Sample records for determination computational fluid

  1. Computational fluid dynamic applications

    SciTech Connect (OSTI)

    Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.

    2000-04-03T23:59:59.000Z

    The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

  2. Introduction to Computational Fluid Dynamics 424512 E #1 -rz Introduction to Computational Fluid Dynamics

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Introduction to Computational Fluid Dynamics 424512 E #1 - rz Introduction to Computational Fluid Dynamics (iCFD) 424512.0 E, 5 sp / 3 sw 1. Introduction; Fluid dynamics (lecture 1 of 5) Ron Zevenhoven Ă?bo to Computational Fluid Dynamics 424512 E #1 - rz april 2013 Ă?bo Akademi Univ - Thermal and Flow Engineering

  3. Metaphoric optical computing of fluid dynamics

    E-Print Network [OSTI]

    Tsang, M; Tsang, Mankei; Psaltis, Demetri

    2006-01-01T23:59:59.000Z

    We present theoretical and numerical evidence to show that self-defocusing nonlinear optical propagation can be used to compute Euler fluid dynamics and possibly Navier-Stokes fluid dynamics. In particular, the formation of twin vortices and the K\\'arm\\'an vortex street behind an obstacle, two well-known viscous fluid phenomena, is numerically demonstrated using the nonlinear Schr\\"odinger equation.

  4. Determining effects of turbine blades on fluid motion

    DOE Patents [OSTI]

    Linn, Rodman Ray (Los Alamos, NM); Koo, Eunmo (Los Alamos, NM)

    2011-05-31T23:59:59.000Z

    Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.

  5. Determining effects of turbine blades on fluid motion

    DOE Patents [OSTI]

    Linn, Rodman Ray (Los Alamos, NM); Koo, Eunmo (Los Alamos, NM)

    2012-05-01T23:59:59.000Z

    Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.

  6. ITP Chemicals: Technology Roadmap for Computational Fluid Dynamics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluid Dynamics, January 1999 ITP Chemicals: Technology Roadmap for Computational Fluid Dynamics, January 1999 cfdroadmap.pdf More Documents & Publications A Workshop to Identify...

  7. Experimentally Determined Interfacial Area Between Immiscible Fluids in Porous Media

    SciTech Connect (OSTI)

    Crandall, Dustin; Niessner, J; Hassanizadeh, S.M; Smith, Duane

    2008-01-01T23:59:59.000Z

    When multiple fluids flow through a porous medium, the interaction between the fluid interfaces can be of great importance. While this is widely recognized in practical applications, numerical models often disregard interactios between discrete fluid phases due to the computational complexity. And rightly so, for this level of detail is well beyond most extended Darcy Law relationships. A new model of two-phase flow including the interfacial area has been proposed by Hassarizadeh and Gray based upon thermodynamic principles. A version of this general equation set has been implemented by Nessner and Hassarizadeh. Many of the interfacial parameters required by this equation set have never been determined from experiments. The work presented here is a description of how the interfacial area, capillary pressure, interfacial velocity and interfacial permeability from two-phase flow experiments in porous media experiments can be used to determine the required parameters. This work, while on-going, has shown the possibility of digitizing images within translucent porous media and identifying the location and behavior of interfaces under dynamic conditions. Using the described methods experimentally derived interfacial functions to be used in larger scale simulations are currently being developed. In summary, the following conclusions can be drawn: (1) by mapping a pore-throat geometry onto an image of immiscible fluid flow, the saturation of fluids and the individual interfaces between the fluids can be identified; (2) the resulting saturation profiles of the low velocity drainage flows used in this study are well described by an invasion percolation fractal scaling; (3) the interfacial area between fluids has been observed to increase in a linear fashion during the initial invasion of the non-wetting fluid; and (4) the average capillary pressure within the entire cell and representative elemental volumes were observed to plateau after a small portion of the volume was invaded.

  8. The incorporation of bubbles into a computer graphics fluid simulation

    E-Print Network [OSTI]

    Greenwood, Shannon Thomas

    2005-08-29T23:59:59.000Z

    We present methods for incorporating bubbles into a photorealistc fluid simulation. Previous methods of fluid simulation in computer graphics do not include bubbles. Our system automatically creates bubbles, which are simulated on top of the fluid...

  9. Sandia Energy - Computational Fluid Dynamics & Large-Scale Uncertainty...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Large-Scale Uncertainty Quantification for Wind Energy Home Highlights - HPC Computational Fluid Dynamics & Large-Scale Uncertainty Quantification for Wind Energy Previous Next...

  10. Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed

    SciTech Connect (OSTI)

    Zhongyi Deng; Rui Xiao; Baosheng Jin; He Huang; Laihong Shen; Qilei Song; Qianjun Li [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education

    2008-05-15T23:59:59.000Z

    Computational fluid dynamics (CFD) modeling, which has recently proven to be an effective means of analysis and optimization of energy-conversion processes, has been extended to coal gasification in this paper. A 3D mathematical model has been developed to simulate the coal gasification process in a pressurized spout-fluid bed. This CFD model is composed of gas-solid hydrodynamics, coal pyrolysis, char gasification, and gas phase reaction submodels. The rates of heterogeneous reactions are determined by combining Arrhenius rate and diffusion rate. The homogeneous reactions of gas phase can be treated as secondary reactions. A comparison of the calculated and experimental data shows that most gasification performance parameters can be predicted accurately. This good agreement indicates that CFD modeling can be used for complex fluidized beds coal gasification processes. 37 refs., 7 figs., 5 tabs.

  11. Computational Fluid Dynamics of rising droplets

    SciTech Connect (OSTI)

    Wagner, Matthew [Lake Superior State University; Francois, Marianne M. [Los Alamos National Laboratory

    2012-09-05T23:59:59.000Z

    The main goal of this study is to perform simulations of droplet dynamics using Truchas, a LANL-developed computational fluid dynamics (CFD) software, and compare them to a computational study of Hysing et al.[IJNMF, 2009, 60:1259]. Understanding droplet dynamics is of fundamental importance in liquid-liquid extraction, a process used in the nuclear fuel cycle to separate various components. Simulations of a single droplet rising by buoyancy are conducted in two-dimensions. Multiple parametric studies are carried out to ensure the problem set-up is optimized. An Interface Smoothing Length (ISL) study and mesh resolution study are performed to verify convergence of the calculations. ISL is a parameter for the interface curvature calculation. Further, wall effects are investigated and checked against existing correlations. The ISL study found that the optimal ISL value is 2.5{Delta}x, with {Delta}x being the mesh cell spacing. The mesh resolution study found that the optimal mesh resolution is d/h=40, for d=drop diameter and h={Delta}x. In order for wall effects on terminal velocity to be insignificant, a conservative wall width of 9d or a nonconservative wall width of 7d can be used. The percentage difference between Hysing et al.[IJNMF, 2009, 60:1259] and Truchas for the velocity profiles vary from 7.9% to 9.9%. The computed droplet velocity and interface profiles are found in agreement with the study. The CFD calculations are performed on multiple cores, using LANL's Institutional High Performance Computing.

  12. Method and apparatus for determining fluid mass flowrates

    DOE Patents [OSTI]

    Hamel, W.R.

    1982-10-07T23:59:59.000Z

    This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required bending of the fluid flow.

  13. Computational Fluid Dynamics Study of Aerosol Transport and Deposition Mechanisms

    E-Print Network [OSTI]

    Tang, Yingjie

    2012-07-16T23:59:59.000Z

    In this work, various aerosol particle transport and deposition mechanisms were studied through the computational fluid dynamics (CFD) modeling, including inertial impaction, gravitational effect, lift force, interception, and turbophoresis, within...

  14. Application of computational fluid dynamics to aerosol sampling and concentration

    E-Print Network [OSTI]

    Hu, Shishan

    2009-05-15T23:59:59.000Z

    An understanding of gas-liquid two-phase interactions, aerosol particle deposition, and heat transfer is needed. Computational Fluid Dynamics (CFD) is becoming a powerful tool to predict aerosol behavior for related design work. In this study...

  15. V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010

    E-Print Network [OSTI]

    Berning, Torsten

    V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010 J. C. F. Pereira and A, increase the mixing of fuel and oxidant, control formation of harmful emissions, and increase the life

  16. Variational Methods for Computational Fluid Dynamics

    E-Print Network [OSTI]

    Alouges, François

    .2.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Going back-structure interactions 35 4.1 A non deformable solid in a fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6 Stokes equations 49 6.1 Mixed finite

  17. PREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL AND HIGHLY DEVIATED WELLS

    E-Print Network [OSTI]

    Ullmer, Brygg

    PREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL parameters such as wellbore geometry, pump rate, drilling fluid rheology and density, and maximum drilling Computational Fluid Dynamics methods. Movement, concentration and accumulation of drilled cuttings in non

  18. Fluid Catalytic Cracking Power Recovery Computer Simulation

    E-Print Network [OSTI]

    Samurin, N. A.

    1979-01-01T23:59:59.000Z

    operating conditions. The digital computer model simulates the performance of the axial compressor, power recovery expander, regenerator section, and system pressure drops. The program can simulate the process system design conditions for compatibility...

  19. Fluid Catalytic Cracking Power Recovery Computer Simulation 

    E-Print Network [OSTI]

    Samurin, N. A.

    1979-01-01T23:59:59.000Z

    operating conditions. The digital computer model simulates the performance of the axial compressor, power recovery expander, regenerator section, and system pressure drops. The program can simulate the process system design conditions for compatibility...

  20. Method of determining interwell oil field fluid saturation distribution

    DOE Patents [OSTI]

    Donaldson, Erle C. (Bartlesville, OK); Sutterfield, F. Dexter (Bartlesville, OK)

    1981-01-01T23:59:59.000Z

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  1. COMPUTATIONAL FLUID DYNAMICS MODELING OF SOLID OXIDE FUEL CELLS

    E-Print Network [OSTI]

    COMPUTATIONAL FLUID DYNAMICS MODELING OF SOLID OXIDE FUEL CELLS Ugur Pasaogullari and Chao-dimensional model has been developed to simulate solid oxide fuel cells (SOFC). The model fully couples current density operation. INTRODUCTION Solid oxide fuel cells (SOFC) are among possible candidates

  2. Air Ingress Benchmarking with Computational Fluid Dynamics Analysis

    E-Print Network [OSTI]

    1 Air Ingress Benchmarking with Computational Fluid Dynamics Analysis Tieliang Zhai Professor by the US Nuclear Regulatory Commission #12;2 Air Ingress Accident Objectives and Overall Strategy: Depresurization Pure Diffusion Natural Convection Challenging: Natural convection Multi-component Diffusion (air

  3. Air Ingress Benchmarking with Computational Fluid Dynamics Analysis

    E-Print Network [OSTI]

    Air Ingress Benchmarking with Computational Fluid Dynamics Analysis Andrew C. Kadak Department District Beijing, China September 22-24, 2004 Abstract Air ingress accident is a complicated accident scenario is compounded by multiple physical phenomena that are involved in the air ingress event

  4. Computer determination of bacterial volume

    E-Print Network [OSTI]

    Griffis, David William

    1978-01-01T23:59:59.000Z

    ';ir~uT;. ip. , a Y. ". , "i, q!. 'i'!v!i, "; ~&/~4 ~;, . p, . P, m'p 'I p p, ; q 'i p ' j?y ~i "tp @i, ~-o" i';, &'!n, ii. ;, ;~ . -. &t' 4!s$, & 'ysi, ~'. w r:". . ~J'. ow"i ACKNGWLEDGEYiENTS I wisn to express my sincere gratitude to Dr. R'chard D. Neff.... Wick of the Department of Nuclear Engineerin . for advice on the design o the computer algorithm, tc, Dr. William B. Smith of the Institute of Statistics fo the derivation anc explanation of many of the statist'cal values, and to Larry Smith, Chief...

  5. Applying uncertainty quantification to multiphase flow computational fluid dynamics

    SciTech Connect (OSTI)

    Gel, A.; Garg, R.; Tong, C.; Shahnam, M.; Guenther, C.

    2013-07-01T23:59:59.000Z

    Multiphase computational fluid dynamics plays a major role in design and optimization of fossil fuel based reactors. There is a growing interest in accounting for the influence of uncertainties associated with physical systems to increase the reliability of computational simulation based engineering analysis. The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has recently undertaken an initiative to characterize uncertainties associated with computer simulation of reacting multiphase flows encountered in energy producing systems such as a coal gasifier. The current work presents the preliminary results in applying non-intrusive parametric uncertainty quantification and propagation techniques with NETL's open-source multiphase computational fluid dynamics software MFIX. For this purpose an open-source uncertainty quantification toolkit, PSUADE developed at the Lawrence Livermore National Laboratory (LLNL) has been interfaced with MFIX software. In this study, the sources of uncertainty associated with numerical approximation and model form have been neglected, and only the model input parametric uncertainty with forward propagation has been investigated by constructing a surrogate model based on data-fitted response surface for a multiphase flow demonstration problem. Monte Carlo simulation was employed for forward propagation of the aleatory type input uncertainties. Several insights gained based on the outcome of these simulations are presented such as how inadequate characterization of uncertainties can affect the reliability of the prediction results. Also a global sensitivity study using Sobol' indices was performed to better understand the contribution of input parameters to the variability observed in response variable.

  6. Computational thermal, chemical, fluid, and solid mechanics for geosystems management.

    SciTech Connect (OSTI)

    Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu

    2011-09-01T23:59:59.000Z

    This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

  7. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    SciTech Connect (OSTI)

    Rokkam, Ram [Ames Laboratory

    2012-11-02T23:59:59.000Z

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  8. Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors

    SciTech Connect (OSTI)

    Rong Fan

    2006-08-09T23:59:59.000Z

    Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid FB reactors with mono-dispersed, non-cohesive solids. This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. Some basic theories used in our work are given in detail in Chapter 3. First, the governing equations and other constitutive equations for the multi-fluid model are summarized, and the kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of DQMOM for the population balance equation is given as the second section. In this section, monovariate population balance, bivariate population balance, aggregation and breakage equation and DQMOM-Multi-Fluid model are described. In the last section of Chapter 3, numerical methods involved in the multi-fluid model and time-splitting method are presented. Chapter 4 is based on a paper about application of DQMOM to polydisperse gas-solid fluidized beds. Results for a constant aggregation and breakage kernel and a kernel developed from kinetic theory are shown. The effect of the aggregation success factor and the fragment distribution function are investigated. Chapter 5 shows the work on validation of mixing and segregation phenomena in gas-solid fluidized beds with a binary mixture or a continuous size distribution. The simulation results are compared with available experiment data and discrete-particle simulation. Chapter 6 presents the project with Univation Technologies on CFD simulation of a Polyethylene pilot-scale FB reactor, The fluid dynamics, mass/heat transfer and particle size distribution are investigated through CFD simulation and validated with available experimental data. The conclusions of this study and future work are discussed in Chapter 7.

  9. Computational Fluid Dynamics Framework for Turbine Biological Performance Assessment

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Serkowski, John A.; Carlson, Thomas J.; Ebner, Laurie L.; Sick, Mirjam; Cada, G. F.

    2011-05-04T23:59:59.000Z

    In this paper, a method for turbine biological performance assessment is introduced to bridge the gap between field and laboratory studies on fish injury and turbine design. Using this method, a suite of biological performance indicators is computed based on simulated data from a computational fluid dynamics (CFD) model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. If the relationship between the dose of an injury mechanism and frequency of injury (dose-response) is known from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from various turbine designs, the engineer can identify the more-promising designs. Discussion here is focused on Kaplan-type turbines, although the method could be extended to other designs. Following the description of the general methodology, we will present sample risk assessment calculations based on CFD data from a model of the John Day Dam on the Columbia River in the USA.

  10. Computational fluid dynamics for the CFBR : challenges that lie ahead /

    SciTech Connect (OSTI)

    Kashiwa, B. A.; Yang, Wen-ching,

    2001-01-01T23:59:59.000Z

    The potential of Computational Fluid Dynamics as a tool for design and analysis of the Circulating Fluidized Bed Reactor is considered. The ruminations are largely philosophical in nature, and are based mainly on experience. An assessment of where CFD may, or may not, be a helpful tool for developing the needed understanding, is furnished. To motivate this assessment, a clarification of what composes a CFD analysis is provided. Status of CFD usage in CFBR problems is summarized briefly. Some successes and failures of CFD in CFBR analysis are also discussed; this suggests a practical way to proceed toward the goal of adding CFD as a useful tool, to be used in combination with well-defined experiments, for CFBR needs. The conclusion is that there remains substantial hope that CFD could be very useful in this application. In order to make the hope a reality, nontrivial, and achievable, advances in multiphase flow theory must be made.

  11. A Simple Interface to Computational Fluid Dynamics Programs for Building Environment Simulations

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    A Simple Interface to Computational Fluid Dynamics Programs for Building Environment Simulations for architects and HVAC engineers to simulate airflows in and around buildings by Computational Fluid Dynamics Charles R. Broderick III Qingyan Chen Building Technology Program Massachusetts Institute of Technology

  12. Elimination of Adverse Leakage Flow in a Miniature Pediatric Centrifugal Blood Pump by Computational Fluid Dynamics

    E-Print Network [OSTI]

    Paden, Brad

    levitated centrifugal blood pump intended to deliver 0.3­1.5 l/min of support to neo- nates and infants computational fluid dy- namics (CFD) analysis of impeller refinements, we found that sec- ondary blades located by exten- sive in vitro model testing. Computational fluid dynamics (CFD) has been widely used

  13. HYDRA, A finite element computational fluid dynamics code: User manual

    SciTech Connect (OSTI)

    Christon, M.A.

    1995-06-01T23:59:59.000Z

    HYDRA is a finite element code which has been developed specifically to attack the class of transient, incompressible, viscous, computational fluid dynamics problems which are predominant in the world which surrounds us. The goal for HYDRA has been to achieve high performance across a spectrum of supercomputer architectures without sacrificing any of the aspects of the finite element method which make it so flexible and permit application to a broad class of problems. As supercomputer algorithms evolve, the continuing development of HYDRA will strive to achieve optimal mappings of the most advanced flow solution algorithms onto supercomputer architectures. HYDRA has drawn upon the many years of finite element expertise constituted by DYNA3D and NIKE3D Certain key architectural ideas from both DYNA3D and NIKE3D have been adopted and further improved to fit the advanced dynamic memory management and data structures implemented in HYDRA. The philosophy for HYDRA is to focus on mapping flow algorithms to computer architectures to try and achieve a high level of performance, rather than just performing a port.

  14. Code Verification of the HIGRAD Computational Fluid Dynamics Solver

    SciTech Connect (OSTI)

    Van Buren, Kendra L. [Los Alamos National Laboratory; Canfield, Jesse M. [Los Alamos National Laboratory; Hemez, Francois M. [Los Alamos National Laboratory; Sauer, Jeremy A. [Los Alamos National Laboratory

    2012-05-04T23:59:59.000Z

    The purpose of this report is to outline code and solution verification activities applied to HIGRAD, a Computational Fluid Dynamics (CFD) solver of the compressible Navier-Stokes equations developed at the Los Alamos National Laboratory, and used to simulate various phenomena such as the propagation of wildfires and atmospheric hydrodynamics. Code verification efforts, as described in this report, are an important first step to establish the credibility of numerical simulations. They provide evidence that the mathematical formulation is properly implemented without significant mistakes that would adversely impact the application of interest. Highly accurate analytical solutions are derived for four code verification test problems that exercise different aspects of the code. These test problems are referred to as: (i) the quiet start, (ii) the passive advection, (iii) the passive diffusion, and (iv) the piston-like problem. These problems are simulated using HIGRAD with different levels of mesh discretization and the numerical solutions are compared to their analytical counterparts. In addition, the rates of convergence are estimated to verify the numerical performance of the solver. The first three test problems produce numerical approximations as expected. The fourth test problem (piston-like) indicates the extent to which the code is able to simulate a 'mild' discontinuity, which is a condition that would typically be better handled by a Lagrangian formulation. The current investigation concludes that the numerical implementation of the solver performs as expected. The quality of solutions is sufficient to provide credible simulations of fluid flows around wind turbines. The main caveat associated to these findings is the low coverage provided by these four problems, and somewhat limited verification activities. A more comprehensive evaluation of HIGRAD may be beneficial for future studies.

  15. Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design

    SciTech Connect (OSTI)

    Beach, R.; Prahl, D.; Lange, R.

    2013-12-01T23:59:59.000Z

    IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.

  16. Determination of fluid viscosities from biconical annular geometries: Experimental and modeling studies

    E-Print Network [OSTI]

    Rondon, Nolys Javier

    2009-05-15T23:59:59.000Z

    Knowledge of viscosity of flow streams is essential for the design and operation of production facilities, drilling operations and reservoir engineering calculations. The determination of the viscosity of a reservoir fluid at downhole conditions...

  17. Enhancing Particle Methods for Fluid Simulation in Computer Graphics

    E-Print Network [OSTI]

    Bridson, Robert

    and spectral cascade of turbulent energy are captured, whereas they are left unresolved on a typical simulation the fluid and are assigned with extrapolated fluid quantities to reach correct boundary conditions. The Beta characteristics of the surface, the focus in Beta Mesh is producing a surface which varies smoothly in time

  18. Fluid computation of the performanceenergy trade-off in large scale Markov models

    E-Print Network [OSTI]

    Imperial College, London

    Fluid computation of the performance­energy trade-off in large scale Markov models Anton Stefanek energy consumption while maintaining multiple service level agreements. 2. VIRTUALISED EXECUTION MODEL optimisation. We show how the fluid analysis naturally leads to a constrained global optimisation prob- lem

  19. Computational Fluids Dynamics and its Application to Multiphase Flows (3 credits)

    E-Print Network [OSTI]

    Chen, Zheng

    Computational Fluids Dynamics and its Application to Multiphase Flows (3 credits) Instructor Eric CLIMENT, Dept. of Fluids Mechanics, INP-ENSEEIHT / IMFT (eric.climent@imft.fr) Synopsis Multiphase flows will be introduced, together with their applications to multiphase flows (dispersion, two-way coupling, modelling

  20. Theor. Comput. Fluid Dyn. DOI 10.1007/s00162-013-0302-5

    E-Print Network [OSTI]

    Roy, Subrata

    Theor. Comput. Fluid Dyn. DOI 10.1007/s00162-013-0302-5 ORIGINAL ARTICLE Mark Riherd · Subrata Roy The process of a flow's transition to turbulence has long been a topic of study in fluid mechanics operation, along with the associated benefits of reduced fuel consumption. Stabilization or destabilization

  1. An hp adaptive strategy to compute the vibration modes of a fluid-solid coupled system

    E-Print Network [OSTI]

    Rodríguez, Rodolfo

    )], for the operational state, the fuel assembly in nuclear plants should be designed so that they cannot be unacceptablyAn hp adaptive strategy to compute the vibration modes of a fluid-solid coupled system M element method to solve a two- dimensional fluid-structure vibration problem. This problem arises from

  2. Infiltration Heat Recovery in Building Walls: Computational Fluid Dynamics Investigations Results

    E-Print Network [OSTI]

    LBNL-51324 Infiltration Heat Recovery in Building Walls: Computational Fluid Dynamics leading to partial recovery of heat conducted through the wall. The Infiltration Heat Recovery (IHR) factor was introduced to quantify the heat recovery and correct the conventional calculations

  3. Investigation into the discrepancies between computational fluid dynamics lift predictions and experimental results

    E-Print Network [OSTI]

    Fairman, Randall S. (Randall Scott), 1967-

    2002-01-01T23:59:59.000Z

    An analysis of current computational fluid dynamics capabilities in predicting mean lift forces for two dimensional foils is conducted. It is shown that both integral boundary layer theory and Reynolds Averaged Navier ...

  4. Coupling of a multizone airflow simulation program with computational fluid dynamics for indoor environmental analysis

    E-Print Network [OSTI]

    Gao, Yang, 1974-

    2002-01-01T23:59:59.000Z

    Current design of building indoor environment comprises macroscopIC approaches, such as CONT AM multizone airflow analysis tool, and microscopic approaches that apply Computational Fluid Dynamics (CFD). Each has certain ...

  5. Developing an integrated building design tool by coupling building energy simulation and computational fluid dynamics programs

    E-Print Network [OSTI]

    Zhai, Zhiqiang, 1971-

    2003-01-01T23:59:59.000Z

    Building energy simulation (ES) and computational fluid dynamics (CFD) can play important roles in building design by providing essential information to help design energy-efficient, thermally comfortable and healthy ...

  6. Using the FLUENT computational fluid dynamics code to model the NACOK corrosion test

    E-Print Network [OSTI]

    Parks, Benjamin T

    2004-01-01T23:59:59.000Z

    As a part of advancing nuclear technology, computational fluid dynamics (CFD) analysis offers safer and lower-cost results relative to experimental work. Its use as a safety analysis tool is gaining much broader acceptance ...

  7. Method and apparatus for simultaneous determination of fluid mass flow rate, mean velocity and density

    DOE Patents [OSTI]

    Hamel, William R. (Farragut, TN)

    1984-01-01T23:59:59.000Z

    This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow.

  8. A new, efficient computational model for the prediction of fluid seal flowfields

    E-Print Network [OSTI]

    Hibbs, Robert Irwin

    1988-01-01T23:59:59.000Z

    A NEW) EFFICIENT COMPUTATIONAL MODEL FOR THE PREDICTION OF FLUID SEAL FLOWFIELDS A Thesis by ROBERT IRWIN HIBBS, JR. Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE December 1988 Major Subject: Mechanical Engineering A NEW, EFFICIENT COMPUTATIONAL MODEL FOR THE PREDICTION OF FLUID SEAL FLOWFIELDS A Thesis by ROBERT IRWIN HIBBS, JR. Approved as to style and content by: David L. Rhode...

  9. 2014-02-21 Issuance: Proposed Determination of Computer Servers...

    Broader source: Energy.gov (indexed) [DOE]

    withdrawing the previously proposed determination that computer servers qualify as a covered product, as issued by the Deputy Assistant Secretary for Energy Efficiency on February...

  10. Determination of petroleum pipe scale solubility in simulated lung fluid

    E-Print Network [OSTI]

    Cezeaux, Jason Roderick

    2005-08-29T23:59:59.000Z

    are ionized in the plasma. Figure 7. Schematic diagram of the RF coil used to produce an inductively coupled plasma. (Taylor 2001) After being focused by the ion lens, a charged metallic cylinder, the ions are separated by their mass... of ICP-MS for detection and quantification of 234U, 238U, 99Tc, 237Np, actinides, and fission products (Morrow 1998). In addition to these papers, numerous others indicate the viability of ICP-MS use in the determination of radionuclides, in which...

  11. aiaa computational fluid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 23--25, Monterey, CA On the computation and diffraction by the high lift system, a feature related purely to the geometry. Professor, Senior member AIAA Technical...

  12. Strategies for coupling energy simulation and computational fluid dynamics programs

    E-Print Network [OSTI]

    Zhai, Zhiqiang; Chen, Qingyan; Klems, Joseph H.; Haves, Philip

    2001-01-01T23:59:59.000Z

    2000. “EnergyPlus: Energy Simulation Program” . ASHRAEA Coupled Airflow-and-Energy Simulation Program for IndoorSTRATEGIES FOR COUPLING ENERGY SIMULATION AND COMPUTATIONAL

  13. Experimental and Computational Study of Fluid Dynamics in Solar Reactor

    E-Print Network [OSTI]

    Chien, Min-Hsiu

    2014-02-19T23:59:59.000Z

    The experimental simulation and a computational validation of a methane-cracking solar reactor powered by solar energy is the focus of this article. A solar cyclone reactor operates at over 1000 °C where the methane decomposition reaction takes...

  14. Determining Memory Use | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential Application to ARMTransesterification:Determining

  15. Overall Efficiency Abstract-Computational fluid dynamics (C

    E-Print Network [OSTI]

    Pedersen, Tom

    developed a the limits to tidal power extraction in a chan computes the total energy available, which from the u flow energy. Many tidal turbine developers ducted designs which accelerate the flow thro a sustainable energy technology in areas w tidal flows occur. North America has a resource which has only been

  16. Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces

    SciTech Connect (OSTI)

    R. James Kirkpatrick; Andrey G. Kalinichev

    2008-11-25T23:59:59.000Z

    Research supported by this grant focuses on molecular scale understanding of central issues related to the structure and dynamics of geochemically important fluids, fluid-mineral interfaces, and confined fluids using computational modeling and experimental methods. Molecular scale knowledge about fluid structure and dynamics, how these are affected by mineral surfaces and molecular-scale (nano-) confinement, and how water molecules and dissolved species interact with surfaces is essential to understanding the fundamental chemistry of a wide range of low-temperature geochemical processes, including sorption and geochemical transport. Our principal efforts are devoted to continued development of relevant computational approaches, application of these approaches to important geochemical questions, relevant NMR and other experimental studies, and application of computational modeling methods to understanding the experimental results. The combination of computational modeling and experimental approaches is proving highly effective in addressing otherwise intractable problems. In 2006-2007 we have significantly advanced in new, highly promising research directions along with completion of on-going projects and final publication of work completed in previous years. New computational directions are focusing on modeling proton exchange reactions in aqueous solutions using ab initio molecular dynamics (AIMD), metadynamics (MTD), and empirical valence bond (EVB) approaches. Proton exchange is critical to understanding the structure, dynamics, and reactivity at mineral-water interfaces and for oxy-ions in solution, but has traditionally been difficult to model with molecular dynamics (MD). Our ultimate objective is to develop this capability, because MD is much less computationally demanding than quantum-chemical approaches. We have also extended our previous MD simulations of metal binding to natural organic matter (NOM) to a much longer time scale (up to 10 ns) for significantly larger systems. These calculations have allowed us, for the first time, to study the effects of metal cations with different charges and charge density on the NOM aggregation in aqueous solutions. Other computational work has looked at the longer-time-scale dynamical behavior of aqueous species at mineral-water interfaces investigated simultaneously by NMR spectroscopy. Our experimental NMR studies have focused on understanding the structure and dynamics of water and dissolved species at mineral-water interfaces and in two-dimensional nano-confinement within clay interlayers. Combined NMR and MD study of H2O, Na+, and Cl- interactions with the surface of quartz has direct implications regarding interpretation of sum frequency vibrational spectroscopic experiments for this phase and will be an important reference for future studies. We also used NMR to examine the behavior of K+ and H2O in the interlayer and at the surfaces of the clay minerals hectorite and illite-rich illite-smectite. This the first time K+ dynamics has been characterized spectroscopically in geochemical systems. Preliminary experiments were also performed to evaluate the potential of 75As NMR as a probe of arsenic geochemical behavior. The 75As NMR study used advanced signal enhancement methods, introduced a new data acquisition approach to minimize the time investment in ultra-wide-line NMR experiments, and provides the first evidence of a strong relationship between the chemical shift and structural parameters for this experimentally challenging nucleus. We have also initiated a series of inelastic and quasi-elastic neutron scattering measurements of water dynamics in the interlayers of clays and layered double hydroxides. The objective of these experiments is to probe the correlations of water molecular motions in confined spaces over the scale of times and distances most directly comparable to our MD simulations and on a time scale different than that probed by NMR. This work is being done in collaboration with Drs. C.-K. Loong, N. de Souza, and A.I. Kolesnikov at the Intense Pulsed

  17. Computational fluid dynamic simulations of chemical looping fuel reactors utilizing gaseous fuels

    SciTech Connect (OSTI)

    Mahalatkar, K.; Kuhlman, J.; Huckaby, E.D.; O'Brien, T.

    2011-01-01T23:59:59.000Z

    A computational fluid dynamic(CFD) model for the fuel reactor of chemical looping combustion technology has been developed,withspecialfocusonaccuratelyrepresentingtheheterogeneous chemicalreactions.Acontinuumtwo-fluidmodelwasusedtodescribeboththegasandsolidphases. Detailedsub-modelstoaccountforfluid–particleandparticle–particleinteractionforceswerealso incorporated.Twoexperimentalcaseswereanalyzedinthisstudy(Son andKim,2006; Mattisonetal., 2001). SimulationswerecarriedouttotestthecapabilityoftheCFDmodeltocapturechangesinoutletgas concentrationswithchangesinnumberofparameterssuchassuperficialvelocity,metaloxide concentration,reactortemperature,etc.Fortheexperimentsof Mattissonetal.(2001), detailedtime varyingoutletconcentrationvalueswerecompared,anditwasfoundthatCFDsimulationsprovideda reasonablematchwiththisdata.

  18. Simulations of Ozone Distributions in an Aircraft Cabin Using Computational Fluid1 Aakash C. Rai1

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    Simulations of Ozone Distributions in an Aircraft Cabin Using Computational Fluid1 Dynamics2 3 10 Ozone is a major pollutant of indoor air. Many studies have demonstrated the adverse health effect of11 ozone and the byproducts generated as a result of ozone-initiated reactive chemistry

  19. Computational Fluid Dynamics Evaluation of Good Combustion Performance in Waste Incinerators

    E-Print Network [OSTI]

    Kim, Yong Jung

    -furnace destruction of pollutants are stated as: good combustion is achieved when 2-second gas residence time at 850 C1 Computational Fluid Dynamics Evaluation of Good Combustion Performance in Waste Incinerators waste incinerators, good combustion practices(GCP or GOP) have been established. These operating (and

  20. Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow

    E-Print Network [OSTI]

    Wang, Chao-Yang

    Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow W-dimensional model is developed to simulate discharge of a primary lithium/thionyl chloride battery. The model to the first task with important examples of lead-acid,1-3 nickel-metal hydride,4-8 and lithium-based batteries

  1. Optimization of a high-efficiency jet ejector by computational fluid dynamic software

    E-Print Network [OSTI]

    Watanawanavet, Somsak

    2005-08-29T23:59:59.000Z

    Computational Fluid Dynamics (CFD) software. A conventional finite-volume scheme was utilized to solve two-dimensional transport equations with the standard k-?? turbulence model (Kim et. al., 1999). In this study of a constant-area jet ejector, all parameters...

  2. Computational Study of Fluid and Heat Transport in Fractured Porous Media for

    E-Print Network [OSTI]

    Ullmer, Brygg

    the predictive capability of the thermal reservoir simulator. Discrete Fracture Network (DFN) is used to modelComputational Study of Fluid and Heat Transport in Fractured Porous Media for Geothermal Energy Rouge Abstract This study focuses on simulating heat transport processes in fractured porous media

  3. Experimental Validation of a Computational Fluid Dynamics Model for IAQ applications in Ice Rink Arenas

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Experimental Validation of a Computational Fluid Dynamics Model for IAQ applications in Ice Rink, USA, Fax: 617-432-4122, Abstract Many ice rink arenas have ice resurfacing equipment that uses fossil temperature distributions in ice rinks. The numerical results agree reasonably with the corresponding

  4. Progress in Computational Fluid Dynamics, Volume 2, Nos. 2/3/4, 2002144 A numerical investigation of

    E-Print Network [OSTI]

    Zhao, Tianshou

    Progress in Computational Fluid Dynamics, Volume 2, Nos. 2/3/4, 2002144 A numerical investigation.16 mm, under both cooling and heating conditions, with and without gravity, were obtained. It is shown', Progress in Computational fluid Dynamics, Vol. 2, Nos. 2/3/4, pp. 144­152. NOMENCLATURE A tube cross

  5. CCM Continuity Constraint Method: A finite-element computational fluid dynamics algorithm for incompressible Navier-Stokes fluid flows

    SciTech Connect (OSTI)

    Williams, P.T.

