite, Marco

2013-01-01T23:59:59.000Z

293

Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al.,  

Open Energy Info (EERE)

Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish Lake Valley Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes (4) synthesis of geologic mapping results and lithologic logs for 3_D geologic characterization of the prospect area; (5) compilation of relevant data from the foregoing sub_activities into a Geographic Information Systems (GIS) database for visualization and mapping, and to facilitate the development of an exploration model; and (6) development of a refined

294

Modeling-Computer Simulations At Coso Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Modeling-Computer Simulations At Coso Geothermal Area (1980) Modeling-Computer Simulations At Coso Geothermal Area (1980) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1980 Usefulness useful DOE-funding Unknown Exploration Basis Estimate thermal regime and potential of the system Notes A three-dimensional generalized linear inversion of the delta t* observations was performed using a three-layer model. A shallow zone of high attenuation exists within the upper 5 km in a region bounded by Coso Hot Springs, Devils Kitchen, and Sugarloaf Mountain probably corresponding to a shallow vapor liquid mixture or "lossy" near surface lithology.

295

Modeling-Computer Simulations At Coso Geothermal Area (2000) | Open Energy  

Open Energy Info (EERE)

Modeling-Computer Simulations At Coso Geothermal Area (2000) Modeling-Computer Simulations At Coso Geothermal Area (2000) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Coso Geothermal Area (2000) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 2000 Usefulness not indicated DOE-funding Unknown Exploration Basis Model ground subsidence using observations of satellite radar interferometry Notes The InSAR displacement data was inverted for the positions, geometry, and relative strengths of the deformation sources at depth using a nonlinear least squares minimization algorithm. Elastic solutions were used for a prolate uniformly pressurized spheroidal cavity in a semi-infinite body as

296

Modeling-Computer Simulations At Hawthorne Area (Lazaro, Et Al., 2010) |  

Open Energy Info (EERE)

Modeling-Computer Simulations At Hawthorne Area (Lazaro, Et Al., 2010) Modeling-Computer Simulations At Hawthorne Area (Lazaro, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Hawthorne Area (Lazaro, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes The Navy GPO has contracted the University of Nevada Reno Great Basin for Center for Geothermal Research to conduct additional field exploration at HAD. The tasks required by the Navy range from field mapping and water sampling; detailed mapping, to low angle sun photo interpretations, trenching, to 3-D seismic interpretations and modeling. References Michael Lazaro, Chris Page, Andy Tiedeman, Andrew Sabin, Steve

297

Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al.,  

Open Energy Info (EERE)

Biasi, Et Al., Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al., 2009) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Nw_Basin_%26_Range_Region_(Biasi,_Et_Al.,_2009)&oldid=401461" Categories: Exploration Activities DOE Funded

298

An Approach to Integrate a Space-Time GIS Data Model with High Performance Computers  

Science Conference Proceedings (OSTI)

In this paper, we describe an approach to integrate a Space-Time GIS data model on a high performance computing platform. The Space-Time GIS data model has been developed on a desktop computing environment. We use the Space-Time GIS data model to generate GIS module, which organizes a series of remote sensing data. We are in the process of porting the GIS module into an HPC environment, in which the GIS modules handle large dataset directly via parallel file system. Although it is an ongoing project, authors hope this effort can inspire further discussions on the integration of GIS on high performance computing platforms.

Wang, Dali [ORNL; Zhao, Ziliang [University of Tennessee, Knoxville (UTK); Shaw, Shih-Lung [ORNL

2011-01-01T23:59:59.000Z

299

Final Report for Integrated Multiscale Modeling of Molecular Computing Devices  

SciTech Connect

In collaboration with researchers at Vanderbilt University, North Carolina State University, Princeton and Oakridge National Laboratory we developed multiscale modeling and simulation methods capable of modeling the synthesis, assembly, and operation of molecular electronics devices. Our role in this project included the development of coarse-grained molecular and mesoscale models and simulation methods capable of simulating the assembly of millions of organic conducting molecules and other molecular components into nanowires, crossbars, and other organized patterns.

Glotzer, Sharon C.

2013-08-28T23:59:59.000Z

300

Computation of Thermal Fields with Non-Stationary Model at ...  

Science Conference Proceedings (OSTI)

Numerical experiments in the case of electron beam melting of different metals ... Multiscale Modeling of Nanoscale Precipitate Stability in Irradiated Materials.

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Modeling-Computer Simulations (Brikowski, 2001) | Open Energy...  

Open Energy Info (EERE)

not indicated DOE-funding Unknown References Tom H. Brikowski (2001) Modeling Supercritical Systems With Tough2- The Eoslsc Equation Of State Module And A Basin And Range...

302

Reversible computation as a model for the quantum measurement process  

E-Print Network (OSTI)

One-to-one reversible automata are introduced. Their applicability to a modelling of the quantum mechanical measurement process is discussed.

Karl Svozil

2009-04-15T23:59:59.000Z

303

The Computational Modeling of Alloys at the Atomic scale  

Science Conference Proceedings (OSTI)

Different expressions for the embedding energies, densities, and pair potentials englobe a large diversity of similar models. From Equation 5 it appears clearly ...

304

Computational Modeling of Oxidation and Corrosion of Alloys in ...  

Science Conference Proceedings (OSTI)

To address the kinetic effect, a multi-faceted modeling approach is being developed at NETL/DOE to study oxidation kinetics under different length scales.

305

Publicly Available Computer Models in the Hypercon program  

Science Conference Proceedings (OSTI)

... Virtual Concrete Electrical Conductivity Test. ... completed his Ph.D. thesis at the University of Gent in ... 4SIGHT does not currently model degradation. ...

2013-06-20T23:59:59.000Z

306

Surveillance and human-computer interaction applications of self-growing models  

Science Conference Proceedings (OSTI)

The aim of the work is to build self-growing based architectures to support visual surveillance and human-computer interaction systems. The objectives include: identifying and tracking persons or objects in the scene or the interpretation of user gestures ... Keywords: Growing Neural Gas, Human-computer interaction, Self-growing models, Surveillance systems, Topology preservation

José García-Rodríguez; Juan Manuel García-Chamizo

2011-10-01T23:59:59.000Z

307

Model-based computer-aided design environment for operational design  

Science Conference Proceedings (OSTI)

To meet the increasing market challenges in chemical industry, it is imperative to improve process design and the supportive computer-aided engineering tools so that they can support lifecycle activities. This research work proposes detailed mechanism ... Keywords: change management, computer-aided design, operational design, operational design modeling

Hossam A. Gabbar; Atsushi Aoyama; Yuji Naka

2004-06-01T23:59:59.000Z

308

Modeling water resource systems using a service-oriented computing paradigm  

Science Conference Proceedings (OSTI)

Service-oriented computing is a software engineering paradigm that views complex software systems as an interconnected collection of distributed computational components. Each component has a defined web service interface that allows it to be loosely-coupled ... Keywords: Integrated modeling, Systems analysis, Water management, Web services

Jonathan L. Goodall; Bella F. Robinson; Anthony M. Castronova

2011-05-01T23:59:59.000Z

309

Keeping the patient asleep and alive: Towards a computational cognitive model of disturbance management in anaesthesia  

Science Conference Proceedings (OSTI)

We have analysed rich, dynamic data about the behaviour of anaesthetists during the management of a simulated critical incident in the operating theatre. We use a paper based analysis and a partial implementation to further the development of a computational ... Keywords: Behavioural analysis, Computational cognitive modelling, Disturbance management

K. Keogh; E. A. Sonenberg

2007-12-01T23:59:59.000Z

310

Service and Utility Oriented Distributed Computing Systems: Challenges and Opportunities for Modeling and Simulation Communities  

E-Print Network (OSTI)

for Modeling and Simulation Communities Rajkumar Buyya and Anthony Sulistio Grid Computing and Distributed- oriented computing systems such as Data Centers and Grids. We present various case studies on the use by the electrical power grid's pervasiveness and reliability, began exploring the design and development of a new

Buyya, Rajkumar

311

Liquefied Natural Gas (LNG) Vapor Dispersion Modeling with Computational Fluid Dynamics Codes  

E-Print Network (OSTI)

Federal regulation 49 CFR 193 and standard NFPA 59A require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. For modeling purposes, the physical process of dispersion of LNG release can be simply divided into two stages: source term and atmospheric dispersion. The former stage occurs immediately following the release where the behavior of fluids (LNG and its vapor) is mainly controlled by release conditions. After this initial stage, the atmosphere would increasingly dominate the vapor dispersion behavior until it completely dissipates. In this work, these two stages are modeled separately by a source term model and a dispersion model due to the different parameters used to describe the physical process at each stage. The principal focus of the source term study was on LNG underwater release, since there has been far less research conducted in developing and testing models for the source of LNG release underwater compared to that for LNG release onto land or water. An underwater LNG release test was carried out to understand the phenomena that occur when LNG is released underwater and to determine the characteristics of pool formation and the vapor cloud generated by the vaporization of LNG underwater. A mathematical model was used and validated against test data to calculate the temperature of the vapor emanating from the water surface. This work used the ANSYS CFX, a general-purpose computational fluid dynamics (CFD) package, to model LNG vapor dispersion in the atmosphere. The main advantages of CFD codes are that they have the capability of defining flow physics and allowing for the representation of complex geometry and its effects on vapor dispersion. Discussed are important parameters that are essential inputs to the ANSYS CFX simulations, including the mesh size and shape, atmospheric conditions, turbulence from the source term, ground surface roughness height, and effects of obstacles. A sensitivity analysis was conducted to illustrate the impact of key parameters on the accuracy of simulation results. In addition, a series of medium-scale LNG spill tests have been performed at the Brayton Fire Training Field (BFTF), College Station, TX. The objectives of these tests were to study key parameters of modeling the physical process of LNG vapor dispersion and collect data for validating the ANSYS CFX prediction results. A comparison of test data with simulation results demonstrated that CFX described the physical behavior of LNG vapor dispersion well, and its prediction results of distances to the half lower flammable limit were in good agreement with the test data.

Qi, Ruifeng

2011-08-01T23:59:59.000Z

312

Theoretical and computational studies of some bioreactor models  

Science Conference Proceedings (OSTI)

We study certain classical basic models for bioreactor simulation in case of batch mode with decay. It is shown that in many cases the two-dimensional differential system describing the dynamics of the substrate and biomass concentrations can be reduced ... Keywords: Batch mode, Bioreactor, Chemostat, Haldane/Andrews function, Microbial growth, Monod model

Rene Alt; Svetoslav Markov

2012-08-01T23:59:59.000Z

313

WUFI COMPUTER MODELING WORKSHOP FOR WALL DESIGN AND PERFORMANCE  

E-Print Network (OSTI)

from rain, solar radiation and other crucial weather events on an hourly basis. Both vapor and liquid sophisticated modeling software that gives you heat and moisture data and uses weather data files from all over of multi- layer building walls exposed to natural weather. The WUFI series models can handle contributions

Oak Ridge National Laboratory

314

A model of computation and representation in the brain  

Science Conference Proceedings (OSTI)

The brain is first and foremost a control system that is capable of building an internal representation of the external world, and using this representation to make decisions, set goals and priorities, formulate plans, and control behavior with intent ... Keywords: Brain modeling, Cognitive modeling, Human neocortex, Image processing, Knowledge representation, Perception, Reverse engineering the brain, Segmentation, Signals to symbols

James S. Albus

2010-05-01T23:59:59.000Z

315

Assessment of GPU computational enhancement to a 2D flood model  

Science Conference Proceedings (OSTI)

This paper presents a study of the computational enhancement of a Graphics Processing Unit (GPU) enabled 2D flood model. The objectives are to demonstrate the significant speedup of a new GPU-enabled full dynamic wave flood model and to present the effect ... Keywords: 2D flood model, CUDA, Flood simulation, GPU programming

Alfred J. Kalyanapu; Siddharth Shankar; Eric R. Pardyjak; David R. Judi; Steven J. Burian

2011-08-01T23:59:59.000Z

316

Comparison of Regional Clear-Sky Albedos Inferred from Satellite Observations and Model Computations  

Science Conference Proceedings (OSTI)

We have taken an important first step in validating climate models by comparing model and satellite inferred clear sky TOA (top-of-atmosphere) albedos. Model albodos were computed on a 1° × 1° latitude-longitude grid, allowing for variations in ...

B. P. Briegleb; P. Minnis; V. Ramanathan; E. Harrison

1986-02-01T23:59:59.000Z

317

Modeling of EOG and electrode position optimization for human-computer interface  

Science Conference Proceedings (OSTI)

The aim of this work was to model electro-oculogram (EOG) to find optimal electrode positions for wearable human-computer interface system. The system is a head cap developed in our institute and with it we can measure EOG and facial electromyography ... Keywords: EOG, electrode positions, modeling, volume conductor model

Niina Nöjd; Jari Hyttinen

2008-03-01T23:59:59.000Z

318

Modeling-Computer Simulations At Cove Fort Area (Toksoz, Et Al, 2010) |  

Open Energy Info (EERE)

Modeling-Computer Simulations At Cove Fort Area (Toksoz, Et Al, 2010) Modeling-Computer Simulations At Cove Fort Area (Toksoz, Et Al, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Cove Fort Area (Toksoz, Et Al, 2010) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes We have collected various geophysical data around the geothermal field, including heat flow, gravity, MT, seismic surface wave phase and group velocity maps, seismic body wave travel time data and full seismic waveforms. All of these geophysical data sets have different strengths on characterizing subsurface structures and properties. Combining these data through a coordinated analysis and, when possible, by joint inversion

319

Modeling-Computer Simulations At Nw Basin & Range Region (Laney, 2005) |  

Open Energy Info (EERE)

Modeling-Computer Simulations At Nw Basin & Range Region (Laney, 2005) Modeling-Computer Simulations At Nw Basin & Range Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Assembling Crustal Geophysical Data for Geothermal Exploration in the Great Basin, Louie and Coolbaugh. We have compiled velocity information from sources in the literature, results of previous seismic experiments and earthquake-monitoring projects, and data donated from mining, geothermal, and petroleum companies. We also collected (May 2002 and August 2004) two

320

New Set of Computational Tools and Models Expected to Help Enable Rapid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Set of Computational Tools and Models Expected to Help Enable Set of Computational Tools and Models Expected to Help Enable Rapid Development and Deployment of Carbon Capture Technologies New Set of Computational Tools and Models Expected to Help Enable Rapid Development and Deployment of Carbon Capture Technologies January 28, 2013 - 12:00pm Addthis Washington, DC - An eagerly anticipated suite of 21 computational tools and models to help enable rapid development and deployment of new carbon capture technologies is now available from the Carbon Capture Simulation Initiative (CCSI). Visit the CCSI website The toolset developed by CCSI, a public-private partnership led by the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), will help meet an urgent need by industry to take carbon capture

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Non-linear inversion modeling for Ultrasound Computer Tomography: transition from soft to hard tissues imaging  

E-Print Network (OSTI)

Non-linear inversion modeling for Ultrasound Computer Tomography: transition from soft to hard, the tomographic procedure used is adapted to broadband data acquired in scattering configurations while, Iterative Approximation, Soft Tissues Imaging, Hard Tissues Imaging, Breast, Bones 1. INTRODUCTION

322

Computational intelligence methods: joint use in discrete event simulation model of logistics processes  

Science Conference Proceedings (OSTI)

The objective of the paper is to present the concept of using selected computational intelligence methods in conjunction with discrete event simulation (DES) models of chosen logistics processes. A review of the recent literature in the scope of applications ...

