Sample records for determination bench scale

  1. Bench-Scale Fermentation Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This fact sheet provides information about Bench-Scale Fermentation Laboratory capabilities and applications at NREL's National Bioenergy Center.

  2. BENCH SCALE SALTSTONE PROCESS DEVELOPMENT MIXING STUDY

    SciTech Connect (OSTI)

    Cozzi, A.; Hansen, E.

    2011-08-03T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) was requested to develop a bench scale test facility, using a mixer, transfer pump, and transfer line to determine the impact of conveying the grout through the transfer lines to the vault on grout properties. Bench scale testing focused on the effect the transfer line has on the rheological property of the grout as it was processed through the transfer line. Rheological and other physical properties of grout samples were obtained prior to and after pumping through a transfer line. The Bench Scale Mixing Rig (BSMR) consisted of two mixing tanks, grout feed tank, transfer pump and transfer hose. The mixing tanks were used to batch the grout which was then transferred into the grout feed tank. The contents of the feed tank were then pumped through the transfer line (hose) using a progressive cavity pump. The grout flow rate and pump discharge pressure were monitored. Four sampling stations were located along the length of the transfer line at the 5, 105 and 205 feet past the transfer pump and at 305 feet, the discharge of the hose. Scaling between the full scale piping at Saltstone to bench scale testing at SRNL was performed by maintaining the same shear rate and total shear at the wall of the transfer line. The results of scaling down resulted in a shorter transfer line, a lower average velocity, the same transfer time and similar pressure drops. The condition of flow in the bench scale transfer line is laminar. The flow in the full scale pipe is in the transition region, but is more laminar than turbulent. The resulting plug in laminar flow in the bench scale results in a region of no-mixing. Hence mixing, or shearing, at the bench scale should be less than that observed in the full scale, where this plug is non existent due to the turbulent flow. The bench scale tests should be considered to be conservative due to the highly laminar condition of flow that exists. Two BSMR runs were performed. In both cases, wall shearing was shown to reduce the rheological properties of the grout as it was processed through the transfer line. Samples taken at the static feed tank showed that gelling impacted the rheological properties of the grout before it was fed into the pump and transfer line. A comparison of the rheological properties of samples taken at the feed tank and transfer line discharge indicated shearing of the grout was occurring in the transfer line. Bench scale testing of different mixing methods with three different salt solutions showed that method of mixing influences the rheological properties of the grouts. The paddle blade mixing method of the salt solution used for the BMSR testing provided comparable rheological properties of the grout prepared in the BMSR after 14 minutes of processing, B3. The paddle blade mixing method can be used to represent BMSR results and mixing time can be adjusted to represent larger scale mixing.

  3. bench scale dev | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing Coal(tm): An Integrated ApproachSelectiveBench-Scale

  4. Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

    SciTech Connect (OSTI)

    Gary Blythe; John Currie; David DeBerry

    2008-03-31T23:59:59.000Z

    This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling efforts.

  5. Quenching and stabilization of MIS retorts: Bench-scale experiments

    SciTech Connect (OSTI)

    Barbour, F.A.; Boysen, J.E.

    1991-04-01T23:59:59.000Z

    This research was conducted to evaluate in situ retort stabilization methods. The objective of the bench-scale simulations was to evaluate possible post-retorting operations procedures for the optimum cleaning of spent retorts. After simulating conditions of modified in situ (MIS) retorts at the time retorting had ended, procedures to accelerate retort cleanup without using large volumes of water were investigated. Samples from various levels of the retort were used to determine the amount of water-soluble constituents in the spent shale and the rehydration characteristics of the spent shale. The organic material that remained after retorting was most effectively removed from the retort by the use of reverse combustion. The removal of the organic material in this manner cracked the oil on the unretorted shale and removed heat from the bottom of the retort. Both were then transported toward the top of the retort. Unretorted kerogen was coked as it emerged from the shale near the reverse-combustion front. The reverse-combustion technique had an additional benefit in that the carbon deposited on the spent shale in the combusted zone appeared to provide a barrier to rehydration of the shale on introduction of water into the retorts. A hot quench immediately following retorting was also relatively effective in removing organic material from the retort. However, the quench did leave some organic material on the unretorted shale. This material was not readily removed by water leaching during laboratory testing. A deluge of water on a cool retort did not efficiently remove the organic material from the unretorted shale nor did the addition of a biodegradable detergent.

  6. Goethite Bench-scale and Large-scale Preparation Tests

    SciTech Connect (OSTI)

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23T23:59:59.000Z

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous ion, Fe{sup 2+}-Fe{sup 2+} is oxidized to Fe{sup 3+} - in the presence of goethite seed particles. Rhenium does not mimic that process; it is not a strong enough reducing agent to duplicate the TcO{sub 4}{sup -}/Fe{sup 2+} redox reactions. Laboratory tests conducted in parallel with these scaled tests identified modifications to the liquid chemistry necessary to reduce ReO{sub 4}{sup -} and capture rhenium in the solids at levels similar to those achieved by Um (2010) for inclusion of Tc into goethite. By implementing these changes, Re was incorporated into Fe-rich solids for testing at VSL. The changes also changed the phase of iron that was in the slurry product: rather than forming goethite ({alpha}-FeOOH), the process produced magnetite (Fe{sub 3}O{sub 4}). Magnetite was considered by Pacific Northwest National Laboratory (PNNL) and VSL to probably be a better product to improve Re retention in the melter because it decomposes at a higher temperature than goethite (1538 C vs. 136 C). The feasibility tests at VSL were conducted using Re-rich magnetite. The tests did not indicate an improved retention of Re in the glass during vitrification, but they did indicate an improved melting rate (+60%), which could have significant impact on HLW processing. It is still to be shown whether the Re is a solid solution in the magnetite as {sup 99}Tc was determined to be in goethite.

  7. Bench-scale development of mild gasification char desulfurization. Technical report, 1 March--31 May 1994

    SciTech Connect (OSTI)

    Knight, R.A. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-09-01T23:59:59.000Z

    The goal of this project is to scale up a process, developed under a previous ICCI grant, for desulfurization of mild gasification char by treatment with hydrogen-rich process-derived fuel gas at 650--760 C and 7--15 atm. The char can be converted into a low-sulfur metallurgical form coke. In the prior study, IBC-105 coal with 4.0 wt% sulfur was converted to chars with less than 1.0 wt% sulfur in a laboratory-scale batch reactor. The susceptibility of the char to desulfurization was correlated with physicochemical char properties and mild gasification conditions. Acid pretreatment of the coal prior to mild gasification was also shown to significantly enhance subsequent sulfur removal. In this study, IGT is conducting continuous bench-scale tests in a 1-lb/h fluidized-bed reactor to determine the preferred process conditions and obtain steady-state data necessary for process design and scale-up. The desulfurized chars are to be used to produce low-sulfur form coke, which will be evaluated for density, reactivity, and strength properties relevant to utilization in blast furnaces. This quarter, 2,500 g of mild gasification char was produced from untreated IBC-105 coal in the bench-scale reactor. Half of this char will be subjected to sulfuric acid treatment to enhance subsequent desulfurization. Char-producing runs were also initiated with acid-pretreated coal, which will produce about 1,250 g of char.

  8. Bench-scale simulation of quenching and stabilization of MIS retorts

    SciTech Connect (OSTI)

    Barbour, F.A. [Western Research Inst., Laramie, WY (United States); Boysen, J.E. [Resource Technology Corp., Inc., Laramie, WY (United States)

    1992-06-01T23:59:59.000Z

    This research was conducted to evaluate in situ retort stabilization methods. The objective of the bench-scale simulations was to evaluate possible post-retorting operating procedures for the optimum cleaning of spent retorts. After simulating conditions of modified in situ (MIS) retorts at the time retorting had ended, procedures to accelerate retort cleanup without using large volumes of water were investigated. Samples from various levels of the retort were used to determine the amount of water-soluble constituents in the spent shale and the rehydration characteristics of the spent shale.

  9. Bench-scale simulation of quenching and stabilization of MIS retorts

    SciTech Connect (OSTI)

    Barbour, F.A. (Western Research Inst., Laramie, WY (United States)); Boysen, J.E. (Resource Technology Corp., Inc., Laramie, WY (United States))

    1992-01-01T23:59:59.000Z

    This research was conducted to evaluate in situ retort stabilization methods. The objective of the bench-scale simulations was to evaluate possible post-retorting operating procedures for the optimum cleaning of spent retorts. After simulating conditions of modified in situ (MIS) retorts at the time retorting had ended, procedures to accelerate retort cleanup without using large volumes of water were investigated. Samples from various levels of the retort were used to determine the amount of water-soluble constituents in the spent shale and the rehydration characteristics of the spent shale.

  10. Bench-scale co-processing economic assessment. Final report

    SciTech Connect (OSTI)

    Gala, H.B.; Marker, T.L.; Miller, E.N.

    1994-11-01T23:59:59.000Z

    The UOP Co-Processing scheme is a single-stage slurry catalyzed process in which petroleum vacuum resid and coal are simultaneously upgraded to a high-quality synthetic oil. A highly active dispersed catalyst has been developed which enables the operation of the co-processing unit at relatively moderate and high temperatures and relatively high pressure. Under the current contract, a multi-year research program was undertaken to study the technical and economic feasibility of this technology. All the contractual tasks were completed. Autoclave experiments were carried out to evaluate dispersed vanadium catalysts, molybdenum catalysts, and a less costly UOP-proprietary catalyst preparation technique. Autoclave experiments were also carried out in support of the continuous pilot plant unit operation and to study the effects of the process variables (pressure, temperature, and metal loading on the catalyst). A total of 24 continuous pilot plant runs were made. Research and development efforts during the pilot plant operations were concentrated on addressing the cost effectiveness of the UOP single-stage slurry catalyzed co-processing concept based on UOP experience gained in the previous DOE contract. To this end, effect of catalyst metal concentration was studied and a highly-active Mo-based catalyst was developed. This catalyst enabled successful long-term operation (924 hours) of the continuous bench-scale plant at highly severe operating conditions of 3,000 psig, 465{degree}C temperature, and 2:1 resid-to-MAF (moisture- and ash-free) coal ratio with 0.1 wt % active metal. The metal loading of the catalyst was low enough to consider the catalyst as a disposable slurry catalyst. Also, liquid recycle was incorporated in the pilot plant design to increase the, reactor back mixing and to increase the flow of liquid through the reactor (to introduce turbulence in the reactor) and to represent the design of a commercial-scale reactor.

  11. Design of a bench-scale apparatus for processing carbon black derived from scrap tires

    E-Print Network [OSTI]

    Woodrow, Philip Travis

    1996-01-01T23:59:59.000Z

    The focus of this work is to design a bench-scale apparatus, for laboratory applications, that will perform solid processing operations for carbon black obtained through the thermal catalytic depolymerization of scrap tires. These operations...

  12. Design of Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect (OSTI)

    Wood, Benjamin

    2012-06-30T23:59:59.000Z

    The major goal of the project is to design and optimize a bench-scale process for novel silicone CO{sub 2}-capture solvents and establish scalability and potential for commercialization of post-combustion capture of CO{sub 2} from coal-fired power plants. This system should be capable of 90% capture efficiency and demonstrate that less than 35% increase in the cost of energy services can be achieved upon scale-up. Experiments were conducted to obtain data required for design of the major unit operations. The bench-scale system design has been completed, including sizing of major unit operations and the development of a detailed Process and Instrument Diagram (P&ID). The system has been designed to be able to operate over a wide range of process conditions so that the effect of various process variables on performance can be determined. To facilitate flexibility in operation, the absorption column has been designed in a modular manner, so that the height of the column can be varied. The desorber has also been designed to allow for a range of residence times, temperatures, and pressures. The system will be fabricated at Techniserv Inc.

  13. LiveBench-2: Large-Scale Automated Evaluation of Protein Structure Prediction Servers

    E-Print Network [OSTI]

    Fischer, Daniel

    LiveBench-2: Large-Scale Automated Evaluation of Protein Structure Prediction Servers Janusz M from other evaluation experiments because it is a large-scale and a fully automated procedure. Since, to keep in pace with the development, we present the results of the second large-scale evaluation of pro

  14. Steam Reforming, 6-in. Bench-Scale Design and Testing Project -- Technical and Functional Requirements Description

    SciTech Connect (OSTI)

    Losinski, Sylvester John; Marshall, Douglas William

    2002-08-01T23:59:59.000Z

    Feasibility studies and technology development work are currently being performed on several processes to treat radioactive liquids and solids currently stored at the Idaho Nuclear Technology and Engineering Center (INTEC), located within the Idaho National Engineering and Environmental Laboratory (INEEL). These studies and development work will be used to select a treatment process for treatment of the radioactive liquids and solids to meet treatment milestones of the Settlement Agreement between the Department of Energy and the State of Idaho. One process under consideration for treating the radioactive liquids and solids, specifically Sodium-Bearing Waste (SBW) and tank heel solids, is fluid bed steam reforming (FBSR). To support both feasibility and development studies a bench-scale FBSR is being designed and constructed. This report presents the technical and functional requirements, experimental objectives, process flow sheets, and equipment specifications for the bench-scale FBSR.

  15. Boiling behavior of sodium-potassium alloy in a bench-scale solar receiver

    SciTech Connect (OSTI)

    Moreno, J.B.; Andraka, C.E.; Moss, T.A.

    1992-01-01T23:59:59.000Z

    During 1989-90, a 75-kW{sub t} sodium reflux pool-boiler solar receiver was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver include (1) boiling sodium as the heat transfer medium and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Since this first demonstration, design of a second-generation pool-boiler receiver that will bring the concept closer to commercialization has begun. For long life, the new receiver uses Haynes Alloy 230. For increased safety factors against film boiling and flooding, it has a refined shape and somewhat larger dimensions. To eliminate the need for trace heating, the receiver will boil the sodium-potassium alloy NaK-78 instead of sodium. To reduce manufacturing costs, it will use one of a number of alternatives to EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it will contain a small amount of inert gas. Before the new receiver design could be finalized, bench-scale tests of some of the proposed changes were necessary. A series of bench-scale pool boilers were built from Haynes Alloy 230 and filled with NaK-78. Various boiling-stabilizer candidates were incorporated into them, including laser-drilled cavities and a number of different sintered-powder-metal coatings. These bench-scale pool boilers have been operated at temperatures up to 750{degree}C, heated by quartz lamps with incident radiant fluxes up to 95 W/cm{sup 2}. The effects of various orientations and added gases have been studied. results of these studies are presented. 15 refs.

  16. Bench-scale testing of fluidized-bed sorbents -- ZT-4

    SciTech Connect (OSTI)

    Gangwal, S.K.; Gupta, R.P.

    1995-12-01T23:59:59.000Z

    The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc oxide-based mixed metal-oxide sorbents for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluidized-bed reactor. Specific objectives of this study are the following: {sm_bullet} Investigating various manufacturing methods to produce fluidizable zinc ferrite and zinc titanate sorbents in a particle size range of 50 to 400 {mu}m; Characterizating and screening the formulations for chemical reactivity, attrition resistance, and structural properties; Testing selected formulations in an HTHP bench-scale fluidized-bed reactor to obtain an unbiased ranking of the promising sorbents; Investigating the effect of various process variables, such as temperature, nature of coal gas, gas velocity, and chemical composition of the sorbent, on the performance of the sorbent; Life-cycle testing of the superior zinc ferrite and zinc titanate formulations under HTHP conditions to determine their long-term chemical reactivity and mechanical strength; Addressing various reactor design issues; Generating a database on sorbent properties and performance (e.g., rates of reaction, attrition rate) to be used in the design and scaleup of future commercial hot-gas desulfurization systems; Transferring sorbent manufacturing technology to the private sector; Producing large batches (in tonnage quantities) of the sorbent to demonstrate commercial feasibility of the preparation method; and Coordinate testing of superior formulations in pilot plants with real and/or simulated coal gas.

  17. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect (OSTI)

    Wood, Benjamin; Genovese, Sarah; Perry, Robert; Spiry, Irina; Farnum, Rachael; Sing, Surinder; Wilson, Paul; Buckley, Paul; Acharya, Harish; Chen, Wei; McDermott, John; Vipperia, Ravikumar; Yee, Michael; Steele, Ray; Fresia, Megan; Vogt, Kirk

    2013-12-31T23:59:59.000Z

    A bench-scale system was designed and built to test an aminosilicone-based solvent. A model was built of the bench-scale system and this model was scaled up to model the performance of a carbon capture unit, using aminosilicones, for CO{sub 2} capture and sequestration (CCS) for a pulverized coal (PC) boiler at 550 MW. System and economic analysis for the carbon capture unit demonstrates that the aminosilicone solvent has significant advantages relative to a monoethanol amine (MEA)-based system. The CCS energy penalty for MEA is 35.9% and the energy penalty for aminosilicone solvent is 30.4% using a steam temperature of 395 °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the energy penalty for the aminosilicone solvent is reduced to 29%. The increase in cost of electricity (COE) over the non-capture case for MEA is ~109% and increase in COE for aminosilicone solvent is ~98 to 103% depending on the solvent cost at a steam temperature of 395 °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the increase in COE for the aminosilicone solvent is reduced to ~95-100%.

  18. BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE

    SciTech Connect (OSTI)

    Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

    2008-09-25T23:59:59.000Z

    Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The radioactive Tank 48H DMR product was primarily made up of soluble carbonates. The three most abundant species were thermonatrite, [Na{sub 2}CO{sub 3} {center_dot} H{sub 2}O], sodium carbonate, [Na{sub 2}CO{sub 3}], and trona, [Na{sub 3}H(CO{sub 3}){sub 2} {center_dot} 2H{sub 2}O] the same as the ESTD FBSR. (6) Insoluble solids analyzed by X-Ray Diffraction (XRD) did not detect insoluble carbonate species. However, they still may be present at levels below 2 wt%, the sensitivity of the XRD methodology. Insoluble solids XRD characterization indicated that various Fe/Ni/Cr/Mn phases are present. These crystalline phases are associated with the insoluble sludge components of Tank 48H slurry and impurities in the Erwin coal ash. The percent insoluble solids, which mainly consist of un-burnt coal and coal ash, in the products were 4 to 11 wt% for the radioactive runs. (7) The Fe{sup +2}/Fe{sub total} REDOX measurements ranged from 0.58 to 1 for the three radioactive Bench-scale tests. REDOX measurements > 0.5 showed a reducing atmosphere was maintained in the DMR indicating that pyrolysis was occurring. (8) Greater than 90% of the radioactivity was captured in the product for all three runs. (9) The collective results from the FBSR simulant tests and the BSR simulant tests indicate that the same chemistry occurs in the two reactors. (10) The collective results from the BSR simulant runs and the BSR radioactive waste runs indicates that the same chemistry occurs in the simulant as in the real waste. The FBSR technology has been proven to destroy the organics and nitrates in the Tank 48H waste and form the anticipated solid carbonate phases as expected.

  19. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect (OSTI)

    Fresia, Megan; Vogt, Kirk

    2013-12-31T23:59:59.000Z

    GE Global Research is developing technology to remove carbon dioxide (CO{sub 2}) from the flue gas of coal-fired power plants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO{sub 2} capture solvent. GE Global Research was contracted by the Department of Energy to test a bench-scale continuous CO{sub 2} absorption/desorption system using a GAP-1m/TEG mixture as the solvent. SiVance LLC was sub-contracted to provide the GAP-1m material and conduct an Environmental, Health, and Safety (EH&S) assessment for a 550 MW coal-fired power plant. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP-1m/SOX salt, and dodecylbenzenesulfonic acid (DDBSA) were also identified for analysis. All of the solvent components and DDBSA are listed on the EPA’s TSCA Inventory allowing companies to manufacture and use the chemicals commercially. The toxicological effects of each component were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. An engineering and control system, including environmental abatement, was described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

  20. Multicomponent aerosol dynamic of the Pb-O[sub 2] system in a bench scale flame incinerator

    SciTech Connect (OSTI)

    Lin, W.Y.; Sethi, V.; Biswas, P.

    1992-01-01T23:59:59.000Z

    The article gives results of a study to understand the formation and growth of lead particles in a flame incinerator. A bench scale flame incinerator was used to perform controlled experiments with lead acetate as a test compound. A dilution probe (in conjunction with real-time aerosol instruments) was used to measure the evolution of the particle size distribution at different locations in the flame region. A multicomponent lognormal aerosol model was developed accounting for the chemistry of the lead-oxygen system, and for such aerosol dynamic phenomena as nucleation, coagulation, and condensation. Reasonable agreement was obtained between the predictions of the model using appropriate kinetic parameters and the experimental results.

  1. Thermochemical water-splitting cycle, bench-scale investigations and process engineering. Annual report, October 1, 1978-September 30, 1979

    SciTech Connect (OSTI)

    Caprioglio, G.; McCorkle, K.H.; Besenbruch, G.E.; Rode, J.S.

    1980-03-01T23:59:59.000Z

    A program to investigate thermochemical water splitting has been under way at General Atomic Company (GA) since October 1972. This document is an annual progress report of Department of Energy (DOE) sponsored process development work on the GA sulfur-iodine thermochemical water splitting cycle. The work consisted of laboratory bench-scale investigations, demonstration of the process in a closed-loop cycle demonstrator, and process engineering design studies. A bench-scale system, consisting of three subunits, has been designed to study the cycle under continuous flow conditions. The designs of subunit I, which models the main solution reaction and product separation, and subunit II, which models the concentration and decomposition of sulfuric acid, were presented in an earlier annual report. The design of subunit III, which models the purification and decomposition of hydrogen iodide, is given in this report. Progress on the installation and operation of subunits I and II is described. A closed-loop cycle demonstrator was installed and operated based on a DOE request. Operation of the GA sulfur-iodine cycle was demonstrated in this system under recycle conditions. The process engineering addresses the flowsheet design of a large-scale production process consisting of four chemical sections (I through IV) and one helium heat supply section (V). The completed designs for sections I through V are presented. The thermal efficiency of the process calculated from the present flowsheet is 47%.

  2. WASTE SOLIDIFICATION BUILDING BENCH SCALE HIGH ACTIVITY WASTE SIMULANT VARIABILITY STUDY FY2008

    SciTech Connect (OSTI)

    Hansen, E; Timothy Jones, T; Tommy Edwards, T; Alex Cozzi, A

    2009-03-20T23:59:59.000Z

    The primary objective of this task was to perform a variability study of the high activity waste (HAW) acidic feed to determine the impact of feed variability on the quality of the final grout and on the mixability of the salt solution into the dry powders. The HAW acidic feeds were processed through the neutralization/pH process, targeting a final pH of 12. These fluids were then blended with the dry materials to make the final waste forms. A secondary objective was to determine if elemental substitution for cost prohibitive or toxic elements in the simulant affects the mixing response, thus providing a more economical simulant for use in full scale tests. Though not an objective, the HAW simulant used in the full scale tests was also tested and compared to the results from this task. A statistically designed test matrix was developed based on the maximum molarity inputs used to make the acidic solutions. The maximum molarity inputs were: 7.39 HNO{sub 3}, 0.11618 gallium, 0.5423 silver, and 1.1032 'other' metals based on their NO{sub 3}{sup -} contribution. Substitution of the elements aluminum for gallium and copper for silver was also considered in this test matrix, resulting in a total of 40 tests. During the NaOH addition, the neutralization/pH adjustment process was controlled to a maximum temperature of 60 C. The neutralized/pH adjusted simulants were blended with Portland cement and zircon flour at a water to cement mass ratio of 0.30. The mass ratio of zircon flour to Portland cement was 1/12. The grout was made using a Hobart N-50 mixer running at low speed for two minutes to incorporate and properly wet the dry solids with liquid and at medium speed for five minutes for mixing. The resulting fresh grout was measured for three consecutive yield stress measurements. The cured grout was measured for set, bleed, and density. Given the conditions of preparing the grout in this task, all of the grouts were visually well mixed prior to preparing the grouts for measurements. All of the cured grouts were measured for bleed and set. All of the cured grouts satisfied the bleed and set requirements, where no bleed water was observed on any of the grout samples after one day and all had set within 3 days of curing. This data indicates, for a well mixed product, bleed and set requirement are satisfied for the range of acidic feeds tested in this task. The yield stress measurements provide both an indication on the mixability of the salt solution with dry materials and an indication of how quickly the grout is starting to form structure. The inability to properly mix these two streams into a well mixed grout product will lead to a non-homogeneous mixture that will impact product quality. Product quality issues could be unmixed regions of dry material and hot spots having high concentrations of americium 241. Mixes that were more difficult to incorporate typically resulted in grouts with higher yield stresses. The mixability from these tests will provide Waste Solidification Building (WSB) an indication of which grouts will be more challenging to mix. The first yield stress measurements were statistically compared to a list of variables, specifically the batched chemicals used to make the acidic solutions. The first yield stress was also compared to the physical properties of the acidic solutions, physical and pH properties of the neutralized/pH adjusted solutions, and chemical and physical properties of the grout.

  3. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    SciTech Connect (OSTI)

    Adu-Wusu, K; Paul Burket, P

    2009-03-31T23:59:59.000Z

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions.

  4. Thermochemical water-splitting cycle, bench-scale investigations, and process engineering. Final report, February 1977-December 31, 1981

    SciTech Connect (OSTI)

    Norman, J.H.; Besenbruch, G.E.; Brown, L.C.; O'Keefe, D.R.; Allen, C.L.

    1982-05-01T23:59:59.000Z

    The sulfur-iodine water-splitting cycle is characterized by the following three reactions: 2H/sub 2/O + SO/sub 2/ + I/sub 2/ ..-->.. H/sub 2/SO/sub 4/ + 2HI; H/sub 2/SO/sub 4/ ..-->.. H/sub 2/O + SO/sub 2/ + 1/2 O/sub 2/; and 2HI ..-->.. H/sub 2/ + I/sub 2/. This cycle was developed at General Atomic after several critical features in the above reactions were discovered. These involved phase separations, catalytic reactions, etc. Estimates of the energy efficiency of this economically reasonable advanced state-of-the-art processing unit produced sufficiently high values (to approx.47%) to warrant cycle development effort. The DOE contract was largely directed toward the engineering development of this cycle, including a small demonstration unit (CLCD), a bench-scale unit, engineering design, and costing. The work has resulted in a design that is projected to produce H/sub 2/ at prices not yet generally competitive with fossil-fuel-produced H/sub 2/ but are projected to be favorably competitive with respect to H/sub 2/ from fossil fuels in the future.

  5. EFRT M-12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results

    SciTech Connect (OSTI)

    Rapko, Brian M.; Schonewill, Philip P.; Brown, Christopher F.; Eslinger, Paul W.; Fountain, Matthew S.; Hausmann, Tom S.; Huckaby, James L.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

    2010-01-01T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

  6. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier

    SciTech Connect (OSTI)

    Lippert, T.E.; Bachovchin, D.M.; Smeltzer, E.E.; Meyer, J.H.; Vidt, E.J.

    1989-09-01T23:59:59.000Z

    The ceramic cross-flow filter (CXF) system is a promising method to be used in advanced coal based power systems for high temperature, high pressure (HTHP) particle removal. Using a subpilot scale pressurized fluid-bed combustor (PFBC) at Argonne National Laboratory and various PFBC simulators, prior projects have indicated that CXF systems can be used in oxidizing environments at PFBC conditions. To extend the use of CXF systems, this project completed an economic analysis comparing the cost of various oxygen and air blown gasification systems with the CXF system incorporated, initiated the scaleup of the CXF element from development to commercial size, predicted the characteristics of gasifier dust cake, evaluated cleaning pulse characteristics in a large multielement simulation, upgraded pulse cleaning mathematical model, and completed additional testing of the CXF elements under gasification (reducing) and PFBC conditions. Coors Ceramic Company and GTE Products Corporation were integrally involved in this program through the development and fabrication of the CXF elements. 39 figs., 23 tabs.

  7. Bench-Scale Synthetic Optimization of 1,2-bis(2-aminophenylthio)ethane (APO-Link) Used in the Production of APO-BMI Resin

    SciTech Connect (OSTI)

    Hilary Wheeler; Crystal Densmore

    2007-07-31T23:59:59.000Z

    The diamine reagent 1,2-bis(2-aminophenylthio)ethane is no longer commercially available but still required for the synthesis of the bismaleimide resin, APO-BMI, used in syntactic foams. In this work, we examined the hydrolysis of benzothiazole followed the by reaction with dichloroethane or dibromoethane. We also studied the deprotonation of 2-aminothiophenol followed by the reaction with dibromoethane. We optimized the latter for scale-up by scrutinizing all aspects of the reaction conditions, work-up and recrystallization. On bench-scale, our optimized procedure consistently produced a 75-80% overall yield of finely divided, high purity product (>95%).

  8. Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies and PDU scale-up with sub-bituminous coal. Final report

    SciTech Connect (OSTI)

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.T.; Stalzer, R.H.; Smith, T.O.