    1993-09-01T23:59:59.000Z

    As the field of computational fluid dynamics (CFD) continues to mature, algorithms are required to exploit the most recent advances in approximation theory, numerical mathematics, computing architectures, and hardware. Meeting this requirement is particularly challenging in incompressible fluid mechanics, where primitive-variable CFD formulations that are robust, while also accurate and efficient in three dimensions, remain an elusive goal. This dissertation asserts that one key to accomplishing this goal is recognition of the dual role assumed by the pressure, i.e., a mechanism for instantaneously enforcing conservation of mass and a force in the mechanical balance law for conservation of momentum. Proving this assertion has motivated the development of a new, primitive-variable, incompressible, CFD algorithm called the Continuity Constraint Method (CCM). The theoretical basis for the CCM consists of a finite-element spatial semi-discretization of a Galerkin weak statement, equal-order interpolation for all state-variables, a 0-implicit time-integration scheme, and a quasi-Newton iterative procedure extended by a Taylor Weak Statement (TWS) formulation for dispersion error control. Original contributions to algorithmic theory include: (a) formulation of the unsteady evolution of the divergence error, (b) investigation of the role of non-smoothness in the discretized continuity-constraint function, (c) development of a uniformly H{sup 1} Galerkin weak statement for the Reynolds-averaged Navier-Stokes pressure Poisson equation, (d) derivation of physically and numerically well-posed boundary conditions, and (e) investigation of sparse data structures and iterative methods for solving the matrix algebra statements generated by the algorithm.

  6. Determining position inside building via laser rangefinder and handheld computer

    DOE Patents [OSTI]

    Ramsey, Jr. James L. (Albuquerque, NM); Finley, Patrick (Albuquerque, NM); Melton, Brad (Albuquerque, NM)

    2010-01-12T23:59:59.000Z

    An apparatus, computer software, and a method of determining position inside a building comprising selecting on a PDA at least two walls of a room in a digitized map of a building or a portion of a building, pointing and firing a laser rangefinder at corresponding physical walls, transmitting collected range information to the PDA, and computing on the PDA a position of the laser rangefinder within the room.

  7. Optical position sensor for determining the interface between a clear and an opaque fluid

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    2006-05-23T23:59:59.000Z

    An inexpensive, optical position sensor for measuring a position or length, x, along a one-dimensional curvilinear, coordinate system. The sensor can be used, for example, to determine the position of an interface between a clear and an opaque fluid (such as crude oil and water). In one embodiment, the sensor utilizes the principle of dual-fluorescence, where a primary fiber emits primary fluorescent light and a parallel secondary fiber collects a portion of the primary fluorescent light that is not blocked by the opaque fluid. This, in turn, excites secondary fluorescence in the secondary fiber at a longer wavelength. A light detector measures the intensity of secondary fluorescence emitted from an end of the secondary fiber, which is used to calculate the unknown position or length, x. Side-emitting fibers can be used in place of, or in addition to, fluorescent fibers. The all-optical sensor is attractive for applications involving flammable liquids.

  8. MR-driven Computational Fluid Dynamics J-F. Nielsen1

    E-Print Network [OSTI]

    Southern California, University of

    MR-driven Computational Fluid Dynamics J-F. Nielsen1 , and K. S. Nayak2 1 Biomedical Engineering-encoding gradient pulse (VENC=1.6 m/s) was placed on the x, y, or z-gradient axis, or was turned off. MR-driven CFD component (vertical in Fig. 1) was incorporated into the MR-driven CFD solver. Hence, vx and vy were

  9. National Ignition Facility computational fluid dynamics modeling and light fixture case studies

    SciTech Connect (OSTI)

    Martin, R.; Bernardin, J.; Parietti, L.; Dennison, B.

    1998-02-01T23:59:59.000Z

    This report serves as a guide to the use of computational fluid dynamics (CFD) as a design tool for the National Ignition Facility (NIF) program Title I and Title II design phases at Lawrence Livermore National Laboratory. In particular, this report provides general guidelines on the technical approach to performing and interpreting any and all CFD calculations. In addition, a complete CFD analysis is presented to illustrate these guidelines on a NIF-related thermal problem.

  10. Development and testing of a standard procedure for determining the viscous properties of crosslinked fracture fluids

    E-Print Network [OSTI]

    Worlow, David Wayne

    1987-01-01T23:59:59.000Z

    , be compatible with reser voir fluids, and easily produced from the for mation. The fluid system 1 should also have adequate proppant transport capability, low fluid loss, and low pumping friction loss. The viscosity of the fluid system controls the fracture... width, fluid loss, friction pr essure, and proppant transport. Ideally, the fluid system would exhibit low viscosity when pumped down the wellbor e, and high viscosity in the fracture. Low viscosity in the tubular goods would minimize friction...

  11. Approved Module Information for ME4501, 2014/5 Module Title/Name: Computational Fluid Dynamics and

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    and Applications Module Code: ME4501 School: Engineering and Applied Science Module Type: Standard Module New-requisites: Thermodynamics and Fluids (ME3011). Engineering Mathematics 2 (AM21EM). Co-requisites: None Specified ModuleApproved Module Information for ME4501, 2014/5 Module Title/Name: Computational Fluid Dynamics

  12. TOPAZ: a computer code for modeling heat transfer and fluid flow in arbitrary networks of pipes, flow branches, and vessels

    SciTech Connect (OSTI)

    Winters, W.S.

    1984-01-01T23:59:59.000Z

    An overview of the computer code TOPAZ (Transient-One-Dimensional Pipe Flow Analyzer) is presented. TOPAZ models the flow of compressible and incompressible fluids through complex and arbitrary arrangements of pipes, valves, flow branches and vessels. Heat transfer to and from the fluid containment structures (i.e. vessel and pipe walls) can also be modeled. This document includes discussions of the fluid flow equations and containment heat conduction equations. The modeling philosophy, numerical integration technique, code architecture, and methods for generating the computational mesh are also discussed.

  13. On the application of computational fluid dynamics codes for liquefied natural gas dispersion.

    SciTech Connect (OSTI)

    Luketa-Hanlin, Anay Josephine; Koopman, Ronald P. (Lawrence Livermore National Laboratory, Livermore, CA); Ermak, Donald (Lawrence Livermore National Laboratory, Livermore, CA)

    2006-02-01T23:59:59.000Z

    Computational fluid dynamics (CFD) codes are increasingly being used in the liquefied natural gas (LNG) industry to predict natural gas dispersion distances. This paper addresses several issues regarding the use of CFD for LNG dispersion such as specification of the domain, grid, boundary and initial conditions. A description of the k-{var_epsilon} model is presented, along with modifications required for atmospheric flows. Validation issues pertaining to the experimental data from the Burro, Coyote, and Falcon series of LNG dispersion experiments are also discussed. A description of the atmosphere is provided as well as discussion on the inclusion of the Coriolis force to model very large LNG spills.

  14. COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS

    SciTech Connect (OSTI)

    JACKSON VL

    2011-08-31T23:59:59.000Z

    The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

  15. Unit physics performance of a mix model in Eulerian fluid computations

    SciTech Connect (OSTI)

    Vold, Erik [Los Alamos National Laboratory; Douglass, Rod [Los Alamos National Laboratory

    2011-01-25T23:59:59.000Z

    In this report, we evaluate the performance of a K-L drag-buoyancy mix model, described in a reference study by Dimonte-Tipton [1] hereafter denoted as [D-T]. The model was implemented in an Eulerian multi-material AMR code, and the results are discussed here for a series of unit physics tests. The tests were chosen to calibrate the model coefficients against empirical data, principally from RT (Rayleigh-Taylor) and RM (Richtmyer-Meshkov) experiments, and the present results are compared to experiments and to results reported in [D-T]. Results show the Eulerian implementation of the mix model agrees well with expectations for test problems in which there is no convective flow of the mass averaged fluid, i.e., in RT mix or in the decay of homogeneous isotropic turbulence (HIT). In RM shock-driven mix, the mix layer moves through the Eulerian computational grid, and there are differences with the previous results computed in a Lagrange frame [D-T]. The differences are attributed to the mass averaged fluid motion and examined in detail. Shock and re-shock mix are not well matched simultaneously. Results are also presented and discussed regarding model sensitivity to coefficient values and to initial conditions (IC), grid convergence, and the generation of atomically mixed volume fractions.

  16. Method of and apparatus for determining the similarity of a biological analyte from a model constructed from known biological fluids

    DOE Patents [OSTI]

    Robinson, Mark R. (Albuquerque, NM); Ward, Kenneth J. (Albuquerque, NM); Eaton, Robert P. (Albuquerque, NM); Haaland, David M. (Albuquerque, NM)

    1990-01-01T23:59:59.000Z

    The characteristics of a biological fluid sample having an analyte are determined from a model constructed from plural known biological fluid samples. The model is a function of the concentration of materials in the known fluid samples as a function of absorption of wideband infrared energy. The wideband infrared energy is coupled to the analyte containing sample so there is differential absorption of the infrared energy as a function of the wavelength of the wideband infrared energy incident on the analyte containing sample. The differential absorption causes intensity variations of the infrared energy incident on the analyte containing sample as a function of sample wavelength of the energy, and concentration of the unknown analyte is determined from the thus-derived intensity variations of the infrared energy as a function of wavelength from the model absorption versus wavelength function.

  17. Computational Fluid Dynamic Analysis of the VHTR Lower Plenum Standard Problem

    SciTech Connect (OSTI)

    Richard W. Johnson; Richard R. Schultz

    2009-07-01T23:59:59.000Z

    The United States Department of Energy is promoting the resurgence of nuclear power in the U. S. for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The DOE project is called the next generation nuclear plant (NGNP) and is based on a Generation IV reactor concept called the very high temperature reactor (VHTR), which will use helium as the coolant at temperatures ranging from 450 şC to perhaps 1000 şC. While computational fluid dynamics (CFD) has not been used for past safety analysis for nuclear reactors in the U. S., it is being considered for safety analysis for existing and future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal and accident operational situations. To this end, experimental data have been obtained in a scaled model of a narrow slice of the lower plenum of a prismatic VHTR. The present report presents results of CFD examinations of these data to explore potential issues with the geometry, the initial conditions, the flow dynamics and the data needed to fully specify the inlet and boundary conditions; results for several turbulence models are examined. Issues are addressed and recommendations about the data are made.

  18. Computing hitting times via fluid approximation: application to the coupon collector problem

    E-Print Network [OSTI]

    Gast, Nicolas

    2011-01-01T23:59:59.000Z

    In this paper, we show how to use stochastic approximation to compute hitting time of a stochastic process, based on the study of the time for a fluid approximation of this process to be at distance 1/N of its fixed point. This approach is developed to study a generalized version of the coupon collector problem. The system is composed by N independent identical Markov chains. At each time step, one Markov chain is picked at random and performs one transition. We show that the time at which all chains have hit the same state is bounded by a N log N + b N log log N + O(N) where a and b are two constants depending on eigenvalues of the Markov chain.

  19. Technical Review of the CENWP Computational Fluid Dynamics Model of the John Day Dam Forebay

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.

    2010-12-01T23:59:59.000Z

    The US Army Corps of Engineers Portland District (CENWP) has developed a computational fluid dynamics (CFD) model of the John Day forebay on the Columbia River to aid in the development and design of alternatives to improve juvenile salmon passage at the John Day Project. At the request of CENWP, Pacific Northwest National Laboratory (PNNL) Hydrology Group has conducted a technical review of CENWP's CFD model run in CFD solver software, STAR-CD. PNNL has extensive experience developing and applying 3D CFD models run in STAR-CD for Columbia River hydroelectric projects. The John Day forebay model developed by CENWP is adequately configured and validated. The model is ready for use simulating forebay hydraulics for structural and operational alternatives. The approach and method are sound, however CENWP has identified some improvements that need to be made for future models and for modifications to this existing model.

  20. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace

    SciTech Connect (OSTI)

    Dr. Chenn Zhou

    2008-10-15T23:59:59.000Z

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

  1. Recent progress and challenges in exploiting graphics processors in computational fluid dynamics

    E-Print Network [OSTI]

    Niemeyer, Kyle E

    2014-01-01T23:59:59.000Z

    The progress made in accelerating simulations of fluid flow using GPUs, and the challenges that remain, are surveyed. The review first provides an introduction to GPU computing and programming, and discusses various considerations for improved performance. Case studies comparing the performance of CPU- and GPU- based solvers for the Laplace and incompressible Navier-Stokes equations are performed in order to demonstrate the potential improvement even with simple codes. Recent efforts to accelerate CFD simulations using GPUs are reviewed for laminar, turbulent, and reactive flow solvers. Also, GPU implementations of the lattice Boltzmann method are reviewed. Finally, recommendations for implementing CFD codes on GPUs are given and remaining challenges are discussed, such as the need to develop new strategies and redesign algorithms to enable GPU acceleration.

  2. A SUB-GRID VOLUME-OF-FLUIDS (VOF) MODEL FOR MIXING IN RESOLVED SCALE AND IN UNRESOLVED SCALE COMPUTATIONS

    SciTech Connect (OSTI)

    VOLD, ERIK L. [Los Alamos National Laboratory; SCANNAPIECO, TONY J. [Los Alamos National Laboratory

    2007-10-16T23:59:59.000Z

    A sub-grid mix model based on a volume-of-fluids (VOF) representation is described for computational simulations of the transient mixing between reactive fluids, in which the atomically mixed components enter into the reactivity. The multi-fluid model allows each fluid species to have independent values for density, energy, pressure and temperature, as well as independent velocities and volume fractions. Fluid volume fractions are further divided into mix components to represent their 'mixedness' for more accurate prediction of reactivity. Time dependent conversion from unmixed volume fractions (denoted cf) to atomically mixed (af) fluids by diffusive processes is represented in resolved scale simulations with the volume fractions (cf, af mix). In unresolved scale simulations, the transition to atomically mixed materials begins with a conversion from unmixed material to a sub-grid volume fraction (pf). This fraction represents the unresolved small scales in the fluids, heterogeneously mixed by turbulent or multi-phase mixing processes, and this fraction then proceeds in a second step to the atomically mixed fraction by diffusion (cf, pf, af mix). Species velocities are evaluated with a species drift flux, {rho}{sub i}u{sub di} = {rho}{sub i}(u{sub i}-u), used to describe the fluid mixing sources in several closure options. A simple example of mixing fluids during 'interfacial deceleration mixing with a small amount of diffusion illustrates the generation of atomically mixed fluids in two cases, for resolved scale simulations and for unresolved scale simulations. Application to reactive mixing, including Inertial Confinement Fusion (ICF), is planned for future work.

  3. The determination of glucose in sonophoretically extracted interstitial fluid and the characterization of ultrasound parameters

    E-Print Network [OSTI]

    Cantrell, Jeffrey Travis

    2000-01-01T23:59:59.000Z

    chamber and used to correlate ultrasound spectral properties to the amount of fluid extracted. Results indicate that the highest amount of water extracted occurs when the acoustic coupling media on the surface of the skin is cavitating, resulting in mild...

  4. Apparatus and method for quantitative determination of materials contained in fluids

    DOE Patents [OSTI]

    Radziemski, L.J.; Cremers, D.A.

    1982-09-07T23:59:59.000Z

    Apparatus and method for near real-time in-situ monitoring of particulates and vapors contained in fluids are described. Initial filtration of a known volume of the fluid sample is combined with laser-induced dielectric breakdown spectroscopy of the filter employed to obtain qualitative and quantitative information with high sensitivity. Application of the invention to monitoring of beryllium, beryllium oxide, or other beryllium-alloy dusts is shown. Significant shortening of analysis time is achieved from the usual chemical techniques of analysis.

  5. Apparatus and method for quantitative determination of materials contained in fluids

    DOE Patents [OSTI]

    Radziemski, Leon J. (Los Alamos, NM); Cremers, David A. (Los Alamos, NM)

    1985-01-01T23:59:59.000Z

    Apparatus and method for near real-time in-situ monitoring of particulates and vapors contained in fluids. Initial filtration of a known volume of the fluid sample is combined with laser-induced dielectric breakdown spectroscopy of the filter employed to obtain qualitative and quantitative information with high sensitivity. Application of the invention to monitoring of beryllium, beryllium oxide, or other beryllium-alloy dusts is demonstrated. Significant shortening of analysis time is achieved from those of the usual chemical techniques of analysis.

  6. Computational Fluid Dynamics Analyses on Very High Temperature Reactor Air Ingress

    SciTech Connect (OSTI)

    Chang H Oh; Eung S. Kim; Richard Schultz; David Petti; Hyung S. Kang

    2009-07-01T23:59:59.000Z

    A preliminary computational fluid dynamics (CFD) analysis was performed to understand density-gradient-induced stratified flow in a Very High Temperature Reactor (VHTR) air-ingress accident. Various parameters were taken into consideration, including turbulence model, core temperature, initial air mole-fraction, and flow resistance in the core. The gas turbine modular helium reactor (GT-MHR) 600 MWt was selected as the reference reactor and it was simplified to be 2-D geometry in modeling. The core and the lower plenum were assumed to be porous bodies. Following the preliminary CFD results, the analysis of the air-ingress accident has been performed by two different codes: GAMMA code (system analysis code, Oh et al. 2006) and FLUENT CFD code (Fluent 2007). Eventually, the analysis results showed that the actual onset time of natural convection (~160 sec) would be significantly earlier than the previous predictions (~150 hours) calculated based on the molecular diffusion air-ingress mechanism. This leads to the conclusion that the consequences of this accident will be much more serious than previously expected.

  7. Forebay Computational Fluid Dynamics Modeling for The Dalles Dam to Support Vortex Suppress Device Studies

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Richmond, Marshall C.; Serkowski, John A.

    2006-12-01T23:59:59.000Z

    A computational fluid dynamics (CFD) model was used in an investigation into the suppression of a surface vortex that forms and the south-most spilling bay at The Dalles Project. The CFD work complemented work at the prototype and the reduced-scale physical models. The CFD model was based on a model developed for other work in the forebay but had additional resolution added near the spillway. Vortex suppression devices (VSDs) were to placed between pier noses and/or in the bulkhead slot of the spillway bays. The simulations in this study showed that placing VSD structures or a combination of structures to suppress the vortex would still result in near-surface flows to be entrained in a vortex near the downstream spillwall. These results were supported by physical model and prototype studies. However, there was a consensus of the fish biologists at the physical model that the fish would most likely move north and if the fish went under the VSD it would immediately exit the forebay through the tainter gate and not get trapped between VSDs or the VSDs and the tainter gate if the VSDs were deep enough.

  8. Wind Turbine Modeling for Computational Fluid Dynamics: December 2010 - December 2012

    SciTech Connect (OSTI)

    Tossas, L. A. M.; Leonardi, S.

    2013-07-01T23:59:59.000Z

    With the shortage of fossil fuel and the increasing environmental awareness, wind energy is becoming more and more important. As the market for wind energy grows, wind turbines and wind farms are becoming larger. Current utility-scale turbines extend a significant distance into the atmospheric boundary layer. Therefore, the interaction between the atmospheric boundary layer and the turbines and their wakes needs to be better understood. The turbulent wakes of upstream turbines affect the flow field of the turbines behind them, decreasing power production and increasing mechanical loading. With a better understanding of this type of flow, wind farm developers could plan better-performing, less maintenance-intensive wind farms. Simulating this flow using computational fluid dynamics is one important way to gain a better understanding of wind farm flows. In this study, we compare the performance of actuator disc and actuator line models in producing wind turbine wakes and the wake-turbine interaction between multiple turbines. We also examine parameters that affect the performance of these models, such as grid resolution, the use of a tip-loss correction, and the way in which the turbine force is projected onto the flow field.

  9. Simulation of spray drying in superheated steam using computational fluid dynamics

    SciTech Connect (OSTI)

    Frydman, A.; Vasseur, J.; Ducept, F.; Sionneau, M.; Moureh, J.

    1999-09-01T23:59:59.000Z

    This paper presents a numerical simulation and experimental validation of a spray dryer using superheated steam instead of air as drying medium, modeled with a computational fluid dynamics (CFD) code. The model describes momentum, heat and mass transfer between two phases--a discrete phase of droplets, and a continuous gas phase--through a finite volume method. For the simulation, droplet size distribution is represented by 6 discrete classes of diameter, fitting to the experimental distribution injected from the nozzle orifice, taking into account their peculiar shrinkage during drying. This model is able to predict the most important features of the dryer: fields of gas temperature and gas velocity inside the chamber, droplets trajectories and eventual deposits on to the wall. The results of simulation are compared to a pilot scale dryer, using water. In the absence of risk of power ignition in steam, the authors have tested rather high steam inlet temperature (973K), thus obtaining a high volumic efficiency. The model is validated by comparison between experimental and predicted values of temperature inside the chamber, verifying the coupling between the 3 different types of transfer without adjustment. This type of model can be used for chamber design, or scale up. Using superheated steam instead of air in a spray dryer can allow a high volumic evaporation rate (20 k.h.m{sup 3}), high energy recovery and better environment control.

  10. Investigation of wellbore cooling by circulation and fluid penetration into the formation using a wellbore thermal simulator computer code

    SciTech Connect (OSTI)

    Duda, L.E.

    1985-01-01T23:59:59.000Z

    The high temperatures of geothermal wells present severe problems for drilling, logging, and developing these reservoirs. Cooling the wellbore is perhaps the most common method to solve these problems. However, it is usually not clear what may be the most effective wellbore cooling mechanism for a given well. In this paper, wellbore cooling by the use of circulation or by fluid injection into the surrounding rock is investigated using a wellbore thermal simulator computer code. Short circulation times offer no prolonged cooling of fluid in the wellbore, but long circulation times (greater than ten or twenty days) greatly reduce the warming rate after shut-in. The dependence of the warming rate on the penetration distance of cooler temperatures into the rock formation (as by fluid injection) is investigated. Penetration distances of greater than 0.6 m appear to offer a substantial reduction in the warming rate. Several plots are shown which demonstrate these effects. 16 refs., 6 figs.

  11. Unit physics testing of a mix model in an eulerian fluid computation

    SciTech Connect (OSTI)

    Vold, Erik [Los Alamos National Laboratory; Douglass, Rod [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    A K-L turbulence mix model driven with a drag-buoyancy source term is tested in an Eulerian code in a series of basic unit-physics tests, as part of a mix validation milestone. The model and the closure coefficient values are derived in the work of Dimonte-Tipton [D-T] in Phys.Flu.18, 085101 (2006), and many of the test problems were reported there, where the mix model operated in Lagrange computations. The drag-buoyancy K-L mix model was implemented within the Eulerian code framework by A.J. Scannapieco. Mix model performance is evaluated in terms of mix width growth rates compared to experiments in select regimes. Results in our Eulerian code are presented for several unit-physics I-D test problems including the decay of homogeneous isotropic turbulence (HIT), Rayleigh-Taylor (RT) unstable mixing, shock amplification of initial turbulence, Richtmyer-Meshkov (RM) mixing in several single shock test cases and in comparison to two RM experiments including re-shock (Vetter-Sturtevant and Poggi, et.al.). Sensitivity to model parameters, to Atwood number, and to initial conditions are examined. Results here are in good agreement in some tests (HIT, RT) with the previous results reported for the mix model in the Lagrange calculations. The HIT turbulent decay agrees closely with analytic expectations, and the RT growth rate matches experimental values for the default values of the model coefficients proposed in [D-T]. Results for RM characterized with a power law growth rate differ from the previous mix model work but are still within the range for reasonable agreement with experiments. Sensitivity to IC values in the RM studies are examined; results are sensitive to initial values of L[t=O], which largely determines the RM mix layer growth rate, and generally differs from the IC values used in the RT studies. Result sensitivity to initial turbulence, K[t=O], is seen to be small but significant above a threshold value. Initial conditions can be adjusted so that single shock RM mix width results match experiments but we have not been able to obtain a good match for first shock and re-shock growth rates in the same experiment with a single set of parameters and Ie. Problematic issues with KH test problems are described. Resolution studies for an RM test problem show the K-L mix growth rate decreases as it converges at a supra-linear rate, and, convergence requires a fine grid (on the order of 10 microns). For comparison, a resolution study of a second mix model [Scannapieco and Cheng, Phys.Lett.A, 299(1),49, (2002)] acting on a two fluid interface problem was examined. The mix in this case was found to increase with grid resolution at low to moderate resolutions, but converged at comparably fine resolutions. In conclusion, these tests indicate that the Eulerian code K-L model, using the Dimonte Tipton default model closure coefficients, achieve reasonable results across many of the unit-physics experimental conditions. However, we were unable to obtain good matches simultaneously for shock and re-shock mix in a single experiment. Results are sensitive to initial conditions in the regimes under study, with different IC best suited to RT or RM mix. It is reasonable to expect IC sensitivity in extrapolating to high energy density regimes, or to experiments with deceleration due to arbitrary combinations of RT and RM. As a final comparison, the atomically generated mix fraction and the mix width were each compared for the K-L mix model and the Scannapieco model on an identical RM test problem. The Scannapieco mix fraction and width grow linearly. The K-L mix fraction and width grow with the same power law exponent, in contrast to expectations from analysis. In future work it is proposed to do more head-to-head comparisons between these two models and other mix model options on a full suite of physics test problems, such as interfacial deceleration due to pressure build-up during an idealized ICF implosion.

  12. Computational Fluid Dynamics Analysis of Very High Temperature Gas-Cooled Reactor Cavity Cooling System

    SciTech Connect (OSTI)

    Angelo Frisani; Yassin A. Hassan; Victor M. Ugaz

    2010-11-02T23:59:59.000Z

    The design of passive heat removal systems is one of the main concerns for the modular very high temperature gas-cooled reactors (VHTR) vessel cavity. The reactor cavity cooling system (RCCS) is a key heat removal system during normal and off-normal conditions. The design and validation of the RCCS is necessary to demonstrate that VHTRs can survive to the postulated accidents. The computational fluid dynamics (CFD) STAR-CCM+/V3.06.006 code was used for three-dimensional system modeling and analysis of the RCCS. A CFD model was developed to analyze heat exchange in the RCCS. The model incorporates a 180-deg section resembling the VHTR RCCS experimentally reproduced in a laboratory-scale test facility at Texas A&M University. All the key features of the experimental facility were taken into account during the numerical simulations. The objective of the present work was to benchmark CFD tools against experimental data addressing the behavior of the RCCS following accident conditions. Two cooling fluids (i.e., water and air) were considered to test the capability of maintaining the RCCS concrete walls' temperature below design limits. Different temperature profiles at the reactor pressure vessel (RPV) wall obtained from the experimental facility were used as boundary conditions in the numerical analyses to simulate VHTR transient evolution during accident scenarios. Mesh convergence was achieved with an intensive parametric study of the two different cooling configurations and selected boundary conditions. To test the effect of turbulence modeling on the RCCS heat exchange, predictions using several different turbulence models and near-wall treatments were evaluated and compared. The comparison among the different turbulence models analyzed showed satisfactory agreement for the temperature distribution inside the RCCS cavity medium and at the standpipes walls. For such a complicated geometry and flow conditions, the tested turbulence models demonstrated that the realizable k-epsilon model with two-layer all y+ wall treatment performs better than the other k-epsilon and k-omega turbulence models when compared to the experimental results and the Reynolds stress transport turbulence model results. A scaling analysis was developed to address the distortions introduced by the CFD model in simulating the physical phenomena inside the RCCS system with respect to the full plant configuration. The scaling analysis demonstrated that both the experimental facility and the CFD model achieve a satisfactory resemblance of the main flow characteristics inside the RCCS cavity region, and convection and radiation heat exchange phenomena are properly scaled from the actual plant.

  13. 2014-03-26 Issuance: Proposed Determination of Computer and Battery...

    Broader source: Energy.gov (indexed) [DOE]

    extending the public comment period for the proposed determination of computer and battery backup systems, as issued by the Deputy Assistant Secretary for Energy Efficiency on...

  14. 2014-02-21 Issuance: Proposed Determination of Computer and Battery...

    Broader source: Energy.gov (indexed) [DOE]

    determination regarding computer systems, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 21, 2014. Though it is not intended or expected, should any...

  15. Computing Approximate Solutions of the Protein Structure Determination Problem

    E-Print Network [OSTI]

    Dal PalĂą, Alessandro

    dovier@dimi.uniud.it 3 Dept. of Computer Science, New Mexico State University epontell of Computer Science at New Mexico State University, where he also serves as the Di- rector of the Knowledge in the context of energy landscape studies (24; 17; 2; 22; 1). Commonly, Monte Carlo simulations, based

  16. A computational procedure for calculating the thermodynamic properties of binary mixtures of Yukawa fluids under the mean spherical approximation

    E-Print Network [OSTI]

    Arrieta, Eduardo

    1986-01-01T23:59:59.000Z

    A COMPUTATIONAL PROCEDURE FOR CALCULATING THE THERMODYNAMIC PROPERTIES OF BINARY MIXTURES OF YUKAWA FLUIDS UNDER THE MEAN SPHERICAL APPROXIMATION A Thesis by EDUARDO ARRIFTA Submitted to the Graduate College of Texas AkM University... Region (below the curves) of non-real mathematical solution for M2 mixtures at different compositions zi. 22 3. Comparison between the initial estimates and solution values for the (D, I). Mixture Ml at zi ? 0. 65 and temperature T' = 0. 717. 27...

  17. Molecular structure determination on a computational and data grid

    E-Print Network [OSTI]

    Miller, Russ

    Ős ability to present the user with a large computational infrastructure that will allow for the processing in a routine fashion to solve difficult atomic resolution structures, containing as many as 1000 unique non-hydrogen

  18. Forebay Computational Fluid Dynamics Modeling for The Dalles Dam to Support Behavior Guidance System Siting Studies

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Richmond, Marshall C.; Serkowski, John A.; Johnson, Gary E.

    2005-03-10T23:59:59.000Z

    Computational fluid dynamics (CFD) models were developed to support the siting and design of a behavioral guidance system (BGS) structure in The Dalles Dam (TDA) forebay on the Columbia River. The work was conducted by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District (CENWP). The CFD results were an invaluable tool for the analysis, both from a Regional and Agency perspective (for the fish passage evaluation) and a CENWP perspective (supporting the BGS design and location). The new CFD model (TDA forebay model) included the latest bathymetry (surveyed in 1999) and a detailed representation of the engineered structures (spillway, powerhouse main, fish, and service units). The TDA forebay model was designed and developed in a way that future studies could easily modify or, to a large extent, reuse large portions of the existing mesh. This study resulted in these key findings: (1) The TDA forebay model matched well with field-measured velocity data. (2) The TDA forebay model matched observations made at the 1:80 general physical model of the TDA forebay. (3) During the course of this study, the methodology typically used by CENWP to contour topographic data was shown to be inaccurate when applied to widely-spaced transect data. Contouring methodologies need to be revisited--especially before such things as modifying the bathymetry in the 1:80 general physical model are undertaken. Future alignments can be evaluated with the model staying largely intact. The next round of analysis will need to address fish passage demands and navigation concerns. CFD models can be used to identify the most promising locations and to provide quantified metrics for biological, hydraulic, and navigation criteria. The most promising locations should then be further evaluated in the 1:80 general physical model.

  19. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 2: User's Manual

    SciTech Connect (OSTI)

    B. D. Nichols; C. Müller; G. A. Necker; J. R. Travis; J. W. Spore; K. L. Lam; P. Royl; T. L. Wilson

    1998-10-01T23:59:59.000Z

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK.

  20. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 3: Assessment Manual

    SciTech Connect (OSTI)

    C. Müller; E. D. Hughes; G. F. Niederauer; H. Wilkening; J. R. Travis; J. W. Spore; P. Royl; W. Baumann

    1998-10-01T23:59:59.000Z

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best- estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK

  1. From: Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, ed. B. K. Soni, J. F. Thompson, H. Hausser and P. R.

    E-Print Network [OSTI]

    Gable, Carl W.

    From: Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, ed. B. K. Soni. Press, 1996. 3-Dimensional Wells and Tunnels for Finite Element Grids 1 3-Dimensional Wells and Tunnels for Finite Element Grids Terry A. Cherry1 Carl W. Gable1 Harold Trease2 ABSTRACT Modeling fluid, vapor

  2. CFD [computational fluid dynamics] And Safety Factors. Computer modeling of complex processes needs old-fashioned experiments to stay in touch with reality.

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Poirier, Michael R.; Steeper, Timothy J.; Ervin, Robert C.; Giddings, Billy J.; Stefanko, David B.; Harp, Keith D.; Fowley, Mark D.; Van Pelt, William B.

    2012-10-07T23:59:59.000Z

    Computational fluid dynamics (CFD) is recognized as a powerful engineering tool. That is, CFD has advanced over the years to the point where it can now give us deep insight into the analysis of very complex processes. There is a danger, though, that an engineer can place too much confidence in a simulation. If a user is not careful, it is easy to believe that if you plug in the numbers, the answer comes out, and you are done. This assumption can lead to significant errors. As we discovered in the course of a study on behalf of the Department of Energy's Savannah River Site in South Carolina, CFD models fail to capture some of the large variations inherent in complex processes. These variations, or scatter, in experimental data emerge from physical tests and are inadequately captured or expressed by calculated mean values for a process. This anomaly between experiment and theory can lead to serious errors in engineering analysis and design unless a correction factor, or safety factor, is experimentally validated. For this study, blending times for the mixing of salt solutions in large storage tanks were the process of concern under investigation. This study focused on the blending processes needed to mix salt solutions to ensure homogeneity within waste tanks, where homogeneity is required to control radioactivity levels during subsequent processing. Two of the requirements for this task were to determine the minimum number of submerged, centrifugal pumps required to blend the salt mixtures in a full-scale tank in half a day or less, and to recommend reasonable blending times to achieve nearly homogeneous salt mixtures. A full-scale, low-flow pump with a total discharge flow rate of 500 to 800 gpm was recommended with two opposing 2.27-inch diameter nozzles. To make this recommendation, both experimental and CFD modeling were performed. Lab researchers found that, although CFD provided good estimates of an average blending time, experimental blending times varied significantly from the average.

  3. Users manual for CAFE-3D : a computational fluid dynamics fire code.

    SciTech Connect (OSTI)

    Khalil, Imane; Lopez, Carlos; Suo-Anttila, Ahti Jorma (Alion Science and Technology, Albuquerque, NM)

    2005-03-01T23:59:59.000Z

    The Container Analysis Fire Environment (CAFE) computer code has been developed to model all relevant fire physics for predicting the thermal response of massive objects engulfed in large fires. It provides realistic fire thermal boundary conditions for use in design of radioactive material packages and in risk-based transportation studies. The CAFE code can be coupled to commercial finite-element codes such as MSC PATRAN/THERMAL and ANSYS. This coupled system of codes can be used to determine the internal thermal response of finite element models of packages to a range of fire environments. This document is a user manual describing how to use the three-dimensional version of CAFE, as well as a description of CAFE input and output parameters. Since this is a user manual, only a brief theoretical description of the equations and physical models is included.