Marek Karkula; Lech Bukowski

2012-12-01T23:59:59.000Z

323

Computational Models for Materials with Shape Memory: Towards a Systematic Description of Coupled Phenomena  

Science Conference Proceedings (OSTI)

In this paper we propose a systematic methodology for improving computational efficiency of models describing the dynamics of materials with memory as part of multilayered structures, in particular in thermoelectric shape memory alloys actuators. The ...

Roderick V. N. Melnik; Anthony J. Roberts

2002-04-01T23:59:59.000Z

324

Soap Manufacturing TechnologyChapter 7 Kettle Saponification: Computer Modeling, Latest Trends, and Innovations  

Science Conference Proceedings (OSTI)

Soap Manufacturing Technology Chapter 7 Kettle Saponification: Computer Modeling, Latest Trends, and Innovations Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of\tChapter 7 K

325

A Computational Model of Cellular Response to Modulated Radiation Fields  

Science Conference Proceedings (OSTI)

Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.

McMahon, Stephen J., E-mail: stephen.mcmahon@qub.ac.uk [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom); Butterworth, Karl T. [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom)] [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom); McGarry, Conor K. [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom) [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Trainor, Colman [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom)] [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom); O'Sullivan, Joe M. [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom) [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom); Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Hounsell, Alan R. [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom) [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom)] [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom)

2012-09-01T23:59:59.000Z

326

Computational Computational  

E-Print Network (OSTI)

38 Computational complexity Computational complexity In 1965, the year Juris Hartmanis became Chair On the computational complexity of algorithms in the Transactions of the American Mathematical Society. The paper the best talent to the field. Theoretical computer science was immediately broadened from automata theory

Keinan, Alon

327

Scalable computational architecture for integrating biological pathway models  

E-Print Network (OSTI)

A grand challenge of systems biology is to model the cell. The cell is an integrated network of cellular functions. Each cellular function, such as immune response, cell division, metabolism or apoptosis, is defined by an ...

Shiva, V. A

2007-01-01T23:59:59.000Z

328

Computational tools for modeling and measuring chromosome structure  

E-Print Network (OSTI)

DNA conformation within cells has many important biological implications, but there are challenges both in modeling DNA due to the need for specialized techniques, and experimentally since tracing out in vivo conformations ...

Ross, Brian Christopher

2012-01-01T23:59:59.000Z

329

A Multidimensional Model for Aerosols: Description of Computational Analogs  

Science Conference Proceedings (OSTI)

The numerical algorithms which we use to simulate the advection, diffusion, sedimentation, coagulation and condensational growth of atmospheric aerosols are described. The model can be used in one, two, or three spatial dimensions. We develop the ...

O. B. Toon; R. P. Turco; D. Westphal; R. Malone; M. Liu

1988-08-01T23:59:59.000Z

330

Integrated Computational Modeling of Materials for Nuclear Energy  

Science Conference Proceedings (OSTI)

Nuclear fuel and primary cooling system structural components are exposed to elevated ... models for safety and performance evaluation of nuclear reactors but also for the ... Continuum Theory of Defects and Materials Response to Irradiation

331

Application of the TEMPEST computer code for simulating hydrogen distribution in model containment structures. [PWR; BWR  

SciTech Connect

In this study several aspects of simulating hydrogen distribution in geometric configurations relevant to reactor containment structures were investigated using the TEMPEST computer code. Of particular interest was the performance of the TEMPEST turbulence model in a density-stratified environment. Computed results illustrated that the TEMPEST numerical procedures predicted the measured phenomena with good accuracy under a variety of conditions and that the turbulence model used is a viable approach in complex turbulent flow simulation.

Trent, D.S.; Eyler, L.L.

1982-09-01T23:59:59.000Z

332

Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models  

DOE Green Energy (OSTI)

This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.

Cook, Chris B; Richmond, Marshall C

2001-05-01T23:59:59.000Z

333

Modelling and computation for designs of multistage heat exchanger systems  

Science Conference Proceedings (OSTI)

A multistage heat exchanger system is formed when it is desired to heat a single cold fluid stream with the help of several available hot streams. Usually only one specific size combination will lead to total minimum cost. The determination of these ... Keywords: Heat Exchangers, multistage, optimisation

A. Malhotra; S. B. Muhaddin

1990-12-01T23:59:59.000Z

334

Computational fluid dynamics for LNG vapor dispersion modeling: a key parameters study  

E-Print Network (OSTI)

The increased demand for liquefied natural gas (LNG) has led to the construction of several new LNG terminals in the United States (US) and around the world. To ensure the safety of the public, consequence modeling is used to estimate the exclusion distances. The purpose of having these exclusion distances is to protect the public from being reached by flammable vapors during a release. For LNG industry, the exclusion zones are determined by the half lower flammability limits (half LFL, 2.5% V/V). Since LNG vapors are heavier?than?air when released into atmosphere, it goes through stages, negative, neutral and positive buoyant effect. In this process, it may reach the half LFL. The primary objective of this dissertation is to advance the status of LNG vapor dispersion modeling, especially for complex scenarios (i.e. including obstacle effects). The most used software, box models, cannot assess these complex scenarios. Box models simulate the vapor in a free?obstacle environment. Due to the advancement in computing, this conservative approach has become questionable. New codes as computational fluid dynamics (CFD) have been proven viable and more efficient than box models. The use of such advance tool in consequence modeling requires the refinement of some of the parameters. In these dissertation, these parameters were identified and refine through a series of field tests at the Brayton Firefighter Training Field (BFTF) as part of the Texas A&M University System (TAMUS). A total of five tests contributed to this dissertation, which three of them were designed and executed by the LNG team of the Mary Kay O'Connor Process Safety Center (MKOPSC) and the financial support from BP Global SPU Gas (BP). The data collected were used as calibration for a commercial CFD code called CFX from ANSYS. Once the CFD code was tuned, it was used in a sensitivity analysis to assess the effects of parameters in the LFL distance and the concentration levels. The dissertation discusses also the validity range for the key parameters.

Cormier, Benjamin Rodolphe

2008-08-01T23:59:59.000Z

335

Developing a computationally efficient dynamic multilevel hybrid optimization scheme using multifidelity model interactions.  

SciTech Connect

Many engineering application problems use optimization algorithms in conjunction with numerical simulators to search for solutions. The formulation of relevant objective functions and constraints dictate possible optimization algorithms. Often, a gradient based approach is not possible since objective functions and constraints can be nonlinear, nonconvex, non-differentiable, or even discontinuous and the simulations involved can be computationally expensive. Moreover, computational efficiency and accuracy are desirable and also influence the choice of solution method. With the advent and increasing availability of massively parallel computers, computational speed has increased tremendously. Unfortunately, the numerical and model complexities of many problems still demand significant computational resources. Moreover, in optimization, these expenses can be a limiting factor since obtaining solutions often requires the completion of numerous computationally intensive simulations. Therefore, we propose a multifidelity optimization algorithm (MFO) designed to improve the computational efficiency of an optimization method for a wide range of applications. In developing the MFO algorithm, we take advantage of the interactions between multi fidelity models to develop a dynamic and computational time saving optimization algorithm. First, a direct search method is applied to the high fidelity model over a reduced design space. In conjunction with this search, a specialized oracle is employed to map the design space of this high fidelity model to that of a computationally cheaper low fidelity model using space mapping techniques. Then, in the low fidelity space, an optimum is obtained using gradient or non-gradient based optimization, and it is mapped back to the high fidelity space. In this paper, we describe the theory and implementation details of our MFO algorithm. We also demonstrate our MFO method on some example problems and on two applications: earth penetrators and groundwater remediation.

Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Gray, Genetha Anne (Sandia National Laboratories, Livermore, CA); Castro, Joseph Pete Jr. (; .); Giunta, Anthony Andrew

2006-01-01T23:59:59.000Z

336

Computing the Electricity Market Equilibrium: Uses of market equilibrium models  

E-Print Network (OSTI)

]. On the demand side, considerable demand is simply not exposed to wholesale price variation, which greatly complicates the spec- ification of a demand model. Furthermore, the specification of electricity markets Engineer- ing, The University of Texas at Austin, Austin, TX 78712, USA (email: baldick

Baldick, Ross

337

WUFI COMPUTER MODELING WORKSHOP FOR WALL DESIGN AND PERFORMANCE  

E-Print Network (OSTI)

from rain, solar radiation and other crucial weather events on an hourly basis. Both vapor and liquid of multi- layer building walls exposed to natural weather. The WUFI series models can handle contributions and is free of charge. WUFI ORNL/IBP comes complete with weather data for scores of North-American cities

Oak Ridge National Laboratory

338

WUFI COMPUTER MODELING WORKSHOP FOR WALL DESIGN AND PERFORMANCE  

E-Print Network (OSTI)

from rain, solar radiation and other crucial weather events on an hourly basis. Both vapor and liquid and uses weather data files from all over the country. The software includes analysis to predict mold. Dr of multi- layer building walls exposed to natural weather. The WUFI series models can handle contributions

Oak Ridge National Laboratory

339

Modeling-Computer Simulations At U.S. West Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Modeling-Computer Simulations At U.S. West Region Modeling-Computer Simulations At U.S. West Region (Laney, 2005) Exploration Activity Details Location U.S. West Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Characterization and Conceptual Modeling of Magmatically-Heated and Deep-Circulation, High-Temperature Hydrothermal Systems in the Basin and Range and Cordilleran United States, Moore, Nash, Nemcok, Lutz, Norton, Kaspereit, Berard, van de Putte, Johnson and Deymonaz. Utilizing a wealth of formerly proprietary subsurface samples and datasets for exemplary high-temperature western U.S. geothermal systems, develop and publish detailed and refined new conceptual and numerical hydrothermal-history models of fundamental scientific import but, more importantly, of use to

340

Back analysis of microplane model parameters using soft computing methods  

E-Print Network (OSTI)

A new procedure based on layered feed-forward neural networks for the microplane material model parameters identification is proposed in the present paper. Novelties are usage of the Latin Hypercube Sampling method for the generation of training sets, a systematic employment of stochastic sensitivity analysis and a genetic algorithm-based training of a neural network by an evolutionary algorithm. Advantages and disadvantages of this approach together with possible extensions are thoroughly discussed and analyzed.

Kucerova, A; Zeman, J

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Computational Modeling and Real-Time Control of Patient-Specific Laser Treatment of Cancer  

E-Print Network (OSTI)

Abstract—An adaptive feedback control system is presented which employs a computational model of bioheat transfer in living tissue to guide, in real-time, laser treatments of prostate cancer monitored by magnetic resonance thermal imaging. The system is built on what can be referred to as cyberinfrastructure—a complex structure of high-speed network, large-scale parallel computing devices, laser optics, imaging, visualizations, inverse-analysis algorithms, mesh generation, and control systems that guide laser therapy to optimally control the ablation of cancerous tissue. The computational system has been successfully tested on in vivo, canine prostate. Over the course of an 18 min laser-induced thermal therapy performed at M.D. Anderson Cancer Center (MDACC) in Houston, Texas, the computational models were calibrated to intra-operative real-time thermal imaging treatment data and the calibrated models controlled the bioheat transfer to within 5 °C of the predetermined treatment plan. The computational arena is in Austin, Texas and managed at the Institute for Computational Engineering and Sciences (ICES). The system is designed to control the bioheat transfer remotely while simultaneously providing real-time remote visualization of the on-going treatment. Post-operative histology of the canine prostate reveal that the damage region was within the targeted 1.2 cm diameter treatment objective. Keywords—Hyperthermia, Real-time computing, Medical imaging, Cancer treatment, Cyberinfrastructure, PDE

unknown authors

2009-01-01T23:59:59.000Z

342

A computer music instrumentarium  

E-Print Network (OSTI)

Chapter 6. COMPUTERS: To Solder or Not toMusic Models : A Computer Music Instrumentarium . . . . .Interactive Computer Systems . . . . . . . . . . . . . . 101

Oliver La Rosa, Jaime Eduardo

2011-01-01T23:59:59.000Z

343

Computational fluid dynamics modelling of sewage sludge mixing in an anaerobic digester  

Science Conference Proceedings (OSTI)

In this paper, the development of a computational fluid dynamics (CFD) model to simulate the mechanical mixing of sewage sludge at laboratory scale is reported. The paper recommends a strategy for modelling mechanically mixed sewage sludge at laboratory ... Keywords: Biogas, CFD, Digestion, Energy, Non-Newtonian fluid, Sewage sludge, Turbulence

J. Bridgeman

2012-02-01T23:59:59.000Z

344

Exploring social structure effect on language evolution based on a computational model  

Science Conference Proceedings (OSTI)

A compositionality-regularity coevolution model is adopted to explore the effect of social structure on language emergence and maintenance. Based on this model, we explore language evolution in three experiments, and discuss the role of a popular agent ... Keywords: computational simulation, language evolution, power-law distribution, social structure

Tao Gong; James W. Minett; William S. -Y. Wang

2008-06-01T23:59:59.000Z

345

Coupling remote sensing with computational fluid dynamics modelling to estimate lake chlorophyll-a concentration  

E-Print Network (OSTI)

Coupling remote sensing with computational fluid dynamics modelling to estimate lake chlorophyll form 17 October 2000; accepted 1 June 2001 Abstract A remotely sensed image of Loch Leven, a shallow in the remotely sensed image. It is proposed that CFD modelling benefits the interpretation of remotely sensed

346

A study of hardware performance monitoring counter selection in power modeling of computing systems  

Science Conference Proceedings (OSTI)

Power management and energy savings in high-performance computing has become an increasingly important design constraint. The foundation of many power/energy saving methods is based on power consumption models, which commonly rely on hardware performance ... Keywords: energy saving,performance monitoring counters,power modeling

Reza Zamani; Ahmad Afsahi

2012-06-01T23:59:59.000Z

347

High-performance computing tools for the integrated assessment and modelling of social-ecological systems  

Science Conference Proceedings (OSTI)

Integrated spatio-temporal assessment and modelling of complex social-ecological systems is required to address global environmental challenges. However, the computational demands of this modelling are unlikely to be met by traditional Geographic Information ... Keywords: AML, CPU, Cluster, Concurrency, Environmental, GIS, GPU, Global challenges, Graphics processing unit (GPU), Grid, HPC, Multi-core, NPV, Parallel programming

Brett A. Bryan

2013-01-01T23:59:59.000Z

348

New vision tools from the comparative study of an "old" psychophysical and a "modern" computational model  

Science Conference Proceedings (OSTI)

A comparative study has been made between a one and half century old psychophysical model of vision and a modern computational model. The Mach band illusion has been studied from a new angle, that led to concluding that a Bi-Laplacian of Gaussian operation ...