    1993-03-01T23:59:59.000Z

    Reported are the details and results of Laboratory and Bench-Scale experiments using sub-bituminous coal conducted at Hydrocarbon Research, Inc., under DOE Contract No. DE-AC22-88PC88818 during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with testing of the baseline Catalytic Two-Stage Liquefaction (CTSL{trademark}) process with comparisons with other two stage process configurations, catalyst evaluations and unit operations such as solid separation, pretreatments, on-line hydrotreating, and an examination of new concepts. In the overall program, three coals were evaluated, bituminous Illinois No. 6, Burning Star and sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The runs (experiments) concern process variables, variable reactor volumes, catalysts (both supported, dispersed and rejuvenated), coal cleaned by agglomeration, hot slurry treatments, reactor sequence, on-line hydrotreating, dispersed catalyst with pretreatment reactors and CO{sub 2}/coal effects. The tests involving the Wyoming and New Mexico Coals are reported herein, and the tests involving the Illinois coal are described in Topical Report No. 2. On a laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects were conducted and reported in Topical Report No. 3. Other microautoclave tests are described in the Bench Run sections to which they refer such as: rejuvenated catalyst, coker liquids and cleaned coals. The microautoclave tests conducted for modelling the CTSL{trademark} process are described in the CTSL{trademark} Modelling section of Topical Report No. 3 under this contract.

  9. Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping for Post-Combustion CO{sub 2} Capture

    SciTech Connect (OSTI)

    Lu, Yongqi; DeVries, Nicholas; Ruhter, David; Manoranjan, Sahu; Ye, Qing; Ye, Xinhuai; Zhang, Shihan; Chen, Scott; Li, Zhiwei; O'Brien, Kevin

    2014-03-31T23:59:59.000Z

    A novel Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping (Hot-CAP) has been developed by the University of Illinois at Urbana-Champaign and Carbon Capture Scientific, LLC in this three-year, bench-scale project. The Hot-CAP features a concentrated carbonate solution (e.g., K{sub 2}CO{sub 3}) for CO{sub 2} absorption and a bicarbonate slurry (e.g., KHCO{sub 3}) for high-pressure CO{sub 2} stripping to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy use and cost competitiveness over MEA. To meet project goals and objectives, a combination of experimental, modeling, process simulation, and economic analysis studies were applied. Carefully designed and intensive experiments were conducted to measure thermodynamic and reaction engineering data relevant to four major unit operations in the Hot-CAP (i.e., CO{sub 2} absorption, CO{sub 2} stripping, bicarbonate crystallization, and sulfate reclamation). The rate promoters that could accelerate the CO{sub 2} absorption rate into the potassium carbonate/bicarbonate (PCB) solution to a level greater than that into the 5 M MEA solution were identified, and the superior performance of CO{sub 2} absorption into PCB was demonstrated in a bench-scale packed-bed column. Kinetic data on bicarbonate crystallization were developed and applied for crystallizer design and sizing. Parametric testing of high-pressure CO{sub 2} stripping with concentrated bicarbonate-dominant slurries at high temperatures ({>=}140{degrees}C) in a bench-scale stripping column demonstrated lower heat use than with MEA. The feasibility of a modified process for combining SO{sub 2} removal with CO{sub 2} capture was preliminarily demonstrated. In addition to the experimental studies, the technical challenges pertinent to fouling of slurry-handling equipment and the design of the crystallizer and stripper were addressed through consultation with vendors and engineering analyses. A process flow diagram of the Hot-CAP was then developed and a TEA was performed to compare the energy use and cost performance of a nominal 550-MWe subcritical pulverized coal (PC)-fired power plant without CO{sub 2} capture (DOE/NETL Case 9) with the benchmark MEA-based post-combustion CO{sub 2} capture (PCC; DOE/NETL Case 10) and the Hot-CAP-based PCC. The results revealed that the net power produced in the PC + Hot-CAP is 609 MWe, greater than the PC + MEA (550 MWe). The 20-year levelized cost of electricity (LCOE) for the PC + Hot-CAP, including CO{sub 2} transportation and storage, is 120.3 mills/kWh, a 60% increase over the base PC plant without CO{sub 2} capture. The LCOE increase for the Hot-CAP is 29% lower than that for MEA. TEA results demonstrated that the Hot-CAP is energy-efficient and cost-effective compared with the benchmark MEA process.

  10. Bench- and Pilot-Scale Studies of Reaction and Regeneration of Ni-Mg-K/Al2O3 for Catalytic Conditioning of Biomass-Derived Syngas

    SciTech Connect (OSTI)

    Magrini-Bair, K. A.; Jablonski, W. S.; Parent, Y. O.; Yung, M. M.

    2012-05-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) is collaborating with both industrial and academic partners to develop technologies to help enable commercialization of biofuels produced from lignocellulosic biomass feedstocks. The focus of this paper is to report how various operating processes, utilized in-house and by collaborators, influence the catalytic activity during conditioning of biomass-derived syngas. Efficient cleaning and conditioning of biomass-derived syngas for use in fuel synthesis continues to be a significant technical barrier to commercialization. Multifunctional, fluidizable catalysts are being developed to reform undesired tars and light hydrocarbons, especially methane, to additional syngas, which can improve utilization of biomass carbon. This approach also eliminates both the need for downstream methane reforming and the production of an aqueous waste stream from tar scrubbing. This work was conducted with NiMgK/Al{sub 2}O{sub 3} catalysts. These catalysts were assessed for methane reforming performance in (i) fixed-bed, bench-scale tests with model syngas simulating that produced by oak gasification, and in pilot-scale, (ii) fluidized tests with actual oak-derived syngas, and (iii) recirculating/regenerating tests using model syngas. Bench-scale tests showed that the catalyst could be completely regenerated over several reforming reaction cycles. Pilot-scale tests using raw syngas showed that the catalyst lost activity from cycle to cycle when it was regenerated, though it was shown that bench-scale regeneration by steam oxidation and H{sub 2} reduction did not cause this deactivation. Characterization by TPR indicates that the loss of a low temperature nickel oxide reduction feature is related to the catalyst deactivation, which is ascribed to nickel being incorporated into a spinel nickel aluminate that is not reduced with the given activation protocol. Results for 100 h time-on-stream using a recirculating/regenerating reactor suggest that this type of process could be employed to keep a high level of steady-state reforming activity, without permanent deactivation of the catalyst. Additionally, the differences in catalyst performance using a simulated and real, biomass-derived syngas stream indicate that there are components present in the real stream that are not adequately modeled in the syngas stream. Heavy tars and polycyclic aromatics are known to be present in real syngas, and the use of benzene and naphthalene as surrogates may be insufficient. In addition, some inorganics found in biomass, which become concentrated in the ash following biomass gasification, may be transported to the reforming reactor where they can interact with catalysts. Therefore, in order to gain more representative results for how a catalyst would perform on an industrially-relevant scale, with real contaminants, appropriate small-scale biomass solids feeders or slip-streams of real process gas should be employed.

  11. RF test bench automation Description

    E-Print Network [OSTI]

    Dobigeon, Nicolas

    RF test bench automation Description: Callisto would like to implement automated RF test bench. Three RF test benches have to be studied and automated: LNA noise temperature test bench LNA gain phase of the test benches and an implementation of the automation phase. Tasks: Noise temperature

  12. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101/102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    SciTech Connect (OSTI)

    DUNCAN JB; HUBER HJ

    2011-06-08T23:59:59.000Z

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-10-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FB SR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-S.2.1-20 1 0-00 1, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, 'Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using Hanford Waste Samples.'

  13. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101 & 241AZ-102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    SciTech Connect (OSTI)

    DUNCAN JB; HUBER HJ

    2011-04-21T23:59:59.000Z

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using Hanford Waste Samples.

  14. Radioactive Bench-scale Steam Reformer Demonstration of a Monolithic Steam Reformed Mineralized Waste Form for Hanford Waste Treatment Plant Secondary Waste - 12306

    SciTech Connect (OSTI)

    Evans, Brent; Olson, Arlin; Mason, J. Bradley; Ryan, Kevin [THOR Treatment Technologies, LLC - 106 Newberry St. SW, Aiken, SC 29801 (United States); Jantzen, Carol; Crawford, Charles [Savannah River Nuclear Solutions (SRNL), LLC, Aiken, SC 29808 (United States)

    2012-07-01T23:59:59.000Z

    Hanford currently has 212,000 m{sup 3} (56 million gallons) of highly radioactive mixed waste stored in the Hanford tank farm. This waste will be processed to produce both high-level and low-level activity fractions, both of which are to be vitrified. Supplemental treatment options have been under evaluation for treating portions of the low-activity waste, as well as the liquid secondary waste from the low-activity waste vitrification process. One technology under consideration has been the THOR{sup R} fluidized bed steam reforming process offered by THOR Treatment Technologies, LLC (TTT). As a follow-on effort to TTT's 2008 pilot plant FBSR non-radioactive demonstration for treating low-activity waste and waste treatment plant secondary waste, TTT, in conjunction with Savannah River National Laboratory, has completed a bench scale evaluation of this same technology on a chemically adjusted radioactive surrogate of Hanford's waste treatment plant secondary waste stream. This test generated a granular product that was subsequently formed into monoliths, using a geo-polymer as the binding agent, that were subjected to compressibility testing, the Product Consistency Test and other leachability tests, and chemical composition analyses. This testing has demonstrated that the mineralized waste form, produced by co-processing waste with kaolin clay using the TTT process, is as durable as low-activity waste glass. Testing has shown the resulting monolith waste form is durable, leach resistant, and chemically stable, and has the added benefit of capturing and retaining the majority of Tc-99, I-129, and other target species at high levels. (authors)

  15. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I—Bench-scale microcosm study to assess methylmercury production

    SciTech Connect (OSTI)

    Randall, Paul M., E-mail: randall.paul@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Fimmen, Ryan [Geosyntec Consultants, 150 E. Wilson Bridge Road, Suite 232, Worthington, OH 43085 (United States)] [Geosyntec Consultants, 150 E. Wilson Bridge Road, Suite 232, Worthington, OH 43085 (United States); Lal, Vivek; Darlington, Ramona [Battelle, 505 King Ave., Columbus, OH 43201 (United States)] [Battelle, 505 King Ave., Columbus, OH 43201 (United States)

    2013-08-15T23:59:59.000Z

    Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absence of an aqueous inorganic Hg spike, and the presence/absence of inoculums of Desulfovibrio desulfuricans, a strain of sulfate-reducing bacteria (SRB) commonly found in the natural sediments of aquatic environments. Incubations were analyzed for both the rate and extent of (methylmercury) MeHg production. Methylation rates were estimated by analyzing MeHg and Hg after 2, 7, 14, 28, and 42 days. The production of metabolic byproducts, including dissolved gases as a proxy for metabolic utilization of carbon substrate, was also monitored. In all treatments amended with lactate, sulfate, Hg, and SRB, MeHg was produced (37 ng/g-sediment dry weight) after only 48 h of incubation and reached a maximum sediment concentration of 127 ng/g-sediment dry weight after the 42 day incubation period. Aqueous phase production of MeHg was observed to be 10 ng/L after 2 day, reaching a maximum observed concentration of 32.8 ng/L after 14 days, and declining to 10.8 ng/L at the end of the incubation period (42 day). The results of this study further demonstrates that, in the presence of an organic carbon substrate, sulfate, and the appropriate consortia of microorganisms, sedimentary Hg will be transformed into MeHg through bacterial metabolism. Further, this study provided the basis for evaluation of an in-situ subaqueous capping strategy that may limit (or potentially enhance) MeHg production. -- Highlights: • Hg methylation by SRB is limited by the depletion of sulfate and carbon. • Hg methylation is sensitive to competition by methanogens for carbon substrate. • In high lactate environment, all lactate was utilized in the microcosms within seven days. • In the absence of adequate metabolic fuel, MeHg levels decreased on the time scale of days to weeks. • Capping materials should sequester MeHg produced and not contribute to the production of MeHg.

  16. CX-004177: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Waste Treatment Plant Secondary Waste Radioactive Bench-Scale Steam Reformer (Module A) CX(s) Applied: B3.6 Date: 09232010 Location(s): Aiken, South...

  17. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture. Manufacturing Plan for Aminosilicone-based CO{sub 2} Absorption Material

    SciTech Connect (OSTI)

    Vogt, Kirkland

    2013-02-01T23:59:59.000Z

    A commercially cost effective manufacturing plan was developed for GAP-1m, the aminosilicone-based part of the CO{sub 2} capture solvent described in DE-FE0007502, and the small-scale synthesis of GAP-1m was confirmed. The plan utilizes a current intermediate at SiVance LLC to supply the 2013-2015 needs for GE Global Research. Material from this process was supplied to GE Global Research for evaluation and creation of specifications. GE Global Research has since ordered larger quantities (60 liters) for the larger scale evaluations that start in first quarter, 2013. For GE’s much larger future commercial needs, an improved, more economical pathway to make the product was developed after significant laboratory and literature research. Suppliers were identified for all raw materials.

  18. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect (OSTI)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02T23:59:59.000Z

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  19. Generalized Test Plan for the Vitrification of Simulated High-Level -Waste Calcine in the Idaho National Laboratory‘s Bench -Scale Cold Crucible Induction Melter

    SciTech Connect (OSTI)

    Vince Maio

    2011-08-01T23:59:59.000Z

    This Preliminary Idaho National Laboratory (INL) Test Plan outlines the chronological steps required to initially evaluate the validity of vitrifying INL surrogate (cold) High-Level-Waste (HLW) solid particulate calcine in INL's Cold Crucible Induction Melter (CCIM). Its documentation and publication satisfies interim milestone WP-413-INL-01 of the DOE-EM (via the Office of River Protection) sponsored work package, WP 4.1.3, entitled 'Improved Vitrification' The primary goal of the proposed CCIM testing is to initiate efforts to identify an efficient and effective back-up and risk adverse technology for treating the actual HLW calcine stored at the INL. The calcine's treatment must be completed by 2035 as dictated by a State of Idaho Consent Order. A final report on this surrogate/calcine test in the CCIM will be issued in May 2012-pending next fiscal year funding In particular the plan provides; (1) distinct test objectives, (2) a description of the purpose and scope of planned university contracted pre-screening tests required to optimize the CCIM glass/surrogate calcine formulation, (3) a listing of necessary CCIM equipment modifications and corresponding work control document changes necessary to feed a solid particulate to the CCIM, (4) a description of the class of calcine that will be represented by the surrogate, and (5) a tentative tabulation of the anticipated CCIM testing conditions, testing parameters, sampling requirements and analytical tests. Key FY -11 milestones associated with this CCIM testing effort are also provided. The CCIM test run is scheduled to be conducted in February of 2012 and will involve testing with a surrogate HLW calcine representative of only 13% of the 4,000 m3 of 'hot' calcine residing in 6 INL Bin Sets. The remaining classes of calcine will have to be eventually tested in the CCIM if an operational scale CCIM is to be a feasible option for the actual INL HLW calcine. This remaining calcine's make-up is HLW containing relatively high concentrations of zirconium and aluminum, representative of the cladding material of the reprocessed fuel that generated the calcine. A separate study to define the CCIM testing needs of these other calcine classifications in currently being prepared under a separate work package (WP-0) and will be provided as a milestone report at the end of this fiscal year.

  20. Bench Scale Project - Final Report - 063014

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR SEPARATION BYAbrasionAuthorDepartment of

  1. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT0 ACRF

  2. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT0 ACRF8

  3. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT0 ACRF89

  4. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT0 ACRF892

  5. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT0 ACRF8922

  6. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT0

  7. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT0 ACRF

  8. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT0 ACRF0

  9. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT0 ACRF01

  10. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT0 ACRF012

  11. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT0 ACRF0122

  12. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT0

  13. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT04 ACRF

  14. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT04 ACRF5

  15. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT04 ACRF56

  16. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT04 ACRF567

  17. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT04

  18. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT049 ACRF

  19. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT049 ACRF6

  20. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT049 ACRF67

  1. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT049

  2. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT0498

  3. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT04981

  4. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT049811

  5. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT0498110 A

  6. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT0498110 A7

  7. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT0498110

  8. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT04981104

  9. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior ofDESERT04981104

  10. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor41BeforeAllen HPC5 Science

  11. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor41BeforeAllen HPC5

  12. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor41BeforeAllen HPC51 ISDAC

  13. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor41BeforeAllen HPC51 ISDAC2

  14. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor41BeforeAllen HPC51 ISDAC24

  15. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor41BeforeAllen HPC51 ISDAC246

  16. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor41BeforeAllen HPC51 ISDAC2462

  17. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor41BeforeAllen HPC51

  18. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor41BeforeAllen HPC512 Cloud

  19. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor41BeforeAllen HPC512 Cloud2

  20. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor41BeforeAllen HPC512 Cloud23

  1. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor41BeforeAllen HPC512 Cloud234

  2. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historian ...BESFor41BeforeAllen HPC512

  3. Bench terracing in the Kerinci uplands of Sumatra, Indonesia

    E-Print Network [OSTI]

    Belsky, Jill M.

    Bench terracing in the Kerinci uplands of Sumatra, Indonesia ABSTRACF: Bench terracing's effect farmers views and use of bench terraces were evaluated in the Kerinci uplands of Sumatra , Indonesia

  4. MediaBench II Jason Fritts

    E-Print Network [OSTI]

    Fritts, Jason

    recognition Security MD5, IDEA, DES, RSA Graphics Rendering, Lighting, Shading #12;Applications MPEG-2: video industry for computer architecture and compiler research Why a Consortium? Facilitate continual updates of MediaBench, enabling MediaBench to better characterize multimedia and communications industry Ensure

  5. Durability of Diesel Particulate Filters - Bench Studies on Cordierite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Filters - Bench Studies on Cordierite Filters Durability of Diesel Particulate Filters - Bench Studies on Cordierite Filters Presentation given at DEER 2006, August...

  6. Trace contaminant determination in fish scale by laser ablation technique

    SciTech Connect (OSTI)

    Lee, I.; Coutant, C.C.; Arakawa, E.T.

    1993-06-01T23:59:59.000Z

    Laser ablation on rings of fish scale has been used to analyze the historical accumulation of polychlorinated biphenyls (PCB) in striped bass in the Watts Bar Reservoir. Rings on a fish scale grow in a pattern that forms a record of the fish`s chemical intake. In conjunction with the migration patterns of fish monitored by ecologists, relative PCB concentrations in the seasonal rings of fish scale can be used to study the PCB distribution in the reservoir. In this study, a tightly-focused laser beam from a XeCl excimer laser was used to ablate and ionize a small portion of a fish scale placed in a vacuum chamber. The ions were identified and quantified by a time-of-flight mass spectrometer. Studies of this type can provide valuable information for the Department of Energy`s (DOE) off-site clean-up efforts as well as identifying the impacts of other sources to local aquatic populations.

  7. Determination of petroleum pipe scale solubility in simulated lung fluid 

    E-Print Network [OSTI]

    Cezeaux, Jason Roderick

    2005-08-29T23:59:59.000Z

    method known as rattling. The rattling process generates dust. This research investigated the chemical composition of that aerosol and measured the solubility of pipe scale from three oilfield formations. Using standard in-vitro dissolution...

  8. How Well Can We Really Determine the Scale of Inflation?

    E-Print Network [OSTI]

    Ogan Özsoy; Kuver Sinha; Scott Watson

    2014-11-13T23:59:59.000Z

    A detection of primordial B-modes has been heralded not only as a smoking gun for the existence of inflation, but also as a way to establish the scale at which inflation took place. In this paper we critically reinvestigate the connection between a detection of primordial gravity waves and the scale of inflation. We consider whether the presence of additional fields and non-adiabaticity during inflation may have provided an additional source of primordial B-modes competitive with those of the quasi-de Sitter vacuum. In particular, we examine whether the additional sources could provide the dominant signal, which could lead to a misinterpretation of the scale of inflation. In light of constraints on the level of non-Gaussianity coming from Planck we find that only hidden sectors with strictly gravitationally strength couplings provide a feasible mechanism. The required model building is somewhat elaborate, and so we discuss possible UV completions in the context of Type IIB orientifold compactifications with RR axions. We find that an embedding is possible and that dangerous sinusoidal corrections can be suppressed through the compactification geometry. Our main result is that even when additional sources of primordial gravity waves are competitive with the inflaton, a positive B-mode detection would still be a relatively good indicator of the scale of inflation. This conclusion will be strengthened by future constraints on both non-Gaussianity and CMB polarization.

  9. Determining Identifiable Parameterizations for Large-scale Physical Models in

    E-Print Network [OSTI]

    Van den Hof, Paul

    /Novem (Dutch Government). ISAPP (Integrated Systems Approach to Petroleum Production) is a joint project as applied in the field of petroleum reservoir engineering. Starting from a large-scale, physics-based model models in petroleum reservoir engineering. Petroleum reservoir engineering is concerned with maximizing

  10. HEU Holdup Measurements in the 321-M Draw Bench, Straightener, and Fluoroscope Components

    SciTech Connect (OSTI)

    Dewberry, R.A.

    2001-07-10T23:59:59.000Z

    The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facilities Disposition Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. This report covers holdup measurements of uranium residue on the draw bench, straightener, and the fluoroscope components of the 321-M facility.

  11. Direct liquefaction proof-of-concept program: Final topical report, Bench Run 03 (227-93)

    SciTech Connect (OSTI)

    Comolli, A.G.; Pradhan, V.R.; Lee, T.L.K.; Karolkiewicz, W.F.; Popper, G.

    1996-12-01T23:59:59.000Z

    This report presents the results of bench-scale work, Bench Run PB-03, conducted under the DOE Proof of Concept--Bench Option Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. The Bench Run PB-03 was the third of the nine runs planned in the POC Bench Option Contract between the US DOE and Hydrocarbon Technologies, Inc. The Bench Run PB-03 had multiple goals. These included the evaluation of the effects of dispersed slurry catalyst loadings and types on the performance of two-stage direct coal liquefaction, the effect of HTI`s new iron catalyst, modified with phosphorus, and the evaluation of the effect of recycle solvent hydrotreatment on the overall process performance. PB-03 employed a close-coupled (no interstage separator) configuration of hydroconversion reactors. Other features of PB-03 included the use of an in-line fixed bed hydrotreater for the net product. No significant effects on process performance was found by changing the loadings of iron and molybdenum in the ranges of 1,000--5,000 ppm for iron and 50--100 ppm for molybdenum. However, the modification of HTI`s iron-based gel catalyst with 100 ppm of phosphorous improved the process performance significantly. A newly tested Mo-Carbon dispersed catalyst was not found to be any better than Molyvan-A, which was used during all but one condition of PB-03. Hydrotreatment of part of the recycle solvent was found to have a positive influence on the overall performance.

  12. Determination of petroleum pipe scale solubility in simulated lung fluid

    E-Print Network [OSTI]

    Cezeaux, Jason Roderick

    2005-08-29T23:59:59.000Z

    are ionized in the plasma. Figure 7. Schematic diagram of the RF coil used to produce an inductively coupled plasma. (Taylor 2001) After being focused by the ion lens, a charged metallic cylinder, the ions are separated by their mass... of ICP-MS for detection and quantification of 234U, 238U, 99Tc, 237Np, actinides, and fission products (Morrow 1998). In addition to these papers, numerous others indicate the viability of ICP-MS use in the determination of radionuclides, in which...

  13. Determination of the Jet Energy Scale at the Collider Detector at Fermilab

    E-Print Network [OSTI]

    A. Bhatti; F. Canelli; B. Heinemann; J. Adelman; D. Ambrose; J. -F. Arguin; A. Barbaro-Galtieri; H. Budd; Y. S. Chung; K. Chung; B. Cooper; C. Currat; M. D'Onofrio; T. Dorigo; R. Erbacher; R. Field; G. Flanagan; A. Gibson; K. Hatakeyama; F. Happacher; D. Hoffman; G. Introzzi; S. Kuhlmann; S. Kwang; S. Jun; G. Latino; A. Malkus; M. Mattson; A. Mehta; P. A. Movilla-Fernandez; L. Nodulman; M. Paulini; J. Proudfoot; F. Ptohos; S. Sabik; W. Sakumoto; P. Savard; M. Shochet; P. Sinervo; V. Tiwari; A. Wicklund; G. Yun

    2005-10-18T23:59:59.000Z

    A precise determination of the energy scale of jets at the Collider Detector at Fermilab at the Tevatron $p\\bar{p}$ collider is described. Jets are used in many analyses to estimate the energies of partons resulting from the underlying physics process. Several correction factors are developed to estimate the original parton energy from the observed jet energy in the calorimeter. The jet energy response is compared between data and Monte Carlo simulation for various physics processes, and systematic uncertainties on the jet energy scale are determined. For jets with transverse momenta above 50 GeV the jet energy scale is determined with a 3% systematic uncertainty.

  14. CX-010947: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Media Process and Technology bench-scale dual-stage membrane reactor utilizing real syngas. CX-010947.pdf More Documents & Publications CX-010948: Categorical Exclusion...

  15. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE (WTP-SW) BY FLUIDIZED BED STEAM REFORMING (FBSR) USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect (OSTI)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, G.; Jantzen, C.; Missimer, D.

    2014-08-21T23:59:59.000Z

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750°C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford’s WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing. The granular products (both simulant and radioactive) were tested and a subset of the granular material (both simulant and radioactive) were stabilized in a geopolymer matrix. Extensive testing and characterization of the granular and monolith material were made including the following: ? ASTM C1285 (Product Consistency Test) testing of granular and monolith; ? ASTM C1308 accelerated leach testing of the radioactive monolith; ? ASTM C192 compression testing of monoliths; and ? EPA Method 1311 Toxicity Characteristic Leaching Procedure (TCLP) testing. The significant findings of the testing completed on simulant and radioactive WTP-SW are given below: ? Data indicates {sup 99}Tc, Re, Cs, and I

  16. Bench-Top Engine System for Fast Screening of Alternative Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives A bench-top...

  17. MICROMACHINED FOURIER TRANSFORM SPECTROMETER ON SILICON OPTICAL BENCH PLATFORM

    E-Print Network [OSTI]

    Park, Namkyoo

    MICROMACHINED FOURIER TRANSFORM SPECTROMETER ON SILICON OPTICAL BENCH PLATFORM Kyoungsik Yu1 a miniaturized Fourier transform spectrometer implemented on a silicon optical bench platform. The optical-etching. A spectral resolution of 45 nm near 1550 nm wavelength is demonstrated. Keywords: Fourier transform

  18. Alternative Bench Standards: Sample Production Report

    SciTech Connect (OSTI)

    N. R. Mann; T. P. Houghton; M. G. Watrous; J. G. Eisenmenger; R. K. Hague

    2012-09-01T23:59:59.000Z

    The INL has prepared four standards representing krypton concentrations of 1.1X, 1.54X, 10X and 100X the reported atmospheric value of 70 dpm 85Kr per cubic centimeter of Kr gas at 25 degrees C (ie. 1.1X is 1.1 x 70, or 77 dpm 85Kr per cubic centimeter of Kr gas at 25 degrees C). A t-zero date and time of January 1, 2012 at 1200 Zulu was used for all standards. The Alternative Bench Standards (ABS) of 1.1X, 1.54X, 10X and 100X, are designated by titles of ABS-A, ABS-B, ABS C and ABS-D, respectively. The concentration of Kr in air is 1.14 ppm.

  19. Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries Dmitry Ruzmetov, all-solid-state Li ion batteries (LIBs) with high specific capacity and small footprint are highly, into the nanometer regime, can lead to rapid self-discharge of the battery even when the electrolyte layer

  20. The decline of the strong force Scaling violations and determination of s

    E-Print Network [OSTI]

    The decline of the strong force Scaling violations and determination of #11; s from jet production can be naively visualised as a rubber band stretched between them. As the rubber band is stretched, i; s . Thus, the rate for 1 #12; quark and gluon production is directly sensitive to the value of #11

  1. alpha(s) Determinations from Jets and Scaling Violations at HERA

    E-Print Network [OSTI]

    Thomas Kluge

    2006-10-13T23:59:59.000Z

    A review is given on recent alpha(s) determinations from the H1 and ZEUS Collaborations. These are based on measurements of jet cross sections, event shape variables, as well as on the observed scaling violation of the structure function F_2. A HERA average on alpha(s)(m_Z) is presented, in comparison with world mean values.

  2. Spatial and temporal scale issues in determining biomass burning regimes in Bolivia and Peru

    E-Print Network [OSTI]

    Spatial and temporal scale issues in determining biomass burning regimes in Bolivia and Peru A. V and Bolivia to analyse the spatial distribution of burning and its intra- and inter-annual variability Santa Cruz, Bolivia and in north-west Peru). Particular attention was paid to biomass burning in high

  3. Report on Recommendations for Lab and Bench-Scale Tasks

    E-Print Network [OSTI]

    residues (e.g., corncobs, coconut shells) accompany the production of bioethanol and biodiesel fuels

  4. The research bench meets industry: New facility scales up production...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    follow quality and environmental management certifications set by the International Organization for Standardization. In addition, with access to each lab controlled by card key...

  5. Bench Scale Integration Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergy Christopher Smith,Commerce |Committee |Imperial

  6. Design of test bench apparatus for piezoelectric energy harvesters

    E-Print Network [OSTI]

    Yoon, You C. (You Chang)

    2013-01-01T23:59:59.000Z

    This thesis presents the design and analysis of an experimental test bench for the characterization of piezoelectric microelectromechanical system (MEMS) energy harvester being developed by the Micro & Nano Systems Laboratory ...

