Powered by Deep Web Technologies
Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Applied Computation 274: Computational Fluid Dynamics Lecturer: David Knezevic  

E-Print Network (OSTI)

, nuclear reactor modeling and blood flow simulation. With major advances in CFD algorithms and computer: With Applications in Incompressible Fluid Dynamics, Oxford University Press, 2005. A. Ern, J.-L. Guermond, Theory

Chen, Yiling

2

Petascale Adaptive Computational Fluid Dynamics | Argonne Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

Petascale Adaptive Computational Fluid Dynamics Petascale Adaptive Computational Fluid Dynamics PI Name: Kenneth Jansen PI Email: jansen@rpi.edu Institution: Rensselaer Polytechnic Institute The specific aim of this request for resources is to examine scalability and robustness of our code on BG/P. We have confirmed that, during the flow solve phase, our CFD flow solver does exhibit perfect strong scaling to the full 32k cores on our local machine (CCNI-BG/L at RPI) but this will be our first access to BG/P. We are also eager to study the performance of the adaptive phase of our code. Some aspects have scaled well on BG/L (e.g., refinement has produced adaptive meshes that take a 17 million element mesh and perform local adaptivity on 16k cores to match a requested size field to produce a mesh exceeding 1 billion elements) but other aspects (e.g.,

3

Two-Dimensional Computational Fluid Dynamics and Conduction Simulation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Two-Dimensional Computational Fluid Dynamics and Conduction Simulations of Heat Transfer in Horizontal Window Frames with Internal Cavities Title Two-Dimensional Computational...

4

Determining effects of turbine blades on fluid motion  

DOE Patents (OSTI)

Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.

Linn, Rodman Ray (Los Alamos, NM); Koo, Eunmo (Los Alamos, NM)

2011-05-31T23:59:59.000Z

5

Determining effects of turbine blades on fluid motion  

DOE Patents (OSTI)

Disclosed is a technique for simulating wind interaction with wind turbines. A turbine blade is divided into radial sections. The effect that each of these radial sections has on the velocities in Eulerian computational cells they overlap is determined. The effect is determined using Lagrangian techniques such that the calculations need not include wind components in the radial direction. A force on each radial section of turbine blade is determined. This force depends on the axial and azimuthal components of the fluid flow in the computational cell and the geometric properties of the turbine blade. The force on the turbine blade is fed back to effect the fluid flow in the computational cell for the next time step.

Linn, Rodman Ray (Los Alamos, NM); Koo, Eunmo (Los Alamos, NM)

2012-05-01T23:59:59.000Z

6

Determining temperature limits of drilling fluids  

DOE Green Energy (OSTI)

A capillary three tube viscometer has been designed which allows the measurement of rheological properties of time dependent non-Newtonian fluids in laminar flow at high temperture and pressure. The objective of this investigation is to determine the temperature stability of clay-water suspensions containing various drilling fluid additives. The additives studied consisted of viscosifiers, filtrate reducers, and chemical thinners. The temperature range studied is from room temperature to 550{sup 0}F. The system pressure is consistently maintained above the vapor pressure. The Bentonite and water standardized base mud used is equivalent to a 25 ppB fluid. Stabilization of the base mud is necessary to obtain steady state laminar flow conditions and to obtain reliable temperature thinning effects with each temperature interval under investigation. Generally the temperature levels are maintained for one hour until 550{sup 0}F is attained. The last interval is then maintained until system fluid degradation occurs. Rheological measurements are obtained from differential pressure transducers located in a three diameter tube test section and externally at ambient conditions from a Baroid Rotational Viscometer. The power law model for non-Newtonian fluids is used to correlate the data.

Thuren, J.B.; Chenevert, M.E.; Huang, W.T.W.; Szymanski, E.; Arkeketa, P.

1979-01-01T23:59:59.000Z

7

Computational Fluid Dynamics of rising droplets  

SciTech Connect

The main goal of this study is to perform simulations of droplet dynamics using Truchas, a LANL-developed computational fluid dynamics (CFD) software, and compare them to a computational study of Hysing et al.[IJNMF, 2009, 60:1259]. Understanding droplet dynamics is of fundamental importance in liquid-liquid extraction, a process used in the nuclear fuel cycle to separate various components. Simulations of a single droplet rising by buoyancy are conducted in two-dimensions. Multiple parametric studies are carried out to ensure the problem set-up is optimized. An Interface Smoothing Length (ISL) study and mesh resolution study are performed to verify convergence of the calculations. ISL is a parameter for the interface curvature calculation. Further, wall effects are investigated and checked against existing correlations. The ISL study found that the optimal ISL value is 2.5{Delta}x, with {Delta}x being the mesh cell spacing. The mesh resolution study found that the optimal mesh resolution is d/h=40, for d=drop diameter and h={Delta}x. In order for wall effects on terminal velocity to be insignificant, a conservative wall width of 9d or a nonconservative wall width of 7d can be used. The percentage difference between Hysing et al.[IJNMF, 2009, 60:1259] and Truchas for the velocity profiles vary from 7.9% to 9.9%. The computed droplet velocity and interface profiles are found in agreement with the study. The CFD calculations are performed on multiple cores, using LANL's Institutional High Performance Computing.

Wagner, Matthew [Lake Superior State University; Francois, Marianne M. [Los Alamos National Laboratory

2012-09-05T23:59:59.000Z

8

Demonstration of a Computational Fluid Dynamics (CFD) Tool Used...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of a Computational Fluid Dynamics (CFD) Tool Used for Data Center Modeling, Thermal Analysis and Operational Management Speaker(s): Saket Karajgikar Date: November...

9

COMPUTATIONAL FLUID DYNAMICS MODELING ANALYSIS OF COMBUSTORS  

DOE Green Energy (OSTI)

In the current fiscal year FY01, several CFD simulations were conducted to investigate the effects of moisture in biomass/coal, particle injection locations, and flow parameters on carbon burnout and NO{sub x} inside a 150 MW GEEZER industrial boiler. Various simulations were designed to predict the suitability of biomass cofiring in coal combustors, and to explore the possibility of using biomass as a reburning fuel to reduce NO{sub x}. Some additional CFD simulations were also conducted on CERF combustor to examine the combustion characteristics of pulverized coal in enriched O{sub 2}/CO{sub 2} environments. Most of the CFD models available in the literature treat particles to be point masses with uniform temperature inside the particles. This isothermal condition may not be suitable for larger biomass particles. To this end, a stand alone program was developed from the first principles to account for heat conduction from the surface of the particle to its center. It is envisaged that the recently developed non-isothermal stand alone module will be integrated with the Fluent solver during next fiscal year to accurately predict the carbon burnout from larger biomass particles. Anisotropy in heat transfer in radial and axial will be explored using different conductivities in radial and axial directions. The above models will be validated/tested on various fullscale industrial boilers. The current NO{sub x} modules will be modified to account for local CH, CH{sub 2}, and CH{sub 3} radicals chemistry, currently it is based on global chemistry. It may also be worth exploring the effect of enriched O{sub 2}/CO{sub 2} environment on carbon burnout and NO{sub x} concentration. The research objective of this study is to develop a 3-Dimensional Combustor Model for Biomass Co-firing and reburning applications using the Fluent Computational Fluid Dynamics Code.

Mathur, M.P.; Freeman, Mark (U.S. DOE National Energy Technology Laboratory); Gera, Dinesh (Fluent, Inc.)

2001-11-06T23:59:59.000Z

10

Computational fluid dynamics applications to improve crop production systems  

Science Conference Proceedings (OSTI)

Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve ... Keywords: Decision support tools, Greenhouse, Harvesting machines, Sprayers, Tillage

T. Bartzanas; M. Kacira; H. Zhu; S. Karmakar; E. Tamimi; N. Katsoulas; In Bok Lee; C. Kittas

2013-04-01T23:59:59.000Z

11

Computational Fluid Dynamics for Engineering Design  

Science Conference Proceedings (OSTI)

Table 2   Examples of CFD software available in the United States...several computer hardware and software companies on the Internet early

12

Reducing Toxic Exposure In Buildings: Application of Computational Fluid  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Toxic Exposure In Buildings: Application of Computational Fluid Reducing Toxic Exposure In Buildings: Application of Computational Fluid Dynamics (CFD) Speaker(s): Buvana Jayaraman Date: December 8, 2005 - 12:00pm Location: Bldg. 90 I investigate three applications related to toxic exposure in buildings and demonstrate the use of Computational Fluid Dynamics (CFD) to address important issues: 1. Improving containment of airborne hazardous materials in an existing room containing a downdraft table. CFD is used to find a ventilation configuration that ensures better containment of the hazardous material and hence improved worker safety. 2. Modeling gas transport in a large indoor space. The goal of this study is to understand how the level of detail of the CFD model affects its accuracy. Comparison of predictions with experimental data will be presented. 3. Understanding

13

A comparison of grid-based techniques for Navier-Stokes fluid simulation in computer graphics  

E-Print Network (OSTI)

1. Fluid Simulation in Computer Graphics 2. PreviousB. Applications in Computer Graphics II The Navier Stokesstable ?uid dynamics for computer graphics. In SIGGRAPH

Chrisman, Cameron

2008-01-01T23:59:59.000Z

14

Nek5000: Computational Fluid Dynamics Code | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Nek5000: Computational Fluid Dynamics Code Nek5000: Computational Fluid Dynamics Code Nuclear reactor simulation: An elevation plot of the highest energy neutron flux distributions from an axial slice of a nuclear reactor core is shown superimposed over the same slice of the underlying geometry. This figure shows the rapid spatial variation in the high energy neutron distribution between within each plate along with the more slowly varying, global distribution. The figure is significant since UNIC allows researchers to capture both of these effects simultaneously. Nuclear reactor simulation: An elevation plot of the highest energy neutron flux distributions from an axial slice of a nuclear reactor core is shown superimposed over the same slice of the underlying geometry. This figure shows the rapid spatial variation in the high energy neutron distribution

15

Reduced-order, trajectory piecewise-linear models for nonlinear computational fluid dynamics  

E-Print Network (OSTI)

Computational fluid dynamics (CFD) is now widely used throughout the fluid dynamics community and yields accurate models for problems of interest. However, due to its high computational cost, CFD is limited for some ...

Gratton, David, 1979-

2004-01-01T23:59:59.000Z

16

Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics  

Science Conference Proceedings (OSTI)

Computational Fluid Dynamics (CFD) is increasingly used to study a wide variety of complex Environmental Fluid Mechanics (EFM) processes, such as water flow and turbulent mixing of contaminants in rivers and estuaries and wind flow and air pollution ... Keywords: Air and water quality, Building aerodynamics, Environmental Fluid Mechanics, River hydraulics, Transverse mixing, Wind flow

B. Blocken; C. Gualtieri

2012-07-01T23:59:59.000Z

17

State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems  

DOE Green Energy (OSTI)

As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBRS) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBRs and pneumatic and slurry components are computed by ANL`s EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.

Lyczkowski, R.W.; Bouillard, J.X.; Ding, J.; Chang, S.L. [Argonne National Lab., IL (United States); Burge, S.W. [Babcock and Wilcox, Alliance, OH (United States). Alliance Research Center

1994-05-12T23:59:59.000Z

18

Issues in computational fluid dynamics code verification and validation  

SciTech Connect

A broad range of mathematical modeling errors of fluid flow physics and numerical approximation errors are addressed in computational fluid dynamics (CFD). It is strongly believed that if CFD is to have a major impact on the design of engineering hardware and flight systems, the level of confidence in complex simulations must substantially improve. To better understand the present limitations of CFD simulations, a wide variety of physical modeling, discretization, and solution errors are identified and discussed. Here, discretization and solution errors refer to all errors caused by conversion of the original partial differential, or integral, conservation equations representing the physical process, to algebraic equations and their solution on a computer. The impact of boundary conditions on the solution of the partial differential equations and their discrete representation will also be discussed. Throughout the article, clear distinctions are made between the analytical mathematical models of fluid dynamics and the numerical models. Lax`s Equivalence Theorem and its frailties in practical CFD solutions are pointed out. Distinctions are also made between the existence and uniqueness of solutions to the partial differential equations as opposed to the discrete equations. Two techniques are briefly discussed for the detection and quantification of certain types of discretization and grid resolution errors.

Oberkampf, W.L.; Blottner, F.G.

1997-09-01T23:59:59.000Z

19

Review: Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review  

Science Conference Proceedings (OSTI)

The past decade has seen a rapid increase of numerical simulation studies on photobioreactors (PBRs). Developments in computational fluid dynamics (CFD) and the availability of more powerful computers have paved the way for the modeling and designing ... Keywords: Computational fluid dynamics (CFD), Computer simulation, Microalgae, Photobioreactors

J. P. Bitog; I. -B. Lee; C. -G. Lee; K. -S. Kim; H. -S. Hwang; S. -W. Hong; I. -H. Seo; K. -S. Kwon; E. Mostafa

2011-05-01T23:59:59.000Z

20

Computational thermal, chemical, fluid, and solid mechanics for geosystems management.  

Science Conference Proceedings (OSTI)

This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Computational Fluid Dynamics Framework for Turbine Biological Performance Assessment  

SciTech Connect

In this paper, a method for turbine biological performance assessment is introduced to bridge the gap between field and laboratory studies on fish injury and turbine design. Using this method, a suite of biological performance indicators is computed based on simulated data from a computational fluid dynamics (CFD) model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. If the relationship between the dose of an injury mechanism and frequency of injury (dose-response) is known from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from various turbine designs, the engineer can identify the more-promising designs. Discussion here is focused on Kaplan-type turbines, although the method could be extended to other designs. Following the description of the general methodology, we will present sample risk assessment calculations based on CFD data from a model of the John Day Dam on the Columbia River in the USA.

Richmond, Marshall C.; Serkowski, John A.; Carlson, Thomas J.; Ebner, Laurie L.; Sick, Mirjam; Cada, G. F.

2011-05-04T23:59:59.000Z

22

Computational fluid dynamic modeling of fluidized-bed polymerization reactors  

SciTech Connect

Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

Rokkam, Ram [Ames Laboratory

2012-11-02T23:59:59.000Z

23

Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models  

DOE Green Energy (OSTI)

This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.

Cook, Chris B; Richmond, Marshall C

2001-05-01T23:59:59.000Z

24

Computational Fluid Dynamics Modeling of Atmospheric Flow Applied to Wind Energy Research.  

E-Print Network (OSTI)

??High resolution atmospheric flow modeling using computational fluid dynamics (CFD) has many applications in the wind energy industry. A well designed model can accurately calculate (more)

Russell, Alan

2009-01-01T23:59:59.000Z

25

Method of determining interwell oil field fluid saturation distribution  

DOE Patents (OSTI)

A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

Donaldson, Erle C. (Bartlesville, OK); Sutterfield, F. Dexter (Bartlesville, OK)

1981-01-01T23:59:59.000Z

26

Code Verification of the HIGRAD Computational Fluid Dynamics Solver  

DOE Green Energy (OSTI)

The purpose of this report is to outline code and solution verification activities applied to HIGRAD, a Computational Fluid Dynamics (CFD) solver of the compressible Navier-Stokes equations developed at the Los Alamos National Laboratory, and used to simulate various phenomena such as the propagation of wildfires and atmospheric hydrodynamics. Code verification efforts, as described in this report, are an important first step to establish the credibility of numerical simulations. They provide evidence that the mathematical formulation is properly implemented without significant mistakes that would adversely impact the application of interest. Highly accurate analytical solutions are derived for four code verification test problems that exercise different aspects of the code. These test problems are referred to as: (i) the quiet start, (ii) the passive advection, (iii) the passive diffusion, and (iv) the piston-like problem. These problems are simulated using HIGRAD with different levels of mesh discretization and the numerical solutions are compared to their analytical counterparts. In addition, the rates of convergence are estimated to verify the numerical performance of the solver. The first three test problems produce numerical approximations as expected. The fourth test problem (piston-like) indicates the extent to which the code is able to simulate a 'mild' discontinuity, which is a condition that would typically be better handled by a Lagrangian formulation. The current investigation concludes that the numerical implementation of the solver performs as expected. The quality of solutions is sufficient to provide credible simulations of fluid flows around wind turbines. The main caveat associated to these findings is the low coverage provided by these four problems, and somewhat limited verification activities. A more comprehensive evaluation of HIGRAD may be beneficial for future studies.

Van Buren, Kendra L. [Los Alamos National Laboratory; Canfield, Jesse M. [Los Alamos National Laboratory; Hemez, Francois M. [Los Alamos National Laboratory; Sauer, Jeremy A. [Los Alamos National Laboratory

2012-05-04T23:59:59.000Z

27

AIR INGRESS ANALYSIS: PART 2 COMPUTATIONAL FLUID DYNAMIC MODELS  

Science Conference Proceedings (OSTI)

The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

2011-01-01T23:59:59.000Z

28

Computational fluid dynamics modelling and experimental study on a single silica gel type B  

Science Conference Proceedings (OSTI)

The application of computational fluid dynamics (CFDs) in the area of porous media and adsorption cooling system is becoming more practical due to the significant improvement in computer power. The results from previous studies have shown that CFD can ...

John White

2012-01-01T23:59:59.000Z

29

Computational Fluid Dynamic Simulations of a Regenerative Process...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluid Dynamic Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Power Systems Background The Department of Energy (DOE) National...

30

Computational fluid dynamics modelling of sewage sludge mixing in an anaerobic digester  

Science Conference Proceedings (OSTI)

In this paper, the development of a computational fluid dynamics (CFD) model to simulate the mechanical mixing of sewage sludge at laboratory scale is reported. The paper recommends a strategy for modelling mechanically mixed sewage sludge at laboratory ... Keywords: Biogas, CFD, Digestion, Energy, Non-Newtonian fluid, Sewage sludge, Turbulence

J. Bridgeman

2012-02-01T23:59:59.000Z

31

Computational fluid dynamic (CFD) optimization of microfluidic mixing in a MEMS steam generator  

E-Print Network (OSTI)

The challenge of achieving rapid mixing in microchannels is addressed through a computational fluid dynamics (CFD) study using the ADINA-F finite element program. The study is motivated by the need to design an adequate ...

Collins, Kimberlee C. (Kimberlee Chiyoko)

2008-01-01T23:59:59.000Z

32

Developing an integrated building design tool by coupling building energy simulation and computational fluid dynamics programs  

E-Print Network (OSTI)

Building energy simulation (ES) and computational fluid dynamics (CFD) can play important roles in building design by providing essential information to help design energy-efficient, thermally comfortable and healthy ...

Zhai, Zhiqiang, 1971-

2003-01-01T23:59:59.000Z

33

Coupling of a multizone airflow simulation program with computational fluid dynamics for indoor environmental analysis  

E-Print Network (OSTI)

Current design of building indoor environment comprises macroscopIC approaches, such as CONT AM multizone airflow analysis tool, and microscopic approaches that apply Computational Fluid Dynamics (CFD). Each has certain ...

Gao, Yang, 1974-

2002-01-01T23:59:59.000Z

34

The role of computational fluid dynamics in the management of unruptured intracranial aneurysms: a clinicians' view  

Science Conference Proceedings (OSTI)

Objective. The importance of hemodynamics in the etiopathogenesis of intracranial aneurysms (IAs) is widely accepted. Computational fluid dynamics (CFD) is being used increasingly for hemodynamic predictions. However, alogn with the continuing development ...

Pankaj K. Singh; Alberto Marzo; Stuart C. Coley; Guntram Berti; Philippe Bijlenga; Patricia V. Lawford; Mari-Cruz Villa-Uriol; Daniel A. Rufenacht; Keith M. McCormack; Alejandro Frangi; Umang J. Patel; D. Rodney Hose

2009-01-01T23:59:59.000Z

35

Consequences of Urban Stability Conditions for Computational Fluid Dynamics Simulations of Urban Dispersion  

Science Conference Proceedings (OSTI)

The validity of omitting stability considerations when simulating transport and dispersion in the urban environment is explored using observations from the Joint Urban 2003 field experiment and computational fluid dynamics simulations of that ...

Julie K. Lundquist; Stevens T. Chan

2007-07-01T23:59:59.000Z

36

Computational Fluid Dynamic Simulations of Plume Dispersion in Urban Oklahoma City  

Science Conference Proceedings (OSTI)

A 3D computational fluid dynamics study using Reynolds-averaged NavierStokes modeling was conducted and validated with field data from the Joint Urban 2003 dispersion study in Oklahoma City, Oklahoma. The modeled flow field indicated that the ...

Julia E. Flaherty; David Stock; Brian Lamb

2007-12-01T23:59:59.000Z

37

Computational Methods for Analyzing Fluid Flow Dynamics from Digital Imagery  

SciTech Connect

The main goal (long term) of this work is to perform computational dynamics analysis and quantify uncertainty from vector fields computed directly from measured data. Global analysis based on observed spatiotemporal evolution is performed by objective function based on expected physics and informed scientific priors, variational optimization to compute vector fields from measured data, and transport analysis proceeding with observations and priors. A mathematical formulation for computing flow fields is set up for computing the minimizer for the problem. An application to oceanic flow based on sea surface temperature is presented.

Luttman, A.

2012-03-30T23:59:59.000Z

38

Determination of Fracture Inflow Parameters With a Borehole Fluid ...  

In the hydraulic tests that correspond to the test intervals of interest with respect to the present comparison with fluid electric conductivity logging ...

39

ELECTRONIC ANALOG COMPUTER FOR DETERMINING RADIOACTIVE DISINTEGRATION  

DOE Patents (OSTI)

A computer is presented for determining growth and decay curves for elements in a radioactive disintegration series wherein one unstable element decays to form a second unstable element or isotope, which in turn forms a third element, etc. The growth and decay curves of radioactive elements are simulated by the charge and discharge curves of a resistance-capacitance network. Several such networks having readily adjustable values are connected in series with an amplifier between each successive pair. The time constant of each of the various networks is set proportional to the half-life of a corresponding element in the series represented and the charge and discharge curves of each of the networks simulates the element growth and decay curve.

Robinson, H.P.

1959-07-14T23:59:59.000Z

40

Advanced Binary Geothermal Power Plancts Working Fluid Property Determination and Heat Exchanger Design  

DOE Green Energy (OSTI)

The performance of binary geothermal power plants can be improved through the proper choice of a working fluid, and optimization of component designs and operating conditions. This paper reviews the investigations at the Idaho National Engineering Laboratory (INEL) which are examining binary cycle performance improvements: for moderate temperature (350 to 400 F) resources with emphasis on how the improvements may be integrated into design of binary cycles. These investigations are examining performance improvements resulting from the supercritical vaporization of mixed hydrocarbon working fluids and achieving countercurrent integral condensation with these fluids, as well as the modification of the turbine inlet state points to achieve supersaturated turbine vapor expansions. For resources where the brine outlet temperature is restricted, the use of turbine exhaust recuperators is examined. The baseline plant used to determine improvements in plant performance (characterized by the increase in the net brine effectiveness, watt-hours per pound of brine) in these studies operates at conditions similar to the 45 MW Heber binary plant. Through the selection of the optimum working fluids and operating conditions, achieving countercurrent integral condensation, and allowing supersaturated vapor expansions in the turbine, the performance of the binary cycle (the net brine effectiveness) can be improved by 25 to 30% relative to the baseline plant. The design of these supercritical Rankine-cycle (Binary) power plants for geothermal resources requires information about the potential working fluids used in the cycle. In addition, methods to design the various components, (e.g., heat exchangers, pumps, turbines) are needed. This paper limits its view of component design methods to the heat exchangers in binary power plants. The design of pumps and, turbines for these working fluids presents no new problems to the turbine manufacturer. However, additional work is proceeding at the Heat Cycle Research Facility to explore metastable expansions within turbines. This work, when completed, should allow the designer more flexibility in the state point selection in the design of these cycles which will potentially increase the system performance. The paper explores the different systems of thermodynamic and transport properties for mixtures of hydrocarbons. Methods include a computer program EXCST developed at the National Bureau of Standards in Boulder, as well as some of the thermodynamic models available in the chemical process simulation code, ASPEN, which was originally developed by the Department of Energy. The heat exchanger design methodology and computer programs of Heat Transfer Research, Inc. (HTRI) have been used because they represent data which is used throughout the industry by A & E firms as well as most heat exchanger manufacturers. For most cases, some modification of the computer results are necessary for supercritical heater design. When condensation takes place on the inside of enhanced tubes, new methods beyond HTRI's present state are necessary. The paper will discuss both of these modifications.

Bliem, C.J.; Mines, G.L.

1989-03-21T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Coupling remote sensing with computational fluid dynamics modelling to estimate lake chlorophyll-a concentration  

E-Print Network (OSTI)

Coupling remote sensing with computational fluid dynamics modelling to estimate lake chlorophyll form 17 October 2000; accepted 1 June 2001 Abstract A remotely sensed image of Loch Leven, a shallow in the remotely sensed image. It is proposed that CFD modelling benefits the interpretation of remotely sensed

42

Fluid Phase Equilibria 259 (2007) 195200 Molecular-level computer simulation of a  

E-Print Network (OSTI)

-compression refrigeration cycle S. Figueroa-Gerstenmaiera, M. Francovaa,b, M. Kowalskia, M. Lisalc,d, I. Nezbedac,d, W computer simulation method is presented for modeling vapor-compression refrigeration cycles involving of the chemical composition of the working fluid. The approach can thus be used for preliminary design

Lisal, Martin

43

Particle Swarm Optimization of Ceramic Roller Kiln Temperature Field Uniformity Using Computational Fluid Dynamics Tools  

Science Conference Proceedings (OSTI)

In this paper ceramic roller kiln temperature field uniformity is mainly researched using computational fluid dynamics tools and particle swarm optimization (PSO). In consideration of burning and burning temperature control is key technique of burning ... Keywords: PSO, temperature field uniformity, multiple liner regression, uniform design, ceramic roller kiln design

Wenbi Rao; Peng Li

2009-06-01T23:59:59.000Z

44

Determination of petroleum pipe scale solubility in simulated lung fluid  

E-Print Network (OSTI)

Naturally occurring radioactive material (NORM) exists in connate waters and, under the right conditions during oil drilling, can plate out on the interior surfaces of oil and gas industry equipment. Once deposited, this material is commonly referred to as ??scale.?? This thesis is concerned with the presence of 226Ra in scale deposited on the inner surfaces of oil drilling pipes and the internal dose consequences of inhalation of that scale once released. In the process of normal operation, barium sulfate scale with a radium component adheres to the inside of downhole tubulars in oil fields. When crude flow is diminished below acceptable operational requirements, the pipe is sent to a descaling operation to be cleaned, most likely by a method known as rattling. The rattling process generates dust. This research investigated the chemical composition of that aerosol and measured the solubility of pipe scale from three oilfield formations. Using standard in-vitro dissolution experimental equipment and methods, pipe scale is introduced into simulated lung fluid over a two-week period. These samples are analyzed using quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS), known for very low detection limits. Analysis reveals virtually no 226Ra present in the lung fluid exposed to pipe scale. Sample measurements were compared against background measurements using Student??s t test, which revealed that nearly all the samples were statistically insignificant in comparison to the lung fluid blanks. This statistical test proves within a 95% confidence interval that there is no 226Ra present in the lung fluid samples. These results indicate that inhaled NORM pipe scale should be classified as Class S and serve to further confirm the extreme insolubility of petroleum pipe scale. For dose calculations, the S classification means that the lung is the main organ of concern. Radium-226 from petroleum pipe scale does not solubilize in the interstitial lung fluid, and does not, therefore, enter the bloodstream via respiratory pathways. Since there is no removal by dissolution, the 500 day biological half-life implied by the S classification is based solely on the mechanical transport of 226Ra out of the lungs by phagocytosis or the mucociliary escalator.

Cezeaux, Jason Roderick

2004-08-01T23:59:59.000Z

45

Steam Generator Management Program: Thermal-Hydraulic Analysis of a Recirculating Steam Generator Using Commercial Computational Fluid Dynamics Software  

Science Conference Proceedings (OSTI)

The objective of this research was to demonstrate that a commercial computational fluid dynamics code can be set up to model the thermal-hydraulic physics that occur during the operation of a steam generator. Specific complexities in steam-generator thermal-hydraulic modeling include: phase change and two-phase fluid mechanics, hydrodynamic representation of the tube bundle, and thermal coupling between the primary and secondary sides. A commercial computational fluid dynamics code was used without any s...

2012-02-21T23:59:59.000Z

46

New Computational Methods Determination in Solution  

E-Print Network (OSTI)

engendered by two scien- tific advances: (1) new developments in an exper- imental technique known as Nuclear- ment of the nuclear Overhauser effect (NOE) between resonances, and (3) the use of computer modeling is that of constructing a highway map of the U.S. starting from a table which lists the distances between the major cities

47

First Principles Computational Determination of Anisotropic Elastic ...  

Science Conference Proceedings (OSTI)

TiB2 has a hexagonal structure (P6/mmm) with six independent elastic constants. A complete determination of these constants is necessary for understanding...

48

Determining Memory Use | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Allinea DDT Core File Settings Determining Memory Use Using VNC with a Debugger bgqstack gdb Coreprocessor TotalView on BGQ Systems Performance Tools & APIs Software & Libraries...

49

Liquefied Natural Gas (LNG) Vapor Dispersion Modeling with Computational Fluid Dynamics Codes  

E-Print Network (OSTI)

Federal regulation 49 CFR 193 and standard NFPA 59A require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. For modeling purposes, the physical process of dispersion of LNG release can be simply divided into two stages: source term and atmospheric dispersion. The former stage occurs immediately following the release where the behavior of fluids (LNG and its vapor) is mainly controlled by release conditions. After this initial stage, the atmosphere would increasingly dominate the vapor dispersion behavior until it completely dissipates. In this work, these two stages are modeled separately by a source term model and a dispersion model due to the different parameters used to describe the physical process at each stage. The principal focus of the source term study was on LNG underwater release, since there has been far less research conducted in developing and testing models for the source of LNG release underwater compared to that for LNG release onto land or water. An underwater LNG release test was carried out to understand the phenomena that occur when LNG is released underwater and to determine the characteristics of pool formation and the vapor cloud generated by the vaporization of LNG underwater. A mathematical model was used and validated against test data to calculate the temperature of the vapor emanating from the water surface. This work used the ANSYS CFX, a general-purpose computational fluid dynamics (CFD) package, to model LNG vapor dispersion in the atmosphere. The main advantages of CFD codes are that they have the capability of defining flow physics and allowing for the representation of complex geometry and its effects on vapor dispersion. Discussed are important parameters that are essential inputs to the ANSYS CFX simulations, including the mesh size and shape, atmospheric conditions, turbulence from the source term, ground surface roughness height, and effects of obstacles. A sensitivity analysis was conducted to illustrate the impact of key parameters on the accuracy of simulation results. In addition, a series of medium-scale LNG spill tests have been performed at the Brayton Fire Training Field (BFTF), College Station, TX. The objectives of these tests were to study key parameters of modeling the physical process of LNG vapor dispersion and collect data for validating the ANSYS CFX prediction results. A comparison of test data with simulation results demonstrated that CFX described the physical behavior of LNG vapor dispersion well, and its prediction results of distances to the half lower flammable limit were in good agreement with the test data.

Qi, Ruifeng

2011-08-01T23:59:59.000Z

50

Demonstration of a Computational Fluid Dynamics (CFD) Tool Used for Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of a Computational Fluid Dynamics (CFD) Tool Used for Data Demonstration of a Computational Fluid Dynamics (CFD) Tool Used for Data Center Modeling, Thermal Analysis and Operational Management Speaker(s): Saket Karajgikar Date: November 11, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Henry Coles Every Data Center built today is designed with a total capacity in mind, as well as a plan to grow into this final-day load. On a daily basis, Data Center Operations/Management professionals work toward keeping their Data Center as close to this plan as possible by concurrently managing the available power, space, cooling and airflow resources. Unfortunately, lack of communication and information, the pace of change and difficulty in coping with the ever growing power densities of IT equipment can prevent a

51

Pollutant Dispersion in a Large Indoor Space Part 2 -- Computational Fluid  

NLE Websites -- All DOE Office Websites (Extended Search)

Pollutant Dispersion in a Large Indoor Space Part 2 -- Computational Fluid Pollutant Dispersion in a Large Indoor Space Part 2 -- Computational Fluid Dyamics (CF) Predictions and Comparisons with a Model Experiment for Isothermal Flow Title Pollutant Dispersion in a Large Indoor Space Part 2 -- Computational Fluid Dyamics (CF) Predictions and Comparisons with a Model Experiment for Isothermal Flow Publication Type Journal Article Year of Publication 2004 Authors Finlayson, Elizabeth U., Ashok J. Gadgil, Tracy L. Thatcher, and Richard G. Sextro Journal Indoor Air Volume 14 Start Page Chapter Pagination 272-283 Abstract This paper reports on an investigation of the adequacy of Computational fluid dynamics (CFD), using a standard Reynolds Averaged Navier Stokes (RANS) model, for predicting dispersion of neutrally buoyant gas in a large indoor space. We used CFD to predict pollutant (dye) concentration profiles in a water filled scale model of an atrium with a continuous pollutant source. Predictions from the RANS formulation are comparable to an ensemble average of independent identical experiments. Model results were compared to pollutant concentration data in a horizontal plane from experiments in a scale model atrium. Predictions were made for steady-state (fully developed) and transient (developing) pollutant concentrations. Agreement between CFD predictions and ensemble averaged experimental measurements is quantified using the ratios of CFD-predicted and experimentally measured dye concentration at a large number of points in the measurement plane. Agreement is considered good if these ratios fall between 0.5 and 2.0 at all points in the plane. The standard k-epsilon two equation turbulence model obtains this level of agreement and predicts pollutant arrival time to the measurement plane within a few seconds. These results suggest that this modeling approach is adequate for predicting isothermal pollutant transport in a large room with simple geometry

52

Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics, and Computational Fluid Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal-biomass Catalytic Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics, and Computational Fluid Dynamics Background The U.S. Department of Energy (DOE) supports research and development efforts targeted to improve efficiency and reduce the negative environmental effects of the use of fossil fuels. One way to achieve these goals is to combine coal with biomass to create synthesis gas (syngas) for use in turbines and refineries to produce energy, fuels,

53

Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls  

Science Conference Proceedings (OSTI)

As aggressive reductions in boiler emissions are mandated, the electric utility industry has been moving toward installation of improved methods of burner flow measurement and control to optimize combustion for reduced emissions. Development of cost effective controls requires an understanding of how variations in air and coal flows relate to emission rates. This project used computational fluid dynamic (CFD) modeling to quantify the impacts of variations of burner air and fuel flows on furnace operating...