  4. Computational Procedures for Determining Parameters in Ramberg-Osgood

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit theInnovationComputational Biology2 ComputationalProcedures

  5. Computing Approximate Solutions of the Protein Structure Determination Problem using

    E-Print Network [OSTI]

    Dal Palů, Alessandro

    dovier@dimi.uniud.it 3 Dept. of Computer Science, New Mexico State University epontell dramatically. In these cases, constraint programming can be exploited to generate suboptimal candi- dates by mining the protein data bank, e.g., a collection of rotamers, can be introduced to provide additional

  6. A comparison of grid-based techniques for Navier-Stokes fluid simulation in computer graphics

    E-Print Network [OSTI]

    Chrisman, Cameron

    2008-01-01T23:59:59.000Z

    in Computer Graphics 2. Previous Work . . . . . . .B. Applications in Computer Graphics II The Navier Stokesand Tricks for Real-Time Graphics. Pearson Higher Education,

  7. Computational Fluid Dynamics Best Practice Guidelines in the Analysis of Storage Dry Cask

    SciTech Connect (OSTI)

    Zigh, A.; Solis, J. [US Nuclear Regulatory Commission, Rockville, MD MS (United States)

    2008-07-01T23:59:59.000Z

    Computational fluid dynamics (CFD) methods are used to evaluate the thermal performance of a dry cask under long term storage conditions in accordance with NUREG-1536 [NUREG-1536, 1997]. A three-dimensional CFD model was developed and validated using data for a ventilated storage cask (VSC-17) collected by Idaho National Laboratory (INL). The developed Fluent CFD model was validated to minimize the modeling and application uncertainties. To address modeling uncertainties, the paper focused on turbulence modeling of buoyancy driven air flow. Similarly, in the application uncertainties, the pressure boundary conditions used to model the air inlet and outlet vents were investigated and validated. Different turbulence models were used to reduce the modeling uncertainty in the CFD simulation of the air flow through the annular gap between the overpack and the multi-assembly sealed basket (MSB). Among the chosen turbulence models, the validation showed that the low Reynolds k-{epsilon} and the transitional k-{omega} turbulence models predicted the measured temperatures closely. To assess the impact of pressure boundary conditions used at the air inlet and outlet channels on the application uncertainties, a sensitivity analysis of operating density was undertaken. For convergence purposes, all available commercial CFD codes include the operating density in the pressure gradient term of the momentum equation. The validation showed that the correct operating density corresponds to the density evaluated at the air inlet condition of pressure and temperature. Next, the validated CFD method was used to predict the thermal performance of an existing dry cask storage system. The evaluation uses two distinct models: a three-dimensional and an axisymmetrical representation of the cask. In the 3-D model, porous media was used to model only the volume occupied by the rodded region that is surrounded by the BWR channel box. In the axisymmetric model, porous media was used to model the entire region that encompasses the fuel assemblies as well as the gaps in between. Consequently, a larger volume is represented by porous media in the second model; hence, a higher frictional flow resistance is introduced in the momentum equations. The conservatism and the safety margins of these models were compared to assess the applicability and the realism of these two models. The three-dimensional model included fewer geometry simplifications and is recommended as it predicted less conservative fuel cladding temperature values, while still assuring the existence of adequate safety margins. (authors)

  8. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine

    SciTech Connect (OSTI)

    Lawson, M. J.; Li, Y.; Sale, D. C.

    2011-10-01T23:59:59.000Z

    This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

  9. Determination of matric adjoints using a digital computer

    E-Print Network [OSTI]

    Guseman, Lawrence Frank

    1962-01-01T23:59:59.000Z

    the computer facility available. 9m D. Drew for developing J-field. FOHMA'fg, and for his advice on PAF programming. iv TABLE OF CONTENTS I. XNTRODUCT ION. ZZ. A FINITE SEQUENTIALLY COMPACT PROCESS FOR THE ADJOINS OF MATRXCES OVER ARBITRARY INTEGRAL... is probably nowhere more evident than when working with matrices. In this thesis an efficient techn1que for determ1ning exact matric adJoints is developed. The technique is applicable to either singular or non-singular aatr1ces with integral entries...

  10. Coupled computational fluid dynamics and heat transfer analysis of the VHTR lower plenum.

    SciTech Connect (OSTI)

    El-Genk, Mohamed S. (University of New Mexico, Albuquerque, NM); Rodriguez, Salvador B.

    2010-12-01T23:59:59.000Z

    The very high temperature reactor (VHTR) concept is being developed by the US Department of Energy (DOE) and other groups around the world for the future generation of electricity at high thermal efficiency (> 48%) and co-generation of hydrogen and process heat. This Generation-IV reactor would operate at elevated exit temperatures of 1,000-1,273 K, and the fueled core would be cooled by forced convection helium gas. For the prismatic-core VHTR, which is the focus of this analysis, the velocity of the hot helium flow exiting the core into the lower plenum (LP) could be 35-70 m/s. The impingement of the resulting gas jets onto the adiabatic plate at the bottom of the LP could develop hot spots and thermal stratification and inadequate mixing of the gas exiting the vessel to the turbo-machinery for energy conversion. The complex flow field in the LP is further complicated by the presence of large cylindrical graphite posts that support the massive core and inner and outer graphite reflectors. Because there are approximately 276 channels in the VHTR core from which helium exits into the LP and a total of 155 support posts, the flow field in the LP includes cross flow, multiple jet flow interaction, flow stagnation zones, vortex interaction, vortex shedding, entrainment, large variation in Reynolds number (Re), recirculation, and mixing enhancement and suppression regions. For such a complex flow field, experimental results at operating conditions are not currently available. Instead, the objective of this paper is to numerically simulate the flow field in the LP of a prismatic core VHTR using the Sandia National Laboratories Fuego, which is a 3D, massively parallel generalized computational fluid dynamics (CFD) code with numerous turbulence and buoyancy models and simulation capabilities for complex gas flow fields, with and without thermal effects. The code predictions for simpler flow fields of single and swirling gas jets, with and without a cross flow, are validated using reported experimental data and theory. The key processes in the LP are identified using phenomena identification and ranking table (PIRT). It may be argued that a CFD code that accurately simulates simplified, single-effect flow fields with increasing complexity is likely to adequately model the complex flow field in the VHTR LP, subject to a future experimental validation. The PIRT process and spatial and temporal discretizations implemented in the present analysis using Fuego established confidence in the validation and verification (V and V) calculations and in the conclusions reached based on the simulation results. The performed calculations included the helicoid vortex swirl model, the dynamic Smagorinsky large eddy simulation (LES) turbulence model, participating media radiation (PMR), and 1D conjugate heat transfer (CHT). The full-scale, half-symmetry LP mesh used in the LP simulation included unstructured hexahedral elements and accounted for the graphite posts, the helium jets, the exterior walls, and the bottom plate with an adiabatic outer surface. Results indicated significant enhancements in heat transfer, flow mixing, and entrainment in the VHTR LP when using swirling inserts at the exit of the helium flow channels into the LP. The impact of using various swirl angles on the flow mixing and heat transfer in the LP is qualified, including the formation of the central recirculation zone (CRZ), and the effect of LP height. Results also showed that in addition to the enhanced mixing, the swirling inserts result in negligible additional pressure losses and are likely to eliminate the formation of hot spots.

  11. Computer simulation of effective viscosity of fluid-proppant mixture used in hydraulic fracturing

    E-Print Network [OSTI]

    Kuzkin, Vitaly A; Linkov, Aleksandr M

    2013-01-01T23:59:59.000Z

    The paper presents results of numerical experiments performed to evaluate the effective viscosity of a fluid-proppant mixture, used in hydraulic fracturing. The results, obtained by two complimenting methods (the particle dynamics and the smoothed particle hydrodynamics), coincide to the accuracy of standard deviation. They provide an analytical equation for the dependence of effective viscosity on the proppant concentration, needed for numerical simulation of the hydraulic fracture propagation.

  12. Theor. Comput. Fluid Dyn. DOI 10.1007/s00162-009-0171-0

    E-Print Network [OSTI]

    Schneider, Kai

    to 1100. We apply the fluid-structure interaction model reported in [11,10,7] to perform numericalP2-CNRS and CMI, Universités d'Aix-Marseille, 39 rue Joliot-Curie, 13453, Marseille Cedex 13, France E-mail: kschneid@cmi.univ-mrs.fr #12;D. Kolomenskiy, K. Schneider A=A UAs f As A : =1s A : =0f Fig

  13. The environment of a geomaterial (soil, rock, concrete) determines its susceptibility to failure: grain size distribution and mineralogy, fluid-saturation, pore fluid chemistry, current state of stress, history, the

    E-Print Network [OSTI]

    Borja, Ronaldo I.

    to failure: grain size distribution and mineralogy, fluid-saturation, pore fluid chemistry, current state

  14. Simulations for Complex Fluid Flow Problems from Berkeley Lab's Center for Computational Sciences and Engineering (CCSE)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Center for Computational Sciences and Engineering (CCSE) develops and applies advanced computational methodologies to solve large-scale scientific and engineering problems arising in the Department of Energy (DOE) mission areas involving energy, environmental, and industrial technology. The primary focus is in the application of structured-grid finite difference methods on adaptive grid hierarchies for compressible, incompressible, and low Mach number flows. The diverse range of scientific applications that drive the research typically involve a large range of spatial and temporal scales (e.g. turbulent reacting flows) and require the use of extremely large computing hardware, such as the 153,000-core computer, Hopper, at NERSC. The CCSE approach to these problems centers on the development and application of advanced algorithms that exploit known separations in scale; for many of the application areas this results in algorithms are several orders of magnitude more efficient than traditional simulation approaches.

  15. Development of one-dimensional computational fluid dynamics code 'GFLOW' for groundwater flow and contaminant transport analysis

    SciTech Connect (OSTI)

    Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Ltd., R-2, Ent. Block, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai - 400 094 (India)

    2012-07-01T23:59:59.000Z

    Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)

  16. Preliminary studies of coolant by-pass flows in a prismatic very high temperature reactor using computational fluid dynamics

    SciTech Connect (OSTI)

    Hiroyuki Sato; Richard Johnson; Richard Schultz

    2009-09-01T23:59:59.000Z

    Three dimensional computational fluid dynamic (CFD) calculations of a typical prismatic very high temperature gas-cooled reactor (VHTR) were conducted to investigate the influence of gap geometry on flow and temperature distributions in the reactor core using commercial CFD code FLUENT. Parametric calculations changing the gap width in a whole core length model of fuel and reflector columns were performed. The simulations show the effects of core by-pass flows in the heated core region by comparing results for several gap widths including zero gap width. The calculation results underline the importance of considering inter-column gap width for the evaluation of maximum fuel temperatures and temperature gradients in fuel blocks. In addition, it is shown that temperatures of core outlet flow from gaps and channels are strongly affected by the gap width of by-pass flow in the reactor core.

  17. Method, system and computer program product for monitoring and optimizing fluid extraction from geologic strata

    DOE Patents [OSTI]

    Medizade, Masoud (San Luis Obispo, CA); Ridgely, John Robert (Los Osos, CA)

    2009-12-15T23:59:59.000Z

    An arrangement which utilizes an inexpensive flap valve/flow transducer combination and a simple local supervisory control system to monitor and/or control the operation of a positive displacement pump used to extract petroleum from geologic strata. The local supervisory control system controls the operation of an electric motor which drives a reciprocating positive displacement pump so as to maximize the volume of petroleum extracted from the well per pump stroke while minimizing electricity usage and pump-off situations. By reducing the electrical demand and pump-off (i.e., "pounding" or "fluid pound") occurrences, operating and maintenance costs should be reduced sufficiently to allow petroleum recovery from marginally productive petroleum fields. The local supervisory control system includes one or more applications to at least collect flow signal data generated during operation of the positive displacement pump. No flow, low flow and flow duration are easily evaluated using the flap valve/flow transducer arrangement.

  18. Liquefied Natural Gas (LNG) Vapor Dispersion Modeling with Computational Fluid Dynamics Codes

    E-Print Network [OSTI]

    Qi, Ruifeng

    2012-10-19T23:59:59.000Z

    Federal regulation 49 CFR 193 and standard NFPA 59A require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. For modeling purposes, the physical...

  19. From: Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, ed. B. K. Soni, J. F. Thompson, H. Hausser and P. R.

    E-Print Network [OSTI]

    Gable, Carl W.

    , J. F. Thompson, H. Hausser and P. R. Eiseman, Engineering Research Center, Mississippi State Univ. K. Soni, J. F. Thompson, H. Hausser and P. R. Eiseman, Engineering Research Center, Mississippi Generation in Computational Fluid Dynamics and Related Fields, ed. B. K. Soni, J. F. Thompson, H. Hausser

  20. Development of a Laboratory Verified Single-Duct VAV System Model with Fan Powered Terminal Units Optimized Using Computational Fluid Dynamics

    E-Print Network [OSTI]

    Davis, Michael A.

    2011-10-21T23:59:59.000Z

    the static pressure drop as air passed through the unit over the full operating range of the FPTU. Computational fluid dynamics (CFD) models of typical a FPTU were developed and used to investigate opportunities for optimizing the design of FPTUs. The CFD...

  1. June 6, 2007 Large-Scale Scientific Computations'07, Sozopol, Bulgaria -p. 1/29 Multiscale Modeling and Simulation of Fluid

    E-Print Network [OSTI]

    Popov, Peter

    in porous media (soil, porous rocks, etc.) x Elasticity problems in composite materials (adobe, concrete/29 Presentation outline s Brief overview of upscaling methods in deformable porous media s The Fluid upscaling of flow in deformable porous media #12;June 6, 2007 Large-Scale Scientific Computations'07

  2. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    SciTech Connect (OSTI)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01T23:59:59.000Z

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  3. Two-Dimensional Computational Fluid Dynamics and Conduction Simulations of Heat Transfer in Horizontal Window Frames with Internal Cavities

    SciTech Connect (OSTI)

    Gustavsen, Arlid; Kohler, Christian; Dalehaug, Arvid; Arasteh, Dariush

    2008-12-01T23:59:59.000Z

    This paper assesses the accuracy of the simplified frame cavity conduction/convection and radiation models presented in ISO 15099 and used in software for rating and labeling window products. Temperatures and U-factors for typical horizontal window frames with internal cavities are compared; results from Computational Fluid Dynamics (CFD) simulations with detailed radiation modeling are used as a reference. Four different frames were studied. Two were made of polyvinyl chloride (PVC) and two of aluminum. For each frame, six different simulations were performed, two with a CFD code and four with a building-component thermal-simulation tool using the Finite Element Method (FEM). This FEM tool addresses convection using correlations from ISO 15099; it addressed radiation with either correlations from ISO 15099 or with a detailed, view-factor-based radiation model. Calculations were performed using the CFD code with and without fluid flow in the window frame cavities; the calculations without fluid flow were performed to verify that the CFD code and the building-component thermal-simulation tool produced consistent results. With the FEM-code, the practice of subdividing small frame cavities was examined, in some cases not subdividing, in some cases subdividing cavities with interconnections smaller than five millimeters (mm) (ISO 15099) and in some cases subdividing cavities with interconnections smaller than seven mm (a breakpoint that has been suggested in other studies). For the various frames, the calculated U-factors were found to be quite comparable (the maximum difference between the reference CFD simulation and the other simulations was found to be 13.2 percent). A maximum difference of 8.5 percent was found between the CFD simulation and the FEM simulation using ISO 15099 procedures. The ISO 15099 correlation works best for frames with high U-factors. For more efficient frames, the relative differences among various simulations are larger. Temperature was also compared, at selected locations on the frames. Small differences was found in the results from model to model. Finally, the effectiveness of the ISO cavity radiation algorithms was examined by comparing results from these algorithms to detailed radiation calculations (from both programs). Our results suggest that improvements in cavity heat transfer calculations can be obtained by using detailed radiation modeling (i.e. view-factor or ray-tracing models), and that incorporation of these strategies may be more important for improving the accuracy of results than the use of CFD modeling for horizontal cavities.

  4. Integration of microvascular, interstitial, and lymphatic function to determine the effect of their interaction on interstitial fluid volume

    E-Print Network [OSTI]

    Dongaonkar, Ranjeet Manohar

    2009-05-15T23:59:59.000Z

    , three specific aims were achieved. 1) Develop a simple, transparent, and general algebraic approach that predicts interstitial fluid pressure, volume and protein concentration resulting from the interaction of microvascular, interstitial and lymphatic...

  5. C. R. Acad. Sci. Paris, t. ???, S erie II b, p. ?????, 2005 -PXPP????.TEX -Mecanique des fluides num erique/Computational fluid mechanics

    E-Print Network [OSTI]

    Boyer, Edmond

    -Paul Caltagirone c Transferts, Ecoulements, Fluides, Energ´etique (TREFLE), UMR CNRS 8508 Site Ecole Nationale Sup´erique original `a traiter efficacement ce probl`eme d'onde hautement non-lin´eaire. Dans cette Note, les r

  6. Computational Fluid Dynamics Modeling of the Operation of a Flame Ionization Sensor

    SciTech Connect (OSTI)

    Huckaby, E.D.; Chorpening, B.T.; Thornton, J.D.

    2007-03-01T23:59:59.000Z

    The sensors and controls research group at the United States Department of Energy (DOE) National Energy Technology Laboratory (NETL) is continuing to develop the Combustion Control and Diagnostics Sensor (CCADS) for gas turbine applications. CCADS uses the electrical conduction of the charged species generated during the combustion process to detect combustion instabilities and monitor equivalence ratio. As part of this effort, combustion models are being developed which include the interaction between the electric field and the transport of charged species. The primary combustion process is computed using a flame wrinkling model (Weller et. al. 1998) which is a component of the OpenFOAM toolkit (Jasak et. al. 2004). A sub-model for the transport of charged species is attached to this model. The formulation of the charged-species model similar that applied by Penderson and Brown (1993) for the simulation of laminar flames. The sub-model consists of an additional flux due to the electric field (drift flux) added to the equations for the charged species concentrations and the solution the electric potential from the resolved charge density. The subgrid interactions between the electric field and charged species transport have been neglected. Using the above procedure, numerical simulations are performed and the results compared with several recent CCADS experiments.

  7. A computational model for viscous fluid flow, heat transfer, and melting in in situ vitrification melt pools

    SciTech Connect (OSTI)

    McHugh, P.R.; Ramshaw, J.D.

    1991-11-01T23:59:59.000Z

    MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equation voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.

  8. Computational fluid dynamics modeling of chemical looping combustion process with calcium sulphate oxygen carrier - article no. A19

    SciTech Connect (OSTI)

    Baosheng Jin; Rui Xiao; Zhongyi Deng; Qilei Song [Southeast University (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education

    2009-07-01T23:59:59.000Z

    To concentrate CO{sub 2} in combustion processes by efficient and energy-saving ways is a first and very important step for its sequestration. Chemical looping combustion (CLC) could easily achieve this goal. A chemical-looping combustion system consists of a fuel reactor and an air reactor. Two reactors in the form of interconnected fluidized beds are used in the process: (1) a fuel reactor where the oxygen carrier is reduced by reaction with the fuel, and (2) an air reactor where the reduced oxygen carrier from the fuel reactor is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, while the outlet gas stream from the air reactor contains only N{sub 2} and some unused O{sub 2}. The water in combustion products can be easily removed by condensation and pure carbon dioxide is obtained without any loss of energy for separation. Until now, there is little literature about mathematical modeling of chemical-looping combustion using the computational fluid dynamics (CFD) approach. In this work, the reaction kinetic model of the fuel reactor (CaSO{sub 4}+ H{sub 2}) is developed by means of the commercial code FLUENT and the effects of partial pressure of H{sub 2} (concentration of H{sub 2}) on chemical looping combustion performance are also studied. The results show that the concentration of H{sub 2} could enhance the CLC performance.

  9. A computer program to determine the specific power of prismatic-core reactors

    SciTech Connect (OSTI)

    Dobranich, D.

    1987-05-01T23:59:59.000Z

    A computer program has been developed to determine the maximum specific power for prismatic-core reactors as a function of maximum allowable fuel temperature, core pressure drop, and coolant velocity. The prismatic-core reactors consist of hexagonally shaped fuel elements grouped together to form a cylindrically shaped core. A gas coolant flows axially through circular channels within the elements, and the fuel is dispersed within the solid element material either as a composite or in the form of coated pellets. Different coolant, fuel, coating, and element materials can be selected to represent different prismatic-core concepts. The computer program allows the user to divide the core into any arbitrary number of axial levels to account for different axial power shapes. An option in the program allows the automatic determination of the core height that results in the maximum specific power. The results of parametric specific power calculations using this program are presented for various reactor concepts.

  10. Calculation of the static hydrodynamic coefficients for the linearized equations of motion of a small underwater vehicle by a computational fluids-based method

    E-Print Network [OSTI]

    Hoeckley, Stephen Albert

    1989-01-01T23:59:59.000Z

    . . 30 . . 32 35 37 . . 37 41 IV. RESULTS OF THE STATIC COEFFICIENT CALCULATIONS. A. Numerical Calculation of the Forces. . . , . . . . 1. Support Programs 2. The Coefficient Calculation Algorithm . . 3. Verification of the Flow Field... CALCULATION OF THE STATIC HYDRODYNAMIC COEFFICIENTS FOR THE LINEARIZFW EQUATIONS OF MOTION OF A SMALL UNDERWATER VEHICLE BY A COMPUTATIONAL FLUIDS-BASED METHOD A Thesis STEPHEN ALBERT HOECKLEY Submitted to the Office of Graduate Studies...

  11. The Computational Limit to Quantum Determinism and the Black Hole Information Loss Paradox

    E-Print Network [OSTI]

    Arkady Bolotin

    2015-06-08T23:59:59.000Z

    The present paper scrutinizes the principle of quantum determinism, which maintains that the complete information about the initial quantum state of a physical system should determine the system's quantum state at any other time. As it shown in the paper, assuming the strong exponential time hypothesis, SETH, which conjectures that known algorithms for solving computational NP-complete problems (often brute-force algorithms) are optimal, the quantum deterministic principle cannot be used generally, i.e., for randomly selected physical systems, particularly macroscopic systems. In other words, even if the initial quantum state of an arbitrary system were precisely known, as long as SETH is true it might be impossible in the real world to predict the system's exact final quantum state. The paper suggests that the breakdown of quantum determinism in a process, in which a black hole forms and then completely evaporates, might actually be physical evidence supporting SETH.

  12. Determination of Diffusion Profiles in Altered Wellbore Cement Using X-ray Computed Tomography Methods

    SciTech Connect (OSTI)

    Mason, Harris E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walsh, Stuart D. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); DuFrane, Wyatt L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carroll, Susan A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-17T23:59:59.000Z

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining “effective linear activity coefficients” (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment.

  13. Computational Fluid Dynamics Modeling of the Bonneville Project: Tailrace Spill Patterns for Low Flows and Corner Collector Smolt Egress

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.; Perkins, William A.

    2010-12-01T23:59:59.000Z

    In 2003, an extension of the existing ice and trash sluiceway was added at Bonneville Powerhouse 2 (B2). This extension started at the existing corner collector for the ice and trash sluiceway adjacent to Bonneville Powerhouse 2 and the new sluiceway was extended to the downstream end of Cascade Island. The sluiceway was designed to improve juvenile salmon survival by bypassing turbine passage at B2, and placing these smolt in downstream flowing water minimizing their exposure to fish and avian predators. In this study, a previously developed computational fluid dynamics model was modified and used to characterized tailrace hydraulics and sluiceway egress conditions for low total river flows and low levels of spillway flow. STAR-CD v4.10 was used for seven scenarios of low total river flow and low spill discharges. The simulation results were specifically examined to look at tailrace hydraulics at 5 ft below the tailwater elevation, and streamlines used to compare streamline pathways for streamlines originating in the corner collector outfall and adjacent to the outfall. These streamlines indicated that for all higher spill percentage cases (25% and greater) that streamlines from the corner collector did not approach the shoreline at the downstream end of Bradford Island. For the cases with much larger spill percentages, the streamlines from the corner collector were mid-channel or closer to the Washington shore as they moved downstream. Although at 25% spill at 75 kcfs total river, the total spill volume was sufficient to "cushion" the flow from the corner collector from the Bradford Island shore, areas of recirculation were modeled in the spillway tailrace. However, at the lowest flows and spill percentages, the streamlines from the B2 corner collector pass very close to the Bradford Island shore. In addition, the very flow velocity flows and large areas of recirculation greatly increase potential predator exposure of the spillway passed smolt. If there is concern for egress issues for smolt passing through the spillway, the spill pattern and volume need to be revisited.

  14. Comparison of Hydrodynamic Load Predictions Between Engineering Models and Computational Fluid Dynamics for the OC4-DeepCwind Semi-Submersible: Preprint

    SciTech Connect (OSTI)

    Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.; Stewart, G. M.; Jonkman, J.; Robertson, A.

    2014-09-01T23:59:59.000Z

    Hydrodynamic loads on the platforms of floating offshore wind turbines are often predicted with computer-aided engineering tools that employ Morison's equation and/or potential-flow theory. This work compares results from one such tool, FAST, NREL's wind turbine computer-aided engineering tool, and the computational fluid dynamics package, OpenFOAM, for the OC4-DeepCwind semi-submersible analyzed in the International Energy Agency Wind Task 30 project. Load predictions from HydroDyn, the offshore hydrodynamics module of FAST, are compared with high-fidelity results from OpenFOAM. HydroDyn uses a combination of Morison's equations and potential flow to predict the hydrodynamic forces on the structure. The implications of the assumptions in HydroDyn are evaluated based on this code-to-code comparison.

  15. 18th AIAA Computational Fluid Dynamics Conference, June 2528, 2007, Miami, FL Petaflops Opportunities for the NASA Fundamental

    E-Print Network [OSTI]

    Peraire, Jaime

    in high performance computing at the national level. Advocacy for high performance computing has role as a leading advocate for high performance computational engi- neering at the national level. We in formulating the case for increased investment in high performance computing activities, and that a similar

  16. Determination of lung segments in computed tomography images using the Euclidean distance to the pulmonary artery

    SciTech Connect (OSTI)

    Stoecker, Christina; Moltz, Jan H.; Lassen, Bianca; Kuhnigk, Jan-Martin; Krass, Stefan [Fraunhofer MEVIS, Institute for Medical Image Computing, Universitaetsallee 29, 28359 Bremen (Germany)] [Fraunhofer MEVIS, Institute for Medical Image Computing, Universitaetsallee 29, 28359 Bremen (Germany); Welter, Stefan [Ruhrlandklinik, Department of Thoracic Surgery, Tueschener Weg 40, 45239 Essen (Germany)] [Ruhrlandklinik, Department of Thoracic Surgery, Tueschener Weg 40, 45239 Essen (Germany); Peitgen, Heinz-Otto [Jacobs University Bremen, Campus Ring 1, 28759 Bremen (Germany)] [Jacobs University Bremen, Campus Ring 1, 28759 Bremen (Germany)

    2013-09-15T23:59:59.000Z

    Purpose: Computed tomography (CT) imaging is the modality of choice for lung cancer diagnostics. With the increasing number of lung interventions on sublobar level in recent years, determining and visualizing pulmonary segments in CT images and, in oncological cases, reliable segment-related information about the location of tumors has become increasingly desirable. Computer-assisted identification of lung segments in CT images is subject of this work.Methods: The authors present a new interactive approach for the segmentation of lung segments that uses the Euclidean distance of each point in the lung to the segmental branches of the pulmonary artery. The aim is to analyze the potential of the method. Detailed manual pulmonary artery segmentations are used to achieve the best possible segment approximation results. A detailed description of the method and its evaluation on 11 CT scans from clinical routine are given.Results: An accuracy of 2–3 mm is measured for the segment boundaries computed by the pulmonary artery-based method. On average, maximum deviations of 8 mm are observed. 135 intersegmental pulmonary veins detected in the 11 test CT scans serve as reference data. Furthermore, a comparison of the presented pulmonary artery-based approach to a similar approach that uses the Euclidean distance to the segmental branches of the bronchial tree is presented. It shows a significantly higher accuracy for the pulmonary artery-based approach in lung regions at least 30 mm distal to the lung hilum.Conclusions: A pulmonary artery-based determination of lung segments in CT images is promising. In the tests, the pulmonary artery-based determination has been shown to be superior to the bronchial tree-based determination. The suitability of the segment approximation method for application in the planning of segment resections in clinical practice has already been verified in experimental cases. However, automation of the method accompanied by an evaluation on a larger number of test cases is required before application in the daily clinical routine.

  17. The use of computed radiography plates to determine light and radiation field coincidence

    SciTech Connect (OSTI)

    Kerns, James R. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States)] [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030 (United States); Anand, Aman [Department of Radiation Oncology, Mayo Clinic, Scottsdale, Arizona 85259 (United States)] [Department of Radiation Oncology, Mayo Clinic, Scottsdale, Arizona 85259 (United States)

    2013-11-15T23:59:59.000Z

    Purpose: Photo-stimulable phosphor computed radiography (CR) has characteristics that allow the output to be manipulated by both radiation and optical light. The authors have developed a method that uses these characteristics to carry out radiation field and light field coincidence quality assurance on linear accelerators.Methods: CR detectors from Kodak were used outside their cassettes to measure both radiation and light field edges from a Varian linear accelerator. The CR detector was first exposed to a radiation field and then to a slightly smaller light field. The light impinged on the detector's latent image, removing to an extent the portion exposed to the light field. The detector was then digitally scanned. A MATLAB-based algorithm was developed to automatically analyze the images and determine the edges of the light and radiation fields, the vector between the field centers, and the crosshair center. Radiographic film was also used as a control to confirm the radiation field size.Results: Analysis showed a high degree of repeatability with the proposed method. Results between the proposed method and radiographic film showed excellent agreement of the radiation field. The effect of varying monitor units and light exposure time was tested and found to be very small. Radiation and light field sizes were determined with an uncertainty of less than 1 mm, and light and crosshair centers were determined within 0.1 mm.Conclusions: A new method was developed to digitally determine the radiation and light field size using CR photo-stimulable phosphor plates. The method is quick and reproducible, allowing for the streamlined and robust assessment of light and radiation field coincidence, with no observer interpretation needed.

  18. Eye-gaze determination of user intent at the computer interface

    SciTech Connect (OSTI)

    Goldberg, J.H. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Industrial Engineering; Schryver, J.C. [Oak Ridge National Lab., TN (United States)

    1993-12-31T23:59:59.000Z

    Determination of user intent at the computer interface through eye-gaze monitoring can significantly aid applications for the disabled, as well as telerobotics and process control interfaces. Whereas current eye-gaze control applications are limited to object selection and x/y gazepoint tracking, a methodology was developed here to discriminate a more abstract interface operation: zooming-in or out. This methodology first collects samples of eve-gaze location looking at controlled stimuli, at 30 Hz, just prior to a user`s decision to zoom. The sample is broken into data frames, or temporal snapshots. Within a data frame, all spatial samples are connected into a minimum spanning tree, then clustered, according to user defined parameters. Each cluster is mapped to one in the prior data frame, and statistics are computed from each cluster. These characteristics include cluster size, position, and pupil size. A multiple discriminant analysis uses these statistics both within and between data frames to formulate optimal rules for assigning the observations into zooming, zoom-out, or no zoom conditions. The statistical procedure effectively generates heuristics for future assignments, based upon these variables. Future work will enhance the accuracy and precision of the modeling technique, and will empirically test users in controlled experiments.

  19. Apparent horizon in fluid-gravity duality

    SciTech Connect (OSTI)

    Booth, Ivan; Heller, Michal P.; Plewa, Grzegorz; Spalinski, Michal [Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7 (Canada); Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Science Park 904, 1090 GL Amsterdam (Netherlands); Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland); Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland) and Physics Department, University of Bialystok, 15-424 Bialystok (Poland)

    2011-05-15T23:59:59.000Z

    This article develops a computational framework for determining the location of boundary-covariant apparent horizons in the geometry of conformal fluid-gravity duality in arbitrary dimensions. In particular, it is shown up to second order and conjectured to hold to all orders in the gradient expansion that there is a unique apparent horizon which is covariantly expressible in terms of fluid velocity, temperature, and boundary metric. This leads to the first explicit example of an entropy current defined by an apparent horizon and opens the possibility that in the near-equilibrium regime there is preferred foliation of apparent horizons for black holes in asymptotically anti-de Sitter spacetimes.

  20. Computational tools for experimental determination and theoretical prediction of protein structure

    SciTech Connect (OSTI)

    O`Donoghue, S.; Rost, B.

    1995-12-31T23:59:59.000Z

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. The authors intend to review the state of the art in the experimental determination of protein 3D structure (focus on nuclear magnetic resonance), and in the theoretical prediction of protein function and of protein structure in 1D, 2D and 3D from sequence. All the atomic resolution structures determined so far have been derived from either X-ray crystallography (the majority so far) or Nuclear Magnetic Resonance (NMR) Spectroscopy (becoming increasingly more important). The authors briefly describe the physical methods behind both of these techniques; the major computational methods involved will be covered in some detail. They highlight parallels and differences between the methods, and also the current limitations. Special emphasis will be given to techniques which have application to ab initio structure prediction. Large scale sequencing techniques increase the gap between the number of known proteins sequences and that of known protein structures. They describe the scope and principles of methods that contribute successfully to closing that gap. Emphasis will be given on the specification of adequate testing procedures to validate such methods.

  1. Fluorescent fluid interface position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2004-02-17T23:59:59.000Z

    A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.

  2. Determination of Transport Properties From Flowing Fluid Temperature LoggingIn Unsaturated Fractured Rocks: Theory And Semi-Analytical Solution

    SciTech Connect (OSTI)

    Mukhopadhyay, Sumit; Tsang, Yvonne W.

    2008-08-01T23:59:59.000Z

    Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper [Mukhopadhyay et al., 2008], we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks.

  3. Ultrasonic Fluid Quality Sensor System

    DOE Patents [OSTI]

    Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

    2003-10-21T23:59:59.000Z

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  4. Ultrasonic fluid quality sensor system

    DOE Patents [OSTI]

    Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

    2002-10-08T23:59:59.000Z

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  5. Supercomputing for Industry in the West of Scotland Using ARCHIE-WeSt for Industrial Computational Fluid Dynamics

    E-Print Network [OSTI]

    Mottram, Nigel

    ://www.archie-west.ac.uk/for-industry/workshop-registration Recent government reports have concluded that High Performance Computing has the potential to add 3 needs. Programme 13:00 Lunch 14:00 Welcome, Dr Paul Mulheran High Performance Computing & CFD at Expro

  6. Development of a method to determine the down-hole properties of drilling fluids and predict bottom hole pressure

    SciTech Connect (OSTI)

    Kirkpatrick, D.B.

    1987-01-01T23:59:59.000Z

    This project developed a method to predict the pressure at the bottom of the well based on a gelled plug model and physical properties measured at the elevated temperatures. A wellbore temperature profile simulation was developed to estimate the temperature in the well. This program includes heat generation in the well; simulation of flow or shut-in conditions; variable vertical and radial elements; and a band storage matrix to evaluate systems too large for the computer memory. The room temperature capillary rheometer and rotary rheometer give different gel strength results on similar muds. The rotary shows a continual making and rebreaking of the gel. The capillary gel strength peaks and then slowly decreases. After breaking the gel, both rheometer gel strengths come to an equilibrium stress, which is higher than the ungelled mud shear stress. The gelled mud shear stress/shear rate relationship gives higher shear stress at the low shear rates than does the ungelled mud. These results were used in the development of the gelled plug model. Other results showed that the shear stress/shear rate results increase with increasing tub diameter and gap size. The high temperature capillary rheometer was not completely successful due to design problems. The results are believed to show the physical property trends at high temperatures, but the design of the capillary unit did not permit the collection of accurate data. Gel strengths near room temperature asymptotically increase to a constant stress with increasing setting periods. High temperature gel strengths decrease from a maximum stress to a minimum and then increase to a constant stress with increased setting periods. The shear stress/shear rate relationship increases with increasing temperature. This suggests that the mud structure changes with temperature.