  7. CX-010957: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bench Scale Development and Test of Aerogel Sorbent for Carbon Dioxide (CO2) Capture CX(s) Applied: B3.6 Date: 09/16/2013 Location(s): Colorado Offices(s): National Energy Technology Laboratory

  8. CX-010955: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bench Scale Development and Test of Aerogel Sorbent for Carbon Dioxide (CO2) Capture CX(s) Applied: B3.6 Date: 09/16/2013 Location(s): Massachusetts Offices(s): National Energy Technology Laboratory

  9. CX-012256: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bench-Scale Development of a Non-Aqueous Solvent Carbon Dioxide Capture Process CX(s) Applied: B3.6 Date: 09/11/2014 Location(s): Norway Offices(s): National Energy Technology Laboratory

  10. CX-006131: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bench and Pilot-Scale Evaluation of Processing ConditionsCX(s) Applied: B3.6Date: 06/21/2011Location(s): Grand Forks, North DakotaOffice(s): Fossil Energy, National Energy Technology Laboratory

  11. CX-010956: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bench Scale Development and Test of Aerogel Sorbent for Carbon Dioxide (CO2) Capture CX(s) Applied: A9 Date: 09/16/2013 Location(s): Colorado Offices(s): National Energy Technology Laboratory

  12. CX-010958: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bench Scale Development and Test of Aerogel Sorbent for Carbon Dioxide (CO2) Capture CX(s) Applied: B3.6 Date: 09/16/2013 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  13. Laboratory-Scale Melter for Determination of Melting Rate of Waste Glass Feeds

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Schweiger, Michael J.; Buchmiller, William C.; Matyas, Josef

    2012-01-09T23:59:59.000Z

    The purpose of this study was to develop the laboratory-scale melter (LSM) as a quick and inexpensive method to determine the processing rate of various waste glass slurry feeds. The LSM uses a 3 or 4 in. diameter-fused quartz crucible with feed and off-gas ports on top. This LSM setup allows cold-cap formation above the molten glass to be directly monitored to obtain a steady-state melting rate of the waste glass feeds. The melting rate data from extensive scaled-melter tests with Hanford Site high-level wastes performed for the Hanford Tank Waste Treatment and Immobilization Plant have been compiled. Preliminary empirical model that expresses the melting rate as a function of bubbling rate and glass yield were developed from the compiled database. The two waste glass feeds with most melter run data were selected for detailed evaluation and model development and for the LSM tests so the melting rates obtained from LSM tests can be compared with those from scaled-melter tests. The present LSM results suggest the LSM setup can be used to determine the glass production rates for the development of new glass compositions or feed makeups that are designed to increase the processing rate of the slurry feeds.

  14. Evaluation of Smart Irrigation Controllers: Initial Bench Testing Results

    E-Print Network [OSTI]

    Swanson, Charles; Fipps, Guy

    COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-354 2009 Evaluation of Smart Irrigation Controllers: Initial Bench Testing Results July 2009 By Charles Swanson, Extension Associate Guy Fipps, Professor and Extension... Agricultural Engineer Rio Grande Basin Initiative Irrigation Technology Center Texas AgriLife Extension Service Texas Water Resources Institute Technical Report July 2009 TR 354 EVALUATION OF SMART IRRIGATION CONTROLLERS...

  15. IRAN: laboratory test bench for hypertelescope pupil-plane recombination

    E-Print Network [OSTI]

    Liske, Jochen

    IRAN: laboratory test bench for hypertelescope pupil-plane recombination F. Allouchea,b, F. Vakilib-Antipolis, CNRS UMR 6525 Parc Valrose, 06108 Nice Cedex 2, France ABSTRACT In 2004, our group proposed IRAN-apertures illuminated by laser sources are recombined using the IRAN scheme. The validation of the IRAN recombination

  16. A Full Scale Wireless Ad Hoc Network Test Bed

    E-Print Network [OSTI]

    Brown, Timothy X.

    that are bench top, indoor, fixed outdoor, and mobile outdoor. Bench top test beds employ MAC filtering, RF and propagation of the outdoor environment. Full scale outdoor test beds are often restricted to fixed sites [1 features: 1. Test bed results are reproducible. 2. The test bed provides a common platform for testing

  17. Liquid Metal Thermal Electric Converter bench test module

    SciTech Connect (OSTI)

    Lukens, L.L.; Andraka, C.E.; Moreno, J.B.

    1988-04-01T23:59:59.000Z

    This report describes the design, fabrication, and test of a Liquid Metal Thermal Electric Converter Bench Test Module. The work presented in this document was conducted as a part of Heat Engine Task of the US Department of Energy's (DOE) Solar Thermal Technology Program. The objective of this task is the development and evaluation of heat engine technologies applicable to distributed receiver systems, in particular, dish electric systems.

  18. Close-coupled Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies. Final report, [October 1, 1988--July 31, 1993

    SciTech Connect (OSTI)

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.; Popper, G.A.; Stalzer, R.H.; Smith, T.O.

    1993-06-01T23:59:59.000Z

    This is the final report of a four year and ten month contract starting on October 1, 1988 to July 31, 1993 with the US Department of Energy to study and improve Close-Coupled Catalytic Two-Stage Direct Liquefaction of coal by producing high yields of distillate with improved quality at lower capital and production costs in comparison to existing technologies. Laboratory, Bench and PDU scale studies on sub-bituminous and bituminous coals are summarized and referenced in this volume. Details are presented in the three topical reports of this contract; CTSL Process Bench Studies and PDU Scale-Up with Sub-Bituminous Coal-DE-88818-TOP-1, CTSL Process Bench Studies with Bituminous Coal-DE-88818-TOP-2, and CTSL Process Laboratory Scale Studies, Modelling and Technical Assessment-DE-88818-TOP-3. Results are summarized on experiments and studies covering several process configurations, cleaned coals, solid separation methods, additives and catalysts both dispersed and supported. Laboratory microautoclave scale experiments, economic analysis and modelling studies are also included along with the PDU-Scale-Up of the CTSL processing of sub-bituminous Black Thunder Mine Wyoming coal. During this DOE/HRI effort, high distillate yields were maintained at higher throughput rates while quality was markedly improved using on-line hydrotreating and cleaned coals. Solid separations options of filtration and delayed coking were evaluated on a Bench-Scale with filtration successfully scaled to a PDU demonstration. Directions for future direct coal liquefaction related work are outlined herein based on the results from this and previous programs.

  19. Pilot-scale treatability test plan for the 100-HR-3 operable unit

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This document presents the treatability test plan for pilot-scale pump-and-treat testing at the 100-HR-3 Operable Unit. The test will be conducted in fulfillment of interim Milestone M-15-06E to begin pilot-scale pump-and-treat operations by August 1994. The scope of the test was determined based on the results of lab/bench-scale tests (WHC 1993a) conducted in fulfillment of Milestone M-15-06B. These milestones were established per agreement between the U.S. Department of Energy (DOE), the Washington State Department of Ecology and the U.S. Environmental Protection Agency (EPA), and documented on Hanford Federal of Ecology Facility Agreement and Consent Order Change Control Form M-15-93-02. This test plan discusses a pilot-scale pump-and-treat test for the chromium plume associated with the D Reactor portion of the 100-HR-3 Operable Unit. Data will be collected during the pilot test to assess the effectiveness, operating parameters, and resource needs of the ion exchange (IX) pump-and-treat system. The test will provide information to assess the ability to remove contaminants by extracting groundwater from wells and treating extracted groundwater using IX. Bench-scale tests were conducted previously in which chromium VI was identified as the primary contaminant of concern in the 100-D reactor plume. The DOWEX 21K{trademark} resin was recommended for pilot-scale testing of an IX pump-and-treat system. The bench-scale test demonstrated that the system could remove chromium VI from groundwater to concentrations less than 50 ppb. The test also identified process parameters to monitor during pilot-scale testing. Water will be re-injected into the plume using wells outside the zone of influence and upgradient of the extraction well.

  20. Determination of Interfacial Adhesion Strength between Oxide Scale and Substrate for Metallic SOFC Interconnects

    SciTech Connect (OSTI)

    Sun, Xin; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-01-21T23:59:59.000Z

    The interfacial adhesion strength between the oxide scale and the substrate is crucial to the reliability and durability of metallic interconnects in SOFC operating environments. It is necessary, therefore, to establish a methodology to quantify the interfacial adhesion strength between the oxide scale and the metallic interconnect substrate, and furthermore to design and optimize the interconnect material as well as the coating materials to meet the design life of an SOFC system. In this paper, we present an integrated experimental/analytical methodology for quantifying the interfacial adhesion strength between oxide scale and a ferritic stainless steel interconnect. Stair-stepping indentation tests are used in conjunction with subsequent finite element analyses to predict the interfacial strength between the oxide scale and Crofer 22 APU substrate.

  1. Determination of critical length scales for corrosion processes using microelectroanalytical techniques.

    SciTech Connect (OSTI)

    Zavadil, Kevin Robert; Wall, Frederick Douglas

    2004-03-01T23:59:59.000Z

    A key factor in our ability to produce and predict the stability of metal-based macro- to nano-scale structures and devices is a fundamental understanding of the localized nature of corrosion. Corrosion processes where physical dimensions become critical in the degradation process include localized corrosion initiation in passivated metals, microgalvanic interactions in metal alloys, and localized corrosion in structurally complex materials like nanocrystalline metal films under atmospheric and inundated conditions. This project focuses on two areas of corrosion science where a fundamental understanding of processes occurring at critical dimensions is not currently available. Sandia will study the critical length scales necessary for passive film breakdown in the inundated aluminum (Al) system and the chemical processes and transport in ultra-thin water films relevant to the atmospheric corrosion of nanocrystalline tungsten (W) films. Techniques are required that provide spatial information without significantly perturbing or masking the underlying relationships. Al passive film breakdown is governed by the relationship between area of the film sampled and its defect structure. We will combine low current measurements with microelectrodes to study the size scale required to observe a single initiation event and record electrochemical breakdown events. The resulting quantitative measure of stability will be correlated with metal grain size, secondary phase size and distribution to understand which metal properties control stability at the macro- and nano-scale. Mechanisms of atmospheric corrosion on W are dependent on the physical dimensions and continuity of adsorbed water layers as well as the chemical reactions that take place in this layer. We will combine electrochemical and scanning probe microscopic techniques to monitor the chemistry and resulting material transport in these thin surface layers. A description of the length scales responsible for driving the corrosion of the nanocrystalline metal films will be developed. The techniques developed and information derived from this work will be used to understand and predict degradation processes in microelectronic and microsystem devices critical to Sandia's mission.

  2. Coal-bench architecture as a means of understanding regional changes in coal thickness and quality

    SciTech Connect (OSTI)

    Greb, S.F.; Eble, C.F. [Kentucy Geological Survey, Lexington, KY (United States); Hower, J.C. [Center for Applied Research, Lexington, KY (United States)

    1996-09-01T23:59:59.000Z

    Analysis of the Fire Creek (Westphalian B), Pond Creek (lower Westphalian B), and Stockton (Westphalian B) coals, three of the most heavily mined coals in the Central Appalachian Basin, shows that all have a similar multiple-bench architecture of at least two benches split by a regional clastic parting or durain. Coal benches beneath regionally extensive partings are generally less continuous, thinner, more palynologically variable, higher in ash yield, and higher in sulfur content than coal benches above regional partings in all three coals. Where thick, benches above regional partings tend to exhibit temporal palynological changes from lycopod- to fern-dominant. Where inertinite-rich/fern-dominant benches are overlain by additional benches, the upper benches are limited in extent, variable in thickness, high in sulfur content and ash yield, and split away from the coal. The multiple-bench architecture exhibited by these coals is interpreted to represent a cyclic mire succession that was common in the Middle Pennsylvanian. Peats began as planar mires infilling an irregular topography during rising base level. When the topography was infilled, unconfined flooding was possible and resulted in widespread partings. Ponding above these clay-rich flood deposits led to re-establishment of new planar mires with greater continuity than the underlying mires. The extent of these mires provided buffers to clastic influx and, in many cases, allowed domed conditions to develop. Doming resulted in thick, high-quality coal benches. In some cases, a third stage of planar peats, with similar characteristics to the planar peats at the base of the beds, developed on the unevenly distributed clastics that buried underlying mires during continued base-level rise.

  3. Accurate determination of energy scales in few-electron double quantum dots D. Taubert,1

    E-Print Network [OSTI]

    Ludwig-Maximilians-Universität, München

    methods to determine the gate voltage to energy conversion accurately in the different regimes of dot-lead tunnel couplings and demonstrate strong variations of the conversion factors. Our concepts can easily involves a conversion of the applied gate voltages to energy differences between the electronic states

  4. CX-011447: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bench-Scale Development and Testing of a Novel Adsorption Process for Post Combustion Carbon Dioxide (CO2) Capture CX(s) Applied: B3.6 Date: 11/13/2013 Location(s): Delaware Offices(s): National Energy Technology Laboratory

  5. CX-004449: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bench Scale Testing to Provide Data on Precipitation Control in the Cesium Nitric Acid Recovery ProcessCX(s) Applied: B3.6Date: 10/15/2010Location(s): Aiken, South CarolinaOffice(s): Savannah River Operations Office

  6. CX-010909: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bench-Scale Development of a Non-Aqueous Solvent (NAS) Carbon Dioxide (CO2) Capture Process for Coal-Fired Power Plants CX(s) Applied: A9, A11 Date: 09/25/2013 Location(s): New Jersey Offices(s): National Energy Technology Laboratory

  7. CX-003543: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High PressureCX(s) Applied: A9, B3.6Date: 08/25/2010Location(s): Champaign, IllinoisOffice(s): Fossil Energy, National Energy Technology Laboratory

  8. CX-003550: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High PressureCX(s) Applied: A9, A11Date: 08/25/2010Location(s): San Ramon, CaliforniaOffice(s): Fossil Energy, National Energy Technology Laboratory

  9. CX-010922: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Borehole Tool for the Comprehensive Characterization of Hydrate-Bearing Sediments CX(s) Applied: A1, A9, B3.6, Other: Bench Scale Laboratory Research Date: 09/25/2013 Location(s): Georgia Offices(s): National Energy Technology Laboratory

  10. ORIGINAL PAPER Reactor scale up for biological conversion of cellulosic biomass

    E-Print Network [OSTI]

    California at Riverside, University of

    ORIGINAL PAPER Reactor scale up for biological conversion of cellulosic biomass to ethanol Xiongjun scale-up approach for biological conversion of cellulosic biomass to com- modity products of large scale bioreactors based on bench scale experimentation. Keywords CFD Á SSF Á Scale up Á Solids

  11. Design of test bench apparatus and preliminary weight reduction strategy for an active knee prosthesis

    E-Print Network [OSTI]

    Lau, Jacky H. (Jacky Homing)

    2011-01-01T23:59:59.000Z

    This thesis presents the design and structural analyses of an experimental test bench for the characterization of an active biomimetic knee prosthesis currently being developed by the Biomechatronics research group at MIT ...

  12. Determination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential Application to ARM MeasurementsDetermination of

  13. Evacuated optical structure comprising optical bench mounted to sidewall of vacuum chamber in a manner which inhibits deflection and rotation of the optical bench

    DOE Patents [OSTI]

    Bowers, Joel M. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    An improved evacuated optical structure is disclosed comprising an optical bench mounted in a vacuum vessel in a manner which inhibits transmission of movement of the vacuum vessel to the optical bench, yet provides a compact and economical structure. The vacuum vessel is mounted, through a sidewall thereof, to a support wall at four symmetrically positioned and spaced apart areas, each of which comprises a symmetrically positioned group of mounting structures passing through the sidewall of the vacuum vessel. The optical bench is pivotally secured to the vacuum vessel by four symmetrically spaced apart bolts and spherical bearings, each of which is centrally positioned within one of the four symmetrically positioned groups of vacuum vessel mounting structures. Cover plates and o-ring seals are further provided to seal the vacuum vessel mounting structures from the interior of the vacuum vessel, and venting bores are provided to vent trapped gases in the bores used to secure the cover plates and o-rings to the vacuum vessel. Provision for detecting leaks in the mounting structures from the rear surface of the vacuum vessel sidewall facing the support wall are also provided. Deflection to the optical bench within the vacuum vessel is further minimized by tuning the structure for a resonant frequency of at least 100 Hertz.

  14. Evacuated optical structure comprising optical bench mounted to sidewall of vacuum chamber in a manner which inhibits deflection and rotation of the optical bench

    DOE Patents [OSTI]

    Bowers, J.M.

    1994-04-19T23:59:59.000Z

    An improved evacuated optical structure is disclosed comprising an optical bench mounted in a vacuum vessel in a manner which inhibits transmission of movement of the vacuum vessel to the optical bench, yet provides a compact and economical structure. The vacuum vessel is mounted, through a sidewall thereof, to a support wall at four symmetrically positioned and spaced apart areas, each of which comprises a symmetrically positioned group of mounting structures passing through the sidewall of the vacuum vessel. The optical bench is pivotally secured to the vacuum vessel by four symmetrically spaced apart bolts and spherical bearings, each of which is centrally positioned within one of the four symmetrically positioned groups of vacuum vessel mounting structures. Cover plates and o-ring seals are further provided to seal the vacuum vessel mounting structures from the interior of the vacuum vessel, and venting bores are provided to vent trapped gases in the bores used to secure the cover plates and o-rings to the vacuum vessel. Provision for detecting leaks in the mounting structures from the rear surface of the vacuum vessel sidewall facing the support wall are also provided. Deflection to the optical bench within the vacuum vessel is further minimized by tuning the structure for a resonant frequency of at least 100 Hertz. 10 figures.

  15. Optimization of Preprocessing and Densification of Sorghum Stover at Full-scale Operation

    SciTech Connect (OSTI)

    Neal A. Yancey; Jaya Shankar Tumuluru; Craig C. Conner; Christopher T. Wright

    2011-08-01T23:59:59.000Z

    Transportation costs can be a prohibitive step in bringing biomass to a preprocessing location or biofuel refinery. One alternative to transporting biomass in baled or loose format to a preprocessing location, is to utilize a mobile preprocessing system that can be relocated to various locations where biomass is stored, preprocess and densify the biomass, then ship it to the refinery as needed. The Idaho National Laboratory has a full scale 'Process Demonstration Unit' PDU which includes a stage 1 grinder, hammer mill, drier, pellet mill, and cooler with the associated conveyance system components. Testing at bench and pilot scale has been conducted to determine effects of moisture on preprocessing, crop varieties on preprocessing efficiency and product quality. The INLs PDU provides an opportunity to test the conclusions made at the bench and pilot scale on full industrial scale systems. Each component of the PDU is operated from a central operating station where data is collected to determine power consumption rates for each step in the process. The power for each electrical motor in the system is monitored from the control station to monitor for problems and determine optimal conditions for the system performance. The data can then be viewed to observe how changes in biomass input parameters (moisture and crop type for example), mechanical changes (screen size, biomass drying, pellet size, grinding speed, etc.,), or other variations effect the power consumption of the system. Sorgum in four foot round bales was tested in the system using a series of 6 different screen sizes including: 3/16 in., 1 in., 2 in., 3 in., 4 in., and 6 in. The effect on power consumption, product quality, and production rate were measured to determine optimal conditions.

  16. SUMMARY PLAN FOR BENCH-SCALE REFORMER AND PRODUCT TESTING TREATABILITY STUDIES USING HANFORD TANK WASTE

    SciTech Connect (OSTI)

    ROBBINS RA

    2011-02-11T23:59:59.000Z

    This paper describes the sample selection, sample preparation, environmental, and regulatory considerations for shipment of Hanford radioactive waste samples for treatability studies of the FBSR process at the Savannah River National Laboratory and the Pacific Northwest National Laboratory.

  17. Comparison of complex effluent treatability in different bench scale microbial electrolysis cells

    E-Print Network [OSTI]

    .9 V Cube Mini Industrial Wastewater Domestic Wastewater Fermentation Effluent Acetate Medium MEC­92% of COD removed for all samples. Current generation was consistent between the reactor types for acetate (AC) and fermentation effluent (FE) samples, but less consistent with industrial (IW) and domestic

  18. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect (OSTI)

    Vipperla, Ravikumar; Yee, Michael; Steele, Ray; Singh, Surinder; Spiry, Irina; Wood, Benjamin

    2013-12-30T23:59:59.000Z

    This report presents system and economic analysis for a carbon capture unit which uses an amino-silicone solvent for CO{sub 2} capture and sequestration (CCS) in a pulverized coal (PC) boiler. The amino-silicone solvent is based on GAP-1 with tri-ethylene glycol (TEG) as a co-solvent. For comparison purposes, the report also shows results for a CCS unit based on a conventional approach using mono-ethanol amine (MEA). At a steam temperature of 395 °C (743 °F), the CCS energy penalty for amino-silicone solvent is only 30.4% which compares to a 35.9% energy penalty for MEA. The increase in COE for the amino-silicone solvent relative to the non-capture case is between 98% and 103% (depending on the solvent cost) which compares to an ~109% COE cost increase for MEA. In summary, the amino-silicone solvent has significant advantages over conventional systems using MEA.

  19. Design of a bench-scale apparatus for processing carbon black derived from scrap tires 

    E-Print Network [OSTI]

    Woodrow, Philip Travis

    1996-01-01T23:59:59.000Z

    O and continuously agitated for around 24 hrs. This procedure dissolves nearly all of the catalyst(s). Depending upon the metal salt catalyst(s) used, additional chemical additives, such as HCI&, @, might be employed to assist in this procedure. Following this, a... case, where it is known as an extraction battery. 19 Moving-bed extraction is characterized by moving the solids through the solvent with little or no agitation. Examples of moving-bed equipment are single-deck and multi-deck rake classifiers...

  20. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect (OSTI)

    Vipperla, Ravikumar; Yee, Michael; Steele, Ray

    2012-11-01T23:59:59.000Z

    This report presents system and economic analysis for a carbon capture unit which uses an amino-silicone solvent for CO{sub 2} capture and sequestration (CCS) in a pulverized coal (PC) boiler. The amino-silicone solvent is based on GAP-1 with Tri-Ethylene Glycol (TEG) as a co-solvent. The report also shows results for a CCS unit based on a conventional approach using mono-ethanol amine (MEA). Models were developed for both processes and used to calculate mass and energy balances. Capital costs and energy penalty were calculated for both systems, as well as the increase in cost of electricity. The amino-silicone solvent based system demonstrates significant advantages compared to the MEA system.

  1. Bench-Scale Silicone Process for Low-Cost CO2 Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior

  2. A computer test bench for checking and adjusting the automatic regulators of generator excitation systems

    SciTech Connect (OSTI)

    Dovganyuk, I. Ya.; Labunets, I. A.; Plotnikova, T. V.; Sokur, P. V. [Affiliate of the 'NTTs Elektroenergetiki' Company - Scientific Research Institute of Electric Power (VNIIE) (Russian Federation)

    2008-05-15T23:59:59.000Z

    A computer test bench for testing and debugging natural samples of the automatic excitation regulation systems of generators, the protection units and the power part of the excitation system is described. The bench includes a personal computer with specialized input-output circuit boards for analog and digital signals, and enables the time and cost involved in developing and checking control systems to be reduced considerably. The program employed operates in real time and enables the automatic excitation regulators of synchronous generators and generators with longitudinal-transverse excitation in a specific power system to be adjusted.

  3. Andromeda: A mission to determine the gamma-ray burst distance scale F.A. Harrison, W.R. Cook, T.A. Prince, S.M. Schindler

    E-Print Network [OSTI]

    Prince, Thomas A.

    Andromeda: A mission to determine the gamma-ray burst distance scale F.A. Harrison, W.R. Cook, T was submitted to the STEDI program, and will also be proposed as a NASA Small Explorer. Keywords: bursts, gamma-rays, small missions 1 SCIENTIFIC OBJECTIVES 1.1 Gamma-ray Bursts Gamma-ray bursts GRBs were discovered

  4. 05Mar09 ANALYSISIn crisis, GE finds its deep bench not so magical By James B. Kelleher

    E-Print Network [OSTI]

    Kuzmanovic, Aleksandar

    05Mar09 ANALYSISIn crisis, GE finds its deep bench not so magical By James B. Kelleher not true." HANGING ON THE HUDSON At the heart of GE's training program is the Leadership Center faces its worst crisis in decades, its managers seem suddenly bereft of good ideas, its deep bench

  5. Comparison of Two Permeation Test Benches and of Two Determination Methods for Darcy's and Forchheimer's Permeabilities.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    range. Keywords: Ceramic Matrix Composites, Permeation, Active cooling, Darcy, Forchheimer. Nomenclature, the Ceramic Matrix Composite (CMC) de passive or active methods, such as ablative materials or active cooling. For the latter, porous Ceramic

  6. Factors affecting the rate of hydrolysis of phenylboronic acid in lab-scale precipitate reactor studies

    SciTech Connect (OSTI)

    Bannochie, C.J.; Marek, J.C.; Eibling, R.E.; Baich, M.A.

    1992-10-01T23:59:59.000Z

    Removing aromatic carbon from an aqueous slurry of cesium-137 and other alkali tetraphenylborates by acid hydrolysis will be an important step in preparing high-level radioactive waste for vitrification at the Savannah River Site`s Defense Waste Processing Facility (DWPF). Kinetic data obtained in bench-scale precipitate hydrolysis reactors suggest changes in operating parameters to improve product quality in the future plant-scale radioactive operation. The rate-determining step is the removal of the fourth phenyl group, i.e. hydrolysis of phenylboronic acid. Efforts to maximize this rate have established the importance of several factors in the system, including the ratio of copper(II) catalyst to formic acid, the presence of nitrite ion, reactions of diphenylmercury, and the purge gas employed in the system.

  7. Factors affecting the rate of hydrolysis of phenylboronic acid in lab-scale precipitate reactor studies

    SciTech Connect (OSTI)

    Bannochie, C.J.; Marek, J.C.; Eibling, R.E.; Baich, M.A.

    1992-01-01T23:59:59.000Z

    Removing aromatic carbon from an aqueous slurry of cesium-137 and other alkali tetraphenylborates by acid hydrolysis will be an important step in preparing high-level radioactive waste for vitrification at the Savannah River Site's Defense Waste Processing Facility (DWPF). Kinetic data obtained in bench-scale precipitate hydrolysis reactors suggest changes in operating parameters to improve product quality in the future plant-scale radioactive operation. The rate-determining step is the removal of the fourth phenyl group, i.e. hydrolysis of phenylboronic acid. Efforts to maximize this rate have established the importance of several factors in the system, including the ratio of copper(II) catalyst to formic acid, the presence of nitrite ion, reactions of diphenylmercury, and the purge gas employed in the system.

  8. Jim Duckworth, WPI Verilog for Testing -Module 61 Test Benches (Test Fixtures)

    E-Print Network [OSTI]

    Huang, Xinming

    Jim Duckworth, WPI Verilog for Testing - Module 61 Test Benches (Test Fixtures) Verilog for Testing #12;Jim Duckworth, WPI Verilog for Testing - Module 62 Overview · We have concentrated on Verilog for synthesis · Can also use Verilog as a test language · Very important to conduct comprehensive verification

  9. ScalaBenchGen: Auto-Generation of Communication Benchmarks Traces Department of Computer Science

    E-Print Network [OSTI]

    Mueller, Frank

    ScalaBenchGen: Auto-Generation of Communication Benchmarks Traces Xing Wu Department of Computer@cs.ncsu.edu Abstract--Benchmarks are essential for evaluating HPC hardware and software for petascale machines and beyond. But benchmark creation is a tedious manual process. As a result, benchmarks tend to lag behind

  10. NU-MineBench: Understanding the Performance and Scalability Characteristics of Data Mining Algorithms

    E-Print Network [OSTI]

    Choudhary, Alok

    NU-MineBench: Understanding the Performance and Scalability Characteristics of Data Mining Clara. CA - 95052 pradeep.dubey@intel.com Abstract Data mining has become one of the most essential and distributed systems have provided abundant venues for improving the performance of data mining algorithms

  11. Mercury Emissions Control in Coal Combustion Systems Using Potassium Iodide: Bench-Scale and Pilot-Scale Studies

    E-Print Network [OSTI]

    Li, Ying

    Addition of halogens or halides has been reported to promote mercury removal in coal-fired power plants in the particulate phase. This is very beneficial in coal-fired power plants equipped with electrostatic (CAMR) to regulate Hg emissions from coal-fired power plants through a cap-and- trade approach.2 However

  12. Unification of Dynamical Determination and Bare Minimal Phenomenological Constraints in No-Scale F-SU(5)

    E-Print Network [OSTI]

    Tianjun Li; James A. Maxin; Dimitri V. Nanopoulos; Joel W. Walker

    2012-03-19T23:59:59.000Z

    We revisit the construction of the viable parameter space of No-Scale F-SU(5), a model built on the F-lipped SU(5)xU(1)_X gauge group, supplemented by a pair of F-theory derived vector-like multiplets at the TeV scale, and the dynamically established boundary conditions of No-Scale Supergravity. Employing an updated numerical algorithm and a substantially upgraded computational engine, we significantly enhance the scope, detail and accuracy of our prior study. We sequentially apply a set of "bare-minimal" phenomenological constraints, consisting of i) the dynamically established boundary conditions of No-Scale Supergravity, ii) consistent radiative electroweak symmetry breaking, iii) precision LEP constraints on the light supersymmetric mass content, iv) the world average top-quark mass, and v) a light neutralino satisfying the 7-year WMAP cold dark matter relic density measurement. The overlap of the viable parameter space with key rare-process limits on the branching ratio for b to s gamma and the muon anomalous magnetic moment is identified as the "golden strip" of F-SU(5). A cross check for top-down theoretical consistency is provided by application of the "Super No-Scale" condition, which dynamically selects a pair of undetermined model parameters in a manner that is virtually identical to the corresponding phenomenological (driven primarily by the relic density) selection. The predicted vector-like particles are candidates for production at the future LHC, which is furthermore sensitive to a distinctive signal of ultra-high multiplicity hadronic jets. The lightest CP-even Higgs boson mass is predicted to be 120+3.5-1 GeV, with an additional 3-4 GeV upward shift possible from radiative loops in the vector-like multiplets. The predominantly bino flavored lightest neutralino is suitable for direct detection by the Xenon collaboration.