2005-12-12T23:59:59.000Z

54

National Ignition Facility computational fluid dynamics modeling and light fixture case studies  

SciTech Connect

This report serves as a guide to the use of computational fluid dynamics (CFD) as a design tool for the National Ignition Facility (NIF) program Title I and Title II design phases at Lawrence Livermore National Laboratory. In particular, this report provides general guidelines on the technical approach to performing and interpreting any and all CFD calculations. In addition, a complete CFD analysis is presented to illustrate these guidelines on a NIF-related thermal problem.

Martin, R.; Bernardin, J.; Parietti, L.; Dennison, B.

1998-02-01T23:59:59.000Z

55

Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine  

SciTech Connect

This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines (HATTs). First, an HATT blade was designed using the blade element momentum method in conjunction with a genetic optimization algorithm. Several unstructured computational grids were generated using this blade geometry and steady CFD simulations were used to perform a grid resolution study. Transient simulations were then performed to determine the effect of time-dependent flow phenomena and the size of the computational timestep on the numerical solution. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

Lawson, Mi. J.; Li, Y.; Sale, D. C.

2011-01-01T23:59:59.000Z

56

A new method for determining fluid flow paths during hydraulic fracturing  

DOE Green Energy (OSTI)

Although hydraulic fracturing is a popular method for increasing the productivity of oil and gas wells, there is no direct way other than drilling additional boreholes to determine where the injected fluid has gone and thus what direction a fracture has propagated. Information about fluid flow paths is important for designing subsequent fracturing operations for nearby wells. Determining the locations and orientations of permeable fractures is also important in studies of potential toxic waste repositories where it is critical to understand fluid flow paths. We have developed a method for determining the orientations and locations of fractures along which fluid flows during hydraulic fracturing. The method is based on accurate determination of the locations of microseismic events, or microearthquakes, that accompany the hydraulic injection. By applying a pattern recognition technique to the locations of events from one hydraulic fracturing operation we find planes in the data along which we presume that the fluid has traveled. The planes determined using our method intersect the injection borehole and a second, nearby borehole, in regions where other data indicate that fractures are present.

Fehler, M.

1987-01-01T23:59:59.000Z

57

Detailed Simulations of Atmospheric Flow and Dispersion in Downtown Manhattan: An Application of Five Computational Fluid Dynamics Models  

Science Conference Proceedings (OSTI)

Computational fluid dynamics (CFD) model simulations of urban boundary layers have improved in speed and accuracy so that they are useful in assisting in planning emergency response activities related to releases of chemical or biological agents ...

Steven R. Hanna; Michael J. Brown; Fernando E. Camelli; Stevens T. Chan; William J. Coirier; Sura Kim; Olav R. Hansen; Alan H. Huber; R. Michael Reynolds

2006-12-01T23:59:59.000Z

58

Computational fluid dynamics for LNG vapor dispersion modeling: a key parameters study  

E-Print Network (OSTI)

The increased demand for liquefied natural gas (LNG) has led to the construction of several new LNG terminals in the United States (US) and around the world. To ensure the safety of the public, consequence modeling is used to estimate the exclusion distances. The purpose of having these exclusion distances is to protect the public from being reached by flammable vapors during a release. For LNG industry, the exclusion zones are determined by the half lower flammability limits (half LFL, 2.5% V/V). Since LNG vapors are heavier?than?air when released into atmosphere, it goes through stages, negative, neutral and positive buoyant effect. In this process, it may reach the half LFL. The primary objective of this dissertation is to advance the status of LNG vapor dispersion modeling, especially for complex scenarios (i.e. including obstacle effects). The most used software, box models, cannot assess these complex scenarios. Box models simulate the vapor in a free?obstacle environment. Due to the advancement in computing, this conservative approach has become questionable. New codes as computational fluid dynamics (CFD) have been proven viable and more efficient than box models. The use of such advance tool in consequence modeling requires the refinement of some of the parameters. In these dissertation, these parameters were identified and refine through a series of field tests at the Brayton Firefighter Training Field (BFTF) as part of the Texas A&M University System (TAMUS). A total of five tests contributed to this dissertation, which three of them were designed and executed by the LNG team of the Mary Kay O'Connor Process Safety Center (MKOPSC) and the financial support from BP Global SPU Gas (BP). The data collected were used as calibration for a commercial CFD code called CFX from ANSYS. Once the CFD code was tuned, it was used in a sensitivity analysis to assess the effects of parameters in the LFL distance and the concentration levels. The dissertation discusses also the validity range for the key parameters.

Cormier, Benjamin Rodolphe

2008-08-01T23:59:59.000Z

59

Modeling and analysis of transient vehicle underhood thermo - hydrodynamic events using computational fluid dynamics and high performance computing.  

DOE Green Energy (OSTI)

This work has explored the preliminary design of a Computational Fluid Dynamics (CFD) tool for the analysis of transient vehicle underhood thermo-hydrodynamic events using high performance computing platforms. The goal of this tool will be to extend the capabilities of an existing established CFD code, STAR-CD, allowing the car manufacturers to analyze the impact of transient operational events on the underhood thermal management by exploiting the computational efficiency of modern high performance computing systems. In particular, the project has focused on the CFD modeling of the radiator behavior during a specified transient. The 3-D radiator calculations were performed using STAR-CD, which can perform both steady-state and transient calculations, on the cluster computer available at ANL in the Nuclear Engineering Division. Specified transient boundary conditions, based on experimental data provided by Adapco and DaimlerChrysler were used. The possibility of using STAR-CD in a transient mode for the entire period of time analyzed has been compared with other strategies which involve the use of STAR-CD in a steady-state mode at specified time intervals, while transient heat transfer calculations would be performed for the rest of the time. The results of these calculations have been compared with the experimental data provided by Adapco/DaimlerChrysler and recommendations for future development of an optimal strategy for the CFD modeling of transient thermo-hydrodynamic events have been made. The results of this work open the way for the development of a CFD tool for the transient analysis of underhood thermo-hydrodynamic events, which will allow the integrated transient thermal analysis of the entire cooling system, including both the engine block and the radiator, on high performance computing systems.

Froehle, P.; Tentner, A.; Wang, C.

2003-09-05T23:59:59.000Z

60

Modeling and analysis of transient vehicle underhood thermo- hydrodynamic events using computational fluid dynamics and high performance computing.  

DOE Green Energy (OSTI)

This work has explored the preliminary design of a Computational Fluid Dynamics (CFD) tool for the analysis of transient vehicle underhood thermo-hydrodynamic events using high performance computing platforms. The goal of this tool will be to extend the capabilities of an existing established CFD code, STAR-CD, allowing the car manufacturers to analyze the impact of transient operational events on the underhood thermal management by exploiting the computational efficiency of modern high performance computing systems. In particular, the project has focused on the CFD modeling of the radiator behavior during a specified transient. The 3-D radiator calculations were performed using STAR-CD, which can perform both steady-state and transient calculations, on the cluster computer available at ANL in the Nuclear Engineering Division. Specified transient boundary conditions, based on experimental data provided by Adapco and DaimlerChrysler were used. The possibility of using STAR-CD in a transient mode for the entire period of time analyzed has been compared with other strategies which involve the use of STAR-CD in a steady-state mode at specified time intervals, while transient heat transfer calculations would be performed for the rest of the time. The results of these calculations have been compared with the experimental data provided by Adapco/DaimlerChrysler and recommendations for future development of an optimal strategy for the CFD modeling of transient thermo-hydrodynamic events have been made. The results of this work open the way for the development of a CFD tool for the transient analysis of underhood thermo-hydrodynamic events, which will allow the integrated transient thermal analysis of the entire cooling system, including both the engine block and the radiator, on high performance computing systems.

Tentner, A.; Froehle, P.; Wang, C.; Nuclear Engineering Division

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS  

SciTech Connect

The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

JACKSON VL

2011-08-31T23:59:59.000Z

62

On the application of computational fluid dynamics codes for liquefied natural gas dispersion.  

SciTech Connect

Computational fluid dynamics (CFD) codes are increasingly being used in the liquefied natural gas (LNG) industry to predict natural gas dispersion distances. This paper addresses several issues regarding the use of CFD for LNG dispersion such as specification of the domain, grid, boundary and initial conditions. A description of the k-{var_epsilon} model is presented, along with modifications required for atmospheric flows. Validation issues pertaining to the experimental data from the Burro, Coyote, and Falcon series of LNG dispersion experiments are also discussed. A description of the atmosphere is provided as well as discussion on the inclusion of the Coriolis force to model very large LNG spills.

Luketa-Hanlin, Anay Josephine; Koopman, Ronald P. (Lawrence Livermore National Laboratory, Livermore, CA); Ermak, Donald (Lawrence Livermore National Laboratory, Livermore, CA)

2006-02-01T23:59:59.000Z

63

TEMPEST: A computer code for three-dimensional analysis of transient fluid dynamics  

SciTech Connect

TEMPEST (Transient Energy Momentum and Pressure Equations Solutions in Three dimensions) is a powerful tool for solving engineering problems in nuclear energy, waste processing, chemical processing, and environmental restoration because it analyzes and illustrates 3-D time-dependent computational fluid dynamics and heat transfer analysis. It is a family of codes with two primary versions, a N- Version (available to public) and a T-Version (not currently available to public). This handout discusses its capabilities, applications, numerical algorithms, development status, and availability and assistance.

Fort, J.A.

1995-06-01T23:59:59.000Z

64

Adaptive Fluid Electrical Conductivity Logging to Determine the Salinity Profiles in Groundwater  

E-Print Network (OSTI)

Adaptive Fluid Electrical Conductivity Logging to Determine the Salinity Profiles in Groundwater(t) Analysis Method · Integrate C(z,t), or FEC profile, over z of logged interval to get salinity mass per unit salinity TMDL requires wetland management of salt loads to the San Joaquin River · Dearth of groundwater

Quinn, Nigel

65

Radiation-cooled Dew Water Condensers Studied by Computational Fluid Dynamic (CFD)  

E-Print Network (OSTI)

Harvesting condensed atmospheric vapour as dew water can be an alternative or complementary potable water resource in specific arid or insular areas. Such radiation-cooled condensing devices use already existing flat surfaces (roofs) or innovative structures with more complex shapes to enhance the dew yield. The Computational Fluid Dynamic - CFD - software PHOENICS has been programmed and applied to such radiation cooled condensers. For this purpose, the sky radiation is previously integrated and averaged for each structure. The radiative balance is then included in the CFD simulation tool to compare the efficiency of the different structures under various meteorological parameters, for complex or simple shapes and at various scales. It has been used to precise different structures before construction. (1) a 7.32 m^2 funnel shape was studied; a 30 degree tilted angle (60 degree cone half-angle) was computed to be the best compromise for funnel cooling. Compared to a 1 m^2 flat condenser, the cooling efficienc...

Clus, O; Muselli, M; Nikolayev, Vadim; Sharan, Girja; Beysens, D

2007-01-01T23:59:59.000Z

66

Computational Fluid Dynamics in Support of the SNS Liquid Mercury Thermal-Hydraulic Analysis  

SciTech Connect

Experimental and computational thermal-hydraulic research is underway to support the liquid mercury target design for the Spallation Neutron Source (SNS) facility. The SNS target will be subjected to internal nuclear heat generation that results from pulsed proton beam collisions with the mercury nuclei. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots and diminished heat removal from the target structure. Computational fluid dynamics (CFD) models are being used as a part of this research. Recent improvements to the 3D target model include the addition of the flow adapter which joins the inlet/outlet coolant pipes to the target body and an updated heat load distribution at the new baseline proton beam power level of 2 MW. Two thermal-hydraulic experiments are planned to validate the CFD model.

Siman-Tov, M.; Wendel, M.W.; Yoder, G.L.

1999-11-14T23:59:59.000Z

67

Unit physics performance of a mix model in Eulerian fluid computations  

SciTech Connect

In this report, we evaluate the performance of a K-L drag-buoyancy mix model, described in a reference study by Dimonte-Tipton [1] hereafter denoted as [D-T]. The model was implemented in an Eulerian multi-material AMR code, and the results are discussed here for a series of unit physics tests. The tests were chosen to calibrate the model coefficients against empirical data, principally from RT (Rayleigh-Taylor) and RM (Richtmyer-Meshkov) experiments, and the present results are compared to experiments and to results reported in [D-T]. Results show the Eulerian implementation of the mix model agrees well with expectations for test problems in which there is no convective flow of the mass averaged fluid, i.e., in RT mix or in the decay of homogeneous isotropic turbulence (HIT). In RM shock-driven mix, the mix layer moves through the Eulerian computational grid, and there are differences with the previous results computed in a Lagrange frame [D-T]. The differences are attributed to the mass averaged fluid motion and examined in detail. Shock and re-shock mix are not well matched simultaneously. Results are also presented and discussed regarding model sensitivity to coefficient values and to initial conditions (IC), grid convergence, and the generation of atomically mixed volume fractions.

Vold, Erik [Los Alamos National Laboratory; Douglass, Rod [Los Alamos National Laboratory

2011-01-25T23:59:59.000Z

68

Computer program for determining the thermodynamic properties of water  

DOE Green Energy (OSTI)

This program was written to be used as a subroutine. The program determines the thermodynamic properties of water given any of the following pairs of knowns to define a thermodynamic state: pressure and entropy, pressure and enthalpy, pressure and quality, temperature and pressure, or temperature and quality. These five pairs of knowns allow the user to evaluate any thermodynamic cycle using water, as a working fluid. The basic equations came from Keenan, Keyes, Hill and Moore, Steam Tables, John Wiley and Sons, 1969. A complete derivation of equations, program listing, program symbol description, a complete set of flow charts and a sample steam turbine calculation are included.

Riemer, D.H.; Jacobs, H.R.; Boehm, R.F.

1976-07-01T23:59:59.000Z

69

A new method for determining dominant fluid flow paths during hydraulic fracturing  

DOE Green Energy (OSTI)

Although hydraulic fracturing is a method that has been applied for many years to increase fracture permeability of reservoirs, there is no direct way other than drilling additional boreholes to determine where the injected fluid has gone and thus what direction fractures have propagated. Information about fluid flow paths is important for designing subsequent fracturing operations for nearby wells or for choosing a trajectory for a second well to drill through the fracture system, and thus create a hot dry rock geothermal energy reservoir. A method has been developed for determining the orientations and locations of fractures along which fluid flows during hydraulic fracturing. The method is based on accurate determination of the locations of microseismic events, or microearthquakes, that accompany the hydraulic injection. The method has been applied to data collected during a massive hydraulic fracturing experiment carried out as part of the hot dry rock project. Planes with five different orientations were found in the data. The planes determined using the method intersect the injection borehole and a second, nearby borehole, in regions where other data indicate that fractures are present.

Fehler, M.

1987-01-01T23:59:59.000Z

70

Investigation of combustive flows and dynamic meshing in computational fluid dynamics  

E-Print Network (OSTI)

Computational Fluid Dynamics (CFD) is a ?eld that is constantly advancing. Its advances in terms of capabilities are a result of new theories, faster computers, and new numerical methods. In this thesis, advances in the computational ?uid dynamic modeling of moving bodies and combustive ?ows are investigated. Thus, the basic theory behind CFD is being extended to solve a new class of problems that are generally more complex. The ?rst chapter that investigates some of the results, chapter IV, discusses a technique developed to model unsteady aerodynamics with moving boundaries such as ?apping winged ?ight. This will include mesh deformation and ?uid dynamics theory needed to solve such a complex system. Chapter V will examine the numerical modeling of a combustive ?ow. A three dimensional single vane burner combustion chamber is numerically modeled. Species balance equations along with rates of reactions are introduced when modeling combustive ?ows and these expressions are discussed. A reaction mechanism is validated for use with in situ reheat simulations. Chapter VI compares numerical results with a laminar methane ?ame experiment to further investigate the capabilities of CFD to simulate a combustive ?ow. A new method of examining a combustive ?ow is introduced by looking at the solutions ability to satisfy the second law of thermodynamics. All laminar ?ame simulations are found to be in violation of the entropy inequality.

Chambers, Steven B.

2004-12-01T23:59:59.000Z

71

Computational Fluid Dynamic Analysis of the VHTR Lower Plenum Standard Problem  

DOE Green Energy (OSTI)

The United States Department of Energy is promoting the resurgence of nuclear power in the U. S. for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The DOE project is called the next generation nuclear plant (NGNP) and is based on a Generation IV reactor concept called the very high temperature reactor (VHTR), which will use helium as the coolant at temperatures ranging from 450 C to perhaps 1000 C. While computational fluid dynamics (CFD) has not been used for past safety analysis for nuclear reactors in the U. S., it is being considered for safety analysis for existing and future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal and accident operational situations. To this end, experimental data have been obtained in a scaled model of a narrow slice of the lower plenum of a prismatic VHTR. The present report presents results of CFD examinations of these data to explore potential issues with the geometry, the initial conditions, the flow dynamics and the data needed to fully specify the inlet and boundary conditions; results for several turbulence models are examined. Issues are addressed and recommendations about the data are made.

Richard W. Johnson; Richard R. Schultz

2009-07-01T23:59:59.000Z

72

Technical Review of the CENWP Computational Fluid Dynamics Model of the John Day Dam Forebay  

Science Conference Proceedings (OSTI)

The US Army Corps of Engineers Portland District (CENWP) has developed a computational fluid dynamics (CFD) model of the John Day forebay on the Columbia River to aid in the development and design of alternatives to improve juvenile salmon passage at the John Day Project. At the request of CENWP, Pacific Northwest National Laboratory (PNNL) Hydrology Group has conducted a technical review of CENWP's CFD model run in CFD solver software, STAR-CD. PNNL has extensive experience developing and applying 3D CFD models run in STAR-CD for Columbia River hydroelectric projects. The John Day forebay model developed by CENWP is adequately configured and validated. The model is ready for use simulating forebay hydraulics for structural and operational alternatives. The approach and method are sound, however CENWP has identified some improvements that need to be made for future models and for modifications to this existing model.

Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.

2010-12-01T23:59:59.000Z

73

Computational Procedures for Determining Parameters in Ramberg-Osgood  

Office of Scientific and Technical Information (OSTI)

Computational Procedures for Determining Parameters in Ramberg-Osgood Computational Procedures for Determining Parameters in Ramberg-Osgood Elastoplastic Model Based on Modulus and Damping Versus Strain Tzou-Shin Ueng Jian-Chu Chen July, 1992 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or

74

Three-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Electrolysis Cells and Stacks  

DOE Green Energy (OSTI)

A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created for detailed analysis of a high-temperature electrolysis stack (solid oxide fuel cells operated as electrolyzers). Inlet and outlet plenum flow distributions are discussed. Maldistribution of plena flow show deviations in per-cell operating conditions due to non-uniformity of species concentrations. Models have also been created to simulate experimental conditions and for code validation. Comparisons between model predictions and experimental results are discussed. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the electrolysis mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Variations in flow distribution, and species concentration are discussed. End effects of flow and per-cell voltage are also considered. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition.

Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring

2008-07-01T23:59:59.000Z

75

Computer program for determining the thermodynamic properties of Freon refrigerants  

DOE Green Energy (OSTI)

This program was written to be used as a subroutine. The program determines the thermodynamics of Freon refrigerants. The following refrigerants can be analyzed F-11, F-12, F-13, F-14, F-21, F-22, F-23, F-113, and F-114. The subroutine can evaluate a thermodynamic state for these refrigerants given any of the following pairs of state quantities: pressure and quality, pressure and entropy, pressure and enthalpy, temperature and quality, temperature and specific volume, and temperature and pressure. These six pairs of knowns allow the user to analyze any thermodynamic cycle utilizing a refrigerant as the working fluid. The Downing form of the Martin equation of state was used. This report contains a brief description, flow chart and listing of all subroutines required.

Riemer, D.H.; Jacobs, H.R.; Boehm, R.F.

1977-12-01T23:59:59.000Z

76

Computer program for determining the thermodynamic properties of freon refrigerants  

DOE Green Energy (OSTI)

This program was written to be used as a subroutine. The program determines the thermodynamics of Freon refrigerants. The following refrigerants can be analyzed F-11, F-12, F-13, F-14, F-21, F-22, F-23, F-113, and F-114. The subroutine can evaluate a thermodynamic state for these refrigerants given any of the following pairs of state quantities: pressure and quality, pressure and entropy, pressure and enthalpy, temperature and quality, temperature and specific volume and temperature and pressure. These six pairs of knowns allow the user to analyze any thermodynamic cycle utilizing a refrigerant as the working fluid. The Downing form of the Martin equation of state was used. A brief description, flow chart, and listing of all subroutines required are presented.

Riemer, D.H.; Jacobs, H.R.; Boehm, R.F.

1976-07-01T23:59:59.000Z

77

Computer program for determining the thermodynamic properties of light hydrocarbons  

DOE Green Energy (OSTI)

This program was written to be used as a subroutine. The program determines the thermodynamics of light hydrocarbons. The following light hydrocarbons can be analyzed: butane, ethane, ethylene, heptane, hexane, isobutane, isopentane, methane, octane, pentane, propane and propylene. The subroutine can evaluate a thermodynamic state for the light hydrocarbons given any of the following pairs of state quantities: pressure and quality, pressure and enthalpy, pressure and entropy, temperature and pressure, temperature and quality and temperature and specific volume. These six pairs of knowns allow the user to analyze any thermodynamic cycle utilizing a light hydrocarbon as the working fluid. The Starling--Benedict--Webb--Rubin equation of state was used. A brief description, flowchart, listing and required equations for each subroutine are included.

Riemer, D.H.; Jacobs, H.R.; Boehm, R.F.; Cook, D.S.

1976-01-01T23:59:59.000Z

78

Computer program for determining the thermodynamic properties of light hydrocarbons  

DOE Green Energy (OSTI)

This program was written to be used as a subroutine. The program determines the thermodynamics of light hydrocarbons. The following light hydrocarbons can be analyzed: butane, ethane, ethylene, heptane, hexane, isobutane, isopentane, methane, octane, pentane, propane and propylene. The subroutine can evaluate a thermodynamic state for the light hydrocarbons given any of the following pairs of state quantities: pressure and quality, pressure and enthalpy, pressure and entropy, temperature and pressure, temperature and quality and temperature and specific volume. These six pairs of knowns allow the user to analyze any thermodynamic cycle utilizing a light hydrocarbon as the working fluid. The Starling-Benedict-Webb-Rubin equation of state was used. This report contains a brief description, flowchart, listing and required equations for each subroutine.

Riemer, D.H.; Jacobs, H.R.; Boehm, R.F.; Cook, D.S.

1976-07-01T23:59:59.000Z

79

A SUB-GRID VOLUME-OF-FLUIDS (VOF) MODEL FOR MIXING IN RESOLVED SCALE AND IN UNRESOLVED SCALE COMPUTATIONS  

SciTech Connect

A sub-grid mix model based on a volume-of-fluids (VOF) representation is described for computational simulations of the transient mixing between reactive fluids, in which the atomically mixed components enter into the reactivity. The multi-fluid model allows each fluid species to have independent values for density, energy, pressure and temperature, as well as independent velocities and volume fractions. Fluid volume fractions are further divided into mix components to represent their 'mixedness' for more accurate prediction of reactivity. Time dependent conversion from unmixed volume fractions (denoted cf) to atomically mixed (af) fluids by diffusive processes is represented in resolved scale simulations with the volume fractions (cf, af mix). In unresolved scale simulations, the transition to atomically mixed materials begins with a conversion from unmixed material to a sub-grid volume fraction (pf). This fraction represents the unresolved small scales in the fluids, heterogeneously mixed by turbulent or multi-phase mixing processes, and this fraction then proceeds in a second step to the atomically mixed fraction by diffusion (cf, pf, af mix). Species velocities are evaluated with a species drift flux, {rho}{sub i}u{sub di} = {rho}{sub i}(u{sub i}-u), used to describe the fluid mixing sources in several closure options. A simple example of mixing fluids during 'interfacial deceleration mixing with a small amount of diffusion illustrates the generation of atomically mixed fluids in two cases, for resolved scale simulations and for unresolved scale simulations. Application to reactive mixing, including Inertial Confinement Fusion (ICF), is planned for future work.

VOLD, ERIK L. [Los Alamos National Laboratory; SCANNAPIECO, TONY J. [Los Alamos National Laboratory

2007-10-16T23:59:59.000Z

80

Optical position sensor for determining the interface between a clear and an opaque fluid  

DOE Patents (OSTI)

An inexpensive, optical position sensor for measuring a position or length, x, along a one-dimensional curvilinear, coordinate system. The sensor can be used, for example, to determine the position of an interface between a clear and an opaque fluid (such as crude oil and water). In one embodiment, the sensor utilizes the principle of dual-fluorescence, where a primary fiber emits primary fluorescent light and a parallel secondary fiber collects a portion of the primary fluorescent light that is not blocked by the opaque fluid. This, in turn, excites secondary fluorescence in the secondary fiber at a longer wavelength. A light detector measures the intensity of secondary fluorescence emitted from an end of the secondary fiber, which is used to calculate the unknown position or length, x. Side-emitting fibers can be used in place of, or in addition to, fluorescent fibers. The all-optical sensor is attractive for applications involving flammable liquids.

Weiss, Jonathan D. (Albuquerque, NM)

2006-05-23T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Computational fluid dynamics (CFD) simulations of aerosol in a u-shaped steam generator tube  

E-Print Network (OSTI)

To quantify primary side aerosol retention, an Eulerian/Lagrangian approach was used to investigate aerosol transport in a compressible, turbulent, adiabatic, internal, wall-bounded flow. The ARTIST experimental project (Phase I) served as the physical model replicated for numerical simulation. Realizable k-? and standard k-? turbulence models were selected from the computational fluid dynamics (CFD) code, FLUENT, to provide the Eulerian description of the gaseous phase. Flow field simulation results exhibited: a) onset of weak secondary flow accelerated at bend entrance towards the inner wall; b) flow separation zone development on the convex wall that persisted from the point of onset; c) centrifugal force concentrated high velocity flow in the direction of the concave wall; d) formation of vortices throughout the flow domain resulted from rotational (Dean-type) flow; e) weakened secondary flow assisted the formation of twin vortices in the outflow cross section; and f) perturbations induced by the bend influenced flow recovery several pipe diameters upstream of the bend. These observations were consistent with those of previous investigators. The Lagrangian discrete random walk model, with and without turbulent dispersion, simulated the dispersed phase behavior, incorrectly. Accurate deposition predictions in wall-bounded flow require modification of the Eddy Impaction Model (EIM). Thus, to circumvent shortcomings of the EIM, the Lagrangian time scale was changed to a wall function and the root-mean-square (RMS) fluctuating velocities were modified to account for the strong anisotropic nature of flow in the immediate vicinity of the wall (boundary layer). Subsequent computed trajectories suggest a precision that ranges from 0.1% to 0.7%, statistical sampling error. The aerodynamic mass median diameter (AMMD) at the inlet (5.5 ?m) was consistent with the ARTIST experimental findings. The geometric standard deviation (GSD) varied depending on the scenario evaluated but ranged from 1.61 to 3.2. At the outlet, the computed AMMD (1.9 ?m) had GSD between 1.12 and 2.76. Decontamination factors (DF), computed based on deposition from trajectory calculations, were just over 3.5 for the bend and 4.4 at the outlet. Computed DFs were consistent with expert elicitation cited in NUREG-1150 for aerosol retention in steam generators.

Longmire, Pamela

2007-05-01T23:59:59.000Z

82

Computational Fluid Dynamics Analyses on Very High Temperature Reactor Air Ingress  

SciTech Connect

A preliminary computational fluid dynamics (CFD) analysis was performed to understand density-gradient-induced stratified flow in a Very High Temperature Reactor (VHTR) air-ingress accident. Various parameters were taken into consideration, including turbulence model, core temperature, initial air mole-fraction, and flow resistance in the core. The gas turbine modular helium reactor (GT-MHR) 600 MWt was selected as the reference reactor and it was simplified to be 2-D geometry in modeling. The core and the lower plenum were assumed to be porous bodies. Following the preliminary CFD results, the analysis of the air-ingress accident has been performed by two different codes: GAMMA code (system analysis code, Oh et al. 2006) and FLUENT CFD code (Fluent 2007). Eventually, the analysis results showed that the actual onset time of natural convection (~160 sec) would be significantly earlier than the previous predictions (~150 hours) calculated based on the molecular diffusion air-ingress mechanism. This leads to the conclusion that the consequences of this accident will be much more serious than previously expected.

Chang H Oh; Eung S. Kim; Richard Schultz; David Petti; Hyung S. Kang

2009-07-01T23:59:59.000Z

83

Wind Turbine Modeling for Computational Fluid Dynamics: December 2010 - December 2012  

DOE Green Energy (OSTI)

With the shortage of fossil fuel and the increasing environmental awareness, wind energy is becoming more and more important. As the market for wind energy grows, wind turbines and wind farms are becoming larger. Current utility-scale turbines extend a significant distance into the atmospheric boundary layer. Therefore, the interaction between the atmospheric boundary layer and the turbines and their wakes needs to be better understood. The turbulent wakes of upstream turbines affect the flow field of the turbines behind them, decreasing power production and increasing mechanical loading. With a better understanding of this type of flow, wind farm developers could plan better-performing, less maintenance-intensive wind farms. Simulating this flow using computational fluid dynamics is one important way to gain a better understanding of wind farm flows. In this study, we compare the performance of actuator disc and actuator line models in producing wind turbine wakes and the wake-turbine interaction between multiple turbines. We also examine parameters that affect the performance of these models, such as grid resolution, the use of a tip-loss correction, and the way in which the turbine force is projected onto the flow field.

Tossas, L. A. M.; Leonardi, S.

2013-07-01T23:59:59.000Z

84

GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 1: Theory and Computational Model  

DOE Green Energy (OSTI)

Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior (1) in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and (2) during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK. GASFLOW is under continual development, assessment, and application by LANL and FzK. This manual is considered a living document and will be updated as warranted.

Nichols, B.D.; Mueller, C.; Necker, G.A.; Travis, J.R.; Spore, J.W.; Lam, K.L.; Royl, P.; Redlinger, R.; Wilson, T.L.

1998-10-01T23:59:59.000Z

85

A borehole fluid conductivity logging method for the determination of fracture inflow parameters  

DOE Green Energy (OSTI)

It is of much current interest to determine the flow characteristics of fractures intersecting a wellbore to provide data in the estimation of the hydrologic behavior of fractured rocks. The fluid inflow rates from the fractures into the wellbore are important quantities to measure. Often these inflows are at very low rates. One often finds that only a few percent of the fractures identified by core inspection and geophysical logging are water-conducting fractures, the rest being closed, clogged, or isolated from the water flow system. A new procedure is proposed and a corresponding method of analysis developed to locate water-conducting fractures and obtain fracture inflow parameters by means of a time sequence of electric conductivity logs of the borehole fluid. The physical basis of the analysis method is discussed. The procedure is applied to an existing set of data, which shows initiation and growth of nine conductivity peaks in a 900-m section of a 1690-m borehole, corresponding to nine water-conducting fractures intersecting the borehole. We are able to match all nine peaks and determine the flow rates from these fractures. 16 refs., 28 figs., 5 tabs.

Tsang, Chin-Fu

1987-10-01T23:59:59.000Z

86

A General Strategy for Physics-Based Model Validation Illustrated with Earthquake Phenomenology, Atmospheric Radiative Transfer, and Computational Fluid Dynamics  

E-Print Network (OSTI)

Validation is often defined as the process of determining the degree to which a model is an accurate representation of the real world from the perspective of its intended uses. Validation is crucial as industries and governments depend increasingly on predictions by computer models to justify their decisions. In this article, we survey the model validation literature and propose to formulate validation as an iterative construction process that mimics the process occurring implicitly in the minds of scientists. We thus offer a formal representation of the progressive build-up of trust in the model, and thereby replace incapacitating claims on the impossibility of validating a given model by an adaptive process of constructive approximation. This approach is better adapted to the fuzzy, coarse-grained nature of validation. Our procedure factors in the degree of redundancy versus novelty of the experiments used for validation as well as the degree to which the model predicts the observations. We illustrate the new methodology first with the maturation of Quantum Mechanics as the arguably best established physics theory and then with several concrete examples drawn from some of our primary scientific interests: a cellular automaton model for earthquakes, an anomalous diffusion model for solar radiation transport in the cloudy atmosphere, and a computational fluid dynamics code for the Richtmyer-Meshkov instability. This article is an augmented version of Sornette et al. [2007] that appeared in Proceedings of the National Academy of Sciences in 2007 (doi: 10.1073/pnas.0611677104), with an electronic supplement at URL http://www.pnas.org/cgi/content/full/0611677104/DC1. Sornette et al. [2007] is also available in preprint form at physics/0511219.