Kuntal Ghosh; Sandip Sarkar; Kamales Bhaumik

2006-01-01T23:59:59.000Z

349

Modeling-Computer Simulations At Nw Basin & Range Region (Blackwell, Et  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Modeling-Computer Simulations At Nw Basin & Range Region (Blackwell, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dixie Valley data that help to

350

Modeling-Computer Simulations At Obsidian Cliff Area (Hulen, Et Al., 2003)  

Open Energy Info (EERE)

Obsidian Cliff Area (Hulen, Et Al., 2003) Obsidian Cliff Area (Hulen, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Obsidian Cliff Area (Hulen, Et Al., 2003) Exploration Activity Details Location Obsidian Cliff Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown References Jeff Hulen, Denis Norton, Dennis Kaspereit, Larry Murray, Todd van de Putte, Melinda Wright (2003) Geology And A Working Conceptual Model Of The Obsidian Butte (Unit 6) Sector Of The Salton Sea Geothermal Field, California Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Obsidian_Cliff_Area_(Hulen,_Et_Al.,_2003)&oldid=388945" Category: Exploration

351

Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow, Et Al.,  

Open Energy Info (EERE)

2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Pribnow, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Several fluid-flow models presented regarding the Long Valley Caldera. At shallow depths in the caldera References Daniel F. C. Pribnow, Claudia Schutze, Suzanne J. Hurter, Christina Flechsig, John H. Sass (2003) Fluid Flow In The Resurgent Dome Of Long Valley Caldera- Implications From Thermal Data And Deep Electrical Sounding Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Long_Valley_Caldera_Area_(Pribnow,_Et_Al.,_2003)&oldid=389388

352

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Heiken &  

Open Energy Info (EERE)

Heiken & Heiken & Goff, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Heiken & Goff, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Development of a geologically-based model of the thermal and hydrothermal potential of the Fenton Hill HDR area. References Grant Heiken, Fraser Goff (1983) Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Fenton_Hill_Hdr_Geothermal_Area_(Heiken_%26_Goff,_1983)&oldid=511328

353

Modeling-Computer Simulations At General Us Region (Goff & Decker, 1983) |  

Open Energy Info (EERE)

Us Region (Goff & Decker, 1983) Us Region (Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At General Us Region (Goff & Decker, 1983) Exploration Activity Details Location General Us Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_General_Us_Region_(Goff_%26_Decker,_1983)&oldid=38761

354

Modeling-Computer Simulations At Geysers Area (Goff & Decker, 1983) | Open  

Open Energy Info (EERE)

Decker, 1983) Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Geysers Area (Goff & Decker, 1983) Exploration Activity Details Location Geysers Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Geysers_Area_(Goff_%26_Decker,_1983)&oldid=38676

355

Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983)  

Open Energy Info (EERE)

White Mountains Area (Goff & Decker, 1983) White Mountains Area (Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Exploration Activity Details Location White Mountains Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_White_Mountains_Area_(Goff_%26_Decker,_1983)&oldid=387355"

356

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Goff &  

Open Energy Info (EERE)

Decker, 1983) Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Goff & Decker, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Fenton_Hill_Hdr_Geothermal_Area_(Goff_%26_Decker,_1983)&oldid=511326"

357

Constructing Anatomically Accurate Face Models using Computed Tomography and Cyberware data  

E-Print Network (OSTI)

Facial animation and cranio-facial surgery simulation both stand to benefit from the development of anatomically accurate computer models of the human face. State-of-theart biomechanical models of the face have shown promise in animation, but they are inadequate for the purposes of cranio-facial surgery simulation. The goal of this thesis is to develop an improved facial model, using Cyberware data which captures the external structure and appearance of the face and head, as well as computed tomography (CT) data which captures the internal structure of facial soft and hard tissues. To this end, we develop algorithms to (1) register the CT and Cyberware datasets, (2) extract from the CT data a skull subsurface which serves as a foundation of the soft-tissue model, and (3) compute thic...

Faisal Zubair Qureshi

2000-01-01T23:59:59.000Z

358

Modeling-Computer Simulations At Valles Caldera - Redondo Area (Wilt &  

Open Energy Info (EERE)

Redondo Area (Wilt & Redondo Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes A computer program capable of two-dimensional modeling of gravity data was used in interpreting gravity observations along profiles A--A' and B--B' (Talwani et al., 1959). Densities of 2.12, 2.40, and 2.65 g/cm a were used for modeling the near-surface caldera fill, the underlying volcanics, and the basement sections, respectively (Fig. 8). Although correlation with

359

Computer Modeling of Photosynthesis Using the E-CELL System  

E-Print Network (OSTI)

Introduction The E-CELL syLLF is a generic software package for whole cell modeling and simulation developed by the Laboratory for Bioinformatics at Keio University [1]. Photosy thesis isgenerally characterized as the assimilation of CO 2 and H 2 O toy:;O O 2 and carbohyFAzxz usingenergy from sunlight, and can be expressed by the following process: 6CO 2 + 12H 2 O+ lightenergy -# C 6 H 12 O 6 +6O 2 +6H 2 O Photosy thesis occurs in two phases; . Light Reactions convertsenergy from the sun to ATP and NADPH. Electromagnetic radiation in the form of photons are absorbed by photoreceptor chlorophyor which are then transported through a series of elctron transport chainyinFHR+ O 2 , ATP and NADPH . Dark Reactions (Calvin Benson Cyson assimilates CO 2 , and the ATP, NAD

Emily Wang; Yoichi Nakayama; Masaru Tomita

2000-01-01T23:59:59.000Z

360

Computational Human Performance Modeling For Alarm System Design  

SciTech Connect

The introduction of new technologies like adaptive automation systems and advanced alarms processing and presentation techniques in nuclear power plants is already having an impact on the safety and effectiveness of plant operations and also the role of the control room operator. This impact is expected to escalate dramatically as more and more nuclear power utilities embark on upgrade projects in order to extend the lifetime of their plants. One of the most visible impacts in control rooms will be the need to replace aging alarm systems. Because most of these alarm systems use obsolete technologies, the methods, techniques and tools that were used to design the previous generation of alarm system designs are no longer effective and need to be updated. The same applies to the need to analyze and redefine operators’ alarm handling tasks. In the past, methods for analyzing human tasks and workload have relied on crude, paper-based methods that often lacked traceability. New approaches are needed to allow analysts to model and represent the new concepts of alarm operation and human-system interaction. State-of-the-art task simulation tools are now available that offer a cost-effective and efficient method for examining the effect of operator performance in different conditions and operational scenarios. A discrete event simulation system was used by human factors researchers at the Idaho National Laboratory to develop a generic alarm handling model to examine the effect of operator performance with simulated modern alarm system. It allowed analysts to evaluate alarm generation patterns as well as critical task times and human workload predicted by the system.

Jacques Hugo

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Introduction to multidimensional combustion modeling with the CONCHAS-SPRAY computer program  

DOE Green Energy (OSTI)

CONCHAS-SPRAY is a finite-difference computer code for the calculation of two-dimensional chemically reacting fluid flows. In this paper we discuss four problem areas that are encountered in multidimensional numerical combustion modeling, and the numerical techniques used by CONCHAS-SPRAY to overcome these problems. Then the equations are given that are solved by the computer code, and some results from an example problem are discussed. 7 figures, 1 table.

O'Rourke, P.J.

1982-01-01T23:59:59.000Z

362

DATING: A computer code for determining allowable temperatures for dry storage of spent fuel in inert and nitrogen gases  

Science Conference Proceedings (OSTI)

The DATING (Determining Allowable Temperatures in Inert and Nitrogen Gases) code can be used to calculate allowable initial temperatures for dry storage of light-water-reactor spent fuel. The calculations are based on the life fraction rule using both measured data and mechanistic equations as reported by Chin et al. (1986). The code is written in FORTRAN and utilizes an efficient numerical integration method for rapid calculations on IBM-compatible personal computers. This report documents the technical basis for the DATING calculations, describes the computational method and code statements, and includes a user's guide with examples. The software for the DATING code is available through the National Energy Software Center operated by Argonne National Laboratory, Argonne, Illinois 60439. 5 refs., 8 figs., 5 tabs.

Simonen, E.P.; Gilbert, E.R.

1988-12-01T23:59:59.000Z

363

The agent-based approach: A new direction for computational models of development  

E-Print Network (OSTI)

The agent-based approach emphasizes the importance of learning through organism-environment interaction. This approach is part of a recent trend in computational models of learning and development toward studying autonomous organisms that are embedded in virtual or real environments. In this paper we introduce the concepts of online and offline sampling and highlight the role of online sampling in agent-based models. After comparing the strengths of each approach for modeling particular developmental phenomena and research questions, we describe a recent agent-based model of infant causal perception. We conclude by discussing some of the present limitations of agent-based models and suggesting how these challenges may be addressed. © 2001 Academic Press Computational models of learning and development are playing an increasingly critical role in child development research (Cassidy, 1990;

Matthew Schlesinger; Domenico Parisi

2001-01-01T23:59:59.000Z

364

Computational Approach in Determination of {sup 233}U and {sup 233}Th Fermi Energy  

SciTech Connect

There are several methods to get Fermi energy such as hermit polynomial expansion and Wigner-Kirkwood expansion, these are analytical method. In this paper will be discussed numerical approach of calculating Fermi energy of {sup 233}Th and {sup 233}U nuclei. Our work demonstrates the simple technique of determining Fermi energy.

Kurniadi, R.; Perkasa, Y. S.; Waris, A. [Nuclear Physics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia)

2010-12-23T23:59:59.000Z

365

Maximum Error Modeling for Fault-Tolerant Computation using Maximum a posteriori (MAP) Hypothesis  

E-Print Network (OSTI)

The application of current generation computing machines in safety-centric applications like implantable biomedical chips and automobile safety has immensely increased the need for reviewing the worst-case error behavior of computing devices for fault-tolerant computation. In this work, we propose an exact probabilistic error model that can compute the maximum error over all possible input space in a circuit specific manner and can handle various types of structural dependencies in the circuit. We also provide the worst-case input vector, which has the highest probability to generate an erroneous output, for any given logic circuit. We also present a study of circuit-specific error bounds for fault-tolerant computation in heterogeneous circuits using the maximum error computed for each circuit. We model the error estimation problem as a maximum a posteriori (MAP) estimate, over the joint error probability function of the entire circuit, calculated efficiently through an intelligent search of the entire input space using probabilistic traversal of a binary join tree using Shenoy-Shafer algorithm. We demonstrate this model using MCNC and ISCAS benchmark circuits and validate it using an equivalent HSpice model. Both results yield the same worst-case input vectors and the highest % difference of our error model over HSpice is just 1.23%. We observe that the maximum error probabilities are significantly larger than the average error probabilities, and provides a much tighter error bounds for fault-tolerant computation. We also find that the error estimates depend on the specific circuit structure and the maximum error probabilities are sensitive to the individual gate failure probabilities.

Karthikeyan Lingasubramanian; Syed M. Alam; Sanjukta Bhanja

2009-06-17T23:59:59.000Z

366

A Variable Refrigerant Flow Heat Pump Computer Model in EnergyPlus  

SciTech Connect

This paper provides an overview of the variable refrigerant flow heat pump computer model included with the Department of Energy's EnergyPlusTM whole-building energy simulation software. The mathematical model for a variable refrigerant flow heat pump operating in cooling or heating mode, and a detailed model for the variable refrigerant flow direct-expansion (DX) cooling coil are described in detail.

Raustad, Richard A. [Florida Solar Energy Center

2013-01-01T23:59:59.000Z

367

Modeling-Computer Simulations At Raft River Geothermal Area (1979) | Open  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To evaluate the hydrodynamics of the unconfined aquifer. Notes This study covers about 1000 mi2 (2600 km2) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically. Computed and estimated transmissivity values range from 1200 ft2 per day

368

Modeling-Computer Simulations At Nevada Test And Training Range Area  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Modeling-Computer Simulations At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Nellis Air Force Range (NAFR) occupies over 3 million acres in southern Nevada (Figure 1). We recently assessed potential utility-grade geothermal

369

A Review of Ground Coupled Heat Pump Models Used in Whole-Building Computer Simulation Programs  

E-Print Network (OSTI)

Increasingly, building owners are turning to ground source heat pump (GSHP) systems to improve energy efficiency. Ground-coupled heat pump (GCHP) systems with a vertical closed ground loop heat exchanger are one of the more widely used systems. Over the last thirty years, a number of simulation models have been developed to calculate the performance of the ground heat exchanger (GHX). The several computer programs can evaluate the GCHP systems as a part of the whole-building energy simulation. This paper briefly presents a general introduction to GSHP systems and the GCHP system, and reviews the currently developed GCHP models and compares computer programs for a GCHP design. In addition, GHX models which play an important role on the GCHP performance are reviewed. Finally, several widely recognized computer simulation programs for building energy analysis are compared regarding their GCHP simulation capability.

Do, S. L.; Haberl, J. S.

2010-08-01T23:59:59.000Z

370

Modeling-Computer Simulations At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Modeling-Computer Simulations At Walker-Lane Modeling-Computer Simulations At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Assembling Crustal Geophysical Data for Geothermal Exploration in the Great Basin, Louie and Coolbaugh. We have compiled velocity information from sources in the literature, results of previous seismic experiments and earthquake-monitoring projects, and data donated from mining, geothermal, and petroleum companies. We also collected (May 2002 and August 2004) two new crustal refraction profiles across western Nevada and the northern and central Sierra. These sections had not been well characterized previously.

371

Verification of a VRF Heat Pump Computer Model in EnergyPlus  

SciTech Connect

This paper provides verification results of the EnergyPlus variable refrigerant flow (VRF) heat pump computer model using manufacturer's performance data. The paper provides an overview of the VRF model, presents the verification methodology, and discusses the results. The verification provides quantitative comparison of full and part-load performance to manufacturer's data in cooling-only and heating-only modes of operation. The VRF heat pump computer model uses dual range bi-quadratic performance curves to represent capacity and Energy Input Ratio (EIR) as a function of indoor and outdoor air temperatures, and dual range quadratic performance curves as a function of part-load-ratio for modeling part-load performance. These performance curves are generated directly from manufacturer's published performance data. The verification compared the simulation output directly to manufacturer's performance data, and found that the dual range equation fit VRF heat pump computer model predicts the manufacturer's performance data very well over a wide range of indoor and outdoor temperatures and part-load conditions. The predicted capacity and electric power deviations are comparbale to equation-fit HVAC computer models commonly used for packaged and split unitary HVAC equipment.