  13. Data acquisition system time measurement capabilities using WorkBench[trademark] software

    SciTech Connect (OSTI)

    Coutts, D.A.

    1992-04-01T23:59:59.000Z

    There is an increasing interest in the ability to measure transient behavior in the Heat Transfer Laboratory (HTL). To accomplish this the timing system behavior for the Data Acquisition Systems (DAS) must be evaluated. This report discusses the evaluation of a DAS timing system using WorkBench[trademark] Software in a Macintosh II environment. It also describes a method which can be successfully used to calibrate the timing system associated with the DAS.

  14. Data acquisition system time measurement capabilities using WorkBench{trademark} software

    SciTech Connect (OSTI)

    Coutts, D.A.

    1992-04-01T23:59:59.000Z

    There is an increasing interest in the ability to measure transient behavior in the Heat Transfer Laboratory (HTL). To accomplish this the timing system behavior for the Data Acquisition Systems (DAS) must be evaluated. This report discusses the evaluation of a DAS timing system using WorkBench{trademark} Software in a Macintosh II environment. It also describes a method which can be successfully used to calibrate the timing system associated with the DAS.

  15. Determination of energy scales in few-electron double quantum dots D. Taubert, D. Schuh, W. Wegscheider, and S. Ludwig

    E-Print Network [OSTI]

    Ludwig-Maximilians-Universität, München

    gate volt- ages to energy differences between the electronic states. The conversion factors devices. We have developed methods to determine the gate voltage to energy conversion accurately in the different regimes of dot-lead tunnel couplings and demonstrate strong variations of the conversion factors

  16. Effects of QCD radiation on inclusive variables for determining the scale of new physics at hadron colliders.

    E-Print Network [OSTI]

    Papaefstathiou, Andreas; Webber, Bryan R

    Xiv:hep-ph/0612249]. [17] H. C. Cheng, J. F. Gunion, Z. Han, G. Marandella and B. McElrath, “Mass Determination in SUSY-like Events with Missing Energy,” JHEP 0712, 076 (2007) [arXiv:0707.0030 [hep-ph

  17. Determination of Landau Fermi-liquid parameters of strongly interacting fermions by means of a nonlinear scaling transformation

    E-Print Network [OSTI]

    Ji-sheng Chen

    2009-10-20T23:59:59.000Z

    A nonlinear transformation approach is formulated for the correlated fermions' thermodynamics through a medium-scaling effective action. An auxiliary implicit variable-effective chemical potential is introduced to characterize the non-Gaussian fluctuations physics. By incorporating the nonlocal correlation effects, the achieved grand partition function is made of coupled highly nonlinear parametric equations. Analytically, the low temperature expansions for the strongly interacting unitary Fermi gas are performed for the adiabatic compressibility-sound speed and specific heat with the Sommerfeld lemma. The expressions for the Landau Fermi-Liquid parameters $F_0^s$ and $F_1^s$ of the strongly interacting fermion system are obtained. As a universal constant, the effective fermion mass ratio is $m^*/m={10/9}$ at unitarity.

  18. Upscaling of Long-Term U(VI) Desorption from Pore Scale Kinetics to Field-Scale Reactive Transport Models

    SciTech Connect (OSTI)

    Steefel, Carl I.; Li Li; Davis, J.A.; Curtis, G.P.; Honeyman, B.D.; Kent, D.B.; Kohler, M.; Rodriguez, D.R.; Johnson, K.J.; Miller, A.

    2006-06-01T23:59:59.000Z

    The focus of the project is the development of scientifically defensible approaches for upscaling reactive transport models (RTM) through a detailed understanding of U(VI) desorption across several spatial scales: bench-, intermediate-, and field-scales. The central hypothesis of the project is that the development of this methodology will lead to a scientifically defensible approach for conceptual model development for multicomponent RTM at contaminated DOE sites, leading to predictive transport simulations with reduced uncertainty.

  19. Upscaling of U(VI) Desorption and Transport Using Decimeter-Scale Tanks

    SciTech Connect (OSTI)

    Rodriguez, Derrick [Colorado School of Mines

    2014-12-22T23:59:59.000Z

    Experimental work was used to validate modeling studies and develop multicontinuum models of U(VI) transport in a contaminated aquifer. At the bench scale, it has been shown that U(VI) desorption is rate-limited and that rates are dependent on the bicarbonate concentration. Two decimeter-scale experiments were conducted in order to help establish rigorous upscaling approaches that could be tested at the tracer test and plume scales.

  20. Well rounded Postdoctoral Researchers with initiative, who are not always “tied to the bench” are more successful academically

    E-Print Network [OSTI]

    Lee, Lucy J; Gowers, Isobel; Ellis, Lorraine; Bellantuono, Ilaria

    2010-01-01T23:59:59.000Z

      269   Well rounded Postdoctoral Researchers with initiative, who are not always “tied to the bench” are more successful academically Lucy J. Leea*, Isobel Gowersb, Lorraine Ellisc, and Ilaria Bellantuonoa a Medical School, University... evaluation of the scheme. Postdoctoral researchers reported on their perceived skill levels, academic achievements, career motivations and the current research environment. Results indicated that transferable skills related to communication and awareness...

  1. Kalman Filtering for Real-Time Individual Cylinder Air Fuel Ratio Observer on a Diesel Engine Test Bench

    E-Print Network [OSTI]

    Kalman Filtering for Real-Time Individual Cylinder Air Fuel Ratio Observer on a Diesel Engine Test of a time-varying Kalman Filter based on a physics-based model for the engine dynamics. We prove Kalman filter. Performance is evaluated through test bench experiments on a 4 cylinder Diesel engine

  2. Real-Time Combustion Torque Estimation on a Diesel Engine Test Bench Using Time-Varying Kalman Filtering

    E-Print Network [OSTI]

    Real-Time Combustion Torque Estimation on a Diesel Engine Test Bench Using Time-Varying Kalman sensor the easily available instantaneous crankshaft angle speed. The observer consists in a Kalman torque observer, we use a physics-based model underlying the role of time-varying inertia. A Kalman

  3. Using wesBench to Study the Rendering Performance of Graphics Processing Units

    SciTech Connect (OSTI)

    Bethel, Edward W

    2010-01-08T23:59:59.000Z

    Graphics operations consist of two broad operations. The first, which we refer to here as vertex operations, consists of transformation, lighting, primitive assembly, and so forth. The second, which we refer to as pixel or fragment operations, consist of rasterization, texturing, scissoring, blending, and fill. Overall GPU rendering performance is a function of throughput of both these interdependent stages: if one stage is slower than the other, the faster stage will be forced to run more slowly and overall rendering performance will be adversely affected. This relationship is commutative: if the later stage has a greater workload than the earlier stage, the earlier stage will be forced to 'slow down.' For example, a large triangle that covers many screen pixels will incur a very small amount of work in the vertex stage while at the same time incurring a relatively large amount of work in the fragment stage. Rendering performance of a scene consisting of many large-area triangles will be limited by throughput of the fragment stage, which will have relatively more work than the vertex stage. There are two main objectives for this document. First, we introduce a new graphics benchmark, wesBench, which is useful for measuring performance of both stages of the rendering pipeline under varying conditions. Second, we present its methodology for measuring performance and show results of several performance measurement studies aimed at producing better understanding of GPU rendering performance characteristics and limits under varying configurations. First, in Section 2, we explore the 'crossover' point between geometry and rasterization. Second, in Section 3, we explore additional performance characteristics, some of which are ill- or un-documented. Lastly, several appendices provide additional material concerning problems with the gfxbench benchmark, and details about the new wesBench graphics benchmark.

  4. Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration

    SciTech Connect (OSTI)

    Francis, C. W.

    1993-09-01T23:59:59.000Z

    To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

  5. Bench-scale co-processing. Technical progress report No. 23, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Gatsis, J.G.; Gala, H.B.

    1994-07-01T23:59:59.000Z

    UOP`s second co-processing contract, DE-AC22-87PC79818, began in April 1988. The major objective of this contract is to establish a database for the optimization of the co-processing concept by improving the effectiveness of the co-processing catalyst system. Two major mechanisms for improving the catalyst system are to be investigated: employment of more effective catalysts and utilization of improved catalytic environments. These two mechanisms are defined in the contract Statement of Work. Work on Task 2.0, Laboratory Support, and Task 4.0, process Assessment, was carried out. A design basis for the process assessment task was established and cost estimation of the UOP co-processing scheme was initiated.

  6. INNOVATIVE EXPERIMENTAL SETUP FOR THE PARALLEL OPERATION OF MULTIPLE BENCH SCALE BIOTRICKLING FILTERS FOR WASTE AIR TREATMENT

    E-Print Network [OSTI]

    of synthetic material over which a liquid phase is circulated. As the packing does not contain an indigenous-state approach). However, it has been shown that microbial populations in vapor phase bioreactors may change even.7) at an empty bed residence time of 45 s and a toluene inlet gas phase concentration of 1.6 g m-3 . At gas

  7. Bench Scale Application of the Hybridized Zero Valent Iron Process for the Removal of Dissolved Silica From Water

    E-Print Network [OSTI]

    Morar, Nilesh Mohan

    2014-11-12T23:59:59.000Z

    is effective. A more robust and cost-effective dissolved silica removal technique is desirable. The hybridized zero-valent iron (hZVI) process, now commercially available as Pironox™, uses zero-valent iron (Fe^0 ) as its main reactive media developed to remove...

  8. Bench Scale Application of the Hybridized Zero Valent Iron Process for the Removal of Dissolved Silica From Water 

    E-Print Network [OSTI]

    Morar, Nilesh Mohan

    2014-11-12T23:59:59.000Z

    heavy metals/metalloids, reactive oxyanions, and impurities from water/wastewater. The distinctive feature of this novel chemical treatment platform is the controlled formation of magnetite as the main iron corrosion product in the presence of aqueous Fe...

  9. Bench-Scale Development of a Hybrid Membrane-Absorption CO{sub 2} Capture Process: Preliminary Cost Assessment

    SciTech Connect (OSTI)

    Freeman, Brice; Kniep, Jay; Pingjiao, Hao; Baker, Richard; Rochelle, Gary; Chen, Eric; Frailie, Peter; Ding, Junyuan; Zhang, Yue

    2014-03-31T23:59:59.000Z

    This report describes a study of capture costs for a hybrid membrane-absorption capture system based on Membrane Technology and Research, Inc. (MTR)’s low-pressure membrane contactors and the University of Texas at Austin’s 5 m piperazine (PZ) Advanced Flash Stripper (AFS; 5 m PZ AFS) based CO2 capture system. The report is submitted for NETL review, and may be superseded by a final topical report on this topic that will be submitted to satisfy the Task 2 report requirement of the current project (DE-FE0013118).

  10. Indoor Secondary Pollutants from Household Product Emissions inthe Presence of Ozone: A Bench-Scale Chamber Study

    SciTech Connect (OSTI)

    Destaillats, Hugo; Lunden, Melissa M.; Singer, Brett C.; Coleman,Beverly K.; Hodgson, Alfred T.; Weschler, Charles J.; Nazaroff, William W.

    2005-10-01T23:59:59.000Z

    Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10{sup 5} molecules cm{sup -3} were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products.

  11. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    SciTech Connect (OSTI)

    Jasbir Gill

    2010-08-30T23:59:59.000Z

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica/silicate are two common potential cycle-limiting minerals for using impaired waters. For produced waters, barium sulfate and calcium sulfate are two additional potential cycle-limiting minerals. For reclaimed municipal wastewater effluents, calcium phosphate scaling can be an issue, especially in the co-presence of high silica. Computational assessment, using a vast amount of Nalco's field data from coal fired power plants, showed that the limited use and reuse of impaired waters is due to the formation of deposit caused by the presence of iron, high hardness, high silica and high alkalinity in the water. Appropriate and cost-effective inhibitors were identified and developed - LL99B0 for calcite and gypsum inhibition and TX-15060 for silica inhibition. Nalco's existing dispersants HSP-1 and HSP-2 has excellent efficacy for dispersing Fe and Mn. ED and EDI were bench-scale tested by the CRADA partner Argonne National Laboratory for hardness, alkalinity and silica removal from synthetic make-up water and then cycled cooling water. Both systems showed low power consumption and 98-99% salt removal, however, the EDI system required 25-30% less power for silica removal. For Phase 2, the EDI system's performance was optimized and the length of time between clean-in-place (CIP) increased by varying the wafer composition and membrane configuration. The enhanced EDI system could remove 88% of the hardness and 99% of the alkalinity with a processing flux of 19.2 gal/hr/m{sup 2} and a power consumption of 0.54 kWh/100 gal water. Bench tests to screen alternative silica/silicate scale inhibitor chemistries have begun. The silica/silicate control approaches using chemical inhibitors include inhibition of silicic acid polymerization and dispersion of silica/silicate crystals. Tests were conducted with an initial silica concentration of 290-300 mg/L as SiO{sub 2} at pH 7 and room temperature. A proprietary new chemistry was found to be promising, compared with a current commercial product commonly used for silica/silicate control. Additional pilot cooling tower testing confirmed

  12. Ce-MXRF: the power of separation with bench top element sensitive detection

    SciTech Connect (OSTI)

    Miller, T. C. (Thomasin C.); Joseph, M. R. (Martha R.); Havrilla, G. J. (George J.)

    2002-01-01T23:59:59.000Z

    Capillary electrophoresis (CE) is a proven separation technique that offers highly efficient separation, rapid analysis, and minute sample consumption. When combined with a element specific detection scheme, it can be used for chemical speciation of biologically and environmentally relevant species such as metal containing proteins. In this study, a new tool was developed for separation and elemental detection. Specifically, a simple CE apparatus was constructed using a thin-walled fused Si capillary and interfaced with a bench top micro x-ray fluorescence (MXRF) system. X-ray excitation and detection of the separated sample volumes was performed using an EDAX Eagle II micro x-ray fluorescence system equipped with a Rh target excitation source and a SiLi detector. It was demonstrated that the system could be used for the separation and detection of two metals from one another, specifically Cu{sup 2+} and Co{sup 2+}. Free Co{sup 2+} could also be isolated from Co{sup 2+} bound to cyanocobalamin (Vitamin B-12). Other systems that were explored were the separation of two organics, ferritin from cyanocobalamin as well as the separation of the different Cu and Zn isoforms of metallothinein. CE-MXRF was also used to separate the important serum isoforms of transferrin. Direct comparisons were made between CE-MXRF system and other elemental separation techniques such as CE-PIXE, CE-synchrotron-XRF, and CE-ICPMS.

  13. DETERMINATION OF IN-SITU THERMAL PROPERTIES OF STRIPA GRANITE FROM TEMPERATURE MEASUREMENTS IN THE FULL-SCALE HEATER EXPERIMENTS: METHOD AND PRELIMINARY RESULTS

    E-Print Network [OSTI]

    Jeffry, J.A.

    2010-01-01T23:59:59.000Z

    Mechanical Properties of Granite:Stripa, Sweden. TerraTekStorage of Nuclear Waste in Granite by P. A. Witherspoon, P.Discontinuities in the Strira Granite -- Time-Scale Heater

  14. Methodology to determine the technical performance and value proposition for grid-scale energy storage systems : a study for the DOE energy storage systems program.

    SciTech Connect (OSTI)

    Byrne, Raymond Harry; Loose, Verne William; Donnelly, Matthew K. [Montana Tech of The University of Montana, Butte, MT; Trudnowski, Daniel J. [Montana Tech of The University of Montana, Butte, MT

    2012-12-01T23:59:59.000Z

    As the amount of renewable generation increases, the inherent variability of wind and photovoltaic systems must be addressed in order to ensure the continued safe and reliable operation of the nation's electricity grid. Grid-scale energy storage systems are uniquely suited to address the variability of renewable generation and to provide other valuable grid services. The goal of this report is to quantify the technical performance required to provide di erent grid bene ts and to specify the proper techniques for estimating the value of grid-scale energy storage systems.

  15. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    SciTech Connect (OSTI)

    Day-Lewis, Frederick David [U.S. Geological Survey; Singha, Kamini [Colorado School of Mines; Johnson, Timothy C. [Pacific Northwest National Laboratory; Haggerty, Roy [Oregon State; Binley, Andrew [Lancaster University; Lane, John W. [US Geological Survey

    2014-11-25T23:59:59.000Z

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area. In a synergistic add-on to our workplan, we analyzed data from field experiments performed at the DOE Naturita Site under a separate DOE SBR grant, on which PI Day-Lewis served as co-PI. Techniques developed for application to Hanford datasets also were applied to data from Naturita.

  16. Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities

    SciTech Connect (OSTI)

    Liu, Guosheng

    2013-03-15T23:59:59.000Z

    Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term of condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMsâ�� cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3-D cloud ice water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10�° (latitude) x 10�° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.

  17. The tale of a modern animal plague: Tracing the evolutionary history and determining the time-scale for foot and mouth disease virus

    SciTech Connect (OSTI)

    Tully, Damien C. [Smurfit Institute of Genetics, Trinity College Dublin (Ireland)], E-mail: dtully@tcd.ie; Fares, Mario A. [Smurfit Institute of Genetics, Trinity College Dublin (Ireland)], E-mail: faresm@tcd.ie

    2008-12-20T23:59:59.000Z

    Despite significant advances made in the understanding of its epidemiology, foot and mouth disease virus (FMDV) is among the most unexpected agricultural devastating plagues. While the disease manifests itself as seven immunologically distinct strains their origin, population dynamics, migration patterns and divergence times remain unknown. Herein we have assembled a comprehensive data set of gene sequences representing the global diversity of the disease and inferred the time-scale and evolutionary history for FMDV. Serotype-specific rates of evolution and divergence times were estimated using a Bayesian coalescent framework. We report that an ancient precursor FMDV gave rise to two major diversification events spanning a relatively short interval of time. This radiation event is estimated to have taken place towards the end of the 17th and the beginning of the 18th century giving us the present circulating Euro-Asiatic and South African viral strains. Furthermore our results hint that Europe acted as a possible hub for the disease from where it successfully dispersed elsewhere via exploration and trading routes.

  18. A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus Compressed Gas-Based Ventilators

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Material: Four turbine- based ventilators and nine conventional servo-valve compressed-gas ventilators were1 A Bench Study of Intensive Care Unit Ventilators: New versus Old and Turbine-Based versus patient's effort. On average, turbine-based ventilators performed better than conventional ventilators

  19. In-situ calibration: migrating control system IP module calibration from the bench to the storage ring

    SciTech Connect (OSTI)

    Weber, Jonah M.; Chin, Michael

    2002-04-30T23:59:59.000Z

    The Control System for the Advanced Light Source (ALS) at Lawrence Berkeley National Lab (LBNL) uses in-house designed IndustryPack(registered trademark) (IP) modules contained in compact PCI (cPCI) crates with 16-bit analog I/O to control instrumentation. To make the IP modules interchangeable, each module is calibrated for gain and offset compensation. We initially developed a method of verifying and calibrating the IP modules in a lab bench test environment using a PC with LabVIEW. The subsequent discovery that the ADCs have significant drift characteristics over periods of days of installed operation prompted development of an ''in-situ'' calibration process--one in which the IP modules can be calibrated without removing them from the cPCI crates in the storage ring. This paper discusses the original LabVIEW PC calibration and the migration to the proposed in-situ EPICS control system calibration.

  20. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    SciTech Connect (OSTI)

    Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John

    2014-01-16T23:59:59.000Z

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area. In a synergistic add-on to our workplan, we analyzed data from field experiments performed at the DOE Naturita Site under a separate DOE SBR grant, on which PI Day-Lewis served as co-PI. Techniques developed for application to Hanford datasets also were applied to data from Naturita. 1. Introduction The Department of Energy (DOE) faces enormous scientific and engineering challenges associated with the remediation of legacy contamination at former nuclear weapons production facilities. Selection, design and optimization of appropriate site remedies (e.g., pump-and-treat, biostimulation, or monitored natural attenuation) requires reliable predictive models of radionuclide fate and transport; however, our current modeling capabilities are limited by an incomplete understanding of multi-scale mass transfer—its rates, scales, and the heterogeneity of controlling parameters. At many DOE sites, long “tailing” behavior, concentration rebound, and slower-than-expected cleanup are observed; these observations are all consistent with multi-scale mass transfer [Haggerty and Gorelick, 1995; Haggerty et al., 2000; 2004], which renders pump-and-treat remediation and biotransformation inefficient and slow [Haggerty and Gorelick, 1994; Harvey et al., 1994; Wilson, 1997]. Despite the importance of mass transfer, there are significant uncertainties associated with controlling parameters, and the prevalence of mass transfer remains a point of debate [e.g., Hill et al., 2006; Molz et al., 2006] for lack of experimental methods to verify and measure it in situ or independently of tracer breakthrough. There is a critical need for new field-experimental techniques to measure mass transfer in-situ and estimate multi-scale and spatially variable mass-transfer parame

  1. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters Final Report to the Subsurface Biogeochemical Research Program

    SciTech Connect (OSTI)

    Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Timothy; Binley, Andrew; Lane, John

    2014-03-10T23:59:59.000Z

    . In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Our study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area.

  2. Sulfur-Iodine Integrated Lab Scale Experiment Development

    SciTech Connect (OSTI)

    Russ, Ben

    2011-05-27T23:59:59.000Z

    The sulfur-iodine (SI) cycle was deermined to be the best cycle for coupling to a high temperature reactor (HTR) because of its high efficiency and potential for further improvement. The Japanese Atomic Energy Agency (JAEA) has also selected the SI process for further development and has successfully completed bench-scale demonstrations of the SI process at atmospheric pressure. JEA also plans to proceed with pilot-scale demonstrations of the SI process and eventually plans to couple an SI demonstration plant to its High Temperature Test Reactor (HHTR). As part of an international NERI project, GA, SNL, and the Frech Commissariat L'Energie Atomique performed laboratory-scale demonstrations of the SI process at prototypical temperatures and pressures. This demonstration was performed at GA in San Diego, CA and concluded in April 2009.

  3. DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR THE BENCH STEAM REFORMER TEST

    SciTech Connect (OSTI)

    BANNING DL

    2010-08-03T23:59:59.000Z

    This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Fluid Bed Steam Reformer testing. The type, quantity and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluid bed steam reformer (FBSR). A determination of the adequacy of the FBSR process to treat Hanford tank waste is required. The initial step in determining the adequacy of the FBSR process is to select archived waste samples from the 222-S Laboratory that will be used to test the FBSR process. Analyses of the selected samples will be required to confirm the samples meet the testing criteria.

  4. CX-011393: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-011393: Categorical Exclusion Determination Build and Test of a Novel, Commercial-Scale Wave Energy Direct Drive Rotary Power Take-Off Under...

  5. CX-003632: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-003632: Categorical Exclusion Determination Analysis of Evaporator Scale Sample CX(s) Applied: B3.6 Date: 08102010 Location(s): Aiken,...

  6. CX-002474: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination Full Scale Testing Characterization, System Optimization, Demonstration of Grid Connected Wind Turbines and Wind Powered Water Desalination...

  7. Characterization of a fluidized-bed combustion ash to determine potential for environmental impact. Final report

    SciTech Connect (OSTI)

    Hassett, D.J.; Henderson, A.K.; Pflughoeft-Hassett, D.F.; Mann, M.D.; Eylands, K.E.

    1997-10-01T23:59:59.000Z

    A 440-megawatt, circulating fluidized-bed combustion (CFBC), lignite-fired power plant is planned for construction in Choctaw County north of Ackerman, Mississippi. This power plant will utilize Mississippi lignite from the first lignite mine in that state. Malcolm Pirnie, Inc., is working with the power plant developer in the current planning and permitting efforts for this proposed construction project. In order to accommodate Mississippi state regulatory agencies and meet appropriate permit requirements, Malcolm Pirnie needed to provide an indication of the characteristics of the by-products anticipated to be produced at the proposed plant. Since the Mississippi lignite is from a newly tapped mine and the CFBC technology is relatively new, Malcolm Pirnie contacted with the Energy and Environmental Research Center (EERC) to develop and perform a test plan for the production and characterization of ash similar to ash that will be eventually produced at the proposed power plant. The work performed at the EERC included two primary phases: production of by-products in a bench-scale CFBC unit using lignite provided by Malcolm Pirnie with test conditions delineated by Malcolm Pirnie to represent expected operating conditions for the full-scale plant; and an extensive characterization of the by-products produced, focusing on Mississippi regulatory requirements for leachability, with the understanding that return of the by-product to the mine site was an anticipated by-product management plan. The overall focus of this project was the environmental assessment of the by-product expected to be produced at the proposed power plant. Emphasis was placed on the leachability of potentially problematic trace elements in the by-products. The leaching research documented in this report was performed to determine trends of leachability of trace elements under leaching conditions appropriate for evaluating land disposal in monofills, such as returning the by-products to the mine site.

  8. INVESTIGATING SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A PILOT-SCALE WASTE TANK

    SciTech Connect (OSTI)

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.

    2011-05-24T23:59:59.000Z

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending and resuspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is for the pumps to resuspend the MST, CST, and simulated sludge particles so that they can be removed from the tank, and to suspend the MST so it can contact strontium and actinides. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5, B3, and B1). Previous testing showed that three Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank, and to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The conclusions from this analysis are: (1) Three SMPs will be able to resuspend more than 99.9% of the MST and CST that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 84% of the maximum discharge velocity of the pump. (2) Three SMPs will be able to resuspend more than 99.9% of the MST, CST, and simulated sludge that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 82% of the maximum discharge velocity of the pump. (3) A contact time of 6-12 hours is needed for strontium sorption by MST in a jet mixed tank with cooling coils, which is consistent with bench-scale testing and actinide removal process (ARP) operation.

  9. Final Report: Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    SciTech Connect (OSTI)

    Haggerty, Roy; Day-Lewis, Fred; Singha, Kamini; Johnson, Timothy; Binley, Andrew; Lane, John

    2014-03-20T23:59:59.000Z

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area. In a synergistic add-on to our workplan, we analyzed data from field experiments performed at the DOE Naturita Site under a separate DOE SBR grant, on which PI Day-Lewis served as co-PI. Techniques developed for application to Hanford datasets also were applied to data from Naturita.

  10. An assessment of alternatives for replacing Freon 113 in bench type electrical circuit board cleaning at Fermi National Accelerator Laboratory

    SciTech Connect (OSTI)

    Isakson, K.; Vessell, A.L.

    1994-07-01T23:59:59.000Z

    Fermilab is presently phasing out all solvents containing Freon-113 (CFC-113) as part of the continuing Waste Minimization Program. These solvents are used primarily in cleaning the flux off of electronic circuit boards after soldering, specifically in bench type work. Title VI of the Clean Air Act mandates a production phase-out for ozone depleting substances, like CFC-113, by the year 2000. Our study addresses this issue by evaluating and choosing alternative non-CFC solvents to replace the CFC-1 13 solvents at Fermilab. Several potential non-CFC cleaning solvents were tested. The evaluation took place in three parts: controlled experimental evaluation, chemical composition evaluation, and employee performed evaluation. First, we performed a controlled nine-step procedure with the potential solvents where each was evaluated in categories such as cleaning effectiveness, odor, residue, type of output and drying time. Next, we listed the chemical composition of each solvent. We noted which solvents contained hydrochlorofluorocarbons because they are targeted for phase-out in the future and will be recognized as interim solutions only. Finally, after preliminary testing, five solvents were chosen as the best options. These solvents were sent to be tested by Fermilab employees who use such materials. Their opinions are valuable not only because they are knowledgeable in this field, but also because they will be using the solvents chosen to replace the CFC-113 solvents. The results favored two ``best alternatives``: Safezone Solvent Flux Remover by Miller-Stephenson and E-Series CFC Free Flux-Off 2000 by Chemtech. Another possible solution also pursued is the no-clean solder option. In our study, we were not able to thoroughly investigate the many types of no-clean solders because of time and financial constraints. The testing that was done, however, showed that no-clean solder was a viable alternative in many cases.