Didier Sornette; Anthony B. Davis; James R. Kamm; Kayo Ide

2007-10-01T23:59:59.000Z

87

Unit physics testing of a mix model in an eulerian fluid computation  

Science Conference Proceedings (OSTI)

A K-L turbulence mix model driven with a drag-buoyancy source term is tested in an Eulerian code in a series of basic unit-physics tests, as part of a mix validation milestone. The model and the closure coefficient values are derived in the work of Dimonte-Tipton [D-T] in Phys.Flu.18, 085101 (2006), and many of the test problems were reported there, where the mix model operated in Lagrange computations. The drag-buoyancy K-L mix model was implemented within the Eulerian code framework by A.J. Scannapieco. Mix model performance is evaluated in terms of mix width growth rates compared to experiments in select regimes. Results in our Eulerian code are presented for several unit-physics I-D test problems including the decay of homogeneous isotropic turbulence (HIT), Rayleigh-Taylor (RT) unstable mixing, shock amplification of initial turbulence, Richtmyer-Meshkov (RM) mixing in several single shock test cases and in comparison to two RM experiments including re-shock (Vetter-Sturtevant and Poggi, et.al.). Sensitivity to model parameters, to Atwood number, and to initial conditions are examined. Results here are in good agreement in some tests (HIT, RT) with the previous results reported for the mix model in the Lagrange calculations. The HIT turbulent decay agrees closely with analytic expectations, and the RT growth rate matches experimental values for the default values of the model coefficients proposed in [D-T]. Results for RM characterized with a power law growth rate differ from the previous mix model work but are still within the range for reasonable agreement with experiments. Sensitivity to IC values in the RM studies are examined; results are sensitive to initial values of L[t=O], which largely determines the RM mix layer growth rate, and generally differs from the IC values used in the RT studies. Result sensitivity to initial turbulence, K[t=O], is seen to be small but significant above a threshold value. Initial conditions can be adjusted so that single shock RM mix width results match experiments but we have not been able to obtain a good match for first shock and re-shock growth rates in the same experiment with a single set of parameters and Ie. Problematic issues with KH test problems are described. Resolution studies for an RM test problem show the K-L mix growth rate decreases as it converges at a supra-linear rate, and, convergence requires a fine grid (on the order of 10 microns). For comparison, a resolution study of a second mix model [Scannapieco and Cheng, Phys.Lett.A, 299(1),49, (2002)] acting on a two fluid interface problem was examined. The mix in this case was found to increase with grid resolution at low to moderate resolutions, but converged at comparably fine resolutions. In conclusion, these tests indicate that the Eulerian code K-L model, using the Dimonte Tipton default model closure coefficients, achieve reasonable results across many of the unit-physics experimental conditions. However, we were unable to obtain good matches simultaneously for shock and re-shock mix in a single experiment. Results are sensitive to initial conditions in the regimes under study, with different IC best suited to RT or RM mix. It is reasonable to expect IC sensitivity in extrapolating to high energy density regimes, or to experiments with deceleration due to arbitrary combinations of RT and RM. As a final comparison, the atomically generated mix fraction and the mix width were each compared for the K-L mix model and the Scannapieco model on an identical RM test problem. The Scannapieco mix fraction and width grow linearly. The K-L mix fraction and width grow with the same power law exponent, in contrast to expectations from analysis. In future work it is proposed to do more head-to-head comparisons between these two models and other mix model options on a full suite of physics test problems, such as interfacial deceleration due to pressure build-up during an idealized ICF implosion.

Vold, Erik [Los Alamos National Laboratory; Douglass, Rod [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

88

GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 2: User's Manual  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK.

B. D. Nichols; C. Mller; G. A. Necker; J. R. Travis; J. W. Spore; K. L. Lam; P. Royl; T. L. Wilson

1998-10-01T23:59:59.000Z

89

Experimental and Computational Studies of Fluid Flow Phenomena in Carbon Dioxide Sequestration in Brine and Oil Fields  

NLE Websites -- All DOE Office Websites (Extended Search)

EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID FLOW PHENOMENA IN CARBON DIOXIDE SEQUESTRATION IN BRINE AND OIL FIELDS Chuang Ji ( chuang.ji@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 BOX 5725 Clarkson University Potsdam, NY 13699 Goodarz Ahmadi ( ahmadi@clarkson.edu ) BOX 5725 Clarkson University Potsdam, NY 13699 Duane H. Smith ( duane.smith@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 2 INTRODUCTION Sequestration of CO 2 by injection into deep geological formations is a method to reduce CO 2 emissions into the atmosphere. However, when CO 2 is injected underground, it forms fingers extending into the rock pores saturated with brine or petroleum. This flow

90

Computer simulation models relevant to ground water contamination from EOR or other fluids - state-of-the-art  

SciTech Connect

Ground water contamination is a serious national problem. The use of computers to simulate the behavior of fluids in the subsurface has proliferated extensively over the last decade. Numerical models are being used to solve water supply problems, various kinds of enertgy production problems, and ground water contamination problems. Modeling techniques have progressed to the point that their accuracy is only limited by the modeller's ability to describe the reservoir in question and the heterogeneities therein. Pursuant to the Task and Milestone Update of Project BE3A, this report summarizes the state of the art of computer simulation models relevant to contamination of ground water by enhanced oil recovery (EOR) chemicals and/or waste fluids. 150 refs., 6 tabs.

Kayser, M.B.; Collins, A.G.

1986-03-01T23:59:59.000Z

91

A comparison of grid-based techniques for Navier-Stokes fluid simulation in computer graphics  

E-Print Network (OSTI)

in Computer Graphics 2. Previous Work . . . . . . .B. Applications in Computer Graphics II The Navier Stokesand Tricks for Real-Time Graphics. Pearson Higher Education,

Chrisman, Cameron

2008-01-01T23:59:59.000Z

92

CFD [computational fluid dynamics] And Safety Factors. Computer modeling of complex processes needs old-fashioned experiments to stay in touch with reality.  

SciTech Connect

Computational fluid dynamics (CFD) is recognized as a powerful engineering tool. That is, CFD has advanced over the years to the point where it can now give us deep insight into the analysis of very complex processes. There is a danger, though, that an engineer can place too much confidence in a simulation. If a user is not careful, it is easy to believe that if you plug in the numbers, the answer comes out, and you are done. This assumption can lead to significant errors. As we discovered in the course of a study on behalf of the Department of Energy's Savannah River Site in South Carolina, CFD models fail to capture some of the large variations inherent in complex processes. These variations, or scatter, in experimental data emerge from physical tests and are inadequately captured or expressed by calculated mean values for a process. This anomaly between experiment and theory can lead to serious errors in engineering analysis and design unless a correction factor, or safety factor, is experimentally validated. For this study, blending times for the mixing of salt solutions in large storage tanks were the process of concern under investigation. This study focused on the blending processes needed to mix salt solutions to ensure homogeneity within waste tanks, where homogeneity is required to control radioactivity levels during subsequent processing. Two of the requirements for this task were to determine the minimum number of submerged, centrifugal pumps required to blend the salt mixtures in a full-scale tank in half a day or less, and to recommend reasonable blending times to achieve nearly homogeneous salt mixtures. A full-scale, low-flow pump with a total discharge flow rate of 500 to 800 gpm was recommended with two opposing 2.27-inch diameter nozzles. To make this recommendation, both experimental and CFD modeling were performed. Lab researchers found that, although CFD provided good estimates of an average blending time, experimental blending times varied significantly from the average.

Leishear, Robert A.; Lee, Si Y.; Poirier, Michael R.; Steeper, Timothy J.; Ervin, Robert C.; Giddings, Billy J.; Stefanko, David B.; Harp, Keith D.; Fowley, Mark D.; Van Pelt, William B.

2012-10-07T23:59:59.000Z

93

Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls  

SciTech Connect

This is the first Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts. A project kickoff meeting was held in conjunction with NETL's 2002 Sensors and Control Program Portfolio Review and Roadmapping Workshop, in Pittsburgh, PA during October 15-16, 2002. Dr. Marc Cremer, REI, and Dr. Paul Wolff, EPRI I&C, both attended and met with the project COR, Susan Maley. Following the review of REI's database of wall-fired coal units, the project team selected a front wall fired 150 MW unit with a Riley Low NOx firing system including overfire air for evaluation. In addition, a test matrix outlining approximately 25 simulations involving variations in burner secondary air flows, and coal and primary air flows was constructed. During the reporting period, twenty-two simulations have been completed, summarized, and tabulated for sensitivity analysis. Based on these results, the team is developing a suitable approach for quantifying the sensitivity coefficients associated with the parametric tests. Some of the results of the CFD simulations of the single wall fired unit were presented in a technical paper entitled, ''CFD Investigation of the Sensitivity of Furnace Operational Conditions to Burner Flow Controls,'' presented at the 28th International Technical Conference on Coal Utilization and Fuel Systems in Clearwater, FL March 9-14, 2003. In addition to the work completed on the single wall fired unit, the project team made the selection of a 580 MW opposed wall fired unit to be the subject of evaluation in this program. Work is in progress to update the baseline model of this unit so that the parametric simulations can be initiated.

Marc Cremer; Kirsi St. Marie; Dave Wang

2003-04-30T23:59:59.000Z

94

Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine  

DOE Green Energy (OSTI)

This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

Lawson, M. J.; Li, Y.; Sale, D. C.

2011-10-01T23:59:59.000Z

95

Computational analysis of coupled fluid, heat, and mass transport in ferrocyanide single-shell tanks: FY 1994 interim report. Ferrocyanide Tank Safety Project  

Science Conference Proceedings (OSTI)

A computer modeling study was conducted to determine whether natural convection processes in single-shell tanks containing ferrocyanide wastes could generate localized precipitation zones that significantly concentrate the major heat-generating radionuclide, {sup 137}Cs. A computer code was developed that simulates coupled fluid, heat, and single-species mass transport on a regular, orthogonal finite-difference grid. The analysis showed that development of a ``hot spot`` is critically dependent on the temperature dependence for the solubility of Cs{sub 2}NiFe(CN){sub 6} or CsNaNiFe(CN){sub 6}. For the normal case, where solubility increases with increasing temperature, the net effect of fluid flow, heat, and mass transport is to disperse any local zones of high heat generation rate. As a result, hot spots cannot physically develop for this case. However, assuming a retrograde solubility dependence, the simulations indicate the formation of localized deposition zones that concentrate the {sup 137}Cs near the bottom center of the tank where the temperatures are highest. Recent experimental studies suggest that Cs{sub 2}NiFe(CN){sub 6}(c) does not exhibit retrograde solubility over the temperature range 25{degree}C to 90{degree}C and NaOH concentrations to 5 M. Assuming these preliminary results are confirmed, no natural mass transport process exists for generating a hot spot in the ferrocyanide single-shell tanks.

McGrail, B.P.

1994-11-01T23:59:59.000Z

96

Coupled computational fluid dynamics and heat transfer analysis of the VHTR lower plenum.  

SciTech Connect

The very high temperature reactor (VHTR) concept is being developed by the US Department of Energy (DOE) and other groups around the world for the future generation of electricity at high thermal efficiency (> 48%) and co-generation of hydrogen and process heat. This Generation-IV reactor would operate at elevated exit temperatures of 1,000-1,273 K, and the fueled core would be cooled by forced convection helium gas. For the prismatic-core VHTR, which is the focus of this analysis, the velocity of the hot helium flow exiting the core into the lower plenum (LP) could be 35-70 m/s. The impingement of the resulting gas jets onto the adiabatic plate at the bottom of the LP could develop hot spots and thermal stratification and inadequate mixing of the gas exiting the vessel to the turbo-machinery for energy conversion. The complex flow field in the LP is further complicated by the presence of large cylindrical graphite posts that support the massive core and inner and outer graphite reflectors. Because there are approximately 276 channels in the VHTR core from which helium exits into the LP and a total of 155 support posts, the flow field in the LP includes cross flow, multiple jet flow interaction, flow stagnation zones, vortex interaction, vortex shedding, entrainment, large variation in Reynolds number (Re), recirculation, and mixing enhancement and suppression regions. For such a complex flow field, experimental results at operating conditions are not currently available. Instead, the objective of this paper is to numerically simulate the flow field in the LP of a prismatic core VHTR using the Sandia National Laboratories Fuego, which is a 3D, massively parallel generalized computational fluid dynamics (CFD) code with numerous turbulence and buoyancy models and simulation capabilities for complex gas flow fields, with and without thermal effects. The code predictions for simpler flow fields of single and swirling gas jets, with and without a cross flow, are validated using reported experimental data and theory. The key processes in the LP are identified using phenomena identification and ranking table (PIRT). It may be argued that a CFD code that accurately simulates simplified, single-effect flow fields with increasing complexity is likely to adequately model the complex flow field in the VHTR LP, subject to a future experimental validation. The PIRT process and spatial and temporal discretizations implemented in the present analysis using Fuego established confidence in the validation and verification (V and V) calculations and in the conclusions reached based on the simulation results. The performed calculations included the helicoid vortex swirl model, the dynamic Smagorinsky large eddy simulation (LES) turbulence model, participating media radiation (PMR), and 1D conjugate heat transfer (CHT). The full-scale, half-symmetry LP mesh used in the LP simulation included unstructured hexahedral elements and accounted for the graphite posts, the helium jets, the exterior walls, and the bottom plate with an adiabatic outer surface. Results indicated significant enhancements in heat transfer, flow mixing, and entrainment in the VHTR LP when using swirling inserts at the exit of the helium flow channels into the LP. The impact of using various swirl angles on the flow mixing and heat transfer in the LP is qualified, including the formation of the central recirculation zone (CRZ), and the effect of LP height. Results also showed that in addition to the enhanced mixing, the swirling inserts result in negligible additional pressure losses and are likely to eliminate the formation of hot spots.

El-Genk, Mohamed S. (University of New Mexico, Albuquerque, NM); Rodriguez, Salvador B.

2010-12-01T23:59:59.000Z

97

Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls  

SciTech Connect

This is the Final Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project was to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. The focus of this project was to quantify the potential impacts of ''fine level'' controls rather than that of ''coarse level'' controls (i.e. combustion tuning). Although it is well accepted that combustion tuning will generally improve efficiency and emissions of an ''out of tune'' boiler, it is not as well understood what benefits can be derived through active multiburner measurement and control systems in boiler that has coarse level controls. The approach used here was to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner air and fuel flow rates. The Electric Power Research Institute (EPRI) provided co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center have been active participants in this project. CFD simulations were completed for five coal fired boilers as planned: (1) 150 MW wall fired, (2) 500 MW opposed wall fired, (3) 600 MW T-Fired, (4) 330 MW cyclone-fired, and (5) 200 MW T-Fired Twin Furnace. In all cases, the unit selections were made in order to represent units that were descriptive of the utility industry as a whole. For each unit, between 25 and 44 furnace simulations were completed in order to evaluate impacts of burner to burner variations in: (1) coal and primary air flow rate, and (2) secondary air flow rate. The parametric matrices of cases that were completed were defined in order to accommodate sensitivity analyses of the results. The sensitivity analyses provide a strategy for quantifying the rate of change of NOx or unburned carbon in the fly ash to a rate of change in secondary air or fuel or stoichiometric ratio for individual burners or groups of burners in order to assess the value associated with individual burner flow control. In addition, the sensitivity coefficients that were produced provide a basis for quantifying the differences in sensitivities for the different boiler types. In a ranking of the sensitivity of NOx emissions to variations in secondary air flow between the burners at a fixed lower furnace stoichiometric ratio in order of least sensitive to most sensitive, the results were: (1) 600 MW T-Fired Unit; (2) 500 MW Opposed Wall-Fired Unit; (3) 150 MW Wall-Fired Unit; (4) 100 MW T-Fired Unit; and (5) 330 MW Cyclone-Fired Unit.

Marc Cremer; Dave Wang; Connie Senior; Andrew Chiodo; Steven Hardy; Paul Wolff

2005-07-01T23:59:59.000Z

98

Method of and apparatus for determining the similarity of a biological analyte from a model constructed from known biological fluids  

DOE Patents (OSTI)

The characteristics of a biological fluid sample having an analyte are determined from a model constructed from plural known biological fluid samples. The model is a function of the concentration of materials in the known fluid samples as a function of absorption of wideband infrared energy. The wideband infrared energy is coupled to the analyte containing sample so there is differential absorption of the infrared energy as a function of the wavelength of the wideband infrared energy incident on the analyte containing sample. The differential absorption causes intensity variations of the infrared energy incident on the analyte containing sample as a function of sample wavelength of the energy, and concentration of the unknown analyte is determined from the thus-derived intensity variations of the infrared energy as a function of wavelength from the model absorption versus wavelength function.

Robinson, Mark R. (Albuquerque, NM); Ward, Kenneth J. (Albuquerque, NM); Eaton, Robert P. (Albuquerque, NM); Haaland, David M. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

99

Massively parallel computing simulation of fluid flow in the unsaturated zone of Yucca Mountain, Nevada  

E-Print Network (OSTI)

at Yucca Mountain. Sandia National Laboratories Milestone3672. Sandia National Laboratories, Albuquerque, New Mexico.Computing Research Laboratory, Sandia National Laboratories,

Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S.

2001-01-01T23:59:59.000Z

100

Computer simulation of effective viscosity of fluid-proppant mixture used in hydraulic fracturing  

E-Print Network (OSTI)

The paper presents results of numerical experiments performed to evaluate the effective viscosity of a fluid-proppant mixture, used in hydraulic fracturing. The results, obtained by two complimenting methods (the particle dynamics and the smoothed particle hydrodynamics), coincide to the accuracy of standard deviation. They provide an analytical equation for the dependence of effective viscosity on the proppant concentration, needed for numerical simulation of the hydraulic fracture propagation.

Kuzkin, Vitaly A; Linkov, Aleksandr M

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Laboratory apparatus and operating procedures for determining the long-term environmental fate of EOR chemicals and other waste fluids  

SciTech Connect

The objective of NIPER's EOR Environmental Compatibility project, BE3A, is to determine the compatibilities and potential long term environmental effects of EOR chemicals and injected waste fluids with reservoir fluids and rocks. To aid in this effort, a coreflooding system and injection/analysis procedures were designed. The system consists primarily of a Bureau of Mines stainless steel autoclave, or optional Hassler holder, pumps, and associated hardware. The system uses proven core flooding techniques, and may be used at moderately elevated temperatures and pressures. This report describes the apparatus and procedures involved in performing the research. 1 ref., 4 figs.

Kayser, M.B.; Collins, A.G.

1985-11-01T23:59:59.000Z

102

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Computational Fluid Dynamics (CFD) Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Systems...

103

Determination of the effect of formation water on fracture-fluid cleanup  

SciTech Connect

Understanding hydraulic-fracture cleanup is essential for improving well stimulation. Residual gel damages fracture conductivity, shortens effective fracture half-length, and limits well productivity. The drive to develop fluids, additives, and procedures that minimize this damage continues to be a dominant theme in fracture-fluid-development programs. Fracture cleanup is a complex problem, and many parameters (e.g., fluid system, job design, flowback procedure, and reservoir conditions) can influence polymer and fluid recovery efficiencies. Often, specific products and methods that work well in one reservoir have little effect in another. Systematic analysis of fluid and polymer returns after a treatment is completed is the only way to quantify fracture cleanup. This is referred to as flowback analysis. This paper discusses a flowback-analysis field study on large hydraulic-fracturing treatments in the Taylor zone of the Cotton Valley formation in east Texas. This is a low-permeability (approximately 0.01 md) tight gas formation. It is a heterogeneous zone with layers of productive sandstone interspersed with relatively impermeable layers of shale. A typical well in this field initially produces approximately 0.75 to 1.3 MMcf/D gas and 35 to 40 bbl of water/MMcf of gas. The returns from 10 wells in this field were analyzed thoroughly.

NONE

1998-03-01T23:59:59.000Z

104

Method, system and computer program product for monitoring and optimizing fluid extraction from geologic strata  

DOE Patents (OSTI)

An arrangement which utilizes an inexpensive flap valve/flow transducer combination and a simple local supervisory control system to monitor and/or control the operation of a positive displacement pump used to extract petroleum from geologic strata. The local supervisory control system controls the operation of an electric motor which drives a reciprocating positive displacement pump so as to maximize the volume of petroleum extracted from the well per pump stroke while minimizing electricity usage and pump-off situations. By reducing the electrical demand and pump-off (i.e., "pounding" or "fluid pound") occurrences, operating and maintenance costs should be reduced sufficiently to allow petroleum recovery from marginally productive petroleum fields. The local supervisory control system includes one or more applications to at least collect flow signal data generated during operation of the positive displacement pump. No flow, low flow and flow duration are easily evaluated using the flap valve/flow transducer arrangement.

Medizade, Masoud (San Luis Obispo, CA); Ridgely, John Robert (Los Osos, CA)

2009-12-15T23:59:59.000Z

105

Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Development and Verification of Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine M.J. Lawson and Y. Li. National Renewable Energy Laboratory D.C. Sale University of Washington Presented at the 30 th International Conference on Ocean, Offshore, and Arctic Engineering Rotterdam, The Netherlands June 19-24, 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Conference Paper NREL/CP-5000-50981 October 2011 Contract No. DE-AC36-08GO28308 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US

106

Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors  

SciTech Connect

Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

2005-10-01T23:59:59.000Z

107

Computational fluid dynamics simulation of chemical reactors: Application of in situ adaptive tabulation to methane thermochlorination chemistry  

SciTech Connect

Recently, a novel algorithm--in situ adaptive tabulation--has been proposed to effectively incorporate detailed chemistry in computational fluid dynamics (CFD) simulations for turbulent reacting flows. In this work, detailed tests performed on a pairwise-mixing stirred reactor (PMSR) model are presented implementing methane thermochlorination chemistry to validate the in situ adaptive tabulation (ISAT) algorithm. The detailed kinetic scheme involves 3 elements (H, C, Cl) and 38 chemical species undergoing a total of 152 elementary reactions. The various performance issues (error control, accuracy, storage requirements, speed-up) involved in the implementation of detailed chemistry in particle-based methods (full PDF methods) are discussed. Using an error tolerance of {epsilon}{sub tol} = 2 x 10{sup {minus}4}, sufficiently accurate results with minimal storage requirements and significantly less computational time than would be required with direct integration are obtained. Based on numerous test simulations, an error tolerance in the range of 10{sup {minus}3}--10{sup {minus}4} is found to be satisfactory for carrying out full PDF simulations of methane thermochlorination reactors. The results presented here demonstrate that the implementation of ISAT makes possible the hitherto formidable task of implementing detailed chemistry in CFD simulations of methane thermochlorination reactors.

Shah, J.J.; Fox, R.O.

1999-11-01T23:59:59.000Z

108

Computational Fluid Dynamics Modeling of the Operation of a Flame Ionization Sensor  

Science Conference Proceedings (OSTI)

The sensors and controls research group at the United States Department of Energy (DOE) National Energy Technology Laboratory (NETL) is continuing to develop the Combustion Control and Diagnostics Sensor (CCADS) for gas turbine applications. CCADS uses the electrical conduction of the charged species generated during the combustion process to detect combustion instabilities and monitor equivalence ratio. As part of this effort, combustion models are being developed which include the interaction between the electric field and the transport of charged species. The primary combustion process is computed using a flame wrinkling model (Weller et. al. 1998) which is a component of the OpenFOAM toolkit (Jasak et. al. 2004). A sub-model for the transport of charged species is attached to this model. The formulation of the charged-species model similar that applied by Penderson and Brown (1993) for the simulation of laminar flames. The sub-model consists of an additional flux due to the electric field (drift flux) added to the equations for the charged species concentrations and the solution the electric potential from the resolved charge density. The subgrid interactions between the electric field and charged species transport have been neglected. Using the above procedure, numerical simulations are performed and the results compared with several recent CCADS experiments.

Huckaby, E.D.; Chorpening, B.T.; Thornton, J.D.

2007-03-01T23:59:59.000Z

109

How to Determine if Your Computer is Part of a Domain -Windows XP Page 1 of 3 How to Determine if Your Computer is Part of a Domain -Windows XP  

E-Print Network (OSTI)

How to Determine if Your Computer is Part of a Domain - Windows XP Page 1 of 3 How to Determine if Your Computer is Part of a Domain - Windows XP Last Update: 11/28/2011 1. Click the Windows Start: #12;How to Determine if Your Computer is Part of a Domain - Windows XP Page 2 of 3 4. From the popup

Mladenoff, David

110

Reaction Engineering International and Pacific Northwest Laboratory staff exchange: Addressing computational fluid dynamics needs of the chemical process industry  

SciTech Connect

Staff exchanges, such as the one described in this report, are intended to facilitate communications and collaboration among scientists and engineers at Department of Energy (DOE) laboratories, in US industry, and academia. Funding support for these exchanges is provided by the DOE, Office of Energy Research, Laboratory Technology Transfer Program. Funding levels for each exchange typically range from $20,000 to $40,000. The exchanges offer the opportunity for the laboratories to transfer technology and expertise to industry, gain a perspective to industry`s problems, and develop the basis for further cooperative efforts through Cooperative Research and Development Agreements (CRADAS) or other mechanisms. Information in this report on the staff exchange of the Pacific Northwest Laboratory (PNL) staff with Reaction Engineering International (REI) includes the significant accomplishments, significant problems, industry benefits realized, recommended follow-on work and potential benefit of that work. The objectives of this project were as follows: Work with REI to develop an understanding of the computational fluid dynamics (CFD) needs of the chemical process industry; assess the combined capabilities of the PNL and REI software analysis tools to address these needs; and establish a strategy for a future programmatically funded, joint effort to develop a new CFD tool for the chemical process industry.

Fort, J.A.

1995-07-01T23:59:59.000Z

111

Computational fluid dynamics simulation of the air/suppressant flow in an uncluttered F18 engine nacelle  

DOE Green Energy (OSTI)

For the purposes of designing improved Halon-alternative fire suppression strategies for aircraft applications, Computational Fluid Dynamics (CFD) simulations of the air flow, suppressant transport, and air-suppressant mixing within an uncluttered F18 engine nacelle were performed. The release of inert gases from a Solid Propellant Gas Generator (SPGG) was analyzed at two different injection locations in order to understand the effect of injection position on the flow patterns and the mixing of air and suppression agent. An uncluttered engine nacelle was simulated to provide insight into the global flow features as well as to promote comparisons with previous nacelle fire tests and recent water tunnel tests which included little or no clutter. Oxygen concentration levels, fuel/air residence times that would exist if a small fuel leak were present, velocity contours, and streamline patterns are presented inside the engine nacelle. The numerical results show the influence of the gent release location on regions of potential flame extinction due to oxygen inerting and high flame strain. The occurrence of inflow through the exhaust ducts on the aft end of the nacelle is also predicted. As expected, the predicted oxygen concentration levels were consistently higher than the measured levels since a fire was not modeled in this analysis. Despite differences in the conditions of these simulations and the experiments, good agreement was obtained between the CFD predictions and the experimental measurements.

Lopez, A.R.; Gritzo, L.A.; Hassan, B.

1997-06-01T23:59:59.000Z

112

Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly. Final CRADA Report.  

Science Conference Proceedings (OSTI)

A direct numerical simulation capability for two-phase flows with heat transfer in complex geometries can considerably reduce the hardware development cycle, facilitate the optimization and reduce the costs of testing of various industrial facilities, such as nuclear power plants, steam generators, steam condensers, liquid cooling systems, heat exchangers, distillers, and boilers. Specifically, the phenomena occurring in a two-phase coolant flow in a BWR (Boiling Water Reactor) fuel assembly include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for this purpose of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Advanced CFD (Computational Fluid Dynamics) codes provide a potential for detailed 3D simulations of coolant flow inside a fuel assembly, including flow around a spacer element using more fundamental physical models of flow regimes and phase interactions than sub-channel codes. Such models can extend the code applicability to a wider range of situations, which is highly important for increasing the efficiency and to prevent accidents.

Tentner, A.; Nuclear Engineering Division

2009-10-13T23:59:59.000Z

113

Experimentally determined rock-fluid interactions applicable to a natural hot-dry-rock geothermal system  

DOE Green Energy (OSTI)

The field program cnsists of experiments in which hot rock of low permeability is hydraulically fractured between two wellbores. Water is circulated from one well to the other through the fractured hot rock. Our field experiments are designed to test reservoir engineering parameters such as heat-extraction rates, water-loss rates, flow characteristics including impedance and buoyancy, seismic activity, and fluid chemistry. Laboratory experiments were designed to provide information on the mineral-water reactivity encountered during the field program. Two experimental circulation systems tested the rates of dissolution and alteration during dynamic flow. Solubility of rock in agitated systems was studied. Moreover, pure minerals, samples of the granodiorite from the actual reservoir, and Tijeras Canyon granite have been reacted with distilled water and various solutions of NaCl, NaOH, and Na/sub 2/CO/sub 3/. The results of these experimental systems are compared to the observations made in field experiments done within the hot dry rock reservoir at a depth of approximately 3 km where the initial rock temperature was 150 to 200/sup 0/C.

Charles, R.W.; Grigsby, C.O.; Holley, C.E. Jr.; Tester, J.W.; Blatz, L.A.

1981-01-01T23:59:59.000Z

114

Distributed computational fluid dynamics  

E-Print Network (OSTI)

that arises in these practical turbulent combustion pro- cesses is a strong coupling between turbulence, chemical kinetics and heat release. These interactions are generally three dimensional and time de- pendent, and are not easily accessible to experimental... and at university and national level by very large massively-parallel supercomputers. Therefore, CFD offers a major opportunity for the development and application of Grid technology in engineering and forms the motivation for the present study. A difficulty...

Jenkins, K; Yang, Xiaobo; Hayes, Mark; Cant, Stewart R

2008-06-26T23:59:59.000Z

115

Computational Fluid (introduction)  

E-Print Network (OSTI)

. Construction Flow vectors and pressure distribution on an offshore oil rig Flow around cooling towers Wing-Body Interaction Hypersonic Launch Vehicle Aerodynamics Engine Cooling Polymerization reactor

116

18th AIAA Computational Fluid Dynamics Conference, June 2528, 2007, Miami, FL Petaflops Opportunities for the NASA Fundamental  

E-Print Network (OSTI)

in high performance computing at the national level. Advocacy for high performance computing has role as a leading advocate for high performance computational engi- neering at the national level. We in formulating the case for increased investment in high performance computing activities, and that a similar

Peraire, Jaime

117

NEPA CX Determination SS-SC-12-03 for the Stanford Research Computer Facility (SRCF)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 for the Stanford Research Computer Facility (SRCF) 3 for the Stanford Research Computer Facility (SRCF) National Environmental Policy Act (NEPA) Categorical Exclusion (CX) Determination A. SSO NEPA Control #: SS-SC-12-03 AN12038 B. Brief Description of Proposed Action: The project scope includes the construction of a new computer facility (21,500 square feet) capable of providing 3 MW of data center potential. The new two-story facility will provide infrastructure for a multitude of server racks. There are three fenced service yards outside the building, one for chillers, one for new electrical substation equipment, and one for emergency generators. The ground floor will be utilized for electrical and receiving area; the second floor will have a server room, mechanical room, conference

118

A computer program to determine the specific power of prismatic-core reactors  

DOE Green Energy (OSTI)

A computer program has been developed to determine the maximum specific power for prismatic-core reactors as a function of maximum allowable fuel temperature, core pressure drop, and coolant velocity. The prismatic-core reactors consist of hexagonally shaped fuel elements grouped together to form a cylindrically shaped core. A gas coolant flows axially through circular channels within the elements, and the fuel is dispersed within the solid element material either as a composite or in the form of coated pellets. Different coolant, fuel, coating, and element materials can be selected to represent different prismatic-core concepts. The computer program allows the user to divide the core into any arbitrary number of axial levels to account for different axial power shapes. An option in the program allows the automatic determination of the core height that results in the maximum specific power. The results of parametric specific power calculations using this program are presented for various reactor concepts.

Dobranich, D.

1987-05-01T23:59:59.000Z

119

Computational analysis of fluid flow and zonal deposition in ferrocyanide single-shell tanks. Ferrocyanide Safety Program  

SciTech Connect

Safety of single-shell tanks containing ferrocyanide wastes is of concern. Ferrocyanide in the presence of an oxidizer such as NaNO{sub 3} or NaNO{sub 2} is explosively combustible when concentrated and heated. Evaluating the processes that could affect the fuel content of waste and distribution of the tank heat load is important. Highly alkaline liquid wastes were transferred in and out of the tanks over several years. Since Na{sub 2}NiFe(CN){sub 6} is much more soluble in alkaline media, the ferrocyanide could be dispersed from the tank more easily. If Cs{sub 2}NiFe(CN){sub 6} or CsNaNiFe(CN){sub 6} are also soluble in alkaline media, solubilization and transport of {sup 137}Cs could also occur. Transporting this heat generating radionuclide to a localized area in the tanks is a potential mechanism for generating a ``hot spot.`` Fluid convection could potentially speed the transport process considerably over aqueous diffusion alone. A stability analysis was performed for a dense fluid layer overlying a porous medium saturated by a less dense fluid with the finding that the configuration is unconditionally unstable and independent of the properties of the porous medium or the magnitude of the fluid density difference. A parametric modeling study of the buoyancy-driven flow due to a thermal gradient was combusted to establish the relationship between the waste physical and thermal properties and natural convection heat transfer. The effects of diffusion and fluid convection on the redistribution of the {sup 137}Cs were evaluated with a 2-D coupled heat and mass transport model. The maximum predicted temperature rise associated with the formation of zones was only 5{degrees}C and thus is of no concern in terms of generating a localized ``hot spot.``

McGrail, B.P.; Trent, D.S.; Terrones, G.; Hudson, J.D.; Michener, T.E.

1993-10-01T23:59:59.000Z

120

Computational fluid dynamics analyses of lateral heat conduction, coolant azimuthal mixing and heat transfer predictions in a BR2 fuel assembly geometry.  

SciTech Connect

To support the analyses related to the conversion of the BR2 core from highly-enriched (HEU) to low-enriched (LEU) fuel, the thermal-hydraulics codes PLTEMP and RELAP-3D are used to evaluate the safety margins during steady-state operation (PLTEMP), as well as after a loss-of-flow, loss-of-pressure, or a loss of coolant event (RELAP). In the 1-D PLTEMP and RELAP simulations, conduction in the azimuthal and axial directions is not accounted. The very good thermal conductivity of the cladding and the fuel meat and significant temperature gradients in the lateral directions (axial and azimuthal directions) could lead to a heat flux distribution that is significantly different than the power distribution. To evaluate the significance of the lateral heat conduction, 3-D computational fluid dynamics (CFD) simulations, using the CFD code STAR-CD, were performed. Safety margin calculations are typically performed for a hot stripe, i.e., an azimuthal region of the fuel plates/coolant channel containing the power peak. In a RELAP model, for example, a channel between two plates could be divided into a number of RELAP channels (stripes) in the azimuthal direction. In a PLTEMP model, the effect of azimuthal power peaking could be taken into account by using engineering factors. However, if the thermal mixing in the azimuthal direction of a coolant channel is significant, a stripping approach could be overly conservative by not taking into account this mixing. STAR-CD simulations were also performed to study the thermal mixing in the coolant. Section II of this document presents the results of the analyses of the lateral heat conduction and azimuthal thermal mixing in a coolant channel. Finally, PLTEMP and RELAP simulations rely on the use of correlations to determine heat transfer coefficients. Previous analyses showed that the Dittus-Boelter correlation gives significantly more conservative (lower) predictions than the correlations of Sieder-Tate and Petukhov. STAR-CD 3-D simulations were performed to compare heat transfer predictions from CFD and the correlations. Section III of this document presents the results of this analysis.