Nigusse, Bereket; Raustad, Richard

2013-06-01T23:59:59.000Z

372

A Hybrid MPI/OpenMP Approach for Parallel Groundwater Model Calibration on Multicore Computers  

Science Conference Proceedings (OSTI)

Groundwater model calibration is becoming increasingly computationally time intensive. We describe a hybrid MPI/OpenMP approach to exploit two levels of parallelism in software and hardware to reduce calibration time on multicore computers with minimal parallelization effort. At first, HydroGeoChem 5.0 (HGC5) is parallelized using OpenMP for a uranium transport model with over a hundred species involving nearly a hundred reactions, and a field scale coupled flow and transport model. In the first application, a single parallelizable loop is identified to consume over 97% of the total computational time. With a few lines of OpenMP compiler directives inserted into the code, the computational time reduces about ten times on a compute node with 16 cores. The performance is further improved by selectively parallelizing a few more loops. For the field scale application, parallelizable loops in 15 of the 174 subroutines in HGC5 are identified to take more than 99% of the execution time. By adding the preconditioned conjugate gradient solver and BICGSTAB, and using a coloring scheme to separate the elements, nodes, and boundary sides, the subroutines for finite element assembly, soil property update, and boundary condition application are parallelized, resulting in a speedup of about 10 on a 16-core compute node. The Levenberg-Marquardt (LM) algorithm is added into HGC5 with the Jacobian calculation and lambda search parallelized using MPI. With this hybrid approach, compute nodes at the number of adjustable parameters (when the forward difference is used for Jacobian approximation), or twice that number (if the center difference is used), are used to reduce the calibration time from days and weeks to a few hours for the two applications. This approach can be extended to global optimization scheme and Monte Carol analysis where thousands of compute nodes can be efficiently utilized.

Tang, Guoping [ORNL; D'Azevedo, Ed F [ORNL; Zhang, Fan [ORNL; Parker, Jack C. [University of Tennessee, Knoxville (UTK); Watson, David B [ORNL; Jardine, Philip M [ORNL

2010-01-01T23:59:59.000Z

373

Computational modeling of phonetic and lexical learning in early language acquisition: Existing models and future directions  

Science Conference Proceedings (OSTI)

This work reviews a number of existing computational studies concentrated on the question of how spoken language can be learned from continuous speech in the absence of linguistically or phonetically motivated background knowledge, a situation faced ... Keywords: Computer simulation, Distributional learning, Language acquisition, Lexical learning, Phonetic learning

Okko RäSäNen

2012-11-01T23:59:59.000Z

374

Modeling-Computer Simulations At Raft River Geothermal Area (1980) | Open  

Open Energy Info (EERE)

80) 80) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis From refined estimates of reservoir coefficients better predictions of interference effects and long-term drawdown in the wells can be made. Notes Analytic methods have been used during reservoir testing to calculate reservoir coefficients. However, anisotropy of the reservoir due to fractures has not been taken into account in these calculations and estimates of these coefficients need to be refined. In conjunction with the

375

Computational Modeling  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Program Organizers: Michael Gao, National Energy Technology Lab; Peter Liaw, University of Tennessee Wednesday 2:00 PM October 10 ...

376

The NewFLOW Computational Model and Intermediate Format - Version 1.04  

E-Print Network (OSTI)

This report motivates and defines a general-purpose, architecture independent, parallel computational model, which captures the intuitions which underlie the design of the United Functions and Objects (UFO) programming language. The model has two aspects, which turn out to be a traditional dataflow model and an actor-like model, with a very simple interface between the two. Certain aspects of the model, particularly strictness, maximum parallelism, and lack of suspension are stressed. The implications of introducing stateful objects are carefully spelled out. The model has several purposes, although we primarily describe it as a vehicle for the compilation and optimisation of UFO, and for visualising the execution of programs. Having motivated the model, this report specifies, in detail, both the syntax and semantics of the model, and provides some examples of its use. 1 Motivation The primary purpose of this report is to define the semantics and syntax of NewFLOW, an intermediate rep...

Julian Seward; John Sargeant; Chris Kirkham

1996-01-01T23:59:59.000Z

377

A novel decomposition and distributed computing approach for the solution of large scale optimization models  

Science Conference Proceedings (OSTI)

Abstract: Biomass feedstock production is an important component of the biomass based energy sector. Seasonal and distributed collection of low energy density material creates unique challenges, and optimization of the complete value chain is critical ... Keywords: Agent-based modeling, Biomass feedstock, Computation, Decomposition, Optimization

Yogendra Shastri; Alan Hansen; Luis Rodríguez; K. C. Ting

2011-03-01T23:59:59.000Z

378

Computable General Equilibrium Models for the Analysis of Energy and Climate Policies  

E-Print Network (OSTI)

Computable General Equilibrium Models for the Analysis of Energy and Climate Policies Ian Sue Wing of the economy-wide impacts of energy and climate policies. JEL Classification: C68, D58, H22, Q43 Keywords of energy and environmental policies. Perhaps the most important of these applications is the analysis

Wing, Ian Sue

379

Computational trust and reputation models for open multi-agent systems: a review  

Science Conference Proceedings (OSTI)

In open environments, agents depend on reputation and trust mechanisms to evaluate the behavior of potential partners. The scientific research in this field has considerably increased, and in fact, reputation and trust mechanisms have been already considered ... Keywords: Cognitive trust and reputation, Computational trust and reputation models, Multiagent systems

Isaac Pinyol; Jordi Sabater-Mir

2013-06-01T23:59:59.000Z

380

Computing combustion noise by combining Large Eddy Simulations with analytical models for the propagation of waves  

E-Print Network (OSTI)

Computing combustion noise by combining Large Eddy Simulations with analytical models +++++ Presented by Ignacio Duran Abstract Two mechanisms control combustion noise generation as shown by Marble. A method to calculate combustion-generated noise has been implemented in a tool called CHORUS. The method

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Efficiently speeding up sequential computation through the n-way programming model  

Science Conference Proceedings (OSTI)

With core counts on the rise, the sequential components of applications are becoming the major bottleneck in performance scaling as predicted by Amdahl's law. We are therefore faced with the simultaneous problems of occupying an increasing number of ... Keywords: algorithmic diversity, n-way, parallel programming model, sequential computations, speedup

Romain E. Cledat; Tushar Kumar; Santosh Pande

2011-10-01T23:59:59.000Z

382

Computational investigation of early child language acquisition using multimodal neural networks: a review of three models  

Science Conference Proceedings (OSTI)

Current opinion suggests that language is a cognitive process in which different modalities such as perceptual entities, communicative intentions and speech are inextricably linked. As such, the process of child language acquisition is one in which the ... Keywords: Child language acquisition, Computational model, Control system, Neural network

Abel Nyamapfene

2009-06-01T23:59:59.000Z

383

Computational Modeling and the Experimental Plasma Research Program A White Paper Submitted to the FESAC Subcommittee  

E-Print Network (OSTI)

Computational Modeling and the Experimental Plasma Research Program A White Paper Submitted of the fusion energy program. The experimental plasma research (EPR) program is well positioned to make major in fusion development and promote scientific discovery. Experimental plasma research projects explore

384

BAYESIAN ESTIMATION OF HARDNESS RATIOS: MODELING AND COMPUTATIONS Taeyoung Park, 1  

E-Print Network (OSTI)

BAYESIAN ESTIMATION OF HARDNESS RATIOS: MODELING AND COMPUTATIONS Taeyoung Park, 1 Vinay L. Kashyap the nature of a photon spectrum is the so­called hardness ratio, which compares the numbers of counts observed in different passbands. The hardness ratio is especially useful to distinguish between

Wargelin, Bradford J.

385

BAYESIAN ESTIMATION OF HARDNESS RATIOS: MODELING AND COMPUTATIONS Taeyoung Park,1  

E-Print Network (OSTI)

BAYESIAN ESTIMATION OF HARDNESS RATIOS: MODELING AND COMPUTATIONS Taeyoung Park,1 Vinay L. Kashyap of a photon spectrum is the so-called hardness ratio, which compares the numbers of counts observed in different passbands. The hardness ratio is especially useful to distinguish between and categorize weak

Wargelin, Bradford J.

386

Statistical Power and Performance Modeling for Optimizing the Energy Efficiency of Scientific Computing  

Science Conference Proceedings (OSTI)

High-performance computing (HPC) has become an indispensable resource in science and engineering, and it has oftentimes been referred to as the "thirdpillar" of science, along with theory and experimentation. Performance tuning is a key aspect in utilizing ... Keywords: energy-efficiency tuning, green supercomputing, regression modeling

Balaji Subramaniam; Wu-chun Feng

2010-12-01T23:59:59.000Z

387

Computational modeling and experimental investigation of effects of compositional elements on interface and design aesthetics  

Science Conference Proceedings (OSTI)

This article describes computational modeling and two corresponding experimental investigations of the effects of symmetry, balance and quantity of construction elements on interface aesthetic judgments. In the first experiment, 30 black and white geometric ... Keywords: Aesthetics, Balance, Display evaluation, Engineering aesthetics, Symmetry

Michael Bauerly; Yili Liu

2006-08-01T23:59:59.000Z

388

Multiscale modeling and distributed computing to predict cosmesis outcome after a lumpectomy  

Science Conference Proceedings (OSTI)

Surgery for early stage breast carcinoma is either total mastectomy (complete breast removal) or surgical lumpectomy (only tumor removal). The lumpectomy or partial mastectomy is intended to preserve a breast that satisfies the woman's cosmetic, emotional ... Keywords: Breast cancer, Cellular automata, Distributed computing, Multiscale model

M. Garbey, R. Salmon, D. Thanoon, B. L. Bass

2013-07-01T23:59:59.000Z

389

A Computation of the Stratospheric Diabatic Circulation Using an Accurate Radiative Transfer Model  

Science Conference Proceedings (OSTI)

The global diabatic circulation is computed for the months of January, April, July and October over the altitude region 100 to 0.1 mb using an accurate troposphere-stratosphere radiative transfer model, SBUV and SME ozone data, and NMC ...

Joan E. Rosenfield; Mark R. Schoeberl; Marvin A. Geller

1987-03-01T23:59:59.000Z

390

Organizational Performance Under Critical Situations—Exploring the Role of Computer Modeling in Crisis Case Analyses  

Science Conference Proceedings (OSTI)

Organizations sometimes face critical situations or crises that can induce severe consequences or even disasters if wrong decisions are made. The bulk of crisis management research has relied heavily on case study methods yet often with rhetorical or ... Keywords: case analysis, computer modeling, crisis management, organizational design

Zhiang Lin

2000-09-01T23:59:59.000Z

391

A General Strategy for Physics-Based Model Validation Illustrated with Earthquake Phenomenology, Atmospheric Radiative Transfer, and Computational Fluid Dynamics  

E-Print Network (OSTI)

Validation is often defined as the process of determining the degree to which a model is an accurate representation of the real world from the perspective of its intended uses. Validation is crucial as industries and governments depend increasingly on predictions by computer models to justify their decisions. In this article, we survey the model validation literature and propose to formulate validation as an iterative construction process that mimics the process occurring implicitly in the minds of scientists. We thus offer a formal representation of the progressive build-up of trust in the model, and thereby replace incapacitating claims on the impossibility of validating a given model by an adaptive process of constructive approximation. This approach is better adapted to the fuzzy, coarse-grained nature of validation. Our procedure factors in the degree of redundancy versus novelty of the experiments used for validation as well as the degree to which the model predicts the observations. We illustrate the new methodology first with the maturation of Quantum Mechanics as the arguably best established physics theory and then with several concrete examples drawn from some of our primary scientific interests: a cellular automaton model for earthquakes, an anomalous diffusion model for solar radiation transport in the cloudy atmosphere, and a computational fluid dynamics code for the Richtmyer-Meshkov instability. This article is an augmented version of Sornette et al. [2007] that appeared in Proceedings of the National Academy of Sciences in 2007 (doi: 10.1073/pnas.0611677104), with an electronic supplement at URL http://www.pnas.org/cgi/content/full/0611677104/DC1. Sornette et al. [2007] is also available in preprint form at physics/0511219.

Didier Sornette; Anthony B. Davis; James R. Kamm; Kayo Ide

2007-10-01T23:59:59.000Z

392

Technical Review of the CENWP Computational Fluid Dynamics Model of the John Day Dam Forebay  

Science Conference Proceedings (OSTI)

The US Army Corps of Engineers Portland District (CENWP) has developed a computational fluid dynamics (CFD) model of the John Day forebay on the Columbia River to aid in the development and design of alternatives to improve juvenile salmon passage at the John Day Project. At the request of CENWP, Pacific Northwest National Laboratory (PNNL) Hydrology Group has conducted a technical review of CENWP's CFD model run in CFD solver software, STAR-CD. PNNL has extensive experience developing and applying 3D CFD models run in STAR-CD for Columbia River hydroelectric projects. The John Day forebay model developed by CENWP is adequately configured and validated. The model is ready for use simulating forebay hydraulics for structural and operational alternatives. The approach and method are sound, however CENWP has identified some improvements that need to be made for future models and for modifications to this existing model.

Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.

2010-12-01T23:59:59.000Z

393

HELIOS: a computer program for modeling the solar thermal test facility, a users guide  

DOE Green Energy (OSTI)

HELIOS is a flexible computer code for evaluations of proposed designs for central tower solar energy collector systems, for safety calculations on the threat to personnel and to the facility itself, for determination of how various input parameters alter the power collected, and for design trade-offs. Input variables include atmospheric transmission effects, reflector shape and surface errors, suntracking errors, focusing and alignment strategies, receiver design, placement positions of the tower and mirrors, time-of-day, and day-of-year for the calculation. Plotting and editing computer codes are available. Complete input instructions, code-structure details, and output explanation are given. The code is in use on CDC 6600 and CDC 7600 computers.

Vittitoe, C.N.; Biggs, F.; Lighthill, R.E.

1977-03-01T23:59:59.000Z

394

Topics in Bayesian sample size determination and Bayesian model selection.  

E-Print Network (OSTI)

??This dissertation contains three topics using the Bayesian paradigm for statistical inference. The first topic is related to Bayesian sample size determination with a misclassified… (more)

Cheng, Dunlei.

2007-01-01T23:59:59.000Z

395

Inverse Modeling for Determination of Thermal Properties of the ...  

Science Conference Proceedings (OSTI)

Thermal properties of ceramic shell depend on shell composition and fabrication ... Mathematical Modeling of a Compressible Oxygen Jet Interacting with a Free ... Multi-Physics Modeling of Molten Salt Transport in Solid Oxide Membrane ...