  11. Bench-scale testing of the Multi-Gravity separator in combination with Microcel. Third quarterly report, April 1, 1993--June 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-30T23:59:59.000Z

    The primary objective of the proposed work is to design, install, and operate an advanced fine coal processing circuit combining the Microcel and Multi-Gravity-Separator (MGS) technologies. Both of these processes have specific advantages as stand-alone units. For example, the Microcel column effectively removes ash-bearing mineral matter, while the MGS efficiently removes coal-pyrite composites. By combining both unit operations into a single processing circuit, synergistic advantages can be gained. As a result, this circuit arrangement has the potential to improve coal quality beyond that achieved using the individual technologies. Work this quarter primarily focused on procurement and fabrication of the required process equipment. All fabrication work is underway and is expected to be completed prior to the installation deadline. Delays in the existing project within the Pittsburgh Energy Technology Center`s Coal Preparations Process Research Facility have resulted in a shift in the original project schedule. A new installation date (June 28, 1993) has been established by DOE/PETC. The overall project schedule has been adjusted accordingly. Revisions to ESH subject plans were also completed during this quarter. Based on these plans, the ESH permitting procedure has been initiated by the contracting officer`s representative. The subject plans and circuit will be modified, if necessary, to reflect any changes suggested by DOE. It is anticipated that the ESH permit will be issued in the early part of the third quarter. Preliminary characterization studies continued this quarter. Modifications were made to the centrifugal washability procedure to minimize time material requirements. Using the modified procedure, tests were conducted on both the Pittsburgh No. 8 and Illinois No. 6 seam coals as a function of particle size.

  12. Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post-Combustion CO{sub 2} Capture

    SciTech Connect (OSTI)

    Lu, Yongqi

    2014-02-01T23:59:59.000Z

    This report summarizes the methodology and preliminary results of a techno-economic analysis on a hot carbonate absorption process (Hot-CAP) with crystallization-enabled high pressure stripping for post-combustion CO{sub 2} capture (PCC). This analysis was based on the Hot-CAP that is fully integrated with a sub-critical steam cycle, pulverized coal-fired power plant adopted in Case 10 of the DOE/NETL’s Cost and Performance Baseline for Fossil Energy Plants. The techno-economic analysis addressed several important aspects of the Hot-CAP for PCC application, including process design and simulation, equipment sizing, technical risk and mitigation strategy, performance evaluation, and cost analysis. Results show that the net power produced in the subcritical power plant equipped with Hot-CAP is 611 MWe, greater than that with Econoamine (550 MWe). The total capital cost for the Hot-CAP, including CO{sub 2} compression, is $399 million, less than that for the Econoamine PCC ($493 million). O&M costs for the power plant with Hot-CAP is $175 million annually, less than that with Econoamine ($178 million). The 20-year levelized cost of electricity (LCOE) for the power plant with Hot-CAP, including CO2 transportation and storage, is 119.4 mills/kWh, a 59% increase over that for the plant without CO2 capture. The LCOE increase caused by CO{sub 2} capture for the Hot-CAP is 31% lower than that for its Econoamine counterpart.

  13. PAIN SCALES (ATTACHMENT A)

    E-Print Network [OSTI]

    Oliver, Douglas L.

    TOTAL SCORE: ADD INDIVIDUAL ASSESSMENT SCORES TO DETERMINE THE TOTAL PAIN SCORE. TOTAL THE 5 CATEGORIES FOR TOTAL PAIN SCORE. MAXIMUM SCORE = 10/10. Reference: Merkel SJ, et al. The FLACC: A Behavioral Pain Scale or groan. Low level speech with a negative or disapproving quality. Repeated troubled calling out. Loud

  14. How to calibrate the jet energy scale?

    SciTech Connect (OSTI)

    Hatakeyama, K.; /Rockefeller U.

    2006-01-01T23:59:59.000Z

    Top quarks dominantly decay into b-quark jets and W bosons, and the W bosons often decay into jets, thus the precise determination of the jet energy scale is crucial in measurements of many top quark properties. I present the strategies used by the CDF and D0 collaborations to determine the jet energy scale. The various cross checks performed to verify the determined jet energy scale and evaluate its systematic uncertainty are also discussed.

  15. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning

    SciTech Connect (OSTI)

    R.-H. Yoon; G.H. Luttrell; A.D. Walters

    1999-10-01T23:59:59.000Z

    During the past quarter, the installation, testing and shakedown phases of commissioning the TES unit were completed (Tasks 4, 5.1 and 5.2). A representative from Carpco Inc. was on site to provide training in the operation of the test unit and assist with the initial test runs. Problems have been encountered with the recycle conveyor generating dust that neutralizes the particle charge. Testing has continued by batch feeding the unit while the recycle conveying problem is being solved. Good separations have been achieved while operating in this mode. Comparison tests have also been carried out using a bench-scale triboelectrostatic separator in parallel with the POC Carpco unit.

  16. BLENDING STUDY FOR SRR SALT DISPOSITION INTEGRATION: TANK 50H SCALE-MODELING AND COMPUTER-MODELING FOR BLENDING PUMP DESIGN, PHASE 2

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Fowley, M.

    2011-05-26T23:59:59.000Z

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where 300,000-800,000 gallons of salt solution will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. Blending requires the miscible salt solutions from potentially multiple source tanks per batch to be well mixed without disturbing settled sludge solids that may be present in a Blend Tank. Disturbing solids may be problematic both from a feed quality perspective as well as from a process safety perspective where hydrogen release from the sludge is a potential flammability concern. To develop the necessary technical basis for the design and operation of blending equipment, Savannah River National Laboratory (SRNL) completed scaled blending and transfer pump tests and computational fluid dynamics (CFD) modeling. A 94 inch diameter pilot-scale blending tank, including tank internals such as the blending pump, transfer pump, removable cooling coils, and center column, were used in this research. The test tank represents a 1/10.85 scaled version of an 85 foot diameter, Type IIIA, nuclear waste tank that may be typical of Blend Tanks used in SDI. Specifically, Tank 50 was selected as the tank to be modeled per the SRR, Project Engineering Manager. SRNL blending tests investigated various fixed position, non-rotating, dual nozzle pump designs, including a blending pump model provided by the blend pump vendor, Curtiss Wright (CW). Primary research goals were to assess blending times and to evaluate incipient sludge disturbance for waste tanks. Incipient sludge disturbance was defined by SRR and SRNL as minor blending of settled sludge from the tank bottom into suspension due to blending pump operation, where the sludge level was shown to remain constant. To experimentally model the sludge layer, a very thin, pourable, sludge simulant was conservatively used for all testing. To experimentally model the liquid, supernate layer above the sludge in waste tanks, two salt solution simulants were used, which provided a bounding range of supernate properties. One solution was water (H{sub 2}O + NaOH), and the other was an inhibited, more viscous salt solution. The research performed and data obtained significantly advances the understanding of fluid mechanics, mixing theory and CFD modeling for nuclear waste tanks by benchmarking CFD results to actual experimental data. This research significantly bridges the gap between previous CFD models and actual field experiences in real waste tanks. A finding of the 2009, DOE, Slurry Retrieval, Pipeline Transport and Plugging, and Mixing Workshop was that CFD models were inadequate to assess blending processes in nuclear waste tanks. One recommendation from that Workshop was that a validation, or bench marking program be performed for CFD modeling versus experiment. This research provided experimental data to validate and correct CFD models as they apply to mixing and blending in nuclear waste tanks. Extensive SDI research was a significant step toward bench marking and applying CFD modeling. This research showed that CFD models not only agreed with experiment, but demonstrated that the large variance in actual experimental data accounts for misunderstood discrepancies between CFD models and experiments. Having documented this finding, SRNL was able to provide correction factors to be used with CFD models to statistically bound full scale CFD results. Through the use of pilot scale tests performed for both types of pumps and available engineering literature, SRNL demonstrated how to effectively apply CFD results to salt batch mixing in full scale waste tanks. In other words, CFD models were in error prior to development of experimental correction factors determined during this research, which provided a technique to use CFD models fo

  17. Nuclear scales

    SciTech Connect (OSTI)

    Friar, J.L.

    1998-12-01T23:59:59.000Z

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.

  18. Categorical Exclusion Determinations: Office of River Protection...

    Energy Savers [EERE]

    Operations Office July 3, 2014 CX-012329: Categorical Exclusion Determination PNNL Projects Involving Small-Scale Research and Development, Laboratory Operations, and...

  19. CX-008476: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-008476: Categorical Exclusion Determination Small Scale Field Test Demonstrating Carbon Dioxide Sequestration in the Arbuckle Saline Aquifer CX(s) Applied: A9, B1.15,...

  20. Energy Efficient Aluminum Production - Pilot-Scale Cell Tests - Final Report for Phase I and Phase II

    SciTech Connect (OSTI)

    R. A. Christini

    1999-12-30T23:59:59.000Z

    A cermet anode that produces oxygen and a cathode material that is wetted by aluminum can provide a dimensionally stable inter-electrode distance in the Hall-Heroult cell. This can be used to greatly improve the energy and/or productivity efficiencies. The concept, which was developed and tested, uses a system of vertically interleaved anodes and cathodes. The major advantage of this concept is the significant increase in electrochemical surface area compared to a horizontal orientation of anode and cathode that is presently used in the Hall-Heroult process. This creates an additional advantage for energy reduction of 1.3 kWh/lb or a 20% productivity improvement. The voltages obtained in an optimized cell test met the energy objectives of the project for at least two weeks. An acceptable current efficiency was never proven, however, during either pilot scale or bench scale tests with the vertical plate configuration. This must be done before a vertical cell can be considered viab le. Anode corrosion rate must be reduced by at least a factor of three in order to produce commercial purity aluminum. It is recommended that extensive theoretical and bench scale investigations be done to improve anode materials and to demonstrate acceptable current efficiencies in a vertical plate cell before pilot scale work is continued.

  1. Structure, Vol. 11, 1319, January, 2003, 2003 Elsevier Science Ltd. All rights reserved. PII S0969-2126(02)00910-3 Notes from the BenchHow does Radiation

    E-Print Network [OSTI]

    Harrison, Stephen C.

    -2126(02)00910-3 Notes from the BenchHow does Radiation Damage in Protein Crystals Depend on X-Ray Dose? as heat free radical diffusion altogether, secondary damage becomes insig-Is radiation damage to cryopreserved does not appearThe smallest crystal that can yield a full data set to to provide greater protection

  2. CX-010707: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Categorical Exclusion Determination CX-010707: Categorical Exclusion Determination Outdoor, Small-and Pilot-Scale Research and Development CX(s) Applied: A9, B1.24, B3.4, B3.6,...

  3. CX-008514: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    4: Categorical Exclusion Determination CX-008514: Categorical Exclusion Determination Corrosion and Scale at Extreme Temperature and Pressure CX(s) Applied: A9, A11, B3.6 Date: 07...

  4. Relating Pore-Scale Uranium Aquatic Speciation to Intermediate-Scale Aquifer Heterogeneity

    SciTech Connect (OSTI)

    Ranville, James

    2013-04-01T23:59:59.000Z

    The speciation and transport of uranium (VI) through porous media is highly dependent on solution conditions, the presence of complexing ligands, and the nature of the porous media. The dependency on many variables makes prediction of U transport in bench-scale experiments and in the field difficult. In particular, the identification of colloidal U phases poses a technical challenge. Transport of U in the presence and absence of natural organic matter (Suwannee River humic acid, SRHA) through silica sand and hematite coated silica sand was tested at pH 4 and 5 using static columns, where flow is controlled by gravity and residence time between advective pore volume exchanges can be strictly controlled. The column effluents were characterized by traditional techniques including ICPMS quantification of total [U] and [Fe], TOC analysis of [DOC], and pH analysis, and also by non-traditional techniques: flow field flow fractionation with online ICPMS detection (FlFFF-ICPMS) and specific UV absorbance (SUVA) characterization of effluent fractions. Key results include that the transport of U through the columns was enhanced by pre-equilibration with SRHA, and previously deposited U was remobilized by the addition of SRHA. The advanced techniques yielded important insights on the mechanisms of transport: FlFFF-ICPMS identified a U?SRHA complex as the mobile U species and directly quantified relative amounts of the complex, while specific UV absorbance (SUVA) measurements indicated a composition-based fractionation onto the porous media.

  5. Spray-Formed Tooling with Micro-Scale Features

    SciTech Connect (OSTI)

    Kevin McHugh

    2010-06-01T23:59:59.000Z

    Molds, dies, and related tooling are used to shape many of the plastic and metal components we use every day at home and work. Traditional mold-making practices are labor and capital equipment intensive, involving multiple machining, benching and heat treatment operations. Spray forming is an alternative method to manufacture molds and dies. The general concept is to atomize and deposit droplets of a tooling alloy onto a pattern to form a thick deposit while imaging the pattern’s shape, surface texture and details. Unlike conventional machining, this approach can be used to fabricate tooling with micro-scale surface features. This paper describes a research effort to spray form molds and dies that are used to image micro-scale surface textures into polymers. The goal of the study is to replicate textures that give rise to superhydrophobic behavior by mimicking the surface structure of highly water repellent biological materials such as the lotus leaf. Spray conditions leading to high transfer fidelity of features into the surface of molded polymers will be described. Improvements in water repellency of these materials was quantified by measuring the static contact angle of water droplets on flat and textured surfaces.

  6. Resolution of reservoir scale electrical anisotropy from marine CSEM data

    E-Print Network [OSTI]

    Brown, V.

    2013-01-01T23:59:59.000Z

    the field data to accurately model potential reservoirs andreservoir scale electrical anisotropy from marine CSEM datathe reservoir target can be determined from seismic data or

  7. CX-011193: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Categorical Exclusion Determination for Indoor, Small- and Pilot-Scale Research and Development CX(s) Applied: A9, B1.7, B3.6, B3.10, B3.12, B3.15, B5.1, B5.15 Date: 08/05/2013 Location(s): California Offices(s): Berkeley Site Office

  8. CX-008478: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-008478: Categorical Exclusion Determination Small Scale Field Test Demonstrating Carbon Dioxide Sequestration in the Arbuckle Saline Aquifer CX(s) Applied: A9, B3.1, B5.3...

  9. CX-008477: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-008477: Categorical Exclusion Determination Small Scale Field Test Demonstrating Carbon Dioxide Sequestration in the Arbuckle Saline Aquifer CX(s) Applied: A9, B3.1, B3.7,...

  10. CX-008474: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-008474: Categorical Exclusion Determination Small Scale Field Test Demonstrating Carbon Dioxide Sequestration in the Arbuckle Saline Aquifer CX(s) Applied: B1.15, B3.6,...

  11. CX-008475: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-008475: Categorical Exclusion Determination Small Scale Field Test Demonstrating Carbon Dioxide Sequestration in the Arbuckle Saline Aquifer CX(s) Applied: A9, B3.1, B3.7,...

  12. CX-100012: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Build and Test of a Novel, Commercial-Scale Wave Energy Direct0Drive Rotary Power Take-Off Under Realistic Open-Ocean Conditions CX(s)...

  13. Scaling the Web Scaling Web Sites

    E-Print Network [OSTI]

    Menascé, Daniel A.

    Scaling the Web Scaling Web Sites Through Caching A large jump in a Web site's traffic may indi, pushing the site's through- put to its maximum point. When a Web site becomes overloaded, cus- tomers grow-generated revenue and may even tarnish the reputation of organizations relying on Web sites to support mission

  14. Robot calibration without scaling

    E-Print Network [OSTI]

    Ives, Thomas W.

    1995-01-01T23:59:59.000Z

    methods. Scaling is a common way of improving the condition number for a matrix. Researchers in other fields have developed specific methods of scaling matrices to improve the condition number. However, robotics researchers have not specifically addressed...

  15. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    SciTech Connect (OSTI)

    R.H. Yoon; G.H. Luttrell; E.S. Yan; A.D. Walters

    2001-04-30T23:59:59.000Z

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both ash- and sulfur-forming minerals from coal. However, most of the processes involve fine grinding and use water as the cleaning medium; therefore, the clean coal products must be dewatered before they can be transported and burned. Unfortunately, dewatering fine coal is costly, which makes it difficult to deploy advanced coal cleaning processes for commercial applications. As a means of avoiding problems associated with the fine coal dewatering, the National Energy Technology Laboratory (NETL) developed a dry coal cleaning process in which mineral matter is separated from coal without using water. In this process, pulverized coal is subjected to triboelectrification before being placed in an electric field for electrostatic separation. The triboelectrification is accomplished by passing a pulverized coal through an in-line mixer made of copper. Copper has a work function that lies between that of carbonaceous material (coal) and mineral matter. Thus, coal particles impinging on the copper wall lose electrons to the metal thereby acquiring positive charges, while mineral matter impinging on the wall gain electrons to acquire negative charges. The charged particles then pass through an electric field where they are separated according to their charges into two or more products depending on the configuration of the separator. The results obtained at NETL showed that it is capable of removing more than 90% of the pyritic sulfur and 70% of the ash-forming minerals from a number of eastern U.S. coals. However, the BTU recoveries were less than desirable. The laboratory-scale batch triboelectrostatic separator (TES) used by NETL relied on adhering charged particles on parallel electrode surfaces and scraping them off. Therefore, its throughput will be proportional to the electrode surface area. If this laboratory device is scaled-up as is, it would suffer from low throughput capacities and high maintenance requirements. In general, surface area-based separators (e.g., shaking tables, magnetic drum separator, electrodynamic separator, etc.) have lower throughput capacities than volume-based separators (e.g., flotation cell, dense-medium bath, cyclones, etc.) by an order of magnitude. Furthermore, the electrodes of the laboratory unit need to be cleaned frequently, creating a high maintenance requirement if it is scaled-up to a commercial unit. The bench-scale continuous TES unit developed at NETL, on the other hand, separates positively and negatively charged particles by splitting the gaseous stream containing these particles in an electric field by means of a flow splitter, so that the oppositely charged particles can be directed into different compartments. This device is fundamentally different from the laboratory unit in that the former is a surface area-based separator, while the latter is a volume-based separator. The bench-scale unit is referred to as an entrained flow separator by the in-house researchers at NETL. Thus, the entrained flow TES unit is a significant improvement over the laboratory unit with regard to throughput capacity. In the present work, the entrained flow separator concept will be utilized for developing a proof-of concept (POC) separator that can be scaled-up to commercial size units. To accomplish this, it is necessary to develop a bench-scale separator that can achieve high Btu recoveries while maintaining the high degree of separation efficiencies. It is the objective of the present investigation to develop an efficient separator by studying the mechanisms of triboelectrification and investigating better ways of separating the charged particles. An important criterion for developing efficient separators is that they not only provide high separation efficiencies but also have high throughput capacities, which are essential ingredients for successful commercialization.

  16. Object Searchingin Scale-Space Guang-Rong Ji, Bao-Liang Lu*, Xia Chen, & Jian Wang

    E-Print Network [OSTI]

    Lu, Bao-Liang

    an object searching method for meso-scale eddy detection in the ocean remote sensing images. The method is determined by the analysis scale and the slope of the corner's boundary. The meso-scale eddy detection

  17. System design study to reduce capital and operating costs and bench-scale testing of a circulating-bed AFB advanced concept. Phase 1, Task 2: interim report on Task 1 results

    SciTech Connect (OSTI)

    Fraley, L.D.; Hsiao, K.H.; Lee, M.M.; Lin, Y.Y.; Sadhukhan, P.; Schlossman, M.; Schreiner, W.C.; Solbakken, A.

    1985-08-01T23:59:59.000Z

    The M.W. Kellogg Company has had under consideration for many years a combustor design involving a circulating fluid bed of ash, coal, lime/limestone sorbent, and calcium sulfate. In a previous study for the Department of Energy, M.W. Kellogg performed a design analysis for an atmospheric fluidized-bed combustor whose performance should significantly exceed conventional FBC operation performance, i.e., the Kellogg CFBC. The analysis conclusively showed that the Kellogg CFBC met or exceeded performance criteria for advanced atmospheric FBC's. This is superior to those FBC's currently in the market place. The objective of the study presented here was to reduce capital and operating costs of the Kellogg CFBC, configured into an industrial boiler system of 150,000 pounds per hour steaming capacity. This report presents the design optimization, detailed designs, and cost estimates required to compare CFBC with conventional AFB. The results show the Kellogg CFBC to be a very economical concept. Technically, the Kellogg CFBC can meet or exceed all of the design criteria established for an advanced AFBC. Its compact design resembles an FCC unit in structure and operation. By staged combustion, NO/sub x/ emissions are controlled by the reducing atmosphere and sulfur absorption enhanced in the improved kinetics of the H/sub 2/S-CaO reaction. The unique combustor/riser design keeps the boiler tubes from exposure to corrosive combustion gases, solving the erosion and corrosion problems existing in conventional bubbling-bed AFB. 7 refs., 28 figs., 17 tabs.

  18. Silica Scaling Removal Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sidestreams of cooling tower water by providing a substrate for the deposition and adsorption of silica. The removal of the silica prevents scaling deposition on heat transfer...

  19. Pore Scale Micromodels | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of EMSL's Subsurface Flow and Transport Laboratory (SFTL) with a focus on coupled (multiphase) flow, diffusion, and reactions processes at the microscopic scale (m to cm) that...

  20. Thermodynamics and scale relativity

    E-Print Network [OSTI]

    Robert Carroll

    2011-10-13T23:59:59.000Z

    It is shown how the fractal paths of scale relativity (following Nottale) can be introduced into a thermodynamical context (following Asadov-Kechkin).

  1. University of Houston and City of Houston: Collaboration to Determine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Testing Center Combining Biodiesel and EGR for Low-Temperature NOx and PM Reductions Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives...

  2. Full-scale remediation of a grey iron foundry waste surface impoundment

    SciTech Connect (OSTI)

    Krueger, R.C.; Chowdhury, A.K.; Warner, M.A. (RMT, Inc., Madison, WI (United States))

    1991-08-01T23:59:59.000Z

    A large grey iron foundry was facing remediation of a surface impoundment containing approximately 300,000 cubic yards of EP-Toxic sludge. The sludge was generated by the settling of wastewater solids from air emission control systems connected with cupola melting operations. Bench-scale treatability testing was used to evaluate various chemical treatment possibilities for rendering the sludge non-EP-Toxic. Several phosphate sources and different engineering options were evaluated for cost-effectiveness of full-scale remediation. The most economical option was to dredge the solids continuously as a slurry (while the impoundment remained in operation) with injection of phosphoric acid into the slurry pipeline. The treatment process was controlled by monitoring residual phosphate in the treated slurry. The remediation process was tested in a month-long field trial using full-scale equipment, and was followed by successful remediation during a 6-month period. A technical overview and performance data on the remediation process are presented.

  3. Transition physics and scaling overview

    SciTech Connect (OSTI)

    Carlstrom, T.N.

    1995-12-01T23:59:59.000Z

    This paper presents an overview of recent experimental progress towards understanding H-mode transition physics and scaling. Terminology and techniques for studying H-mode are reviewed and discussed. The model of shear E x B flow stabilization of edge fluctuations at the L-H transition is gaining wide acceptance and is further supported by observations of edge rotation on a number of new devices. Observations of poloidal asymmetries of edge fluctuations and dephasing of density and potential fluctuations after the transition pose interesting challenges for understanding H-mode physics. Dedicated scans to determine the scaling of the power threshold have now been performed on many machines. A dear B{sub t} dependence is universally observed but dependence on the line averaged density is complicated. Other dependencies are also reported. Studies of the effect of neutrals and error fields on the power threshold are under investigation. The ITER threshold database has matured and offers guidance to the power threshold scaling issues relevant to next-step devices.

  4. Hubble's Law and the Distance Scale Landmarks in our understanding of cosmic distances

    E-Print Network [OSTI]

    Basu, Shantanu

    find distances to celestial objects? Build up distance scale from direct measurements to nearby objectsHubble's Law and the Distance Scale Landmarks in our understanding of cosmic distances: (1) Triangulation to determine the scale and dynamics of the solar system (Kepler) (2) Parallax to determine

  5. Engineering scale electrostatic enclosure demonstration

    SciTech Connect (OSTI)

    Meyer, L.C.

    1993-09-01T23:59:59.000Z

    This report presents results from an engineering scale electrostatic enclosure demonstration test. The electrostatic enclosure is part of an overall in-depth contamination control strategy for transuranic (TRU) waste recovery operations. TRU contaminants include small particles of plutonium compounds associated with defense-related waste recovery operations. Demonstration test items consisted of an outer Perma-con enclosure, an inner tent enclosure, and a ventilation system test section for testing electrostatic curtain devices. Three interchangeable test fixtures that could remove plutonium from the contaminated dust were tested in the test section. These were an electret filter, a CRT as an electrostatic field source, and an electrically charged parallel plate separator. Enclosure materials tested included polyethylene, anti-static construction fabric, and stainless steel. The soil size distribution was determined using an eight stage cascade impactor. Photographs of particles containing plutonium were obtained with a scanning electron microscope (SEM). The SEM also provided a second method of getting the size distribution. The amount of plutonium removed from the aerosol by the electrostatic devices was determined by radiochemistry from input and output aerosol samplers. The inner and outer enclosures performed adequately for plutonium handling operations and could be used for full scale operations.

  6. THE EXTRAGALACTIC DISTANCE SCALE WITHOUT CEPHEIDS. IV

    SciTech Connect (OSTI)

    Hislop, Lachlan; Mould, Jeremy [School of Physics, University of Melbourne, Vic 3010 (Australia); Schmidt, Brian; Bessell, Michael S.; Da Costa, Gary; Francis, Paul; Keller, Stefan; Tisserand, Patrick; Rapoport, Sharon; Casey, Andy, E-mail: jmould@unimelb.edu.au, E-mail: brian@mso.anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Canberra (Australia)

    2011-06-01T23:59:59.000Z

    The Cepheid period-luminosity relation is the primary distance indicator used in most determinations of the Hubble constant. The tip of the red giant branch (TRGB) is an alternative basis. Using the new Australian National University (ANU) SkyMapper Telescope, we calibrate the Tully-Fisher relation in the I band. We find that the TRGB and Cepheid distance scales are consistent.

  7. Acid treatment removes zinc sulfide scale restriction

    SciTech Connect (OSTI)

    Biggs, K. (Kerr McGee Corp., Lafayette, LA (US)); Allison, D. (Otis Engineering Corp., Lafayette, LA (US)); Ford, W.G.F. (Halliburton Co., Duncan, OK (United States))

    1992-08-31T23:59:59.000Z

    This paper reports that removal of zinc sulfide (ZnS) scale with acid restored an offshore Louisiana well's production to original rates. The zinc sulfide scale was determined to be in the near well bore area. The selected acid had been proven to control iron sulfide (FeS) scales in sour wells without causing harm to surface production equipment, tubing, and other downhole hardware. The successful removal of the blockage re-established previous production rates with a 105% increase in flowing tubing pressure. On production for a number of months, a high rate, high-pressure offshore well was experiencing unusually rapid pressure and rate declines. A small sample of the restrictive material was obtained during the wire line operations. The well was subsequently shut in while a laboratory analysis determined that zinc sulfide was the major component of the obstruction.

  8. SEDIMENT DECONTAMINATION TREATMENT TRAIN: COMMERCIAL-SCALE DEMONSTRATION FOR THE PORT OF NEW YORK/NEW JERSEY

    SciTech Connect (OSTI)

    JONES,K.W.; STERN,E.A.; DONATO,K.R.; CLESCERI,N.L.

    1999-07-01T23:59:59.000Z

    Decontamination and beneficial use of dredged material is a component of a comprehensive Dredged Material Management Plan for the Port of New York and New Jersey. The authors describe here a regional contaminated sediment decontamination program that is being implemented to meet the needs of the Port. The components of the train include: (1) dredging and preliminary physical processing (materials handling), (2) decontamination treatment, (3) beneficial use, and (4) public outreach. Several types of treatment technologies suitable for use with varying levels of sediment contamination have been selected based on the results of bench- and pilot-scale tests. This work is being conducted under the auspices of the Water Resources Development Act (WRDA). The use of sediment washing is suitable for sediments with low to moderate contamination levels, typical of industrialized waterways. BioGenesis Enterprises and Roy F. Weston, Inc. performed the first phase of an incremental decontamination demonstration with the goal of decontaminating 700 cubic yards (cy) (pilot-scale) for engineering design and cost economics information for commercial scale operations. This pilot test was completed in March, 1999. The next phase will scale-up to operation of a commercial facility capable of treating 40 cy/hr. It is anticipated that this will be completed by January 2000 (250,000 cy/yr). Manufactured topsoil is one beneficial use product from this process. Tests of two high-temperature treatment technologies are also in progress. They are well suited to produce almost complete destruction of organic compounds in moderate to highly contaminated dredged materials and for production of high-value beneficial reuse products. The Institute of Gas Technology is demonstrating a natural gas-fired thermochemical manufacturing process with an initial treatment capacity of 30,000 cy/yr into operation by the fall of 1999. Design and construction of a 100,000 cy/yr facility will be based on the operational results obtained from the demonstration facility. The decontaminated dredged material will be converted to a construction-grade cement. Prior bench- and pilot-scale tests showed that this treatment removes 99.99% of the organic contaminants and immobilizes the metals. The Westinghouse Science and Technology Center has demonstrated use of a high-temperature plasma to achieve 99.99% removal efficiencies for organic contaminants while immobilizing metals in a glass matrix. It was shown that a glass product such as tiles or fibers can be produced and that it can be used for manufacturing high quality glass tiles on a commercial scale.