Tzanos, C. P.; Dionne, B. (Nuclear Engineering Division)

2011-05-23T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Simulations for Complex Fluid Flow Problems from Berkeley Lab's Center for Computational Sciences and Engineering (CCSE)  

DOE Data Explorer (OSTI)

The Center for Computational Sciences and Engineering (CCSE) develops and applies advanced computational methodologies to solve large-scale scientific and engineering problems arising in the Department of Energy (DOE) mission areas involving energy, environmental, and industrial technology. The primary focus is in the application of structured-grid finite difference methods on adaptive grid hierarchies for compressible, incompressible, and low Mach number flows. The diverse range of scientific applications that drive the research typically involve a large range of spatial and temporal scales (e.g. turbulent reacting flows) and require the use of extremely large computing hardware, such as the 153,000-core computer, Hopper, at NERSC. The CCSE approach to these problems centers on the development and application of advanced algorithms that exploit known separations in scale; for many of the application areas this results in algorithms are several orders of magnitude more efficient than traditional simulation approaches.

122

Numerical simulation of the air flow field in a laboratory fume hood using the CFD-ACE(TM) computational fluid dynamics code  

E-Print Network (OSTI)

The purpose of this research was the numerical simulation of the air flow field within a standard laboratory fume hood using the k-6 turbulence model. The study investigated the flow field at different sash openings. The results of the computation realized information on the hood entry losses and other design parameters that are of interest to the users, designers and owners of fume hoods. After the specification of the problem and generation of the mesh, the modeled hood was simulated using CFD-ACE TM , a commercial computational fluid dynamics software package. The code is based on the finite volume method. In defining the grid, due care was exercised in maintaining the cell aspect ratio and grid orthogonality within the recommended limits. The air flow patterns at full open sash compared favorably with experimental results. The results at lowered sash revealed air flow characteristics and slot volume flows that were not reported in previously published literature on fume hoods. These results along with smaller hood entry losses confirmed the better performance of fume hoods at sash openings that are less than half open. Further, comparison between the computed volume flow rates and published design data was favorable.

D'Sousa, Cedric Benedict

1997-01-01T23:59:59.000Z

123

Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Computing Computing and Storage Requirements Computing and Storage Requirements for FES J. Candy General Atomics, San Diego, CA Presented at DOE Technical Program Review Hilton Washington DC/Rockville Rockville, MD 19-20 March 2013 2 Computing and Storage Requirements Drift waves and tokamak plasma turbulence Role in the context of fusion research * Plasma performance: In tokamak plasmas, performance is limited by turbulent radial transport of both energy and particles. * Gradient-driven: This turbulent transport is caused by drift-wave instabilities, driven by free energy in plasma temperature and density gradients. * Unavoidable: These instabilities will persist in a reactor. * Various types (asymptotic theory): ITG, TIM, TEM, ETG . . . + Electromagnetic variants (AITG, etc). 3 Computing and Storage Requirements Fokker-Planck Theory of Plasma Transport Basic equation still

124

Gas tracer composition and method. [Process to determine whether any porous underground methane storage site is in fluid communication with a gas producing well  

SciTech Connect

A process is described for determining whether any porous underground gaseous methane storage sites is in fluid communication with a gas producing well, and if there is fluid communication, determining which site is in the fluid communication comprising injecting a different gaseous tracer mixture into each of the sites at some location in each of the site in an amount such that the presence of the tracer mixture will be detectable in the gaseous methane stored therein, each of the mixture having the properties of (1) not occurring in natural supplies of methane, (2) diffusing through any underground methane storage site in a manner very similar in rate to methane, and (3) being substantially insoluble in petroleum distillates, after a period of time sufficient for each of the tracer mixtures to diffuse through the underground site from its injection location to the well, withdrawing a sample gaseous product from the well, testing the sample gaseous product for the presence of each of the tracer mixtures.

Malcosky, N.D.; Koziar, G.

1987-09-01T23:59:59.000Z

125

Using Computational Fluid Dynamics Techniques to Define the Hydraulic Zone of Influence of Cooling Water Intake Structures  

Science Conference Proceedings (OSTI)

In the past, the hydraulic zone of influence (HZI) of a cooling water intake structure (CWIS) has been inferred from the results of field sampling programs. Today, however, advanced hydraulic modeling techniques can be used to define the HZI of a CWIS using personal computers. This report provides information that can be used to quantitatively or qualitatively describe the "area of influence" or HZI of a power plant CWIS, as required under new U.S. Environmental Protection Agency (EPA) Clean Water Act (C...

2004-07-26T23:59:59.000Z

126

Computational tools for experimental determination and theoretical prediction of protein structure  

SciTech Connect

This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. The authors intend to review the state of the art in the experimental determination of protein 3D structure (focus on nuclear magnetic resonance), and in the theoretical prediction of protein function and of protein structure in 1D, 2D and 3D from sequence. All the atomic resolution structures determined so far have been derived from either X-ray crystallography (the majority so far) or Nuclear Magnetic Resonance (NMR) Spectroscopy (becoming increasingly more important). The authors briefly describe the physical methods behind both of these techniques; the major computational methods involved will be covered in some detail. They highlight parallels and differences between the methods, and also the current limitations. Special emphasis will be given to techniques which have application to ab initio structure prediction. Large scale sequencing techniques increase the gap between the number of known proteins sequences and that of known protein structures. They describe the scope and principles of methods that contribute successfully to closing that gap. Emphasis will be given on the specification of adequate testing procedures to validate such methods.

O`Donoghue, S.; Rost, B.

1995-12-31T23:59:59.000Z

127

SRM -? Fluids  

Science Conference Proceedings (OSTI)

... These reference fluid formulations characterize the behavior of broad ranges of chemically similar fluids; in this way data on propane, for example ...

2012-10-01T23:59:59.000Z

128

Computational fluid dynamics study on the decomposition of ammonia in a selective porous membrane - article no. 42  

SciTech Connect

The development of alternative technologies for the removal of gas pollutants is an important aspect for the environmental friendliness of energy production. During coal gasification, N{sub 2} contained in coal is converted to NH{sub 3} and, as much as 50% of the ammonia in the fuel gas can be converted to nitrogen oxides (NOx). At these conditions, decomposition seems to be the only applicable solution for the removal of NH{sub 3}. The application of a high temperature catalytic membrane reactor process appears to offer an efficient and cost effective method of removing the NH{sub 3} from coal gasification gas streams. The present work examines the operation of such a selective membrane, used for the decomposition of NH{sub 3}, under a 2-D axissymetric CFD approach where the flow field, the chemical reactions and the selective porous membrane behavior are being modeled and computed. The main target of this effort was to obtain a more detailed view of the flow field and to investigate the decomposition of ammonia in comparison with a simpler 1-D modeling approach and, thus, to evaluate the advantages and disadvantages of each method.

Athanasios Sideridis; Dimitrios Koutsonikolas; Dimitrios Missirlis [Aristotle University of Thessaloniki (Greece)

2008-07-01T23:59:59.000Z

129

Transdisciplinary Fluid Integration Research Center  

E-Print Network (OSTI)

Environment Reality-Coupled Computation Energy Dynamics Integrated Visual Informatics Super-Real-Time Medical of Fluid Science, Tohoku University, in April 2003. The next generation transdisciplinary research Research focus is to advance utilization of Computer Fluid Dynamics (CFD) for solving engineering problems

Obayashi, Shigeru

130

Pollutant dispersion in a large indoor space: Part 2 -Computational Fluid Dynamics (CFD) predictions and comparison with ascale model experiment for isothermal flow  

SciTech Connect

This paper reports on an investigation of the adequacy of Computational fluid dynamics (CFD), using a standard Reynolds Averaged Navier Stokes (RANS) model, for predicting dispersion of neutrally buoyant gas in a large indoor space. We used CFD to predict pollutant (dye) concentration profiles in a water filled scale model of an atrium with a continuous pollutant source. Predictions from the RANS formulation are comparable to an ensemble average of independent identical experiments. Model results were compared to pollutant concentration data in a horizontal plane from experiments in a scale model atrium. Predictions were made for steady-state (fully developed) and transient (developing) pollutant concentrations. Agreement between CFD predictions and ensemble averaged experimental measurements is quantified using the ratios of CFD-predicted and experimentally measured dye concentration at a large number of points in the measurement plane. Agreement is considered good if these ratios fall between 0.5 and 2.0 at all points in the plane. The standard k-epsilon two equation turbulence model obtains this level of agreement and predicts pollutant arrival time to the measurement plane within a few seconds. These results suggest that this modeling approach is adequate for predicting isothermal pollutant transport in a large room with simple geometry.

Finlayson, Elizabeth U.; Gadgil, Ashok J.; Thatcher, Tracy L.; Sextro, Richard G.

2002-10-01T23:59:59.000Z

131

GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID | Open Energy  

Open Energy Info (EERE)

FLUID PROPENE AND PROPANE: INDICATORS OF FLUID FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Details Activities (1) Areas (1) Regions (0) Abstract: The use of fluid inclusion gas analysis propene/propene ratios is investigated. Ratios of these species are affected by geothermal fluid temperature and oxidations state. Our purpose is to determine if analyses of these species in fluid inclusions these species to can be used to interpret fluid type, history, or process. Analyses were performed on drill cuttings at 20ft intervals from four Coso geothermal wells. Two wells are good producers, one has cold-water entrants in the production zone, and the fourth is a non-producer. The ratios show distinct differences between

132

Ultrasonic fluid quality sensor system  

SciTech Connect

A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

2002-10-08T23:59:59.000Z

133

Ultrasonic Fluid Quality Sensor System  

DOE Patents (OSTI)

A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

2003-10-21T23:59:59.000Z

134

MAX Fluid Dynamics facility  

NLE Websites -- All DOE Office Websites (Extended Search)

MAX Fluid Dynamics facility MAX Fluid Dynamics facility Capabilities Engineering Experimentation Reactor Safety Testing and Analysis Overview Nuclear Reactor Severe Accident Experiments MAX NSTF SNAKE Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr MAX Fluid Dynamics facility Providing high resolution data for development of computational tools that model fluid flow and heat transfer within complex systems such as the core of a nuclear reactor. 1 2 3 4 5 Hot and cold air jets are mixed within a glass tank while laser-based anemometers and a high-speed infrared camera characterize fluid flow and heat transfer behavior. Click on image to view larger size image.

135

Computational Fluid Dynamics Modeling of The Dalles Project: Effects of Spill Flow Distribution Between the Washington Shore and the Tailrace Spillwall  

DOE Green Energy (OSTI)

The U.S. Army Corps of Engineers-Portland District (CENWP) has ongoing work to improve the survival of juvenile salmonids (smolt) migrating past The Dalles Dam. As part of that effort, a spillwall was constructed to improve juvenile egress through the tailrace downstream of the stilling basin. The spillwall was designed to improve smolt survival by decreasing smolt retention time in the spillway tailrace and the exposure to predators on the spillway shelf. The spillwall guides spillway flows, and hence smolt, more quickly into the thalweg. In this study, an existing computational fluid dynamics (CFD) model was modified and used to characterize tailrace hydraulics between the new spillwall and the Washington shore for six different total river flows. The effect of spillway flow distribution was simulated for three spill patterns at the lowest total river flow. The commercial CFD solver, STAR-CD version 4.1, was used to solve the unsteady Reynolds-averaged Navier-Stokes equations together with the k-epsilon turbulence model. Free surface motion was simulated using the volume-of-fluid (VOF) technique. The model results were used in two ways. First, results graphics were provided to CENWP and regional fisheries agency representatives for use and comparison to the same flow conditions at a reduced-scale physical model. The CFD results were very similar in flow pattern to that produced by the reduced-scale physical model but these graphics provided a quantitative view of velocity distribution. During the physical model work, an additional spill pattern was tested. Subsequently, that spill pattern was also simulated in the numerical model. The CFD streamlines showed that the hydraulic conditions were likely to be beneficial to fish egress at the higher total river flows (120 kcfs and greater, uniform flow distribution). At the lowest flow case, 90 kcfs, it was necessary to use a non-uniform distribution. Of the three distributions tested, splitting the flow evenly between Bay 7 and Bay 8 had hydraulics deemed most beneficial for egress by CENWP fisheries biologists and regional fishery agency representatives. The numerical and physical model results were very similar, building confidence in both hydraulic tools.

Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.

2010-12-01T23:59:59.000Z

136

Two-dimensional computational fluid dynamics and conduction simulations of heat transfer in window frames with internal cavities - Part 1: Cavities only  

E-Print Network (OSTI)

of heat fluxes from CFD and conduction simulations for theapproach to solve the conduction heat-transfer equation. TheFluid Dynamics and Conduction Simulations of Heat Transfer

Gustavsen, Arild; Kohler, Christian; Arasteh, Dariush; Curcija, Dragan

2003-01-01T23:59:59.000Z

137

Development of a Laboratory Verified Single-Duct VAV System Model with Fan Powered Terminal Units Optimized Using Computational Fluid Dynamics  

E-Print Network (OSTI)

Single Duct Variable Air Volume (SDVAV) systems use series and parallel Fan Powered Terminal Units to control the air flow in conditioned spaces. This research developed a laboratory verified model of SDVAV systems that used series and parallel fan terminal units where the fan speeds were controlled by either Silicon Controlled Rectifiers (SCR) or Electronically Commutated Motors (ECM) motors. As part of the research, the model was used to compare the performance of the systems and to predict the harmonics generated by ECM systems. All research objectives were achieved. The CFD model, which was verified with laboratory measurements, showed the potential to identify opportunities for improvement in the design of the FPTU and accurately predicted the static pressure drop as air passed through the unit over the full operating range of the FPTU. Computational fluid dynamics (CFD) models of typical a FPTU were developed and used to investigate opportunities for optimizing the design of FPTUs. The CFD model identified key parameters required to conduct numerical simulations of FPTU and some of the internal components used to manufacture the units. One key internal component was a porous baffle used to enhance mixing when primary air and induced air entered the mixing chamber. The CFD analysis showed that a pressure-drop based on face velocity model could be used to accurately predict the performance of the FPTU. The SDVAV simulation results showed that parallel FPTUs used less energy overall than series systems that used SCR motors as long as primary air leakage was not considered. Simulation results also showed that series ECM FPTUs used about the same amount of energy, within 3 percent, of parallel FPTU even when leakage was not considered. A leakage rate of 10 percent was enough to reduce the performance of the parallel FPTU to the level of the series SCR system and the series ECM FPTUs outperformed the parallel FPTUs at all weather locations used in the study.

Davis, Michael A.

2010-08-01T23:59:59.000Z

138

Fluid dynamics in group T-3 Los Alamos national laboratory  

Science Conference Proceedings (OSTI)

The development of computer fluid dynamics has been closely associated with the evolution of large high-speed computers. At first the principal incentive was to produce numerical techniques for solving problems related to national defense. Soon, however, ... Keywords: computational fluid dynamics, history of computing, incompressible flow, multi-field flow, relativistic fluids, strong distortions, turbulence

Francis H. Harlow

2004-04-01T23:59:59.000Z

139

KINETIC MODELING OF A FISCHER-TROPSCH REACTION OVER A COBALT CATALYST IN A SLURRY BUBBLE COLUMN REACTOR FOR INCORPORATION INTO A COMPUTATIONAL MULTIPHASE FLUID DYNAMICS MODEL  

DOE Green Energy (OSTI)

Currently multi-tubular fixed bed reactors, fluidized bed reactors, and slurry bubble column reactors (SBCRs) are used in commercial Fischer Tropsch (FT) synthesis. There are a number of advantages of the SBCR compared to fixed and fluidized bed reactors. The main advantage of the SBCR is that temperature control and heat recovery are more easily achieved. The SBCR is a multiphase chemical reactor where a synthesis gas, comprised mainly of H2 and CO, is bubbled through a liquid hydrocarbon wax containing solid catalyst particles to produce specialty chemicals, lubricants, or fuels. The FT synthesis reaction is the polymerization of methylene groups [-(CH2)-] forming mainly linear alkanes and alkenes, ranging from methane to high molecular weight waxes. The Idaho National Laboratory is developing a computational multiphase fluid dynamics (CMFD) model of the FT process in a SBCR. This paper discusses the incorporation of absorption and reaction kinetics into the current hydrodynamic model. A phased approach for incorporation of the reaction kinetics into a CMFD model is presented here. Initially, a simple kinetic model is coupled to the hydrodynamic model, with increasing levels of complexity added in stages. The first phase of the model includes incorporation of the absorption of gas species from both large and small bubbles into the bulk liquid phase. The driving force for the gas across the gas liquid interface into the bulk liquid is dependent upon the interfacial gas concentration in both small and large bubbles. However, because it is difficult to measure the concentration at the gas-liquid interface, coefficients for convective mass transfer have been developed for the overall driving force between the bulk concentrations in the gas and liquid phases. It is assumed that there are no temperature effects from mass transfer of the gas phases to the bulk liquid phase, since there are only small amounts of dissolved gas in the liquid phase. The product from the incorporation of absorption is the steady state concentration profile of the absorbed gas species in the bulk liquid phase. The second phase of the model incorporates a simplified macrokinetic model to the mass balance equation in the CMFD code. Initially, the model assumes that the catalyst particles are sufficiently small such that external and internal mass and heat transfer are not rate limiting. The model is developed utilizing the macrokinetic rate expression developed by Yates and Satterfield (1991). Initially, the model assumes that the only species formed other than water in the FT reaction is C27H56. Change in moles of the reacting species and the resulting temperature of the catalyst and fluid phases is solved simultaneously. The macrokinetic model is solved in conjunction with the species transport equations in a separate module which is incorporated into the CMFD code.

Anastasia Gribik; Doona Guillen, PhD; Daniel Ginosar, PhD

2008-09-01T23:59:59.000Z

140

Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment  

DOE Green Energy (OSTI)

This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum production systems, stripping towers for mineral production processes, nuclear waste storage, CO2 sequestration strategies, global warming). Although funding decreases cut short completion of several research activities, we made significant progress on these abbreviated projects.

Nancy Moller Weare

2006-07-25T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Computational Computational  

E-Print Network (OSTI)

38 Computational complexity Computational complexity In 1965, the year Juris Hartmanis became Chair On the computational complexity of algorithms in the Transactions of the American Mathematical Society. The paper the best talent to the field. Theoretical computer science was immediately broadened from automata theory

Keinan, Alon

142

Computational simulation of aerosol behaviour.  

E-Print Network (OSTI)

??In this thesis, computational methods have been developed for the simulation of aerosol dynamics and transport. Two different coupled aerosol-computational fluid dynamics (CFD) models are (more)

Pyyknen, Jouni

2002-01-01T23:59:59.000Z

143

Motion of Fluids in the Presence of a Boundary | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Motion of Fluids in the Presence of a Boundary Motion of Fluids in the Presence of a Boundary Jan 09 2014 10:00 AM - 11:00 AM Gung-Min Gie, Indiana University, Bloomington Computer Science and Mathematics Division Seminar Joint Institute for Computational Sciences (Building 5100), Auditorium (Room 128) CONTACT : Email: Clayton Webster Phone:865.574.3649 Add to Calendar SHARE In most practical applications of fluid mechanics, it is the interaction of the fluid with the boundary that is most critical to understanding the behavior of the fluid. Physically important parameters, such as the lift and drag of a wing, are determined by the sharp transition the air makes from being at rest on the wing to flowing freely around the airplane near the wing. Mathematically, the behavior of such flows at small viscosity is

144

MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION  

E-Print Network (OSTI)

compaction, computers, geothermal energy, pore-waternot MODELING SUBSIDENCE DUE T GEOTHERMAL FLUID PRODUCTION Opromise f o r developing geothermal energy i n the United

Lippmann, M.J.

2011-01-01T23:59:59.000Z

145

Fluid turbine  

SciTech Connect

A fluid turbine designed for increased power output includes an annular housing provided with a semi-spherical dome for directing incoming fluid flow to impinge on a plurality of rotor blades within the housing fixed to a vertical output shaft. An angle on the order of between 5 to 85/sup 0/, in the direction of rotation of the shaft, exists between the upper (Leading) and lower (Trailing) edges of each blade. The blades are manufactured from a plurality of aerodynamically-shaped, radially spaced ribs covered with a skin. The leading edge of each rib is curved, while the trailing edge is straight. The straight edge of the ribs in each blade approach a vertical plane through the vertical axis of the housing output shaft as the ribs progress radially inwardly towards the output shaft. The housing has fluid exit passages in its base so that deenergized fluid can be quickly flushed from the housing by the downwardly directed flow in combination with the novel blade configuration, which acts as a screw or force multiplier, to expel deenergized fluid. The airfoil shaped ribs also provide the blades with a contour for increasing the fluid velocity on the underside of the blades adjacent the fluid exit passage to aid in expelling the deenergized air while providing the turbine with both impulse and axial-flow, fluid impingement on the blades, resulting in a force vector of increased magnitude. A downwardly directed, substantially semi-cylindrical deflector frame connected to the housing blocks the path of flow of ambient fluid to create a low pressure area beneath the base to aid in continuously drawing fluid into the housing at high velocity to impinge on the rotor blades. The increased flow velocity and force on the blades along with the enhanced removal of deenergized fluid results in increased power output of the turbine.

Lebost, B.A.

1980-11-18T23:59:59.000Z

146

In-Line Fluid Analysis Technology - Available Technologies ...  

Computers & Electronics; Manufacturing & Warehousing; Oil & Gas; Brochure(s) In-Line Fluid Analysis Brochure (pdf) Enabled by the Office ...

147

DATING: A computer code for determining allowable temperatures for dry storage of spent fuel in inert and nitrogen gases  

Science Conference Proceedings (OSTI)

The DATING (Determining Allowable Temperatures in Inert and Nitrogen Gases) code can be used to calculate allowable initial temperatures for dry storage of light-water-reactor spent fuel. The calculations are based on the life fraction rule using both measured data and mechanistic equations as reported by Chin et al. (1986). The code is written in FORTRAN and utilizes an efficient numerical integration method for rapid calculations on IBM-compatible personal computers. This report documents the technical basis for the DATING calculations, describes the computational method and code statements, and includes a user's guide with examples. The software for the DATING code is available through the National Energy Software Center operated by Argonne National Laboratory, Argonne, Illinois 60439. 5 refs., 8 figs., 5 tabs.

Simonen, E.P.; Gilbert, E.R.

1988-12-01T23:59:59.000Z

148

Cutting Fluids  

Science Conference Proceedings (OSTI)

Table 6   Cutting fluids for aluminum...Table 6 Cutting fluids for aluminum Type of lubricant Principal ingredients Viscosity range Application; maintenance Relative effectiveness Necessary precautions Mineral oils (fatty-additive type preferred) Mineral oil, lard, or neats-foot oil; oleic acid

149

Computational Approach in Determination of {sup 233}U and {sup 233}Th Fermi Energy  

SciTech Connect

There are several methods to get Fermi energy such as hermit polynomial expansion and Wigner-Kirkwood expansion, these are analytical method. In this paper will be discussed numerical approach of calculating Fermi energy of {sup 233}Th and {sup 233}U nuclei. Our work demonstrates the simple technique of determining Fermi energy.

Kurniadi, R.; Perkasa, Y. S.; Waris, A. [Nuclear Physics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia)

2010-12-23T23:59:59.000Z

150

Pitch-catch only ultrasonic fluid densitometer  

DOE Patents (OSTI)

The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

Greenwood, Margaret S. (Richland, WA); Harris, Robert V. (Pasco, WA)

1999-01-01T23:59:59.000Z

151

Supercritical fluid reverse micelle separation  

DOE Patents (OSTI)

A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

Fulton, J.L.; Smith, R.D.

1993-11-30T23:59:59.000Z

152

Supercritical fluid reverse micelle separation  

DOE Patents (OSTI)

A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

Fulton, John L. (Richland, WA); Smith, Richard D. (Richland, WA)

1993-01-01T23:59:59.000Z

153

HYDRAULIC FLUIDS  

E-Print Network (OSTI)

This fact sheet answers the most frequently asked health questions (FAQs) about hydraulic fluids. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. This information is important because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present. HIGHLIGHTS: Exposure to hydraulic fluids occurs mainly in the workplace. Drinking certain types of hydraulic fluids can cause death in humans, and swallowing or inhaling certain types of hydraulic fluids has caused nerve damage in animals. Contact with some types of hydraulic fluids can irritate your skin or eyes. These substances have been found in at least 10 of the 1,428 National Priorities List sites identified by the Environmental Protection Agency (EPA). What are hydraulic fluids? (Pronounced ?????????????????) Hydraulic fluids are a large group of liquids made of many kinds of chemicals. They are used in automobile automatic

unknown authors

1997-01-01T23:59:59.000Z

154

Determination of Internal Target Volume From a Single Positron Emission Tomography/Computed Tomography Scan in Lung Cancer  

SciTech Connect

Purpose: The use of four-dimensional computed tomography (4D-CT) to determine the tumor internal target volume (ITV) is usually characterized by high patient radiation exposure. The objective of this study was to propose and evaluate an approach that relies on a single static positron emission tomography (PET)/CT scan to determine the ITV, thereby eliminating the need for 4D-CT and thus reduce patient radiation dose. Methods and Materials: The proposed approach is based on the concept that the observed PET image is the result of a joint convolution of an ideal PET image (free from motion and partial volume effect) with a motion-blurring kernel (MBK) and partial volume effect. In this regard, the MBK and tumor ITV are then estimated from the deconvolution of this joint model. To test this technique, phantom and patient studies were performed using different sphere/tumor sizes and motion trajectories. In all studies, a 4D-CT and a PET/CT image of the sphere/tumor were acquired. The ITV from the proposed technique was then compared to the maximum intensity projection (MIP) volume of the 4D-CT images. A Dice coefficient of the two volumes was calculated to represent the similarity between the two ITVs. Results: The average ITVs of the proposed technique were 97.2% {+-} 0.3% and 81.0% {+-} 16.7% similar to the MIP volume in the phantom and patient studies, respectively. The average dice coefficients were 0.87 {+-} 0.05 and 0.73 {+-} 0.16, respectively, for the two studies. Conclusion: Using the proposed approach, a single static PET/CT scan has the potential to replace a 4D-CT to determine the tumor ITV. This approach has the added advantage of reducing patient radiation exposure and determining the tumor MBK compared to 4D-CT/MIP-CT.

Chang Guoping; Chang Tingting [Department of Electrical and Computer Engineering, Rice University, Houston, Texas (United States); Pan Tinsu [Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Clark, John W. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas (United States); Mawlawi, Osama R., E-mail: OMawlawi@mdanderson.org [Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

2012-05-01T23:59:59.000Z

155

Visually simulating realistic fluid motion  

E-Print Network (OSTI)

In this thesis we investigate various methods for visually simulating fluid flow. The focus is on implementing effective fluid simulation within an interactive animation system. Two implementations have been developed based on derivations and simplifications of the Navier-Stokes' equations. The first implementation is the most accurate and follows the physics of fluid dynamics more closely. However, the high computation times incurred by this implementation make it inappropriate as an interactive method. The second approach is not as accurate as the first one, however it incurs lower computation times. This second method is only able to model a subset of the total fluid behavior. The second method has been integrated into an interactive modeling and animation environment. Several examples are included.

Naithani, Priyanka

2002-01-01T23:59:59.000Z

156

R fluids  

E-Print Network (OSTI)

A theory of collisionless fluids is developed in a unified picture, where nonrotating figures with anisotropic random velocity component distributions and rotating figures with isotropic random velocity component distributions, make adjoints configurations to the same system. R fluids are defined and mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The definition of figure rotation is extended to R fluids. The generalized tensor virial equations are formulated for R fluids and further attention is devoted to axisymmetric configurations where, for selected coordinate axes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and vice versa. A microscopical analysis of systematic and random motions is performed under a few general hypotheses, by reversing the sign of tangential or axial velocity components of an assigned fraction of particles, leaving the distribution function and other parameters unchanged (Meza 2002). The application of the reversion process to tangential velocity components, implies the conversion of random motion rotation kinetic energy into systematic motion rotation kinetic energy. The application of the reversion process to axial velocity components, implies the conversion of random motion translation kinetic energy into systematic motion translation kinetic energy, and the loss related to a change of reference frame is expressed in terms of systematic (imaginary) motion rotation kinetic energy. A procedure is sketched for deriving the spin parameter distribution (including imaginary rotation) from a sample of observed or simulated large-scale collisionless fluids i.e. galaxies and galaxy clusters.

R. Caimmi

2007-10-20T23:59:59.000Z

157

Universal fluid droplet ejector  

DOE Patents (OSTI)

A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.

Lee, Eric R. (Redwood City, CA); Perl, Martin L. (Palo Alto, CA)

1999-08-24T23:59:59.000Z

158

Fluid extraction  

DOE Patents (OSTI)

A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

Wai, Chien M. (Moscow, ID); Laintz, Kenneth E. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

159

Ultrasonic fluid densitometer for process control  

DOE Patents (OSTI)

The present invention is an ultrasonic fluid densitometer that uses at least one pair of transducers for transmitting and receiving ultrasonic signals internally reflected within a material wedge. A temperature sensor is provided to monitor the temperature of the wedge material. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface and comparing a transducer voltage and wedge material temperature to a tabulation as a function of density.

Greenwood, Margaret S. (Richland, WA)

2000-01-01T23:59:59.000Z

160

Downhole Fluid Analyzer Development  

SciTech Connect

A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

Bill Turner

2006-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Accurate Computer Simulation of Phase Equilibrium for Complex Fluid Mixtures. Application to Binaries Involving isobutene, methanol, MTBE, and n-butane  

E-Print Network (OSTI)

We have developed a new method, called the Reaction Gibbs Ensemble Monte Carlo (RGEMC) method for the computer simulation of the phase equilibria for multicomponent mixtures, given an intermolecular potential model for the constituent molecular species. The approach treats the phase equilibrium conditions as a special type of chemical reaction, and incorporates knowledge of the pure-substance vapor pressure data into the simulations. Unlike macroscopic thermodynamic-based approaches like the Wilson and the UNIFAC approximations, no experimental information concerning the mixtures is required. In addition to the PTxy phase equilibrium data, the volumetric properties of the mixture are calculated. We developed intermolecular potential models based on the OPLS potential models of Jorgensen, and used the RGEMC method to predict phase equilibrium data for the binary systems isobutene+MTBE and the binaries formed by methanol with isobutene, MTBE, and n-butane. The predictions are excellent, ...

Martin Lsal; William R. Smith; Ivo Nezbeda

1999-01-01T23:59:59.000Z

162

Organic Rankine-Cycle Power Systems Working Fluids Study: Topical report No. 3, 2-methylpyridine/water  

DOE Green Energy (OSTI)

A mixture of 35 mole percent (mol %) 2-methylpyridine and 65 mol % water was tested at 575, 625, and 675/degree/F in a dynamic loop. Samples of the degraded fluid were chemically analyzed to determine the identities of major degradation products and the quantity of degradation. Computed degradation rates were found to be higher than those for Fluorinol 85 or toluene. For this reason (and other reasons, related to fluid handling), other fluids are recommended as the first choice for service in organic Rankine-cycle systems in preference to 2-methylpyridine/water. 7 refs., 39 figs., 39 tabs.

Cole, R.L.; Demirgian, J.C.; Allen, J.W.

1987-09-01T23:59:59.000Z

163

Computer modeling of ORNL storage tank sludge mobilization and mixing  

SciTech Connect

This report presents and analyzes the results of the computer modeling of mixing and mobilization of sludge in horizontal, cylindrical storage tanks using submerged liquid jets. The computer modeling uses the TEMPEST computational fluid dynamics computer program. The horizontal, cylindrical storage tank configuration is similar to the Melton Valley Storage Tanks (MVST) at Oak Ridge National (ORNL). The MVST tank contents exhibit non-homogeneous, non-Newtonian rheology characteristics. The eventual goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents of the tanks.

Terrones, G.; Eyler, L.L.

1993-09-01T23:59:59.000Z

164

Holographic plasma and anyonic fluids  

E-Print Network (OSTI)

We use alternative quantisation of the $D3/D5$ system to explore properties of a strongly coupled charged plasma and strongly coupled anyonic fluids. The $S$-transform of the $D3/D5$ system is used as a model for charged matter interacting with a U(1) gauge field in the large coupling regime, and we compute the dispersion relationship of the propagating electromagnetic modes as the density and temperature are changed. A more general $SL(2,\\mathbb{Z})$ transformation gives a strongly interacting anyonic fluid, and we study its transport properties as we change the statistics of the anyons and the background magnetic field.

Daniel K. Brattan; Gilad Lifschytz

2013-10-09T23:59:59.000Z

165

Solids mass flow determination  

DOE Patents (OSTI)

Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

Macko, Joseph E. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

166

Computer Physics Communications 142 (2001) 1421 www.elsevier.com/locate/cpc  

E-Print Network (OSTI)

properties of fluids; Constitutive equations 1. Introduction High performance computing has impacted signifi

167

Interactive fluid-particle simulation using translating Eulerian grids  

Science Conference Proceedings (OSTI)

We describe an interactive system featuring fluid-driven animation that responds to moving objects. Our system includes a GPU-accelerated Eulerian fluid solver that is suited for real-time use because it is unconditionally stable, takes constant calculation ... Keywords: GPU computing, fluid simulation, particle simulation

Jonathan M. Cohen; Sarah Tariq; Simon Green

2010-02-01T23:59:59.000Z

168

Nonlinear Fluid Dynamics from Gravity  

E-Print Network (OSTI)

Black branes in AdS5 appear in a four parameter family labeled by their velocity and temperature. Promoting these parameters to Goldstone modes or collective coordinate fields -- arbitrary functions of the coordinates on the boundary of AdS5 -- we use Einstein's equations together with regularity requirements and boundary conditions to determine their dynamics. The resultant equations turn out to be those of boundary fluid dynamics, with specific values for fluid parameters. Our analysis is perturbative in the boundary derivative expansion but is valid for arbitrary amplitudes. Our work may be regarded as a derivation of the nonlinear equations of boundary fluid dynamics from gravity. As a concrete application we find an explicit expression for the expansion of this fluid stress tensor including terms up to second order in the derivative expansion.