  7. Novel Application of X-ray Computed Tomography: Determination of Gas/Liquid Contact Area and Liquid Holdup in Structured Packing

    E-Print Network [OSTI]

    Eldridge, R. Bruce

    Novel Application of X-ray Computed Tomography: Determination of Gas/Liquid Contact Area and Liquid Company, 1 Neumann Way-M/D Q8, Cincinnati, Ohio 45215 X-ray computed tomography (CT) was utilized Principles of X-ray Computed Tomography. X-ray computed tomography (CT) is used to noninvasively

  8. Determination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential Application to ARM MeasurementsDetermination of

  9. Ultrarelativistic fluid dynamics

    E-Print Network [OSTI]

    David W. Neilsen; Matthew W. Choptuik

    1999-04-20T23:59:59.000Z

    This is the first of two papers examining the critical collapse of spherically symmetric perfect fluids with the equation of state P = (Gamma -1)rho. Here we present the equations of motion and describe a computer code capable of simulating the extremely relativistic flows encountered in critical solutions for Gamma <= 2. The fluid equations are solved using a high-resolution shock-capturing scheme based on a linearized Riemann solver.

  10. Computer vision determination of the stem/root joint on processing carrots

    E-Print Network [OSTI]

    Batchelor, Matthew McMahon

    1987-01-01T23:59:59.000Z

    . This paper documents the methods, procedures, equipment, testing, and analysis which led to the conclusion that the Midpoint Method could perform the visual inspection operation needed for an automated canot crown trimming device. ACKNOWLEDGEMENT I wish... Based Inspection. Applying Computer Vision to Carrot Processing. . . . . . . . . 12 CHAPTER III COMPUTER VISION EQUIPMENT AND ALGORITHM DEVELOPMENT. . . . . . . . . . . 14 Description of Equipment. . Carrots . . Conveying Mechanism...

  11. Multiscale Methods for Modeling Fluid Flow Through Naturally Fractured Carbonate Karst P. Popov, G. Qin, L. Bi, Y. Efendiev, R. Ewing, Institute for Scientific Computation, Texas A&M University; Z. Kang, J. Li,

    E-Print Network [OSTI]

    Ewing, Richard E.

    reservoir conditions, such as partially filled fractures. Introduction Naturally fractured karst reservoirsSPE 110778 Multiscale Methods for Modeling Fluid Flow Through Naturally Fractured Carbonate Karst Reservoirs P. Popov, G. Qin, L. Bi, Y. Efendiev, R. Ewing, Institute for Scientific Computation, Texas A

  12. Molecular Structure Determination on a Computational & Data Grid Mark L. Green and Russ Miller

    E-Print Network [OSTI]

    Miller, Russ

    -intensive procedure can exploit the grid's ability to present the user with a large computational infrastructure, containing as many as 1000 unique non- Hydrogen atoms, which could not be solved by traditional reciprocal

  13. Robust processing of optical flow of fluids Ashish Doshi and Adrian G. Bors, Senior Member, IEEE

    E-Print Network [OSTI]

    Bors, Adrian

    the computational fluid dynamics (CFD). Navier-Stokes equations have been extensively studied in fluid mechanics Terms--Optical flow of fluids, computational fluid dy- namics, diffusion, vortex detection I displaying fluid movement. Velocity fields, characterizing the motion of fluids can be modelled using

  14. Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assetsimagesicon-science.jpg Computing Providing world-class high performance computing capability that enables unsurpassed solutions to complex problems of...

  15. Pitch-catch only ultrasonic fluid densitometer

    DOE Patents [OSTI]

    Greenwood, Margaret S. (Richland, WA); Harris, Robert V. (Pasco, WA)

    1999-01-01T23:59:59.000Z

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  16. Fast way to compute functional determinants of radially symmetric partial differential operators in general dimensions

    SciTech Connect (OSTI)

    Hur, Jin [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea, Republic of); Min, Hyunsoo [Department of Physics, University of Seoul, Seoul 130-743 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study, Seoul 130-012 (Korea, Republic of)

    2008-06-15T23:59:59.000Z

    Recently the partial-wave cutoff method was developed as a new calculational scheme for a functional determinant of quantum field theory in radial backgrounds. For the contribution given by an infinite sum of large partial waves, we derive explicitly radial-WKB series in the angular momentum cutoff for d=2, 3, 4, and 5 (d is the space-time dimension), which has uniform validity irrespectively of any specific values assumed for other parameters. Utilizing this series, precision evaluation of the renormalized functional determinant is possible with a relatively small number of low partial-wave contributions determined separately. We illustrate the power of this scheme in a numerically exact evaluation of the prefactor (expressed as a functional determinant) in the case of the false vacuum decay of 4D scalar field theory.

  17. Computational fluid dynamics assessment: Volume 1, Computer simulations of the METC (Morgantown Energy Technology Center) entrained-flow gasifier: Final report

    SciTech Connect (OSTI)

    Celik, I.; Chattree, M.

    1988-07-01T23:59:59.000Z

    An assessment of the theoretical and numerical aspects of the computer code, PCGC-2, is made; and the results of the application of this code to the Morgantown Energy Technology Center (METC) advanced gasification facility entrained-flow reactor, ''the gasifier,'' are presented. PCGC-2 is a code suitable for simulating pulverized coal combustion or gasification under axisymmetric (two-dimensional) flow conditions. The governing equations for the gas and particulate phase have been reviewed. The numerical procedure and the related programming difficulties have been elucidated. A single-particle model similar to the one used in PCGC-2 has been developed, programmed, and applied to some simple situations in order to gain insight to the physics of coal particle heat-up, devolatilization, and char oxidation processes. PCGC-2 was applied to the METC entrained-flow gasifier to study numerically the flash pyrolysis of coal, and gasification of coal with steam or carbon dioxide. The results from the simulations are compared with measurements. The gas and particle residence times, particle temperature, and mass component history were also calculated and the results were analyzed. The results provide useful information for understanding the fundamentals of coal gasification and for assessment of experimental results performed using the reactor considered. 69 refs., 35 figs., 23 tabs.

  18. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Broader source: Energy.gov (indexed) [DOE]

    of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants, seeks to determine whether the inorganic fluids (molten salts) offer a sufficient...

  19. A computer procedure for analyzing bidding data and determining optimum markup

    E-Print Network [OSTI]

    Howard, Robert Timothy

    1970-01-01T23:59:59.000Z

    - Data Pertains to Concrete Job 21 Listed in Appendix IV 20 5. Graphical Versus Computer Result Summary ? Case One 45 6. Independent Versus Gates Result Summary ? Case Two Grading Category 61 7. Independent Versus Gates Result Summary ? Case Two... Deck Setup ? Program PROBE 29 5. Sample Output for Program PROBE ? Concrete Category l, ist of Data Read In and Bid/Cost Ratios - Data from Appendix IV 31 6. Sample Output for Program PROBE ? Concrete Category "Typical" Competitor Probabilities 32...

  20. The determination of phase relations in the CH?-H?O-NaCl system at 2 and 5 kbars, 300 to 600° C using synthetic fluid inclusions

    E-Print Network [OSTI]

    McShane, Christopher Joseph

    1999-01-01T23:59:59.000Z

    the fluid. The fractured prisms were dried overnight at approximately 130'C and placed into an annealed Au capsule (4. 75 mm x 4. 50 mm x 76 mm). Known amounts of HtO + NaCl solutions of various molalities were placed in the capsule along with the prism...

  1. Determination of Thermal-Degradation Rates of Some Candidate Rankine-Cycle Organic Working Fluids for Conversion of Industrial Waste Heat Into Power

    E-Print Network [OSTI]

    Jain, M. L.; Demirgian, J.; Krazinski, J. L.; Bushby, H.; Mattes, H.; Purcell, J.

    1984-01-01T23:59:59.000Z

    Intersociety Energy ConJersion Engineering ConL, Paper No. 689054, ppl. 398 406 (1968). 678 ESL-IE-84-04-118 Proceedings from the Sixth Annual Industrial Energy Technology Conference Volume II, Houston, TX, April 15-18, 1984 Table 1 Working-Fluid Parameters...

  2. Fluid juggling

    E-Print Network [OSTI]

    Soto, Enrique

    2013-01-01T23:59:59.000Z

    This fluid dynamics video is an entry for the Gallery of Fluid Motion for the 66th Annual Meeting of the Fluid Dynamics Division of the American Physical Society. We show the curious behaviour of a light ball interacting with a liquid jet. For certain conditions, a ball can be suspended into a slightly inclined liquid jet. We studied this phenomenon using a high speed camera. The visualizations show that the object can be `juggled' for a variety of flow conditions. A simple calculation showed that the ball remains at a stable position due to a Bernoulli-like effect. The phenomenon is very stable and easy to reproduce.

  3. Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit theInnovationComputationalEnergy Computers,Computing

  4. Determination of Thermal-Degradation Rates of Some Candidate Rankine-Cycle Organic Working Fluids for Conversion of Industrial Waste Heat Into Power 

    E-Print Network [OSTI]

    Jain, M. L.; Demirgian, J.; Krazinski, J. L.; Bushby, H.; Mattes, H.; Purcell, J.

    1984-01-01T23:59:59.000Z

    performance and economic on system performance, reliability, and overall considerations (rate of return on investment economics have impeded widespread development and [ROI]), six organic fluids were identified to deployment of organic Rankine-cycle power... included with the GC unit inte grates the peaks and produc s a report consisting of retention time, peak area, and area percent. The detector's analog output is connected via an A/D converter to a Perkin Elmer (PE) Sigma 15 chromatography data station...

  5. KINETIC MODELING OF A FISCHER-TROPSCH REACTION OVER A COBALT CATALYST IN A SLURRY BUBBLE COLUMN REACTOR FOR INCORPORATION INTO A COMPUTATIONAL MULTIPHASE FLUID DYNAMICS MODEL

    SciTech Connect (OSTI)

    Anastasia Gribik; Doona Guillen, PhD; Daniel Ginosar, PhD

    2008-09-01T23:59:59.000Z

    Currently multi-tubular fixed bed reactors, fluidized bed reactors, and slurry bubble column reactors (SBCRs) are used in commercial Fischer Tropsch (FT) synthesis. There are a number of advantages of the SBCR compared to fixed and fluidized bed reactors. The main advantage of the SBCR is that temperature control and heat recovery are more easily achieved. The SBCR is a multiphase chemical reactor where a synthesis gas, comprised mainly of H2 and CO, is bubbled through a liquid hydrocarbon wax containing solid catalyst particles to produce specialty chemicals, lubricants, or fuels. The FT synthesis reaction is the polymerization of methylene groups [-(CH2)-] forming mainly linear alkanes and alkenes, ranging from methane to high molecular weight waxes. The Idaho National Laboratory is developing a computational multiphase fluid dynamics (CMFD) model of the FT process in a SBCR. This paper discusses the incorporation of absorption and reaction kinetics into the current hydrodynamic model. A phased approach for incorporation of the reaction kinetics into a CMFD model is presented here. Initially, a simple kinetic model is coupled to the hydrodynamic model, with increasing levels of complexity added in stages. The first phase of the model includes incorporation of the absorption of gas species from both large and small bubbles into the bulk liquid phase. The driving force for the gas across the gas liquid interface into the bulk liquid is dependent upon the interfacial gas concentration in both small and large bubbles. However, because it is difficult to measure the concentration at the gas-liquid interface, coefficients for convective mass transfer have been developed for the overall driving force between the bulk concentrations in the gas and liquid phases. It is assumed that there are no temperature effects from mass transfer of the gas phases to the bulk liquid phase, since there are only small amounts of dissolved gas in the liquid phase. The product from the incorporation of absorption is the steady state concentration profile of the absorbed gas species in the bulk liquid phase. The second phase of the model incorporates a simplified macrokinetic model to the mass balance equation in the CMFD code. Initially, the model assumes that the catalyst particles are sufficiently small such that external and internal mass and heat transfer are not rate limiting. The model is developed utilizing the macrokinetic rate expression developed by Yates and Satterfield (1991). Initially, the model assumes that the only species formed other than water in the FT reaction is C27H56. Change in moles of the reacting species and the resulting temperature of the catalyst and fluid phases is solved simultaneously. The macrokinetic model is solved in conjunction with the species transport equations in a separate module which is incorporated into the CMFD code.

  6. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    SciTech Connect (OSTI)

    Nancy Moller Weare

    2006-07-25T23:59:59.000Z

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum production systems, stripping towers for mineral production processes, nuclear waste storage, CO2 sequestration strategies, global warming). Although funding decreases cut short completion of several research activities, we made significant progress on these abbreviated projects.

  7. 6. Fluid mechanics: fluid statics; fluid dynamics

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Figure Pressure (a scalar!) is defined as surface force / area, for example pb = Fb / (d·w) = p @ z = z1 Picture: KJ05 Fluid volume h·d·w with density and mass m = h·d·w· z = z1 In engineering forces Fn+ Fs = 0 or - py·h·w + py·h·w = 0 py = 0 Similarly Fw+ Fe= 0 gives px = 0, There are three

  8. Ultrasonic fluid densitometer for process control

    DOE Patents [OSTI]

    Greenwood, Margaret S. (Richland, WA)

    2000-01-01T23:59:59.000Z

    The present invention is an ultrasonic fluid densitometer that uses at least one pair of transducers for transmitting and receiving ultrasonic signals internally reflected within a material wedge. A temperature sensor is provided to monitor the temperature of the wedge material. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface and comparing a transducer voltage and wedge material temperature to a tabulation as a function of density.

  9. Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization andComputer Simulations Indicate

  10. Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit theInnovationComputationalEnergy

  11. 2005 Pearson Education South Asia Pte Ltd Applied Fluid Mechanics

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Education South Asia Pte Ltd Applied Fluid Mechanics 17.Drag and Lift 18.Fans, Blowers, Compressors equation to a variety of practical problems. · Compute the power added to a fluid by pumps. #12;3 7

  12. Book Review Design Patterns in Fluid Construction Grammar

    E-Print Network [OSTI]

    Book Review Design Patterns in Fluid Construction Grammar Luc Steels (editor) Universitat Pompeu Fabra and Sony Computer Science Laboratory, Paris Amsterdam: John Benjamins Publishing Company formalism called Fluid Construction Grammar (FCG) that addresses parsing, production, and learning

  13. Simulating Fluids Exhibiting Microstructure

    E-Print Network [OSTI]

    Title: Simulating Fluids Exhibiting Microstructure Speaker: Noel J. Walkington, ... fluids containing elastic particles, and polymer fluids, all exhibit non-trivial ...

  14. Computer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit theInnovationComputational Biology2If yousimulation of

  15. Downhole Fluid Analyzer Development

    SciTech Connect (OSTI)

    Bill Turner

    2006-11-28T23:59:59.000Z

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  16. Fluid jet electric discharge source

    DOE Patents [OSTI]

    Bender, Howard A. (Ripon, CA)

    2006-04-25T23:59:59.000Z

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  17. Fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth E. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  18. Effective viscoelastic medium from fractured fluid-saturated ...

    E-Print Network [OSTI]

    2013-02-27T23:59:59.000Z

    ... to Comput. Methods Appl. Mech. Engrg. 27 February 2013 ... where ? is the fluid viscosity and k the absolute permeability. S is known as the structure or ...

  19. amniotic fluid levels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation of a Computational Fluid Dynamics Model for IAQ applications in Ice Rink Arenas Engineering Websites Summary: . A major source of air pollution is the...

  20. Research on the behavior of liquid fluids atop superhydrophobic gas-bubbled surfaces

    E-Print Network [OSTI]

    Lehmann, Gerrit C; Horsch, Martin; Huang, Yow-Lin; Miroshnichenko, Svetlana; Pflock, Rüdiger; Sonnenrein, Gerrit; Vrabec, Jadran

    2010-01-01T23:59:59.000Z

    Superhydrophobic surfaces play an important role in the development of new product coatings such as cars, but also in mechanical engineering, especially design of turbines and compressors. Thus a vital part of the design of these surfaces is the computational simulation of such with a special interest on variation of shape and size of minor pits grooved into plane surfaces. In the present work, the dependence of the contact angle on the fluid-wall dispersive energy is determined by molecular simulation and static as well as dynamic properties of unpolar fluids in contact with extremely rough surfaces are obtained.

  1. Enhancing the Computation of Approximate Solutions of the Protein Structure Determination Problem Through Global Constraints for Discrete Crystal

    E-Print Network [OSTI]

    Dal PalĂą, Alessandro

    @dimi.uniud.it Enrico Pontelli Dept. Computer Science, New Mexico State University, epontell@cs.nmsu.edu Abstract--using a simplified pairwise energy model in [2] and a more precise energy model in [9]. In these approaches

  2. Viscosity of Quantum Hall Fluids J. E. Avron

    E-Print Network [OSTI]

    Viscosity of Quantum Hall Fluids J. E. Avron Department of Physics, Technion, 32000 Haifa, Israel R April 25, 1997 Abstract The viscosity of quantum fluids with an energy gap at zero temperature is non of the parameter space). For a quantum Hall fluid on two dimensional tori this viscosity is computed. In this case

  3. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  4. Fluid Inclusion Gas Analysis

    SciTech Connect (OSTI)

    Dilley, Lorie

    2013-01-01T23:59:59.000Z

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  5. CX-003888: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003888: Categorical Exclusion Determination Improved Drilling and Fracturing Fluids for Shale Gas Reservoirs CX(s) Applied: B3.6 Date: 09102010...

  6. A refined volume-of-fluid algorithm for capturing sharp fluid interfaces on arbitrary meshes

    E-Print Network [OSTI]

    Zhang, Di; Jiang, Chunbo; Liang, Dongfang; Chen, Zhengbing; Yang, Yan; Shi, Ying

    2014-06-30T23:59:59.000Z

    conserve mass, and can be easily extended to unstructured meshes and three dimensions, so they are capable of accurately capturing the free surface and modelling merging and fragmentation in multiphase flows. In this article, a new blended high... -tracking method for the computations of multiphase flow. Journal of Computational Physics 2001; 169(2): 708–759. 21 14. Harlow FH, Welch JE. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids...

  7. Non-Newtonian fluid flow

    E-Print Network [OSTI]

    Osinski, Charles Anthony

    1963-01-01T23:59:59.000Z

    zero and unity. The Ostwald- de Waele Equation (4), commonly known as the power law, is sometimes used to describe fluid behavior of this type. The rheological equation is (4) where the parameters "k" and "n" are constant for a particular fluid... be extended to include Reynolds numbers and the type of flow determined to be laminar and/or turbulent. It is assumed that the transition from laminar to turbulent flow occurs at a Reynolds number of 2100, the numeric distribution of Reynolds numbers...

  8. Effects of using a two-phase two-component working fluid in a Stirling engine

    SciTech Connect (OSTI)

    Renfroe, D.A.

    1983-08-01T23:59:59.000Z

    One of the major problems associated with Stirling engines has been their low power density. Traditional solutions to this problem have been to use high pressure hydrogen or helium as working fluids to increase the pressure excursion for a given temperature difference. This paper discusses a computer program which models a Stirling engine using a two-phase two-component (TPTC) working fluid used to improve power density. With the model the pressure, temperature, mass flux, heat transfer, work output, and amount of condensed water vs. vapor can be determined for any position in the engine and at any time. With the engine configuration described in the paper, the model indicated that the total power increased as water was added but the power factor decreased due to increased losses without substantial gains from the condensing/boiling mechanism of the two-phase fluid.

  9. Discrete Mathematics and Theoretical Computer Science DMTCS vol. 10:2, 2008, 7786 A Determinant of Stirling Cycle Numbers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of Stirling Cycle Numbers Counts Unlabeled Acyclic Single-Source Automata David Callan Department 2007, revised 7 May 2008, accepted 18 May 2008. We show that a determinant of Stirling cycle numbers a formula for the number of acyclic automata with a given set of sources. Keywords: Stirling cycle number

  10. Application of computed tomography to enhanced oil recovery studies in naturally fractured reservoirs 

    E-Print Network [OSTI]

    Fineout, James Mark

    1992-01-01T23:59:59.000Z

    , they developed both a single matrix block model and a dual matrix block model with variable fracture width. These tests related imbibition theory with regard to matrix block size, permeability and fluid viscosity affects on oil recovery. They also determined... in naturally fractured reservoirs have relied upon material balance calculations to determine saturation changes. Through the use of Computed Tomography scanning, we have developed a technique not only to determine saturation changes but also positional...

  11. Fluid observers and tilting cosmology

    E-Print Network [OSTI]

    A. A. Coley; S. Hervik; W. C. Lim

    2006-05-24T23:59:59.000Z

    We study perfect fluid cosmological models with a constant equation of state parameter $\\gamma$ in which there are two naturally defined time-like congruences, a geometrically defined geodesic congruence and a non-geodesic fluid congruence. We establish an appropriate set of boost formulae relating the physical variables, and consequently the observed quantities, in the two frames. We study expanding spatially homogeneous tilted perfect fluid models, with an emphasis on future evolution with extreme tilt. We show that for ultra-radiative equations of state (i.e., $\\gamma>4/3$), generically the tilt becomes extreme at late times and the fluid observers will reach infinite expansion within a finite proper time and experience a singularity similar to that of the big rip. In addition, we show that for sub-radiative equations of state (i.e., $\\gamma < 4/3$), the tilt can become extreme at late times and give rise to an effective quintessential equation of state. To establish the connection with phantom cosmology and quintessence, we calculate the effective equation of state in the models under consideration and we determine the future asymptotic behaviour of the tilting models in the fluid frame variables using the boost formulae. We also discuss spatially inhomogeneous models and tilting spatially homogeneous models with a cosmological constant.

  12. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    E-Print Network [OSTI]

    Franke, Rudiger

    2010-01-01T23:59:59.000Z

    Thermo-Fluid Systems, Modelica 2003 Conference, Linköping,H. Tummescheit: The Modelica Fluid and Media Library forThermo-Fluid Pipe Networks, Modelica 2006 Conference, Vi-

  13. Computation Results from a Parametric Study to Determine Bounding Critical Systems of Homogeneously Water-Moderated Mixed Plutonium--Uranium Oxides

    SciTech Connect (OSTI)

    Shimizu, Y.

    2001-01-11T23:59:59.000Z

    This report provides computational results of an extensive study to examine the following: (1) infinite media neutron-multiplication factors; (2) material bucklings; (3) bounding infinite media critical concentrations; (4) bounding finite critical dimensions of water-reflected and homogeneously water-moderated one-dimensional systems (i.e., spheres, cylinders of infinite length, and slabs that are infinite in two dimensions) that were comprised of various proportions and densities of plutonium oxides and uranium oxides, each having various isotopic compositions; and (5) sensitivity coefficients of delta k-eff with respect to critical geometry delta dimensions were determined for each of the three geometries that were studied. The study was undertaken to support the development of a standard that is sponsored by the International Standards Organization (ISO) under Technical Committee 85, Nuclear Energy (TC 85)--Subcommittee 5, Nuclear Fuel Technology (SC 5)--Working Group 8, Standardization of Calculations, Procedures and Practices Related to Criticality Safety (WG 8). The designation and title of the ISO TC 85/SC 5/WG 8 standard working draft is WD 14941, ''Nuclear energy--Fissile materials--Nuclear criticality control and safety of plutonium-uranium oxide fuel mixtures outside of reactors.'' Various ISO member participants performed similar computational studies using their indigenous computational codes to provide comparative results for analysis in the development of the standard.

  14. Fluid sampling tool

    DOE Patents [OSTI]

    Johnston, Roger G. (Los Alamos, NM); Garcia, Anthony R. E. (Espanola, NM); Martinez, Ronald K. (Santa Cruz, NM)

    2001-09-25T23:59:59.000Z

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  15. Viscous fluid dynamics

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2007-03-12T23:59:59.000Z

    We briefly discuss the phenomenological theory of dissipative fluid. We also present some numerical results for hydrodynamic evolution of QGP fluid with dissipation due to shear viscosity only. Its effect on particle production is also studied.

  16. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01T23:59:59.000Z

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  17. CX-004511: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Displacement and Mixing in Subsea Jumpers Experimental Data and Computational Fluid Dynamics (CFD)CX(s) Applied: A9, A11Date: 11/22/2010Location(s): Tulsa, OklahomaOffice(s): Fossil Energy, National Energy Technology Laboratory

  18. CX-004510: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Displacement and Mixing in Subsea Jumpers Experimental Data and Computational Fluid Dynamica (CFD)CX(s) Applied: B3.6Date: 11/22/2010Location(s): Tulsa, OklahomaOffice(s): Fossil Energy, National Energy Technology Laboratory

  19. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    E-Print Network [OSTI]

    Franke, Rudiger

    2010-01-01T23:59:59.000Z

    Ob- ject-Oriented Modeling of Thermo-Fluid Systems, Modelicable and Compressible Thermo-Fluid Pipe Networks, ModelicaStandardization of Thermo-Fluid Modeling in Modelica.Fluid

  20. Improved fluid bed combustor efficiencies through fines recycle

    SciTech Connect (OSTI)

    Rickman, W.S.

    1980-04-01T23:59:59.000Z

    Carbon burnup efficiencies of 99.9% and higher have been attained on a 0.4-MW(t) atmospheric fluid bed combustor with fines recycle. A cyclone and sintered metal filter system separated the fines from the off-gas stream, returning them at 600/sup 0/C (1150/sup 0/F) to the fluid bed. The fines were metered through a unique rotary valve that also served as a pressure boundary between the fluid bed and the fines recycle hopper. Combustor operation was fully automated with a 100-channel process controller and supervisory computer. This high combustion efficiency is especially significant, since the fuel was graphite sized to less than 5 mm (1.3 in.) maximum size. More than 30% of the feed was fine enough to be quickly entrained, placing a substantial burden on the fines recycle system. Detailed modeling techniques were successfully developed to allow prediction of recycle rates and temperatures needed to maintain high combustion efficiency. This model has now been used to analyze coal combustion tests sponsored by Electric Power Research Institute. Surface reaction rate constants were first determined using combustor data taken during cold, low-flow fines recycle tests. These were then used to predict the effect of higher rates of recycle at various temperatures.

  1. View dependent fluid dynamics

    E-Print Network [OSTI]

    Barran, Brian Arthur

    2006-08-16T23:59:59.000Z

    , are modified to support a nonuniform simulation grid. In addition, infinite fluid boundary conditions are introduced that allow fluid to flow freely into or out of the simulation domain to achieve the effect of large, boundary free bodies of fluid. Finally, a...

  2. System and method measuring fluid flow in a conduit

    DOE Patents [OSTI]

    Ortiz, Marcos German (Idaho Falls, ID); Kidd, Terrel G. (Blackfoot, ID)

    1999-01-01T23:59:59.000Z

    A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.

  3. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, James F. (Bonneville County, ID); Koenig, John F. (Idaho Falls, ID)

    1985-01-01T23:59:59.000Z

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  4. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, J.F.; Koenig, J.F.

    1984-05-29T23:59:59.000Z

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  5. Spinning fluids reactor

    SciTech Connect (OSTI)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20T23:59:59.000Z

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  6. Fluid Dynamics Seminar Fluid Dynamics Research Centre

    E-Print Network [OSTI]

    Davies, Christopher

    France) 8th Nov. Future Trends in Condition Monitoring of Rotating Machines Using System Identification Simulation of the Cooling of a Simplified Brake Disc Dr. Thorsten J. Möller, (Institute for Fluid Mechanics

  7. Fluid Dynamics Seminar Fluid Dynamics Research Centre

    E-Print Network [OSTI]

    Thomas, Peter J.

    France) 8 th Nov. Future Trends in Condition Monitoring of Rotating Machines Using System Identification Simulation of the Cooling of a Simplified Brake Disc Dr. Thorsten J. Möller, (Institute for Fluid Mechanics

  8. Distributed computational fluid dynamics Karl Jenkins

    E-Print Network [OSTI]

    de Gispert, AdriĂ 

    of large and complex datasets. Thus, remote access to this information is an integral part of the CFD turbulent combustion pro- cesses is a strong coupling between turbulence, chemical kinetics and heat release provides a route around the departmental firewalls. The clusters run Globus and Condor for remote job

  9. OpenFOAM: Computational Fluid Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen→ global → local andOpenEI

  10. OpenFOAM: Computational Fluid Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpen→ global → local

  11. Determinants of Local Progression After Computed Tomography-Guided Percutaneous Radiofrequency Ablation for Unresectable Lung Tumors: 9-Year Experience in a Single Institution

    SciTech Connect (OSTI)

    Okuma, Tomohisa, E-mail: o-kuma@msic.med.osaka-cu.ac.jp; Matsuoka, Toshiyuki; Yamamoto, Akira; Oyama, Yoshimasa; Hamamoto, Shinichi [Osaka City University Graduate School of Medicine, Department of Radiology (Japan); Toyoshima, Masami [Kobe City Medical Center West Hospital, Department of Radiology (Japan); Nakamura, Kenji; Miki, Yukio [Osaka City University Graduate School of Medicine, Department of Radiology (Japan)

    2010-08-15T23:59:59.000Z

    The purpose of this study was to retrospectively determine the local control rate and contributing factors to local progression after computed tomography (CT)-guided radiofrequency ablation (RFA) for unresectable lung tumor. This study included 138 lung tumors in 72 patients (56 men and 16 women; age 70.0 {+-} 11.6 years (range 31-94); mean tumor size 2.1 {+-} 1.2 cm [range 0.2-9]) who underwent lung RFA between June 2000 and May 2009. Mean follow-up periods for patients and tumors were 14 and 12 months, respectively. The local progression-free rate and survival rate were calculated to determine the contributing factors to local progression. During follow-up, 44 of 138 (32%) lung tumors showed local progression. The 1-, 2-, 3-, and 5-year overall local control rates were 61, 57, 57, and 38%, respectively. The risk factors for local progression were age ({>=}70 years), tumor size ({>=}2 cm), sex (male), and no achievement of roll-off during RFA (P < 0.05). Multivariate analysis identified tumor size {>=}2 cm as the only independent factor for local progression (P = 0.003). For tumors <2 cm, 17 of 68 (25%) showed local progression, and the 1-, 2-, and 3-year overall local control rates were 77, 73, and 73%, respectively. Multivariate analysis identified that age {>=}70 years was an independent determinant of local progression for tumors <2 cm in diameter (P = 0.011). The present study showed that 32% of lung tumors developed local progression after CT-guided RFA. The significant risk factor for local progression after RFA for lung tumors was tumor size {>=}2 cm.

  12. CX-005689: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-005689: Categorical Exclusion Determination Joint Inversion of Electrical and Seismic Data for Fracture Characterization and Imaging of Fluid Flow in Geothermal Systems...

  13. Disposal of drilling fluids

    SciTech Connect (OSTI)

    Bryson, W.R.

    1983-06-01T23:59:59.000Z

    Prior to 1974 the disposal of drilling fluids was not considered to be much of an environmental problem. In the past, disposal of drilling fluids was accomplished in various ways such as spreading on oil field lease roads to stabilize the road surface and control dust, spreading in the base of depressions of sandy land areas to increase water retention, and leaving the fluid in the reserve pit to be covered on closure of the pit. In recent years, some states have become concerned over the indescriminate dumping of drilling fluids into pits or unauthorized locations and have developed specific regulations to alleviate the perceived deterioration of environmental and groundwater quality from uncontrolled disposal practices. The disposal of drilling fluids in Kansas is discussed along with a newer method or treatment in drilling fluid disposal.

  14. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S.M.

    1987-02-27T23:59:59.000Z

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  15. Metalworking and machining fluids

    DOE Patents [OSTI]

    Erdemir, Ali (Naperville, IL); Sykora, Frank (Caledon, ON, CA); Dorbeck, Mark (Brighton, MI)

    2010-10-12T23:59:59.000Z

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  16. Adsorption Kinetics of Surfactants at Fluid-Fluid Interfaces

    E-Print Network [OSTI]

    Andelman, David

    Adsorption Kinetics of Surfactants at Fluid-Fluid Interfaces Haim Diamant and David Andelman School-Fluid Interfaces, Adsorption, Adsorption Kinetics, Interfacial Tension. 1 #12;Abstract We review a new theoretical approach to the kinetics of surfactant adsorption at fluid-fluid interfaces. It yields a more complete

  17. American Institute of Aeronautics and Astronautics Coupled Level-Set/Volume-of-Fluid Method for the

    E-Print Network [OSTI]

    Sussman, Mark

    utilizing a coupled level-set/volume-of-fluid method to simulate liquid fuel atomization. The coupledAmerican Institute of Aeronautics and Astronautics 1 Coupled Level-Set/Volume-of-Fluid Method, Canoga Park, Calif. 91309 This paper presents results of a multiphase computational fluid dynamics code

  18. Fluid delivery control system

    DOE Patents [OSTI]

    Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad

    2006-06-06T23:59:59.000Z

    A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.

  19. Fluid blade disablement tool

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos (Albuquerque, NM); Hughs, Chance G. (Albuquerque, NM); Todd, Steven N. (Rio Rancho, NM)

    2012-01-10T23:59:59.000Z

    A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

  20. Gender determination of avian embryo

    DOE Patents [OSTI]

    Daum, Keith A. (Idaho Falls, ID); Atkinson, David A. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    Disclosed is a method for gender determination of avian embryos. During the embryo incubation process, the outer hard shells of eggs are drilled and samples of allantoic fluid are removed. The allantoic fluids are directly introduced into an ion mobility spectrometer (IMS) for analysis. The resulting spectra contain the relevant marker peaks in the positive or negative mode which correlate with unique mobilities which are sex-specific. This way, the gender of the embryo can be determined.

  1. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOE Patents [OSTI]

    Ortiz, M.G.; Boucher, T.J.

    1998-10-27T23:59:59.000Z

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  2. FRACTURING FLUID CHARACTERIZATION FACILITY

    SciTech Connect (OSTI)

    Subhash Shah

    2000-08-01T23:59:59.000Z

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  3. Multiphase fluid characterization system

    DOE Patents [OSTI]

    Sinha, Dipen N.

    2014-09-02T23:59:59.000Z

    A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

  4. Supercritical fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth (Pullman, WA)

    1994-01-01T23:59:59.000Z

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  5. Selecting fines recycle methods to optimize fluid bed combustor performance

    SciTech Connect (OSTI)

    Rickman, W.S.; Fields, D.E.; Brimhall, W.L.; Callahan, S.F.