  9. Concurrent Validity of the "Working with Others Scale" of the ICIS Employment Interview System

    E-Print Network [OSTI]

    Cassidy, Martha Ward

    2011-12-31T23:59:59.000Z

    Concurrent Validity of the "Working with Others Scale" of the ICIS Employment Interview System Martha W. Cassidy ABSTRACT The purpose of this study was to determine if the Working with Others Scale from the American ...

  10. Determining physical properties of the cell cortex

    E-Print Network [OSTI]

    A. Saha; M. Nishikawa; M. Behrndt; C. -P. Heisenberg; F. Jülicher; S. W. Grill

    2015-07-02T23:59:59.000Z

    Actin and myosin assemble into a thin layer of a highly dynamic network underneath the membrane of eukaryotic cells. This network generates the forces that drive cell and tissue-scale morphogenetic processes. The effective material properties of this active network determine large-scale deformations and other morphogenetic events. For example,the characteristic time of stress relaxation (the Maxwell time)in the actomyosin sets the time scale of large-scale deformation of the cortex. Similarly, the characteristic length of stress propagation (the hydrodynamic length) sets the length scale of slow deformations, and a large hydrodynamic length is a prerequisite for long-ranged cortical flows. Here we introduce a method to determine physical parameters of the actomyosin cortical layer (in vivo). For this we investigate the relaxation dynamics of the cortex in response to laser ablation in the one-cell-stage {\\it C. elegans} embryo and in the gastrulating zebrafish embryo. These responses can be interpreted using a coarse grained physical description of the cortex in terms of a two dimensional thin film of an active viscoelastic gel. To determine the Maxwell time, the hydrodynamic length and the ratio of active stress and per-area friction, we evaluated the response to laser ablation in two different ways: by quantifying flow and density fields as a function of space and time, and by determining the time evolution of the shape of the ablated region. Importantly, both methods provide best fit physical parameters that are in close agreement with each other and that are similar to previous estimates in the two systems. We provide an accurate and robust means for measuring physical parameters of the actomyosin cortical layer.It can be useful for investigations of actomyosin mechanics at the cellular-scale, but also for providing insights in the active mechanics processes that govern tissue-scale morphogenesis.

  11. Soil moisture modeling and scaling using passive microwave remote sensing

    E-Print Network [OSTI]

    Das, Narendra N.

    2007-04-25T23:59:59.000Z

    Soil moisture in the shallow subsurface is a primary hydrologic state governing land-atmosphere interaction at various scales. The primary objectives of this study are to model soil moisture in the root zone in a distributed manner and determine...

  12. Large scale disease prediction

    E-Print Network [OSTI]

    Schmid, Patrick R. (Patrick Raphael)

    2008-01-01T23:59:59.000Z

    The objective of this thesis is to present the foundation of an automated large-scale disease prediction system. Unlike previous work that has typically focused on a small self-contained dataset, we explore the possibility ...

  13. Scaling considerations for modeling the in situ vitrification process

    SciTech Connect (OSTI)

    Langerman, M.A.; MacKinnon, R.J.

    1990-09-01T23:59:59.000Z

    Scaling relationships for modeling the in situ vitrification waste remediation process are documented based upon similarity considerations derived from fundamental principles. Requirements for maintaining temperature and electric potential field similarity between the model and the prototype are determined as well as requirements for maintaining similarity in off-gas generation rates. A scaling rationale for designing reduced-scale experiments is presented and the results are assessed numerically. 9 refs., 6 figs.

  14. The Improbability scale

    SciTech Connect (OSTI)

    Ritchie, David J.; /Fermilab

    2005-03-01T23:59:59.000Z

    The Improbability Scale (IS) is proposed as a way of communicating to the general public the improbability (and by implication, the probability) of events predicted as the result of scientific research. Through the use of the Improbability Scale, the public will be able to evaluate more easily the relative risks of predicted events and draw proper conclusions when asked to support governmental and public policy decisions arising from that research.

  15. Development and Implementation of a Scaled Saltstone Facility at Savannah River National Laboratory - 13346

    SciTech Connect (OSTI)

    Reigel, Marissa M.; Fowley, Mark D.; Hansen, Erich K.; Hera, Kevin R.; Marzolf, Athneal D.; Cozzi, Alex D. [Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) has supported the Saltstone Production Facility (SPF) since its conception. However, bench scaled tests have not always provided process or performance data related to the mixing, transfer, and other operations utilized in the SPF. A need was identified to better understand the SPF processes and to have the capabilities at SRNL to simulate the SPF unit operations to support an active low-level radioactive waste (LLW) processing facility. At the SPF, the dry premix is weighed, mixed and transferred to the Readco '10-inch' continuous mixer where it is mixed with the LLW salt solution from the Salt Feed Tank (SFT) to produce fresh Saltstone slurry. The slurry is discharged from the mixer into a hopper. The hopper feeds the grout pump that transfers the slurry through at least 457.2 meters of piping and discharges it into the Saltstone Disposal Units (SDU) for permanent disposal. In conjunction with testing individual SPF processes over several years, SRNL has designed and fabricated a scaled Saltstone Facility. Scaling of the system is primarily based on the volume capacity of the mixer and maintaining the same shear rate and total shear at the wall of the transfer line. At present, SRNL is utilizing the modular capabilities of the scaled Saltstone Facility to investigate the erosion issues related to the augers and paddles inside the SPF mixer. Full implementation of the scaled Saltstone Facility is still ongoing, but it is proving to be a valuable resource for testing alternate Saltstone formulations, cleaning sequences, the effect of pumping Saltstone to farther SDU's, optimization of the SPF mixer, and other operational variables before they are implemented in the SPF. (authors)

  16. Preliminary Scaling Estimate for Select Small Scale Mixing Demonstration Tests

    SciTech Connect (OSTI)

    Wells, Beric E.; Fort, James A.; Gauglitz, Phillip A.; Rector, David R.; Schonewill, Philip P.

    2013-09-12T23:59:59.000Z

    The Hanford Site double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions’ Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems.

  17. Polyethylene encapsulatin of nitrate salt wastes: Waste form stability, process scale-up, and economics

    SciTech Connect (OSTI)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1991-07-01T23:59:59.000Z

    A polyethylene encapsulation system for treatment of low-level radioactive, hazardous, and mixed wastes has been developed at Brookhaven National Laboratory. Polyethylene has several advantages compared with conventional solidification/stabilization materials such as hydraulic cements. Waste can be encapsulated with greater efficiency and with better waste form performance than is possible with hydraulic cement. The properties of polyethylene relevant to its long-term durability in storage and disposal environments are reviewed. Response to specific potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation are examined. These data are supported by results from extensive waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. The bench-scale process has been successfully tested for application with a number of specific problem'' waste streams. Quality assurance and performance testing of the resulting waste form confirmed scale-up feasibility. Use of this system at Rocky Flats Plant can result in over 70% fewer drums processed and shipped for disposal, compared with optimal cement formulations. Based on the current Rocky Flats production of nitrate salt per year, polyethylene encapsulation can yield an estimated annual savings between $1.5 million and $2.7 million, compared with conventional hydraulic cement systems. 72 refs., 23 figs., 16 tabs.

  18. Cloud speed impact on solar variability scaling â?? Application to the wavelet variability model

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan

    2013-01-01T23:59:59.000Z

    Kleissl, J. , 2013. Deriving cloud velocity from an array ofCloud Speed Impact on Solar Variability Scaling -this work, we determine from cloud speeds. Cloud simulator

  19. Angular Scaling In Jets

    SciTech Connect (OSTI)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

    2012-02-17T23:59:59.000Z

    We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

  20. Global Scale Impacts

    E-Print Network [OSTI]

    Asphaug, Erik; Jutzi, Martin

    2015-01-01T23:59:59.000Z

    Global scale impacts modify the physical or thermal state of a substantial fraction of a target asteroid. Specific effects include accretion, family formation, reshaping, mixing and layering, shock and frictional heating, fragmentation, material compaction, dilatation, stripping of mantle and crust, and seismic degradation. Deciphering the complicated record of global scale impacts, in asteroids and meteorites, will lead us to understand the original planet-forming process and its resultant populations, and their evolution in time as collisions became faster and fewer. We provide a brief overview of these ideas, and an introduction to models.

  1. Agent Interaction and State Determination in SCADA Systems

    E-Print Network [OSTI]

    Sheldon, Nathan D.

    Agent Interaction and State Determination in SCADA Systems Thomas Richard McEvoy2 and Stephen D to continue to operate in a compromised state. Finally, the scale and complex- ity of SCADA systems makes

  2. Mathematics Achievement Scale Score

    E-Print Network [OSTI]

    Huang, Jianyu

    Croatia 490 New Zealand 486 Spain 482 Romania 482 Poland 481 Turkey 469 Azerbaijan 463 Chile 462 Thailand Romania 505 Spain 505 Poland 505 TIMSS Scale Centerpoint 500 New Zealand 497 Kazakhstan 495 Norway 494 Kazakhstan 487 Sweden 484 Ukraine 479 Norway 475 Armenia 467 Romania 458 United Arab Emirates 456 Turkey 452

  3. Conformal Scaling Gauge Symmetry and Inflationary Universe

    E-Print Network [OSTI]

    Yue-Liang Wu

    2004-02-23T23:59:59.000Z

    Considering the conformal scaling gauge symmetry as a fundamental symmetry of nature in the presence of gravity, a scalar field is required and used to describe the scale behavior of universe. In order for the scalar field to be a physical field, a gauge field is necessary to be introduced. A gauge invariant potential action is constructed by adopting the scalar field and a real Wilson-like line element of the gauge field. Of particular, the conformal scaling gauge symmetry can be broken down explicitly via fixing gauge to match the Einstein-Hilbert action of gravity. As a nontrivial background field solution of pure gauge has a minimal energy in gauge interactions, the evolution of universe is then dominated at earlier time by the potential energy of background field characterized by a scalar field. Since the background field of pure gauge leads to an exponential potential model of a scalar field, the universe is driven by a power-law inflation with the scale factor $a(t) \\sim t^p$. The power-law index $p$ is determined by a basic gauge fixing parameter $g_F$ via $p = 16\\pi g_F^2[1 + 3/(4\\pi g_F^2) ]$. For the gauge fixing scale being the Planck mass, we are led to a predictive model with $g_F=1$ and $p\\simeq 62$.

  4. The propagation of kinetic energy across scales in turbulent flows

    E-Print Network [OSTI]

    Cardesa, José I; Dong, Siwei; Jiménez, Javier

    2015-01-01T23:59:59.000Z

    A temporal study of energy transfer across length scales is performed in 3D numerical simulations of homogeneous shear flow and isotropic turbulence, at Reynolds numbers in the range $Re_{\\lambda}=107-384$. The average time taken by perturbations in the energy flux to travel between scales is measured and shown to be additive, as inferred from the agreement between the total travel time from a given scale to the smallest dissipative motions, and the time estimated from successive jumps through intermediate scales. Our data suggests that the propagation of disturbances in the energy flux is independent of the forcing and that it defines a `velocity' that determines the energy flux itself. These results support that the cascade is, on average, a scale-local process where energy is continuously transmitted from one scale to the next in order of decreasing size.

  5. Extreme Scale Visual Analytics

    SciTech Connect (OSTI)

    Steed, Chad A [ORNL] [ORNL; Potok, Thomas E [ORNL] [ORNL; Pullum, Laura L [ORNL] [ORNL; Ramanathan, Arvind [ORNL] [ORNL; Shipman, Galen M [ORNL] [ORNL; Thornton, Peter E [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Given the scale and complexity of today s data, visual analytics is rapidly becoming a necessity rather than an option for comprehensive exploratory analysis. In this paper, we provide an overview of three applications of visual analytics for addressing the challenges of analyzing climate, text streams, and biosurveilance data. These systems feature varying levels of interaction and high performance computing technology integration to permit exploratory analysis of large and complex data of global significance.

  6. Supergranulation Scale Connection Simulations

    E-Print Network [OSTI]

    R. F. Stein; A. Nordlund; D. Georgobiani; D. Benson; W. Schaffenberger

    2008-11-04T23:59:59.000Z

    Results of realistic simulations of solar surface convection on the scale of supergranules (96 Mm wide by 20 Mm deep) are presented. The simulations cover only 10% of the geometric depth of the solar convection zone, but half its pressure scale heights. They include the hydrogen, first and most of the second helium ionization zones. The horizontal velocity spectrum is a power law and the horizontal size of the dominant convective cells increases with increasing depth. Convection is driven by buoyancy work which is largest close to the surface, but significant over the entire domain. Close to the surface buoyancy driving is balanced by the divergence of the kinetic energy flux, but deeper down it is balanced by dissipation. The damping length of the turbulent kinetic energy is 4 pressure scale heights. The mass mixing length is 1.8 scale heights. Two thirds of the area is upflowing fluid except very close to the surface. The internal (ionization) energy flux is the largest contributor to the convective flux for temperatures less than 40,000 K and the thermal energy flux is the largest contributor at higher temperatures. This data set is useful for validating local helioseismic inversion methods. Sixteen hours of data are available as four hour averages, with two hour cadence, at steinr.msu.edu/~bob/96averages, as idl save files. The variables stored are the density, temperature, sound speed, and three velocity components. In addition, the three velocity components at 200 km above mean continuum optical depth unity are available at 30 sec. cadence.

  7. Pilot-scale evaluation of chemical oxidation for MTBE-contaminated soil

    SciTech Connect (OSTI)

    Rahman, M.; Schupp, D.A.; Krishnan, E.R.; Tafuri, A.N.; Chen, C.T.

    1999-07-01T23:59:59.000Z

    The US Environmental Protection Agency (USEPA) has tentatively classified MTBE as a possible human carcinogen, thus further emphasizing the importance for study of fate, transport, and environmental effects of MTBE. The treatment of subsurface contaminants (e.g., MTBE) from leaking underground storage tank (LUST) sites presents many complex challenges. Many techniques have been employed for the remediation of contaminants in soil and groundwater at LUST sites. Under sponsorship of US EPA's National Risk Management Research Laboratory, IT Corporation has conducted evaluations of chemical oxidation of MTBE contaminated soil using Fenton's Reagent (hydrogen peroxide catalyzed by ferrous sulfate), simulating both ex-situ and in-situ soil remediation. Bench-scale ex-situ tests have shown up to 90% degradation of MTBE within 12 hours. Pilot-scale MTBE oxidation tests were conducted in a stainless paddle-type mixer with a 10 cubic foot mixing volume. The reactor was designed with a heavy duty mixer shaft assembly to homogenize soil and included provisions for contaminant and reagent addition, mixing, and sample acquisition. The tests were performed by placing 400 pounds of a synthetic soil matrix (consisting of a mixture of top soil, sand, gravel and clay) in the reactor, spiking with 20 ppm of MTBE, and mixing thoroughly. The variables evaluated in the pilot-scale tests included reaction time, amount of hydrogen peroxide, and amount of ferrous sulfate. After 8 hours of reaction, using 4 times the stoichiometric quantity of hydrogen peroxide and a 10:1 hydrogen peroxide: ferrous iron weight ratio, approximately 60% MTBE degradation was observed. When 10 times the stoichiometric quantity of hydrogen peroxide was used (with the same ratio of hydrogen peroxide to ferrous iron), 90% MTBE degradation was observed. When the same test was performed without any ferrous iron addition, 75% MTBE degradation was observed.

  8. The San Jose Scale.

    E-Print Network [OSTI]

    Conradi, Albert F.

    1906-01-01T23:59:59.000Z

    for controlling the scale. The most important spray mixtures in use are lime-sulphur salt, lime-sulphur, whale oil soap, kero? sene, crude petroleum, Kero-water, and kerosene or crude oil emulsions. All these preparations are mainly winter sprays, being applied... applied while cold, however, it clogs the apparatus and causes considerable inconven? ience in getting it on the tree. It is more expensive than the Lime- Sulphur wash. i I o . B I 3 I 2 In some States coal oil or kerosene has been experimented...

  9. The San Jose Scale

    E-Print Network [OSTI]

    Conradi, Albert F.

    1906-01-01T23:59:59.000Z

    of which caused a violent cooking. After the lime had been slaked the salt was added ^ and the entire mixture violently boiled for 45 minutes, when it became a dark amber color. It was applied while hot. This ap? plication was made to peach trees... for controlling the scale. The most important spray mixtures in use are lime-sulphur salt, lime-sulphur, whale oil soap, kero? sene, crude petroleum, Kero-water, and kerosene or crude oil emulsions. All these preparations are mainly winter sprays, being applied...

  10. Megawatt Electrolysis Scale Up

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MW Electrolysis Scale Up E

  11. Ute Mountain Ute Tribe Community-Scale Solar Feasibility Study

    SciTech Connect (OSTI)

    Rapp, Jim [Parametrix; Knight, Tawnie [Ute Mountain Ute Tribe

    2014-01-30T23:59:59.000Z

    Parametrix Inc. conducted a feasibility study for the Ute Mountain Ute Tribe to determine whether or not a community-scale solar farm would be feasible for the community. The important part of the study was to find where the best fit for the solar farm could be. In the end, a 3MW community-scale solar farm was found best fit with the location of two hayfield sites.

  12. Evaluation of kinetic phosphorescence analysis for the determination of uranium

    SciTech Connect (OSTI)

    Croatto, P.V.; Frank, I.W.; Johnson, K.D.; Mason, P.B.; Smith, M.M.

    1997-12-01T23:59:59.000Z

    In the past, New Brunswick Laboratory (NBL) has used a fluorometric method for the determination of sub-microgram quantities of uranium. In its continuing effort to upgrade and improve measurement technology, NBL has evaluated the commercially-available KPA-11 kinetic phosphorescence analyzer (Chemchek, Richland, WA). The Chemchek KPA-11 is a bench-top instrument which performs single-measurement, quench-corrected analyses for trace uranium. It incorporates patented kinetic phosphorimetry techniques to measure and analyze sample phosphorescence as a function of time. With laser excitation and time-corrected photon counting, the KPA-11 has a lower detection limit than conventional fluorometric methods. Operated with a personal computer, the state-of-the-art KPA-11 offers extensive time resolution and phosphorescence lifetime capabilities for additional specificity. Interferences are thereby avoided while obtaining precise measurements. Routine analyses can be easily and effectively accomplished, with the accuracy and precision equivalent to the pulsed-laser fluorometric method presently performed at NBL, without the need for internal standards. Applications of kinetic phosphorimetry at NBL include the measurement of trace level uranium in retention tank, waste samples, and low-level samples. It has also been used to support other experimental activities at NBL by the measuring of nanogram amounts of uranium contamination (in blanks) in isotopic sample preparations, and the determining of elution curves of different ion exchange resins used for uranium purification. In many cases, no pretreatment of samples was necessary except to fume them with nitric acid, and then to redissolve and dilute them to an appropriate concentration with 1 M HNO{sub 3} before measurement. Concentrations were determined on a mass basis ({micro}g U/g of solution), but no density corrections were needed since all the samples (including the samples used for calibration) were in the same density matrix (1 M HNO{sub 3}). A statistical evaluation of the determination of uranium using kinetic phosphorimetry is described in this report, along with a discussion of the method, and an evaluation of the use of plastic versus quartz cuvettes. Measurement with a precision of {+-} 3--4% relative standard deviation (RSD) and an accuracy of better than {+-} 2% relative difference (RD) are obtained in the 0.0006 to 5 {micro}g U/g-solution range. The instrument detection limit is 0.04 ppb (4 x 10{sup {minus}5} {micro}g U/g solution) using quartz cells, and 0.11 ppb (11 x 10{sup {minus}5} {micro}g U/g solution) using disposable methacrylate cuvettes.

  13. Practical-scale tests of cryogenic molecular sieve for separating low-concentration hydrogen isotopes from helium

    SciTech Connect (OSTI)

    Willms, R.S.; Taylor, D.J. [Los Alamos National Lab., NM (United States); Enoeda, M. [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan)] [and others

    1994-12-31T23:59:59.000Z

    There are a number of cases in fusion fuel processing where low-concentration hydrogen isotopes need to be separated from helium. Usually the helium is a purge gas used to move hydrogen isotopes from one location to another. One of the most notable applications is associated with removing tritium from a solid ceramic breeder. For some designs which have been considered, helium with about 1 % protium is purged through the ceramic. The protium exchanges with tritium which has been bred in the solid. The resulting gas composed of helium ({approximately}99%), protium ({approximately}1%) and tritium ({approximately}0.01%) flows out of the blanket and, for further processing, requires separation of the hydrogen isotopes and the helium. Earlier bench-scale (about 50 cc of sieve) work at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory examined a number of adsorbents for their suitability for separating low-concentration hydrogen (no tritium) from helium. One of the effective adsorbents was Linde 5A molecular sieve. The purpose of this paper is to report practical-scale experiments including tritium. These tests used existing cryogenic molecular sieve beds (MSB`S) which each contain about 1.6 kg of Linde 5A molecular sieve.

  14. Practical-scale tests of cryogenic molecular sieve for separating low-concentration hydrogen isotopes from helium

    SciTech Connect (OSTI)

    Willms, R.S.; Taylor, D.J. [Los Alamos National Lab., NM (United States); Enoeda, Mikio; Okuno, Kenji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1994-06-01T23:59:59.000Z

    Earlier bench-scale work at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory examined a number of adsorbents for their suitability for separating low-concentration hydrogen (no tritium) from helium. One of the effective adsorbents was Linde 5A molecular sieve. Recently, experiments including tritium were conducted using practical-scale adsorbers. These tests used existing cryogenic molecular sieve beds (CMSB`s) which each contain about 1.6 kg of Linde 5A molecular sieve. They are part of the TSTA integrated tritium processing system. Gas was fed to each CMSB at about 13 SLPM with a nominal composition of 99% He, 0.98% H{sub 2} and 0.02% HT. In all cases, for an extended period of time, the beds allowed no detectable (via Raman spectroscopy) hydrogen isotopes to escape in the bed effluent. Thereafter, the hydrogen isotopes appeared in the bed exit with a relatively sharp breakthrough curve. This work concludes that cryogenic molecular sieve adsorption is an practical and effective means of separating low-concentration hydrogen isotopes from a helium carrier.

  15. EMPOWERING DIGITAL SELF DETERMINATION

    E-Print Network [OSTI]

    Das, Rhiju

    : Communication and Digital Media 2. Data Context and Digital Personas 3. Personal Data: Use, ReuseEMPOWERING DIGITAL SELF DETERMINATION Symposium Summary Stanford University, Summer 2012 #12;#12;EMPOWERING DIGITAL SELF DETERMINATION Symposium, Stanford University, CA Summer, 2012 210 Panama Street

  16. Recovery Act: Oxy-Combustion Techology Development for Industrial-Scale Boiler Applications

    SciTech Connect (OSTI)

    Levasseur, Armand

    2014-04-30T23:59:59.000Z

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: • Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. • Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF). • Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. • Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. • Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. • Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project completion date was April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a matrix of fuels, oxyprocess variables and boiler design parameters. Significant improvement of CFD modeling tools and validation against 15 MWth experimental data has been completed. Oxy-boiler demonstration and large reference designs have been developed, supported with the information and knowledge gained from the 15 MWth testing. The results from the 15 MWth testing in the BSF and complimentary bench-scale testing are addressed in this volume (Volume II) of the final report. The results of the modeling efforts (Volume III) and the oxy boiler design efforts (Volume IV) are reported in separate volumes.

  17. Scaling Turbo Boost to a 1000 cores

    E-Print Network [OSTI]

    S, Ananth Narayan; Fedorova, Alexandra

    2010-01-01T23:59:59.000Z

    The Intel Core i7 processor code named Nehalem provides a feature named Turbo Boost which opportunistically varies the frequencies of the processor's cores. The frequency of a core is determined by core temperature, the number of active cores, the estimated power consumption, the estimated current consumption, and operating system frequency scaling requests. For a chip multi-processor(CMP) that has a small number of physical cores and a small set of performance states, deciding the Turbo Boost frequency to use on a given core might not be difficult. However, we do not know the complexity of this decision making process in the context of a large number of cores, scaling to the 100s, as predicted by researchers in the field.

  18. Scaling Laws for Reduced-Scale Tests of Pulse Jet Mixing Systems in Non-Newtonian Slurries: Mixing Cavern Behavior

    SciTech Connect (OSTI)

    Meyer, Perry A.; Kurath, Dean E.; Bamberger, Judith A.; Barnes, Steven M.; Etchells, Arthur W.

    2006-03-02T23:59:59.000Z

    The Waste Treatment Plant (WTP) under construction at the Hanford Site will use pulse jet mixer (PJM) technology for mixing and gas retention control applications in tanks expected to contain waste slurries exhibiting a non-Newtonian rheology. This paper presents the results of theoretical and experimental studies undertaken to establish a methodology to perform reduced-scale mixing tests with PJM systems in non-Newtonian fluids. A theoretical model for mixing cavern formation from steady and pulsed jets is developed and compared with data from a single unsteady jet in a yield stress simulant. Dimensional analysis is used to identify the important dimensionless parameters affecting mixing performance in more complex systems. Scaling laws are proposed based on the modeling and dimensional analysis. Experimental validation of the scaling laws governing unsteady jet mixing in non-Newtonian fluids are also presented. Tests were conducted at three scales using two non-Newtonian simulants. The data were compared non-dimensionally, and the important scale laws were confirmed. The key dimensionless parameters were found to be the Strouhal number (which describes unsteady pulse jet mixer operation), the yield Reynolds number (which governs cavern formation due to non-Newtonian fluid behavior), and the viscous Reynolds number (which determines the flow regime and the degree of turbulence). The experimentally validated scaling laws provide the basis for reduced scale testing of prototypic WTP mixing systems. It is argued that mixing systems developed from reduced scale testing will produce conservative designs at full scale.

  19. Transition from Large-Scale to Small-Scale Dynamo

    SciTech Connect (OSTI)

    Ponty, Y. [Universite de Nice Sophia-Antipolis, CNRS, Observatoire de la Cote d'Azur, B.P. 4229, Nice cedex 04 (France); Plunian, F. [Institut des Sciences de la Terre, CNRS, Universite Joseph Fourier, B.P. 53, 38041 Grenoble cedex 09 (France)

    2011-04-15T23:59:59.000Z

    The dynamo equations are solved numerically with a helical forcing corresponding to the Roberts flow. In the fully turbulent regime the flow behaves as a Roberts flow on long time scales, plus turbulent fluctuations at short time scales. The dynamo onset is controlled by the long time scales of the flow, in agreement with the former Karlsruhe experimental results. The is governed by a generalized {alpha} effect, which includes both the usual {alpha} effect and turbulent diffusion, plus all higher order effects. Beyond the onset we find that this generalized {alpha} effect scales as O(Rm{sup -1}), suggesting the takeover of small-scale dynamo action. This is confirmed by simulations in which dynamo occurs even if the large-scale field is artificially suppressed.

  20. Temperature determination using pyrometry

    DOE Patents [OSTI]

    Breiland, William G. (Albuquerque, NM); Gurary, Alexander I. (Bridgewater, NJ); Boguslavskiy, Vadim (Princeton, NJ)

    2002-01-01T23:59:59.000Z

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  1. Method and apparatus for determination of mechanical properties of functionally-graded materials

    DOE Patents [OSTI]

    Giannakopoulos, Antonios E. (Somerville, MA); Suresh, Subra (Wellesley, MA)

    1999-01-01T23:59:59.000Z

    Techniques for the determination of mechanical properties of homogenous or functionally-graded materials from indentation testing are presented. The technique is applicable to indentation on the nano-scale through the macro-scale including the geological scale. The technique involves creating a predictive load/depth relationship for a sample, providing an experimental load/depth relationship, comparing the experimental data to the predictive data, and determining a physical characteristic from the comparison.

  2. Robust Growth Determinants

    E-Print Network [OSTI]

    Doppelhofer, Gernot; Weeks, Melvyn

    2011-01-31T23:59:59.000Z

    This paper investigates the robustness of determinants of economic growth in the presence of model uncertainty, parameter heterogeneity and outliers. The robust model averaging approach introduced in the paper uses a flexible and parsimonious...

  3. Inflation from Broken Scale Invariance

    E-Print Network [OSTI]

    Csaba Csaki; Nemanja Kaloper; Javi Serra; John Terning

    2014-06-19T23:59:59.000Z

    We construct a model of inflation based on a low-energy effective theory of spontaneously broken global scale invariance. This provides a shift symmetry that protects the inflaton potential from quantum corrections. Since the underlying scale invariance is non-compact, arbitrarily large inflaton field displacements are readily allowed in the low-energy effective theory. A weak breaking of scale invariance by almost marginal operators provides a non-trivial inflaton minimum, which sets and stabilizes the final low-energy value of the Planck scale. The underlying scale invariance ensures that the slow-roll approximation remains valid over large inflaton displacements, and yields a scale invariant spectrum of perturbations as required by the CMB observations.