Sayantani Bhattacharyya; Veronika E Hubeny; Shiraz Minwalla; Mukund Rangamani

2007-12-14T23:59:59.000Z

169

Performance of an EHD power generator with a two-fluid ejector  

DOE Green Energy (OSTI)

A detailed analysis and method of calculation is presented for determining the complete thermodynamic cycle of a two-fluid electrohydrodynamic (EHD) power generator. The analysis takes fully into account the compressibility of the media. Parameters are included which express the thermodynamic losses in the various components of the overall system. The severe restriction on output created by the electrical breakdown limit of the medium is clearly shown. The method for computing the net-electrical work output per unit mass of primary fluid and the net overall thermal efficiency of the system is carefully developed. A sample output together with the FORTRAN program are included.

Gawain, T.H.; Biblarz, O.

1981-01-01T23:59:59.000Z

170

CX-003045: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

045: Categorical Exclusion Determination 045: Categorical Exclusion Determination CX-003045: Categorical Exclusion Determination Computational Fluid Dynamics (CFD) Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Systems CX(s) Applied: B3.6 Date: 07/19/2010 Location(s): Chicago, Illinois Office(s): Fossil Energy, National Energy Technology Laboratory The overall objective of the proposed program is to develop a computational fluid dynamics (CFD) model and to perform CFD simulations to describe the heterogeneous gas-solid absorption/regeneration and water gas shift (WGS) reactions. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-003045.pdf More Documents & Publications CX-004510: Categorical Exclusion Determination CX-004511: Categorical Exclusion Determination

171

Computational Fluid Dynamics University of Leeds  

E-Print Network (OSTI)

simulations to be calculated, or more detailed simulations of present CFD problems; (c) The numerical schemes from a burst tyre led to a ruptured fuel tank on the underside of the left wing. The emerging fuel flow into electricity and can drastically reduce the greenhouse emissions in power plants by using a SOFC and gas

Haase, Markus

172

Mathematical Modeling And Simulation For Fluid Flow In Porous Media  

E-Print Network (OSTI)

Mathematical models have been widely used to understand, predict, or optimize many complex physical processes. In particular, simulation of environmental effects of air polution is extensive. Here we address the need for using similar models to understand the fate and transport of groundwater contaminants and to design in situ remediation strategies. Three basic problem areas must be addressed in the modeling and simulation of the flow of groundwater contamination. One must first obtain an effective model to describe the complex fluid/fluid and fluid/rock interactions that control the transport of contaminants in groundwater. This includes the problems of determining and modeling the various multiphase or chemically reactive aspects of the problems which govern the flow of fluids, obtaining accurate reservoir descriptions at various length scales, and modeling the effects of this heterogeneity in the reservoir simulators. Next, one must develop accurate discretization techniques that retain the important physical properties of the continuous models without introducing spurious phenomena related to the discretization errors. Finally, one should develop efficient numerical solution algorithms that utilize the potential of the emerging computing architectures. We will discuss recent advances in each of these three areas.

Richard Ewing

2001-01-01T23:59:59.000Z

173

Fluid transport container  

DOE Patents (OSTI)

An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

1995-11-14T23:59:59.000Z

174

Fluid transport container  

DOE Patents (OSTI)

An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitment for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container.

DeRoos, Bradley G. (41 James St., Sequim, WA 98382); Downing, Jr., John P. (260 Kala Heights Dr., Port Townsand, WA 98368); Neal, Michael P. (921 Amberly Pl., Columbus, OH 43220)

1995-01-01T23:59:59.000Z

175

Enhanced Wellbore Stabilization and Reservoir Productivity with Aphron Drilling Fluid Technology  

SciTech Connect

The rate and amplitude of pressure transmission of various drilling fluids--particularly aphron drilling fluids--are measured in a long conduit and in sand packs to determine how pressure transmissibility can affect fluid invasion.

Arkadiy Belkin; Fred Growcock

2004-07-31T23:59:59.000Z

176

Inkjet printing of non-Newtonian fluids  

E-Print Network (OSTI)

G. Harlen; Department of Applied Mathematics; University of Leeds, Leeds, LS2 9JT, U.K. Abstract Jet breakup is strongly affected by fluid rheology. In par- ticular, small amounts of polymer can cause substantially differ- ent breakup dynamics... fluid dynamics (2008) from the University of Cambridge. Since then he has worked at the Department of Applied Mathematics at the University of Leeds. His recent research involves the development of computational techniques for the simulation of flows...

Morrison, N.F.; Harlen, O.G.

2011-01-01T23:59:59.000Z

177

Simulation of multiple fluids with solidliquid phase?transition  

Science Conference Proceedings (OSTI)

Physically based multiphase fluid simulation has been a hot topic in computer graphics. Since there are complex changing interface topology and interactions among air, solid, and different fluids, few papers have devoted to simulate the multiple fluids ... Keywords: free surface, hierarchical lattice, multiple fluids, solidliquid phase transition

Changbo Wang; Qiang Zhang; Huajun Xiao; Qiuyan Shen

2012-05-01T23:59:59.000Z

178

A full Eulerian finite difference approach for solving fluid-structure coupling problems  

Science Conference Proceedings (OSTI)

A new simulation method for solving fluid-structure coupling problems has been developed. All the basic equations are numerically solved on a fixed Cartesian grid using a finite difference scheme. A volume-of-fluid formulation [Hirt, Nichols, J. Comput. ... Keywords: Eulerian formulation, Finite difference method, Fluid-structure interaction, Hyperelastic material, Volume-of-fluid

Kazuyasu Sugiyama; Satoshi Ii; Shintaro Takeuchi; Shu Takagi; Yoichiro Matsumoto

2011-02-01T23:59:59.000Z

179

Fluid Simulation using Laplacian Eigenfunctions TYLER DE WITT, CHRISTIAN LESSIG and EUGENE FIUME  

E-Print Network (OSTI)

complement to the methods in the literature. 2. RELATED WORK Incompressible fluid dynamics is a vast subject in computer graphics applications. 2.2 Computational Fluid Dynamics In the 1950's, Silberman presented a fluid conditions, and still dissipates energy. Bridson presented a simple means to generate procedural divergence

Toronto, University of

180

Fluid dynamics of bacterial turbulence  

E-Print Network (OSTI)

Self-sustained turbulent structures have been observed in a wide range of living fluids, yet no quantitative theory exists to explain their properties. We report experiments on active turbulence in highly concentrated 3D suspensions of Bacillus subtilis and compare them with a minimal fourth-order vector-field theory for incompressible bacterial dynamics. Velocimetry of bacteria and surrounding fluid, determined by imaging cells and tracking colloidal tracers, yields consistent results for velocity statistics and correlations over two orders of magnitude in kinetic energy, revealing a decrease of fluid memory with increasing swimming activity and linear scaling between energy and enstrophy. The best-fit model parameters allow for quantitative agreement with experimental data.

Jrn Dunkel; Sebastian Heidenreich; Knut Drescher; Henricus H. Wensink; Markus Br; Raymond E. Goldstein

2013-02-21T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Transparent fluids for 157-nm immersion lithography  

E-Print Network (OSTI)

, the latter determined by the thickness of the spacer gaskets. Since the calcium fluoride windows were found that enables the fluid to be reused for many 100 expo- sure fields will be both necessary and possible

French, Roger H.

182

Fluid Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Fluid Lab Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Fluid Lab Analysis Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Lab Analysis Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Results can aid in the determination of fluid source regions and circulation pathways, and assist in determining the degree of mixing between different hydrothermal fluids. Thermal: Certain elements exhibit high spatial correlation with high-temperature geothermal systems; Isotopic ratios can be used to characterize and locate subsurface thermal anomalies.

183

OpenMP parallelism for fluid and fluid-particulate systems  

Science Conference Proceedings (OSTI)

In order to exploit the flexibility of OpenMP in parallelizing large scale multi-physics applications where different modes of parallelism are needed for efficient computation, it is first necessary to be able to scale OpenMP codes as well as MPI on ... Keywords: Computational fluid dynamics (CFD), Hybrid parallelization, MPI, Multiphase flows, OpenMP, Performance tools

Amit Amritkar; Danesh Tafti; Rui Liu; Rick Kufrin; Barbara Chapman

2012-09-01T23:59:59.000Z

184

Computer Science & Computer Engineering  

E-Print Network (OSTI)

CSCE Computer Science & Computer Engineering #12;Computer scientists and computer engineers design and implement e cient software and hardware solutions to computer-solvable problems. They are involved, virtual reality and robotics. Within the Computer Science department, we o er four exciting majors from

Rohs, Remo

185

Computer resources Computer resources  

E-Print Network (OSTI)

Computer resources 1 Computer resources available to the LEAD group Cédric David 30 September 2009 #12;Ouline · UT computer resources and services · JSG computer resources and services · LEAD computers· LEAD computers 2 #12;UT Austin services UT EID and Password 3 https://utdirect.utexas.edu #12;UT Austin

Yang, Zong-Liang

186

Computational Combustion  

DOE Green Energy (OSTI)

Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

2004-08-26T23:59:59.000Z

187

Environmentally safe fluid extractor  

DOE Patents (OSTI)

An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

Sungaila, Zenon F. (Orland Park, IL)

1993-01-01T23:59:59.000Z

188

Drilling Fluid Corrosion  

Science Conference Proceedings (OSTI)

Table 8   Drilling fluid corrosion control troubleshooting chart...Table 8 Drilling fluid corrosion control troubleshooting chart Corrosion cause Primary source Identification Major corrosion forms Remedies Oxygen Atmosphere, mud conditioning, equipment, oxidizing

189

Fluid Suspensions & Emulsions  

Science Conference Proceedings (OSTI)

Fluid Suspensions & Emulsions. Summary: Our primary interest is protein ... protein solutions? 1. Health & Safety. There is ongoing ...

2013-09-29T23:59:59.000Z

190

Heat Transfer and Fluid Mechanics - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Computation Engineering Computation and Design > Heat Transfer and Fluid Mechanics Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Engineering Simulation Capabilities at Argonne Nuclear Engineering Division The Engineering Simulation section specializes in the development and

191

Spinning fluid cosmology  

E-Print Network (OSTI)

The dynamics of a spinning fluid in a flat cosmological model is investigated. The space-time is itself generated by the spinning fluid which is characterized by an energy-momentum tensor consisting a sum of the usual perfect-fluid energy-momentum tensor and some Belinfante-Rosenfeld tensors. It is shown that the equations of motion admit a solution for which the fluid four-velocity and four-momentum are not co-linear in general. The momentum and spin densities of the fluid are expressed in terms of the scale factor.

Morteza Mohseni

2008-07-22T23:59:59.000Z

192

Spinning fluid cosmology  

E-Print Network (OSTI)

The dynamics of a spinning fluid in a flat cosmological model is investigated. The space-time is itself generated by the spinning fluid which is characterized by an energy-momentum tensor consisting a sum of the usual perfect-fluid energy-momentum tensor and some Belinfante-Rosenfeld tensors. It is shown that the equations of motion admit a solution for which the fluid four-velocity and four-momentum are not co-linear in general. The momentum and spin densities of the fluid are expressed in terms of the scale factor.

Mohseni, Morteza

2008-01-01T23:59:59.000Z

193

Spinning fluids reactor  

SciTech Connect

A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

Miller, Jan D; Hupka, Jan; Aranowski, Robert

2012-11-20T23:59:59.000Z

194

School of Mathematical and Computing Sciences Te Kura Pangarau, Rorohiko  

E-Print Network (OSTI)

#12;School of Mathematical and Computing Sciences Te Kura Pangarau, Rorohiko Vortex geometry constant throughout the fluid flow. The velocity of the fluid flow is v = (A ^r + B ^) r . Use constant throughout the fluid flow. The velocity of the fluid flow is v = (A ^r + B ^) r . Streamlines are equiangular

Visser, Matt

195

Computers and Computer Networks  

NLE Websites -- All DOE Office Websites (Extended Search)

and Computer Networks and Computer Networks Computer Science documentation, etc. Computer Science Research and Services at the Lab Super Computing Computer Graphics Computer & Internet information via yahoo.com, categorized by subject Perl UNIX documentation Shareware sites MBONE and Videoconferencing Computer Networks and related documentation Computer Documentation World Wide Web UNIX Documentation TeX, LaTeX FAQ, documents, archives, etc. MacInTouch -- current Macintosh information, from vendor & others Shareware sites The Free On-line Dictionary of Computing PDS: The Performance Database Server of Computer Benchmark Return to Top Return to Top Newsgroups, USEnet, and Mailing Lists Usenet (Internet News Groups) Mailing list software & information Return to Top Return to Top

196

Microwave fluid flow meter  

DOE Patents (OSTI)

A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

Billeter, Thomas R. (Richland, WA); Philipp, Lee D. (Richland, WA); Schemmel, Richard R. (Lynchburg, VA)

1976-01-01T23:59:59.000Z

197

Open-source software in computational research: a case study  

Science Conference Proceedings (OSTI)

A case study of open-source (OS) development of the computational research software MFIX, used for multiphase computational fluid dynamics simulations, is presented here. The verification and validation steps required for constructing modern computational ...

Madhava Syamlal; Thomas J. O'Brien; Sofiane Benyahia; Aytekin Gel; Sreekanth Pannala

2008-01-01T23:59:59.000Z

198

Structural anisotropy and orientation-induced Casimir repulsion in fluids  

E-Print Network (OSTI)

In this work we theoretically consider the Casimir force between two periodic arrays of nanowires (both in vacuum, and on a substrate separated by a fluid) at separations comparable to the period. Specifically, we compute ...

McCauley, Alexander Patrick

199

Fluid Flow Transport Phenomena in Steel Continuous Casting FC ...  

Science Conference Proceedings (OSTI)

Ab Initio Local Energy and Local Stress Calculations: Applications to Materials ... Computational Fluid Dynamics and Experimental Results for the Horizontal .... Films and Applications to a New Generation of Multifunctional Devices/Systems.

200

Working/Functional Fluids  

Science Conference Proceedings (OSTI)

... power cycle except that it uses an organic working fluid instead of water to allow operation at lower temperatures, including geothermal or solar ...

2012-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Complex Fluids Group  

Science Conference Proceedings (OSTI)

... applications in energy, sustainability, electronics and medicine. As these materials are typically in the fluid state during their production or end-use ...

2013-05-14T23:59:59.000Z

202

Quantum Computing Computer Scientists  

E-Print Network (OSTI)

Quantum Computing for Computer Scientists Noson S. Yanofsky and Mirco A. Mannucci #12;© May 2007 Noson S. Yanofsky Mirco A. Mannucci #12;Quantum Computing for Computer Scientists Noson S. Yanofsky of Vector Spaces 3 The Leap From Classical to Quantum 3.1 Classical Deterministic Systems 3.2 Classical

Yanofsky, Noson S.

203

Control system for fluid heated steam generator  

DOE Patents (OSTI)

A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

Boland, James F. (Bonneville County, ID); Koenig, John F. (Idaho Falls, ID)

1985-01-01T23:59:59.000Z

204

Control system for fluid heated steam generator  

DOE Patents (OSTI)

A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

Boland, J.F.; Koenig, J.F.

1984-05-29T23:59:59.000Z

205

Supercritical Fluid Extraction  

E-Print Network (OSTI)

In supercritical fluid extraction, many options are available for achieving and controlling the desired selectivity, which is extremely sensitive to variations in pressure, temperature, and choice of solvent. The ability of supercritical fluids to vaporize relatively nonvolatile compounds at moderate temperatures can reduce the energy requirements compared to distillation and liquid extraction.

Johnston, K. P.; Flarsheim, W. M.

1984-01-01T23:59:59.000Z

206

Computing Frontier: Distributed Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Computing Computing Frontier: Distributed Computing and Facility Infrastructures Conveners: Kenneth Bloom 1 , Richard Gerber 2 1 Department of Physics and Astronomy, University of Nebraska-Lincoln 2 National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory 1.1 Introduction The field of particle physics has become increasingly reliant on large-scale computing resources to address the challenges of analyzing large datasets, completing specialized computations and simulations, and allowing for wide-spread participation of large groups of researchers. For a variety of reasons, these resources have become more distributed over a large geographic area, and some resources are highly specialized computing machines. In this report for the Snowmass Computing Frontier Study, we consider several questions about distributed computing

207

Use of organic working fluids in Rankine engines  

DOE Green Energy (OSTI)

A compilation is presented of state-of-the-art data on the use of organic working fluids in operational Rankine cycle engines. Particular attention is given to the determination of the maximum temperatures used for various working fluids in operational Rankine cycle engines and identification of thermal instability and chemical reaction problems related to these temperatures. Information is included on the characteristics and selection of working fluids; the behavior of lubricating oils in contact with working fluids; operational experience; and recommended organic fluids R and D. (LCL)

Curran, H M

1979-09-01T23:59:59.000Z

208

Determination of Zinc-Based Additives in Lubricating Oils by Flow-Injection Analysis with Flame-AAS Detection Exploiting Injection with a Computer-Controlled Syringe  

E-Print Network (OSTI)

A flow-injection system is proposed for the determination of metal-based additives in lubricating oils. The system, operating under computer control uses a motorised syringe for measuring and injecting the oil sample (200 L) in a kerosene stream, where it is dispersed by means of a packed mixing reactor and carried to an atomic absorption spectrometer which is used as detector. Zinc was used as model analyte. Two different systems were evaluated, one for low concentrations (range 010 ppm) and the second capable of providing higher dilution rates for high concentrations (range 0.02%0.2 % w/w). The sampling frequency was about 30 samples/h. Calibration curves fitted a second-degree regression model (r 2 = 0.996). Commercial samples with high and low zinc levels were analysed by the proposed method and the results were compared with those obtained with the standard ASTM method. The t test for mean values showed no significant differences at the 95 % confidence level. Precision (RSD%) was better than 5 % (2 % typical) for the high concentrations system. The carryover between successive injections was found to be negligible. 1.

Gustavo Pignalosa; Moiss Knochen; Noel Cabrera

2004-01-01T23:59:59.000Z

209

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...  

Open Energy Info (EERE)

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: TRACING...

210

Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines  

Science Conference Proceedings (OSTI)

This paper describes the application of high performance computing to accelerate the development of hypergolic propulsion systems for tactical missiles. Computational fluid dynamics is employed to model the chemically reacting flow within a system's ...

M. Nusca; C.-C. Chen; M. McQuaid

2007-06-01T23:59:59.000Z

211

Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines  

Science Conference Proceedings (OSTI)

This paper describes the development and application of high performance computing for the acceleration of tactical missile hypergolic propulsion system development. Computational fluid dynamics is employed to model the chemically reacting flow within ...

Michael J. Nusca; Michael J. McQuaid

2006-06-01T23:59:59.000Z

212

Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines  

Science Conference Proceedings (OSTI)

This paper describes the development and application of high performance computing for the acceleration of tactical missile hypergolic propulsion system development. Computational fluid dynamics (CFD) is employed to model the chemically reacting flow ...

Michael J. Nusca; Michael J. McQuaid

2005-06-01T23:59:59.000Z

213

Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines  

Science Conference Proceedings (OSTI)

This paper describes the application of high performance computing to accelerate the development of hypergolic propulsion systems for tactical missiles. Computational fluid dynamics is employed to model the chemically reacting flow within a systems ...

Michael J. Nusca; Chiung-Chu Chen; Michael J. McQuaid

2008-07-01T23:59:59.000Z

214

FRACTURING FLUID CHARACTERIZATION FACILITY  

SciTech Connect

Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

Subhash Shah

2000-08-01T23:59:59.000Z

215

Fluid Interface Reactions, Structures and Transport (FIRST) Center EFRC Director: David J. Wesolowski  

E-Print Network (OSTI)

environment in which to train the next generation of scientists to meet 21st century energy challenges. Fluid computational models relating the nanoscale structures, dynamics and reactivities of fluid-solid interfaces the interfacial region differ in structure, dynamics and reactivity from the bulk properties of the fluid

216

Partitioned solution to fluid-structure interaction problem in application to free-surface flows  

E-Print Network (OSTI)

distribution). Fluid material properties are the dynamic viscosity µ and the density . To write a unique Computational fluid Dynamic programs solve the fluid equations on a fixed (Eulerian) grid. The classical and structure sub-problems. Contrary to explicit algorithms which generate spurious energy at the in- terface

Paris-Sud XI, Université de

217

Supercritical fluid extraction  

DOE Patents (OSTI)

A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

Wai, Chien M. (Moscow, ID); Laintz, Kenneth (Pullman, WA)

1994-01-01T23:59:59.000Z

218

CX-008601: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-008601: Categorical Exclusion Determination Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation CX(s)...

219

CX-005198: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-005198: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s) Applied: A9,...

220

IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY |  

Open Energy Info (EERE)

IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY Details Activities (1) Areas (1) Regions (0) Abstract: Fluid Inclusion Stratigraphy (FIS) is a method currently being developed for use in geothermal systems to identify fractures and fluid types. This paper is the third in a series of papers on the development of FIS. Fluid inclusion gas chemistry is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow and reservoir seals. Previously we showed that FIS analyses identify fluid types and

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Computer Assisted Surgery (CAS)  

Science Conference Proceedings (OSTI)

... rates. In addition, there are concerns for computer glitches, ... Survival Rate at 11 years: 89 99% ... Health Utilities Not Determined Page 17. ...

2012-10-29T23:59:59.000Z

222

Computational Biology | Supercomputing & Computation | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Home | Science & Discovery | Supercomputing and Computation | Research Areas | Biology SHARE Computational Biology Computational Biology research encompasses many important...

223

Application of Cutting Fluids  

Science Conference Proceedings (OSTI)

...is transferred to the drill by a rotating gland and is forced directly into the cutting zone. The fluid flowing from the hole assists in chip removal. Oil-hole drills have become very popular in

224

Basic fluid system trainer  

DOE Patents (OSTI)

This invention, a trainer mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

Semans, J.P.; Johnson, P.G.; LeBoeuf, R.F. Jr.; Kromka, J.A.; Goron, R.H.; Hay, G.D.

1991-04-30T23:59:59.000Z

225

Phoresis in fluids  

E-Print Network (OSTI)

This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise ...

Brenner, Howard

226

Basic fluid system trainer  

DOE Patents (OSTI)

A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

Semans, Joseph P. (Uniontown, PA); Johnson, Peter G. (Pittsburgh, PA); LeBoeuf, Jr., Robert F. (Clairton, PA); Kromka, Joseph A. (Idaho Falls, ID); Goron, Ronald H. (Connellsville, PA); Hay, George D. (Venetia, PA)

1993-01-01T23:59:59.000Z

227

MEASUREMENT OF INTERFACIAL TENSION IN FLUID-FLUID SYSTEMS  

E-Print Network (OSTI)

Interfacial tension at fluid-fluid interfaces is a reflection of the excess energy associated with unsaturated in parts per million concentration (27). DYNAMIC INTERFACIAL TENSION MEASUREMENTS In fluid-fluid systems, detergency, foam or froth generation, and stability (3). In these pro- cesses, dynamic interfacial tensions

Loh, Watson

228

Experimental and computational studies of loop heat pipes.  

E-Print Network (OSTI)

??Computational and experimental investigations of fluid flow and heat transfer aspects of loop heat pipes (LHPs) are presented in this thesis. The overall goal is (more)

Atabaki, Nima.

2006-01-01T23:59:59.000Z

229

Circular hydraulic jump in generalized-Newtonian fluids  

E-Print Network (OSTI)

We carry out an analytical study of laminar circular hydraulic jumps, in generalized-Newtonian fluids obeying the two-parametric power-law model of Ostwald-de Waele. Under the boundary-layer approximation we obtained exact expressions determining the flow, an implicit relation for the jump radius is derived. Corresponding results for Newtonian fluids can be retrieved as a limiting case for the flow behavior index n=1, predictions are made for fluids deviating from Newtonian behavior.

Rai, Ashutosh; Poria, Swarup

2008-01-01T23:59:59.000Z

230

Computational illumination  

Science Conference Proceedings (OSTI)

The field of computational photography includes computational imaging techniques that enhance or extend the capabilities of digital photography, a combination of computer vision, computer graphics, and applied optics. Computational illumination is an ...

Matthew Turk

2010-11-01T23:59:59.000Z

231

Lecture notes Ideal fluid mechanics  

E-Print Network (OSTI)

involves energy loss--such fluids are known as viscous fluids--we will not consider them here. Some fluids of the basic equations underlying the dynamics of ideal fluids is based on three basic principles (see Chorin. Conservation of energy, energy is neither created nor destroyed. In turn these principles generate the: 1

Malham, Simon J.A.

232

Candidate Well Selection for the Test of Degradable Biopolymer as Fracturing Fluid  

E-Print Network (OSTI)

Hydraulic fracturing is a well-established technology of generating highly conductive flow path inside the rock by injecting massive amount of fracturing fluid and proppant with sufficient pressure to break the formation apart. But as the concern for environment and health effects of hydraulic fracturing becomes intense, many efforts are made to replace the conventional fracturing fluid with more environment-friendly materials. The degradable biopolymer is one of the novel materials that is injected in the form of solid pellets containing proppant, degrades in the presence of water to form a viscous gel fluid, leaving no gel residue or harmful material. This work develops a methodology and computer program to determine the best candidate wells for the field test of degradable biopolymer as fracturing fluid. The unique properties of degradable biopolymer is captured in the selection of decision criteria such as bottomhole temperature and treatment volume as well as traditional hydraulic fracturing candidate well selection criteria such as formation permeability, productivity index.

Hwang, Yun Suk

2011-12-01T23:59:59.000Z

233

Boiler using combustible fluid  

DOE Patents (OSTI)

A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

Baumgartner, H.; Meier, J.G.

1974-07-03T23:59:59.000Z

234

Noncommutative fluid dynamics in the Khler parametrization  

E-Print Network (OSTI)

In this paper, we propose a first order action functional for a large class of systems that generalize the relativistic perfect fluids in the K\\"{a}hler parametrization to noncommutative spacetimes. We calculate the equations of motion for the fluid potentials and the energy-momentum tensor in the first order in the noncommutative parameter. The density current does not receive any noncommutative corrections and it is conserved under the action of the commutative generators $P_{\\mu}$ but the energy-momentum tensor is not. Therefore, we determine the set of constraints under which the energy-momentum tensor is divergenceless. Another set of constraints on the fluid potentials is obtained from the requirement of the invariance of the action under the generalization of the volume preserving transformations of the noncommutative spacetime. We show that the proposed action describes noncommutative fluid models by casting the energy-momentum tensor in the familiar fluid form and identifying the corresponding energy and momentum densities. In the commutative limit, they are identical to the corresponding quantities of the relativistic perfect fluids. The energy-momentum tensor contains a dissipative term that is due to the noncommutative spacetime and vanishes in the commutative limit. Finally, we particularize the theory to the case when the complex fluid potentials are characterized by a function $K(z,\\bar{z})$ that is a deformation of the complex plane and show that this model has important common features with the commutative fluid such as infinitely many conserved currents and a conserved axial current that in the commutative case is associated to the topologically conserved linking number.

L. Holender; M. A. Santos; M. T. D. Orlando; I. V. Vancea

2011-09-08T23:59:59.000Z

235

CX-009561: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61: Categorical Exclusion Determination 61: Categorical Exclusion Determination CX-009561: Categorical Exclusion Determination Using Solid Particles as Heat Transfer Fluid for Use in Concentrating Solar Power (CSP) Plants CX(s) Applied: A9 Date: 12/04/2012 Location(s): Colorado Offices(s): Golden Field Office The U.S. DOE is proposing to provide federal funding to the University of Colorado, in partnership with the National Renewable Energy Laboratory to conduct computer based modeling that advances concentrated solar power (CSP) thermal systems. DOE funding would be used for computer based modeling to develop, verify and validate a first-principle modeling tool for use in the optimization, scale-up, and design of a near-blackbody receiver. CX-009561.pdf More Documents & Publications CX-005581: Categorical Exclusion Determination

236

Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly  

E-Print Network (OSTI)

We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed.

Eugenio Megias; Francisco Pena-Benitez

2013-07-29T23:59:59.000Z

237

Fluid Inclusion Analysis At Coso Geothermal Area (2004) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area Fluid Inclusion Analysis At Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis 1) To determine if analyses of fluid propene and propane species in fluid inclusions can be used to interpret fluid type, history, or process. 2) To evaluate the geology and thermal history of the East Flank, in order to better understand how the rocks will behave during hydro-fracturing. Notes 1) Analyses were performed on drill cuttings at 20ft intervals from four Coso geothermal wells. Two wells are good producers, one has cold-water entrants in the production zone, and the fourth is a non-producer. The ratios show distinct differences between producing and the non-producing

238

CX-006408: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-006408: Categorical Exclusion Determination Build a New Classified Computer System Vault Type Room (VTR) in 703-44A to Replace the Classified Computer VTR in...

239

Multipurpose Acoustic Sensor for Downhole Fluid Monitoring  

Science Conference Proceedings (OSTI)

The projects objectives and purpose are to: (1) development a multipurpose acoustic sensor for downhole fluid monitoring in Enhanced Geothermal Systems (EGS) reservoirs over typical ranges of pressures and temperatures and demonstrate its capabilities and performance for different EGS systems; (2) determine in real-time and in a single sensor package several parameters - temperature, pressure, fluid flow and fluid properties; (3) needed in nearly every phase of an EGS project, including Testing of Injection and Production Wells, Reservoir Validation, Inter-well Connectivity, Reservoir Scale Up and Reservoir Sustainability. (4) Current sensors are limited to operating at lower temperatures, but the need is for logging at high temperatures. The present project deals with the development of a novel acoustic-based sensor that can work at temperatures up to 374 C, in inhospitable environments.

Pantea, Cristian [Los Alamos National Laboratory

2012-05-04T23:59:59.000Z

240

Advancing manufacturing through computational chemistry  

SciTech Connect

The capabilities of nanotechnology and computational chemistry are reaching a point of convergence. New computer hardware and novel computational methods have created opportunities to test proposed nanometer-scale devices, investigate molecular manufacturing and model and predict properties of new materials. Experimental methods are also beginning to provide new capabilities that make the possibility of manufacturing various devices with atomic precision tangible. In this paper, we will discuss some of the novel computational methods we have used in molecular dynamics simulations of polymer processes, neural network predictions of new materials, and simulations of proposed nano-bearings and fluid dynamics in nano- sized devices.

Noid, D.W.; Sumpter, B.G.; Tuzun, R.E.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

: Computer Aided Learning in Computer  

E-Print Network (OSTI)

CAL2 : Computer Aided Learning in Computer Architecture Laboratory JOVAN DJORDJEVIC,1 BOSKO NIKOLIC,1 TANJA BOROZAN,1 ALEKSANDAR MILENKOVIC´ 2 1 Computer Engineering Department, Faculty of Electrical Engineering, University of Belgrade, Belgrade, Serbia 2 Electrical and Computer Engineering Department

Milenkovi, Aleksandar

243

Introduction to Computational Fluid Dynamics 424512 E #4Introduction to Computational Fluid Dynamics 424512 E #4 --rzrz IntroductionIntroduction toto ComputationalComputational Fluid DynamicsFluid DynamicsIntroductionIntroduction toto ComputationalComputa  

E-Print Network (OSTI)

.rwth-aachen.de/fileadmin/LehreSeminar/Combustion/SummerSchool97_ueberarbeitet.pdf W93 Wil D C "T b l d lli f CFD" DCW I d t i I L C ñ d april 2012 ?bo Akademi modelling for CFD", DCW Industries Inc., La Cañada (CA), 1993 #12;

Zevenhoven, Ron

246

Introduction to Computational Fluid Dynamics 424512 E #4Introduction to Computational Fluid Dynamics 424512 E #4 --rzrz IntroductionIntroduction toto ComputationalComputational Fluid DynamicsFluid DynamicsIntroductionIntroduction toto ComputationalComputa  

E-Print Network (OSTI)

://www.itm.rwth-aachen.de/Downloadarea/Summerschool97 W93 Wil D C "T b l d lli f CFD" DCW I d t i I L C ñ d mars 2011 ?bo Akademi Univ - Thermal", DCW Industries Inc., La Cañada (CA), 1993 #12;

Zevenhoven, Ron

247

Introduction to Computational Fluid Dynamics 424512 E #5Introduction to Computational Fluid Dynamics 424512 E #5--rzrz IntroductionIntroduction toto ComputationalComputational Fluid DynamicsFluid DynamicsIntroductionIntroduction toto ComputationalComputat  

E-Print Network (OSTI)

g y mechanic, pneumatic, hydraulicmechanic, pneumatic, hydraulic -baltimore-lg.jpconveyor/coal- 1 ew.html /applications/c pne.htm m/pnu_overvie e.com/images Pneumatic conveyor / drier o.za/pro-eng-p w.mactenn.co 4 ti i i ww.protectowire ww.bateman.co 2 3 ure3:http://www 4 pneumatic conveying regimes : - Solid Dense

Zevenhoven, Ron

248

NEPA Categorical Exclusion Determination for The Dr. Samuel B...  

National Nuclear Security Administration (NNSA)

solid state and portable nuclear detector technologies computational fluid dynamics; thermal dynamics; thermal hydraulics detection and sensing of environmental and chemical...

249

Benchmark calculations with an unstructured grid flow solver on a SIMD computer  

Science Conference Proceedings (OSTI)

An unstructured grid flow solver was implemented on a massively parallel computer, and benchmark computations were performed. The solver was a two-dimensional computational fluid dynamics (CFD) code that performs first-order, steady-state solutions of ...

J. S. Clary; G. A. Howell; Jr. S. L. Karman

1989-08-01T23:59:59.000Z

250

Evaluation of ammonia as a working fluid for a wet/dry-cooled binary geothermal plant  

DOE Green Energy (OSTI)

The concepts considered in this study involve various arrangments of the binary geothermal power cycle with advanced dry cooling schemes. Brief descriptions of the binary cycle and advanced cooling schemes are included. Also included are descriptions of the base case concept and the ammonia working fluid concept. Performance and cost estimates were developed for a wet-cooled isobutane cycle plant, wet/dry cooled isobutane cycle plant, wet-cooled ammonia cycle plant, and a wet/dry cooled ammonia cycle plant. The performance and cost estimates were calculated using the GEOCOST computer code developed at PNL. Inputs for GEOCOST were calculated based on the Heber sites. The characteristics of the wet/dry cooling system were determined using the BNWGEO computer code developed at PNL. Results of the cooling system analysis are presented, followed by results of the geothermal plant analysis. Conclusions and comments also are included.