    1980-05-01T23:59:59.000Z

    Testing and analysis of a number of different fines recycle methods for fluid bed combustors has led to a generalized modeling technique. This model accounts for the effect of pertinent variables in determining overall combustion efficiencies. Computer application of this model has allowed trade-off studies to be performed that show the overall process effects of changes in individual operating parameters. Verification of the model has been accomplished in processing campaigns while combusting fuels such as graphite and bituminous coal. A 0.4 MW test unit was used for the graphite experimental work. Solid fuel was typically crushed to 5 mm maximum screen size. Bed temperatures were normally controlled at 900/sup 0/C; the combustor was an atmospheric unit with maximum in-bed pressures of 0.2 atm. Expanded bed depths ranged from 1.5 to 3 meters. Additional data was taken from recycle tests sponsored by EPRI on the B and W 6 ft x 6 ft fluid bed combustor. These tests used high sulfur coal in a 1.2 meter deep, 850/sup 0/C atmospheric fluidized bed of limestone, with low recycle rates and temperatures. Close agreement between the model and test data has been noted, with combustion efficiency predictions matching experimental results within 1%.

  6. Basic fluid system trainer

    DOE Patents [OSTI]

    Semans, Joseph P. (Uniontown, PA); Johnson, Peter G. (Pittsburgh, PA); LeBoeuf, Jr., Robert F. (Clairton, PA); Kromka, Joseph A. (Idaho Falls, ID); Goron, Ronald H. (Connellsville, PA); Hay, George D. (Venetia, PA)

    1993-01-01T23:59:59.000Z

    A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  7. Basic fluid system trainer

    SciTech Connect (OSTI)

    Semans, J.P.; Johnson, P.G.; LeBoeuf, R.F. Jr.; Kromka, J.A.; Goron, R.H.; Hay, G.D.

    1991-04-30T23:59:59.000Z

    This invention, a trainer mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  8. Circulating Fluid Bed Combustor

    E-Print Network [OSTI]

    Fraley, L. D.; Do, L. N.; Hsiao, K. H.

    1982-01-01T23:59:59.000Z

    The circulating bed combustor represents an alternative concept of burning coal in fluid bed technology, which offers distinct advantages over both the current conventional fluidized bed combustion system and the pulverized coal boilers equipped...

  9. Phoresis in fluids

    E-Print Network [OSTI]

    Brenner, Howard

    This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise ...

  10. Fluid pumping apparatus

    DOE Patents [OSTI]

    West, Phillip B. (Idaho Falls, ID)

    2006-01-17T23:59:59.000Z

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  11. Computational mechanics

    SciTech Connect (OSTI)

    Goudreau, G.L.

    1993-03-01T23:59:59.000Z

    The Computational Mechanics thrust area sponsors research into the underlying solid, structural and fluid mechanics and heat transfer necessary for the development of state-of-the-art general purpose computational software. The scale of computational capability spans office workstations, departmental computer servers, and Cray-class supercomputers. The DYNA, NIKE, and TOPAZ codes have achieved world fame through our broad collaborators program, in addition to their strong support of on-going Lawrence Livermore National Laboratory (LLNL) programs. Several technology transfer initiatives have been based on these established codes, teaming LLNL analysts and researchers with counterparts in industry, extending code capability to specific industrial interests of casting, metalforming, and automobile crash dynamics. The next-generation solid/structural mechanics code, ParaDyn, is targeted toward massively parallel computers, which will extend performance from gigaflop to teraflop power. Our work for FY-92 is described in the following eight articles: (1) Solution Strategies: New Approaches for Strongly Nonlinear Quasistatic Problems Using DYNA3D; (2) Enhanced Enforcement of Mechanical Contact: The Method of Augmented Lagrangians; (3) ParaDyn: New Generation Solid/Structural Mechanics Codes for Massively Parallel Processors; (4) Composite Damage Modeling; (5) HYDRA: A Parallel/Vector Flow Solver for Three-Dimensional, Transient, Incompressible Viscous How; (6) Development and Testing of the TRIM3D Radiation Heat Transfer Code; (7) A Methodology for Calculating the Seismic Response of Critical Structures; and (8) Reinforced Concrete Damage Modeling.

  12. Valve for fluid control

    DOE Patents [OSTI]

    Oborny, Michael C. (Albuquerque, NM); Paul, Phillip H. (Livermore, CA); Hencken, Kenneth R. (Pleasanton, CA); Frye-Mason, Gregory C. (Cedar Crest, NM); Manginell, Ronald P. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.

  13. Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera...

    Open Energy Info (EERE)

    Mexico hosts a high-temperature geothermal system, which is manifested in a number of hot springs discharging in and around the caldera. In order to determine the fluid pathways...

  14. The effect of lymphatic fluid protein concentration on lymphatic resistance 

    E-Print Network [OSTI]

    Walker, Ellen Marie

    2013-02-22T23:59:59.000Z

    were manipulated by altering the height of the outflow port. Two fluids - lactated Ringers solution and 6% albumin in lactated Ringers solution - were introduced alternately into the vessels. Flow through the vessel was determined for several pressure...

  15. Development of an analytical model for organic-fluid fouling

    SciTech Connect (OSTI)

    Panchal, C.B.; Watkinson, A.P.

    1994-10-01T23:59:59.000Z

    The research goal of this project is to determine ways to effectively mitigate fouling in organic fluids: hydrocarbons and derived fluids. The fouling research focuses on the development of methodology for determining threshold conditions for fouling. Initially, fluid containing chemicals known to produce foulant is analyzed; subsequently, fouling of industrial fluids is investigated. The fouling model developed for determining the effects of physical parameters is the subject of this report. The fouling model is developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermal-boundary layer, or at the fluid/wall interface, depending upon the interactive effects of fluid dynamics, heat and mass transfer, and the controlling chemical reaction. In the analysis, the experimental data are examined for fouling deposition of polyperoxide produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries are analyzed. The results show that the relative effects of physical parameters on the fouling rate differ for the three fouling mechanisms. Therefore, to apply the closed-flow-loop data to industrial conditions, the controlling mechanism must be identified.

  16. CSE Master Specialization Fluid Dynamics

    E-Print Network [OSTI]

    Lang, Annika

    CSE Master Specialization Fluid Dynamics Course Semester Fluid Dynamics II HS Quantitative Flow Energie- und Verfahrenstechnik FS Biofluiddynamics FS #12;CSE in Fluid Dynamics: Very large high in Fluid Dynamics: Physiology of the inner ear MicroCT imaging Multilayer MFS for Stokes flow simulations

  17. Binary non-additive hard sphere mixtures: Fluid demixing, asymptotic decay of correlations and free fluid interfaces

    E-Print Network [OSTI]

    Paul Hopkins; Matthias Schmidt

    2010-07-29T23:59:59.000Z

    Using a fundamental measure density functional theory we investigate both bulk and inhomogeneous systems of the binary non-additive hard sphere model. For sufficiently large (positive) non-additivity the mixture phase separates into two fluid phases with different compositions. We calculate bulk fluid-fluid coexistence curves for a range of size ratios and non-additivity parameters and find that they compare well to simulation results from the literature. Using the Ornstein-Zernike equation, we investigate the asymptotic, r->infinity, decay of the partial pair correlation functions, g_ij(r). At low densities there occurs a structural crossover in the asymptotic decay between two different damped oscillatory modes with different wavelengths corresponding to the two intra-species hard core diameters. On approaching the fluid-fluid critical point there is Fisher-Widom crossover from exponentially damped oscillatory to monotonic asymptotic decay. Using the density functional we calculate the density profiles for the planar free fluid-fluid interface between coexisting fluid phases. We show that the type of asymptotic decay of g_ij(r) not only determines the asymptotic decay of the interface profiles, but is also relevant for intermediate and even short-ranged behaviour. We also determine the surface tension of the free fluid interface, finding that it increases with non-additivity, and that on approaching the critical point mean-field scaling holds.

  18. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2000; 00:16 Prepared using fldauth.cls [Version: 2002/09/18 v1.01

    E-Print Network [OSTI]

    Iske, Armin

    in Computational Fluid Dynamic Models L. Bonaventura , A. Iske, E. Miglio MOX ­ Modellistica e Calcolo Scientifico challenging problems of high- dimensional approximation. Correspondence to: MOX ­ Modellistica e Calcolo

  19. Dynamics of fluid-conveying Timoshenko pipes

    E-Print Network [OSTI]

    Petrus, Ryan Curtis

    2006-08-16T23:59:59.000Z

    that satisfy the ?non-fluid? essential and natural boundary conditions, and determine the non-dimensional critical velocities at which the system goes unstable. Once the critical velocities are ascertained, the second half will begin with a time... and polynomial functions. The trigonometric\\hyperbolic functions are exact solutions to (4.16) subject to cantilevered boundary conditions (4.17)-(4.20). The th non dimensional natural frequency of the non-fluid beam is given by 2 sinh sin cosh cos 0...

  20. The Geometric Structure of Complex Fluids

    E-Print Network [OSTI]

    François Gay-Balmaz; Tudor S. Ratiu

    2009-03-25T23:59:59.000Z

    This paper develops the theory of affine Euler-Poincar\\'e and affine Lie-Poisson reductions and applies these processes to various examples of complex fluids, including Yang-Mills and Hall magnetohydrodynamics for fluids and superfluids, spin glasses, microfluids, and liquid crystals. As a consequence of the Lagrangian approach, the variational formulation of the equations is determined. On the Hamiltonian side, the associated Poisson brackets are obtained by reduction of a canonical cotangent bundle. A Kelvin-Noether circulation theorem is presented and is applied to these examples.

  1. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOE Patents [OSTI]

    Ortiz, M.G.; Boucher, T.J.

    1998-11-10T23:59:59.000Z

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  2. Computerized fluid movement mapping and 3-D visualization

    SciTech Connect (OSTI)

    Al-Awami, A.A.; Poore, J.W. [Saudi Aramco, Dhahran (Saudi Arabia); Sizer, J.P.

    1995-11-01T23:59:59.000Z

    Most of the fieldwide fluid movement monitoring techniques under utilize available computer resources. This paper discusses an approach reservoir management engineers use to monitor fluid movement in reservoirs with a multitude of wells. This approach allows the engineer to maintain up-to-date fluid movement studies and incorporate the latest information from data acquisition programs into the day to day decision-making process. The approach uses several in-house database applications and makes extensive use of commercially available software products to generate and visualize cross-sections, maps, and 3-d models. This paper reviews the computerized procedures to create cross-sections that display the current fluid contacts overlaying the lithology. It also reviews the mapping procedures nd presents examples of water encroachment maps by layer at specific time periods. 3-D geologic modeling software greatly enhances the visualization of the reservoir. This software can also be used to interpret and model fluid movement, given the appropriate engineering constraints.

  3. Please bring this to a Financial Aid Counselor to review and determine aid eligibility Program Name Computer Science in Croatia Program Dates March 4, 2013 -May 17, 2013

    E-Print Network [OSTI]

    Zanibbi, Richard

    Name Computer Science in Croatia Program Dates March 4, 2013 - May 17, 2013 Student Name Student UID,300.00$ Temporary Stay Visa in Croatia $96 $206 Personal 1,000.00$ Misc. Expenses (books) 100.00$ Total estimated

  4. Fluid driven reciprocating apparatus

    DOE Patents [OSTI]

    Whitehead, J.C.

    1997-04-01T23:59:59.000Z

    An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.

  5. Fluid driven recipricating apparatus

    DOE Patents [OSTI]

    Whitehead, John C. (Davis, CA)

    1997-01-01T23:59:59.000Z

    An apparatus comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached.

  6. Hazardous fluid leak detector

    DOE Patents [OSTI]

    Gray, Harold E. (Las Vegas, NV); McLaurin, Felder M. (Las Vegas, NV); Ortiz, Monico (Las Vegas, NV); Huth, William A. (Las Vegas, NV)

    1996-01-01T23:59:59.000Z

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  7. Circulating fluidized bed hydrodynamics experiments for the multiphase fluid dynamics research consortium (MFDRC).

    SciTech Connect (OSTI)

    Oelfke, John Barry; Torczynski, John Robert; O'Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish (; ); Trujillo, Steven Mathew

    2006-08-01T23:59:59.000Z

    An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.

  8. Computer resources Computer resources

    E-Print Network [OSTI]

    Yang, Zong-Liang

    Computer resources 1 Computer resources available to the LEAD group Cédric David 30 September 2009 #12;Ouline · UT computer resources and services · JSG computer resources and services · LEAD computers· LEAD computers 2 #12;UT Austin services UT EID and Password 3 https://utdirect.utexas.edu #12;UT Austin

  9. Computational University of Leeds

    E-Print Network [OSTI]

    Berzins, M.

    of the key application areas is reactive fluid flow, including atmospheric chemistry, combustion, hydraulics reality systems. Software The Unit has an extensive and evolving library of multi-purpose PDE software times. Overview University of Leeds Computational PDEs Unit http://www.comp.leeds.ac.uk/cpde/ #12

  10. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Modeling-Computer Simulations Activity Date - 2003 Usefulness not indicated DOE-funding Unknown Notes Several fluid-flow models presented regarding the Long Valley Caldera....

  11. TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...

    Open Energy Info (EERE)

    FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING...

  12. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    SciTech Connect (OSTI)

    Ortiz, Marcos G. (Idaho Falls, ID); Boucher, Timothy J. (Helena, MT)

    1997-01-01T23:59:59.000Z

    A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.

  13. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOE Patents [OSTI]

    Ortiz, M.G.; Boucher, T.J.

    1997-06-24T23:59:59.000Z

    A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.

  14. Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof

    DOE Patents [OSTI]

    Battiste, Richard L

    2013-12-31T23:59:59.000Z

    Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into th emold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with a fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a termperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into th emold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

  15. Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof

    DOE Patents [OSTI]

    Battiste, Richard L. (Oak Ridge, TN)

    2007-12-25T23:59:59.000Z

    Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into the mold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with the fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a temperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into the mold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

  16. MEASUREMENT OF INTERFACIAL TENSION IN FLUID-FLUID SYSTEMS

    E-Print Network [OSTI]

    Loh, Watson

    MEASUREMENT OF INTERFACIAL TENSION IN FLUID-FLUID SYSTEMS J. Drelich Ch. Fang C.L. White Michigan been used to measure interfacial tensions between immisci- ble fluid phases. A recent monograph sources of information on the in- terfacial tension measurement methods include selected chapters in Refs

  17. CX-002296: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Computational Fluid Dynamics (CFD) Analysis Density Separator of an Air-Based Density SeparatorCX(s) Applied: B3.6Date: 05/18/2010Location(s): Lexington, KentuckyOffice(s): Fossil Energy, National Energy Technology Laboratory

  18. CX-011580: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Model Validation Using Computational Fluid Dynamics (CFD)-Grade Experimental Database for Next Generation Nuclear Plant (NGNP) Reactor Cavity Cooling Systems with Water and Air CX(s) Applied: B3.6 Date: 11/13/2013 Location(s): Michigan Offices(s): Idaho Operations Office

  19. Magnetically stimulated fluid flow patterns

    ScienceCinema (OSTI)

    Martin, Jim; Solis, Kyle

    2014-08-06T23:59:59.000Z

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  20. Magnetically stimulated fluid flow patterns

    SciTech Connect (OSTI)

    Martin, Jim; Solis, Kyle

    2014-03-06T23:59:59.000Z

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  1. A new and effective method for thermostatting confined fluids

    SciTech Connect (OSTI)

    De Luca, Sergio; Todd, B. D., E-mail: btodd@swin.edu.au [Department of Mathematics, Faculty of Science, Engineering and Technology, and Centre for Molecular Simulation, Swinburne University of Technology, Melbourne, Victoria 3122 (Australia); Hansen, J. S. [DNRF Center “Glass and Time,” IMFUFA, Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark)] [DNRF Center “Glass and Time,” IMFUFA, Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Daivis, Peter J. [School of Applied Sciences, RMIT University, Melbourne, Victoria 3001 (Australia)] [School of Applied Sciences, RMIT University, Melbourne, Victoria 3001 (Australia)

    2014-02-07T23:59:59.000Z

    We present a simple thermostatting method suitable for nanoconfined fluid systems. Two conventional strategies involve thermostatting the fluid directly or employing a thermal wall that couples only the wall atoms with the thermostat. When only a thermal wall is implemented, the temperature control of the fluid is true to the actual experiment and the heat is transferred from the fluid to the walls. However, for large or complex systems it can often be computationally prohibitive to employ thermal walls. To overcome this limitation many researchers choose to freeze wall atoms and instead apply a synthetic thermostat to the fluid directly through the equations of motion. This, however, can have serious consequences for the mechanical, thermodynamic, and dynamical properties of the fluid by introducing unphysical behaviour into the system [Bernardi et al., J. Chem. Phys. 132, 244706 (2010)]. In this paper, we propose a simple scheme which enables working with both frozen walls and naturally thermostatted liquids. This is done by superimposing the walls with oscillating particles, which vibrate on the edge of the fluid control volume. These particles exchange energy with the fluid molecules, but do not interact with wall atoms or each other, thus behaving as virtual particles. Their displacements violate the Lindemann criterion for melting, in such a way that the net effect would not amount to an additional confining surface. One advantage over standard techniques is the reduced computational cost, particularly for large walls, since they can be kept rigid. Another advantage over accepted strategies is the opportunity to freeze complex charged walls such as ?-cristobalite. The method furthermore overcomes the problem with polar fluids such as water, as thermalized charged surfaces require higher spring constants to preserve structural stability, due to the effects of strong Coulomb interactions, thus inevitably degrading the thermostatting efficiency.

  2. Calibration method and apparatus for measuring the concentration of components in a fluid

    DOE Patents [OSTI]

    Durham, Michael D. (Castle Rock, CO); Sagan, Francis J. (Lakewood, CO); Burkhardt, Mark R. (Denver, CO)

    1993-01-01T23:59:59.000Z

    A calibration method and apparatus for use in measuring the concentrations of components of a fluid is provided. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The peak-to-trough calculations are simplified by compensating for radiation absorption by the apparatus. The invention also allows absorption characteristics of an interfering fluid component to be accurately determined and negated thereby facilitating analysis of the fluid.

  3. Calibration method and apparatus for measuring the concentration of components in a fluid

    DOE Patents [OSTI]

    Durham, M.D.; Sagan, F.J.; Burkhardt, M.R.

    1993-12-21T23:59:59.000Z

    A calibration method and apparatus for use in measuring the concentrations of components of a fluid is provided. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The peak-to-trough calculations are simplified by compensating for radiation absorption by the apparatus. The invention also allows absorption characteristics of an interfering fluid component to be accurately determined and negated thereby facilitating analysis of the fluid. 7 figures.

  4. Indirect determination of the electric field in plasma discharges using laser-induced fluorescence spectroscopy

    SciTech Connect (OSTI)

    Vaudolon, J., E-mail: julien.vaudolon@cnrs-orleans.fr; Mazouffre, S., E-mail: stephane.mazouffre@cnrs-orleans.fr [CNRS - ICARE (Institut de Combustion Aérothermique Réactivité et Environnement), 1 C Av. de la Recherche Scientifique, 45071 Orléans Cedex 2 (France)

    2014-09-15T23:59:59.000Z

    The evaluation of electric fields is of prime interest for the description of plasma characteristics. In this work, different methods for determining the electric field profile in low-pressure discharges using one- and two-dimensional Laser-Induced Fluorescence (LIF) measurements are presented and discussed. The energy conservation, fluid, and kinetic approaches appear to be well-suited for the electric field evaluation in this region of the plasma flow. However, the numerical complexity of a two-dimensional kinetic model is penalizing due to the limited signal-to-noise ratio that can be achieved, making the computation of the electric field subject to large error bars. The ionization contribution which appears in the fluid model makes it unattractive on an experimental viewpoint. The energy conservation and 1D1V kinetic approaches should therefore be preferred for the determination of the electric field when LIF data are used.

  5. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25T23:59:59.000Z

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  6. Fluid bed material transfer method

    DOE Patents [OSTI]

    Pinske, Jr., Edward E. (Akron, OH)

    1994-01-01T23:59:59.000Z

    A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

  7. Applying one-dimensional fluid thermal elements into a 3D CLIC accelerating strucutre

    E-Print Network [OSTI]

    Raatikainen, Riku; Österberg, Kenneth; Riddone, Germana; Samoshkin, Alexander; Gudkov, Dmitry

    2010-01-01T23:59:59.000Z

    A finite element modeling method to simplify the analysis of coupled thermal-structural model for the CLIC accelerating structure is presented. In addition, the results of thermal and structural analyses for the accelerating structure are presented. Instead of using a standard 3D computational fluid dynamics (CFD) method for solving problems involving fluid dynamics and heat transfer in 3D environment, one-dimensional fluid thermal elements are used. In one-dimensional flow, the governing equations of fluid dynamics are considerably simplified. Thus, it is expected that the computational time for more complex simulations becomes shorter. The method was first applied to several test models, which demonstrated the suitability of the one-dimensional flow modeling. The results show that one-dimensional fluid flow reduces the computation time considerably allowing the modeling for the future larger assemblies with sufficient accuracy.

  8. Viscous dark fluid

    E-Print Network [OSTI]

    V. Folomeev; V. Gurovich

    2007-10-15T23:59:59.000Z

    The unified dark energy and dark matter model within the framework of a model of a continuous medium with bulk viscosity (dark fluid) is considered. It is supposed that the bulk viscosity coefficient is an arbitrary function of the Hubble parameter. The choice of this function is carried out under the requirement to satisfy the observational data from recombination ($z\\approx 1000$) till present time.

  9. Non-contact fluid characterization in containers using ultrasonic waves

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM)

    2012-05-15T23:59:59.000Z

    Apparatus and method for non-contact (stand-off) ultrasonic determination of certain characteristics of fluids in containers or pipes are described. A combination of swept frequency acoustic interferometry (SFAI), wide-bandwidth, air-coupled acoustic transducers, narrowband frequency data acquisition, and data conversion from the frequency domain to the time domain, if required, permits meaningful information to be extracted from such fluids.

  10. CX-008011: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-008011: Categorical Exclusion Determination Install EMSL Super-Computer Power Infrastructure CX(s) Applied: B1.7 Date: 06302011 Location(s): Washington...

  11. Motivating Learners in Secondary Science Classrooms: Analysis of a Computer-Supported, Inquiry-Based Learning Environment Using Self-Determination Theory

    E-Print Network [OSTI]

    Scogin, Stephen C.

    2014-07-29T23:59:59.000Z

    Nature of Science NRC National Research Council NSF National Science Foundation PS PlantingScience SDT Self-Determination Theory SPORE Science Prize for Online Resources in Education SSP Student-Scientist Partnership SWOT Strengths... ...................................... 57 3.3 Open and Axial Coding Categories With Corresponding Properties and Dimensions .......................................................................................... 92 3.4 Results of SWOT Analysis...

  12. Faculty of Engineering Electrical and Computer

    E-Print Network [OSTI]

    Faculty of Engineering Electrical and Computer Engineering Electrical and Computer Engineering offers you a diverse range of exciting opportunities in high-tech industries. As an electrical engineer in the engineering disciplines · Thermodynamics, fluids and heat transfer #12;Electrical and Computer Engineering

  13. CX-000411: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Fiber Containing Sweep Fluids for Ultra Deepwater Drilling Applications CX(s) Applied: A1, A9, B3.6 Date: 12172009 Location(s): Norman,...

  14. Thermo-Fluids, Energy Systems and Environment This group conducts research in the following areas

    E-Print Network [OSTI]

    Calgary, University of

    and Reacting Flows l Aerodynamics l Internal-Combustion Engines l Stirling Engines l Computational Fluid internal-combustion engines l Cross-flow and co-flow combustion facilities l Flammability test apparatus l-Fluids, Energy Systems and Environment This group conducts research in the following areas: l Combustion

  15. Proceedings of ASME-FED 2006 2006 ASME Fluids Engineering Summer Conference

    E-Print Network [OSTI]

    Smith, Barton L.

    Proceedings of ASME-FED 2006 2006 ASME Fluids Engineering Summer Conference Miami, USA, July 17 of the INL model and to develop benchmark databases for CFD (Computational Fluid Dynamics) code assessment by ASME #12;through two perforated plates placed in line to suppress separa- tion and any pulsations

  16. Quantum Computing Computer Scientists

    E-Print Network [OSTI]

    Yanofsky, Noson S.

    of Vector Spaces 3 The Leap From Classical to Quantum 3.1 Classical Deterministic Systems 3.2 ClassicalQuantum Computing for Computer Scientists Noson S. Yanofsky and Mirco A. Mannucci #12;© May 2007 Noson S. Yanofsky Mirco A. Mannucci #12;Quantum Computing for Computer Scientists Noson S. Yanofsky

  17. FLUID-STRUCTURE INTERACTION MODELS OF THE MITRAL VALVE: FUNCTION IN NORMAL AND PATHOLOGIC STATES

    SciTech Connect (OSTI)

    Kunzelman, K. S.; Einstein, Daniel R.; Cochran, R. P.

    2007-08-29T23:59:59.000Z

    Successful mitral valve repair is dependent upon a full understanding of normal and abnormal mitral valve anatomy and function. Computational analysis is one such method that can be applied to simulate mitral valve function in order to analyze the roles of individual components, and evaluate proposed surgical repair. We developed the first three-dimensional, finite element (FE) computer model of the mitral valve including leaflets and chordae tendineae, however, one critical aspect that has been missing until the last few years was the evaluation of fluid flow, as coupled to the function of the mitral valve structure. We present here our latest results for normal function and specific pathologic changes using a fluid-structure interaction (FSI) model. Normal valve function was first assessed, followed by pathologic material changes in collagen fiber volume fraction, fiber stiffness, fiber splay, and isotropic stiffness. Leaflet and chordal stress and strain, and papillary muscle force was determined. In addition, transmitral flow, time to leaflet closure, and heart valve sound were assessed. Model predictions in the normal state agreed well with a wide range of available in-vivo and in-vitro data. Further, pathologic material changes that preserved the anisotropy of the valve leaflets were found to preserve valve function. By contrast, material changes that altered the anisotropy of the valve were found to profoundly alter valve function. The addition of blood flow and an experimentally driven microstructural description of mitral tissue represent significant advances in computational studies of the mitral valve, which allow further insight to be gained. This work is another building block in the foundation of a computational framework to aid in the refinement and development of a truly noninvasive diagnostic evaluation of the mitral valve. Ultimately, it represents the basis for simulation of surgical repair of pathologic valves in a clinical and educational setting.

  18. Computer Engineering Curriculum Notes

    E-Print Network [OSTI]

    Mather, Patrick T.

    1 Computer Engineering Curriculum Notes 2013-2014 Technical Electives Students fulfill 15 credits be assigned to either group A or group B as determined by Computer Engineering program committee. Every year the computer engineering program committee will review the list and may make change(s). Group A (at least 6

  19. Comparison of Hybrid Systems and Fluid Stochastic Petri Nets \\Lambda

    E-Print Network [OSTI]

    Tuffin, Bruno

    Comparison of Hybrid Systems and Fluid Stochastic Petri Nets \\Lambda Bruno Tuffin , Dong S. Chen Engineering Duke University, Durham, NC 27708­0291, U.S.A. Abstract. Hybrid Systems are models of interacting digital and continuous devices with applications in the control of aircraft, computers, or modern cars

  20. Multiscale Modeling and Simulation of Fluid Flows in Inelastic Media

    E-Print Network [OSTI]

    Popov, Peter

    in porous media (e.g. soil), Elasticity equations in heterogeneous media (concrete, asphalt), etc porous media s The Fluid-Structure interaction (FSI) problem at the microscale and numerical methods with computational solutions s Numerical upscaling of flow in deformable porous media #12;- p. 3/42 Why homogenize

  1. Breaking the Tension: Development and Investigation of a Centrifugal Tensioned Metastable Fluid Detector System

    E-Print Network [OSTI]

    Solom, Matthew 1985-

    2012-12-10T23:59:59.000Z

    of laser-induced cavitation in a seeded fluid, and demonstrated some of the associated limitations as well. In addition, the CFD framework developed here can be used to cross-compare experimental results with computer simulations as well...

  2. Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in Gas Turbines

    E-Print Network [OSTI]

    Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in Gas Turbines the EL method well suited for gas turbine computations, but RANS with the EE approach may also be found

  3. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOE Patents [OSTI]

    Ortiz, M.G.

    1998-02-10T23:59:59.000Z

    A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  4. LUBRICANTS AND HYDRAULIC FLUIDS

    E-Print Network [OSTI]

    Engineer Manual Department

    Contents) Major General, USA Chief of Staff i Table of Contents Purpose ........................................................ 1-1 1-1 Applicability .................................................... 1-2 1-1 References ...................................................... 1-3 1-1 Distribution Statement ............................................. 1-4 1-1 Scope ......................................................... 1-5 1-2 Friction ........................................................ 2-1 2-1 Wear .......................................................... 2-2 2-4 Lubrication and Lubricants ......................................... 2-3 2-6 Hydrodynamic or Fluid Film Lubrication ............................... 2-4 2-6 Boundary Lubrication ............................................. 2-5 2-8 Extreme Pressure (EP) Lubrication ................................... 2-6 2-9 Elastohydrodynamic (EHD) Lubrication ................................ 2-7 2-9 Oil R

  5. Office of Fusion Energy computational review

    SciTech Connect (OSTI)

    Cohen, B.I.; Cohen, R.H.; Byers, J.A. [and others

    1996-03-06T23:59:59.000Z

    The LLNL MFE Theory and Computations Program supports computational efforts in the following areas: (1) Magnetohydrodynamic equilibrium and stability; (2) Fluid and kinetic edge plasma simulation and modeling; (3) Kinetic and fluid core turbulent transport simulation; (4) Comprehensive tokamak modeling (CORSICA Project) - transport, MHD equilibrium and stability, edge physics, heating, turbulent transport, etc. and (5) Other: ECRH ray tracing, reflectometry, plasma processing. This report discusses algorithm and codes pertaining to these areas.

  6. Drilling fluids and reserve pit toxicity

    SciTech Connect (OSTI)

    Leuterman, A.J.J.; Jones, F.V.; Chandler, J.E. (M-I Drilling Fluids Co. (US))

    1988-11-01T23:59:59.000Z

    Drilling fluids are now classified as exempt under the Resource Conservation and Recovery Act (RCRA) hazardous waste laws. Since 1986, however, the U.S. Environmental Protection Agency (EPA) has been studying reserve pit contents to determine whether oilfield wastes should continue under this exemption. Concerns regarding reserve pit contents and disposal practices have resulted in state and local governmental regulations that limit traditional methods of construction, closure, and disposal of reserve pit sludge and water. A great deal of attention and study has been focused on drilling fluids that eventually reside in reserve pits. In-house studies show that waste from water-based drilling fluids plays a limited role (if any) in possible hazards associated with reserve pits. Reserve pit water samples and pit sludge was analyzed and collated. Analyses show that water-soluble heavy metals (Cr, Pb, Zn and Mn) in reserve pits are generally undetectable or, if found in the total analysis, are usually bound to clays or organics too tightly to exceed the limitations as determined by the EPA toxicity leachate test. The authors' experience is that most contamination associated with reserve pits involves high salt content from produced waters and/or salt formations, lead contamination from pipe dope, or poorly designed pits, which could allow washouts into surface waters or seepage into groundwater sources. The authors' analyses show that reserve its associated with water-based drilling fluid operations should not be classified as hazardous; however, careful attention attention should be paid to reserve pit construction and closure to help avoid any adverse environmental impact.

  7. Pore Fluid Effects on Shear Modulus in a Model of Heterogeneous Rocks, Reservoirs, and Granular Media

    SciTech Connect (OSTI)

    Berryman, J G

    2005-03-23T23:59:59.000Z

    To provide quantitative measures of the importance of fluid effects on shear waves in heterogeneous reservoirs, a model material called a ''random polycrystal of porous laminates'' is introduced. This model poroelastic material has constituent grains that are layered (or laminated), and each layer is an isotropic, microhomogeneous porous medium. All grains are composed of exactly the same porous constituents, and have the same relative volume fractions. The order of lamination is not important because the up-scaling method used to determine the transversely isotropic (hexagonal) properties of the grains is Backus averaging, which--for quasi-static or long-wavelength behavior--depends only on the volume fractions and layer properties. Grains are then jumbled together totally at random, filling all space, and producing an overall isotropic poroelastic medium. The poroelastic behavior of this medium is then analyzed using the Peselnick-Meister-Watt bounds (of Hashin-Shtrikman type). We study the dependence of the shear modulus on pore fluid properties and determine the range of behavior to be expected. In particular we compare and contrast these results to those anticipated from Gassmann's fluid substitution formulas, and to the predictions of Mavko and Jizba for very low porosity rocks with flat cracks. This approach also permits the study of arbitrary numbers of constituents, but for simplicity the numerical examples are restricted here to just two constituents. This restriction also permits the use of some special exact results available for computing the overall effective stress coefficient in any two-component porous medium. The bounds making use of polycrystalline microstructure are very tight. Results for the shear modulus demonstrate that the ratio of compliance differences R (i.e., shear compliance changes over bulk compliance changes when going from drained to undrained behavior, or vice versa) is usually nonzero and can take a wide range of values, both above and below the value R = 4/15 valid for low porosity, very low aspect ratio flat cracks. Results show the overall shear modulus in this model can depend relatively strongly on mechanical properties of the pore fluids, sometimes (but rarely) more strongly than the dependence of the overall bulk modulus on the fluids.

  8. Fluid system for controlling fluid losses during hydrocarbon recovery operations

    SciTech Connect (OSTI)

    Johnson, M.H.; Smejkal, K.D.

    1993-07-20T23:59:59.000Z

    A fluid system is described for controlling fluid losses during hydrocarbon recovery operations, comprising: water; a distribution of graded calcium carbonate particle sizes; and at least one modified lignosulfonate, which is a lignosulfonate modified by polymerizing it at least to an extent effective to reduce its water solubility.

  9. Interfacial deformation and jetting of a magnetic fluid

    E-Print Network [OSTI]

    Afkhami, Shahriar; Griffiths, Ian M

    2015-01-01T23:59:59.000Z

    An attractive technique for forming and collecting aggregates of magnetic material at a liquid--air interface by an applied magnetic field gradient was recently addressed theoretically and experimentally [Soft Matter, (9) 2013, 8600-8608]: when the magnetic field is weak, the deflection of the liquid--air interface has a steady shape, while for sufficiently strong fields, the interface destabilizes and forms a jet that extracts magnetic material. Motivated by this work, we develop a numerical model for the closely related problem of solving two-phase Navier--Stokes equations coupled with the static Maxwell equations. We computationally model the forces generated by a magnetic field gradient produced by a permanent magnet and so determine the interfacial deflection of a magnetic fluid (a pure ferrofluid system) and the transition into a jet. We analyze the shape of the liquid--air interface during the deformation stage and the critical magnet distance for which the static interface transitions into a jet. We d...

  10. Fully Coupled Well Models for Fluid Injection and Production

    SciTech Connect (OSTI)

    White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.

    2013-08-05T23:59:59.000Z

    Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving these equations varies from zero coupling to full coupling. In this paper we describe a fully coupled solution approach for well model that allows for a flexible well trajectory and screened interval within a structured hexahedral computational grid. In this scheme the nonlinear well equations have been fully integrated into the Jacobian matrix for the reservoir conservation equations, minimizing the matrix bandwidth.