  4. Scaling of structural failure

    SciTech Connect (OSTI)

    Bazant, Z.P. [Northwestern Univ., Evanston, IL (United States); Chen, Er-Ping [Sandia National Lab., Albuquerque, NM (United States)

    1997-01-01T23:59:59.000Z

    This article attempts to review the progress achieved in the understanding of scaling and size effect in the failure of structures. Particular emphasis is placed on quasibrittle materials for which the size effect is complicated. Attention is focused on three main types of size effects, namely the statistical size effect due to randomness of strength, the energy release size effect, and the possible size effect due to fractality of fracture or microcracks. Definitive conclusions on the applicability of these theories are drawn. Subsequently, the article discusses the application of the known size effect law for the measurement of material fracture properties, and the modeling of the size effect by the cohesive crack model, nonlocal finite element models and discrete element models. Extensions to compression failure and to the rate-dependent material behavior are also outlined. The damage constitutive law needed for describing a microcracked material in the fracture process zone is discussed. Various applications to quasibrittle materials, including concrete, sea ice, fiber composites, rocks and ceramics are presented.

  5. Large scale tracking algorithms.

    SciTech Connect (OSTI)

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01T23:59:59.000Z

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  6. Scale Insects on Ornamental Plants 

    E-Print Network [OSTI]

    Muegge, Mark A.; Merchant, Michael E.

    2000-08-21T23:59:59.000Z

    Scale insects on o rnamental plants B-6097 8-00 Mark A. Muegge and Michael Merchant* M any species of scale insects damage land- scape plants, shrubs and trees. Scale insects insert their mouthparts into plant tissues and suck out the sap. When... period. Most species never move again in their lives. Scale insects feed by inserting their hairlike mouth- parts into plant tissue and siphoning the plant?s sap. While feeding, many species excrete a sweet, sticky liquid referred to as ?honeydew...

  7. Isotopic Scaling in Nuclear Reactions

    E-Print Network [OSTI]

    M. B. Tsang; W. A. Friedman; C. K. Gelbke; W. G. Lynch; G. Verde; H. Xu

    2001-03-26T23:59:59.000Z

    A three parameter scaling relationship between isotopic distributions for elements with Z$\\leq 8$ has been observed that allows a simple description of the dependence of such distributions on the overall isospin of the system. This scaling law (termed iso-scaling) applies for a variety of reaction mechanisms that are dominated by phase space, including evaporation, multifragmentation and deeply inelastic scattering. The origins of this scaling behavior for the various reaction mechanisms are explained. For multifragmentation processes, the systematics is influenced by the density dependence of the asymmetry term of the equation of state.

  8. Scale, scaling and multifractals in geophysics: twenty Shaun Lovejoy1

    E-Print Network [OSTI]

    Lovejoy, Shaun

    Scale, scaling and multifractals in geophysics: twenty years on Shaun Lovejoy1 and Daniel Schertzer number of degrees of freedom approaches to nonlin- ear geophysics: a) the transition from fractal are generally necessary for geophysical applications. We illustrate these ideas with data analyses from both

  9. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving...

  10. Mechanical analysis and simulation of in-motion vehicle scales. Final report/project accomplishments summary, CRADA Number 95-KCP-1013

    SciTech Connect (OSTI)

    Hower, B.

    1997-02-01T23:59:59.000Z

    A mechanical analysis and simulation was conducted on a weigh-in-motion vehicle scale used to weight motor trucks traveling at speeds of 2 to 45 mph. The objective of this project was to develop a detailed understanding of weigh-in-motion vehicle scale operation and system response to dynamic loading. AlliedSignal FM and T worked together with Cardinal Scale Manufacturing Company as a design team to determine the scale structure`s resonant frequency, determine a relationship between static and dynamic weights, determine variables that have significant influence on the accuracy of the scale, and design an algorithm that can be used to optimize the performance and simulate the operation of the scale. This project provided a detailed understanding of the weigh-in-motion scale operation and system response to dynamic loading. Weigh-in-motion scale engineers will use this knowledge to improve current scales and design new, improved scales. The project was completed as scheduled.

  11. SOLAR WIND MAGNETOHYDRODYNAMICS TURBULENCE: ANOMALOUS SCALING AND ROLE OF INTERMITTENCY

    SciTech Connect (OSTI)

    Salem, C.; Bale, S. D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Mangeney, A. [LESIA, Observatoire de Paris-Meudon, F-92195 Meudon (France); Veltri, P. [Dipartimento di Fisica, Universita della Calabria, Rende (Italy)], E-mail: salem@ssl.berkeley.edu

    2009-09-01T23:59:59.000Z

    In this paper, we present a study of the scaling properties and intermittency of solar wind MHD turbulence based on the use of wavelet transforms. More specifically, we use the Haar Wavelet transform on simultaneous 3 s resolution particle and magnetic field data from the Wind spacecraft, to investigate anomalous scaling and intermittency effects of both magnetic field and solar wind velocity fluctuations in the inertial range. For this purpose, we calculated spectra, structure functions, and probability distribution functions. We show that this powerful wavelet technique allows for a systematic elimination of intermittency effects on spectra and structure functions and thus for a clear determination of the actual scaling properties in the inertial range. The scaling of the magnetic field and the velocity fluctuations are found to be fundamentally different. Moreover, when the most intermittent structures superposed to the standard fluctuations are removed, simple statistics are recovered. The magnetic field and the velocity fluctuations exhibit a well-defined, although different, monofractal behavior, following a Kolmogorov -5/3 scaling and a Iroshnikov-Kraichnan -3/2 scaling, respectively. The multifractal properties of solar wind turbulence appear to be determined by the presence of those most intermittent structures. Finally, our wavelet technique also allows for a direct and systematic identification of the most active, singular structures responsible for the intermittency in the solar wind.

  12. HIGH-TEMPERATURE HEAT EXCHANGER TESTING IN A PILOT-SCALE SLAGGING FURNACE SYSTEM

    SciTech Connect (OSTI)

    Michael E. Collings; Bruce A. Dockter; Douglas R. Hajicek; Ann K. Henderson; John P. Hurley; Patty L. Kleven; Greg F. Weber

    1999-12-01T23:59:59.000Z

    The University of North Dakota Energy & Environmental Research Center (EERC), in partnership with United Technologies Research Center (UTRC) under a U.S. Department of Energy (DOE) contract, has designed, constructed, and operated a 3.0-million Btu/hr (3.2 x 10{sup 6} kJ/hr) slagging furnace system (SFS). Successful operation has demonstrated that the SFS meets design objectives and is well suited for testing very high-temperature heat exchanger concepts. Test results have shown that a high-temperature radiant air heater (RAH) panel designed and constructed by UTRC and used in the SFS can produce a 2000 F (1094 C) process air stream. To support the pilot-scale work, the EERC has also constructed laboratory- and bench-scale equipment which was used to determine the corrosion resistance of refractory and structural materials and develop methods to improve corrosion resistance. DOE projects that from 1995 to 2015, worldwide use of electricity will double to approach 20 trillion kilowatt hours. This growth comes during a time of concern over global warming, thought by many policy makers to be caused primarily by increases from coal-fired boilers in carbon dioxide (CO{sub 2}) emissions through the use of fossil fuels. Assuming limits on CO{sub 2} emissions from coal-fired boilers are imposed in the future, the most economical CO{sub 2} mitigation option may be efficiency improvements. Unless efficiency improvements are made in coal-fired power plants, utilities may be forced to turn to more expensive fuels or buy CO{sub 2} credits. One way to improve the efficiency of a coal-fired power plant is to use a combined cycle involving a typical steam cycle along with an indirectly fired turbine cycle using very high-temperature but low-pressure air as the working fluid. At the heart of an indirectly fired turbine combined-cycle power system are very high-temperature heat exchangers that can produce clean air at up to 2600 F (1427 C) and 250 psi (17 bar) to turn an aeroderivative turbine. The overall system design can be very similar to that of a typical pulverized coal-fired boiler system, except that ceramics and alloys are used to carry the very high-temperature air rather than steam. This design makes the combined-cycle system especially suitable as a boiler-repowering technology. With the use of a gas-fired duct heater, efficiencies of 55% can be achieved, leading to reductions in CO{sub 2} emissions of 40% as compared to today's coal-fired systems. On the basis of work completed to date, the high-temperature advanced furnace (HITAF) concept appears to offer a higher-efficiency technology option for coal-fired power generation systems than conventional pulverized coal firing. Concept analyses have demonstrated the ability to achieve program objectives for emissions (10% of New Source Performance Standards, i.e., 0.003 lb/MMBtu of particulate), efficiency (47%-55%), and cost of electricity (10%-25% below today's cost). Higher-efficiency technology options for new plants as well as repowering are important to the power generation industry in order to conserve valuable fossil fuel resources, reduce the quantity of pollutants (air and water) and solid wastes generated per MW, and reduce the cost of power production in a deregulated industry. Possibly more important than their potential application in a new high-temperature power system, the RAH panel and convective air heater tube bank are potential retrofit technology options for existing coal-fired boilers to improve plant efficiencies. Therefore, further development of these process air-based high-temperature heat exchangers and their potential for commercial application is directly applicable to the development of enabling technologies in support of the Vision 21 program objectives. The objective of the work documented in this report was to improve the performance of the UTRC high-temperature heat exchanger, demonstrate the fuel flexibility of the slagging combustor, and test methods for reducing corrosion of brick and castable refractory in such combustion environments. Specif

  13. Determining Reactor Neutrino Flux

    E-Print Network [OSTI]

    Jun Cao

    2012-03-08T23:59:59.000Z

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

  14. Implicit Scaling in Ecological Research

    E-Print Network [OSTI]

    Tullos, Desiree

    - sion, and abstruse structures, such as communities and ecosystems. The diversity of organisms and eco. It was our supposition that the often unrecognized relation- ship between organism/concept and scale should- ination, we hope to raise ecologists' awareness of scale-dependent rela- tionships among organisms and eco

  15. NREL: Energy Analysis - Samantha Bench Reese

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive ThePieter

  16. Overview of Lead Scale Formation and Solubility J. Barry Maynard

    E-Print Network [OSTI]

    Maynard, J. Barry

    Overview of Lead Scale Formation and Solubility J. Barry Maynard University of Cincinnati 2008 The response of lead source materials in premise and distribution systems to changes in water treatment. These determinations are particularly critical for lead compounds, of which there have been many reported. Knowledge

  17. Economic assessment of small-scale electricity generation from wind 

    E-Print Network [OSTI]

    McAllister, Kristen Dawn

    2007-09-17T23:59:59.000Z

    Analysis was done to determine if small-scale wind energy could be economically feasible on a cotton farm with 1,200 irrigated acres, a house, and a barn. Lubbock and Midland were locations chosen for this model farm and the twenty-year analysis. A...

  18. Physical meaning of one-machine and multimachine tokamak scalings

    SciTech Connect (OSTI)

    Dnestrovskij, Yu. N., E-mail: dnyn@nfi.kiae.ru; Danilov, A. V.; Dnestrovskij, A. Yu.; Lysenko, S. E. [National Research Centre Kurchatov Institute, Institute of Tokamak Physics (Russian Federation)] [National Research Centre Kurchatov Institute, Institute of Tokamak Physics (Russian Federation); Ongena, J. [Euratom-Belgium State Association, Laboratory for Plasma Physics (Belgium)] [Euratom-Belgium State Association, Laboratory for Plasma Physics (Belgium)

    2013-04-15T23:59:59.000Z

    Specific features of energy confinement scalings constructed using different experimental databases for tokamak plasmas are considered. In the multimachine database, some pairs of engineering variables are collinear; e.g., the current I and the input power P both increase with increasing minor radius a. As a result, scalings derived from this database are reliable only for discharges in which such ratios as I/a{sup 2} or P/a{sup 2} are close to their values averaged over the database. The collinearity of variables allows one to exclude the normalized Debye radius d* from the scaling expressed in a nondimensional form. In one-machine databases, the dimensionless variables are functionally dependent, which allow one to cast a scaling without d*. In a database combined from two devices, the collinearity may be absent, so the Debye radius cannot generally be excluded from the scaling. It is shown that the experiments performed in support of the absence of d* in the two-machine scaling are unconvincing. Transformation expressions are given that allow one to compare experiments for the determination of scaling in any set of independent variables.

  19. Hydranet: network support for scaling of large scale servic es

    E-Print Network [OSTI]

    Chawla, Hamesh

    1998-01-01T23:59:59.000Z

    With the explosive growth of demand for services on the Internet, the networking infrastructure (routers 7 protocols, servers) is under considerable stress. Mechanisms are needed for current and future IP services to scale in a client transparent...

  20. Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 6

    SciTech Connect (OSTI)

    Lembit Salasoo

    2004-05-07T23:59:59.000Z

    Bench scale demonstration results have been analyzed. Power and control circuit interface designs have been carried out.

  1. Scale Insects on Ornamental Plants

    E-Print Network [OSTI]

    Muegge, Mark A.; Merchant, Michael E.

    2000-08-21T23:59:59.000Z

    of all insect groups. Scale insects are generally small ( 1 /4 inch long or less) and often mimic various plant parts, such as bark and buds. Other species appear as small, white, waxy blotches or small bits of cotton on leaves and stems. The one... crawlers are pre- sent, they will fall onto the paper, where you can eas- ily see them moving about. Using natural enemies to control scales Many natural enemies?small parasitic wasps, lady- bird beetles and some fungi?can significantly reduce scale insect...

  2. Homogeneous isotropic turbulence in dilute polymers: scale by scale budget

    E-Print Network [OSTI]

    E. De Angelis; C. M. Casciola; R. Benzi; R. Piva

    2002-08-09T23:59:59.000Z

    The turbulent energy cascade in dilute polymers solution is addressed here by considering a direct numerical simulation of homogeneous isotropic turbulence of a FENE-P fluid in a triply periodic box. On the basis of the DNS data, a scale by scale analysis is provided by using the proper extension to visco-elastic fluids of the Karman-Howarth equation for the velocity. For the microstructure, an equation, analogous to the Yaglom equation for scalars, is proposed for the free-energy density associated to the elastic behavior of the material. Two mechanisms of energy removal from the scale of the forcing are identified, namely the classical non-linear transfer term of the standard Navier-Stokes equations and the coupling between macroscopic velocity and microstructure. The latter, on average, drains kinetic energy to feed the dynamics of the microstructure. The cross-over scale between the two corresponding energy fluxes is identified, with the flux associated with the microstructure dominating at small separations to become sub-leading above the cross-over scale, which is the equivalent of the elastic limit scale defined by De Gennes-Tabor on the basis of phenomenological assumptions.

  3. Fabrication and Scale-up of Polybenzimidazole (PBI) Membrane Based System for Precombustion-Based Capture of Carbon Dioxide

    SciTech Connect (OSTI)

    Gopala Krishnan; Indira Jayaweera; Angel Sanjrujo; Kevin O'Brien; Richard Callahan; Kathryn Berchtold; Daryl-Lynn Roberts; Will Johnson

    2012-03-31T23:59:59.000Z

    The primary objectives of this project are to (1) demonstrate the performance and fabrication of a technically and economically viable pre-combustion-based CO{sub 2} capture system based on the high temperature stability and permeance of PBI membranes, (2) optimize a plan for integration of PBI capture system into an IGCC plant and (3) develop a commercialization plan that addresses technical issues and business issues to outline a clear path for technology transfer of the PBI membrane technology. This report describes research conducted from April 1, 2007 to March 30, 2012 and focused on achieving the above objectives. PBI-based hollow fibers have been fabricated at kilometer lengths and bundled as modules at a bench-scale level for the separation of CO{sub 2} from H{sub 2} at high temperatures and pressures. Long term stability of these fibers has been demonstrated with a relatively high H{sub 2}/CO{sub 2} selectivity (35 to 50) and H{sub 2} permeance (80 GPU) at temperatures exceeding 225°C. Membrane performance simulations and systems analysis of an IGCC system incorporating a PBI hollow fiber membrane modules have demonstrated that the cost of electricity for CO{sub 2} capture (<10%) using such a high temperature separator. When the cost of transporting, storing, and monitoring the CO{sub 2} is accounted for, the increase in the COE is only 14.4%.

  4. Determinants of Meme Popularity

    E-Print Network [OSTI]

    Gleeson, James P; Bańos, Raquel A; Moreno, Yamir

    2015-01-01T23:59:59.000Z

    Online social media have greatly affected the way in which we communicate with each other. However, little is known about what are the fundamental mechanisms driving dynamical information flow in online social systems. Here, we introduce a generative model for online sharing behavior and analytically show, using techniques from mathematical population genetics, that competition between memes for the limited resource of user attention leads to a type of self-organized criticality, with heavy-tailed distributions of meme popularity: a few memes "go viral" but the majority become only moderately popular. The time-dependent solutions of the model are shown to fit empirical micro-blogging data on hashtag usage, and to predict novel scaling features of the data. The presented framework, in contrast to purely empirical studies or simulation-based models, clearly distinguishes the roles of two distinct factors affecting meme popularity: the memory time of users and the connectivity structure of the social network.

  5. Empirical Force-Field Assessment: The Interplay Between Backbone Torsions and Noncovalent Term Scaling

    E-Print Network [OSTI]

    Sorin, Eric J.

    Empirical Force-Field Assessment: The Interplay Between Backbone Torsions and Noncovalent Term report, which critically assessed the performance of several contemporary force fields in reproducing of modifying backbone torsions and the scaling of noncovalent interactions. Although these elements determine

  6. Commercial Scale Wind Incentive Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon’s Commercial Scale Wind offering provides resources and cash incentives to help communities, businesses land owners, and government entities install wind turbine systems up...

  7. Sizing Up Allometric Scaling Theory

    E-Print Network [OSTI]

    Savage, Van M.; Deeds, Eric J.; Fontana, Walter

    2008-09-12T23:59:59.000Z

    Metabolic rate, heart rate, lifespan, and many other physiological properties vary with body mass in systematic and interrelated ways. Present empirical data suggest that these scaling relationships take the form of power ...

  8. Pilot Scale Advanced Fogging Demonstration

    SciTech Connect (OSTI)

    Demmer, Rick L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fox, Don T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Archiblad, Kip E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01T23:59:59.000Z

    Experiments in 2006 developed a useful fog solution using three different chemical constituents. Optimization of the fog recipe and use of commercially available equipment were identified as needs that had not been addressed. During 2012 development work it was noted that low concentrations of the components hampered coverage and drying in the United Kingdom’s National Nuclear Laboratory’s testing much more so than was evident in the 2006 tests. In fiscal year 2014 the Idaho National Laboratory undertook a systematic optimization of the fogging formulation and conducted a non-radioactive, pilot scale demonstration using commercially available fogging equipment. While not as sophisticated as the equipment used in earlier testing, the new approach is much less expensive and readily available for smaller scale operations. Pilot scale testing was important to validate new equipment of an appropriate scale, optimize the chemistry of the fogging solution, and to realize the conceptual approach.

  9. An empirical study of the economies of scale in AC transmission line construction costs

    E-Print Network [OSTI]

    Baldick, Ross

    1 An empirical study of the economies of scale in AC transmission line construction costs Krishnan data filed at the Federal Energy Regulatory Commission to empirically determine the cost of transmission projects completed between the years 1994 and 2000. We examine the economies of scale in the cost

  10. TO: FILE MEMORANDUM FX+i: Paa

    Office of Legacy Management (LM)

    ---------- TYPE OF OPERATION -- --- F-f- Research & Development 0 Production scale tasting 0 Pilot Scale 0 Bench Scale Process E Theoretical Studies N +Ssp;; &...

  11. TO: FILE MEMORANDUM ALTERNATE NAME:

    Office of Legacy Management (LM)

    TYPE OF OPERATION --- q Research & Development P Facility Type 0 Production scale testing 0 Pilot Scale & Manufacturing 0 Bench Scale Process 0 University i...

  12. I HEHORANDIJH I TO{ FILE DATE SUti.lECTa I O&R(S)

    Office of Legacy Management (LM)

    :TY+E OF OPERATION --- - ---- Research & Development 0 Facility Type Production scale testing Pi lot Scale Bench Scale Process Theoretical Studies *i Sample &...

  13. NJ,O-04 MEMOHANDUtl TO: FILE FRon: SITE NAME: CITY:

    Office of Legacy Management (LM)

    TYPE OF OPERATION ----------- 0 Research & Develapment q Facility Type 0 Production scale testing 0 Pilot Scale g Bench Scale Process ? a Theoretical Studies? 0 Sample...

  14. MEMORANDUM TO: FILE

    Office of Legacy Management (LM)

    TYPE OF OPERATION ------------ f4 Research & Development R Facility Type 0 Production scale testing R Pilot Scale 0 Bench Scale Process 0 Theoretical Studies 0 Sample &...

  15. SCALING SOLID RESUSPENSION AND SORPTION FOR THE SMALL COLUMN ION EXCHANGE PROCESSING TANK

    SciTech Connect (OSTI)

    Poirier, M.; Qureshi, Z.

    2010-12-14T23:59:59.000Z

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing 1.3 million gallon waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending and resuspending Monosodium Titanate (MST), Crystalline Silicotitanate (CST), and simulated sludge. In addition, SRNL will also be conducting pilot-scale tests to determine the mixing requirements for the strontium and actinide sorption. As part of this task, the results from the pilot-scale tests must be scaled up to a full-scale waste tank. This document describes the scaling approach. The pilot-scale tank is a 1/10.85 linear scale model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX Program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations). MST additions are through Riser E1, the proposed MST addition riser in Tank 41H. To determine the approach to scaling the results from the pilot-scale tank to Tank 41H, the authors took the following approach. They reviewed the technical literature for methods to scale mixing with jets and suspension of solid particles with jets, and the technical literature on mass transfer from a liquid to a solid particle to develop approaches to scaling the test data. SRNL assembled a team of internal experts to review the scaling approach and to identify alternative approaches that should be considered.

  16. Determining Pregnancy in Cattle.

    E-Print Network [OSTI]

    Sorensen, A. M. Jr.; Beverly, J. R.

    1968-01-01T23:59:59.000Z

    . This should not upset the pal- pator. An indication of rectum damage is a sand- paper or gritty feeling. In this case, the mucosa lining the rectum has been rubbed off in the palpation pro- cess. It is best to stop further palpation when this occurs. A... good land- mark, figure 2. After locating the cervix, the pal- pator can move forward to the uterus to determine pregnancy. The paunch, located directly forward and to the left, may feel like the end of a football and be rather soft and mushy...

  17. Adam-Gibbs model in the density scaling regime and its implications for the configurational entropy scaling

    E-Print Network [OSTI]

    Elzbieta Masiewicz; Andrzej Grzybowski; Katarzyna Grzybowska; Sebastian Pawlus; Jürgen Pionteck; Marian Paluch

    2015-01-11T23:59:59.000Z

    To solve a long-standing problem of condensed matter physics with determining a proper description of the thermodynamic evolution of the time scale of molecular dynamics near the glass transition, we extend the well-known Adam-Gibbs model to describe the temperature-volume dependence of structural relaxation times, ${\\tau}_{\\alpha} (T,V)$. We employ the thermodynamic scaling idea reflected in the density scaling power law, ${\\tau}_{\\alpha}=f(T^{-1} V^{-\\gamma } ) $, recently acknowledged as a valid unifying concept in the glass transition physics, to discriminate between physically relevant and irrelevant attempts at formulating the temperature-volume representations of the Adam-Gibbs model. As a consequence, we determine a straightforward relation between the structural relaxation time ${\\tau}_{\\alpha}$ and the configurational entropy $S_c$, giving evidence that also $S_c (T,V)=g(T^{-1} V^{-\\gamma} )$ with the exponent {\\gamma} that enables to scale ${\\tau}_{\\alpha} (T,V)$. This important finding has meaningful implications for the linkage between thermodynamics and molecular dynamics near the glass transition, because it implies that ${\\tau}_{\\alpha}$ can be scaled with $S_c$.

  18. Dislocation dynamics simulations of plasticity at small scales

    SciTech Connect (OSTI)

    Zhou, Caizhi

    2010-12-15T23:59:59.000Z

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.

  19. Time scales in nuclear giant resonances

    SciTech Connect (OSTI)

    Heiss, W. D. [National Institute for Theoretical Physics, Stellenbosch Institute for Advanced Study, and Institute of Theoretical Physics, University of Stellenbosch, 7602 Matieland (South Africa); Nazmitdinov, R. G. [Department de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, RU-141980 Dubna (Russian Federation); Smit, F. D. [iThemba LABS, Post Office Box 722, Somerset West 7129 (South Africa)

    2010-03-15T23:59:59.000Z

    We propose a general approach to characterise fluctuations of measured cross sections of nuclear giant resonances. Simulated cross sections are obtained from a particular, yet representative, self-energy that contains all information about fragmentations. Using a wavelet analysis, we demonstrate the extraction of time scales of cascading decays into configurations of different complexity of the resonance. We argue that the spreading widths of collective excitations in nuclei are determined by the number of fragmentations as seen in the power spectrum. An analytic treatment of the wavelet analysis using a Fourier expansion of the cross section confirms this principle. A simple rule for the relative lifetimes of states associated with hierarchies of different complexity is given.

  20. Bottom and Charm Mass Determinations with a Convergence Test

    E-Print Network [OSTI]

    Dehnadi, Bahman; Mateu, Vicent

    2015-01-01T23:59:59.000Z

    We present new determinations of the MS-bar charm quark mass using relativistic QCD sum rules at O(alpha_s^3) from the moments of the vector and the pseudoscalar current correlators. We use available experimental measurements from e+e- collisions and lattice simulation results, respectively. Our analysis of the theoretical uncertainties is based on different implementations of the perturbative series and on independent variations of the renormalization scales for the mass and the strong coupling. Taking into account the resulting set of series to estimate perturbative uncertainties is crucial, since some ways to treat the perturbative expansion can exhibit extraordinarily small scale dependence when the two scales are set equal. As an additional refinement, we address the issue that double scale variation could overestimate the perturbative uncertainties. We supplement the analysis with a test that quantifies the convergence rate of each perturbative series by a single number. We find that this convergence te...

  1. GLOBAL AND ADAPTIVE SCALING IN A SEPARABLE ...

    E-Print Network [OSTI]

    2007-10-19T23:59:59.000Z

    programs confirm that Adaptive Global Scaling subsumes former scaling ...... Then, the compact convex set B of symmetric matrices eigeinvalues of which.

  2. Sandia National Laboratories: characterizing Scaled Wind Farm...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characterizing Scaled Wind Farm Technology facility inflow Characterizing Scaled Wind Farm Technology Facility Inflow On April 1, 2014, in Energy, News, News & Events, Partnership,...

  3. Significant Radionuclides Determination

    SciTech Connect (OSTI)

    Jo A. Ziegler

    2001-07-31T23:59:59.000Z

    The purpose of this calculation is to identify radionuclides that are significant to offsite doses from potential preclosure events for spent nuclear fuel (SNF) and high-level radioactive waste expected to be received at the potential Monitored Geologic Repository (MGR). In this calculation, high-level radioactive waste is included in references to DOE SNF. A previous document, ''DOE SNF DBE Offsite Dose Calculations'' (CRWMS M&O 1999b), calculated the source terms and offsite doses for Department of Energy (DOE) and Naval SNF for use in design basis event analyses. This calculation reproduces only DOE SNF work (i.e., no naval SNF work is included in this calculation) created in ''DOE SNF DBE Offsite Dose Calculations'' and expands the calculation to include DOE SNF expected to produce a high dose consequence (even though the quantity of the SNF is expected to be small) and SNF owned by commercial nuclear power producers. The calculation does not address any specific off-normal/DBE event scenarios for receiving, handling, or packaging of SNF. The results of this calculation are developed for comparative analysis to establish the important radionuclides and do not represent the final source terms to be used for license application. This calculation will be used as input to preclosure safety analyses and is performed in accordance with procedure AP-3.12Q, ''Calculations'', and is subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (DOE 2000) as determined by the activity evaluation contained in ''Technical Work Plan for: Preclosure Safety Analysis, TWP-MGR-SE-000010'' (CRWMS M&O 2000b) in accordance with procedure AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''.