Drost, M.K.; Huber, H.D.

1982-10-01T23:59:59.000Z

251

Circulating fluidized bed hydrodynamics experiments for the multiphase fluid dynamics research consortium (MFDRC).  

Science Conference Proceedings (OSTI)

An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.

Oelfke, John Barry; Torczynski, John Robert; O'Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish (; ); Trujillo, Steven Mathew

2006-08-01T23:59:59.000Z

252

Supercritical fluid reverse micelle systems  

DOE Patents (OSTI)

of 1 ) United States Patent 5,158,704 Fulton , et al. October 27, 1992 Supercritical fluid reverse micelle systems

Fulton, John L. (Richland, WA); Smith, Richard D. (Richland, WA)

1992-01-01T23:59:59.000Z

253

Experimental Properties of Fluids Group  

Science Conference Proceedings (OSTI)

The Experimental Properties of Fluids Group, Physical and Chemical Properties Division of the Chemical Science and Technology Laboratory, NIST.

2000-07-24T23:59:59.000Z

254

Drilling fluids: Where should research dollars be spent  

Science Conference Proceedings (OSTI)

This article discusses the question of where to apply research dollars in the field of drilling fluids which is gravely impacted by environmental concerns. In fact, environmental regulations are the driving force in determining the thrust of drilling fluids research. For example, use of oil-base fluids offshore have, for all practical purposes, been precluded by high disposal costs since offshore disposal has been prohibited. Consequently it must be determined if a water-base mud can be developed that has all or most of the advantages of an oil-base mud.

Sauber

1987-03-01T23:59:59.000Z

255

Production of MHD fluid  

SciTech Connect

A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.

Lacey, James J. (Library, PA); Kurtzrock, Roy C. (Bethel Park, PA); Bienstock, Daniel (Pittsburgh, PA)

1976-08-24T23:59:59.000Z

256

Enhanced absorption cycle computer model. Final report  

DOE Green Energy (OSTI)

Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperatures boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorptions systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system`s components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H{sub 2}O triple-effect cycles, LiCl-H{sub 2}O solar-powered open absorption cycles, and NH{sub 3}-H{sub 2}O single-effect and generator-absorber heat exchange cycles. An appendix contains the User`s Manual.

Grossman, G.; Wilk, M. [Technion-Israel Inst. of Tech., Haifa (Israel). Faculty of Mechanical Engineering

1993-09-01T23:59:59.000Z

257

Two-phase computer codes for zero-gravity applications  

SciTech Connect

This paper discusses the problems existing in the development of computer codes which can analyze the thermal-hydraulic behavior of two-phase fluids especially in low gravity nuclear reactors. The important phenomenon affecting fluid flow and heat transfer in reduced gravity is discussed. The applicability of using existing computer codes for space applications is assessed. Recommendations regarding the use of existing earth based fluid flow and heat transfer correlations are made and deficiencies in these correlations are identified.

Krotiuk, W.J.

1986-10-01T23:59:59.000Z

258

COMPUTATIONAL SCIENCE CENTER  

SciTech Connect

Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together researchers in these areas and to provide a focal point for the development of computational expertise at the Laboratory. These efforts will connect to and support the Department of Energy's long range plans to provide Leadership class computing to researchers throughout the Nation. Recruitment for six new positions at Stony Brook to strengthen its computational science programs is underway. We expect some of these to be held jointly with BNL.

DAVENPORT, J.

2006-11-01T23:59:59.000Z

259

Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter  

DOE Patents (OSTI)

A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.

Ortiz, M.G.; Boucher, T.J.

1997-06-24T23:59:59.000Z

260

Static and dynamic response of a fluid-fluid interface to electric point and line charge  

SciTech Connect

We consider the behavior of a dielectric fluid-fluid interface in the presence of a strong electric field from a point charge and line charge, respectively, both statically and, in the latter case, dynamically. The fluid surface is elevated above its undisturbed level until balance is reached between the electromagnetic lifting force, gravity and surface tension. We derive ordinary differential equations for the shape of the fluid-fluid interface which are solved numerically with standard means, demonstrating how the elevation depends on field strength and surface tension coefficient. In the dynamic case of a moving line charge, the surface of an inviscid liquid-liquid interface is left to oscillate behind the moving charge after it has been lifted against the force of gravity. We show how the wavelength of the oscillations depends on the relative strength of the forces of gravity and inertia, whereas the amplitude of the oscillations is a nontrivial function of the velocity at which the line charge moves. - Highlights: Black-Right-Pointing-Pointer Fluid surface elevation analyzed near a static point and line charge. Black-Right-Pointing-Pointer Elevation determined by interaction of gravity, dielectric force and surface tension. Black-Right-Pointing-Pointer Dynamic equation of motion for the moving line charge is derived. Black-Right-Pointing-Pointer Surface waves behind moving charge calculated and analysed for different velocities.

Ellingsen, Simen A, E-mail: simen.a.ellingsen@ntnu.no; Brevik, Iver, E-mail: iver.h.brevik@ntnu.no

2012-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Residence times and source ages of deep crustal fluids:  

E-Print Network (OSTI)

We present here 129 I/I and 36 Cl/Cl ratios, together with halogen concentrations in crustal fluids from the continental deep drill site (KTB-VB) in Germany, where fluids were collected from 4000 m depth during a pump test carried out in 2002 and 2003. Compared with seawater, the fluids are enriched by factors of 2, 8 and 40 for Cl) , Br and I, respectively, and show little variation over the test period. The 129 I/I ratios are between 1700 and 4100 10)15; the 36 Cl/Cl ratios are below 10 10)15. Co-variation between 129 I and 36 Cl concentrations in the fluids indicates that anthropogenic components are absent and that the ratios reflect an addition from crustal sources. The results suggest residence times of 10 Ma or more for the fluids in formations with uranium concentrations of 1 ppm. A minimum age of 30 Ma for the iodine source was derived from the correlation between 129 I and 36 Cl concentrations in the fluids. The results demonstrate that the halogen characteristics of the KTB fluids are very similar to those of other deep crustal fluids and that the combination of 129 I and 36 Cl systematics allows determination of residence times and source ages of such fluids.

Interpretation Of I; U. Fehn; G. T. Snyder

2004-01-01T23:59:59.000Z

262

Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2004 - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Determine if fluid inclusion stratigraphy is applicable to geothermal Notes Fluid Inclusion Stratigraphy (FIS) is a new technique developed for the oil industry in order to map borehole fluids.Fluid inclusion gas geochemistry is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow and reservoir seals. Analyses from

263

Fluid bed material transfer method  

DOE Patents (OSTI)

A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

Pinske, Jr., Edward E. (Akron, OH)

1994-01-01T23:59:59.000Z

264

Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof  

SciTech Connect

Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into th emold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with a fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a termperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into th emold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

Battiste, Richard L

2013-12-31T23:59:59.000Z

265

CX-008971: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-008971: Categorical Exclusion Determination Multi-Phase Fluid Flow Simulation Assisted Exploration and Production of Hydrocarbons from Niobrara.. CX(s) Applied: A9 Date: 0801...

266

Categorical Exclusion (CX) Determinations By Date | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy December 21, 2011 CX-007385: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s)...

267

A parallel FE-FV scheme to solve fluid flow in complex geologic media  

Science Conference Proceedings (OSTI)

Field data-based simulations of geologic systems require much computational time because of their mathematical complexity and the often desired large scales in space and time. To conduct accurate simulations in an acceptable time period, methods to reduce ... Keywords: CSMP, Computational geoscience, MPI, Multi-phase fluid flow, Parallel computing, Porous media

Dim Coumou; Stephan Matthi; Sebastian Geiger; Thomas Driesner

2008-12-01T23:59:59.000Z

268

Acoustic concentration of particles in fluid flow  

DOE Patents (OSTI)

An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

Ward, Michael D. (Los Alamos, NM); Kaduchak, Gregory (Los Alamos, NM)

2010-11-23T23:59:59.000Z

269

It's The Fluids SEG Honorary Lecture  

E-Print Network (OSTI)

T.P. Water Butane CO2 #12;Fluid ­ Density 800 1000 1200FluidDensity[kg/m3] Brine CO2 0 2 4 6 8 10 0 200 400 600 Fluid Pressure [MPa] FluidDensity[kg/m Butane CO2 #12;Fluid ­ Modulus 2000 2500 3000 FluidModulus[MPa] Brine 0 2 4 6 8 10 0 500 1000 1500 Fluid Pressure [MPa] FluidModulus[MPa] Butane CO2 #12;GENERAL PHASE

270

IEEE Computer Society: http://computer.org Computer: http://computer.org/computer  

E-Print Network (OSTI)

IEEE Computer Society: http://computer.org Computer: http://computer.org/computer computer@computer.org IEEE Computer Society Publications Office: +1 714 821 8380 COVER FEATURES GUEST EDITOR'S INTRODUCTION 28 Computational Photography--The Next Big Step Oliver Bimber Computational photography extends

Stanford University

271

Computer Rekonstruktion  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Rekonstruktion Von jedem Kollisionsereignis registriert der Detektor Millionen von Datenpunkten. Daher ist es ntig, dass ein Computer diese Datenmenge verarbeitet: die...

272

Volatiles in hydrothermal fluids- A mass spectrometric study of fluid  

Open Energy Info (EERE)

Volatiles in hydrothermal fluids- A mass spectrometric study of fluid Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems Details Activities (4) Areas (4) Regions (0) Abstract: A system for analysis of inclusion gas contents based upon quadrupole mass spectrometry has been designed, assembled and tested during the first 7 months of funding. The system is currently being tested and calibrated using inclusions with known gas contents from active geothermal systems. Analyses are in progress on inclusions from the Salton Sea, Valles Caldera, Geysers, and Coso geothermal systems. Author(s): Mckibben, M. A.

273

Measurement techniques for local and global fluid dynamic quantities in two and three phase systems  

SciTech Connect

This report presents a critical review of the methods available for assessing the fluid dynamic parameters in large industrial two and three phase bubble column and slurry bubble column reactors operated at high pressure and temperature. The physical principles behind various methods are explained, and the basic design of the instrumentation needed to implement each measurement principle is discussed. Fluid dynamic properties of interest are: gas, liquid and solids holdup and their axial and radial distribution as well as the velocity distribution of the two (bubble column) or three phases (slurry bubble column). This information on operating pilot plant and plant reactors is essential to verify the computational fluid dynamic codes as well as scale-up rules used in reactor design. Without such information extensive and costly scale-up to large reactors that exploit syngas chemistries, and other reactors in production of fuels and chemicals, cannot be avoided. In this report, available measurement techniques for evaluation of global and local phase holdups, instantaneous and average phase velocities and for the determination of bubble sizes in gas-liquid and gas-liquid-solid systems are reviewed. Advantages and disadvantages of various techniques are discussed. Particular emphasis is placed on identifying methods that can be employed on large scale, thick wall, high pressure and high temperature reactors used in the manufacture of fuels and chemicals from synthesis gas and its derivatives.

Kumar, S.; Dudukovic, M.P. [Washington Univ., St. Louis, MO (United States). Chemical Reaction Engineering Lab.; Toseland, B.A. [Air Products and Chemicals, Inc., Lehigh Valley, PA (United States)

1996-03-01T23:59:59.000Z

274

Isotopic Analysis- Fluid At Coso Geothermal Area (2007) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Coso Geothermal Area (2007) Isotopic Analysis- Fluid At Coso Geothermal Area (2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (2007) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 2007 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the location of the heat source Notes Fluids have been sampled from 9 wells and 2 fumaroles from the East Flank of the Coso hydrothermal system with a view to identifying, if possible, the location and characteristics of the heat source inflows into this portion of the geothermal field. Preliminary results show that there has been extensive vapor loss in the system, most probably in response to

275

Noncommutative fluid dynamics in the K\\"{a}hler parametrization  

E-Print Network (OSTI)

In this paper, we propose a first order action functional for a large class of systems that generalize the relativistic perfect fluids in the K\\"{a}hler parametrization to noncommutative spacetimes. We calculate the equations of motion for the fluid potentials and the energy-momentum tensor in the first order in the noncommutative parameter. The density current does not receive any noncommutative corrections and it is conserved under the action of the commutative generators $P_{\\mu}$ but the energy-momentum tensor is not. Therefore, we determine the set of constraints under which the energy-momentum tensor is divergenceless. Another set of constraints on the fluid potentials is obtained from the requirement of the invariance of the action under the generalization of the volume preserving transformations of the noncommutative spacetime. We show that the proposed action describes noncommutative fluid models by casting the energy-momentum tensor in the familiar fluid form and identifying the corresponding energy...

Holender, L; Orlando, M T D; Vancea, I V

2011-01-01T23:59:59.000Z

276

Can We Accurately Model Fluid Flow in Shale?  

NLE Websites -- All DOE Office Websites (Extended Search)

Can We Accurately Model Fluid Flow Can We Accurately Model Fluid Flow in Shale? Can We Accurately Model Fluid Flow in Shale? Print Thursday, 03 January 2013 00:00 Over 20 trillion cubic meters of natural gas are trapped in shale, but many shale oil and gas producers still use models of underground fluid flow that date back to the heyday of easy-to-tap gas and liquid crude. The source of shale oil and gas is kerogen, an organic material in the shale, but until now kerogen hasn't been incorporated in mathematical models of shale gas reservoirs. Paulo Monteiro, Chris Rycroft, and Grigory Isaakovich Barenblatt, with the Computational Research Division and the Advanced Light Source, recently modeled how pressure gradients in the boundary layer between kerogen inclusions and shale matrices affect productivity and can model reservoir longevity.

277

Solar absorption refrigeration system using new working fluid pairs  

Science Conference Proceedings (OSTI)

Absorption refrigeration systems powered by solar energy increasingly attract research interests in the last years. In this study, thermodynamic analyses for different working fluid pairs are performed. A computer simulation model has been developed ... Keywords: NH3-LiNO3, absorption, crystallization, generator, performance, refrigeration, solar energy

Jasim M. Abdulateef; Kamaruzzaman Sopian; M. A. Alghoul; Mohd Yusof Sulaiman; Azami Zaharim; Ibrahim Ahmad

2008-02-01T23:59:59.000Z

278

Fifth World Congress on Computational Mechanics  

E-Print Network (OSTI)

WCCM V Fifth World Congress on Computational Mechanics July 7-12, 2002, Vienna, Austria Eds.: H Material in a Computational Fluid Dynamics Framework using Micro- Mechanical Models Nicholas Christakis London, UK e-mail: I.Bridle@gre.ac.uk Key words: granular material, continuum mechanics, micro-mechanical

Christakis, Nikolaos

279

A composite grid solver for conjugate heat transfer in fluid-structure systems  

Science Conference Proceedings (OSTI)

We describe a numerical method for modeling temperature-dependent fluid flow coupled to heat transfer in solids. This approach to conjugate heat transfer can be used to compute transient and steady state solutions to a wide range of fluid-solid systems ... Keywords: Conjugate heat transfer, Incompressible flow, Multi-domain solvers, Numerical methods, Overlapping grids

William D. Henshaw; Kyle K. Chand

2009-06-01T23:59:59.000Z

280

Computer Forensics  

Science Conference Proceedings (OSTI)

Computer Forensics. National Software Reference Library (NSRL) -- The National Software Reference Library (NSRL) is ...

2010-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CX-002296: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Computational Fluid Dynamics (CFD) Analysis Density Separator of an Air-Based Density Separator CX(s) Applied: B3.6 Date: 05182010 Location(s): Lexington, Kentucky...

282

Computational aerothermodynamics  

Science Conference Proceedings (OSTI)

Aerothermodynamics is defined1 as the study of the relationship of heat and mechanical energy in gases, especially air. To those familiar with fluid dynamics (the study of the flow properties of liquids and gases) this ...

G. S. Deiwert

1989-08-01T23:59:59.000Z

283

MOLTEN SALT HEAT TRANSFER FLUID  

thermal energy storage tanks Sandia has developed a heat transfer fluid (HTF) for use at elevated temperatures that has a lower freezing point

284

Fracturing Fluid Characterization Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Documentation Page Documentation Page 1. Report No. DE - FC 21 - 92MC29077 2. 3. Recipient's Accession No. 5. Report Date August 31, 2000 4. Title and Subtitle Fracturing Fluid Characterization Facility 6. 7. Author(s) The University of Oklahoma 8. Performing Organization Rept. No. 10. Project/Task/Work Unit No. 9. Performing Organization Name and Address The University of Oklahoma Sarkeys Energy Center T301 100 E Boyd St Norman, OK 73019 11. Contract (C) or Grant (G) No. DOE:DE FC21 92 MC29077 13. Type of Report & Period Covered Final Report 09 30 92 - 03 31 00 12. Sponsoring Organization Name and Address US Dept of Energy - FETL 3610 Collins Ferry Road Morgantown, WV 26505 14. 15. Supplementary Notes Several technical papers were prepared and presented at various Society of Petroleum Engineers Conferences and US

285

CAPSIZE: A personal computer program and cross-section library for determining the shielding requirements, size, and capacity of shipping casks subject to various proposed objectives  

SciTech Connect

A new interactive program called CAPSIZE has been written for the IBM-PC to rapidly determine the likely impact that proposed design objectives might have on the size and capacity of spent fuel shipping casks designed to meet those objectives. Given the burnup of the spent fuel, its cooling time, the thickness of the internal basket walls, the desired external dose rate, and the nominal weight limit of the loaded cask, the CAPSIZE program will determine the maximum number of PWR fuel assemblies that may be shipped in a lead-, steel-, or uranium-shielded cask meeting those objectives. The necessary neutron and gamma shield thicknesses are determined by the program in such a way as to meet the specified external dose rate while simultaneously minimizing the overall weight of the loaded cask. The one-group cross-section library used in the CAPSIZE program has been distilled from the intermediate results of several hundred 1-D multigroaup discrete ordinates calculations for different types of casks. Neutron and gamma source terms, as well as the decay heat terms, are based on ORIGEN-S analyses of PWR fuel assemblies having exposures of 10, 20, 30, 40, 50, and 60 gigawatt days per metric tonne of initial heavy metal (GWD/MTIHM). In each case, values have been tabulated at 17 different decay times between 120 days and 25 years. Other features of the CAPSIZE program include a steady-state heat transfer calculation which will minimize the size and weight of external cooling fins, if and when such fins are required. Comparisons with previously reported results show that the CAPSIZE program can generally estimate the necessary neutron and gamma shield thicknesses to within 0.16 in. and 0.08 in., respectively. The corresponding cask weights have generally been found to be within 1000 lbs of previously reported results. 13 refs., 20 figs., 54 tabs.

Bucholz, J.A.

1987-05-01T23:59:59.000Z

286

Gender determination of avian embryo  

DOE Patents (OSTI)

Disclosed is a method for gender determination of avian embryos. During the embryo incubation process, the outer hard shells of eggs are drilled and samples of allantoic fluid are removed. The allantoic fluids are directly introduced into an ion mobility spectrometer (IMS) for analysis. The resulting spectra contain the relevant marker peaks in the positive or negative mode which correlate with unique mobilities which are sex-specific. This way, the gender of the embryo can be determined.

Daum, Keith A. (Idaho Falls, ID); Atkinson, David A. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

287

Non-contact fluid characterization in containers using ultrasonic waves  

SciTech Connect

Apparatus and method for non-contact (stand-off) ultrasonic determination of certain characteristics of fluids in containers or pipes are described. A combination of swept frequency acoustic interferometry (SFAI), wide-bandwidth, air-coupled acoustic transducers, narrowband frequency data acquisition, and data conversion from the frequency domain to the time domain, if required, permits meaningful information to be extracted from such fluids.

Sinha, Dipen N. (Los Alamos, NM)

2012-05-15T23:59:59.000Z

288

Calibration method and apparatus for measuring the concentration of components in a fluid  

DOE Patents (OSTI)

A calibration method and apparatus for use in measuring the concentrations of components of a fluid is provided. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The peak-to-trough calculations are simplified by compensating for radiation absorption by the apparatus. The invention also allows absorption characteristics of an interfering fluid component to be accurately determined and negated thereby facilitating analysis of the fluid. 7 figures.

Durham, M.D.; Sagan, F.J.; Burkhardt, M.R.

1993-12-21T23:59:59.000Z

289

Soft Molecular Computing Computer Science  

E-Print Network (OSTI)

Soft Molecular Computing Max Garzon Computer Science The University of Memphis Memphis, TN 38152@memphis.edu Abstract Molecular computing (MC) utilizes the complex interaction of biomolecules and molecular biology for computational purposes. Five years later, substantial obstacles remain to bring the potential of molecular

Deaton, Russell J.

290

Computing and Electronics Computer Technology  

E-Print Network (OSTI)

Computing and Electronics Technology Computer Technology NetworkManagementoption InformationSystemsManagementoption Computer System Technician Electronics Technology Energy Technology ace.cte.umt.edu www.cte.umt.edu Department of Applied Computing and Electronics Chair: Tom Gallagher Phone: 406.243.7814 Email: Thomas

Crone, Elizabeth

291

CX-001057: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

057: Categorical Exclusion Determination 057: Categorical Exclusion Determination CX-001057: Categorical Exclusion Determination Characterizing Fractures in Geyser's Geothermal Field by Micro-Seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy CX(s) Applied: A9 Date: 03/10/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The University of Southern California is proposing a project to predict characteristics of fractures and their orientation prior to drilling new wells. The project will also focus on determining the location of the fractures, fracture spacing and orientation during drilling as well as characterizing open fractures after stimulation to help the location of fluid flow pathways within the Enhanced Geothermal System reservoir.

292

Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend  

DOE Patents (OSTI)

A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

Ortiz, M.G.

1998-02-10T23:59:59.000Z

293

Application of Computational Fluid Flow and Experimentations to ...  

Science Conference Proceedings (OSTI)

... to understand and improve the horizontal direct chilled (HDC) casting of T- ingot. ... An Electrochemical Technique for Minimizing Soil and Ground Water...

294

Computational Fluid Dynamics (CFD) Modelling on Soot Yield for Fire  

E-Print Network (OSTI)

) , CIBSE Guide E(iii) , etc. All design parameters of the smoke control strategy and architectural design Fire Protection Association, Quincy, MA, USA, 2007. iii CIBSE Guide E, Fire Engineering, 2nd Edition

295

Computational Fluid Dynamics (CFD) Simulation of Air Dense ...  

Science Conference Proceedings (OSTI)

In current study, the experimental results of coal beneficiation in a cylindrical bed are used to set up and evaluate the results of a CFD simulation software.

296

European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006  

E-Print Network (OSTI)

will be applied from 2009, it requires a further 80% reduction in PM and a further 20% reduction in NOx. In order. Shimo, M. Kataoka and H. Fujimoto, "Effect of Cooling of Burned Gas by Vertical Vortex on NOx Reduction://www.ifs.tohoku.ac.jp/edge Key words: Diesel Engine, Exhaust emission reduction, Kriging model Abstract. Diesel engine combustion

Obayashi, Shigeru

297

Air Ingress Benchmarking with Computational Fluid Dynamics Analysis  

E-Print Network (OSTI)

Temperature Reactor Technology Institute of Nuclear and New Energy Technology Friendship Hotel, Haidian by a CFD benchmarking program based on experimental work performed by JAERI (Japanese Atomic Energy Energy Research Institute) had been set up to study the ingress of air into the core as a result

298

Numerical Simulation of Erosion Using Computational Fluid Dynamics  

Science Conference Proceedings (OSTI)

Abstract Scope, Erosion related problems in industrial appliances causes huge loss of valuable resources especially due to the presence of solid particles in...

299

An introduction to computer viruses  

Science Conference Proceedings (OSTI)

This report on computer viruses is based upon a thesis written for the Master of Science degree in Computer Science from the University of Tennessee in December 1989 by David R. Brown. This thesis is entitled An Analysis of Computer Virus Construction, Proliferation, and Control and is available through the University of Tennessee Library. This paper contains an overview of the computer virus arena that can help the reader to evaluate the threat that computer viruses pose. The extent of this threat can only be determined by evaluating many different factors. These factors include the relative ease with which a computer virus can be written, the motivation involved in writing a computer virus, the damage and overhead incurred by infected systems, and the legal implications of computer viruses, among others. Based upon the research, the development of a computer virus seems to require more persistence than technical expertise. This is a frightening proclamation to the computing community. The education of computer professionals to the dangers that viruses pose to the welfare of the computing industry as a whole is stressed as a means of inhibiting the current proliferation of computer virus programs. Recommendations are made to assist computer users in preventing infection by computer viruses. These recommendations support solid general computer security practices as a means of combating computer viruses.

Brown, D.R.

1992-03-01T23:59:59.000Z

300

Fracturing fluids -- then and now  

Science Conference Proceedings (OSTI)

Fracturing fluid provides the means by which the hydraulic fracturing process can take place. All applications of well stimulation by fracturing must include selection of fracturing fluid in the initial phases of fracture design and treatment planning. Fracturing fluid has two important purposes: (1) to provide sufficient viscosity to suspend and transport proppant deep into the created fracture system and (2) to decompose, or break, chemically to a low viscosity to allow flowback of a major part of the fluid to the surface for fracture cleanup after the treatment is completed. Because of the importance of its rheological properties and behavior in the fracture under reservoir conditions during (and immediately after) the treatment, service company research laboratories have spent millions of dollars on R and D of fracturing fluids.

Jennings, A.R. Jr. [Enhanced Well Stimulation Inc., Plano, TX (United States)

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Aerodynamically induced radial forces in a centrifugal gas compressor: Part 2 -- Computational investigation  

SciTech Connect

Radial loads and direction of a centrifugal gas compressor containing a high specific speed mixed flow impeller and a single tongue volute were determined both experimentally and computationally at both design and off-design conditions. The experimental methodology was developed in conjunction with a traditional ASME PTC-10 closed-loop test to determine radial load and direction. The experimental study is detailed in Part 1 of this paper (Moore and Flathers, 1998). The computational method employs a commercially available, fully three-dimensional viscous code to analyze the impeller and the volute interaction. An uncoupled scheme was initially used where the impeller and volute were analyzed as separate models using a common vaneless diffuser geometry. The two calculations were then repeated until the boundary conditions at a chosen location in the common vaneless diffuser were nearly the same. Subsequently, a coupled scheme was used where the entire stage geometry was analyzed in one calculation, thus eliminating the need for manual iteration of the two independent calculations. In addition to radial load and direction information, this computational procedure also provided aerodynamic stage performance. The effect of impeller front face and rear face cavities was also quantified. The paper will discuss computational procedures, including grid generation and boundary conditions, as well as comparisons of the various computational schemes to experiment. The results of this study will show the limitations and benefits of Computational Fluid Dynamics (CFD) for determination of radial load, direction, and aerodynamic stage performance.

Flathers, M.B.; Bache, G.E.

1999-10-01T23:59:59.000Z

302

COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS  

SciTech Connect

The objective if this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The computed time averaged particle velocities and concentrations agree with PIV measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. This phase of the work was presented at the Chemical Reaction Engineering VIII: Computational Fluid Dynamics, August 6-11, 2000 in Quebec City, Canada. To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV technique. The results together with simulations will be presented at the annual meeting of AIChE in November 2000.

Paul Lam; Dimitri Gidaspow

2000-09-01T23:59:59.000Z

303

Fully Coupled Well Models for Fluid Injection and Production  

SciTech Connect

Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving these equations varies from zero coupling to full coupling. In this paper we describe a fully coupled solution approach for well model that allows for a flexible well trajectory and screened interval within a structured hexahedral computational grid. In this scheme the nonlinear well equations have been fully integrated into the Jacobian matrix for the reservoir conservation equations, minimizing the matrix bandwidth.

White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.

2013-08-05T23:59:59.000Z

304

Thermal Hydraulic Optimization of Nuclear Systems [Heat Transfer and Fluid  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Hydraulic Thermal Hydraulic Optimization of Nuclear Systems Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Thermal Hydraulic Optimization of Nuclear Systems Accelerator Driven Test Facility Target Accelerator Driven Test Facility Target. Click on image to view larger

305

Underhood Thermal Management [Heat Transfer and Fluid Mechanics] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Underhood Thermal Underhood Thermal Management Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Underhood Thermal Management Hybrid Vehicle Underhood Thermal Analysis Hybrid Vehicle Underhood Thermal Analysis. Click on image to view larger image. In addition to nuclear system applications, the section applies its

306

Advanced Model and Methodology Development [Heat Transfer and Fluid  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Model and Advanced Model and Methodology Development Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Advanced Model and Methodology Development Electrorefiner Model for Treatment of Spent Nuclear Fuel Electrorefiner Model for Treatment of Spent Nuclear Fuel. Click on image to

307

Fluid equations in the presence of electron cyclotron current drive  

Science Conference Proceedings (OSTI)

Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

Jenkins, Thomas G.; Kruger, Scott E. [Tech-X Corporation, 5621 Arapahoe Avenue, Boulder, Colorado 80303 (United States)

2012-12-15T23:59:59.000Z

308

CX-008560: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-008560: Categorical Exclusion Determination Small Scale Electrical Power Generation from Heat Co-produced in Geothermal Fluids CX(s) Applied: A9, B3.6, B5.2,...

309

CX-005602: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Categorical Exclusion Determination CX-005602: Categorical Exclusion Determination Jet Drilling With Energized Fluids CX(s) Applied: B3.6, B3.7 Date: 04112011 Location(s):...

310

CX-000411: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-000411: Categorical Exclusion Determination Fiber Containing Sweep Fluids for Ultra Deepwater Drilling Applications CX(s) Applied: A1, A9, B3.6 Date: 1217...

311

Fluid sampling system  

DOE Patents (OSTI)

This invention comprises a fluid sampling system which allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped up into a sampling jet of venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decrease, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodicially leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

Houck, E.D.

1993-12-31T23:59:59.000Z

312

Fluid flow monitoring device  

DOE Patents (OSTI)

This invention consists of a flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

McKay, M.D.; Sweeney, C.E.

1991-03-05T23:59:59.000Z

313

Fluid sampling system  

DOE Patents (OSTI)

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

Houck, Edward D. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

314

Fluid sampling system  

DOE Patents (OSTI)

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

Houck, E.D.

1994-10-11T23:59:59.000Z

315

Tracing Geothermal Fluids  

DOE Green Energy (OSTI)

Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

Michael C. Adams; Greg Nash

2004-03-01T23:59:59.000Z

316

Spatial computation  

Science Conference Proceedings (OSTI)

This paper describes a computer architecture, Spatial Computation (SC), which is based on the translation of high-level language programs directly into hardware structures. SC program implementations are completely distributed, with no centralized ... Keywords: application-specific hardware, dataflow machine, low-power, spatial computation

Mihai Budiu; Girish Venkataramani; Tiberiu Chelcea; Seth Copen Goldstein

2004-12-01T23:59:59.000Z

317

Light Computing  

E-Print Network (OSTI)

A configuration of light pulses is generated, together with emitters and receptors, that allows computing. The computing is extraordinarily high in number of flops per second, exceeding the capability of a quantum computer for a given size and coherence region. The emitters and receptors are based on the quantum diode, which can emit and detect individual photons with high accuracy.

Gordon Chalmers

2006-10-13T23:59:59.000Z

318

Particle sorter comprising a fluid displacer in a closed-loop fluid circuit  

SciTech Connect

Disclosed herein are methods and devices utilizing a fluid displacer in a closed-loop fluid circuit.

Perroud, Thomas D. (San Jose, CA); Patel, Kamlesh D. (Dublin, CA); Renzi, Ronald F. (Tracy, CA)

2012-04-24T23:59:59.000Z

319

Computer Science Research: Computation Directorate  

Science Conference Proceedings (OSTI)

This report contains short papers in the following areas: large-scale scientific computation; parallel computing; general-purpose numerical algorithms; distributed operating systems and networks; knowledge-based systems; and technology information systems.

Durst, M.J. (ed.); Grupe, K.F. (ed.)

1988-01-01T23:59:59.000Z

320

Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) | Open  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990) Exploration Activity Details Location Sierra Valley Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References Whelan, J. A. (1 September 1990) Water geochemistry study of

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Isotopic Analysis- Fluid At Coso Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Analysis- Fluid At Coso Geothermal Area (1982) Analysis- Fluid At Coso Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (1982) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine recharge for the system Notes Thirty-nine water samples were collected from the Coso geothermal system and vicinity and were analyzed for major chemical constituents and deltaD and delta18O. Non-thermal ground waters from the Coso Range were found to be isotopically heavier than non-thermal ground waters from the Sierra Nevada to the west. The deltaD value for the deep thermal water at Coso is

322

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References

323

Isotopic Analysis- Fluid At Coso Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

Analysis- Fluid At Coso Geothermal Area (1990) Analysis- Fluid At Coso Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (1990) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References Whelan, J. A. (1 September 1990) Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California. Supplement.

324

Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990) | Open  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990) Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990) Exploration Activity Details Location Rose Valley Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References Whelan, J. A. (1 September 1990) Water geochemistry study of

325

Standardization of Thermo-Fluid Modeling in Modelica.Fluid  

E-Print Network (OSTI)

This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

Rdiger Franke; et al.