396

Modeling-Computer Simulations At Northern Basin & Range Region (Blackwell,  

Open Energy Info (EERE)

Northern Basin & Northern Basin & Range Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dixie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Northern_Basin_%26_Range_Region_(Blackwell,_Et_Al.,_2003)&oldid=401422

397

Modeling-Computer Simulations At Kilauea East Rift Area (Rudman & Epp,  

Open Energy Info (EERE)

Rudman & Epp, Rudman & Epp, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Kilauea East Rift Area (Rudman & Epp, 1983) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Three models were generated: a constant temperature source from a vertical dike; a constant heat-generating magma chamber; and a transient heat source from a tapered vertical dike. Fair correlation is obtained between the HGP-A well temperature and the tapered dike 125 years after it is injected with an initial (transient) 1200degrees C temperature. Results provide background information from which to evaluate the importance of water

398

Modeling-Computer Simulations At Long Valley Caldera Area (Farrar, Et Al.,  

Open Energy Info (EERE)

3) 3) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Modeling of both deformation and microgravity data now suggests that (1) there are two inflation sources beneath the caldera, a shallower source 7^10 km beneath the resurgent dome and a deeper source V15 km beneath the caldera's south moat and (2) the shallower source may contain components of magmatic brine and gas. At shallow depths in the caldera References Christopher D. Farrar, Michael L. Sorey, Evelyn Roeloffs, Devin L.

399

User's guide for a personal computer model of turbulence at a wind turbine rotor  

DOE Green Energy (OSTI)

This document is primarily (1) a user's guide for the personal computer (PC) version of the code for the PNL computational model of the rotationally sampled wind speed (RODASIM11) and (2) a brief guide to the growing literature on the subject of rotationally sampled turbulence, from which the model is derived. The model generates values of turbulence experienced by single points fixed in the rotating frame of reference of an arbitrary wind turbine blade. The character of the turbulence depends on the specification of mean wind speed, the variance of turbulence, the crosswind and along-wind integral scales of turbulence, mean wind shear, and the hub height, radius, and angular speed of rotation of any point at which wind fluctuation is to be calculated. 13 refs., 4 figs., 4 tabs.

Connell, J.R.; Powell, D.C.; Gower, G.L.

1989-08-01T23:59:59.000Z

400

Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.  

SciTech Connect

This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the experienced user-base and the experimental validation base was decaying away quickly.

Carbajo, Juan (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin, Madison, WI); Schmidt, Rodney Cannon; Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Ludewig, Hans (Brookhaven National Laboratory, Upton, NY); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Serre, Frederic (Centre d'%C3%94etudes nucl%C3%94eaires de Cadarache %3CU%2B2013%3E CEA, France)

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Handbook for personal computer versions enhanced oil recovery predictive models: Supporting technology for enhanced oil recovery  

SciTech Connect

The personal computer (PC) programs described in this handbook were adapted from the Tertiary Oil Recovery Information System (TORIS) enhanced oil recovery (EOR) predictive models. The models, both those developed for the Department of Energy and those developed for the National Petroleum Council (NPC), were designed by Scientific Software-Intercomp and were used in the 1984 NPC study on the national potential for enhanced oil recovery. The Department of Energy, Bartlesville Project Office, supported the NPC study and has maintained the models since the study was completed. 10 refs.

Allison, E.; Waldrop, R.; Ray, R.M.

1988-02-01T23:59:59.000Z

402

DualTrust: A Trust Management Model for Swarm-Based Autonomic Computing Systems  

Science Conference Proceedings (OSTI)

Trust management techniques must be adapted to the unique needs of the application architectures and problem domains to which they are applied. For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, certain characteristics of the mobile agent ant swarm -- their lightweight, ephemeral nature and indirect communication -- make this adaptation especially challenging. This thesis looks at the trust issues and opportunities in swarm-based autonomic computing systems and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and still serves to protect the swarm. After analyzing the applicability of trust management research as it has been applied to architectures with similar characteristics, this thesis specifies the required characteristics for trust management mechanisms used to monitor the trustworthiness of entities in a swarm-based autonomic computing system and describes a trust model that meets these requirements.

Maiden, Wendy M.

2010-05-01T23:59:59.000Z

403

Using a Phenomenological Computer Model to Investigate Advanced Combustion Trajectories in a CIDI Engine  

SciTech Connect

This paper summarizes results from simulations of conventional, high-dilution, and high-efficiency clean combustion in a diesel engine based on a two-zone phenomenological model. The two-zone combustion model is derived from a previously published multi-zone model, but it has been further simplified to increase computational speed by a factor of over 100. The results demonstrate that this simplified model is still able to track key aspects of the combustion trajectory responsible for NOx and soot production. In particular, the two-zone model in combination with highly simplified global kinetics correctly predicts the importance of including oxygen mass fraction (in addition to equivalence ratio and temperature) in lowering emissions from high-efficiency clean combustion. The methodology also provides a convenient framework for extracting information directly from in-cylinder pressure measurements. This feature is likely to be useful for on-board combustion diagnostics and controls. Because of the possibility for simulating large numbers of engine cycles in a short time, models of this type can provide insight into multi-cycle and transient combustion behavior not readily accessible to more computationally intensive models. Also the representation of the combustion trajectory in 3D space corresponding to equivalence ratio, flame temperature, and oxygen fraction provides new insight into optimal combustion management.

Gao, Zhiming [ORNL; Wagner, Robert M [ORNL; Sluder, Scott [ORNL; Daw, C Stuart [ORNL; Green Jr, Johney Boyd [ORNL

2011-01-01T23:59:59.000Z

404

Unit physics testing of a mix model in an eulerian fluid computation  

Science Conference Proceedings (OSTI)

A K-L turbulence mix model driven with a drag-buoyancy source term is tested in an Eulerian code in a series of basic unit-physics tests, as part of a mix validation milestone. The model and the closure coefficient values are derived in the work of Dimonte-Tipton [D-T] in Phys.Flu.18, 085101 (2006), and many of the test problems were reported there, where the mix model operated in Lagrange computations. The drag-buoyancy K-L mix model was implemented within the Eulerian code framework by A.J. Scannapieco. Mix model performance is evaluated in terms of mix width growth rates compared to experiments in select regimes. Results in our Eulerian code are presented for several unit-physics I-D test problems including the decay of homogeneous isotropic turbulence (HIT), Rayleigh-Taylor (RT) unstable mixing, shock amplification of initial turbulence, Richtmyer-Meshkov (RM) mixing in several single shock test cases and in comparison to two RM experiments including re-shock (Vetter-Sturtevant and Poggi, et.al.). Sensitivity to model parameters, to Atwood number, and to initial conditions are examined. Results here are in good agreement in some tests (HIT, RT) with the previous results reported for the mix model in the Lagrange calculations. The HIT turbulent decay agrees closely with analytic expectations, and the RT growth rate matches experimental values for the default values of the model coefficients proposed in [D-T]. Results for RM characterized with a power law growth rate differ from the previous mix model work but are still within the range for reasonable agreement with experiments. Sensitivity to IC values in the RM studies are examined; results are sensitive to initial values of L[t=O], which largely determines the RM mix layer growth rate, and generally differs from the IC values used in the RT studies. Result sensitivity to initial turbulence, K[t=O], is seen to be small but significant above a threshold value. Initial conditions can be adjusted so that single shock RM mix width results match experiments but we have not been able to obtain a good match for first shock and re-shock growth rates in the same experiment with a single set of parameters and Ie. Problematic issues with KH test problems are described. Resolution studies for an RM test problem show the K-L mix growth rate decreases as it converges at a supra-linear rate, and, convergence requires a fine grid (on the order of 10 microns). For comparison, a resolution study of a second mix model [Scannapieco and Cheng, Phys.Lett.A, 299(1),49, (2002)] acting on a two fluid interface problem was examined. The mix in this case was found to increase with grid resolution at low to moderate resolutions, but converged at comparably fine resolutions. In conclusion, these tests indicate that the Eulerian code K-L model, using the Dimonte Tipton default model closure coefficients, achieve reasonable results across many of the unit-physics experimental conditions. However, we were unable to obtain good matches simultaneously for shock and re-shock mix in a single experiment. Results are sensitive to initial conditions in the regimes under study, with different IC best suited to RT or RM mix. It is reasonable to expect IC sensitivity in extrapolating to high energy density regimes, or to experiments with deceleration due to arbitrary combinations of RT and RM. As a final comparison, the atomically generated mix fraction and the mix width were each compared for the K-L mix model and the Scannapieco model on an identical RM test problem. The Scannapieco mix fraction and width grow linearly. The K-L mix fraction and width grow with the same power law exponent, in contrast to expectations from analysis. In future work it is proposed to do more head-to-head comparisons between these two models and other mix model options on a full suite of physics test problems, such as interfacial deceleration due to pressure build-up during an idealized ICF implosion.

Vold, Erik [Los Alamos National Laboratory; Douglass, Rod [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

405

Optimization of a petroleum producing assets portfolio: development of an advanced computer model  

E-Print Network (OSTI)

Portfolios of contemporary integrated petroleum companies consist of a few dozen Exploration and Production (E&P) projects that are usually spread all over the world. Therefore, it is important not only to manage individual projects by themselves, but to also take into account different interactions between projects in order to manage whole portfolios. This study is the step-by-step representation of the method of optimizing portfolios of risky petroleum E&P projects, an illustrated method based on Markowitz’s Portfolio Theory. This method uses the covariance matrix between projects’ expected return in order to optimize their portfolio. The developed computer model consists of four major modules. The first module generates petroleum price forecasts. In our implementation we used the price forecasting method based on Sequential Gaussian Simulation. The second module, Monte Carlo, simulates distribution of reserves and a set of expected production profiles. The third module calculates expected after tax net cash flows and estimates performance indicators for each realization, thus yielding distribution of return for each project. The fourth module estimates covariance between return distributions of individual projects and compiles them into portfolios. Using results of the fourth module, analysts can make their portfolio selection decisions. Thus, an advanced computer model for optimization of the portfolio of petroleum assets has been developed. The model is implemented in a MATLAB® computational environment and allows optimization of the portfolio using three different return measures (NPV, GRR, PI). The model has been successfully applied to the set of synthesized projects yielding reasonable solutions in all three return planes. Analysis of obtained solutions has shown that the given computer model is robust and flexible in terms of input data and output results. Its modular architecture allows further inclusion of complementary “blocks” that may solve optimization problems utilizing different measures (than considered) of risk and return as well as different input data formats.

Aibassov, Gizatulla

2007-12-01T23:59:59.000Z

406

Determining the focal mechanisms of earthquakes by full waveform modeling  

E-Print Network (OSTI)

Determining the focal mechanism of an earthquake helps us to better characterize reservoirs, define faults, and understand the stress and strain regime. The objective of this thesis is to find the focal mechanism and depth ...

Busfar, Hussam A. (Hussam Abdullah)

2009-01-01T23:59:59.000Z

407

Mathematical and computer modelling reports: Modeling and forecasting energy markets with the intermediate future forecasting system  

Science Conference Proceedings (OSTI)

This paper describes the Intermediate Future Forecasting System (IFFS), which is the model used to forecast integrated energy markets by the U.S. Energy Information Administration. The model contains representations of supply and demand for all of the ...

Frederic H. Murphy; John J. Conti; Susan H. Shaw; Reginald Sanders

1989-09-01T23:59:59.000Z

408

Compare Energy Use in Variable Refrigerant Flow Heat Pumps Field Demonstration and Computer Model  

SciTech Connect

Variable Refrigerant Flow (VRF) heat pumps are often regarded as energy efficient air-conditioning systems which offer electricity savings as well as reduction in peak electric demand while providing improved individual zone setpoint control. One of the key advantages of VRF systems is minimal duct losses which provide significant reduction in energy use and duct space. However, there is limited data available to show their actual performance in the field. Since VRF systems are increasingly gaining market share in the US, it is highly desirable to have more actual field performance data of these systems. An effort was made in this direction to monitor VRF system performance over an extended period of time in a US national lab test facility. Due to increasing demand by the energy modeling community, an empirical model to simulate VRF systems was implemented in the building simulation program EnergyPlus. This paper presents the comparison of energy consumption as measured in the national lab and as predicted by the program. For increased accuracy in the comparison, a customized weather file was created by using measured outdoor temperature and relative humidity at the test facility. Other inputs to the model included building construction, VRF system model based on lab measured performance, occupancy of the building, lighting/plug loads, and thermostat set-points etc. Infiltration model inputs were adjusted in the beginning to tune the computer model and then subsequent field measurements were compared to the simulation results. Differences between the computer model results and actual field measurements are discussed. The computer generated VRF performance closely resembled the field measurements.

Sharma, Chandan; Raustad, Richard

2013-06-01T23:59:59.000Z

409

Stochastic Control of Linear and Nonlinear Econometric Models: Some Computational Aspects  

Science Conference Proceedings (OSTI)

This paper considers the optimal control of small econometric models applying the OPTCON algorithm. OPTCON determines approximate numerical solutions to optimum control problems for nonlinear stochastic systems. These optimum control problems consist ... Keywords: Algorithms, Nonlinear models, Optimal control, Outliers, Policy applications, Stochastic control

D. Blueschke; V. Blueschke-Nikolaeva; R. Neck

2013-06-01T23:59:59.000Z

410

Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine and Hydrokinetic Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop W. Musial, M. Lawson, and S. Rooney National Renewable Energy Laboratory Technical Report NREL/TP-5000-57605 February 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop W. Musial, M. Lawson, and S. Rooney National Renewable Energy Laboratory Prepared under Task No. WA09.3406

411

HEAP: heat energy analysis program. A computer model simulating solar receivers  

DOE Green Energy (OSTI)

Thermal design of solar receivers is commonly accomplished via approximate models, where the receiver is treated as an isothermal box with lumped quantities of heat losses to the surroundings by radiation, conduction and convection. These approximate models, though adequate for preliminary design purposes, are not detailed enough to distinguish between different receiver designs, or to predict transient performance under variable solar flux, ambient temperatures, etc. A computer code has been written for this purpose and is given the name HEAP, an acronym for Heat Energy Analysis Program. HEAP has a basic structure that fits a general heat transfer problem, but with specific features that are custom-made for solar receivers. The code is written in MBASIC computer language. This document explains the detailed methodology followed in solving the heat transfer problem, and includes a program flow chart, an explanation of input and output tables, and an example of the simulation of a cavity-type solar receiver.

Lansing, F.L.

1979-01-15T23:59:59.000Z

412

Characterization of rocket propellant combustion products. Chemical characterization and computer modeling of the exhaust products from four propellant formulations: Final report, September 23, 1987--April 1, 1990  

SciTech Connect

The overall objective of the work described in this report is four-fold: to (a) develop a standardized and experimentally validated approach to the sampling and chemical and physical characterization of the exhaust products of scaled-down rocket launch motors fired under experimentally controlled conditions at the Army`s Signature Characterization Facility (ASCF) at Redstone Arsenal in Huntsville, Alabama; (b) determine the composition of the exhaust produces; (c) assess the accuracy of a selected existing computer model for predicting the composition of major and minor chemical species; (d) recommended alternations to both the sampling and analysis strategy and the computer model in order to achieve greater congruence between chemical measurements and computer prediction. 34 refs., 2 figs., 35 tabs.

Jenkins, R.A.; Nestor, C.W.; Thompson, C.V.; Gayle, T.M.; Ma, C.Y.; Tomkins, B.A.; Moody, R.L.