  11. Fluid distribution effect on sonic attenuation in partially saturated limestones

    SciTech Connect (OSTI)

    Cadoret, T. [Elf Exploration Production, Pau (France). Dept. Sismique] [Elf Exploration Production, Pau (France). Dept. Sismique; Mavko, G. [Stanford Univ., CA (United States)] [Stanford Univ., CA (United States); Zinszner, B. [Inst. Francais du Petrole, Rueil Malmaison (France). Lab. de Physique des Roches] [Inst. Francais du Petrole, Rueil Malmaison (France). Lab. de Physique des Roches

    1998-01-01T23:59:59.000Z

    Extensional and torsional wave-attenuation measurements are obtained at a sonic frequency around 1 kHz on partially saturated limestones using large resonant bars, 1 m long. To study the influence of the fluid distribution, the authors use two different saturation methods: drying and depressurization. When water saturation (S{sub w}) is higher than 70%, the extensional wave attenuation is found to depend on whether the resonant bar is jacketed. This can be interpreted as the Biot-Gardner-White effect. The experimental results obtained on jacketed samples show that, during a drying experiment, extensional wave attenuation is influenced strongly by the fluid content when S{sub w} is between approximately 70% and 100%. This sensitivity to fluid saturation vanishes when saturation is obtained through depressurization. Using a computer-assisted tomographic (CT) scan, the authors found that, during depressurization, the fluid distribution is homogeneous at the millimetric scale at all saturations. In contrast, during drying, heterogeneous saturation was observed at high water-saturation levels. Thus, the authors interpret the dependence of the extensional wave attenuation upon the saturation method as principally caused by a fluid distribution effect. Torsional attenuation shows no sensitivity to fluid saturation for S{sub w} between 5% and 100%.

  12. Apparatus and method for rapid separation and detection of hydrocarbon fractions in a fluid stream

    DOE Patents [OSTI]

    Sluder, Charles S.; Storey, John M.; Lewis, Sr., Samuel A.

    2013-01-22T23:59:59.000Z

    An apparatus and method for rapid fractionation of hydrocarbon phases in a sample fluid stream are disclosed. Examples of the disclosed apparatus and method include an assembly of elements in fluid communication with one another including one or more valves and at least one sorbent chamber for removing certain classifications of hydrocarbons and detecting the remaining fractions using a detector. The respective ratios of hydrocarbons are determined by comparison with a non separated fluid stream.

  13. Spin and Madelung fluid

    E-Print Network [OSTI]

    G. Salesi

    2009-06-23T23:59:59.000Z

    Starting from the Pauli current we obtain the decomposition of the non-relativistic local velocity in two parts: one parallel and the other orthogonal to the momentum. The former is recognized to be the ``classical'' part, that is the velocity of the center-of-mass, and the latter the ``quantum'' one, that is the velocity of the motion in the center-of-mass frame (namely, the internal ``spin motion'' or {\\em Zitterbewegung}). Inserting the complete expression of the velocity into the kinetic energy term of the classical non-relativistic (i.e., Newtonian) Lagrangian, we straightforwardly derive the so-called ``quantum potential'' associated to the Madelung fluid. In such a way, the quantum mechanical behaviour of particles appears to be strictly correlated to the existence of spin and Zitterbewegung.

  14. Quartz resonator fluid density and viscosity monitor

    DOE Patents [OSTI]

    Martin, Stephen J. (Albuquerque, NM); Wiczer, James J. (Albuquerque, NM); Cernosek, Richard W. (Albuquerque, NM); Frye, Gregory C. (Cedar Crest, NM); Gebert, Charles T. (Albuquerque, NM); Casaus, Leonard (Bernalillo, NM); Mitchell, Mary A. (Tijeras, NM)

    1998-01-01T23:59:59.000Z

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  15. Large Matched-Index-of-Refraction (MIR) Flow Systems for International Collaboration In Fluid Mechanics

    SciTech Connect (OSTI)

    Donald M. McEligot; Stefan Becker; Hugh M. McIlroy, Jr.

    2010-07-01T23:59:59.000Z

    In recent international collaboration, INL and Uni. Erlangen have developed large MIR flow systems which can be ideal for joint graduate student education and research. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The MIR technique is not new itself; others employed it earlier. The innovation of these MIR systems is their large size relative to previous experiments, yielding improved spatial and temporal resolution. This report will discuss the benefits of the technique, characteristics of the systems and some examples of their applications to complex situations. Typically their experiments have provided new fundamental understanding plus benchmark data for assessment and possible validation of computational thermal fluid dynamic codes.

  16. Fluid equations in the presence of electron cyclotron current drive

    SciTech Connect (OSTI)

    Jenkins, Thomas G.; Kruger, Scott E. [Tech-X Corporation, 5621 Arapahoe Avenue, Boulder, Colorado 80303 (United States)

    2012-12-15T23:59:59.000Z

    Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

  17. Radiation and porosity effects on the magnetohydrodynamic flow near a vertical plate that applies shear stress to the fluid with mass diffusion

    SciTech Connect (OSTI)

    Khan, Arshad; Khan, Ilyas; Shafie, Sharidan [Faculty of Science, Universiti Teknologi Malaysia (Malaysia)

    2014-06-19T23:59:59.000Z

    This article studies the radiation and porosity effects on the unsteady magnetohydrodynamic free convection flow of an incompressible viscous fluid past an infinite vertical plate that applies a shear stress f(t) to the fluid. Conjugate phenomenon of heat and mass transfer is considered. General solutions of the dimensionless governing equations along with imposed initial and boundary conditions are determined using Laplace transform technique. The solution of velocity is presented as a sum of mechanical and non mechanical parts. These solutions satisfy all imposed initial and boundary conditions and reduce to some known solutions from the literature as special cases. The results for embedded parameters are shown graphically. Numerical results for skin friction, Nusselt number and Sherwood number are computed and presented in tabular forms.

  18. Determination of petroleum pipe scale solubility in simulated lung fluid 

    E-Print Network [OSTI]

    Cezeaux, Jason Roderick

    2005-08-29T23:59:59.000Z

    method known as rattling. The rattling process generates dust. This research investigated the chemical composition of that aerosol and measured the solubility of pipe scale from three oilfield formations. Using standard in-vitro dissolution...

  19. Determination of Intrinsic Material Flammability Properties from Material Tests assisted by Numerical Modelling 

    E-Print Network [OSTI]

    Steinhaus, Thomas

    2010-01-01T23:59:59.000Z

    Computational Fluid Dynamics (CFD) codes are being increasingly used in the field of fire safety engineering. They provide, amongst other things, velocity, species and heat flux distributions throughout the computational ...

  20. Introduction to Computational Fluid Dynamics 424512 E #2Introduction to Computational Fluid Dynamics 424512 E #2 --rzrz IntroductionIntroduction toto ComputationalComputational Fluid DynamicsFluid DynamicsIntroductionIntroduction toto ComputationalComputa

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Zevenhoven Ĺbo Akademi UniversityĹbo Akademi University Thermal and Flow Engineering Laboratory tel. 3223 ; ron.zevenhoven@abo.fi april 2012 Ĺbo Akademi Univ - Chemical Engineering Thermal and Flow Engineering produced by J. Brännbacka (2006 2005) april 2012 Ĺbo Akademi Univ - Chemical Engineering Thermal and Flow

  1. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect (OSTI)

    Y. JIANG; ET AL

    2000-04-01T23:59:59.000Z

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  2. Spherically Symmetric Gravitational Collapse of Perfect Fluids

    E-Print Network [OSTI]

    P. D. Lasky; A. W. C. Lun

    2006-10-31T23:59:59.000Z

    Formulating a perfect fluid filled spherically symmetric metric utilizing the 3+1 formalism for general relativity, we show that the metric coefficients are completely determined by the mass-energy distribution, and its time rate of change on an initial spacelike hypersurface. Rather than specifying Schwarzschild coordinates for the exterior of the collapsing region, we let the interior dictate the form of the solution in the exterior, and thus both regions are found to be written in one coordinate patch. This not only alleviates the need for complicated matching schemes at the interface, but also finds a new coordinate system for the Schwarzschild spacetime expressed in generalized Painleve-Gullstrand coordinates.

  3. Finite element simulation of electrorheological fluids

    E-Print Network [OSTI]

    Rhyou, Chanryeol, 1973-

    2005-01-01T23:59:59.000Z

    Electrorheological (ER) fluids change their flow properties dramatically when an electric field is applied. These fluids are usually composed of dispersions of polarizable particles in an insulating base fluid or composed ...

  4. Fluid Fishbones Submitted by

    E-Print Network [OSTI]

    Bush, John W.M.

    of Technology We examine the form of the free surface flows resulting from the collision of equal jets is determined by the pinch-off of the fishbones Fig. 4 . At the highest flow rates examined, the flow

  5. Aerodynamically induced radial forces in a centrifugal gas compressor: Part 2 -- Computational investigation

    SciTech Connect (OSTI)

    Flathers, M.B.; Bache, G.E.

    1999-10-01T23:59:59.000Z

    Radial loads and direction of a centrifugal gas compressor containing a high specific speed mixed flow impeller and a single tongue volute were determined both experimentally and computationally at both design and off-design conditions. The experimental methodology was developed in conjunction with a traditional ASME PTC-10 closed-loop test to determine radial load and direction. The experimental study is detailed in Part 1 of this paper (Moore and Flathers, 1998). The computational method employs a commercially available, fully three-dimensional viscous code to analyze the impeller and the volute interaction. An uncoupled scheme was initially used where the impeller and volute were analyzed as separate models using a common vaneless diffuser geometry. The two calculations were then repeated until the boundary conditions at a chosen location in the common vaneless diffuser were nearly the same. Subsequently, a coupled scheme was used where the entire stage geometry was analyzed in one calculation, thus eliminating the need for manual iteration of the two independent calculations. In addition to radial load and direction information, this computational procedure also provided aerodynamic stage performance. The effect of impeller front face and rear face cavities was also quantified. The paper will discuss computational procedures, including grid generation and boundary conditions, as well as comparisons of the various computational schemes to experiment. The results of this study will show the limitations and benefits of Computational Fluid Dynamics (CFD) for determination of radial load, direction, and aerodynamic stage performance.

  6. Yield stresses in electrorheological fluids R. T. Bonnecazea) and J. F. Brady

    E-Print Network [OSTI]

    previously for the dynamic simulation of an ER fluid. The static yield stress is determined from nonlinear;Gast & Zukoski, 1989; Klingenberg, 1990) and dynamic simulations (Klingenberg, 1990; Bonnecaze & Brady, dominates the rheology of the ER fluid at large electric field strengths. At the sametime the electrostatic

  7. The mechanical behavior of normally consolidated soils as a function of pore fluid salinity

    E-Print Network [OSTI]

    Horan, Aiden James

    2012-01-01T23:59:59.000Z

    Pore fluid salinities in the Gulf of Mexico area can reach levels of 250 grams of salt per liter of pore fluid (g/1). It is now necessary to determine the effect that this salinity level can play on the mechanical behaviors ...

  8. Variable flexure-based fluid filter

    DOE Patents [OSTI]

    Brown, Steve B.; Colston Jr., Billy W.; Marshall, Graham; Wolcott, Duane

    2007-03-13T23:59:59.000Z

    An apparatus and method for filtering particles from a fluid comprises a fluid inlet, a fluid outlet, a variable size passage between the fluid inlet and the fluid outlet, and means for adjusting the size of the variable size passage for filtering the particles from the fluid. An inlet fluid flow stream is introduced to a fixture with a variable size passage. The size of the variable size passage is set so that the fluid passes through the variable size passage but the particles do not pass through the variable size passage.

  9. Fluid Imaging of Enhanced Geothermal Systems

    Broader source: Energy.gov (indexed) [DOE]

    for Fluids & Fractures - time lapse MTCSEM for fluid imaging - joint CSEM-MTseismic imaging ??? - use MEQ focal information with EM Imaging ScientificTechnical Approach...

  10. Analysis of Water Based Fracture Fluid Flowback to Determine Fluid/Shale Chemical Interaction

    E-Print Network [OSTI]

    Agim, Kelechi N

    2014-12-18T23:59:59.000Z

    Concerns about the substantial amounts of water and chemicals pumped into the subsurface during hydraulic fracturing are valid because long term effects of these stimulation actions are unknown at the present time. Although less than 1...

  11. Detachment Energies of Spheroidal Particles from Fluid-Fluid Interfaces

    E-Print Network [OSTI]

    Gary B. Davies; Timm Krüger; Peter V. Coveney; Jens Harting

    2014-10-28T23:59:59.000Z

    The energy required to detach a single particle from a fluid-fluid interface is an important parameter for designing certain soft materials, for example, emulsions stabilised by colloidal particles, colloidosomes designed for targeted drug delivery, and bio-sensors composed of magnetic particles adsorbed at interfaces. For a fixed particle volume, prolate and oblate spheroids attach more strongly to interfaces because they have larger particle-interface areas. Calculating the detachment energy of spheroids necessitates the difficult measurement of particle-liquid surface tensions, in contrast with spheres, where the contact angle suffices. We develop a simplified detachment energy model for spheroids which depends only on the particle aspect ratio and the height of the particle centre of mass above the fluid-fluid interface. We use lattice Boltzmann simulations to validate the model and provide quantitative evidence that the approach can be applied to simulate particle-stabilized emulsions, and highlight the experimental implications of this validation.

  12. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

    1993-11-30T23:59:59.000Z

    A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

  13. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, Mark D. (1426 Socastee Dr., North Augusta, SC 29841); Sweeney, Chad E. (3600 Westhampton Dr., Martinez, GA 30907-3036); Spangler, Jr., B. Samuel (2715 Margate Dr., Augusta, GA 30909)

    1993-01-01T23:59:59.000Z

    A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

  14. Viscous dark fluid universe

    SciTech Connect (OSTI)

    Hipolito-Ricaldi, W. S. [Universidade Federal do Espirito Santo, Departamento de Ciencias Matematicas e Naturais, CEUNES, Rodovia BR 101 Norte, km. 60, CEP 29932-540, Sao Mateus, Espirito Santo (Brazil); Velten, H. E. S.; Zimdahl, W. [Universidade Federal do Espirito Santo, Departamento de Fisica, Av. Fernando Ferrari, 514, Campus de Goiabeiras, CEP 29075-910, Vitoria, Espirito Santo (Brazil)

    2010-09-15T23:59:59.000Z

    We investigate the cosmological perturbation dynamics for a universe consisting of pressureless baryonic matter and a viscous fluid, the latter representing a unified model of the dark sector. In the homogeneous and isotropic background the total energy density of this mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically nonadiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value q{sub 0{approx_equal}}-0.53 of the deceleration parameter. Moreover, while previous descriptions on the basis of generalized Chaplygin-gas models were incompatible with the matter power-spectrum data since they required a much too large amount of pressureless matter, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis.

  15. Fluid sampling system

    DOE Patents [OSTI]

    Houck, E.D.

    1994-10-11T23:59:59.000Z

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

  16. Fluid sampling system

    DOE Patents [OSTI]

    Houck, Edward D. (Idaho Falls, ID)

    1994-01-01T23:59:59.000Z

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

  17. Tracing Geothermal Fluids

    SciTech Connect (OSTI)

    Michael C. Adams; Greg Nash

    2004-03-01T23:59:59.000Z

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  18. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    SciTech Connect (OSTI)

    Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael

    2009-09-01T23:59:59.000Z

    This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

  19. Insertable fluid flow passage bridgepiece and method

    DOE Patents [OSTI]

    Jones, Daniel O. (Glenville, NV)

    2000-01-01T23:59:59.000Z

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  20. Fluid flow in the earth's crust plays an important role in a number of geologic processes. In carbonate reservoirs, fluid

    E-Print Network [OSTI]

    the first order). The dynamic elastic properties of the rock are determined by adding the com- pliance steps, and thus the elastic properties of the rock, for the seismic modeling. The simulation allows us processes--hydraulic frac- turing or induced seismicity--depending on the fluid and rock properties

  1. Fluid Mixing from Viscous Fingering

    E-Print Network [OSTI]

    Jha, Birendra

    Mixing efficiency at low Reynolds numbers can be enhanced by exploiting hydrodynamic instabilities that induce heterogeneity and disorder in the flow. The unstable displacement of fluids with different viscosities, or ...

  2. Bio-inspired fluid locomotion

    E-Print Network [OSTI]

    Chan, Brian, 1980-

    2009-01-01T23:59:59.000Z

    We have developed several novel methods of locomotion at low Reynolds number, for both Newtonian and non-Newtonian fluids: Robosnails 1 and 2, which operate on a lubrication layer, and the three-link swimmer which moves ...

  3. Rip Cosmology via Inhomogeneous Fluid

    E-Print Network [OSTI]

    V. V. Obukhov; A. V. Timoshkin; E. V Savushkin

    2013-09-18T23:59:59.000Z

    The conditions for the appearance of the Little Rip, Pseudo Rip and Quasi Rip universes in the terms of the parameters in the equation of state of some dark fluid are investigated. Several examples of the Rip cosmologies are investigated.

  4. Graduate Studies Environmental Fluid Mechanics

    E-Print Network [OSTI]

    Jacobs, Laurence J.

    and bridge scour · Wastewater dispersion in coastal waters · Cohesive sediment resuspension · Flood, and modeling research; and develop new technologies and tools that benefit engineering practice in fluid · Atmospheric, surface, and subsurface models · Flood/drought forecasting and management · Decision support

  5. Acoustic sand detector for fluid flowstreams

    DOE Patents [OSTI]

    Beattie, Alan G. (Corrales, NM); Bohon, W. Mark (Frisco, TX)

    1993-01-01T23:59:59.000Z

    The particle volume and particle mass production rate of particulate solids entrained in fluid flowstreams such as formation sand or fracture proppant entrained in oil and gas production flowstreams is determined by a system having a metal probe interposed in a flow conduit for transmitting acoustic emissions created by particles impacting the probe to a sensor and signal processing circuit which produces discrete signals related to the impact of each of the particles striking the probe. The volume or mass flow rate of particulates is determined from making an initial particle size distribution and particle energy distribution and comparing the initial energy distribution and/or the initial size distribution with values related to the impact energies of a predetermined number of recorded impacts. The comparison is also used to recalibrate the system to compensate for changes in flow velocity.

  6. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT, J.

    2006-11-01T23:59:59.000Z

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together researchers in these areas and to provide a focal point for the development of computational expertise at the Laboratory. These efforts will connect to and support the Department of Energy's long range plans to provide Leadership class computing to researchers throughout the Nation. Recruitment for six new positions at Stony Brook to strengthen its computational science programs is underway. We expect some of these to be held jointly with BNL.

  7. Analizing Aqueous Imbibition into Shale and the Effects of Optimizing Critical Fracturing Fluid Additives

    E-Print Network [OSTI]

    Qureshi, Maha

    2013-09-29T23:59:59.000Z

    of pertinent chemical additives on fluid imbibition and intercalation into shale samples. We do this with the hope that we will eventually be able to determine how natural phenomena and additives affect long term resource production from unconventional oil...

  8. Analyzing Aqueous Solution Imbibition into Shale and the Effects of Optimizing Critical Fracturing Fluid Additives

    E-Print Network [OSTI]

    Plamin, Sammazo Jean-bertrand

    2013-09-29T23:59:59.000Z

    of pertinent chemical additives on fluid imbibition and intercalation into shale samples. We do this with the hope that we will eventually be able to determine how natural phenomena and additives affect long term resource production from unconventional oil...

  9. Experimental Assessment of Water Based Drilling Fluids in High Pressure and High Temperature Conditions

    E-Print Network [OSTI]

    Ravi, Ashwin

    2012-10-19T23:59:59.000Z

    Proper selection of drilling fluids plays a major role in determining the efficient completion of any drilling operation. With the increasing number of ultra-deep offshore wells being drilled and ever stringent environmental and safety regulations...

  10. Computer, Computational, and Statistical Sciences Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing CCS Division Computer, Computational, and Statistical Sciences Division Computational physics, computer science, applied mathematics, statistics and the integration of...

  11. Numerical and experimental study of expiratory flow in the case of major upper airway obstructions with fluid-structure interaction

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and the larynx (fig. 1), is the most external part of the respiratory system. Modelling the fluid flow is described. The theory of linear elasticity in small deformations has been chosen to compute the mechanical of the respiratory fluid flow (Shome et al., 1998; Allen et al., 2004; Xu et al., 2006; Sung et al., 2006; Liu et al

  12. Two-level Stochastic Fluid Tandem Queuing Model for Burst Impact Yong Huang, Yong Liu, Weibo Gong, Don Towsley

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    , Weibo Gong, Don Towsley Abstract-- Queuing analysis is important in providing guid- ing principles are modeled as continuous fluid. The continuous nature of fluid makes Yong Huang and Weibo Gong, gong@ecs.umass.edu. Yong Liu is with the Department of Electrical and Computer Engineering, Polytechnic

  13. SUBMITTED TO THE INTERNATIONAL JOURNAL OF FLOW CONTROL, REVISED VERSION 1 Fluid Flow Control: a Vision-Based Approach

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SUBMITTED TO THE INTERNATIONAL JOURNAL OF FLOW CONTROL, REVISED VERSION 1 Fluid Flow Control, by visualizing a fluid flow, dense flow velocity maps can be computed via optical flow techniques by diminishing the fuel consumption of their aircrafts through drag reduction [1]. In contrast, in other

  14. Fluid Mechanics IB Lecturer: Dr Natalia Berloff

    E-Print Network [OSTI]

    : hydroelectric power, chemical processing, jet-driven cutting tools · our fluid environment: ozone loss, climate

  15. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    cake solids mass/m2, w 3. Ruth equation using dw = (1-)solid dx fluidL p Ku solidK )1( 1 resistance, , with cake porosity : velocity, u layer thickness, L pressure drop, p dynamic viscosity, fluid Finland februari 2014 Unit w: kg/m2 Fluid&ParticulateSystems 424514/2010 Fluid&ParticulateSystems ĹA424514

  16. QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS

    E-Print Network [OSTI]

    Forbus, Kenneth D.

    which include both me- chanical mechanisms and fluids, such as internal combustion engines and hydraulic

  17. Computational Procedures for Determining Parameters in Ramberg...

    Office of Scientific and Technical Information (OSTI)

    based on the shear wave velocity data which can be obtained, for example, from a seismic survey. By rearranging Eq. 2, the secant modulus for the backbone curve can be...

  18. Determining Allocation Requirements | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavid Turner David3DepthDetecting bioterrorism: Is

  19. ASTROPHYSICAL FLUID DYNAMICS VIA DIRECT STATISTICAL SIMULATION

    SciTech Connect (OSTI)

    Tobias, S. M. [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom); Dagon, K.; Marston, J. B., E-mail: smt@maths.leeds.ac.uk [Department of Physics, Brown University, Providence, RI 02912-1843 (United States)

    2011-02-01T23:59:59.000Z

    In this paper, we introduce the concept of direct statistical simulation for astrophysical flows. This technique may be appropriate for problems in astrophysical fluids where the instantaneous dynamics of the flows are of secondary importance to their statistical properties. We give examples of such problems including mixing and transport in planets, stars, and disks. The method is described for a general set of evolution equations, before we consider the specific case of a spectral method optimized for problems on a spherical surface. The method is illustrated for the simplest non-trivial example of hydrodynamics and magnetohydrodynamics on a rotating spherical surface. We then discuss possible extensions of the method both in terms of computational methods and the range of astrophysical problems that are of interest.

  20. CX-000954: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-000954: Categorical Exclusion Determination Building 94 Computational Science Computer Room 103 Renovation - Phase II CX(s) Applied: B1.29, B1.31 Date: 03012010...

  1. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    fluidr L wDdrag v˝bL Lv dxbFF 331 0 . Picture: BMH99 PTG #12;Fluid&ParticulateSystems 424514/2010 Fluid/2010 Fluid&ParticulateSystems ĹA424514/2014 Basic concept wFAw A F VpVpP losscs cs loss losspumppump carlosscar wFP 212121 ,0, ppwwzz F w wFP #12;Fluid&ParticulateSystems 424514/2010 Fluid

  2. Laboratory imaging of stimulation fluid displacement from hydraulic fractures

    SciTech Connect (OSTI)

    Tidwell, V. [Sandia National Lab., Albuquerque, NM (United States); Parker, M. [SPE, Richardson, TX (United States)

    1996-11-01T23:59:59.000Z

    Laboratory experiments were conducted to physically investigate the processes governing stimulation fluid displacement from hydraulic fractures. Experiments were performed on two scales: meter-scale in a 1500 cm{sup 2} sand pack and core-scale in a 65 cm{sup 2} API linear conductivity cell. High-resolution light transmission imaging was employed at the meter-scale to visualize and quantify processes governing fluid displacement. For comparison, complimentary tests were performed using an API conductivity cell under ambient test conditions and at elevated closure stress. In these experiments viscous fingering and gravity drainage were identified as the dominant processes governing fluid displacement. Fluid viscosity was found to dictate the relative importance of the competing displacement processes and ultimately determine the residual liquid saturation of the sand pack. The process by which fluid displacement occurs was seen to effect the shape of both the gas and liquid phase relative permeability functions. Knowledge of such viscosity/relative permeability relationships may prove useful in bounding predictions of post-stimulation recovery of gels from the fracture pack.

  3. Maxwell's fluid model of magnetism

    E-Print Network [OSTI]

    Robert Brady; Ross Anderson

    2015-02-20T23:59:59.000Z

    In 1861, Maxwell derived two of his equations of electromagnetism by modelling a magnetic line of force as a `molecular vortex' in a fluid-like medium. Later, in 1980, Berry and colleagues conducted experiments on a `phase vortex', a wave geometry in a fluid which is analogous to a magnetic line of force and also exhibits behaviour corresponding to the quantisation of magnetic flux. Here we unify these approaches by writing down a solution to the equations of motion for a compressible fluid which behaves in the same way as a magnetic line of force. We then revisit Maxwell's historical inspiration, namely Faraday's 1846 model of light as disturbances in lines of force. Using our unified model, we show that such disturbances resemble photons: they are polarised, absorbed discretely, obey Maxwell's full equations of electromagnetism to first order, and quantitatively reproduce the correlation that is observed in the Bell tests.

  4. Computer simulation of flow past superhydrophobic striped surfaces

    E-Print Network [OSTI]

    Zhou, Jiajia

    Computer simulation of flow past superhydrophobic striped surfaces Jiajia Zhou1 , Aleksey V of superhydrophobic surfaces. 1 Introduction Fluid modeling from micrometer to nanometer scale not only that patterned superhydrophobic materials are important in context of fluid dynamics and their superlubricating

  5. Viscosity of a nucleonic fluid

    E-Print Network [OSTI]

    Aram Z. Mekjian

    2012-03-21T23:59:59.000Z

    The viscosity of nucleonic matter is studied both classically and in a quantum mechanical description. The collisions between particles are modeled as hard sphere scattering as a baseline for comparison and as scattering from an attractive square well potential. Properties associated with the unitary limit are developed which are shown to be approximately realized for a system of neutrons. The issue of near perfect fluid behavior of neutron matter is remarked on. Using some results from hard sphere molecular dynamics studies near perfect fluid behavior is discussed further.

  6. Welcome to the Computational Fluid Dynamics Matt de Stadler

    E-Print Network [OSTI]

    Wang, Deli

    applications Wake behind Guadalupe island http://www.nasaimages.org/luna/servlet/detail/nasaNAS~10~10~8 4390 flow over a ridge [movie] #12;Stratified turbulent wakes Wakes are generated by every moving body is the energy distributed? What characteristic

  7. Welcome to the Computational Fluid Dynamics Matt de Stadler

    E-Print Network [OSTI]

    Wang, Deli

    applications Wake behind Guadalupe island http://www.nasaimages.org/luna/servlet/detail/nasaNAS~1 0 Wakes are generated by every moving body and flow past any fixed body Application sizes range from spray will the wake last? How is the energy distributed? What characteristic features emerge? Low-level winds rushing

  8. Computational Fluid Dynamics Modeling of the John Day Dam Tailrace

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Perkins, William A.; Richmond, Marshall C.; Serkowski, John A.

    2010-07-08T23:59:59.000Z

    US Army Corps of Engineers - Portland District required that a two-dimensional (2D) depth-averaged and a three-dimensional (3D) free-surface numerical models to be developed and validated for the John Day tailrace. These models were used to assess potential impact of a select group of structural and operational alternatives to tailrace flows aimed at improving fish survival at John Day Dam. The 2D model was used for the initial assessment of the alternatives in conjunction with a reduced-scale physical model of the John Day Project. A finer resolution 3D model was used to more accurately model the details of flow in the stilling basin and near-project tailrace hydraulics. Three-dimensional model results were used as input to the Pacific Northwest National Laboratory particle tracking software, and particle paths and times to pass a downstream cross section were used to assess the relative differences in travel times resulting from project operations and structural scenarios for multiple total river flows. Streamlines and neutrally-buoyant particles were seeded in all turbine and spill bays with flows. For a Total River of 250 kcfs running with the Fish Passage Plan spill pattern and a spillwall, the mean residence times for all particles were little changed; however the tails of the distribution were truncated for both spillway and powerhouse release points, and, for the powerhouse releases, reduced the residence time for 75% of the particles to pass a downstream cross section from 45.5 minutes to 41.3 minutes. For a total river of 125 kcfs configured with the operations from the Fish Passage Plan for the temporary spillway weirs and for a proposed spillwall, the neutrally-buoyant particle tracking data showed that the river with a spillwall in place had the overall mean residence time increase; however, the residence time for 75% of the powerhouse-released particles to pass a downstream cross section was reduced from 102.4 min to 89 minutes.

  9. Stress distributions around hydrofoils using computational fluid dynamics

    E-Print Network [OSTI]

    Aharon, Ofer, S. M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    This research describes the reciprocal influence between two foils, vertically and horizontally oriented, on each other for different gaps between them. Those cases are the focus part of a bigger process of lowering ...

  10. V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010

    E-Print Network [OSTI]

    Nicoud, Franck

    for the optimisation of the energy consumption (heating or cooling); it is then necessary to develop accurate LES. Sequeira (Eds) Lisbon, Portugal,14-17 June 2010 IS THE DYNAMIC PROCEDURE APPROPRIATE FOR ALL SGS MODELS ? H, Subgrid- scale model Abstract. The rapid growth of supercomputers will probably make the use of Large eddy

  11. Designing high power targets with computational fluid dynamics (CFD)

    SciTech Connect (OSTI)

    Covrig, S. D. [Thomas Jefferson National Laboratory, Newport News, VA 23606 (United States)

    2013-11-07T23:59:59.000Z

    High power liquid hydrogen (LH2) targets, up to 850 W, have been widely used at Jefferson Lab for the 6 GeV physics program. The typical luminosity loss of a 20 cm long LH2 target was 20% for a beam current of 100 ?A rastered on a square of side 2 mm on the target. The 35 cm long, 2500 W LH2 target for the Qweak experiment had a luminosity loss of 0.8% at 180 ?A beam rastered on a square of side 4 mm at the target. The Qweak target was the highest power liquid hydrogen target in the world and with the lowest noise figure. The Qweak target was the first one designed with CFD at Jefferson Lab. A CFD facility is being established at Jefferson Lab to design, build and test a new generation of low noise high power targets.

  12. Computational Analysis of Fluid Flow in Pebble Bed Modular Reactor

    E-Print Network [OSTI]

    Gandhir, Akshay

    2012-10-19T23:59:59.000Z

    High Temperature Gas-cooled Reactor (HTGR) is a Generation IV reactor under consideration by Department of Energy and in the nuclear industry. There are two categories of HTGRs, namely, Pebble Bed Modular Reactor (PBMR) and Prismatic reactor. Pebble...

  13. On the simulation of fluids for computer graphics

    E-Print Network [OSTI]

    a meus pais por sempre se esfor¸carem para me oferecer uma boa educa¸c~ao. Agrade¸co o apoio e o conforto

  14. Computational Fluid Dynamics Modeling of Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlled Compression Ignition (RCCI) Combustion in a Light-Duty Engine High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control...

  15. ESS liquid-metal target design using computational fluid dynamics

    SciTech Connect (OSTI)

    Dury, T.V. [Paul Scherrer Institute, Villigen (Switzerland)

    1997-12-01T23:59:59.000Z

    The thermal-hydraulic performance of a spallation neutron source target limits the highest neutron fluxes that can be generated. The current design for the European spallation source consists of a liquid metal encased within a containing shell, wedge-shaped in the direction of the incoming proton beam, with rounded sides in a cross section through a plane normal to the beam.

  16. V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010

    E-Print Network [OSTI]

    Abgrall, RĂ©mi

    QUANTIFICATION OF SHOCKED FLOWS, COMPARISON WITH A NON-INTRUSIVE POLYNOMIAL CHAOS METHOD R. Abgrall , P) in the context of compressible inviscid flows. More specifically, we aim at comparing a well documented non-intrusive in some details the method recently proposed in [1]; Section 3 reviews the non-intrusive Polynomial Chaos

  17. V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    QUANTIFICATION OF SHOCKED FLOWS, COMPARISON WITH A NON-INTRUSIVE POLYNOMIAL CHAOS METHOD R. Abgrall , P) in the context of compressible inviscid flows. More specifically, we aim at comparing a well documented non-intrusive proposed in [?]; Section 3 reviews the non-intrusive Polynomial Chaos approach also employed in this study

  18. Sandia Energy - Computational Fluid Dynamics & Large-Scale Uncertainty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLong Lifetime ofColin Humphreys

  19. Sandia Energy - Computational Fluid Dynamics Simulations Provide Insight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim BayCaptureCloud Computingfor Rotor

  20. Computational Fluid Dynamics Modeling of Diesel Engine Combustion and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational|ofSeptember 3,Bringing you a prosperousLake9®

  1. Barracuda® Computational Particle Fluid Dynamics (CPFD®) Software |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof EnergyBILIWG:Background:Bagdad Plant1Department of

  2. ITP Chemicals: Technology Roadmap for Computational Fluid Dynamics, January

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGENDDepartmentSeptember 20092009 | Department

  3. DECOUPLED TIME STEPPING METHODS FOR FLUID-FLUID INTERACTION

    E-Print Network [OSTI]

    Kasman, Alex

    -fluid interaction, atmosphere-ocean, implicit-explicit method. 1. Introduction. The dynamic core in atmosphere-ocean to the coupled system using only (uncoupled) atmosphere and ocean solves, (see e.g. [4, 6, 17, 18, 19 their shared interface I by a rigid-lid coupling condition, i.e. no penetration and a slip with friction

  4. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    SciTech Connect (OSTI)

    James A Menart, Professor

    2013-02-22T23:59:59.000Z

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ���¢��������Finite Volume Based Computer Program for Ground Source Heat Pump Systems.���¢������� The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP system

  5. Finite Volume Based Computer Program for Ground Source Heat Pump System

    SciTech Connect (OSTI)

    Menart, James A. [Wright State University

    2013-02-22T23:59:59.000Z

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP systems.

  6. Computing Frontier: Distributed Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit theInnovationComputationalEnergyEvents Computing

  7. Compressor bleed cooling fluid feed system

    DOE Patents [OSTI]

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25T23:59:59.000Z

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  8. Experimental determination of radiated internal wave power without pressure field data

    SciTech Connect (OSTI)

    Lee, Frank M.; Morrison, P. J. [Physics Department and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712–1192 (United States)] [Physics Department and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712–1192 (United States); Paoletti, M. S.; Swinney, Harry L. [Physics Department, The University of Texas at Austin, Austin, Texas 78712–1192 (United States)] [Physics Department, The University of Texas at Austin, Austin, Texas 78712–1192 (United States)

    2014-04-15T23:59:59.000Z

    We present a method to determine, using only velocity field data, the time-averaged energy flux (J) and total radiated power P for two-dimensional internal gravity waves. Both (J) and P are determined from expressions involving only a scalar function, the stream function ?. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data.