2009-01-01T23:59:59.000Z

326

Performance analysis of developed vegetable-based cutting fluids by D-optimal experimental design in turning process  

Science Conference Proceedings (OSTI)

The aim of this study is to determine the performances of developed vegetable-based cutting fluids VBCFs evaluated as a categorical factor with mineral and semi-synthetic cutting fluids CFs. D-optimal experimental design method in machining was used ... Keywords: D-optimal, EP additive, cutting force, surface roughness, turning, vegetable-based cutting fluids

Emel Kuram; M. Huseyin Cetin; Babur Ozcelik; Erhan Demirbas

2012-12-01T23:59:59.000Z

327

Downhole Fluid Sampling | Open Energy Information  

Open Energy Info (EERE)

Downhole Fluid Sampling Downhole Fluid Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Fluid Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Gas composition and source of fluids. Thermal: Water temperature. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Downhole Fluid Sampling: Downhole fluid sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Downhole

328

Isotopic Analysis- Fluid | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Fluid Isotopic Analysis- Fluid Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Fluid Details Activities (61) Areas (32) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Origin of hydrothermal fluids; Mixing of hydrothermal fluids Thermal: Isotopic ratios can be used to characterize and locate subsurface thermal anomalies. Dictionary.png Isotopic Analysis- Fluid: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in

329

Intelligent Fluid Infrastructure for Embedded Networking  

E-Print Network (OSTI)

mobile element into the networking infrastructure.Our fluid infrastructure design saves significant energy inIntelligent Fluid Infrastructure for Embedded Networks Aman

Kansal, Aman; Somasundara, Arun; Jea, David C; Srivastava, Mani B; Estrin, D

2004-01-01T23:59:59.000Z

330

Intelligent Fluid Infrastructure for Embedded Networks  

E-Print Network (OSTI)

Intelligent Fluid Infrastructure for Embedded Networks Amanto develop a fluid infrastructure: mobile components arebuilt into the system infrastructure for enabling specific

Aman Kansal; Arun Somasundara; David Jea; Mani Srivastava; Deborah Estrin

2004-01-01T23:59:59.000Z

331

Large Matched-Index-of-Refraction (MIR) Flow Systems for International Collaboration In Fluid Mechanics  

SciTech Connect

In recent international collaboration, INL and Uni. Erlangen have developed large MIR flow systems which can be ideal for joint graduate student education and research. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The MIR technique is not new itself; others employed it earlier. The innovation of these MIR systems is their large size relative to previous experiments, yielding improved spatial and temporal resolution. This report will discuss the benefits of the technique, characteristics of the systems and some examples of their applications to complex situations. Typically their experiments have provided new fundamental understanding plus benchmark data for assessment and possible validation of computational thermal fluid dynamic codes.

Donald M. McEligot; Stefan Becker; Hugh M. McIlroy, Jr.

2010-07-01T23:59:59.000Z

332

Resummed Green-Kubo relations for a fluctuating fluid-particle model  

E-Print Network (OSTI)

A recently introduced stochastic model for fluid flow can be made Galilean invariant by introducing a random shift of the computational grid before collisions. This grid shifting procedure accelerates momentum transfer between cells and leads to a collisional contribution to transport coefficients. By resumming the Green-Kubo relations derived in a previous paper, it is shown that this collisional contribution to the transport coefficients can be determined exactly. The resummed Green-Kubo relations also show that there are no mixed kinetic-collisional contributions to the transport coefficients. The leading correlation corrections to the transport coefficients are discussed, and explicit expressions for the transport coefficients are presented and compared with simulation data.

Thomas Ihle; Erkan Tuzel; Daniel M. Kroll

2004-04-13T23:59:59.000Z

333

Fluid Imaging | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Fluid Imaging Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Fluid Imaging 2 Geothermal ARRA Funded Projects for Fluid Imaging Geothermal Lab Call Projects for Fluid Imaging Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":14,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

334

Deferring trust in fluid replication  

Science Conference Proceedings (OSTI)

Mobile nodes rely on external services to provide safety, sharing, and additional resources. Unfortunately, as mobile nodes move through the networking infrastructure, the costs of accessing servers change. Fluid replication allows mobile clients to ...

Brian D. Noble; Ben Fleis; Landon P. Cox

2000-09-01T23:59:59.000Z

335

Bio-inspired fluid locomotion  

E-Print Network (OSTI)

We have developed several novel methods of locomotion at low Reynolds number, for both Newtonian and non-Newtonian fluids: Robosnails 1 and 2, which operate on a lubrication layer, and the three-link swimmer which moves ...

Chan, Brian, 1980-

2009-01-01T23:59:59.000Z

336

Fluid Flow Model Development for Representative Geologic Media | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluid Flow Model Development for Representative Geologic Media Fluid Flow Model Development for Representative Geologic Media Fluid Flow Model Development for Representative Geologic Media Clay and granitic geologic rock units are potential host media for future repositories for used nuclear fuel and high level waste. This report addresses the representation of flow in these two media within numerical process models. Discrete fracture network (DFNs) models are an approach to representing flow in fractured granite that explicitly represents the geometry and flow properties of individual fractures. New DFN generation and computational grid generation methods have been developed and tested. Mesh generation and the generation of flow streamlines within the DFN are also included. Traditional form of Darcy's law is not adequate

337

Direct Numerical Simulation Of Solidification Microstructures Affected By Fluid Flow  

E-Print Network (OSTI)

The effects of fluid flow on the solidification morphology of pure materials and solute microsegregation patterns of binary alloys are studied using a computational methodology based on a front tracking/finite difference method. A general single-field formulation is presented for the full coupling of phase change, fluid flow, heat and solute transport. This formulation accounts for interfacial rejection/absorption of latent heat and solute, interfacial anisotropies, discontinuities in material properties between the liquid and solid phases, shrinkage/expansion upon solidification and motion and deformation of the solid. Numerical results are presented for the two-dimensional dendritic solidification of pure succinonitrile and the solidification of globulitic grains of a Plutonium-Gallium alloy. For both problems, comparisons are made between solidification without fluid flow and solidification within a shear flow. Introduction Nearly all materials of engineering interest have, at som...

Damir Juric

1998-01-01T23:59:59.000Z

338

Comparative study of working fluids for OTEC power plants  

DOE Green Energy (OSTI)

The effect of three different working fluids (ammonia, propane, and freon-114) on the size of OTEC heat exchangers is analyzed. Seven different combinations of shell-and-tube heat exchangers are considered. For each combination, a simple computer model of the OTEC power system is used to compare the three fluids. The comparison is made on the basis of A/W/sub net/, where A is the total heat transfer area (evaporator plus condenser) and W/sub net/ is the net power output of the plant. Overall, ammonia is shown to be the best fluid (i.e., it yields the lowest value of A/W/sub net/), although in some cases only by a small margin. The thermophysical property that gives ammonia its general superiority is its relatively high thermal conductivity. The report also discusses heat exchanger design problems associated with liquid entrainment and boiling liquid superheat.

Ganic, E N; Wu, J

1979-01-01T23:59:59.000Z

339

CX-001699: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Categorical Exclusion Determination 9: Categorical Exclusion Determination CX-001699: Categorical Exclusion Determination Novel Multidimensional Tracers for Geothermal lnter-Well Diagnostics CX(s) Applied: B3.1, B3.6, B3.11, A9 Date: 04/19/2010 Location(s): Covina, Colorado Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Power Environmental Energy Research Institute (PEER) would develop a matrix of geothermal tracer and tracer interpretation tools to accurately detect reservoir characteristics including fluid pathways, dynamics, residence time, etc. which could lead to information beyond well-to-well connectivity under geothermal conditions. Laboratory work would be done at PEER Institute's laboratory at 738 Arrow Grand Circle, Covina CA. Computer simulations would be done at the Material and Process Simulation Center

340

CX-007430: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30: Categorical Exclusion Determination 30: Categorical Exclusion Determination CX-007430: Categorical Exclusion Determination Innovative Computational Tools for Reducing Exploration Risk Through Integration of Water-rock Interactions and Magnetotelluric Surveys CX(s) Applied: A9, B3.6 Date: 12/01/2011 Location(s): Utah Offices(s): Golden Field Office The University of Utah would utilize DOE and cost share funds to develop the framework and procedures required to relate reservoir permeabilities (from indicators of water-rock ratios), degree and type of clay alteration, and temperature to the electrical resistivities of geothermal systems as recorded by magnetotelluric (MT) surveys. Laboratory work would be conducted in the X-ray diffraction and fluid inclusion laboratories located at the Energy and Geoscience Institute (EGI ), 423 Wakara Way, Research

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Categorical Exclusion Determinations: B3.6 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 CX-003051: Categorical Exclusion Determination Irvine Smart Grid Demonstration Project (Only for Subcontractor General Electric's Work in Rochester, New York) CX(s) Applied: B3.6, B5.1 Date: 07/19/2010 Location(s): Rochester, New York Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory July 19, 2010 CX-003050: Categorical Exclusion Determination Irvine Smart Grid Demonstration Project CX(s) Applied: A9, A11, B3.6, B4.6, B5.1 Date: 07/19/2010 Location(s): Irvine, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory July 19, 2010 CX-003045: Categorical Exclusion Determination Computational Fluid Dynamics (CFD) Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Systems

342

Categorical Exclusion Determinations: Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 19, 2010 July 19, 2010 CX-003045: Categorical Exclusion Determination Computational Fluid Dynamics (CFD) Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Systems CX(s) Applied: B3.6 Date: 07/19/2010 Location(s): Chicago, Illinois Office(s): Fossil Energy, National Energy Technology Laboratory July 15, 2010 CX-003070: Categorical Exclusion Determination Gas Process Development Unit (GPDU)/Syngas (Synthetic Gas) Generator Decommissioning CX(s) Applied: B1.23, B1.27, B1.31, B3.6 Date: 07/15/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory July 13, 2010 CX-003039: Categorical Exclusion Determination High Temperature Chemical Sensors for Energy Research CX(s) Applied: B3.6

343

Vorton dynamics: a case study of developing a fluid dynamics model for a vector processor  

Science Conference Proceedings (OSTI)

The raw performance of vector processors such as the CDC CYBER-205 has been well documented. The ability to apply this raw power to ever more complex algebraic algorithms has been reported in [9]. The final step in making computers of this class truly ... Keywords: CYBER-205, computational fluid dynamics, programming, vorton model

M. J. Kascic, Jr.

1984-08-01T23:59:59.000Z

344

Experimental and Computational Aerothermodynamics of a Mars Entry Vehicle  

Science Conference Proceedings (OSTI)

An aerothermodynamic database has been generated through both experimental testing and computational fluid dynamics simulations for a 70 deg sphere-cone configuration based on the NASA Mars-Pathfinder entry vehicle. The aerothermodynamics of several ...

Hollis Brian R.

1996-12-01T23:59:59.000Z

345

Computational Chemistry  

Science Conference Proceedings (OSTI)

... and numerical tools to quantify uncertainties for computational quantum chemistry. ... Results appear in the issue of The Journal of Chemical Physics. ...

2010-10-05T23:59:59.000Z

346

Computer Science  

NLE Websites -- All DOE Office Websites (Extended Search)

in Physics, Mathematics, Computer Science, Quantitative Biology, Quantitative Finance and Statistics Cite Seer Department of Energy provided open access science research citations...

347

Fluid Flow Within Fractured Porous Media  

Science Conference Proceedings (OSTI)

Fractures provide preferential flow paths to subterranean fluid flows. In reservoir scale modeling of geologic flows fractures must be approximated by fairly simple formulations. Often this is accomplished by assuming fractures are parallel plates subjected to an applied pressure gradient. This is known as the cubic law. An induced fracture in Berea sandstone has been digitized to perform numerical flow simulations. A commercially available computational fluid dynamics software package has been used to solve the flow through this model. Single phase flows have been compared to experimental works in the literature to evaluate the accuracy with which this model can be applied. Common methods of fracture geometry classification are also calculated and compared to experimentally obtained values. Flow through regions of the fracture where the upper and lower fracture walls meet (zero aperture) are shown to induce a strong channeling effect on the flow. This model is expanded to include a domain of surrounding porous media through which the flow can travel. The inclusion of a realistic permeability in this media shows that the regions of small and zero apertures contribute to the greatest pressure losses over the fracture length and flow through the porous media is most prevalent in these regions. The flow through the fracture is shown to be the largest contributor to the net flow through the media. From this work, a novel flow relationship is proposed for flow through fractured media.

Crandall, D.M.; Ahmadi, G. (Clarkson Univ., Potsdam, NY); Smith, D.H.; Bromhal, G.S.

2006-10-01T23:59:59.000Z

348

Circulating Fluid-Bed Technology for Advanced Power Systems  

Science Conference Proceedings (OSTI)

Circulating fluid bed technology offers the advantages of a plug flow, yet well-mixed, and high throughput reactor for power plant applications. The ability to effectively scale these systems in size, geometry, and operating conditions is limited because of the extensive deviation from ideal dilute gas-solids flow behavior (Monazam et al., 2001; Li, 1994). Two fluid computations show promise of accurately simulating the hydrodynamics in the riser circulating fluid bed; however, validation tests for large vessels with materials of interest to the power industry are lacking (Guenther et al., 2002). There is little available data in reactors large enough so that geometry (i.e. entrance, exit, and wall) effects do not dominate the hydrodynamics, yet with sufficiently large particle sizes to allow sufficiently large grid sizes to allow accurate and timely hydrodynamic simulations. To meet this need experimental tests were undertaken with relatively large particles of narrow size distribution in a large enough unit to reduce the contributions of wall effects and light enough to avoid geometry effects. While computational fluid dynamic calculations are capable of generating detailed velocity and density profiles, it is believed that the validation and model development begins with the ability to simulate the global flow regime transitions. The purpose of this research is to generate well-defined test data for model validation and to identify and measure critical parameters needed for these simulations.

Shadle, Lawrence J.; Ludlow, J. Christopher; Mei, Joseph S. (U.S. DOE National Energy Technology Laboratory); Guenther, Christopher (Fluent, Inc.)

2001-11-06T23:59:59.000Z

349

Combustion Simulations [Heat Transfer and Fluid Mechanics] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Simulations Combustion Simulations Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Combustion Simulations Density Distribution of Spray in Near-Injector Region Density Distribution of Spray in Near-Injector Region. Click on image to view larger image. Development of computer models based on Front-Tracking and

350

Fluid Inclusion Analysis At Coso Geothermal Area (2003) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area Coso Geothermal Area (2003) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2003 Usefulness not indicated DOE-funding Unknown Exploration Basis 1) Fracture/stress analysis. 2)To determine the driver of the relationship between hydrogen and organic species. Notes 1) Fluid inclusion analyses of cuttings from well 83-16 were used to determine the temperatures of vein mineralization. 2) Measurement of organic compounds in fluid inclusions shows that there are strong relationships between H2 concentrations and alkane/alkene ratios and benzene concentrations. Inclusion analyses that indicate H2 concentrations > 0.001 mol % typically have ethane > ethylene, propane > propylene, and

351

Experimental Assessment of Water Based Drilling Fluids in High Pressure and High Temperature Conditions  

E-Print Network (OSTI)

Proper selection of drilling fluids plays a major role in determining the efficient completion of any drilling operation. With the increasing number of ultra-deep offshore wells being drilled and ever stringent environmental and safety regulations coming into effect, it becomes necessary to examine and understand the behavior of water based drilling fluids - which are cheaper and less polluting than their oil based counterpart - under extreme temperature and pressure conditions. In most of the existing literature, the testing procedure is simple - increase the temperature of the fluid in steps and record rheological properties at each step. A major drawback of this testing procedure is that it does not represent the continuous temperature change that occurs in a drilling fluid as it is circulated through the well bore. To have a better understanding of fluid behavior under such temperature variation, a continuous test procedure was devised in which the temperature of the drilling fluid was continuously increased to a pre-determined maximum value while monitoring one rheological parameter. The results of such tests may then be used to plan fluid treatment schedules. The experiments were conducted on a Chandler 7600 XHPHT viscometer and they seem to indicate specific temperature ranges above which the properties of the drilling fluid deteriorate. Different fluid compositions and drilling fluids in use in the field were tested and the results are discussed in detail.

Ravi, Ashwin

2011-08-01T23:59:59.000Z

352

Three fluid cosmological model using Lie and Noether symmetries  

E-Print Network (OSTI)

We employ a three fluid model in order to construct a cosmological model in the Friedmann Robertson Walker flat spacetime, which contains three types of matter dark energy, dark matter and a perfect fluid with a linear equation of state. Dark matter is described by dust and dark energy with a scalar field with potential V({\\phi}). In order to fix the scalar field potential we demand Lie symmetry invariance of the field equations, which is a model-independent assumption. The requirement of an extra Lie symmetry selects the exponential scalar field potential. The further requirement that the analytic solution is invariant under the point transformation generated by the Lie symmetry eliminates dark matter and leads to a quintessence and a phantom cosmological model containing a perfect fluid and a scalar field. Next we assume that the Lagrangian of the system admits an extra Noether symmetry. This new assumption selects the scalar field potential to be exponential and forces the perfect fluid to be stiff. Furthermore the existence of the Noether integral allows for the integration of the dynamical equations. We find new analytic solutions to quintessence and phantom cosmologies which contain all three fluids. Using these solutions one is able to compute analytically all main cosmological functions, such as the scale factor, the scalar field, the Hubble expansion rate, the deceleration parameter etc.

Michael Tsamparlis; Andronikos Paliathanasis

2011-11-23T23:59:59.000Z

353

Quantum computing  

E-Print Network (OSTI)

This article gives an elementary introduction to quantum computing. It is a draft for a book chapter of the "Handbook of Nature-Inspired and Innovative Computing", Eds. A. Zomaya, G.J. Milburn, J. Dongarra, D. Bader, R. Brent, M. Eshaghian-Wilner, F. Seredynski (Springer, Berlin Heidelberg New York, 2006).

J. Eisert; M. M. Wolf

2004-01-05T23:59:59.000Z

354

Isotopic Tracers for Waste Fluid Tracking and Fluid-Soil Interactions: Hanford, Washington  

DOE Green Energy (OSTI)

The objective of this research is to develop and advance isotopic approaches for characterizing fluid flow and chemical transport through the vadose zone to groundwater. Previous research has been concentrated on developing and comparing different isotopic systems (e.g., hydrogen, oxygen and strontium isotopes) for determining fluid infiltration rates and pathways in the vadose zone (e.g., Maher et al., 2003; DePaolo et al., 2004; Singleton et al., in press). The results demonstrate the unique advantage of studies of multiple isotopic systems for distinguishing short-term versus long-term processes. The focus of our current efforts is on using the isotopic compositions of different chemical phases (e.g., uranium, nitrate) to track their movement through the vadose zone. Preliminary results indicate that this will be a powerful tool for assessing environmental risks associated with vadose zone contamination.

DePaolo, Donald J.

2004-06-01T23:59:59.000Z

355

Isotopic Tracers for Waste Fluid Tracking and Fluid-Soil Interactions: Hanford, Washington  

DOE Green Energy (OSTI)

The objective of this research is to develop and advance isotopic methods for characterizing fluid flow and chemical transport through the vadose zone to groundwater. Previous research has been concentrated on developing and comparing different isotopic systems (e.g., hydrogen, oxygen and strontium isotopes) for determining fluid infiltration rates and pathways in the vadose zone (e.g., Maher et al., 2003; DePaolo et al., 2004; Singleton et al., in press). The focus of our current efforts is on using the isotopic compositions of different chemical phases (e.g., uranium, nitrate) to track their movement through the vadose zone. Preliminary results indicate that this will be a powerful tool for assessing environmental risks associated with vadose zone contamination.

DePaolo, Donald J.

2005-06-01T23:59:59.000Z

356

Ultracentrifuge for separating fluid mixtures  

DOE Patents (OSTI)

1. A centrifuge for the separation of fluid mixtures having light and heavy fractions comprising a cylindrical rotor, disc type end-plugs closing the ends of the rotor, means for mounting said rotor for rotation about its cylindrical axis, a housing member enclosing the rotor, a vacuum chamber in said housing about the central portion of the rotor, a collection chamber at each end of the housing, the innermost side of which is substantially formed by the outer face of the end-plug, means for preventing flow of the fluid from the collection chambers to said vacuum chamber, at least one of said end-plugs having a plurality of holes therethrough communicating between the collection chamber adjacent thereto and the inside of the rotor to induce countercurrent flow of the fluid in the centrifuge, means for feeding fluid to be processed into the centrifuge, means communicating with the collection chambers to extract the light and heavy separated fractions of the fluid, and means for rotating the rotor.

Lowry, Ralph A. (Charlottesville, VA)

1976-01-01T23:59:59.000Z

357

DEVELOPMENT OF NEW DRILLING FLUIDS  

SciTech Connect

The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

David B. Burnett

2003-08-01T23:59:59.000Z

358

Fluid Metrology Calibration Services - Gas, Water, or Liquid ...  

Science Conference Proceedings (OSTI)

Fluid Metrology Calibration Services - Gas, Water, Natural Gas, or Liquid Hydrocarbon Flows Special Tests. Fluid Metrology ...

2013-01-25T23:59:59.000Z

359

Finite Volume Based Computer Program for Ground Source Heat Pump System  

SciTech Connect

This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP systems.

Menart, James A. [Wright State University] [Wright State University

2013-02-22T23:59:59.000Z

360

Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems  

SciTech Connect

This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ???¢????????Finite Volume Based Computer Program for Ground Source Heat Pump Systems.???¢??????? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP system

James A Menart, Professor

2013-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Energy Sciences > APECS Computational Energy Sciences > APECS Advanced Research Computational Energy Sciences APECS APECS Virtual Plant APECS (Advanced Process Engineering Co-Simulator) is the first simulation software to combine the disciplines of process simulation and computational fluid dynamics (CFD). This unique combination makes it possible for engineers to create "virtual plants" and to follow complex thermal and fluid flow phenomena from unit to unit across the plant. Advanced visualization software tools aid in analysis and optimization of the entire plant's performance. This tool can significantly reduce the cost of power plant design and optimization with an emphasis on multiphase flows critical to advanced power cycles. A government-industry-university collaboration (including DOE, NETL, Ansys/

362

Acoustic sand detector for fluid flowstreams  

DOE Patents (OSTI)

The particle volume and particle mass production rate of particulate solids entrained in fluid flowstreams such as formation sand or fracture proppant entrained in oil and gas production flowstreams is determined by a system having a metal probe interposed in a flow conduit for transmitting acoustic emissions created by particles impacting the probe to a sensor and signal processing circuit which produces discrete signals related to the impact of each of the particles striking the probe. The volume or mass flow rate of particulates is determined from making an initial particle size distribution and particle energy distribution and comparing the initial energy distribution and/or the initial size distribution with values related to the impact energies of a predetermined number of recorded impacts. The comparison is also used to recalibrate the system to compensate for changes in flow velocity.

Beattie, Alan G. (Corrales, NM); Bohon, W. Mark (Frisco, TX)

1993-01-01T23:59:59.000Z

363

Computer Science Sample Occupations  

E-Print Network (OSTI)

Computer Science Sample Occupations COMPUTER OPERATIONS Computer Hardware/ Software Engineer Computer Operator Database Manager/ Administrator Data Entry Operator Operations Manager DESIGN & MANUFACTURING, ENGINEERING Coder CAD Computer Applications Engineers Computer Research Scientist Computer

Ronquist, Fredrik

364

Guidelines for Poisson Solvers on Irregular Domains withDirichlet Boundary Conditions Using the Ghost Fluid Method  

E-Print Network (OSTI)

in Stefan-type problems, Y.T. Ng H. Chen Computer ScienceGhost Fluid Method Yen Ting Ng Han Chen Chohong Min The research of Y. -T. Ng, H. Chen and F. Gibou was

Ng, Yen Ting; Chen, Han; Min, Chohong; Gibou, Frdric

2009-01-01T23:59:59.000Z

365

Chromatin Computation  

E-Print Network (OSTI)

In living cells, DNA is packaged along with protein and RNA into chromatin. Chemical modifications to nucleotides and histone proteins are added, removed and recognized by multi-functional molecular complexes. Here I define a new computational model, in which chromatin modifications are information units that can be written onto a one-dimensional string of nucleosomes, analogous to the symbols written onto cells of a Turing machine tape, and chromatin-modifying complexes are modeled as read-write rules that operate on a finite set of adjacent nucleosomes. I illustrate the use of this chromatin computer to solve an instance of the Hamiltonian path problem. I prove that chromatin computers are computationally universal and therefore more powerful than the logic circuits often used to model transcription factor control of gene expression. Features of biological chromatin provide a rich instruction set for efficient computation of nontrivial algorithms in biological time scales. Modeling chromatin as a computer shifts how we think about chromatin function, suggests new approaches to medical intervention, and lays the groundwork for the engineering of a new class of biological computing machines.

Barbara Bryant

2012-01-01T23:59:59.000Z

366

Core-softened Fluids, Water-like Anomalies and the Liquid-Liquid Critical Points  

E-Print Network (OSTI)

Molecular dynamics simulations are used to examine the relationship between water-like anomalies and the liquid-liquid critical point in a family of model fluids with multi-Gaussian, core-softened pair interactions. The core-softened pair interactions have two length scales, such that the longer length scale associated with a shallow, attractive well is kept constant while the shorter length scale associated with the repulsive shoulder is varied from an inflexion point to a minimum of progressively increasing depth. As the shoulder well depth increases, the pressure required to form the high density liquid decreases and the temperature up to which the high-density liquid is stable increases, resulting in the shift of the liquid-liquid critical point to much lower pressures and higher temperatures. The pair correlation entropy is computed to show that the excess entropy anomaly diminishes when the shoulder well depth increases. Excess entropy scaling of diffusivity in this class of fluids is demonstrated, showing that decreasing strength of the excess entropy anomaly with increasing shoulder depth results in the progressive loss of water-like thermodynamic, structural and transport anomalies. Instantaneous normal mode analysis was used to index the overall curvature distribution of the fluid and the fraction of imaginary frequency modes was shown to correlate well with the anomalous behaviour of the diffusivity and the pair correlation entropy. The results suggest in the case of core-softened potentials, in addition to the presence of two length scales, energetic and entropic effects associated with local minima and curvatures of the pair interaction play an important role in determining the presence of water-like anomalies and the liquid-liquid phase transition.

Evy Salcedo; Alan B. de Oliveira; Ney M. Barraz Jr; Charusita Chakravarty; Marcia C. Barbosa

2011-03-21T23:59:59.000Z

367

Molecular to fluid dynamics: The consequences of stochastic molecular motion Stefan Heinz*  

E-Print Network (OSTI)

Molecular to fluid dynamics: The consequences of stochastic molecular motion Stefan Heinz) The derivation of fluid dynamic equations from molecular equations is considered. This is done on the basis of a stochastic model for the molecular motion which can be obtained by a projection of underlying determin- istic

Heinz, Stefan

368

Wellbottom fluid implosion treatment system  

DOE Patents (OSTI)

A system for inducing implosion shock forces on perforation traversing earth formations with fluid pressure where an implosion tool is selected relative to a shut in well pressure and a tubing pressure to have a large and small area piston relationship in a well tool so that at a predetermined tubing pressure the pistons move a sufficient distance to open an implosion valve which permits a sudden release of well fluid pressure into the tubing string and produces an implosion force on the perforations. A pressure gauge on the well tool records tubing pressure and well pressure as a function of time.

Brieger, Emmet F. (HC 67 Box 58, Nogal, NM 88341)

2001-01-01T23:59:59.000Z

369

CX-010714: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-010714: Categorical Exclusion Determination Strategic Petroleum Reserve Computer Services, 2015-2020 CX(s) Applied: B1.7 Date: 07112013...

370

CX-002730: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Categorical Exclusion Determination CX-002730: Categorical Exclusion Determination Computer Simulation and Experimental Validation on Novel Chromium-Based High Temperature...

371

CX-002733: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Categorical Exclusion Determination CX-002733: Categorical Exclusion Determination Computer Simulation and Experimental Study on Novel Chromium-Based High Temperature Alloys...

372

CX-008011: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-008011: Categorical Exclusion Determination Install EMSL Super-Computer Power Infrastructure CX(s) Applied: B1.7 Date: 06302011 Location(s): Washington...

373

Computing compliance  

Science Conference Proceedings (OSTI)

Inquisitive semantics (cf. Groenendijk, 2008) provides a formal framework for reasoning about information exchange. The central logical notion that the semantics gives rise to is compliance. This paper presents an algorithm that computes the set of compliant ...

Ivano Ciardelli; Irma Cornelisse; Jeroen Groenendijk; Floris Roelofsen

2009-10-01T23:59:59.000Z

374

Theoretical treatment of the bulk and surface properties of fluids containing long, flexible molecules  

SciTech Connect

Purpose is to develop an equation of state for predicting the thermodynamic properties of fluids containing chain-like molecules ranging from alkanes to polymers. Foundation of this work is the Generalized Flory Dimer (GFD) theory. GFD is extended to square-well chain mixtures. The second virial coefficient has been evaluated for hard-chain and square-well chain fluids using a Monte Carlo approach. The polymer RISM theory was used to determine the segment-segment radial distributrion function for hard chain fluids. Monte Carlo simulations are being performed of the self-diffusion coeffient, shear and longitudinal viscosities, and thermal conductivity for hard chain fluids. (DLC)

Not Available

1993-01-01T23:59:59.000Z

375

Theoretical treatment of the bulk and surface properties of fluids containing long, flexible molecules  

Science Conference Proceedings (OSTI)

Purpose is to develop an equation of state for predicting the thermodynamic properties of fluids containing chain-like molecules ranging from alkanes to polymers. Foundation of this work is the Generalized Flory Dimer (GFD) theory. GFD is extended to square-well chain mixtures. The second virial coefficient has been evaluated for hard-chain and square-well chain fluids using a Monte Carlo approach. The polymer RISM theory was used to determine the segment-segment radial distributrion function for hard chain fluids. Monte Carlo simulations are being performed of the self-diffusion coeffient, shear and longitudinal viscosities, and thermal conductivity for hard chain fluids. (DLC)

Not Available

1993-06-01T23:59:59.000Z

376

Fluid---structure interaction modeling of wind turbines: simulating the full machine  

Science Conference Proceedings (OSTI)

In this paper we present our aerodynamics and fluid---structure interaction (FSI) computational techniques that enable dynamic, fully coupled, 3D FSI simulation of wind turbines at full scale, and in the presence of the nacelle and tower (i.e., simulation ... Keywords: ALE-VMS method, Fluid---structure interaction, Full machine, NREL 5 MW offshore, Rotor---tower interaction, Sliding-interface formulation, Wind turbine aerodynamics

Ming-Chen Hsu; Yuri Bazilevs

2012-12-01T23:59:59.000Z

377

Fluid injection profiles: modern analysis of wellbore temperature survey  

DOE Green Energy (OSTI)

Exact and approximate solutions for heat flow in a fluid injection well are presented. By using the approximate results, temperature surveys can be quickly analyzed in the field, and the well depths where fluids leave and the departing flow rates at these depths can be precisely determined. Although this method eliminates the need for indigenous and post injection shut-in temperatures, several surveys must be taken just before and during the injection period which can be as short as several hours. In the application described the method was used to locate the depths where hydraulic fractures were initiated in a hot dry rock geothermal well.

Murphy, H.D.

1977-01-01T23:59:59.000Z

378

Application of Computational Physics: Blood Vessel Constrictions and Medical Infuses  

E-Print Network (OSTI)

Application of computation in many fields are growing fast in last two decades. Increasing on computation performance helps researchers to understand natural phenomena in many fields of science and technology including in life sciences. Computational fluid dynamic is one of numerical methods which is very popular used to describe those phenomena. In this paper we propose moving particle semi-implicit (MPS) and molecular dynamics (MD) to describe different phenomena in blood vessel. The effect of increasing the blood pressure on vessel wall will be calculate using MD methods, while the two fluid blending dynamics will be discussed using MPS. Result from the first phenomenon shows that around 80% of constriction on blood vessel make blood vessel increase and will start to leak on vessel wall, while from the second phenomenon the result shows the visualization of two fluids mixture (drugs and blood) influenced by ratio of drugs debit to blood debit. Keywords: molecular dynamic, blood vessel, fluid dynamic, moving particle semi implicit.

Suprijadi; Mohamad Rendi; Petrus Subekti; Sparisoma Viridi

2013-12-14T23:59:59.000Z

379

Directed flow fluid rinse trough  

SciTech Connect

Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.

Kempka, Steven N. (9504 Lona La., Albuquerque, NM 87111); Walters, Robert N. (11872 LaGrange St., Boise, ID 83709)

1996-01-01T23:59:59.000Z

380

Analysis and macroscopic limit of a one-dimensional model for aging fluids  

E-Print Network (OSTI)

We study a one-dimensional equation arising in the multiscale modeling of some non-Newtonian fluids. At a given shear rate, the equation provides the instantaneous mesoscopic response of the fluid, allowing to compute the corresponding stress. In a simple setting, we study the well-posedness of the equation and next the long-time behavior of its solution. In the limit of a response of the fluid much faster than the time variations of the ambient shear rate, we derive some equivalent macroscopic differential equations that relate the shear rate and the stress. Our analytical conclusions are confronted to some numerical experiments. The latter quantitatively confirm our derivations.

David Benoit; Claude Le Bris; Tony Lelivre

2013-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Computer identification of musical instruments  

Science Conference Proceedings (OSTI)

The objective is to identify musical instruments using a computer. The characteristics of a musical instrument can be determined by the frequency spectrum of a specific note. The spectrum will vary for different instruments. This variation identifies the instrument. The waveforms of musical instruments (simulated by an electronic keyboard) are stored in the computer. Experimental data were collected for clarinet

Sudha Rani Narasimhan

1992-01-01T23:59:59.000Z

382

Fluid-Structure Interaction Modeling of High-Aspect Ratio Nuclear Fuel Plates Using COMSOL  

SciTech Connect

The High Flux Isotope Reactor at the Oak Ridge National Lab is in the research stage of converting its fuel from high-enriched uranium to low-enriched uranium. Due to different physical properties of the new fuel and changes to the internal fuel plate design, the current safety basis must be re-evaluated through rigorous computational analyses. One of the areas being explored is the fluid-structure interaction phenomenon due to the interaction of thin fuel plates (50 mils thickness) and the cooling fluid (water). Detailed computational fluid dynamics and fluid-structure interaction simulations have only recently become feasible due to improved numerical algorithms and advancements in computing technology. For many reasons including the already built-in fluid-structure interaction module, COMSOL has been chosen for this complex problem. COMSOL's ability to solve multiphysics problems using a fully-coupled and implicit solution algorithm is crucial in obtaining a stable and accurate solution. Our initial findings show that COMSOL can accurately model such problems due to its ability to closely couple the fluid dynamics and the structural dynamics problems.