1991-12-09T23:59:59.000Z

413

GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 1: Theory and Computational Model  

DOE Green Energy (OSTI)

Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior (1) in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and (2) during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK. GASFLOW is under continual development, assessment, and application by LANL and FzK. This manual is considered a living document and will be updated as warranted.

Nichols, B.D.; Mueller, C.; Necker, G.A.; Travis, J.R.; Spore, J.W.; Lam, K.L.; Royl, P.; Redlinger, R.; Wilson, T.L.

1998-10-01T23:59:59.000Z

414

Computational Modeling and Assessment of Nanocoatings for Ultra-Supercritical Boilers  

Science Conference Proceedings (OSTI)

Forced outages and boiler unavailability of coal-fired fossil plants is most often caused by fire-side corrosion of boiler water walls and tubing. Reliable coatings are required for ultra-supercritical application to mitigate corrosion because these boilers will operate at much higher temperatures and pressures than in supercritical boilers.Computational modeling efforts have been undertaken to design and assess potentialFe-Cr-Ni-Al systems to produce stable nanocrystalline ...

2012-12-12T23:59:59.000Z

415

NREL Computer Models Integrate Wind Turbines with Floating Platforms (Fact Sheet)  

DOE Green Energy (OSTI)

Far off the shores of energy-hungry coastal cities, powerful winds blow over the open ocean, where the water is too deep for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective. Researchers at the National Renewable Energy Laboratory (NREL) are supporting that development with computer models that allow detailed analyses of such floating wind turbines.

Not Available

2011-07-01T23:59:59.000Z

416

NREL Computer Models Integrate Wind Turbines with Floating Platforms (Fact Sheet)  

SciTech Connect

Far off the shores of energy-hungry coastal cities, powerful winds blow over the open ocean, where the water is too deep for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective. Researchers at the National Renewable Energy Laboratory (NREL) are supporting that development with computer models that allow detailed analyses of such floating wind turbines.

2011-07-01T23:59:59.000Z

417

A PKN Hydraulic Fracture Model Study and Formation Permeability Determination  

E-Print Network (OSTI)

Hydraulic fracturing is an important method used to enhance the recovery of oil and gas from reservoirs, especially for low permeability formations. The distribution of pressure in fractures and fracture geometry are needed to design conventional and unconventional hydraulic fracturing operations, fracturing during water-flooding of petroleum reservoirs, shale gas, and injection/extraction operation in a geothermal reservoir. Designing a hydraulic fracturing job requires an understanding of fracture growth as a function of treatment parameters. There are various models used to approximately define the development of fracture geometry, which can be broadly classified into 2D and 3D categories. 2D models include, the Perkins-Kern-Nordgren (PKN) fracture model, and the Khristianovic-Geertsma-de. Klerk (KGD) fracture model, and the radial model. 3D models include fully 3D models and pseudo-three-dimensional (P-3D) models. The P-3D model is used in the oil industry due to its simplification of height growth at the wellbore and along the fracture length in multi-layered formations. In this research, the Perkins-Kern-Nordgren (PKN) fracture model is adopted to simulate hydraulic fracture propagation and recession, and the pressure changing history. Two different approaches to fluid leak-off are considered, which are the classical Carter's leak-off theory with a constant leak-off coefficient, and Pressure-dependent leak-off theory. Existence of poroelastic effect in the reservoir is also considered. By examining the impact of leak-off models and poroelastic effects on fracture geometry, the influence of fracturing fluid and rock properties, and the leak-off rate on the fracture geometry and fracturing pressure are described. A short and wide fracture will be created when we use the high viscosity fracturing fluid or the formation has low shear modulus. While, the fracture length, width, fracturing pressure, and the fracture closure time increase as the fluid leak-off coefficient is decreased. In addition, an algorithm is developed for the post-fracture pressure-transient analysis to calculate formation permeability. The impulse fracture pressure transient model is applied to calculate the formation permeability both for the radial flow and linear fracture flow assumption. Results show a good agreement between this study and published work.

Xiang, Jing

2011-12-01T23:59:59.000Z

418

Spectroscopy, modeling and computation of metal chelate solubility in supercritical CO{sub 2}  

Science Conference Proceedings (OSTI)

The overall objectives of this project were to gain a fundamental understanding of the solubility and phase behavior of metal chelates in supercritical CO{sub 2}. Extraction with CO{sub 2} is an excellent way to remove organic compounds from soils, sludges and aqueous solutions, and recent research has demonstrated that, together with chelating agents, it is a viable way to remove metals, as well. In this project the authors sought to gain fundamental knowledge that is vital to computing phase behavior, and modeling and designing processes using CO{sub 2} to separate organics and metal compounds from DOE mixed wastes. The overall program was a comprehensive one to measure, model and compute the solubility of metal chelate complexes in supercritical CO{sub 2} and CO{sub 2}/cosolvent mixtures. Through a combination of phase behavior measurements, spectroscopy and the development of a new computational technique, the authors have achieved a completely reliable way to model metal chelate solubility in supercritical CO{sub 2} and CO{sub 2}/co-contaminant mixtures. Thus, they can now design and optimize processes to extract metals from solid matrices using supercritical CO{sub 2}, as an alternative to hazardous organic solvents that create their own environmental problems, even while helping in metals decontamination.

J. F. Brennecke; M. A. Stadtherr

1999-12-10T23:59:59.000Z

419

A Simple Model for Determination of Grain Boundary Potential from ...  

Science Conference Proceedings (OSTI)

The model predicts that I-V dependence has two linear regions, at very low and very high voltages, and a transition region, within which the current increases by  ...

420

Climate Determinism Revisited: Multiple Equilibria in a Complex Climate Model  

E-Print Network (OSTI)

Multiple equilibria in a coupled ocean–atmosphere–sea ice general circulation model (GCM) of an aquaplanet with many degrees of freedom are studied. Three different stable states are found for exactly the same set of ...

Ferreira, David

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

What Determines Meridional Heat Transport in Climate Models?  

Science Conference Proceedings (OSTI)

The annual mean maximum meridional heat transport (MHTMAX) differs by approximately 20% among coupled climate models. The value of MHTMAX can be expressed as the difference between the equator-to-pole contrast in absorbed solar radiation (ASR*) ...

Aaron Donohoe; David S. Battisti

2012-06-01T23:59:59.000Z

422

Climate Determinism Revisited: Multiple Equilibria in a Complex Climate Model  

Science Conference Proceedings (OSTI)

Multiple equilibria in a coupled ocean–atmosphere–sea ice general circulation model (GCM) of an aquaplanet with many degrees of freedom are studied. Three different stable states are found for exactly the same set of parameters and external ...

David Ferreira; John Marshall; Brian Rose

2011-02-01T23:59:59.000Z

423

Unit physics performance of a mix model in Eulerian fluid computations  

SciTech Connect

In this report, we evaluate the performance of a K-L drag-buoyancy mix model, described in a reference study by Dimonte-Tipton [1] hereafter denoted as [D-T]. The model was implemented in an Eulerian multi-material AMR code, and the results are discussed here for a series of unit physics tests. The tests were chosen to calibrate the model coefficients against empirical data, principally from RT (Rayleigh-Taylor) and RM (Richtmyer-Meshkov) experiments, and the present results are compared to experiments and to results reported in [D-T]. Results show the Eulerian implementation of the mix model agrees well with expectations for test problems in which there is no convective flow of the mass averaged fluid, i.e., in RT mix or in the decay of homogeneous isotropic turbulence (HIT). In RM shock-driven mix, the mix layer moves through the Eulerian computational grid, and there are differences with the previous results computed in a Lagrange frame [D-T]. The differences are attributed to the mass averaged fluid motion and examined in detail. Shock and re-shock mix are not well matched simultaneously. Results are also presented and discussed regarding model sensitivity to coefficient values and to initial conditions (IC), grid convergence, and the generation of atomically mixed volume fractions.

Vold, Erik [Los Alamos National Laboratory; Douglass, Rod [Los Alamos National Laboratory

2011-01-25T23:59:59.000Z

424

Three-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Electrolysis Cells and Stacks  

DOE Green Energy (OSTI)

A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created for detailed analysis of a high-temperature electrolysis stack (solid oxide fuel cells operated as electrolyzers). Inlet and outlet plenum flow distributions are discussed. Maldistribution of plena flow show deviations in per-cell operating conditions due to non-uniformity of species concentrations. Models have also been created to simulate experimental conditions and for code validation. Comparisons between model predictions and experimental results are discussed. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the electrolysis mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Variations in flow distribution, and species concentration are discussed. End effects of flow and per-cell voltage are also considered. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition.

Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring

2008-07-01T23:59:59.000Z

425

SCRAM: a fast computational model for the optical performance of point fucus solar central receiver systems  

DOE Green Energy (OSTI)

Because of the complexities of heliostat shadowing and blocking calculations, computational models for the optical performance of point focus central receiver (PFCR) systems tend to be too slow for many important applications, such as optimization studies based on performance with realistic weather data. In this paper, a mathematical approximation procedure, designated Sandia Central Receiver Approximation Model (SCRAM) will be described. Rather than simulating the system components from first principles, it relies on data generated by the DELSOL code of Dellin and Fish for the optical performance of PFCR systems, and abstracts a mathematical model using a stepwise regression procedure. The result is a computational procedure which allows the user to define the heliostat field boundaries and tower height arbitrarily, generating a model for optical field performance, including shadowing, blocking, cosine, losses, and atmospheric attenuation, and which requires only a polynomial evaluation for each set of sun angles. A comparison with DELSOL for three different fields on three representative days indicates that the rms error of the approximation is 1-3% and that the new code is 1,000-3,000 times as fast as DELSOL. It is also shown that one reason that the accuracy in field performance predictions is higher than that of the generting function for the model is that much of the error in the generating function is due to an oscillatory behavior associated with a moire pattern in the optical response of the heiostat field.

Bergeron, K. D.; Chiang, C. J.

1980-04-01T23:59:59.000Z

426

An Integrated Computer Modeling Environment For Regional Land Use, Air Quality, And Transportation Planning  

E-Print Network (OSTI)

The Land Use, Air Quality, and Transportation Integrated Modeling Environment (LATIME) represents an integrated approach to computer modeling and simulation of land use allocation, travel demand, and mobile source emissions for the Albuquerque, New Mexico, area. This environment provides predictive capability combined with a graphical and geographical interface. The graphical interface shows the causal relationships between data and policy scenarios and supports alternative model formulations. Scenarios are launched from within a Geographic Information System (GIS), and data produced by each model component at each time step within a simulation is stored in the GIS. A menudriven query system is utilized to review link-based results and regional and areawide results. These results can also be compared across time or between alternative land use scenarios. Using this environment, policies can be developed and implemented based on comparative analysis, rather than on single-step future pr...

Charles Hanley Renewable; Norman L. Marshall; Charles J. Hanley; Charles J. Hanley

1997-01-01T23:59:59.000Z

427

CX-003549: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Request for Categorical Exclusion-A for Computer Modeling CX(s) Applied: A9 Date: 08252010 Location(s): Bloomington, Indiana...

428

Kalman filter model for determining block and trickle SNM losses  

Science Conference Proceedings (OSTI)

This paper describes an integrated decision procedure for deciding whether a diversion of SNM has occurred. Two possible types of diversion are considered: a block loss during a single time period and a cumulative trickle loss over several time periods. The methodology used is based on a compound Kalman filter model. Numerical examples will illustrate our approach.

Barlow, R.E.; Durst, M.J.; Smiriga, N.G.

1982-04-20T23:59:59.000Z

429

The Transportation Revenue Estimator and Needs Determination System (TRENDS) Model  

E-Print Network (OSTI)

.......................................................... 15 3.3 Indexing the Motor Fuels Tax, inflation rates, taxes, fees and other elements. The output is a set of tables and graphs showing a forecast................................................................................................. 12 TRENDS Model Revenue Enhancements Tab 3.1 State Gasoline and Diesel Fuel Variables

430

A new approach to select multi-lateral well candidates using a fuzzy-logic based computer model  

E-Print Network (OSTI)

Multi-Lateral technology is defined as the drilling and completion of more than one wellbore from a single "mother" hole. The benefits of having multiple boreholes in a single well include increased flow rates, increased reserves, lower production costs, and improved drainage patterns or efficiencies. Candidate selection for multi-lateral technology has not been standardized and few literature references exist that can help individuals plan a multi-lateral well. Multilateral well candidate selection is usually tied to the results of a detailed and complex reservoir analysis. In many cases, small and independent companies are reluctant to apply multi-lateral technology without conducting a detailed economic analysis. In this research, we have developed a new easy, simple and fast, yet technically sound, method to screen candidate wells for possible application of multi-lateral technology. The new screening method is based on the simulation of human thinking by using a fuzzy logic model. This fuzzy logic model was built based on the personal experiences of industry experts in multi-lateral technology, as well as existing case histories of applications of multi-lateral technology found in the literature. The new model determines the best type of primary well configuration, choosing from a vertical well, horizontal well or a multi-lateral well. If the model suggests a multi-lateral well as the most appropriate option, the model then determ-nines the best multi-lateral configuration, choosing from a dual-opposed completion, a planar completion or a stacked completion. The output from the model is the level of confidence that the selected well configuration will be a technical success, based on the knowledge and experience used to build the model. The model was validated with four successful cases of application of multi-lateral technology published in the literature. The multi-lateral fuzzy logic model can be used to analyze the possibilities of applying multi-lateral technology for specific reservoir situations, limited to oil, onshore reservoirs composed of a single type of matrix. The model, however, should not be relied upon as the only screening tool. Numerical reservoir and economic models must also be used to determine expected well performance and to compute detailed economic analysis of all possible options.

Colmenares Diaz, Luis Carlos

1998-01-01T23:59:59.000Z

431

CFD [computational fluid dynamics] And Safety Factors. Computer modeling of complex processes needs old-fashioned experiments to stay in touch with reality.  

SciTech Connect

Computational fluid dynamics (CFD) is recognized as a powerful engineering tool. That is, CFD has advanced over the years to the point where it can now give us deep insight into the analysis of very complex processes. There is a danger, though, that an engineer can place too much confidence in a simulation. If a user is not careful, it is easy to believe that if you plug in the numbers, the answer comes out, and you are done. This assumption can lead to significant errors. As we discovered in the course of a study on behalf of the Department of Energy's Savannah River Site in South Carolina, CFD models fail to capture some of the large variations inherent in complex processes. These variations, or scatter, in experimental data emerge from physical tests and are inadequately captured or expressed by calculated mean values for a process. This anomaly between experiment and theory can lead to serious errors in engineering analysis and design unless a correction factor, or safety factor, is experimentally validated. For this study, blending times for the mixing of salt solutions in large storage tanks were the process of concern under investigation. This study focused on the blending processes needed to mix salt solutions to ensure homogeneity within waste tanks, where homogeneity is required to control radioactivity levels during subsequent processing. Two of the requirements for this task were to determine the minimum number of submerged, centrifugal pumps required to blend the salt mixtures in a full-scale tank in half a day or less, and to recommend reasonable blending times to achieve nearly homogeneous salt mixtures. A full-scale, low-flow pump with a total discharge flow rate of 500 to 800 gpm was recommended with two opposing 2.27-inch diameter nozzles. To make this recommendation, both experimental and CFD modeling were performed. Lab researchers found that, although CFD provided good estimates of an average blending time, experimental blending times varied significantly from the average.