  9. Visually simulating realistic fluid motion

    E-Print Network [OSTI]

    Naithani, Priyanka

    2002-01-01T23:59:59.000Z

    's second law of motion and Conservation of Mass, which leads to the continuity equation. Newton's second law states that the total force F, acting on an element equals mass m times the element's acceleration a. In the case of fluids we do not consider...

  10. Directed flow fluid rinse trough

    DOE Patents [OSTI]

    Kempka, S.N.; Walters, R.N.

    1996-07-02T23:59:59.000Z

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.

  11. Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry

    SciTech Connect (OSTI)

    Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Rother, Gernot [ORNL; Wesolowski, David J [ORNL; Cole, David R [ORNL; Wallacher, Dirk [Helmholtz-Zentrum Berlin

    2012-01-01T23:59:59.000Z

    The densities of pore-confined fluids were measured for the first time by means of a vibrating tube method. Isotherms of total adsorption capacity were measured directly making the method complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess). A custom-made high-pressure, high-temperature vibrating tube densimeter (VTD) was used to measure the densities of subcritical and supercritical propane (between 35 C and 97 C) and supercritical carbon dioxide (between 32 C and 50 C) saturating hydrophobic silica aerogel (0.2 g/cm3, 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, excess adsorption isotherms for supercritical CO2 and the same porous solid were measured gravimetrically using a precise magnetically-coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum at a subcritical density of the bulk fluid, and then decreased towards zero or negative values at supercritical densities. Compression of the confined fluid significantly beyond the density of the bulk liquid at the same temperature was observed at subcritical temperatures. The features of the isotherms of confined fluid density are interpreted to elucidate the observed behavior of excess adsorption. The maxima of excess adsorption were found to occur below the critical density of the bulk fluid at the conditions corresponding to the beginning of the plateau of total adsorption, marking the end of the transition of pore fluid to a denser, liquid-like pore phase. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. No measurable effect of pore confinement on the liquid-vapor critical point was found. Quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Vibrating tube densimetry was demonstrated as a novel experimental approach capable of providing the average density of pore-confined fluids.

  12. Reduced order modeling of fluid/structure interaction.

    SciTech Connect (OSTI)

    Barone, Matthew Franklin; Kalashnikova, Irina; Segalman, Daniel Joseph; Brake, Matthew Robert

    2009-11-01T23:59:59.000Z

    This report describes work performed from October 2007 through September 2009 under the Sandia Laboratory Directed Research and Development project titled 'Reduced Order Modeling of Fluid/Structure Interaction.' This project addresses fundamental aspects of techniques for construction of predictive Reduced Order Models (ROMs). A ROM is defined as a model, derived from a sequence of high-fidelity simulations, that preserves the essential physics and predictive capability of the original simulations but at a much lower computational cost. Techniques are developed for construction of provably stable linear Galerkin projection ROMs for compressible fluid flow, including a method for enforcing boundary conditions that preserves numerical stability. A convergence proof and error estimates are given for this class of ROM, and the method is demonstrated on a series of model problems. A reduced order method, based on the method of quadratic components, for solving the von Karman nonlinear plate equations is developed and tested. This method is applied to the problem of nonlinear limit cycle oscillations encountered when the plate interacts with an adjacent supersonic flow. A stability-preserving method for coupling the linear fluid ROM with the structural dynamics model for the elastic plate is constructed and tested. Methods for constructing efficient ROMs for nonlinear fluid equations are developed and tested on a one-dimensional convection-diffusion-reaction equation. These methods are combined with a symmetrization approach to construct a ROM technique for application to the compressible Navier-Stokes equations.

  13. An introduction to computer viruses

    SciTech Connect (OSTI)

    Brown, D.R.

    1992-03-01T23:59:59.000Z

    This report on computer viruses is based upon a thesis written for the Master of Science degree in Computer Science from the University of Tennessee in December 1989 by David R. Brown. This thesis is entitled An Analysis of Computer Virus Construction, Proliferation, and Control and is available through the University of Tennessee Library. This paper contains an overview of the computer virus arena that can help the reader to evaluate the threat that computer viruses pose. The extent of this threat can only be determined by evaluating many different factors. These factors include the relative ease with which a computer virus can be written, the motivation involved in writing a computer virus, the damage and overhead incurred by infected systems, and the legal implications of computer viruses, among others. Based upon the research, the development of a computer virus seems to require more persistence than technical expertise. This is a frightening proclamation to the computing community. The education of computer professionals to the dangers that viruses pose to the welfare of the computing industry as a whole is stressed as a means of inhibiting the current proliferation of computer virus programs. Recommendations are made to assist computer users in preventing infection by computer viruses. These recommendations support solid general computer security practices as a means of combating computer viruses.

  14. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2011; 65:383404

    E-Print Network [OSTI]

    Elman, Howard

    solvers for models of ICEO microfluidic flows Robert R. Shuttleworth1, Howard C. Elman2,,, Kevin R. Long3 demonstrate the performance of a fast computational algorithm for modeling the design of a microfluidic mixing discretization of the problem, we are able to determine optimal configurations of microfluidic devices. Copyright

  15. Quantifying the stimuli of photorheological fluids

    E-Print Network [OSTI]

    Bates, Sarah Woodring

    2010-01-01T23:59:59.000Z

    We develop a model to predict the dynamics of photorheological fluids and, more generally, photoresponsive fluids for monochromatic and polychromatic light sources. Derived from first principles, the model relates the ...

  16. Fluid Flow Simulation in Fractured Reservoirs

    E-Print Network [OSTI]

    Sarkar, Sudipta

    2002-01-01T23:59:59.000Z

    The purpose of this study is to analyze fluid flow in fractured reservoirs. In most petroleum reservoirs, particularly carbonate reservoirs and some tight sands, natural fractures play a critical role in controlling fluid ...

  17. Fluid Gravity Engineering Rocket motor flow analysis

    E-Print Network [OSTI]

    Anand, Mahesh

    Fluid Gravity Engineering Capability · Rocket motor flow analysis -Internal (performance) -External (plume / contamination) · Effect on landing site (surface alteration) -In-depth flow through porous young scientists/engineers Fluid Gravity Engineering Ltd #12;

  18. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    size distribution (CSD) and quality #12;Fluid&ParticulateSystems 424514/2010 Fluid solution ­ Selective distribution of impurities between a liquid phase and a solid phase uniformity, purity

  19. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, Louis K. (Monroeville, PA); Alper, Naum I. (Monroeville, PA)

    1994-01-01T23:59:59.000Z

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

  20. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, L.K.; Alper, N.I.

    1994-11-22T23:59:59.000Z

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

  1. SU-E-J-39: Comparison of PTV Margins Determined by In-Room Stereoscopic Image Guidance and by On-Board Cone Beam Computed Tomography Technique for Brain Radiotherapy Patients

    SciTech Connect (OSTI)

    Ganesh, T; Paul, S; Munshi, A; Sarkar, B; Krishnankutty, S; Sathya, J; George, S; Jassal, K; Roy, S; Mohanti, B [Fortis Memorial Research Institute, Gurgaon (India)

    2014-06-01T23:59:59.000Z

    Purpose: Stereoscopic in room kV image guidance is a faster tool in daily monitoring of patient positioning. Our centre, for the first time in the world, has integrated such a solution from BrainLAB (ExacTrac) with Elekta's volumetric cone beam computed tomography (XVI). Using van Herk's formula, we compared the planning target volume (PTV) margins calculated by both these systems for patients treated with brain radiotherapy. Methods: For a total of 24 patients who received partial or whole brain radiotherapy, verification images were acquired for 524 treatment sessions by XVI and for 334 sessions by ExacTrac out of the total 547 sessions. Systematic and random errors were calculated in cranio-caudal, lateral and antero-posterior directions for both techniques. PTV margins were then determined using van Herk formula. Results: In the cranio-caudal direction, systematic error, random error and the calculated PTV margin were found to be 0.13 cm, 0.12 cm and 0.41 cm with XVI and 0.14 cm, 0.13 cm and 0.44 cm with ExacTrac. The corresponding values in lateral direction were 0.13 cm 0.1 cm and 0.4 cm with XVI and 0.13 cm, 0.12 cm and 0.42 cm with ExacTrac imaging. The same parameters for antero-posterior were for 0.1 cm, 0.11 cm and 0.34 cm with XVI and 0.13 cm, 0.16 cm and 0.43 cm with ExacTrac imaging. The margins estimated with the two imaging modalities were comparable within ± 1 mm limit. Conclusion: Verification of setup errors in the major axes by two independent imaging systems showed the results are comparable and within ± 1 mm. This implies that planar imaging based ExacTrac can yield equal accuracy in setup error determination as the time consuming volumetric imaging which is considered as the gold standard. Accordingly PTV margins estimated by this faster imaging technique can be confidently used in clinical setup.

  2. Computer System,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    undergraduate summer institute http:institutes.lanl.govistisummer-school 2015 Computer System, Cluster, and Networking Summer Institute Purpose The Computer System,...

  3. Computational Transportation

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    ), in-vehicle computers, and computers in the transportation infrastructure are integrated ride- sharing, real-time multi-modal routing and navigation, to autonomous/assisted driving

  4. Heat Transfer in Complex Fluids

    SciTech Connect (OSTI)

    Mehrdad Massoudi

    2012-01-01T23:59:59.000Z

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

  5. System and technique for ultrasonic determination of degree of cooking

    DOE Patents [OSTI]

    Bond, Leonard J. (Richland, WA); Diaz, Aaron A. (W. Richland, WA); Judd, Kayte M. (Richland, WA); Pappas, Richard A. (Richland, WA); Cliff, William C. (Richland, WA); Pfund, David M. (Richland, WA); Morgen, Gerald P. (Kennewick, WA)

    2007-03-20T23:59:59.000Z

    A method and apparatus are described for determining the doneness of food during a cooking process. Ultrasonic signal are passed through the food during cooking. The change in transmission characteristics of the ultrasonic signal during the cooking process is measured to determine the point at which the food has been cooked to the proper level. In one aspect, a heated fluid cooks the food, and the transmission characteristics along a fluid-only ultrasonic path provides a reference for comparison with the transmission characteristics for a food-fluid ultrasonic path.

  6. Making Computer Vision Computationally Efficient

    E-Print Network [OSTI]

    Sundaram, Narayanan

    2012-01-01T23:59:59.000Z

    Workloads 4 Parallelizing Computer Vision 4.1 Numerical9.1.1 Pattern analysis of computer vision workloads 9.1.23 Understanding Computer Vision 3.1 Patterns and

  7. Computing at Scale Technion Computer

    E-Print Network [OSTI]

    Schuster, Assaf

    Interdisciplinary Center for Life Sciences & Engineering COMPUTER SCIENCE ELECTRICAL ENGINEERING IBM HRL Yahoo Interdisciplinary Center for Life Sciences & Engineering COMPUTER SCIENCE ELECTRICAL ENGINEERING IBM HRL Yah oo! Mi Sciences & Engineering COMPUTER SCIENCE ELECTRICAL ENGINEERING IBM HRL Yahoo! Microsoft Google Mellanox

  8. Fluid Construction Grammar on Real Robots

    E-Print Network [OSTI]

    Steels, Luc

    Chapter 10 Fluid Construction Grammar on Real Robots Luc Steels1,2, Joachim De Beule3, and Pieter and P. Wellens (2012). Fluid Construction Grammar on Real Robots. In Luc Steels and Manfred Hild (Eds game experiments reported in this book. This framework is called Fluid Construction Grammar (FCG

  9. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    .zevenhoven@abo.fi 2Fluid&ParticulateSystems 424514/2010 Fluid&ParticulateSystems ĹA424514/2014 2.1 Flow tube sections / Turku Finland RoNz 3 Fluid Flow in Tube Systems loss 2 2 1 pump 2 2 1 ppwzgppwzg outoutoutoutininininloss,311 ' 3 ppzgp 2loss,322 ' 3 ppzgp 210 VVV For a fully developed turbulent flow (horizontal

  10. Harmonic Fluids Changxi Zheng Doug L. James

    E-Print Network [OSTI]

    Columbia University

    Harmonic Fluids Changxi Zheng Doug L. James Cornell University Abstract Fluid sounds- ing. Furthermore, while offline applications can rely on talented foley artists to "cook up" plausible for vortex-based fluid sounds [Dobashi et al. 2003] and solid bodies [O'Brien et al. 2001; James et al. 2006

  11. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    Santos, Juan

    SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated from natural

  12. Non-invasive fluid density and viscosity measurement

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM)

    2012-05-01T23:59:59.000Z

    The noninvasively measurement of the density and viscosity of static or flowing fluids in a section of pipe such that the pipe performs as the sensing apparatus, is described. Measurement of a suitable structural vibration resonance frequency of the pipe and the width of this resonance permits the density and viscosity to be determined, respectively. The viscosity may also be measured by monitoring the decay in time of a vibration resonance in the pipe.

  13. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2011; 00:123

    E-Print Network [OSTI]

    Buscaglia, Gustavo C.

    , magma chambers, fluid­fuel interactions, crude oil recovery, spray cans, sediment transport in riversINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2011; 00 for the treatment of discontinuous pressures in multi­fluid flows Roberto F. Ausas1 , Gustavo C. Buscaglia1

  14. An FDTD Method for Analysis of Scattering from Rough FluidFluid Interfaces

    E-Print Network [OSTI]

    Schneider, John B.

    results are presented for fluid­fluid cases modeling water­sediment inter­ faces. Two different roughness speeds in shallow­water sediment bottoms are relatively slow, a fluid­ fluid model is a reasonable to the interface, and a correc­ tion for the numerical dispersion inherent to the FDTD algorithm. Numeri­ cal

  15. Enhanced Wellbore Stabilization and Reservoir Productivity with Aphron Drilling Fluid Technology

    SciTech Connect (OSTI)

    Fred Growcock

    2004-03-31T23:59:59.000Z

    During this second Quarter of the Project, the first four tasks of Phase I--all focusing on the behavior of aphrons--were continued: (a) Aphron Visualization--evaluate and utilize various methods of monitoring and measuring aphron size distribution at elevated pressure; (b) Fluid Density--investigate the effects of pressure, temperature and chemical composition on the survivability of aphrons; (c) Aphron Air Diffusivity--determine the rate of loss of air from aphrons during pressurization; and (d) Pressure Transmissibility--determine whether aphron bridges created in fractures and pore throats reduce fracture propagation. The project team expanded the laboratory facilities and purchased a high-pressure system to measure bubble size distribution, a dissolved oxygen (DO) probe and computers for data acquisition. Although MASI Technologies LLC is not explicitly ISO-certified, all procedures are being documented in a manner commensurate with ISO 9001 certification, including equipment inventory and calibration, data gathering and reporting, chemical inventory and supplier data base, waste management procedures and emergency response plan. Several opportunities presented themselves to share the latest aphron drilling fluid technology with potential clients, including presentation of papers and working exhibit booths at the IADC/SPE Drilling Conference and the SPE Coiled Tubing Conference & Exhibition. In addition, a brief trip to the Formation Damage Symposium resulted in contacts for possible collaboration with ActiSystems, the University of Alberta and TUDRP/ACTS at the University of Tulsa. Preliminary results indicate that the Aphron Visualization and Pressure Transmissibility tasks should be completed on time. Although the Aphron Air Diffusivity task has been impeded by the lack of a suitable DO probe, it is hoped to be completed on time, too. The Fluid Density task, on the other hand, has had significant delays caused by faulty equipment and will likely require an additional month of work. Meanwhile, an assessment of potential methodologies for the Aphron Hydrophobicity project has been initiated and is now focused on measuring wettability of the aphron surface rather than interfacial tension.

  16. Selection and Evaluation of a new Pu Density Measurement Fluid

    SciTech Connect (OSTI)

    Dziewinska, Krystyna [Los Alamos National Laboratory; Peters, Michael A [Los Alamos National Laboratory; Martinez, Patrick P [Los Alamos National Laboratory; Dziewinski, Jacek J [Los Alamos National Laboratory; Pugmire, David L [Los Alamos National Laboratory; Trujillo, Stephen M [Los Alamos National Laboratory; La Verne, Jake A [UNIV OF NOTRE DAME; Rajesh, P [UNIV OF NOTRE DAME

    2009-01-01T23:59:59.000Z

    This paper summarizes efforts leading to selection of a new fluid for the determination of the density of large Pu parts. Based on an extended literature search, perfluorotributylamine (FC-43) was chosen for an experimental study. Plutonium coupon corrosion studies were performed by exposing Pu to deaerated and aerated solutions and measuring corrosion gravimetrically. Corrosion rates were determined. Samples of deaerated and aerated perfuluorotributylamine (FC-43) were also irradiated with {sup 60}Co gamma rays (96 Gy/min) to various doses. The samples were extracted with NaOH and analyzed by IC and showed the presence of F and Cl{sup -}. The G-values were established. In surface study experiments Pu coupons were exposed to deaerated and aerated solutions of FC-43 and analyzed by X-ray photoelectron spectroscopy (XPS). The XPS data indicate that there is no detectable surface effect caused by the new fluid. In conclusion the FC-43 was determined to be a very effective and practical fluid for Pu density measurements.

  17. Extended fluid models: Pressure tensor effects and equilibria

    SciTech Connect (OSTI)

    Cerri, S. S. [Physics Department “E. Fermi,” University of Pisa and CNISM, Largo B. Pontecorvo 3, 56127 Pisa (Italy) [Physics Department “E. Fermi,” University of Pisa and CNISM, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Max-Planck-Institut für Plasmaphysik, EURATOM association, Boltzmannstr. 2, D-85748 Garching (Germany); Henri, P. [Physics Department “E. Fermi,” University of Pisa and CNISM, Largo B. Pontecorvo 3, 56127 Pisa (Italy) [Physics Department “E. Fermi,” University of Pisa and CNISM, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Université de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, BP 4229 06304, Nice Cedex 4 (France); Califano, F.; Pegoraro, F. [Physics Department “E. Fermi,” University of Pisa and CNISM, Largo B. Pontecorvo 3, 56127 Pisa (Italy)] [Physics Department “E. Fermi,” University of Pisa and CNISM, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Del Sarto, D. [Institut Jean Lamour, UMR 7198 CNRS – Université de Lorraine, BP 239 F-54506 Vandoeuvre les Nancy (France)] [Institut Jean Lamour, UMR 7198 CNRS – Université de Lorraine, BP 239 F-54506 Vandoeuvre les Nancy (France); Faganello, M. [International Institute for Fusion Science/PIIM, UMR 7345 CNRS Aix-Marseille University, Marseille (France)] [International Institute for Fusion Science/PIIM, UMR 7345 CNRS Aix-Marseille University, Marseille (France)

    2013-11-15T23:59:59.000Z

    We consider the use of “extended fluid models” as a viable alternative to computationally demanding kinetic simulations in order to manage the global large scale evolution of a collisionless plasma while accounting for the main effects that come into play when spatial micro-scales of the order of the ion inertial scale d{sub i} and of the thermal ion Larmor radius ?{sub i} are formed. We present an extended two-fluid model that retains finite Larmor radius (FLR) corrections to the ion pressure tensor while electron inertia terms and heat fluxes are neglected. Within this model we calculate analytic FLR plasma equilibria in the presence of a shear flow and elucidate the role of the magnetic field asymmetry. Using a Hybrid Vlasov code, we show that these analytic equilibria offer a significant improvement with respect to conventional magnetohydrodynamic shear-flow equilibria when initializing kinetic simulations.

  18. Petroleum fluids Pac expands solution of engineering problems

    SciTech Connect (OSTI)

    Meehan, D.N.

    1982-01-01T23:59:59.000Z

    A new set of calculator programs permits greatly simplified estimates of important oil and gas fluid properties. These programs can all be used individually or as subroutines for user-generated programs. But perhaps the most significant feature of this new Pac is the simple approach to handling the computational and dimensional aspects of reservoir engineering problems. The new Pac contains 18 programs that calculate properties for natural gases, oils, and oil-field brines. In addition to these main programs, the Pac contains a library of 54 subroutines for input, output, and fluid property calculations. Its modular design alows the user to easily write programs to solve more difficult reservoir engineering programs in a fraction of the time and program space required without the Pac. The programs are all contained in a module which can be plugged into any HP-41C or HP-41CV. 1 ref.

  19. Fluid dynamics on sieve trays

    SciTech Connect (OSTI)

    Hag, M.A.

    1982-08-01T23:59:59.000Z

    A study was conducted to investigate the effects of fluid properties on the hydrodynamics of sieve tray columns. The study showed that changes in liquid viscosity influenced froth height, while changes in liquid surface tension and density influenced total pressure drop across the trays. Liquid holdup was independent of these solution properties. The liquid systems used for the study were: water/glycerol for viscosity, water/ethanol for surface tension and methanol/chloroform for density.

  20. Tensiometer and method of determining soil moisture potential in below-grade earthen soil

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Mattson, Earl D. (Albuquerque, NM); Sisson, James B. (Idaho Falls, ID)

    1998-01-01T23:59:59.000Z

    A tensiometer to in situ determine below-grade soil moisture, potential of earthen soil includes, a) an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and, comprising; b) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; c) a first fluid conduit extending outwardly of the first fluid chamber; d) a first controllable isolation valve provided within the first fluid conduit, the first controllable isolation valve defining a second fluid chamber in fluid communication with the first fluid chamber through the first fluid conduit and the isolation valve, the first controllable isolation valve being received within the below-grade portion; and e) a pressure transducer in fluid communication with the first fluid chamber, the pressure transducer being received within the below-grade portion. An alternate embodiment includes an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and including: i) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; and ii) a pressure sensing apparatus in fluid communication with the first fluid chamber, the pressure sensing apparatus being entirely received within the below-grade portion. A method is also disclosed using the above and other apparatus.

  1. Tensiometer and method of determining soil moisture potential in below-grade earthen soil

    DOE Patents [OSTI]

    Hubbell, J.M.; Mattson, E.D.; Sisson, J.B.

    1998-06-02T23:59:59.000Z

    A tensiometer to in-situ determine below-grade soil moisture, potential of earthen soil includes, (a) an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and, comprising; (b) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; (c) a first fluid conduit extending outwardly of the first fluid chamber; (d) a first controllable isolation valve provided within the first fluid conduit, the first controllable isolation valve defining a second fluid chamber in fluid communication with the first fluid chamber through the first fluid conduit and the isolation valve, the first controllable isolation valve being received within the below-grade portion; and (e) a pressure transducer in fluid communication with the first fluid chamber, the pressure transducer being received within the below-grade portion. An alternate embodiment includes an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and including: (1) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; and (2) a pressure sensing apparatus in fluid communication with the first fluid chamber, the pressure sensing apparatus being entirely received within the below-grade portion. A method is also disclosed using the above and other apparatus. 6 figs.

  2. Absolute measurement of the viscosity of classical and quantum fluids by rotating-cylinder viscometers

    SciTech Connect (OSTI)

    Donnelly, R.J.; LaMar, M.M.

    1987-11-01T23:59:59.000Z

    We discuss the use of rotating-cylinder viscometers to determine absolute shear viscosities of classical fluids and of helium II in the context of past and current knowledge of the stability and flow of these fluids between concentric cylinders. We identify a problem in measuring the absolute viscosity when the inner cylinder is rotating and the outer cylinder is at rest. We conclude by discussing the design of viscometers for absolute viscosity measurements in helium I and helium II.

  3. Research on drilling fluids and cement slurries at Standard Oil Production Company: an internship report 

    E-Print Network [OSTI]

    Flipse, Eugene Charles, 1956-

    2013-03-13T23:59:59.000Z

    as reasonably valuable resources. A slightly different vendor seminar was provided by International Drilling Fluids (IDF). IDF had been invited to give a presentation on a specific drilling fluid for use on a specific well. IDF employed more indirect sales... with some of the other software packages such as data base managers and spreadsheets to determine if they would meet our software needs. ADMINISTRATIVE SERVICES As mentioned previously, I was the junior member of a two person operating group...

  4. Spectrometer for measuring the concentration of components in a fluid stream and method for using same

    DOE Patents [OSTI]

    Durham, Michael D. (Castle Rock, CO); Stedman, Donald H. (Englewood, CO); Ebner, Timothy G. (Westminster, CO); Burkhardt, Mark R. (Englewood, CO)

    1991-01-01T23:59:59.000Z

    A device and method for measuring the concentrations of components of a fluid stream. Preferably, the fluid stream is an in situ gas stream, such as a fossil fuel fired flue gas in a smoke stack. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The need for a reference intensity is eliminated.

  5. Spectrometer for measuring the concentration of components in a fluid stream and method for using same

    DOE Patents [OSTI]

    Durham, M.D.; Stedman, D.H.; Ebner, T.G.; Burkhardt, M.R.

    1991-12-03T23:59:59.000Z

    A device and method are described for measuring the concentrations of components of a fluid stream. Preferably, the fluid stream is an in-situ gas stream, such as a fossil fuel fired flue gas in a smoke stack. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The need for a reference intensity is eliminated. 15 figures.

  6. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, James R. (Rigby, ID)

    1982-01-01T23:59:59.000Z

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  7. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1982-05-04T23:59:59.000Z

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

  8. Locomotion in complex fluids: Integral theorems

    E-Print Network [OSTI]

    Eric Lauga

    2014-10-15T23:59:59.000Z

    The biological fluids encountered by self-propelled cells display complex microstructures and rheology. We consider here the general problem of low-Reynolds number locomotion in a complex fluid. {Building on classical work on the transport of particles in viscoelastic fluids,} we demonstrate how to mathematically derive three integral theorems relating the arbitrary motion of an isolated organism to its swimming kinematics {in a non-Newtonian fluid}. These theorems correspond to three situations of interest, namely (1) squirming motion in a linear viscoelastic fluid, (2) arbitrary surface deformation in a weakly non-Newtonian fluid, and (3) small-amplitude deformation in an arbitrarily non-Newtonian fluid. Our final results, valid for a wide-class of {swimmer geometry,} surface kinematics and constitutive models, at most require mathematical knowledge of a series of Newtonian flow problems, and will be useful to quantity the locomotion of biological and synthetic swimmers in complex environments.

  9. Rotational viscometer for high-pressure high-temperature fluids

    DOE Patents [OSTI]

    Carr, Kenneth R. (Knoxville, TN)

    1985-01-01T23:59:59.000Z

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer includes a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. An output is generated indicative of the phase difference between the two waveforms.

  10. Noninvasive identification of fluids by swept-frequency acoustic interferometry

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM)

    1998-01-01T23:59:59.000Z

    A method for rapid, noninvasive identification and monitoring of chemicals in sealed containers or containers where direct access to the chemical is not possible is described. Multiple ultrasonic acoustic properties (up to four) of a fluid are simultaneously determined. The present invention can be used for chemical identification and for determining changes in known chemicals from a variety of sources. It is not possible to identify all known chemicals based on the measured parameters, but known classes of chemicals in suspected containers, such as in chemical munitions, can be characterized. In addition, a large number of industrial chemicals can be identified.

  11. Application of Computational Physics: Blood Vessel Constrictions and Medical Infuses

    E-Print Network [OSTI]

    Suprijadi; Mohamad Rendi; Petrus Subekti; Sparisoma Viridi

    2013-12-14T23:59:59.000Z

    Application of computation in many fields are growing fast in last two decades. Increasing on computation performance helps researchers to understand natural phenomena in many fields of science and technology including in life sciences. Computational fluid dynamic is one of numerical methods which is very popular used to describe those phenomena. In this paper we propose moving particle semi-implicit (MPS) and molecular dynamics (MD) to describe different phenomena in blood vessel. The effect of increasing the blood pressure on vessel wall will be calculate using MD methods, while the two fluid blending dynamics will be discussed using MPS. Result from the first phenomenon shows that around 80% of constriction on blood vessel make blood vessel increase and will start to leak on vessel wall, while from the second phenomenon the result shows the visualization of two fluids mixture (drugs and blood) influenced by ratio of drugs debit to blood debit. Keywords: molecular dynamic, blood vessel, fluid dynamic, moving particle semi implicit.

  12. Application of Computational Physics: Blood Vessel Constrictions and Medical Infuses

    E-Print Network [OSTI]

    Suprijadi,; Subekti, Petrus; Viridi, Sparisoma

    2013-01-01T23:59:59.000Z

    Application of computation in many fields are growing fast in last two decades. Increasing on computation performance helps researchers to understand natural phenomena in many fields of science and technology including in life sciences. Computational fluid dynamic is one of numerical methods which is very popular used to describe those phenomena. In this paper we propose moving particle semi-implicit (MPS) and molecular dynamics (MD) to describe different phenomena in blood vessel. The effect of increasing the blood pressure on vessel wall will be calculate using MD methods, while the two fluid blending dynamics will be discussed using MPS. Result from the first phenomenon shows that around 80% of constriction on blood vessel make blood vessel increase and will start to leak on vessel wall, while from the second phenomenon the result shows the visualization of two fluids mixture (drugs and blood) influenced by ratio of drugs debit to blood debit. Keywords: molecular dynamic, blood vessel, fluid dynamic, movin...

  13. Multiple source/multiple target fluid transfer apparatus

    DOE Patents [OSTI]

    Turner, Terry D. (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A fluid transfer apparatus includes: a) a plurality of orifices for connection with fluid sources; b) a plurality of orifices for connection with fluid targets; c) a set of fluid source conduits and fluid target conduits associated with the orifices; d) a pump fluidically interposed between the source and target conduits to transfer fluid therebetween; e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; g) pump control means for controlling operation of the pump; h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits.

  14. Some Mathematical and Numerical Issues in Geophysical Fluid Dynamics and Climate Dynamics

    E-Print Network [OSTI]

    Jianping Li; Shouhong Wang

    2007-11-12T23:59:59.000Z

    In this article, we address both recent advances and open questions in some mathematical and computational issues in geophysical fluid dynamics (GFD) and climate dynamics. The main focus is on 1) the primitive equations (PEs) models and their related mathematical and computational issues, 2) climate variability, predictability and successive bifurcation, and 3) a new dynamical systems theory and its applications to GFD and climate dynamics.

  15. On the Dynamics of Magnetic Fluids in Magnetic Resonance Padraig J. Cantillon-Murphy

    E-Print Network [OSTI]

    in Magnetic Resonance Imaging by Padraig J. Cantillon-Murphy B.E., Electrical and Electronic EngineeringOn the Dynamics of Magnetic Fluids in Magnetic Resonance Imaging by Padraig J. Cantillon-Murphy Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment

  16. Journal of Fluids and Structures 24 (2008) 250269 Numerical and experimental study of expiratory flow

    E-Print Network [OSTI]

    Van Hirtum, Annemie

    2008-01-01T23:59:59.000Z

    , the pharynx, the mouth and the larynx (Fig. 1), is the most external part of the respiratory system. Modelling deformations has been chosen to compute the mechanical behaviour of the tongue. The main features of the flow and Depollier, 1995; Huang, 1995; Balint and Lucey, 2005), numerical simulations of the respiratory fluid flow

  17. Perturbation Analysis for Stochastic Fluid Queueing Systems Yong Liu and Weibo Gong

    E-Print Network [OSTI]

    Liu, Yong

    Perturbation Analysis for Stochastic Fluid Queueing Systems Yong Liu and Weibo Gong Department of Electrical and Computer Engineering University of Massachusetts, Amherst yonliu,gong@ecs.umass.edu Abstract different from ours. A simpler version of this work was first presented in Liu and Gong (1999). · Although

  18. Mathematical Modeling and Simulation for Applications of Fluid Flow in Porous Media \\Lambda

    E-Print Network [OSTI]

    Ewing, Richard E.

    Mathematical Modeling and Simulation for Applications of Fluid Flow in Porous Media \\Lambda Richard descriptions at various length scales, modeling the effects of this heterogeneity of the porous medium a computer code has been developed which gives concrete quantitative results for the total model, this out

  19. Extending the Photon Mapping Method for Realistic Rendering of Hot Gaseous Fluids

    E-Print Network [OSTI]

    Texas at Austin, University of

    sophistication and use of heated gas, fire, and explosion simulations in computer graphics applications gaseous fluids, ranging from simple smoke and gas to fire flames and explosions, abound in the real world, simulated flames and explosion were visualized using color maps, obtained from reference im- ages [1, 2, 3

  20. Journal of Fluids and Structures 20 (2005) 753762 Fluidstructure interaction and transient cavitation tests in a

    E-Print Network [OSTI]

    Tijsseling, A.S.

    cavitation tests in a T-piece pipe A.S. Tijsselinga,�, A.E. Vardyb a Department of Mathematics and Computer­structure interaction (FSI) and vaporous cavitation is presented. The model is a closed, water-filled, T of the cavitation phenomenon. r 2005 Elsevier Ltd. All rights reserved. Keywords: Water hammer; Fluid

  1. Mechanics of layered anisotropic poroelastic media with applications to effective stress for fluid permeability

    SciTech Connect (OSTI)

    Berryman, J.G.

    2010-06-01T23:59:59.000Z

    The mechanics of vertically layered porous media has some similarities to and some differences from the more typical layered analysis for purely elastic media. Assuming welded solid contact at the solid-solid interfaces implies the usual continuity conditions, which are continuity of the vertical (layering direction) stress components and the horizontal strain components. These conditions are valid for both elastic and poroelastic media. Differences arise through the conditions for the pore pressure and the increment of fluid content in the context of fluid-saturated porous media. The two distinct conditions most often considered between any pair of contiguous layers are: (1) an undrained fluid condition at the interface, meaning that the increment of fluid content is zero (i.e., {delta}{zeta} = 0), or (2) fluid pressure continuity at the interface, implying that the change in fluid pressure is zero across the interface (i.e., {delta}p{sub f} = 0). Depending on the types of measurements being made on the system and the pertinent boundary conditions for these measurements, either (or neither) of these two conditions might be directly pertinent. But these conditions are sufficient nevertheless to be used as thought experiments to determine the expected values of all the poroelastic coefficients. For quasi-static mechanical changes over long time periods, we expect drained conditions to hold, so the pressure must then be continuous. For high frequency wave propagation, the pore-fluid typically acts as if it were undrained (or very nearly so), with vanishing of the fluid increment at the boundaries being appropriate. Poroelastic analysis of both these end-member cases is discussed, and the general equations for a variety of applications to heterogeneous porous media are developed. In particular, effective stress for the fluid permeability of such poroelastic systems is considered; fluid permeabilities characteristic of granular media or tubular pore shapes are treated in some detail, as are permeabilities of some of the simpler types of fractured materials.

  2. Community computation

    E-Print Network [OSTI]

    Li, Fulu, 1970-

    2009-01-01T23:59:59.000Z

    In this thesis we lay the foundations for a distributed, community-based computing environment to tap the resources of a community to better perform some tasks, either computationally hard or economically prohibitive, or ...

  3. Cloud Computing

    SciTech Connect (OSTI)

    Pete Beckman and Ian Foster

    2009-12-04T23:59:59.000Z

    Chicago Matters: Beyond Burnham (WTTW). Chicago has become a world center of "cloud computing." Argonne experts Pete Beckman and Ian Foster explain what "cloud computing" is and how you probably already use it on a daily basis.