Curtis, Franklin G [ORNL] ORNL; Ekici, Kivanc [ORNL] ORNL; Freels, James D [ORNL] ORNL

2013-01-01T23:59:59.000Z

383

Heat Transfer in Complex Fluids  

SciTech Connect

Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

Mehrdad Massoudi

2012-01-01T23:59:59.000Z

384

Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon |  

Open Energy Info (EERE)

Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon Details Activities (2) Areas (1) Regions (0) Abstract: Isotopic compositions were determined for hydrothermal quartz, calcite, and siderite from core samples of the Newberry 2 drill hole, Oregon. The Δ15O values for these minerals decrease with increasing temperatures. The values indicate that these hydrothermal minerals precipitated in isotopic equilibrium with water currently present in the reservoirs. The Δ18O values of quartz and calcite from the andesite and basalt flows (700-932 m) have isotopic values which require that the equilibrated water Δ18O values increase slightly (- 11.3 to -9.2‰) with

385

Evaluation of high-pressure drilling fluid supply systems  

DOE Green Energy (OSTI)

A study was undertaken to help determine the technical and economic feasibility of developing a high-pressure fluid-jet drilling system for the production of geothermal wells. Three system concepts were developed and analyzed in terms of costs, component availability, and required new-component development. These concepts included a single-conduit system that supplies the downhole cutting nozzles directly via surface-located high-pressure pumps; a single-conduit system utilizing low-pressure surface pumps to supply and operate a high-pressure downhole pump, which in turn supplies the cutting nozzles; and a dual-conduit system supplying surface-generated high-pressure fluid for cutting via one conduit and low-pressure scavenging fluid via the other. It is concluded that the single-conduit downhole pump system concept has the greatest potential for success in this application. 28 figures, 11 tables.

McDonald, M.C.; Reichman, J.M.; Theimer, K.J.

1981-10-01T23:59:59.000Z

386

Computational biology and high performance computing  

E-Print Network (OSTI)

Acknowledgements for Community White Paper in ComputationalComputational Biology white paper Is there strong objectionportions of community white paper on high end computing

Shoichet, Brian

2011-01-01T23:59:59.000Z

387

Computational biology and high performance computing  

E-Print Network (OSTI)

Biology and High Performance Computing Manfred Zorn, TeresaBiology and High Performance Computing Presenters: Manfred99-Portland High performance computing has become one of the

Shoichet, Brian

2011-01-01T23:59:59.000Z

388

Homepage: Computer, Computational, and Statistical Sciences,...  

NLE Websites -- All DOE Office Websites (Extended Search)

ADTSC Computer, Computational, & Statistical Sciences, CCS Home Internal Home About Us Organization Jobs CCS Home Groups Computational Physics & Methods CCS-2 Information Sciences...

389

From detonation to diapers: Los Alamos computer codes at core of advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

From detonation to diapers From detonation to diapers Los Alamos computer codes at core of advanced manufacturing tools The computer codes used for predictive fluid modeling are part of the Los Alamos Computational Fluid Dynamics Library. July 27, 2011 This simulation of a droplet of liquid falling into a pool of liquid was modeled using Los Alamos National Laboratory's Computational Fluid Dynamics Library This simulation of a droplet of liquid falling into a pool of liquid was modeled using Los Alamos National Laboratory's Computational Fluid Dynamics Library (CFDLib), which was also used by Procter and Gamble to simulate a manufacturing process. The computer code is now available to help American industries become more competitive. Contact James Rickman Communicatons Office (505) 665-9203

390

Design of semi-active variable impedance materials using field-responsive fluids  

E-Print Network (OSTI)

In this thesis, I explored the design of a thin variable impedance material using electrorheological (ER) fluid that is intended to be worn by humans. To determine the critical design parameters of this material, the shear ...

Eastman, Douglas Elmer

2004-01-01T23:59:59.000Z

391

CX-008968: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-008968: Categorical Exclusion Determination Multi-Phase Fluid Flow Simulation Assisted Exploration and Production of Hydrocarbons from Niobrara... CX(s) Applied: B3.1 Date: 08...

392

CX-008967: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-008967: Categorical Exclusion Determination Multi-Phase Fluid Flow Simulation Assisted Exploration and Production of Hydrocarbons from Niobrara... CX(s) Applied: B3.1 Date: 08...

393

CX-008975: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-008975: Categorical Exclusion Determination Multi-Phase Fluid Flow Simulation Assisted Exploration and Production of Hydrocarbons from Niobrara... CX(s) Applied: B3.1 Date: 08...

394

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-008972: Categorical Exclusion Determination Multi-Phase Fluid Flow Simulation Assisted Exploration and Production of Hydrocarbons from Niobrara... CX(s) Applied: B3.6 Date: 08...

395

CX-008966: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-008966: Categorical Exclusion Determination Multi-Phase Fluid Flow Simulation Assisted Exploration and Production of Hydrocarbons from Niobrara... CX(s) Applied: B3.1, B3.6...

396

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-008968: Categorical Exclusion Determination Multi-Phase Fluid Flow Simulation Assisted Exploration and Production of Hydrocarbons from Niobrara... CX(s) Applied: B3.1 Date: 08...

397

CX-008972: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-008972: Categorical Exclusion Determination Multi-Phase Fluid Flow Simulation Assisted Exploration and Production of Hydrocarbons from Niobrara... CX(s) Applied: B3.6 Date: 08...

398

CX-008974: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-008974: Categorical Exclusion Determination Multi-Phase Fluid Flow Simulation Assisted Exploration and Production of Hydrocarbons from Niobrara... CX(s) Applied: B3.1 Date: 08...

399

CX-009143: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-009143: Categorical Exclusion Determination Development of High Operating Temperature Heat Transfer Fluids for Solar Thermal Power Generation CX(s) Applied: A9, B3.6 Date: 09...

400

Categorical Exclusion (CX) Determinations By Date | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Laboratory April 11, 2011 CX-005602: Categorical Exclusion Determination Jet Drilling With Energized Fluids CX(s) Applied: B3.6, B3.7 Date: 04112011 Location(s):...

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Laboratory April 11, 2011 CX-005602: Categorical Exclusion Determination Jet Drilling With Energized Fluids CX(s) Applied: B3.6, B3.7 Date: 04112011 Location(s):...

402

Renaissance Computing  

E-Print Network (OSTI)

We describe version 2 of RENCI PowerMon, a device that can be inserted between a computer power supply and the computers main board to measure power usage at each of the DC power rails supplying the board. PowerMon 2 provides a capability to collect accurate, frequent, and time-correlated measurements. Since the measurements occur after the AC power supply, this approach eliminates power supply efficiency and time-domain filtering perturbations of the power measurements. PowerMon 2 provides detail about the power consumption of the hardware subsystems connected to each of its eight measurement channles. The device fits in an internal 3.5 hard disk drive bay, thus allowing it to be used in a 1U server chassis. It cost less than $150 per unit to fabricate our small quantity of prototypes. 1

Daniel Bedard; Min Yeol Lim; Robert Fowler; Allan Porterfield

2009-01-01T23:59:59.000Z

403

Cloud Computing at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Computing Energy Efficient Computing Exascale Computing Performance & Monitoring Tools Petascale Initiative Science Gateway Development Storage and IO Technologies Testbeds...

404

A computer music instrumentarium  

E-Print Network (OSTI)

Chapter 6. COMPUTERS: To Solder or Not toMusic Models : A Computer Music Instrumentarium . . . . .Interactive Computer Systems . . . . . . . . . . . . . . 101

Oliver La Rosa, Jaime Eduardo

2011-01-01T23:59:59.000Z

405

Display computers  

E-Print Network (OSTI)

A Display Computer (DC) is an everyday object: Display Computer = Display + Computer. The ?Display? part is the standard viewing surface found on everyday objects that conveys information or art. The ?Computer? is found on the same everyday object; but by its ubiquitous nature, it will be relatively unnoticeable by the DC user, as it is manufactured ?in the margins?. A DC may be mobile, moving with us as part of the everyday object we are using. DCs will be ubiquitous: ?effectively invisible?, available at a glance, and seamlessly integrated into the environment. A DC should be an example of Weiser?s calm technology: encalming to the user, providing peripheral awareness without information overload. A DC should provide unremarkable computing in support of our daily routines in life. The nbaCub (nightly bedtime ambient Cues utility buddy) prototype illustrates a sample application of how DCs can be useful in the everyday environment of the home of the future. Embedding a computer into a toy, such that the display is the only visible portion, can present many opportunities for seamless and nontraditional uses of computing technology for our youngest user community. A field study was conducted in the home environment of a five-year old child over ten consecutive weeks as an informal, proof of concept of what Display Computers for children can look like and be used for in the near future. The personalized nbaCub provided lightweight, ambient information during the necessary daily routines of preparing for bed (evening routine) and preparing to go to school (morning routine). To further understand the child?s progress towards learning abstract concepts of time passage and routines, a novel ?test by design? activity was included. Here, the role of the subject changed to primary designer/director. Final post-testing showed the subject knew both morning and bedtime routines very well and correctly answered seven of eight questions based on abstract images of time passage. Thus, the subject was in the process of learning the more abstract concept of time passage, but was not totally comfortable with the idea at the end of the study.

Smith, Lisa Min-yi Chen

406

CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES  

SciTech Connect

This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

WITTEKIND WD

2007-10-03T23:59:59.000Z

407

Environmentally Acceptable Transformer Fluids: An Update  

Science Conference Proceedings (OSTI)

This report offers information about the physical, dielectric, chemical, and environmental properties of transformer fluids and their operational impacts. Companies can use this information to choose environmentally acceptable green fluids.

2010-07-14T23:59:59.000Z

408

Fluid sampling system for a nuclear reactor  

DOE Patents (OSTI)

A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

Lau, L.K.; Alper, N.I.

1994-11-22T23:59:59.000Z

409

High Performance Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Science, Computing, Applied Math High Performance Computing High Performance Computing Providing world-class high performance computing capability that enables...

410

NEWTON's Computer Science Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Science Videos Do you have a great computer science video? Please click our Ideas page. Featured Videos: Computer Science Videos from Purdue Computer Science Videos from...

411

Static spherically symmetric perfect fluid solutions in $f(R)$ theories of gravity  

E-Print Network (OSTI)

Static spherically symmetric perfect fluid solutions are studied in metric $f(R)$ theories of gravity. We show that pressure and density do not uniquely determine $f(R)$ ie. given a matter distribution and an equation state, one cannot determine the functional form of $f(R)$. However, we also show that matching the outside Schwarzschild-de Sitter-metric to the metric inside the mass distribution leads to additional constraints that severely limit the allowed fluid configurations.

T. Multamaki; I. Vilja

2006-12-29T23:59:59.000Z

412

Fluid Metrology Calibration Services - Water Flow  

Science Conference Proceedings (OSTI)

Fluid Metrology Calibration Services - Water Flow. Water Flow Calibrations 18020C. ... NIST provides calibration services for water flow meters. ...

2011-10-03T23:59:59.000Z

413

Attrition Resistant Catalyst Materials for Fluid Bed ...  

Biomass and Biofuels Attrition Resistant Catalyst Materials for Fluid Bed Applications National Renewable Energy Laboratory. Contact NREL About This ...

414

Graphene Compositions And Drilling Fluids Derived Therefrom ...  

Drilling fluids comprising graphenes and nanoplatelet additives and methods for production thereof are disclosed. Graphene includes graphite oxide, graphene oxide ...

415

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network (OSTI)

drilling activity completely ceased. Of these, 65 bores account for about 95 percent of the total fluid

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

416

Helium measurements of pore-fluids obtained from SAFOD drillcore  

E-Print Network (OSTI)

ionized water (DI) as drilling fluid. This procedure avoidsbeen contaminated with drilling fluids during recovery ofscheduled drilling phases to enable fluid-only sampling.

Ali, S.

2010-01-01T23:59:59.000Z

417

Institute of Computer Science Computational experience with ...  

E-Print Network (OSTI)

Institute of Computer Science. Academy of Sciences of the Czech Republic. Computational experience with modified. conjugate gradient methods for.

418

Wavelet Turbulence for Fluid Simulation Theodore Kim  

E-Print Network (OSTI)

in the running time. We instead propose an algorithm that generates small-scale fluid de- tail procedurally. We of the key results of Kolmogorov the- ory is that the energy spectrum of a turbulent fluid approaches a five spectra [Perrier et al. 1995], and the sub- stitution is common in fluid dynamics [Farge et al. 1996

California at Santa Barbara, University of

419

Two Fluid Shear-Free Composites  

E-Print Network (OSTI)

Shear-free composite fluids are constructed from two Letelier rotated unaligned perfect fluids. The component fluid parameters necessary to construct a shear-free composite are investigated. A metric in the Stephani-Barnes solution family and a simple stationary metric are discussed.

J. P. Krisch; E. N. Glass

2013-07-03T23:59:59.000Z

420

ComputationalComputational ScienceScience  

E-Print Network (OSTI)

ComputationalComputational ScienceScience KenKen HawickHawick k.a.k.a.hawickhawick@massey.ac.nz@massey.ac.nz Massey UniversityMassey University #12;Computational Science / eScienceComputational Science / eScience Computational Science concerns the application of computer science to physics, mathematics, chemistry, biology

Hawick, Ken

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Fall 2011 ME 542 Advanced Fluid Mechanics ENG ME 542 Advanced Fluid Mechanics  

E-Print Network (OSTI)

Fall 2011 ME 542 Advanced Fluid Mechanics ENG ME 542 Advanced Fluid Mechanics Instructor: M. S. Howe EMA 218 mshowe@bu.edu This course is intended to consolidate your knowledge of fluid mechanics specialized courses on fluid mechanics, acoustics and aeroacoustics. Outline syllabus: Equations of motion

422

Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry  

Science Conference Proceedings (OSTI)

The densities of pore-confined fluids were measured for the first time by means of a vibrating tube method. Isotherms of total adsorption capacity were measured directly making the method complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess). A custom-made high-pressure, high-temperature vibrating tube densimeter (VTD) was used to measure the densities of subcritical and supercritical propane (between 35 C and 97 C) and supercritical carbon dioxide (between 32 C and 50 C) saturating hydrophobic silica aerogel (0.2 g/cm3, 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, excess adsorption isotherms for supercritical CO2 and the same porous solid were measured gravimetrically using a precise magnetically-coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum at a subcritical density of the bulk fluid, and then decreased towards zero or negative values at supercritical densities. Compression of the confined fluid significantly beyond the density of the bulk liquid at the same temperature was observed at subcritical temperatures. The features of the isotherms of confined fluid density are interpreted to elucidate the observed behavior of excess adsorption. The maxima of excess adsorption were found to occur below the critical density of the bulk fluid at the conditions corresponding to the beginning of the plateau of total adsorption, marking the end of the transition of pore fluid to a denser, liquid-like pore phase. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. No measurable effect of pore confinement on the liquid-vapor critical point was found. Quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Vibrating tube densimetry was demonstrated as a novel experimental approach capable of providing the average density of pore-confined fluids.

Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Rother, Gernot [ORNL; Wesolowski, David J [ORNL; Cole, David R [ORNL; Wallacher, Dirk [Helmholtz-Zentrum Berlin

2012-01-01T23:59:59.000Z

423

RATIO COMPUTER  

DOE Patents (OSTI)

An electronic computer circuit is described for producing an output voltage proportional to the product or quotient of tbe voltages of a pair of input signals. ln essence, the disclosed invention provides a computer having two channels adapted to receive separate input signals and each having amplifiers with like fixed amplification factors and like negatlve feedback amplifiers. One of the channels receives a constant signal for comparison purposes, whereby a difference signal is produced to control the amplification factors of the variable feedback amplifiers. The output of the other channel is thereby proportional to the product or quotient of input signals depending upon the relation of input to fixed signals in the first mentioned channel.

Post, R.F.

1958-11-11T23:59:59.000Z

424

High Performance Computing  

Science Conference Proceedings (OSTI)

High Performance Computing. Summary: High Performance Computing (HPC) enables work on challenging problems that ...

2012-03-05T23:59:59.000Z

425

Fluid Inclusion Analysis | Open Energy Information  

Open Energy Info (EERE)

Fluid Inclusion Analysis Fluid Inclusion Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Fluid Inclusion Analysis Details Activities (20) Areas (11) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Fluid composition at a point in time and space Thermal: The minimum temperature of fluid inclusion formation Cost Information Low-End Estimate (USD): 17.571,757 centUSD 0.0176 kUSD 1.757e-5 MUSD 1.757e-8 TUSD / sample Median Estimate (USD): 17.571,757 centUSD 0.0176 kUSD 1.757e-5 MUSD 1.757e-8 TUSD / sample High-End Estimate (USD): 26.782,678 centUSD

426

COMPUTER SCIENCE EECS Department  

E-Print Network (OSTI)

COMPUTER SCIENCE EECS Department The Electrical Engineering and Computer Science (EECS) Department at WSU offers undergraduate degrees in electrical engineering, computer engineering and computer science. The EECS Department offers master of science degrees in computer science, electrical engineering

427

Computer Science UNDERGRADUATE  

E-Print Network (OSTI)

447 Computer Science UNDERGRADUATE PROGRAMS The Department of Computer Science provides undergraduate instruction leading to the bachelor's degree in computer science. This program in computer science is accredited by the Computer Science Accreditation Board (CSAB), a specialized accrediting body recognized

Suzuki, Masatsugu

428

COMPUTER ENGINEERING EECS Department  

E-Print Network (OSTI)

COMPUTER ENGINEERING EECS Department The Electrical Engineering and Computer Science (EECS) Department at WSU offers undergraduate degrees in electrical engineering, computer engineering and computer science. The EECS Department offers Master of Science degrees in computer science, electrical engineering

429

Duality and Recycling Computing in Quantum Computers  

E-Print Network (OSTI)

Quantum computer possesses quantum parallelism and offers great computing power over classical computer \\cite{er1,er2}. As is well-know, a moving quantum object passing through a double-slit exhibits particle wave duality. A quantum computer is static and lacks this duality property. The recently proposed duality computer has exploited this particle wave duality property, and it may offer additional computing power \\cite{r1}. Simply put it, a duality computer is a moving quantum computer passing through a double-slit. A duality computer offers the capability to perform separate operations on the sub-waves coming out of the different slits, in the so-called duality parallelism. Here we show that an $n$-dubit duality computer can be modeled by an $(n+1)$-qubit quantum computer. In a duality mode, computing operations are not necessarily unitary. A $n$-qubit quantum computer can be used as an $n$-bit reversible classical computer and is energy efficient. Our result further enables a $(n+1)$-qubit quantum computer to run classical algorithms in a $O(2^n)$-bit classical computer. The duality mode provides a natural link between classical computing and quantum computing. Here we also propose a recycling computing mode in which a quantum computer will continue to compute until the result is obtained. These two modes provide new tool for algorithm design. A search algorithm for the unsorted database search problem is designed.

Gui Lu Long; Yang Liu

2007-08-15T23:59:59.000Z

430

NREL: Computational Science - Donald Nelson  

NLE Websites -- All DOE Office Websites (Extended Search)

Donald Nelson Donald Nelson Contractor Phone: (303) 275-4157 Email: Donald.Nelson@nrel.gov Donald Nelson is a visualization rendering engineer contractor working with the Computational Science Center. His research has focused primarily on algorithms for interaction with dynamical systems including fluid flow, partial differential equations, finite element mechanics for biological tissues and medical devices, and optimization of minimal strain energy in mechanical and biological systems. Upon completion of his Ph.D., he worked for 6 years at Immersion Medical in scientific visualization, computer aided design, and interactive mechanical systems. He joined Electronic Arts to work on interactive, parallel rendering algorithms in 2006. In 2009 he joined SAIC to work on statistical

431

Immersible solar heater for fluids  

DOE Patents (OSTI)

An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

Kronberg, James W. (Aiken, SC)

1995-01-01T23:59:59.000Z

432

Non-invasive fluid density and viscosity measurement  

SciTech Connect

The noninvasively measurement of the density and viscosity of static or flowing fluids in a section of pipe such that the pipe performs as the sensing apparatus, is described. Measurement of a suitable structural vibration resonance frequency of the pipe and the width of this resonance permits the density and viscosity to be determined, respectively. The viscosity may also be measured by monitoring the decay in time of a vibration resonance in the pipe.

Sinha, Dipen N. (Los Alamos, NM)

2012-05-01T23:59:59.000Z

433

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents (OSTI)

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

Fincke, J.R.

1982-05-04T23:59:59.000Z

434

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents (OSTI)

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

Fincke, James R. (Rigby, ID)

1982-01-01T23:59:59.000Z

435

Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) |  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2004 Usefulness useful DOE-funding Unknown Exploration Basis To determine effectiveness of FIS for geothermal exploration Notes In order to test FIS for geothermal exploration, drill chips were analyzed from Coso well 83-16, which were selected at 1000 ft intervals by Joseph Moore. Sequential crushes done by our CFS (crushfast-scan) method (Norman 1996) show that chips have a high density of homogeneous fluid inclusions.

436

COMPUTABLE CATEGORICITY VERSUS RELATIVE COMPUTABLE CATEGORICITY  

E-Print Network (OSTI)

COMPUTABLE CATEGORICITY VERSUS RELATIVE COMPUTABLE CATEGORICITY RODNEY G. DOWNEY, ASHER M. KACH, STEFFEN LEMPP, AND DANIEL D. TURETSKY Abstract. We study the notion of computable categoricity of computable structures, comparing it especially to the notion of relative computable cate- goricity and its

437

Selection and Evaluation of a new Pu Density Measurement Fluid  

Science Conference Proceedings (OSTI)

This paper summarizes efforts leading to selection of a new fluid for the determination of the density of large Pu parts. Based on an extended literature search, perfluorotributylamine (FC-43) was chosen for an experimental study. Plutonium coupon corrosion studies were performed by exposing Pu to deaerated and aerated solutions and measuring corrosion gravimetrically. Corrosion rates were determined. Samples of deaerated and aerated perfuluorotributylamine (FC-43) were also irradiated with {sup 60}Co gamma rays (96 Gy/min) to various doses. The samples were extracted with NaOH and analyzed by IC and showed the presence of F and Cl{sup -}. The G-values were established. In surface study experiments Pu coupons were exposed to deaerated and aerated solutions of FC-43 and analyzed by X-ray photoelectron spectroscopy (XPS). The XPS data indicate that there is no detectable surface effect caused by the new fluid. In conclusion the FC-43 was determined to be a very effective and practical fluid for Pu density measurements.

Dziewinska, Krystyna [Los Alamos National Laboratory; Peters, Michael A [Los Alamos National Laboratory; Martinez, Patrick P [Los Alamos National Laboratory; Dziewinski, Jacek J [Los Alamos National Laboratory; Pugmire, David L [Los Alamos National Laboratory; Trujillo, Stephen M [Los Alamos National Laboratory; La Verne, Jake A [UNIV OF NOTRE DAME; Rajesh, P [UNIV OF NOTRE DAME

2009-01-01T23:59:59.000Z

438

Apparatus for unloading pressurized fluid  

DOE Patents (OSTI)

An apparatus is described for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device. 2 figures.

Rehberger, K.M.

1994-01-04T23:59:59.000Z

439

Modeling and optimization of geothermal power plants using the binary fluid cycle  

SciTech Connect

A computer simulation of a binary fluid cycle power plant for use with geothermal energy sources, and the subsequent optimization of this power plant type over a range of geothermal source conditions are described. The optimization technique employed for this analysis was based upon the principle of maximum use of geothermal energy.

Walter, R.A.

1976-09-01T23:59:59.000Z

440

Donna Calhoun Laboratoire d'Etudes des Transferts et de Mechanique des Fluides  

E-Print Network (OSTI)

. · "Simulating potential hydrogen explosions in nuclear reactor containment buildings", SIAM Com- putational Peak Over-pressures in explosions in nuclear reactor con- tainment facilities", SIAM Numerical Saclay, France. Division of Nuclear Energy. Research engineer in computational fluids and mechanics group

Calhoun, Donna

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in Gas Turbines  

E-Print Network (OSTI)

Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in Gas Turbines the EL method well suited for gas turbine computations, but RANS with the EE approach may also be found and coupled with the LES solver of the gas phase. The equations used for each phase and the coupling terms

442

Controlled jump Markov processes with local transitions and their fluid approximation  

Science Conference Proceedings (OSTI)

Stochastic jump processes, especially birth-and-death processes, are widely used in the queuing theory, computer networks and information transmission. The state of such process describes the instant length of the queues (numbers of packets at different ... Keywords: C-rule, birth-and-death process, continuous time Markov chain, dynamic programming, fluid model, inventory, optimal control, queuing system

Alexey Piunovskiy

2009-08-01T23:59:59.000Z

443

Quantum computers: Definition and implementations  

Science Conference Proceedings (OSTI)

The DiVincenzo criteria for implementing a quantum computer have been seminal in focusing both experimental and theoretical research in quantum-information processing. These criteria were formulated specifically for the circuit model of quantum computing. However, several new models for quantum computing (paradigms) have been proposed that do not seem to fit the criteria well. Therefore, the question is what are the general criteria for implementing quantum computers. To this end, a formal operational definition of a quantum computer is introduced. It is then shown that, according to this definition, a device is a quantum computer if it obeys the following criteria: Any quantum computer must consist of a quantum memory, with an additional structure that (1) facilitates a controlled quantum evolution of the quantum memory; (2) includes a method for information theoretic cooling of the memory; and (3) provides a readout mechanism for subsets of the quantum memory. The criteria are met when the device is scalable and operates fault tolerantly. We discuss various existing quantum computing paradigms and how they fit within this framework. Finally, we present a decision tree for selecting an avenue toward building a quantum computer. This is intended to help experimentalists determine the most natural paradigm given a particular physical implementation.

Perez-Delgado, Carlos A.; Kok, Pieter [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH (United Kingdom)

2011-01-15T23:59:59.000Z

444

Controlling the fluid-fluid mixing-demixing phase transition with electric fields  

E-Print Network (OSTI)

We review recent theoretical advances on controlling the fluid-fluid phase transition with electric fields. Using a mean-field approach, we compare the effects of uniform versus non-uniform electric fields, and show how non-uniform fields are better at altering the phase diagram. Focusing on non-uniform fields, we then discuss the behavior of the fluid concentration profile and the parameters (temperature, fluid concentration, etc.) that control the location of the fluid-fluid interface from both equilibrium and dynamic perspectives.

Jennifer Galanis; Sela Samin; Yoav Tsori

2012-12-06T23:59:59.000Z

445

CX-000954: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-000954: Categorical Exclusion Determination Building 94 Computational Science Computer Room 103 Renovation - Phase II CX(s) Applied: B1.29, B1.31 Date: 03012010...

446

Modeling and Simulation of Pore Scale Multiphase Fluid Flow and Reactive Transport in Fractured and Porous Media  

Science Conference Proceedings (OSTI)

In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity at the contact line has been used to simulate multiphase fluid flow in fracture apertures, fracture networks and pore spaces. Fundamental conservation principles - conservation of momentum, and conservation of mass (or conservation of volume for incompressible fluids) and conservation of energy, as well as symmetries (Galilean invariance and isotropy) are central to the physics of fluids and the models used to simulate them. In molecular and mesoscale models observance of these conservation principles and symmetries at the microscopic level leads to macroscopic fluid dynamics that can be represented by the Navier Stokes equation. The remarkable fact that the flow of all simpe fluids, irrespective of their chemical nature, can be described by the Navier-Stokes equation is a result of these conservation principles and symmetries acting on the molecular level.

Paul Meakin; Alexandre Tartakovsky

2009-07-01T23:59:59.000Z

447

Valve for controlling flow of cryogenic fluid  

DOE Patents (OSTI)

A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.

Knapp, P.A.

1995-12-31T23:59:59.000Z

448

Kubo formulas for relativistic fluids in strong magnetic fields  

SciTech Connect

Magnetohydrodynamics of strongly magnetized relativistic fluids is derived in the ideal and dissipative cases, taking into account the breaking of spatial symmetries by a quantizing magnetic field. A complete set of transport coefficients, consistent with the Curie and Onsager principles, is derived for thermal conduction, as well as shear and bulk viscosities. It is shown that in the most general case the dissipative function contains five shear viscosities, two bulk viscosities, and three thermal conductivity coefficients. We use Zubarev's non-equilibrium statistical operator method to relate these transport coefficients to correlation functions of the equilibrium theory. The desired relations emerge at linear order in the expansion of the non-equilibrium statistical operator with respect to the gradients of relevant statistical parameters (temperature, chemical potential, and velocity.) The transport coefficients are cast in a form that can be conveniently computed using equilibrium (imaginary-time) infrared Green's functions defined with respect to the equilibrium statistical operator. - Highlights: > Strong magnetic fields can make charged fluids behave anisotropically. > Magnetohydrodynamics for these fluids contains 5 shear, 2 bulk viscosities, and 3 heat conductivities. > We derive Kubo formulas for these transport coefficients.

Huang Xuguang, E-mail: xhuang@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, J. W. Goethe-Universitaet, D-60438 Frankfurt am Main (Germany); Sedrakian, Armen [Institute for Theoretical Physics, J. W. Goethe-Universitaet, D-60438 Frankfurt am Main (Germany); Rischke, Dirk H. [Institute for Theoretical Physics, J. W. Goethe-Universitaet, D-60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main (Germany)

2011-12-15T23:59:59.000Z

449

Computer/Controller 1588  

Science Conference Proceedings (OSTI)

... Computer/Controller? What is a computer or controller? ... Computer/controllers in a system supporting IEEE 1588 will typically include a 1588 clock. ...

2010-10-29T23:59:59.000Z

450

Computer Forensics In Forensis  

E-Print Network (OSTI)

U.N. In Proceedings of CMAD IV: Computer Misuse and Anomaly4] J. P. Anderson. Computer Security Threat Monitoring andof the Fifth Annual Computer Security Applications

Peisert, Sean; Bishop, Matt; Marzullo, Keith

2008-01-01T23:59:59.000Z

451

Fermilab | Science at Fermilab | Computing | Grid Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

of Fermilab's Computing Division looked ahead to experiments like those at the Large Hadron Collider, which would collect more data than any computing center in existence could...

452

Computational biology and high performance computing  

E-Print Network (OSTI)

Paper in Computational Biology The First Step Beyond theM . Glaeser, Mol. & Cell Biology, UCB and Life SciencesLBNL-44460 Computational Biology and High Performance

Shoichet, Brian

2011-01-01T23:59:59.000Z

453

Breaking the Tension: Development and Investigation of a Centrifugal Tensioned Metastable Fluid Detector System  

E-Print Network (OSTI)

The current knowledge of the performance characteristics of Centrifugal Tensioned Metastable Fluid Detectors is limited. While a theoretical treatment and experience with bubble chambers may be applied with some degree of success, they are no substitute for experimental and operational knowledge of real CTMFD systems. This research, as with other investigations into CTMFD systems in the past, applies theory and simulations. In addition, however, an experiment was conducted that for the first time attempts to determine the threshold energy for triggering a CTMFD system in a controlled manner. A CTMFD system works in a manner similar to classic bubble chambers. A liquid is brought to an unstable state in which it is favorable to form a volume of vapor; using centrifugal techniques similar to those employed in a Briggs apparatus, the pressure in the sensitive region can be brought to extremely low values, placing the liquid in a tensile state. In such states, the energy necessary to cause the formation of macroscopic bubbles can be vanishingly small, depending on the degree of tension. When such bubbles form in a CTMFD, if they have a size bigger than a critical value, they will grow until a large vapor column forms in the sensitive region of the CTMFD. The experiment developed for this research employed a carefully-controlled laser to fire pulses of known energies into the sensitive region of a CTMFD. By varying the laser power, the threshold values for the triggering energy of a CTMFD can be found. The experiment and simulation demonstrated the ability of the facilities to test CTMFD systems and the potential to extract their operational characteristics. The experiment showed a certain viability for the technique of laser-induced cavitation in a seeded fluid, and demonstrated some of the associated limitations as well. In addition, the CFD framework developed here can be used to cross-compare experimental results with computer simulations as well as with the theoretical models developed for this research.

Solom, Matthew 1985-

2012-12-01T23:59:59.000Z

454

Computation of air flows and motion of environmental pollutants over complex geographical topographies  

Science Conference Proceedings (OSTI)

Importance and applicability of numerical flow analysis to environmental science are outlined. Fluid phenomena in the ocean, rivers, atmosphere and the ground are investigated by means of numerical methods and in turn proposals for the control, restoration ... Keywords: 35Q30, 37M05, 65M06, 65M50, 65M55, 76D05, 76Z99, 92-08, Advective diffusion process, Computational fluid dynamics, Ecological system, Environmental disrupter, Environmental fluid, Numerical map, Numerical simulation, Three dimensional visualization

T. Arima; Y. Matsuura; S. Oharu

2007-07-01T23:59:59.000Z

455

Relativistic Dynamics of Non-ideal Fluids: Viscous and heat-conducting fluids II. Transport properties and microscopic description of relativistic nuclear matter  

E-Print Network (OSTI)

In the causal theory of relativistic dissipative fluid dynamics, there are conditions on the equation of state and other thermodynamic properties such as the second-order coefficients of a fluid that need to be satisfied to guarantee that the fluid perturbations propagate causally and obey hyperbolic equations. The second-order coefficients in the causal theory, which are the relaxation times for the dissipative degrees of freedom and coupling constants between different forms of dissipation (relaxation lengths), are presented for partonic and hadronic systems. These coefficients involves relativistic thermodynamic integrals. The integrals are presented for general case and also for different regimes in the temperature--chemical potential plane. It is shown that for a given equation of state these second-order coefficients are not additional parameters but they are determined by the equation of state. We also present the prescription on the calculation of the freeze-out particle spectra from the dynamics of relativistic non-ideal fluids.

Azwinndini Muronga

2006-11-25T23:59:59.000Z

456

Universal Fluid Droplet Ejector - Energy Innovation Portal  

... deposition and cell-sorting applications Description A fluid ejector capable of producing micron sized droplets on demand is ... 5,943,075 (USA) ...

457

Definition: Fluid Inclusion Analysis | Open Energy Information  

Open Energy Info (EERE)

or liquid) and occasionally mineral crystals, that are considered to represent the chemical and physical properties of a hydrothermal fluid at a single point in time and...

458

Theory and Modeling of Fluids Group Homepage  

Science Conference Proceedings (OSTI)

... Modeling of Fluids Group is working in consort with the University of Colorado and the Division's Cryogenics Group on a DARPA funded project to ...

2013-07-23T23:59:59.000Z

459

Universal fluid droplet ejector - Energy Innovation Portal  

A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap ...

460

Fluid Submersible Sensing Device - Energy Innovation Portal  

The present invention relates to a fluid submersible sensing device and, more particularly, to such a device having sensing structure provided within ...

Note: This page contains sample records for the topic "determination computational fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Non-invasive Ultrasonic Fluid Processing Technology ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Non-invasive Ultrasonic Fluid Processing Technology. Battelle Number(s): ...