Leishear, Robert A.; Lee, Si Y.; Poirier, Michael R.; Steeper, Timothy J.; Ervin, Robert C.; Giddings, Billy J.; Stefanko, David B.; Harp, Keith D.; Fowley, Mark D.; Van Pelt, William B.

2012-10-07T23:59:59.000Z

432

Determination of Extratropical Tropopause Height in an Idealized Gray Radiation Model  

Science Conference Proceedings (OSTI)

This paper investigates the mechanisms that determine the extratropical tropopause height, extending previous results with a Newtonian cooling model. A primitive equation model forced by a meridional gradient of incoming solar radiation, with the ...

Pablo Zurita-Gotor; Geoffrey K. Vallis

2013-07-01T23:59:59.000Z

433

Determination of Semivariogram Models to Krige Hourly and Daily Solar Irradiance in Western Nebraska  

Science Conference Proceedings (OSTI)

In this paper, linear and spherical semivariogram models were determined for use in kriging hourly and daily solar irradiation for every season of the year. The data used to generate the models were from 18 weather stations in western Nebraska. ...

G. G. Merino; D. Jones; D. E. Stooksbury; K. G. Hubbard

2001-06-01T23:59:59.000Z

434

Determination of Zinc-Based Additives in Lubricating Oils by Flow-Injection Analysis with Flame-AAS Detection Exploiting Injection with a Computer-Controlled Syringe  

E-Print Network (OSTI)

A flow-injection system is proposed for the determination of metal-based additives in lubricating oils. The system, operating under computer control uses a motorised syringe for measuring and injecting the oil sample (200 µL) in a kerosene stream, where it is dispersed by means of a packed mixing reactor and carried to an atomic absorption spectrometer which is used as detector. Zinc was used as model analyte. Two different systems were evaluated, one for low concentrations (range 0–10 ppm) and the second capable of providing higher dilution rates for high concentrations (range 0.02%–0.2 % w/w). The sampling frequency was about 30 samples/h. Calibration curves fitted a second-degree regression model (r 2 = 0.996). Commercial samples with high and low zinc levels were analysed by the proposed method and the results were compared with those obtained with the standard ASTM method. The t test for mean values showed no significant differences at the 95 % confidence level. Precision (RSD%) was better than 5 % (2 % typical) for the high concentrations system. The carryover between successive injections was found to be negligible. 1.

Gustavo Pignalosa; Moisés Knochen; Noel Cabrera

2004-01-01T23:59:59.000Z

435

Tutoring model for promoting teaching skills of computer science prospective teachers  

Science Conference Proceedings (OSTI)

One of the greatest challenges Computer Science (CS) teachers face is that of guiding their pupils through problem-solving processes, i.e., the process of constructing a solution for a given problem as an algorithm or a computer program. This paper suggests ... Keywords: computer science education, computer science teacher preparation., problem solving, prospective computer science teachers, training, tutoring in computer science

Noa Ragonis; Orit Hazzan

2008-06-01T23:59:59.000Z

436

Developments in computation, modeling and experimentation: Impacts on R&D  

SciTech Connect

The original objective was to document the feasibility of the coordinated research program sponsored by ECUT called ``Materials-by-Design (MBD).`` The MBD program funds research to develop hierarchical models to predict materials` performance based on microstructural information. This paper was specifically prepared for this meeting to help technical staff and their managers justify and plan for an advanced computer infrastructure within their companies. In order to do this, several additional objectives for this paper are (1) to foster an appreciation of the dramatic increase in computational power that have occurred over the last forty years, (2) to encourage better utilization of supercomputing in current scientific research by identifying current issues and opportunities, and (3) to promote anticipation and enthusiasm for the dramatic changes supercomputers currently being developed will offer scientists in the near future.

Young, J.K.

1989-10-01T23:59:59.000Z

437

Mathematical models and algorithms for the computer program 'WOLF'  

SciTech Connect

The computer program FLOW finds the nonrelativistic self- consistent set of two-dimensional ion trajectories and electric fields (including space charges from ions and electrons) for a given set of initial and boundary conditions for the particles and fields. The combination of FLOW with the optimization code PISA gives the program WOLF, which finds the shape of the emitter which is consistent with the plasma forming it, and in addition varies physical characteristics such as electrode position, shapes, and potentials so that some performance characteristics are optimized. The motivation for developing these programs was the desire to design optimum ion source extractor/accelerator systems in a systematic fashion. The purpose of this report is to explain and derive the mathematical models and algorithms which approximate the real physical processes. It serves primarily to document the computer programs. 10 figures. (RWR)

Halbach, K.

1975-12-01T23:59:59.000Z

438

The Role of Models, Software Tools, and Applications in High Performance Computing  

E-Print Network (OSTI)

In this paper we identify and discuss technical issues we consider crucial to the HPCC program. The focus is on the usefulness of scalable parallel computers for National Challenge problems. We identify three interrelated aspects of usefulness: performance, programmability, and the role of an applicationdriven design philosophy. We discuss the importance of algorithm design and computational model development and advocate the design of libraries and software environments to bridge the gap between algorithm designer and application programmer. Finally, we consider the role of applications for solving National Challenge problems. This work was supported by the Advanced Research Projects Agency under contract DABT6392 -C-0022. The content of the information does not necessarily reflect the position or policy of the United States Government and no official endorsement should be inferred. 1 Introduction During the last several years significant progress has been made on the Grand Challe...

Leah H. Jamieson; Susanne E. Hambrusch; Ashfaq A. Khokhar; Edward J. Delp

1995-01-01T23:59:59.000Z

439

State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems  

DOE Green Energy (OSTI)

As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBRS) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBRs and pneumatic and slurry components are computed by ANL`s EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.

Lyczkowski, R.W.; Bouillard, J.X.; Ding, J.; Chang, S.L. [Argonne National Lab., IL (United States); Burge, S.W. [Babcock and Wilcox, Alliance, OH (United States). Alliance Research Center

1994-05-12T23:59:59.000Z

440

Computer modeling of organic aerogels: Final report of 93-SR-062  

SciTech Connect

Goal of the work was to develop computer models of organic aerogel structures, and to study transport process within these materials. During the course of the research understanding of the structure of all aerogels including acid and neutral-catalyzed silica aerogel was developed. The modeling of transport focused on fluid flow in aerogels. We successfully modified a novel state-of-the-art lattice Boltzmann code to simulate flow at low Knudsen number, and developed a simple molecular dynamics code for gas flow at extremely high Knudsen number (low density). These flow-modeling techniques can be used to study aerogel applications for technology transfer; in addition, these techniques can be used to study flow through other porous materials.

Chandler, E.A.; Calef, D.; Ladd, A.J.C.

1994-06-10T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

BNL | Computational Biology & Bioinformatics  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Biology & Bioinformatics Computational Biology and Bioinformatics groups focuses on quantitative predictive models of complex biological systems and their underlying...

442

Computational modeling of a prosthetic shoulder: our experience with the anybody modeling system  

Science Conference Proceedings (OSTI)

When wear or tear of the rotator cuff becomes non-treatable, the glenohumeral joint degeneration can lead to upper limb pseudoparalysis, hence requiring a shoulder arthroplasty. Data indicating the performance of today's prostheses remain unsatisfactory ... Keywords: deltoid, modeling, rotator cuff tear, shoulder

Yoann Collet; Patrice Tétreault; John Rasmussen; Natalia Nuño; Nicola Hagemeister

2007-05-01T23:59:59.000Z

443

Computational modeling of a prosthetic shoulder: our experience with the anybody modeling system  

Science Conference Proceedings (OSTI)

When wear or tear of the rotator cuff becomes nontreatable, the glenohumeral joint degeneration can lead to upper limb pseudoparalysis, hence requiring a shoulder arthroplasty. Data indicating the performance of today's prostheses remain unsatisfactory ... Keywords: deltoid, modeling, rotator cuff tear, shoulder

Yoann Collet; Patrice Tétreault; John Rasmussen; Natalia Nuño; Nicola Hagemeister

2007-05-01T23:59:59.000Z

444

Stack and cell modelling with SOFC3D: a computer program for the 3D simulations of  

E-Print Network (OSTI)

Stack and cell modelling with SOFC3D: a computer program for the 3D simulations of solid oxide fuel, France 1 Introduction SOFC3D is a computer program, which simulates the behaviour of a solid oxide fuel or the channels, the electrical potential \\Phi at any point of the solid part of the SOFC, and the molar fractions

Herbin, Raphaèle

445

Computer modeling of gas flow and gas loading of rock in a bench blasting environment  

SciTech Connect

Numerical modeling can contribute greatly to an understanding of the physics involved in the blasting process. This paper will describe the latest enhancements to the blast modeling code DMC (Distinct Motion Code) (Taylor and Preece, 1989) and will demonstrate the ability of DMC to model gas flow and rock motion in a bench blasting environment. DMC has been used previously to model rock motion associated with blasting in a cratering environment (Preece and Taylor, 1990) and in confined volume blasting associated with in-situ oil shale retorting (Preece, 1990 a b). These applications of DMC treated the explosive loading as force versus time functions on specific spheres which were adjusted to obtain correct face velocities. It was recognized that a great need in explosives modeling was the coupling of an ability to simulate gas flow with the rock motion simulation capability of DMC. This was accomplished by executing a finite difference code that computes gas flow through a porous media (Baer and Gross, 1989) in conjunction with DMC. The marriage of these two capabilities has been documented by Preece and Knudsen, 1991. The capabilities that have been added recently to DMC and which will be documented in this paper include: (1) addition of a new equation of state for the explosive gases; (2) modeling of gas flow and sphere loading in a bench environment. 8 refs., 5 figs.

Preece, D.S.; Baer, M.R. (Sandia National Labs., Albuquerque, NM (United States)); Knudsen, S.D. (RE/SPEC, Inc., Albuquerque, NM (United States))

1991-01-01T23:59:59.000Z

446

Computational Fluid Dynamics Modeling of the Operation of a Flame Ionization Sensor  

Science Conference Proceedings (OSTI)

The sensors and controls research group at the United States Department of Energy (DOE) National Energy Technology Laboratory (NETL) is continuing to develop the Combustion Control and Diagnostics Sensor (CCADS) for gas turbine applications. CCADS uses the electrical conduction of the charged species generated during the combustion process to detect combustion instabilities and monitor equivalence ratio. As part of this effort, combustion models are being developed which include the interaction between the electric field and the transport of charged species. The primary combustion process is computed using a flame wrinkling model (Weller et. al. 1998) which is a component of the OpenFOAM toolkit (Jasak et. al. 2004). A sub-model for the transport of charged species is attached to this model. The formulation of the charged-species model similar that applied by Penderson and Brown (1993) for the simulation of laminar flames. The sub-model consists of an additional flux due to the electric field (drift flux) added to the equations for the charged species concentrations and the solution the electric potential from the resolved charge density. The subgrid interactions between the electric field and charged species transport have been neglected. Using the above procedure, numerical simulations are performed and the results compared with several recent CCADS experiments.

Huckaby, E.D.; Chorpening, B.T.; Thornton, J.D.

2007-03-01T23:59:59.000Z

447

Implementing the Delta-Four-Stream Approximation for Solar Radiation Computations in an Atmosphere General Circulation Model  

Science Conference Proceedings (OSTI)

Proper quantification of the solar radiation budget and its transfer within the atmosphere is of utmost importance in climate modeling. The delta-four-stream (DFS) approximation has been demonstrated to offer a more accurate computational method ...

Tarek Ayash; Sunling Gong; Charles Q. Jia

2008-07-01T23:59:59.000Z

448

Evaluation of Cirrus Parameterizations for Radiative Flux Computations in Climate Models Using TOVS–ScaRaB Satellite Observations  

Science Conference Proceedings (OSTI)

Combined simultaneous satellite observations are used to evaluate the performance of parameterizations of the microphysical and optical properties of cirrus clouds used for radiative flux computations in climate models. Atmospheric and cirrus ...

C. J. Stubenrauch; F. Eddounia; J. M. Edwards; A. Macke

2007-09-01T23:59:59.000Z

449

Detailed Simulations of Atmospheric Flow and Dispersion in Downtown Manhattan: An Application of Five Computational Fluid Dynamics Models  

Science Conference Proceedings (OSTI)

Computational fluid dynamics (CFD) model simulations of urban boundary layers have improved in speed and accuracy so that they are useful in assisting in planning emergency response activities related to releases of chemical or biological agents ...

Steven R. Hanna; Michael J. Brown; Fernando E. Camelli; Stevens T. Chan; William J. Coirier; Sura Kim; Olav R. Hansen; Alan H. Huber; R. Michael Reynolds

2006-12-01T23:59:59.000Z

450

Method of computer generation and projection recording of microholograms for holographic memory systems: mathematical modelling and experimental implementation  

SciTech Connect

A method of computer generation and projection recording of microholograms for holographic memory systems is presented; the results of mathematical modelling and experimental implementation of the method are demonstrated. (holographic memory)

Betin, A Yu; Bobrinev, V I; Evtikhiev, N N; Zherdev, A Yu; Zlokazov, E Yu; Lushnikov, D S; Markin, V V; Odinokov, S B; Starikov, S N; Starikov, R S

2013-01-31T23:59:59.000Z

451

A model to determine financial indicators for organic solar cells  

Science Conference Proceedings (OSTI)

Organic solar cells are an emerging photovoltaic technology that is inexpensive and easy to manufacture, despite low efficiency and stability. A model, named TEEOS (Technical and Economic Evaluator for Organic Solar), is presented that evaluates organic solar cells for various solar energy applications in different geographic locations, in terms of two financial indicators, payback period and net present value (NPV). TEEOS uses SMARTS2 software to estimate broadband (280-4000 nm) spectral irradiance data and with the use of a cloud modification factor, predicts hourly irradiation in the absence of actual broadband irradiance data, which is scarce for most urban locations. By using the avoided cost of electricity, annual savings are calculated which produce the financial indicators. It is hoped that these financial indicators can help guide certain technical decisions regarding the direction of research for organic solar cells, for example, increasing efficiency or increasing the absorptive wavelength range. A sample calculation using solar hats is shown to be uneconomical, but a good example of large-scale organic PV production. (author)

Powell, Colin; Bender, Timothy; Lawryshyn, Yuri [Department of Chemical Engineering and Applied Chemistry, Faculty of Engineering and Applied Science, University of Toronto, 200 College Street, Toronto, Ont. (Canada)

2009-11-15T23:59:59.000Z

452

Computer demonstration of an interactive modeling system for the study of global change and biogeochemistry  

SciTech Connect

There is a need for visually oriented materials to aid in the study of global ecological science. Analysis of the carbon cycle is key to understanding Potential climate change. We have used satellite imagery along with global climate and soil texture data sets to simulate seasonal patterns in net carbon fixation and soil CO[sub 2] production. An interactive computer system is used to illustrate graphical results from various model scenarios of climate warming and land use change. These include global animations of monthly gridded CO[sub 2] exchange between the atmosphere and the terrestrial biosphere. This modeling demonstration highlights the importance of annual CO[sub 2] fluxes in tropical forests (40% of global totals) and the large carbon storage potential in boreal and arctic soils.