  4. Immersible solar heater for fluids

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC)

    1995-01-01T23:59:59.000Z

    An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  5. Fluid cooled vehicle drive module

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-11-15T23:59:59.000Z

    An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  6. Fluid Imaging | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs Valley Area (DOEARRA Funded Projects for Fluid

  7. Maximally Random Jamming of Two-Dimensional One-Component and Binary Hard Disc Fluids

    E-Print Network [OSTI]

    Xinliang Xu; Stuart A. Rice

    2010-10-05T23:59:59.000Z

    We report calculations of the density of maximally random jamming (aka random close packing) of one-component and binary hard disc fluids. The theoretical structure used provides a common framework for description of the hard disc liquid to hexatic, the liquid to hexagonal crystal and the liquid-to-maximally random jammed state transitions. Our analysis is based on locating a particular bifurcation of the solutions of the integral equation for the inhomogeneous single particle density at the transition between different spatial structures. The bifurcation of solutions we study is initiated from the dense metastable fluid, and we associate it with the limit of stability of the fluid, which we identify with the transition from the metastable fluid to a maximally random jammed state. For the one-component hard disc fluid the predicted packing fraction at which the metastable fluid to maximally random jammed state transition occurs is 0.84, in excellent agreement with the experimental value 0.84 \\pm 0.02. The corresponding analysis of the limit of stability of a binary hard disc fluid with specified disc diameter ratio and disc composition requires extra approximations in the representations of the direct correlation function, the equation of state, and the number of order parameters accounted for. Keeping only the order parameter identified with the largest peak in the structure factor of the highest density regular lattice with the same disc diameter ratio and disc composition as the binary fluid, the predicted density of maximally random jamming is found to be 0.84 to 0.87, depending on the equation of state used, and very weakly dependent on the ratio of disc diameters and the fluid composition, in agreement with both experimental data and computer simulation data.

  8. Light Computing

    E-Print Network [OSTI]

    Gordon Chalmers

    2006-10-13T23:59:59.000Z

    A configuration of light pulses is generated, together with emitters and receptors, that allows computing. The computing is extraordinarily high in number of flops per second, exceeding the capability of a quantum computer for a given size and coherence region. The emitters and receptors are based on the quantum diode, which can emit and detect individual photons with high accuracy.

  9. Computational Bioinformatics

    E-Print Network [OSTI]

    Gross, Louis J.

    Computational Ecology Bioinformatics The biological sciences have become increasingly quantitative:25­2:15 Location: TBA Section Number: 59692 Computational Biology Spring 1998 Text: Models in Biology: Mathematics with entirely new subdisciplines having developed recently which apply modern computational methods to basic

  10. System and method for filling a plurality of isolated vehicle fluid circuits through a common fluid fill port

    SciTech Connect (OSTI)

    Sullivan, Scott C; Fansler, Douglas

    2014-10-14T23:59:59.000Z

    A vehicle having multiple isolated fluid circuits configured to be filled through a common fill port includes a first fluid circuit disposed within the vehicle, the first fluid circuit having a first fill port, a second fluid circuit disposed within the vehicle, and a conduit defining a fluid passageway between the first fluid circuit and second fluid circuit, the conduit including a valve. The valve is configured such that the first and second fluid circuits are fluidly coupled via the passageway when the valve is open, and are fluidly isolated when the valve is closed.

  11. Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method

    DOE Patents [OSTI]

    Sinha, Dipen N

    2014-02-04T23:59:59.000Z

    An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.

  12. Supercritical fluid thermodynamics for coal processing

    SciTech Connect (OSTI)

    van Swol, F. (Illinois Univ., Urbana, IL (United States). Dept. of Chemical Engineering); Eckert, C.A. (Georgia Inst. of Tech., Atlanta, GA (United States). School of Chemical Engineering)

    1988-09-15T23:59:59.000Z

    The main objective of this research is to develop an equation of state that can be used to predict solubilities and tailor supercritical fluid solvents for the extraction and processing of coal. To meet this objective we have implemented a two-sided. approach. First, we expanded the database of model coal compound solubilities in higher temperature fluids, polar fluids, and fluid mixtures systems. Second, the unique solute/solute, solute/cosolvent and solute/solvent intermolecular interactions in supercritical fluid solutions were investigated using spectroscopic techniques. These results increased our understanding of the molecular phenomena that affect solubility in supercritical fluids and were significant in the development of an equation of state that accurately reflects the true molecular makeup of the solution. (VC)

  13. On the equivalence of nonadiabatic fluids

    E-Print Network [OSTI]

    W. Barreto

    2010-11-17T23:59:59.000Z

    Here we show how an anisotropic fluid in the diffusion limit can be equivalent to an isotropic fluid in the streaming out limit, in spherical symmetry. For a particular equation of state this equivalence is total, from one fluid we can obtain the other and vice versa. A numerical master model is presented, based on a generic equation of state, in which only quantitative differences are displayed between both nonadiabatic fluids. From a deeper view, other difference between fluids is shown as an asymmetry that can be overcome if we consider the appropriate initial-boundary conditions. Equivalence in this context can be considered as a first order method of approximation to study dissipative fluids.

  14. Split driveshaft pump for hazardous fluids

    DOE Patents [OSTI]

    Evans, II, Thomas P. (Aiken, SC); Purohit, Jwalit J. (Evans, GA); Fazio, John M. (Orchard Park, NY)

    1995-01-01T23:59:59.000Z

    A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.

  15. Drill-in fluids control formation damage

    SciTech Connect (OSTI)

    Halliday, W.S. (Baker Hughes Inteq, Houston, TX (United States))

    1994-12-01T23:59:59.000Z

    Several factors led to development, oil company interest in, and use of payzone drilling fluids, including operator concern about maximizing well production, increasing acceptance of horizontal drilling and openhole completion popularity. This article discusses water-base drill-in'' fluid systems and applications. Payzone damage, including fine solids migration, clay swelling and solids invasion, reduces effective formation permeability, which results in lower production rates. Formation damage is often caused by invasion of normal drilling fluids that contain barite or bentonite. Drill-in systems are designed with special bridging agents to minimize invasion. Several bridging materials designed to form effective filter cake for instantaneous leak-off control can be used. Bridging materials are also designed to minimize stages and time required to clean up wells before production. Fluids with easy-to-remove bridging agents reduce completion costs. Drill-in fluid bridging particles can often be removed more thoroughly than those in standard fluids.

  16. EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science CASA-Report 11 and Applications Department of Mathematics and Computer Science Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven, The Netherlands ISSN: 0926-4507 #12;#12;Proceedings of ASME-JSME-KSME Joint Fluids

  17. EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science CASA-Report 11 Department of Mathematics and Computer Science Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven, The Netherlands ISSN: 0926-4507 #12;#12;1 Fluid-structure interaction with pipe

  18. MHD computations for stellarators

    SciTech Connect (OSTI)

    Johnson, J.L.

    1985-12-01T23:59:59.000Z

    Considerable progress has been made in the development of computational techniques for studying the magnetohydrodynamic equilibrium and stability properties of three-dimensional configurations. Several different approaches have evolved to the point where comparison of results determined with different techniques shows good agreement. 55 refs., 7 figs.

  19. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1980-05-02T23:59:59.000Z

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  20. Fluid control structures in microfluidic devices

    DOE Patents [OSTI]

    Mathies, Richard A. (Moraga, CA); Grover, William H. (Berkeley, CA); Skelley, Alison (Berkeley, CA); Lagally, Eric (Oakland, CA); Liu, Chung N. (Albany, CA)

    2008-11-04T23:59:59.000Z

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  1. Critical phenomena in perfect fluids

    E-Print Network [OSTI]

    David W. Neilsen; Matthew W. Choptuik

    1999-04-18T23:59:59.000Z

    We investigate the gravitational collapse of a spherically symmetric, perfect fluid with equation of state P = (Gamma -1)rho. We restrict attention to the ultrarelativistic (``kinetic-energy-dominated'', ``scale-free'') limit where black hole formation is anticipated to turn on at infinitesimal black hole mass (Type II behavior). Critical solutions (those which sit at the threshold of black hole formation in parametrized families of collapse) are found by solving the system of ODEs which result from a self-similar ansatz, and by solving the full Einstein/fluid PDEs in spherical symmetry. These latter PDE solutions (``simulations'') extend the pioneering work of Evans and Coleman (Gamma = 4/3) and verify that the continuously self-similar solutions previously found by Maison and Hara et al for $1.05 Gamma_dn are nodal points rather than focal points as previously reported. We also find a critical solution for Gamma = 2, and present evidence that it is continuously self-similar and Type II. Mass-scaling exponents for all of the critical solutions are calculated by evolving near-critical initial data, with results which confirm and extend previous calculations based on linear perturbation theory. Finally, we comment on critical solutions generated with an ideal-gas equation of state.

  2. Process for retarding fluid flow

    SciTech Connect (OSTI)

    Sandford, B.B.; Zillmer, R.C.

    1989-01-10T23:59:59.000Z

    A process is described for retarding the flow of fluid in a subterranean formation, comprising: (a) introducing an effective amount of a gel-forming composition into a subterranean formation, the gel-forming composition being operable when gelled in the formation for retarding the flow of fluid therein. The gel-forming composition consists of: i. a first substance dissolved in water to form an aqueous solution, the first substance being selected from the group consisting of polyvivyl alcohols, and mixtures thereof, wherein the gel-forming composition contains an amount of the first substance of from about 0.5 to about 5 weight percent of the gel-forming composition, and ii. an effective amount of glutaraldehyde which is operable for forming a weakly acidic condition having a pH from about 5.5 to less than 7 in the gel-forming composition and also operable for promoting crosslinking of the first substance and glutaraldehyde and for forming a gel from the gel-forming composition under the weakly acidic condition within a period of time no greater than about 5 days without adding an acidic catalyst to the gel-forming composition to lower the pH of the gel-forming composition below about 5.5.

  3. Computation of multi-material interactions using point method

    SciTech Connect (OSTI)

    Zhang, Duan Z [Los Alamos National Laboratory; Ma, Xia [Los Alamos National Laboratory; Giguere, Paul T [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Calculations of fluid flows are often based on Eulerian description, while calculations of solid deformations are often based on Lagrangian description of the material. When the Eulerian descriptions are used to problems of solid deformations, the state variables, such as stress and damage, need to be advected, causing significant numerical diffusion error. When Lagrangian methods are used to problems involving large solid deformat ions or fluid flows, mesh distortion and entanglement are significant sources of error, and often lead to failure of the calculation. There are significant difficulties for either method when applied to problems involving large deformation of solids. To address these difficulties, particle-in-cell (PIC) method is introduced in the 1960s. In the method Eulerian meshes stay fixed and the Lagrangian particles move through the Eulerian meshes during the material deformation. Since its introduction, many improvements to the method have been made. The work of Sulsky et al. (1995, Comput. Phys. Commun. v. 87, pp. 236) provides a mathematical foundation for an improved version, material point method (MPM) of the PIC method. The unique advantages of the MPM method have led to many attempts of applying the method to problems involving interaction of different materials, such as fluid-structure interactions. These problems are multiphase flow or multimaterial deformation problems. In these problems pressures, material densities and volume fractions are determined by satisfying the continuity constraint. However, due to the difference in the approximations between the material point method and the Eulerian method, erroneous results for pressure will be obtained if the same scheme used in Eulerian methods for multiphase flows is used to calculate the pressure. To resolve this issue, we introduce a numerical scheme that satisfies the continuity requirement to higher order of accuracy in the sense of weak solutions for the continuity equations. Numerical examples are given to demonstrate the new scheme.

  4. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    santos

    SEISMIC MONITORING OF. CARBON DIOXIDE FLUID FLOW. J. E. Santos. 1. , G. B. Savioli. 2. , J. M. Carcione. 3. , D. Gei. 3. 1. CONICET, IGPUBA, Fac.

  5. Solution generating theorems for perfect fluid spheres

    E-Print Network [OSTI]

    Petarpa Boonserm; Matt Visser; Silke Weinfurtner

    2006-09-20T23:59:59.000Z

    The first static spherically symmetric perfect fluid solution with constant density was found by Schwarzschild in 1918. Generically, perfect fluid spheres are interesting because they are first approximations to any attempt at building a realistic model for a general relativistic star. Over the past 90 years a confusing tangle of specific perfect fluid spheres has been discovered, with most of these examples seemingly independent from each other. To bring some order to this collection, we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres. In addition, we develop new ``solution generating'' theorems for the TOV, whereby any given solution can be ``deformed'' to a new solution. Because these TOV-based theorems work directly in terms of the pressure profile and density profile it is relatively easy to impose regularity conditions at the centre of the fluid sphere.

  6. Coupled atomistic-continuum methods for fluids

    E-Print Network [OSTI]

    I will discuss the coupling scheme, its application to polymer fluids, and the major difficulties in implementations. In the second part of the talk, I will discuss the ...

  7. DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES...

    Open Energy Info (EERE)

    ANALYSES ON MUDLOG GRAPHS Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY...

  8. Methodologies for Reservoir Characterization Using Fluid Inclusion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Surveys Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy Creation of an Engineered Geothermal System through Hydraulic and Thermal Stimulation...

  9. Gas powered fluid gun with recoil mitigation

    DOE Patents [OSTI]

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12T23:59:59.000Z

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  10. Fourier's Law for a Granular Fluid

    E-Print Network [OSTI]

    James W. Dufty

    2007-07-07T23:59:59.000Z

    Newton' viscosity law for the momentum flux and Fourier's law for the heat flux define Navier-Stokes hydrodynamics for a simple, one component fluid. There is ample evidence that a hydrodynamic description applies as well to a mesoscopic granular fluid with the same form for Newton's viscosity law. However, theory predicts a qualitative difference for Fourier's law with an additional contribution from density gradients even at uniform temperature. The reasons for the absence of such terms for normal fluids are indicated, and a related microscopic explanation for their existence in granular fluids is presented.

  11. Spinning Fluids: A Group Theoretical Approach

    E-Print Network [OSTI]

    Dario Capasso; Debajyoti Sarkar

    2014-04-07T23:59:59.000Z

    We extend the Lagrangian formulation of relativistic non-abelian fluids in group theory language. We propose a Mathisson-Papapetrou equation for spinning fluids in terms of the reduction limit of de Sitter group. The equation we find correctly boils down to the one for non-spinning fluids. We study the application of our results for an FRW cosmological background for fluids with no vorticity and for dusts in the vicinity of a Kerr black hole. We also explore two alternative approaches based on a group theoretical formulation of particles dynamics.

  12. Identification of fluids and an interface between fluids

    DOE Patents [OSTI]

    Lee, D.O.; Wayland, J.R. Jr.

    1988-03-10T23:59:59.000Z

    Complex impedance measured over a predefined frequency range is used to determine the identity of different oils in a column. The location of an interface between the oils is determined from the percent frequency effects of the complex impedance measured across the interface. 4 figs.

  13. Under consideration for publication in J. Fluid Mech. 1 Hydroelastic waves on fluid sheets

    E-Print Network [OSTI]

    Parau, Emilian I.

    ). In particular our work may find application in flat plate-type fuel assemblies found in nuclear reactor coolingUnder consideration for publication in J. Fluid Mech. 1 Hydroelastic waves on fluid sheets M. G. B 6BT, UK (Received 26 March 2012) Nonlinear travelling waves on a two-dimensional inviscid fluid

  14. Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light Jean.delville@cpmoh.u-bordeaux1.fr Abstract: The development of microfluidic devices is still hindered by the lack of robust to extend this concept to microfluidic two-phase flows. First, we investigate the destabilization of fluid

  15. Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment

    SciTech Connect (OSTI)

    Mitran, Sorin, E-mail: mitran@unc.edu

    2013-07-01T23:59:59.000Z

    The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.

  16. Ice Shelves as Floating Channel Flows of Viscous Power-Law Fluids

    E-Print Network [OSTI]

    Banik, Indranil

    2013-01-01T23:59:59.000Z

    We attempt to better understand the flow of marine ice sheets. Treating ice as a viscous shear-thinning power law fluid, we develop an asymptotic (late-time) theory in two cases - the presence or absence of contact with sidewalls. Most real-world situations fall somewhere between the two extreme cases considered. When sidewalls are absent, we obtain the equilibrium grounding line thickness using a simple computer model and have an analytic approximation. For shelves in contact with sidewalls, we obtain an asymptotic theory, valid for long shelves. Our theory is based on the velocity profile across the channel being a generalised version of Poiseuille flow, which works when lateral shear dominates the force balance. We determine when this is. We conducted experiments using a laboratory model for ice. This was a suspension of xanthan in water, at a concentration of 0.5% by mass. The lab model has $n \\approx 3.8$ (similar to that of ice). The experiments agreed extremely well with our theories for all relevant p...

  17. A hybrid fluid simulation on the Graphics Processing Unit (GPU)

    E-Print Network [OSTI]

    Flannery, Rebecca Lynn

    2008-10-10T23:59:59.000Z

    . . . . . . . . . . . . . . 13 E. GPU Simulations . . . . . . . . . . . . . . . . . . . . . . . 14 III METHODOLOGY : : : : : : : : : : : : : : : : : : : : : : : : : 16 A. The Programmable GPU . . . . . . . . . . . . . . . . . . . 16 B. Computation on the GPU...) community and has since been adapted for use in computer graphics. In this method, a set of massless marker particles is used to track the position of the uid. The particles have no e ect on the motion of the uid but are used only to determine whether a...

  18. Immersible solar heater for fluids

    DOE Patents [OSTI]

    Kronberg, J.W.

    1995-07-11T23:59:59.000Z

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.

  19. Immersible solar heater for fluids

    DOE Patents [OSTI]

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01T23:59:59.000Z

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  20. Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy

    Broader source: Energy.gov [DOE]

    Determine if fracturing could be used to enhance permeability; and whether dilution of existing fluids with injected water would lower corrosivity enough to allow economic production of power.

  1. Textured-surface quartz resonator fluid density and viscosity monitor

    DOE Patents [OSTI]

    Martin, Stephen J. (Albuquerque, NM); Wiczer, James J. (Albuquerque, NM); Cernosek, Richard W. (Albuquerque, NM); Frye, Gregory C. (Cedar Crest, NM); Gebert, Charles T. (Albuquerque, NM); Casaus, Leonard (Bernalillo, NM); Mitchell, Mary A. (Tijeras, NM)

    1998-08-25T23:59:59.000Z

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  2. Foam vessel for cryogenic fluid storage

    DOE Patents [OSTI]

    Spear, Jonathan D (San Francisco, CA)

    2011-07-05T23:59:59.000Z

    Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.

  3. Geothermal Reservoir Evaluation Considering Fluid Adsorption

    E-Print Network [OSTI]

    Stanford University

    SGP-"R- 68 Geothermal Reservoir Evaluation Considering Fluid Adsorption and Composition Michael J, California #12;GEOTHERMAL RESERVOIR EVALUATION CONSIDERING FLUID ADSORPTION AND COMPOSITION A DISSERTATIONFtion phenomena is described. Then, t h e implications of adsorption on material balance calculations and on vel1

  4. Mechanical Engineering ME 3720 FLUID MECHANICS

    E-Print Network [OSTI]

    Panchagnula, Mahesh

    . Fundamentals of fluid flow; fluid statics; systems, and control volumes; continuity, momentum and energy physical model results to prototype 10. Use Moody chart to calculate friction losses in pipe flows 11 equations; dynamic similitude; One-dimensional compressible flow. The objective(s) of this course is (are

  5. A General Nonlinear Fluid Model for Reacting Plasma-Neutral Mixtures

    SciTech Connect (OSTI)

    Meier, E T; Shumlak, U

    2012-04-06T23:59:59.000Z

    A generalized, computationally tractable fluid model for capturing the effects of neutral particles in plasmas is derived. The model derivation begins with Boltzmann equations for singly charged ions, electrons, and a single neutral species. Electron-impact ionization, radiative recombination, and resonant charge exchange reactions are included. Moments of the reaction collision terms are detailed. Moments of the Boltzmann equations for electron, ion, and neutral species are combined to yield a two-component plasma-neutral fluid model. Separate density, momentum, and energy equations, each including reaction transfer terms, are produced for the plasma and neutral equations. The required closures for the plasma-neutral model are discussed.

  6. Fluid permeability measurement system and method

    DOE Patents [OSTI]

    Hallman, Jr., Russell Louis (Knoxville, TN); Renner, Michael John (Oak Ridge, TN)

    2008-02-05T23:59:59.000Z

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  7. Theory of locomotion through complex fluids

    E-Print Network [OSTI]

    Gwynn Elfring; Eric Lauga

    2014-10-16T23:59:59.000Z

    Microorganisms such as bacteria often swim in fluid environments that cannot be classified as Newtonian. Many biological fluids contain polymers or other heterogeneities which may yield complex rheology. For a given set of boundary conditions on a moving organism, flows can be substantially different in complex fluids, while non-Newtonian stresses can alter the gait of the microorganisms themselves. Heterogeneities in the fluid may also be characterized by length scales on the order of the organism itself leading to additional dynamic complexity. In this chapter we present a theoretical overview of small-scale locomotion in complex fluids with a focus on recent efforts quantifying the impact of non-Newtonian rheology on swimming microorganisms.

  8. Pumping viscoelastic two-fluid media

    E-Print Network [OSTI]

    Hirofumi Wada

    2010-04-08T23:59:59.000Z

    Using a two-fluid model for viscoelastic polymer solutions, we study analytically fluid transport driven by a transverse, small amplitude traveling wave propagation. The pumping flow far from the waving boundary is shown to be strongly wave number and viscosity dependent, in contrast to a viscous Newtonian fluid. We find the two qualitatively different regimes: In one regime relevant to small wave numbers, the fluidic transport is almost the same as the Newtonian case, and uniform viscoelastic constitutive equations provide a good approximation. In the other regime, the pumping is substantially decreased because of the gel-like character. The boundary separating these two regimes is clarified. Our results suggest possible needs of two-fluid descriptions for the transport and locomotion in biological fluids with cilia and flagella.

  9. Euler's fluid equations: Optimal Control vs Optimization

    E-Print Network [OSTI]

    Darryl D. Holm

    2009-09-28T23:59:59.000Z

    An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the \\emph {same} Euler fluid equations, although their Lagrangian parcel dynamics are \\emph{different}. This is a result of the \\emph{gauge freedom} in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.

  10. ComputationalGeosciences,9(4):179201,2005. Fast computation of arrival times in heterogeneous media

    E-Print Network [OSTI]

    Karlsen, Kenneth Hvistendahl

    an equation for the fluid velocity v. The most commonly used model is a constitutive relation known as Darcy-phase incompressible immiscible flow of water and oil in a porous medium. We first present an alternative derivation not always compute the correct solution of the underlying difference equations, and (ii) the method gives

  11. The Fluid Nature of Quark-Gluon Plasma

    E-Print Network [OSTI]

    W. A. Zajc

    2008-02-25T23:59:59.000Z

    Collisions of heavy nuclei at very high energies offer the exciting possibility of experimentally exploring the phase transformation from hadronic to partonic degrees of freedom which is predicted to occur at several times normal nuclear density and/or for temperatures in excess of $\\sim 170$ MeV. Such a state, often referred to as a quark-gluon plasma, is thought to have been the dominant form of matter in the universe in the first few microseconds after the Big Bang. Data from the first five years of heavy ion collisions of Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) clearly demonstrate that these very high temperatures and densities have been achieved. While there are strong suggestions of the role of quark degrees of freedom in determining the final-state distributions of the produced matter, there is also compelling evidence that the matter does {\\em not} behave as a quasi-ideal state of free quarks and gluons. Rather, its behavior is that of a dense fluid with very low kinematic viscosity exhibiting strong hydrodynamic flow and nearly complete absorption of high momentum probes. The current status of the RHIC experimental studies is presented, with a special emphasis on the fluid properties of the created matter, which may in fact be the most perfect fluid ever studied in the laboratory.

  12. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

  13. CX-002310: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-002310: Categorical Exclusion Determination Replacement of the Building 922 Computer Room Liebert Air Conditioning Units. CX(s) Applied: B1.29, B2.1 Date: 05172010...

  14. FINITE VOLUME METHODS APPLIED TO THE COMPUTATIONAL MODELLING OF WELDING PHENOMENA

    E-Print Network [OSTI]

    Taylor, Gary

    1 FINITE VOLUME METHODS APPLIED TO THE COMPUTATIONAL MODELLING OF WELDING PHENOMENA Gareth A.Taylor@brunel.ac.uk ABSTRACT This paper presents the computational modelling of welding phenomena within a versatile numerical) and Computational Solid Mechanics (CSM). With regard to the CFD modelling of the weld pool fluid dynamics, heat

  15. Fluid density and concentration measurement using noninvasive in situ ultrasonic resonance interferometry

    DOE Patents [OSTI]

    Pope, N.G.; Veirs, D.K.; Claytor, T.N.

    1994-10-25T23:59:59.000Z

    The specific gravity or solute concentration of a process fluid solution located in a selected structure is determined by obtaining a resonance response spectrum of the fluid/structure over a range of frequencies that are outside the response of the structure itself. A fast Fourier transform (FFT) of the resonance response spectrum is performed to form a set of FFT values. A peak value for the FFT values is determined, e.g., by curve fitting, to output a process parameter that is functionally related to the specific gravity and solute concentration of the process fluid solution. Calibration curves are required to correlate the peak FFT value over the range of expected specific gravities and solute concentrations in the selected structure. 7 figs.

  16. Fluid density and concentration measurement using noninvasive in situ ultrasonic resonance interferometry

    DOE Patents [OSTI]

    Pope, Noah G. (Los Alamos, NM); Veirs, Douglas K. (Espanola, NM); Claytor, Thomas N. (Los Alamos, NM)

    1994-01-01T23:59:59.000Z

    The specific gravity or solute concentration of a process fluid solution located in a selected structure is determined by obtaining a resonance response spectrum of the fluid/structure over a range of frequencies that are outside the response of the structure itself. A fast fourier transform (FFT) of the resonance response spectrum is performed to form a set of FFT values. A peak value for the FFT values is determined, e.g., by curve fitting, to output a process parameter that is functionally related to the specific gravity and solute concentration of the process fluid solution. Calibration curves are required to correlate the peak FFT value over the range of expected specific gravities and solute concentrations in the selected structure.

  17. A blurred interface formulation of The Reference Map Technique for Fluid-Solid Interactions and Fluid-Solid-Solid Interactions

    E-Print Network [OSTI]

    Valkov, Boris Ivanov

    2014-01-01T23:59:59.000Z

    In this work we present a blurred interface method for Fluid-Solid Interactions (FSI) and multiple solids immersed in a fluid or FSSI (Fluid-Solid-Solid Interactions) based on the reference map technique as presented by ...

  18. Elucidating the effects of adsorbent flexibility on fluid adsorption using simple models and flat-histogram sampling methods

    SciTech Connect (OSTI)

    Shen, Vincent K., E-mail: vincent.shen@nist.gov; Siderius, Daniel W. [Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380 (United States)

    2014-06-28T23:59:59.000Z

    Using flat-histogram Monte Carlo methods, we investigate the adsorptive behavior of the square-well fluid in two simple slit-pore-like models intended to capture fundamental characteristics of flexible adsorbent materials. Both models require as input thermodynamic information about the flexible adsorbent material itself. An important component of this work involves formulating the flexible pore models in the appropriate thermodynamic (statistical mechanical) ensembles, namely, the osmotic ensemble and a variant of the grand-canonical ensemble. Two-dimensional probability distributions, which are calculated using flat-histogram methods, provide the information necessary to determine adsorption thermodynamics. For example, we are able to determine precisely adsorption isotherms, (equilibrium) phase transition conditions, limits of stability, and free energies for a number of different flexible adsorbent materials, distinguishable as different inputs into the models. While the models used in this work are relatively simple from a geometric perspective, they yield non-trivial adsorptive behavior, including adsorption-desorption hysteresis solely due to material flexibility and so-called “breathing” of the adsorbent. The observed effects can in turn be tied to the inherent properties of the bare adsorbent. Some of the effects are expected on physical grounds while others arise from a subtle balance of thermodynamic and mechanical driving forces. In addition, the computational strategy presented here can be easily applied to more complex models for flexible adsorbents.

  19. Evaluation of Biodiesel Fuels from Supercritical Fluid Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced...

  20. Chemically Reactive Working Fluids for the Capture and Transport...

    Broader source: Energy.gov (indexed) [DOE]

    Specifically, the primary heat transfer fluid (HTF), which transmits the collected solar power to power cycle Evaluate Chemically Reacting Working Fluids (CRWFs) as HTFs...

  1. Gas Analysis Of Geothermal Fluid Inclusions- A New Technology...

    Open Energy Info (EERE)

    by this program can be applied to geothermal exploration, which may expand geothermal production. Knowledge of the gas contents in reservoir fluids can be applied to fluid...

  2. Variational Approach in Studying the Mixture of the Fluids: Transport ...

    E-Print Network [OSTI]

    Title: Variational Approach in Studying the Mixture of the Fluids: Transport and ... of the non-Newtonian complex fluids arise from the coupling and competing ...

  3. ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION...

    Open Energy Info (EERE)

    FLUID INCLUSION GAS ANALYSES Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID...

  4. Isotopic Analysis- Fluid At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    geothermal resources with deep, fault hosted permeable fluid flow pathways and the helium Isotopic composition of the surface fluids. The authors suggest that helium isotopes...

  5. Investigation of injection-induced seismicity using a coupled fluid ...

    E-Print Network [OSTI]

    2012-01-23T23:59:59.000Z

    injection of fluid for the extraction of geothermal heat: Journal of Geo- physical ... earthquakes: Disposal of waste fluids into a deep well has triggered earth-.

  6. Application of Neutron Imaging and Scattering to Fluid Flow and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS...

  7. New fluid makes untapped geothermal energy cleaner | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fluid makes untapped geothermal energy cleaner New fluid makes untapped geothermal energy cleaner Released: April 17, 2015 Nontoxic solution could cut water use for enhanced...

  8. Working Fluids Low Global Warming Potential Refrigerants - 2013...

    Energy Savers [EERE]

    Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Emerging Technologies...

  9. A STOCHASTIC METHOD FOR MODELING FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS

    E-Print Network [OSTI]

    Anderson, C.

    2011-01-01T23:59:59.000Z

    FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andFLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andachieve optimal recovery of petroleum from a reservoir, it

  10. Packing frustration in dense confined fluids

    E-Print Network [OSTI]

    Kim Nygĺrd; Sten Sarman; Roland Kjellander

    2014-09-04T23:59:59.000Z

    Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile - each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.

  11. A Computational Study on the Leakage of Supercritical Carbon Dioxide through Labyrinth Seals

    E-Print Network [OSTI]

    Pidaparti, Sandeep R

    2013-11-26T23:59:59.000Z

    of turbomachinery equipment it is important to reduce internal leakage through seals. A computational study was performed to understand the leakage through seals subject to large pressure differential using Open source CFD software OpenFOAM. FIT (Fluid Property...

  12. Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy

    SciTech Connect (OSTI)

    Lorie M. Dilley

    2011-03-30T23:59:59.000Z

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences in the chemical signature of fluid inclusions between open and closed fractures as well as differences in the chemical signature of open fractures between geothermal systems. Our hypothesis is that open fracture systems can be identified by their FIS chemical signature; that there are differences based on the mineral assemblages and geology of the system; and that there are chemical precursors in the wall rock above open, large fractures. Specific goals for this project are: (1) To build on the preliminary results which indicate that there are differences in the FIS signatures between open and closed fractures by identifying which chemical species indicate open fractures in both active geothermal systems and in hot, dry rock; (2) To evaluate the FIS signatures based on the geology of the fields; (3) To evaluate the FIS signatures based on the mineral assemblages in the fracture; and (4) To determine if there are specific chemical signatures in the wall rock above open, large fractures. This method promises to lower the cost of geothermal energy production in several ways. Knowledge of productive fractures in the boreholes will allow engineers to optimize well production. This information can aid in well testing decisions, well completion strategies, and in resource calculations. It will assist in determining the areas for future fracture enhancement. This will develop into one of the techniques in the 'tool bag' for creating and managing Enhanced Geothermal Systems.

  13. Conductivity measurements on H2O-bearing CO2-rich fluids

    SciTech Connect (OSTI)

    Capobianco, Ryan [Virginia Polytechnic Institute and State University; Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Bodnar, Robert [Virginia Polytechnic Institute and State University; Rimstidt, J. Donald [Virginia Polytechnic Institute and State University

    2015-01-01T23:59:59.000Z

    Recent studies report rapid corrosion of metals and carbonation of minerals in contact with carbon dioxide containing trace amounts of dissolved water. One explanation for this behavior is that addition of small amounts of H2O to CO2 leads to significant ionization within the fluid, thus promoting reactions at the fluid-solid interface analogous to corrosion associated with aqueous fluids. The extent of ionization in the bulk CO2 fluid was determined using a flow-through conductivity cell capable of detecting very low conductivities. Experiments were conducted from 298 to 473 K and 7.39 to 20 MPa with H2O concentrations up to ~1600 ppmw (xH2O 3.9 10-3), corresponding to the H2O solubility limit in liquid CO2 at ambient temperature. All solutions showed conductivities <10 nS/cm, indicating that the solutions were essentially ion-free. This observation suggests that the observed corrosion and carbonation reactions are not the result of ionization in CO2-rich bulk phase, but does not preclude ionization in the fluid at the fluid-solid interface.

  14. Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics

    DOE Patents [OSTI]

    Abraham, Bernard M. (Oak Park, IL); Ketterson, John B. (Evanston, IL); Bohanon, Thomas M. (Evanston, IL); Mikrut, John M. (Evanston, IL)

    1994-01-01T23:59:59.000Z

    A non-contact method and apparatus for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement mechanical characteristics' fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use.

  15. Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics

    DOE Patents [OSTI]

    Abraham, B.M.; Ketterson, J.B.; Bohanon, T.M.; Mikrut, J.M.

    1994-04-12T23:59:59.000Z

    A non-contact method and apparatus are described for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement of mechanical characteristics of fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use. 4 figures.

  16. Effect of Fluid Flow on Inclusion Coarsening in Low-Alloy Steel Welds

    SciTech Connect (OSTI)

    Babu, S.S.; David, S.A.; DebRoy, T.; Hong, T.

    1998-02-28T23:59:59.000Z

    Oxide inclusions form in welds because of deoxidation reactions in the weld pool. These inclusions control the weld microstructure development. Thermodynamic and kinetic calculation of oxidation reaction can describe inclusion characteristics such as number density, size, and composition. Experimental work has shown that fluid-flow velocity gradients in the weld pool can accelerate inclusion growth by collision and coalescence. Moreover, fluid flow in welds can transport inclusions to different temperature regions that may lead to repeated dissolution and growth of inclusions. These phenomena are being studied with the help of computational coupled heat transfer, fluid-flow, thermodynamic, and kinetic models. The results show that the inclusion formation in steel welds can be described as a function of the welding processes, process parameters, and steel composition.

  17. : Computer Aided Learning in Computer

    E-Print Network [OSTI]

    Milenkovi, Aleksandar

    , sensors, security, medicine, will lead to ``smart'' homes, ``smart'' cars, ``smart'' appliances engineering, and computer science programs. Dramatic changes in technology, markets, and computer applications and at home during self-study. The CAL2 allows students to write and execute their own assembly language

  18. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  19. Geothermal energy production with supercritical fluids

    DOE Patents [OSTI]

    Brown, Donald W.

    2003-12-30T23:59:59.000Z

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  20. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.