Klooster, S.A.; Potter, S. (NASA-Ames Research Center, Moffett Field, CA (United States)); Randerson, J. (Carnegie Institution of Washington, Stanford, CA (United States))

1993-06-01T23:59:59.000Z

453

Early evaluation of directive-based GPU programming models for productive exascale computing  

Science Conference Proceedings (OSTI)

Graphics Processing Unit (GPU)-based parallel computer architectures have shown increased popularity as a building block for high performance computing, and possibly for future Exascale computing. However, their programming complexity remains as a major ...

Seyong Lee; Jeffrey S. Vetter

2012-11-01T23:59:59.000Z

454

Modeling the System: How Computers are Used in Columbia River Planning.  

DOE Green Energy (OSTI)

This publication describes the three computer models Federal agencies and the Northwest Power Pool use regularly to help plan hydro operations in the Columbia River Basin: HYSSR, HYDROSIM, and HYDREG. It is one of a series of booklets written for participants in the System Operation Review (SOR) being conducted jointly by the US Army Corps of Engineers (Corps), the US Bureau of Reclamation (Reclamation), and theBonneville Power Administration (BPA). A list of the other publications appears on the inside front cover. The SOR is the environmental analysis required to consider changes in Columbia River system operations related contract arrangements. Over the next few years, the agencies will develop a new multiple-use operation for the Columbia River. At the time, the Pacific Northwest Coordination Agreement (PNCA) and other contracts related to the Columbia River Treaty between the United States and Canada will be renegotiated and renewed. Many alternative ways of operating individual projects and the river system as a whole will be considered in the SOR. To analyze how these changes would affect the system's ability to meet its multiple-use goals, various operating scenarios will be thoroughly evaluated. The three computer models, HYSSR, HYDROSIM, and HYDREG, will play an important role in this evaluation.

United States. Bonneville Power Administration; United States. Army Corps of Engineers; United States. Bureau of Reclamation

1992-10-01T23:59:59.000Z

455

A Model-Based Approach for Determining Orientations of Biological Macromolecules Imaged by Cryoelectron Microscopy  

E-Print Network (OSTI)

-ray crystallographic 3D model; X174, bac- teriophage X174; X174PV, bacteriophage X174 provirion; X174PC, bacteriophageA Model-Based Approach for Determining Orientations of Biological Macromolecules Imaged-dimensional density map serves as a high signal-to-noise model from which a PFT database of different views

Baker, Timothy S.

456

Determining Wind Turbine Gearbox Model Complexity Using Measurement Validation and Cost Comparison: Preprint  

DOE Green Energy (OSTI)

The Gearbox Reliability Collaborative (GRC) has conducted extensive field and dynamometer test campaigns on two heavily instrumented wind turbine gearboxes. In this paper, data from the planetary stage is used to evaluate the accuracy and computation time of numerical models of the gearbox. First, planet-bearing load and motion data is analyzed to characterize planetary stage behavior in different environments and to derive requirements for gearbox models and life calculations. Second, a set of models are constructed that represent different levels of fidelity. Simulations of the test conditions are compared to the test data and the computational cost of the models are compared. The test data suggests that the planet-bearing life calculations should be made separately for each bearing on a row due to unequal load distribution. It also shows that tilting of the gear axes is related to planet load share. The modeling study concluded that fully flexible models were needed to predict planet-bearing loading in some cases, although less complex models were able to achieve good correlation in the field-loading case. Significant differences in planet load share were found in simulation and were dependent on the scope of the model and the bearing stiffness model used.

LaCava, W.; Xing, Y.; Guo, Y.; Moan, T.

2012-04-01T23:59:59.000Z

457

User manual for GEOCOST: a computer model for geothermal cost analysis. Volume 2. Binary cycle version  

DOE Green Energy (OSTI)

A computer model called GEOCOST has been developed to simulate the production of electricity from geothermal resources and calculate the potential costs of geothermal power. GEOCOST combines resource characteristics, power recovery technology, tax rates, and financial factors into one systematic model and provides the flexibility to individually or collectively evaluate their impacts on the cost of geothermal power. Both the geothermal reservoir and power plant are simulated to model the complete energy production system. In the version of GEOCOST in this report, geothermal fluid is supplied from wells distributed throughout a hydrothermal reservoir through insulated pipelines to a binary power plant. The power plant is simulated using a binary fluid cycle in which the geothermal fluid is passed through a series of heat exchangers. The thermodynamic state points in basic subcritical and supercritical Rankine cycles are calculated for a variety of working fluids. Working fluids which are now in the model include isobutane, n-butane, R-11, R-12, R-22, R-113, R-114, and ammonia. Thermodynamic properties of the working fluids at the state points are calculated using empirical equations of state. The Starling equation of state is used for hydrocarbons and the Martin-Hou equation of state is used for fluorocarbons and ammonia. Physical properties of working fluids at the state points are calculated.

Huber, H.D.; Walter, R.A.; Bloomster, C.H.

1976-03-01T23:59:59.000Z

458

Computational Mechanistic Studies of Acid-Catalyzed Lignin Model Dimers for Lignin Depolymerization  

Science Conference Proceedings (OSTI)

Lignin is a heterogeneous alkyl-aromatic polymer that constitutes up to 30% of plant cell walls, and is used for water transport, structure, and defense. The highly irregular and heterogeneous structure of lignin presents a major obstacle in the development of strategies for its deconstruction and upgrading. Here we present mechanistic studies of the acid-catalyzed cleavage of lignin aryl-ether linkages, combining both experimental studies and quantum chemical calculations. Quantum mechanical calculations provide a detailed interpretation of reaction mechanisms including possible intermediates and transition states. Solvent effects on the hydrolysis reactions were incorporated through the use of a conductor-like polarizable continuum model (CPCM) and with cluster models including explicit water molecules in the first solvation shell. Reaction pathways were computed for four lignin model dimers including 2-phenoxy-phenylethanol (PPE), 1-(para-hydroxyphenyl)-2-phenoxy-ethanol (HPPE), 2-phenoxy-phenyl-1,3-propanediol (PPPD), and 1-(para-hydroxyphenyl)-2-phenoxy-1,3-propanediol (HPPPD). Lignin model dimers with a para-hydroxyphenyl ether (HPPE and HPPPD) show substantial differences in reactivity relative to the phenyl ether compound (PPE and PPPD) which have been clarified theoretically and experimentally. The significance of these results for acid deconstruction of lignin in plant cell walls will be discussed.

Kim, S.; Sturgeon, M. R.; Chmely, S. C.; Paton, R. S.; Beckham, G. T.

2013-01-01T23:59:59.000Z

459

Emergency Response Equipment and Related Training: Airborne Radiological Computer System (Model II)  

Science Conference Proceedings (OSTI)

The materials included in the Airborne Radiological Computer System, Model-II (ARCS-II) were assembled with several considerations in mind. First, the system was designed to measure and record the airborne gamma radiation levels and the corresponding latitude and longitude coordinates, and to provide a first overview look of the extent and severity of an accident's impact. Second, the portable system had to be light enough and durable enough that it could be mounted in an aircraft, ground vehicle, or watercraft. Third, the system must control the collection and storage of the data, as well as provide a real-time display of the data collection results to the operator. The notebook computer and color graphics printer components of the system would only be used for analyzing and plotting the data. In essence, the provided equipment is composed of an acquisition system and an analysis system. The data can be transferred from the acquisition system to the analysis system at the end of the data collection or at some other agreeable time.

David P. Colton

2007-02-28T23:59:59.000Z

460

A Generative Model for Statistical Determination of Information Content from Conversation Threads  

Science Conference Proceedings (OSTI)

We present a generative model for determining the information content of a message without analyzing the message content. Such a tool is useful for automated analysis of the vast contents of online communication which are extensively contaminated by ...

Yingjie Zhou; Malik Magdon-Ismail; William A. Wallace; Mark Goldberg

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations  

NLE Websites -- All DOE Office Websites (Extended Search)

Computation of Domain-Averaged Irradiance Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations S. Kato Center for Atmospheric Sciences Hampton University Hampton, Virginia Introduction Recent development of remote sensing instruments by Atmospheric Radiation Measurement (ARM?) Program provides information of spatial and temporal variability of cloud structures. However it is not clear what cloud properties are required to express complicated cloud fields in a realistic way and how to use them in a relatively simple one-dimensional (1D) radiative transfer model to compute the domain averaged irradiance. To address this issue, a simple shortwave radiative transfer model that can treat the vertical cloud optical property correlation is developed. The model is based on the gamma-weighted

462

User manual for GEOCITY: a computer model for geothermal district heating cost analysis  

DOE Green Energy (OSTI)

A computer model called GEOCITY has been developed to systematically calculate the potential cost of district heating using hydrothermal geothermal resources. GEOCITY combines climate, demographic factors, and heat demand of the city, resource conditions, well drilling costs, design of the distribution system, tax rates, and financial factors into one systematic model. The GEOCITY program provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heat from a geothermal resource. Both the geothermal reservoir and distribution system are simulated to model the complete district heating system. GEOCITY consists of two major parts: the geothermal reservoir submodel and the distribution submodel. The reservoir submodel calculates the unit cost of energy by simulating the exploration, development, and operation of a geothermal reservoir and the transmission of this energy to a distribution center. The distribution submodel calculates the unit cost of heat by simulating the design and operation of a district heating distribution system. GEOCITY calculates the unit cost of energy and the unit cost of heat for the district heating system based on the principle that the present worth of the revenues will be equal to the present worth of the expenses including investment return over the economic life of the distribution system.

Huber, H.D.; McDonald, C.L.; Bloomster, C.H.; Schulte, S.C.

1978-10-01T23:59:59.000Z

463

Modeling of the Aging Viscoelastic Properties of Cement Paste Using Computational Methods  

E-Print Network (OSTI)

Modeling of the time-dependent behavior of cement paste has always been a difficulty. In the past, viscoelastic behavior of cementitious materials has been primarily attributed to the viscoelastic properties of C-S-H components. Recent experimental results show that C-S-H may not exhibit as much creep and relaxation as previously thought. This requires new consideration of different mechanisms leading to the viscoelastic behavior of cement paste. Thus the objective of this thesis is to build a computational model using finite element method to predict the viscoelastic behavior of cement paste, and using this model, virtual tests can be carried out to improve understanding of the mechanisms of viscoelastic behavior. The primary finding from this thesis is that the apparent viscoelastic behavior due to dissolution of load bearing phases is substantial. The dissolution process occurring during the hydration reaction can change the stress distribution inside cementitious materials, resulting in an apparent viscoelastic behavior of the whole cementitious materials. This finding requires new consideration of mechanisms of time-dependent behavior of cementitious materials regarding the dissolution process of cement paste.

Li, Xiaodan

2012-05-01T23:59:59.000Z

464

Computational modeling study of the radial line slot antenna microwave plasma source with comparisons to experiments  

SciTech Connect

The radial line slot antenna plasma source is a high-density microwave plasma source comprising a high electron temperature source region within the plasma skin depth from a coupling window and low electron temperature diffusion region far from the window. The plasma is typically comprised of inert gases like argon and mixtures of halogen or fluorocarbon gases for etching. Following the experimental study of Tian et al.[J. Vac. Sci. Technol. A 24, 1421 (2006)], a two-dimensional computational model is used to describe the essential features of the source. A high density argon plasma is described using the quasi-neutral approximation and coupled to a frequency-domain electromagnetic wave solver to describe the plasma-microwave interactions in the source. The plasma is described using a multispecies plasma chemistry mechanism developed specifically for microwave excitation conditions. The plasma is nonlocal by nature with locations of peak power deposition and peak plasma density being very different. The spatial distribution of microwave power coupling depends on whether the plasma is under- or over-dense and is described well by the model. The model predicts the experimentally observed low-order diffusion mode radial plasma profiles. The trends of spatial profiles of electron density and electron temperature over a wide range of power and pressure conditions compare well with experimental results.

Raja, Laxminarayan L. [Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, Texas 78712 (United States); Mahadevan, Shankar [Esgee Technologies Inc., 1301 S. Capital of Texas Hwy. Suite B-122, Austin, Texas 78746 (United States); Ventzek, Peter L. G.; Yoshikawa, Jun [Tokyo Electron Ltd., Akasaka Biz Tower, 3-1 Akasaka 5-chome, Minato-ku, Tokyo 107-6325 (Japan)

2013-05-15T23:59:59.000Z

465

L3 Milestone Use Computational Model to Design and Optimize Welding Conditions to Suppress Helium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

L3 Milestone L3 Milestone Use Computational Model to Design and Optimize Welding Conditions to Suppress Helium Cracking during Welding June 2012 Wei Zhang and Zhili Feng, ORNL Eric Willis, EPRI Background and Objectives Today, welding is widely used for repair, maintenance and upgrade of nuclear reactor components. As a critical technology to extend the service life of nuclear power plants beyond 60 years, weld technology must be further developed to meet new challenges associated with the aging of the plants, such as control and mitigation of the detrimental effects of weld residual stresses and repair of highly irradiated materials. To meet this goal, fundamental understanding of the "welding" effect is necessary for development of new and improved welding technologies.

466

Financial Impact of Good Condenser Vacuum in Industrial Steam Turbines: Computer Modeling Techniques  

E-Print Network (OSTI)

Industrial turbine throttle conditions are fixed by plant designs - materials of construction, steam requirements, etc. Condensing turbine exhaust conditions are limited by the atmosphere to which residual heat is rejected; and are fixed by installed condenser surface area and the steam space characteristics. Since the steam rate and shaft power costs are dependent on the available enthalpy drop across the machine, the steam must condense at the lowest practical thermal state. Thus, air presence and cooling rate must be controlled. The condensing turbine is not an isolated system. It directly affects the use of boiler fuel and the purchase of power. Its condensate requires reheating to feedwater temperature: steam is used, backpressure power is made, for example. Its performance affects the entire steam system and must be monitored persistently. Because of the complexities (and advantages) of systems analyses, computer modeling is demonstrated in this paper to fully evaluated the network effects and the financial impact of good condenser vacuum.

Viar, W. L.

1984-01-01T23:59:59.000Z

467

DualTrust: A Distributed Trust Model for Swarm-Based Autonomic Computing Systems  

SciTech Connect

For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, trust management is important