  4. CX-000446: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Coupled Hydro-Chemo-Thermo-Mechanical Phenomena for Pore Scale Processes to Macro Scale ImplicationsCX(s) Applied: A9, B3.1, B3.6Date: 11/24/2009Location(s): Atlanta, GeorgiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  5. Scaling of the dynamics of flexible Lennard-Jones chains

    E-Print Network [OSTI]

    Arno A. Veldhorst; Jeppe C. Dyre; Thomas B. Schrřder

    2014-08-08T23:59:59.000Z

    The isomorph theory provides an explanation for the so-called power law density scaling which has been observed in many molecular and polymeric glass formers, both experimentally and in simulations. Power law density scaling (relaxation times and transport coefficients being functions of $\\rho^{\\gamma_S}/T$, where $\\rho$ is density, $T$ is temperature, and $\\gamma_S$ is a material specific scaling exponent) is an approximation to a more general scaling predicted by the isomorph theory. Furthermore, the isomorph theory provides an explanation for Rosenfeld scaling (relaxation times and transport coefficients being functions of excess entropy) which has been observed in simulations of both molecular and polymeric systems. Doing molecular dynamics simulations of flexible Lennard-Jones chains (LJC) with rigid bonds, we here provide the first detailed test of the isomorph theory applied to flexible chain molecules. We confirm the existence of isomorphs, which are curves in the phase diagram along which the dynamics is invariant in the appropriate reduced units. This holds not only for the relaxation times but also for the full time dependence of the dynamics, including chain specific dynamics such as the end-to-end vector autocorrelation function and the relaxation of the Rouse modes. As predicted by the isomorph theory, jumps between different state points on the same isomorph happen instantaneously without any slow relaxation. Since the LJC is a simple coarse-grained model for alkanes and polymers, our results provide a possible explanation for why power-law density scaling is observed experimentally in alkanes and many polymeric systems. The theory provides an independent method of determining the scaling exponent, which is usually treated as a empirical scaling parameter.

  6. Scaling Properties of Universal Tetramers

    SciTech Connect (OSTI)

    Hadizadeh, M. R.; Yamashita, M. T. [Instituto de Fisica Teorica, Universidade Estadual Paulista, 01140-070, Sao Paulo, SP (Brazil); Tomio, Lauro [Instituto de Fisica Teorica, Universidade Estadual Paulista, 01140-070, Sao Paulo, SP (Brazil); Instituto de Fisica, Universidade Federal Fluminense, 24210-346, Niteroi, RJ (Brazil); Delfino, A. [Instituto de Fisica, Universidade Federal Fluminense, 24210-346, Niteroi, RJ (Brazil); Frederico, T. [Instituto Tecnologico de Aeronautica, 12228-900, Sao Jose dos Campos, SP (Brazil)

    2011-09-23T23:59:59.000Z

    We evidence the existence of a universal correlation between the binding energies of successive four-boson bound states (tetramers), for large two-body scattering lengths (a), related to an additional scale not constrained by three-body Efimov physics. Relevant to ultracold atom experiments, the atom-trimer relaxation peaks for |a|{yields}{infinity} when the ratio between the tetramer and trimer energies is {approx_equal}4.6 and a new tetramer is formed. The new scale is also revealed for a<0 by the prediction of a correlation between the positions of two successive peaks in the four-atom recombination process.

  7. Heterogeneity of cells may explain allometric scaling of metabolic rate

    E-Print Network [OSTI]

    Takemoto, Kazuhiro

    2015-01-01T23:59:59.000Z

    The origin of allometric scaling of metabolic rate is a long-standing question in biology. Several models has been proposed for explaining the origin; however, they have advantages and disadvantages. In particular, previous models only demonstrate either two important observations for the allometric scaling: the variability of scaling exponents and predominance of 3/4-power law. Thus, these models have a dispute over their validity. In this study, we propose a simple geometry model, and show that a hypothesis that total surface area of cells determines metabolic rate can reproduce these two observations by combining two concepts: the impact of cell sizes on metabolic rate and fractal-like (hierarchical) organization. The proposed model both theoretically and numerically demonstrates the approximately 3/4-power law although several different biological strategies are considered. The model validity is confirmed using empirical data. Furthermore, the model suggests the importance of heterogeneity of cell size fo...

  8. FINAL REPORT: Mechanistically-Base Field Scale Models of Uranium Biogeochemistry from Upscaling Pore-Scale Experiments and Models

    SciTech Connect (OSTI)

    Wood, Brian D.

    2013-11-04T23:59:59.000Z

    Biogeochemical reactive transport processes in the subsurface environment are important to many contemporary environmental issues of significance to DOE. Quantification of risks and impacts associated with environmental management options, and design of remediation systems where needed, require that we have at our disposal reliable predictive tools (usually in the form of numerical simulation models). However, it is well known that even the most sophisticated reactive transport models available today have poor predictive power, particularly when applied at the field scale. Although the lack of predictive ability is associated in part with our inability to characterize the subsurface and limitations in computational power, significant advances have been made in both of these areas in recent decades and can be expected to continue. In this research, we examined the upscaling (pore to Darcy and Darcy to field) the problem of bioremediation via biofilms in porous media. The principle idea was to start with a conceptual description of the bioremediation process at the pore scale, and apply upscaling methods to formally develop the appropriate upscaled model at the so-called Darcy scale. The purpose was to determine (1) what forms the upscaled models would take, and (2) how one might parameterize such upscaled models for applications to bioremediation in the field. We were able to effectively upscale the bioremediation process to explain how the pore-scale phenomena were linked to the field scale. The end product of this research was to produce a set of upscaled models that could be used to help predict field-scale bioremediation. These models were mechanistic, in the sense that they directly incorporated pore-scale information, but upscaled so that only the essential features of the process were needed to predict the effective parameters that appear in the model. In this way, a direct link between the microscale and the field scale was made, but the upscaling process helped inform potential users of the model what kinds of information would be needed to accurately characterize the system.

  9. Feed process studies: Research-Scale Melter

    SciTech Connect (OSTI)

    Whittington, K.F.; Seiler, D.K.; Luey, J.; Vienna, J.D.; Sliger, W.A.

    1996-09-01T23:59:59.000Z

    In support of a two-phase approach to privatizing the processing of hazardous and radioactive waste at Hanford, research-scale melter (RSM) experiments were conducted to determine feed processing characteristics of two potential privatization Phase 1 high-level waste glass formulations and to determine if increased Ag, Te, and noble metal amounts would have bad effects. Effects of feed compositions and process conditions were examined for processing rate, cold cap behavior, off-gas, and glass properties. The 2 glass formulations used were: NOM-2 with adjusted waste loading (all components except silica and soda) of 25 wt%, and NOM-3 (max waste loaded glass) with adjusted waste loading of 30 wt%. The 25 wt% figure is the minimum required in the privatization Request for Proposal. RSM operated for 19 days (5 runs). 1010 kg feed was processed, producing 362 kg glass. Parts of runs 2 and 3 were run at 10 to 30 degrees above the nominal temperature 1150 C, with the most significant processing rate increase in run 3. Processing observations led to the choice of NOM-3 for noble metal testing in runs 4 and 5. During noble metal testing, processing rates fell 50% from baseline. Destructive analysis showed that a layer of noble metals and noble metal oxides settled on the floor of the melter, leading to current ``channeling`` which allowed the top section to cool, reducing production rates.

  10. Scaling the Web Composing Web

    E-Print Network [OSTI]

    Menascé, Daniel A.

    Scaling the Web Composing Web Services:A QoS View A n Internet application can invoke several ser- vices -- a stock-trading Web service, for example, could invoke a payment service, which could then invoke an authentication service. Such a scenario is called a composite Web service, and it can

  11. Scaling of pressurized fluidized beds

    SciTech Connect (OSTI)

    Guralnik, S.; Glicksman, L.R.

    1994-10-01T23:59:59.000Z

    The project has two primary objectives. The first is to verify a set of hydrodynamic scaling relationships for commercial pressurized fluidized bed combustors (PFBC). The second objective is to investigate solids mixing in pressurized bubbling fluidized beds. American Electric Power`s (AEP) Tidd combined-cycle demonstration plant will provide time-varying pressure drop data to serve as the basis for the scaling verification. The verification will involve demonstrating that a properly scaled cold model and the Tidd PFBC exhibit hydrodynamically similar behavior. An important issue in PFBC design is the spacing of fuel feed ports. The feed spacing is dictated by the fuel distribution and the mixing characteristics within the bed. After completing the scaling verification, the cold model will be used to study the characteristics of PFBCs. A thermal tracer technique will be utilized to study mixing both near the fuel feed region and in the far field. The results allow the coal feed and distributor to be designed for optimal heating.

  12. Visualization of Large-Scale Distributed Data

    E-Print Network [OSTI]

    Johnson, Andrew

    that are now considered the "lenses" for examining large-scale data. THE LARGE-SCALE DATA VISUALIZATIONVisualization of Large-Scale Distributed Data Jason Leigh1 , Andrew Johnson1 , Luc Renambot1 representation of data and the interactive manipulation and querying of the visualization. Large-scale data

  13. Criticality and Scaling Relations in a Sheared Granular Material

    E-Print Network [OSTI]

    Takahiro Hatano; Michio Otsuki; Shin-ichi Sasa

    2006-09-09T23:59:59.000Z

    We investigate a rheological property of a dense granular material under shear. By a numerical experiment of the system with constant volume, we find a critical volume fraction at which the shear stress and the pressure behave as power-law functions of the shear strain rate. We also present a simple scaling argument that determines the power-law exponents. Using these results, we interpret a power-law behavior observed in the system under constant pressure.

  14. Development of the integrated, in-situ remediation technology. Topical report for tasks No. 8 and No. 10 entitled: Laboratory and pilot scale experiments of Lasagna{trademark} process, September 26, 1994--May 25, 1996

    SciTech Connect (OSTI)

    Ho, Sa V.; Athmer, C.J.; Sheridan, P.W. [and others

    1997-04-01T23:59:59.000Z

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. This technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated W and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report summarizes the results of the lab and pilot sized Lasagna{trademark} experiments conducted at Monsanto. Experiments were conducted with kaofinite and an actual Paducah soil in units ranging from bench-scale containing kg-quantity of soil to pilot-scale containing about half a ton of soil having various treatment zone configurations. The obtained data support the feasibility of scaling up this technology with respect to electrokinetic parameters as well as removal of organic contaminants. A mathematical model was developed that was successful in predicting the temperature rises in the soil. The information and experience gained from these experiments along with the modeling effort enabled us to successfully design and operate a larger field experiment at a DOE TCE-contaminated clay site.

  15. Brane World Models Need Low String Scale

    E-Print Network [OSTI]

    Antoniadis, Ignatios; Calmet, Xavier

    2011-01-01T23:59:59.000Z

    Models with large extra dimensions offer the possibility of the Planck scale being of order the electroweak scale, thus alleviating the gauge hierarchy problem. We show that these models suffer from a breakdown of unitarity at around three quarters of the low effective Planck scale. An obvious candidate to fix the unitarity problem is string theory. We therefore argue that it is necessary for the string scale to appear below the effective Planck scale and that the first signature of such models would be string resonances. We further translate experimental bounds on the string scale into bounds on the effective Planck scale.

  16. Determining the neutrino mass hierarchy

    SciTech Connect (OSTI)

    Parke, Stephen J.; /Fermilab

    2006-07-01T23:59:59.000Z

    In this proceedings I review the physics that future experiments will use to determine the neutrino mass hierarchy.

  17. Large-scale tidal fields on primordial density perturbations ?

    E-Print Network [OSTI]

    Alejandro Gonzalez

    1997-02-17T23:59:59.000Z

    We calculate the strength of the tidal field produced by the large-scale density field acting on primordial density perturbations in power law models. By analysing changes in the orientation of the deformation tensor, resulted from smoothing the density field on different mass scales, we show that the large-scale tidal field can strongly affect the morphology and orientation of density peaks. The measure of the strength of the tidal field is performed as a function of the distance to the peak and of the spectral index. We detected evidence that two populations of perturbations seems to coexist; one, with a misalignment between the main axes of their inertia and deformation tensors. This would lead to the angular momentum acquisition and morphological changes. For the second population, the perturbations are found nearly aligned in the direction of the tidal field, which would imprint them low angular momentum and which would allow an alignment of structures as those reported between clusters of galaxies in filaments, and between galaxies in clusters. Evidence is presented that the correlation between the orientation of perturbations and the large-scale density field could be a common property of Gaussian density fields with spectral indexes $n < 0$. We argue that alignment of structures can be used to probe the flatness of the spectrum on large scales but it cannot determine the exact value of the spectral index.

  18. CX-010277: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Large Scale Screening of Low Cost Ferritic Steel Designs for AUSC Boiler CX(s) Applied: A9 Date: 05/22/2013 Location(s): Tennessee Offices(s): National Energy Technology Laboratory

  19. CX-004658: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Large Scale Solar - Ground Mounted - Ram ManufacturingCX(s) Applied: B5.1Date: 12/02/2010Location(s): Saint George, UtahOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  20. CX-011103: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Scale-up of Algal Biofuel Production Using Waste Nutrients CX(s) Applied: A9 Date: 08/29/2013 Location(s): California Offices(s): Golden Field Office

  1. CX-009059: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot Scale Hanford Mixing Studies with Cohesive Simulants, Phase III, and Solids Accumulation Scouting Studies CX(s) Applied: B3.6 Date: 07/25/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  2. CX-008369: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot Scale Hanford Mixing Studies with Cohesive Simulants, Phase III, and Solids Accumulation Scouting Studies CX(s) Applied: B3.6 Date: 03/28/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  3. CX-003281: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Non-Utility Scale Renewable Energy - Sandywood HomesCX(s) Applied: B5.1Date: 08/10/2010Location(s): Tiverton, Rhode IslandOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  4. CX-004410: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Non-Utility Scale Renewable Energy - Sandywood HomesCX(s) Applied: B5.1Date: 11/09/2010Location(s): Tiverton, Rhode IslandOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  5. CX-004268: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Scale-Up of Hydrogen Transport MembranesCX(s) Applied: B3.6Date: 10/20/2010Location(s): Boulder, ColoradoOffice(s): Fossil Energy, National Energy Technology Laboratory

  6. CX-008289: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Scale-Up of Hydrogen Transport Membranes CX(s) Applied: A9 Date: 05/01/2012 Location(s): Colorado Offices(s): National Energy Technology Laboratory

  7. CX-008311: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Scale-Up of Hydrogen Transport Membranes CX(s) Applied: B3.6 Date: 04/24/2012 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  8. CX-002139: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Large Scale Solar InstallationCX(s) Applied: B5.1Date: 04/29/2010Location(s): Manitowoc, WisconsinOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  9. CX-008002: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small Scale Research and Development, Laboratory Operations, and Pilot Projects CX(s) Applied: B3.6 Date: 11/28/2011 Location(s): Washington Offices(s): Science, Pacific Northwest Site Office

  10. CX-009268: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oxy-Fired Pressurized Fluidized Bed Combustor Development and Scale-Up for New and Retrofit CX(s) Applied: A9 Date: 09/11/2012 Location(s): Multiple Offices(s): National Energy Technology Laboratory

  11. CX-011452: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot-Scale Evaluation of an Advanced Carbon Sorbent-Based Process for Post-Combustion Carbon Capture CX(s) Applied: A9 Date: 11/12/2013 Location(s): California Offices(s): National Energy Technology Laboratory

  12. CX-010484: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Scaled Saltstone Facility Testing CX(s) Applied: B3.6 Date: 05/29/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  13. CX-010741: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Smart Market Advance Retrofit Transformer Program (SMART Scale) CX(s) Applied: A9, B5.1 Date: 08/09/2013 Location(s): California Offices(s): Golden Field Office

  14. CX-010749: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot-Scale Mixotrophic Algae Integrated Biorefinery CX(s) Applied: A9, B5.15 Date: 08/15/2013 Location(s): Illinois Offices(s): Golden Field Office

  15. CX-008970: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration CX(s) Applied: A9, A11 Date: 08/01/2012 Location(s): Spain Offices(s): National Energy Technology Laboratory

  16. CX-008010: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small-Scale Research and Development Projects Using Nanoscale Materials CX(s) Applied: B3.15 Date: 12/12/2011 Location(s): Washington Offices(s): Science, Pacific Northwest Site Office

  17. CX-009372: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small Scale Coal-Biomass to Liquids Using Highly Selective Fischer-Tropsch Synthesis CX(s) Applied: A9 Date: 09/17/2012 Location(s): California Offices(s): National Energy Technology Laboratory

  18. CX-012421: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Low-Leakage Shaft End Seals for Utility-Scale SCO2 Turbo Expanders CX(s) Applied: A1, A9, A11Date: 41880 Location(s): TexasOffices(s): National Energy Technology Laboratory

  19. CX-004680: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot Scale Demonstration of Cowboy Coal Upgrading ProcessCX(s) Applied: B3.6Date: 12/08/2010Location(s): Laramie, WyomingOffice(s): Fossil Energy, National Energy Technology Laboratory

  20. CX-010235: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Large-Scale Production of Fuels and Feed from Marine Microalgae CX(s) Applied: A9, B3.6 Date: 02/14/2013 Location(s): New York Offices(s): Golden Field Office

  1. CX-003977: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Large Scale Production of Fuels and Feeds from Marine MicroalgaeCX(s) Applied: A9, B3.6Date: 09/22/2010Location(s): HawaiiOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  2. CX-004832: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Large Scale Solar - Roof Mounted - Red Rock Canyon SchoolCX(s) Applied: B5.1Date: 12/22/2010Location(s): Saint George, UtahOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  3. The scale of cosmic isotropy

    SciTech Connect (OSTI)

    Marinoni, C.; Bel, J.; Buzzi, A., E-mail: christian.marinoni@cpt.univ-mrs.fr, E-mail: Julien.Bel@cpt.univ-mrs.fr, E-mail: Adeline.Buzzi@cpt.univ-mrs.fr [Centre de Physique Théorique, Aix-Marseille Université, CNRS UMR 7332, case 907, F-13288 Marseille (France)

    2012-10-01T23:59:59.000Z

    The most fundamental premise to the standard model of the universe states that the large-scale properties of the universe are the same in all directions and at all comoving positions. Demonstrating this hypothesis has proven to be a formidable challenge. The cross-over scale R{sub iso} above which the galaxy distribution becomes statistically isotropic is vaguely defined and poorly (if not at all) quantified. Here we report on a formalism that allows us to provide an unambiguous operational definition and an estimate of R{sub iso}. We apply the method to galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7, finding that R{sub iso} ? 150h{sup ?1}Mpc. Besides providing a consistency test of the Copernican principle, this result is in agreement with predictions based on numerical simulations of the spatial distribution of galaxies in cold dark matter dominated cosmological models.

  4. Emerging universe from scale invariance

    SciTech Connect (OSTI)

    Del Campo, Sergio; Herrera, Ramón [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Casilla 4059, Valparaíso (Chile); Guendelman, Eduardo I. [Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); Labrańa, Pedro, E-mail: sdelcamp@ucv.cl, E-mail: guendel@bgu.ac.il, E-mail: ramon.herrera@ucv.cl, E-mail: plabrana@ubiobio.cl [Departamento de Física, Universidad del Bío Bío, Avenida Collao 1202, Casilla 5-C, Concepción (Chile)

    2010-06-01T23:59:59.000Z

    We consider a scale invariant model which includes a R{sup 2} term in action and show that a stable ''emerging universe'' scenario is possible. The model belongs to the general class of theories, where an integration measure independent of the metric is introduced. To implement scale invariance (S.I.), a dilaton field is introduced. The integration of the equations of motion associated with the new measure gives rise to the spontaneous symmetry breaking (S.S.B) of S.I. After S.S.B. of S.I. in the model with the R{sup 2} term (and first order formalism applied), it is found that a non trivial potential for the dilaton is generated. The dynamics of the scalar field becomes non linear and these non linearities are instrumental in the stability of some of the emerging universe solutions, which exists for a parameter range of the theory.

  5. Use of dual plane PIV to assess scale-by-scale energy budgets in wall turbulence

    E-Print Network [OSTI]

    Marusic, Ivan

    Use of dual plane PIV to assess scale-by-scale energy budgets in wall turbulence N Saikrishnan1-layer, the buffer region, the logarithmic region and the outer region. In the space of scales, turbulent energy is produced at the large scales and transferred to smaller scales, finally dissipating in the form of heat

  6. Chameleon gravity on cosmological scales

    E-Print Network [OSTI]

    H. Farajollahi; A. Salehi

    2012-06-25T23:59:59.000Z

    In conventional approach to the chameleon mechanism, by assuming a static and spherically symmetric solutions in which matter density and chameleon field are given by $\\rho=\\rho(r)$ and $\\phi=\\phi(r)$, it has been shown that mass of chameleon field is matter density-dependent. In regions of high matter density such as earth, chameleon field is massive, in solar system it is low and in cosmological scales it is very low. In this article we revisit the mechanism in cosmological scales by assuming a redshift dependence of the matter density and chameleon field, i.e. $\\rho=\\rho(z)$, $\\phi=\\phi(z)$. To support our analysis, we best fit the model parameters with the observational data. The result shows that in cosmological scales, the mass of chameleon field increases with the redshift, i.e. more massive in higher redshifts. We also find that in both cases of power-law and exponential potential function, the current universe acceleration can be explained by the low mass chameleon field. In comparison with the high redshift observational data, we also find that the model with power-law potential function is in better agreement with the observational data.

  7. Research-scale melter test report

    SciTech Connect (OSTI)

    Cooper, M.F.; Elliott, M.L.; Eyler, L.L.; Freeman, C.J.; Higginson, J.J.; Mahoney, L.A.; Powell, M.R.

    1994-05-01T23:59:59.000Z

    The Melter Performance Assessment (MPA) activity in the Pacific Northwest Laboratory`s (PNL) Hanford Waste Vitrification Plant (HWVP) Technology Development (PHTD) effort is intended to determine the impact of noble metals on the operational life of the reference HWVP melter. As a part of this activity, a parametric melter test was completed using a Research-Scale Melter (RSM). The RSM is a small, approximately 1/100-scale melter, 6-in.-diameter, that allows rapid changing of process conditions and subsequent re-establishment of a steady-state condition. The test matrix contained nine different segments that varied the melter operating parameters (glass and plenum temperatures) and feed properties (oxide concentration, redox potential, and noble metal concentrations) so that the effects of these parameters on noble metal agglomeration on the melter floor could be evaluated. The RSM operated for 48 days and consumed 1,300 L of feed, equating to 153 tank turnovers. The run produced 531 kg of glass. During the latter portion of the run, the resistance between the electrodes decreased. Upon destructive examination of the melter, a layer of noble metals was found on the bottom. This was surprising because the glass residence time in the RSM is only 10% of the HWVP plant melter. The noble metals layer impacted the melter significantly. Approximately 1/3 of one paddle electrode was melted or corroded off. The cause is assumed to be localized heating from short circuiting of the electrode to the noble metal layer. The metal layer also removed approximately 1/2 in. of the refractory on the bottom of the melter. The mechanism for this damage is not presently known.

  8. Travel determinants and multi-scale transferability of national activity patterns to local populations

    SciTech Connect (OSTI)

    Henson, Kriste M [Los Alamos National Laboratory; Gou; ias, Konstadinos G [UCSB

    2010-11-30T23:59:59.000Z

    The ability to transfer national travel patterns to a local population is of interest when attempting to model megaregions or areas that exceed metropolitan planning organization (MPO) boundaries. At the core of this research are questions about the connection between travel behavior and land use, urban form, and accessibility. As a part of this process, a group of land use variables have been identified to define activity and travel patterns for individuals and households. The 2001 National Household Travel Survey (NHTS) participants are divided into categories comprised of a set of latent cluster models representing persons, travel, and land use. These are compared to two sets of cluster models constructed for two local travel surveys. Comparison of means statistical tests are used to assess differences among sociodemographic groups residing in localities with similar land uses. The results show that the NHTS and the local surveys share mean population activity and travel characteristics. However, these similarities mask behavioral heterogeneity that are shown when distributions of activity and travel behavior are examined. Therefore, data from a national household travel survey cannot be used to model local population travel characteristics if the goal to model the actual distributions and not mean travel behavior characteristics.

  9. Determination of solid fractiontemperature relation and latent heat using full scale

    E-Print Network [OSTI]

    Beckermann, Christoph

    on five such corrosion resistant alloys: superaustenitic stainless steel CN3MN, duplex stainless steels CD available. The alloys selected consist of three stainless steels (super- austenitic CN3MN and duplexes CD3MN, Latent heat, Stainless steels, Nickel based alloys Introduction Casting simulation is routinely used

  10. Developing governmental decision strategies for determining involvement in highly uncertain, large-scale capital investment projects

    E-Print Network [OSTI]

    Golden, Robert J

    1978-01-01T23:59:59.000Z

    to the project. Finally, in order to test the model's applicability in assisting governmental decision-makers to rationally allocate resources, the model has been empirically tested by a Westinghouse proposal (concerning offshore floating nuclear power... . Classification of Models . Models as a Frame of Reference The Contextual Matrix Development of the Matrix Model Methodology Exmployed to Utilize ~ ~ ~ ~ the 27 29 30 32 33 Matrix Framework . IV. WESTINGHOUSE'S OFFSHORE FLOATING NUCLEAR POWER PLANT...

  11. Determining equivalent damage loading for full-scale wind turbine blade fatigue tests

    SciTech Connect (OSTI)

    Freebury, G.; Musial, W.

    2000-03-13T23:59:59.000Z

    This paper describes a simplified method for converting wind turbine rotor design loads into equivalent-damage, constant-amplitude loads and load ratios for both flap and lead-lag directions. It is an iterative method that was developed at the National Renewable Energy Laboratory (NREL) using Palmgren-Miner's linear damage principles. The general method is unique because it does not presume that any information about the materials or blade structural properties is precisely known. According to this method, the loads are never converted to stresses. Instead, a family of M-N curves (moment vs. cycles) is defined with reasonable boundaries for load-amplitude and slope. An optimization program iterates and converges on the constant amplitude test load and load ratio that minimizes the sensitivity to the range of M-N curves for each blade section. The authors constrained the general method to match the NedWind 25 design condition for the Standards, Measurements, and Testing (SMT) blade testing pro gram. SMT participants agreed to use the fixed S-N slope of m = 10 from the original design to produce consistent test-loads among the laboratories. Unconstrained, the general method suggests that slightly higher test loads should be used for the NedWind 25 blade design spectrum. NedWind 25 blade test loads were computed for lead-lag and flap under single-axis and two-axis loading.

  12. Carbon Molecular Sieve Membrane as a True One Box Unit for Large Scale Hydrogen Production

    SciTech Connect (OSTI)

    Paul Liu

    2012-05-01T23:59:59.000Z

    IGCC coal-fired power plants show promise for environmentally-benign power generation. In these plants coal is gasified to syngas then processed in a water gas-shift (WGS) reactor to maximize the hydrogen/CO{sub 2} content. The gas stream can then be separated into a hydrogen rich stream for power generation and/or further purified for sale as a chemical and a CO{sub 2} rich stream for the purpose of carbon capture and storage (CCS). Today, the separation is accomplished using conventional absorption/desorption processes with post CO{sub 2} compression. However, significant process complexity and energy penalties accrue with this approach, accounting for ~20% of the capital cost and ~27% parasitic energy consumption. Ideally, a â??one-boxâ?ť process is preferred in which the syngas is fed directly to the WGS reactor without gas pre-treatment, converting the CO to hydrogen in the presence of H{sub 2}S and other impurities and delivering a clean hydrogen product for power generation or other uses. The development of such a process is the primary goal of this project. Our proposed "one-box" process includes a catalytic membrane reactor (MR) that makes use of a hydrogen-selective, carbon molecular sieve (CMS) membrane, and a sulfur-tolerant Co/Mo/Al{sub 2}O{sub 3} catalyst. The membrane reactorâ??s behavior has been investigated with a bench top unit for different experimental conditions and compared with the modeling results. The model is used to further investigate the design features of the proposed process. CO conversion >99% and hydrogen recovery >90% are feasible under the operating pressures available from IGCC. More importantly, the CMS membrane has demonstrated excellent selectivity for hydrogen over H{sub 2}S (>100), and shown no flux loss in the presence of a synthetic "tar"-like material, i.e., naphthalene. In summary, the proposed "one-box" process has been successfully demonstrated with the bench-top reactor. In parallel we have successfully designed and fabricated a full-scale CMS membrane and module for the proposed application. This full-scale membrane element is a 3" diameter with 30"L, composed of ~85 single CMS membrane tubes. The membrane tubes and bundles have demonstrated satisfactory thermal, hydrothermal, thermal cycling and chemical stabilities under an environment simulating the temperature, pressure and contaminant levels encountered in our proposed process. More importantly, the membrane module packed with the CMS bundle was tested for over 30 pressure cycles between ambient pressure and >300 -600 psi at 200 to 300°C without mechanical degradation. Finally, internal baffles have been designed and installed to improve flow distribution within the module, which delivered â?Ą90% separation efficiency in comparison with the efficiency achieved with single membrane tubes. In summary, the full-scale CMS membrane element and module have been successfully developed and tested satisfactorily for our proposed one-box application; a test quantity of elements/modules have been fabricated for field testing. Multiple field tests have been performed under this project at National Carbon Capture Center (NCCC). The separation efficiency and performance stability of our full-scale membrane elements have been verified in testing conducted for times ranging from 100 to >250 hours of continuous exposure to coal/biomass gasifier off-gas for hydrogen enrichment with no gas pre-treatment for contaminants removal. In particular, "tar-like" contaminants were effectively rejected by the membrane with no evidence of fouling. In addition, testing was conducted using a hybrid membrane system, i.e., the CMS membrane in conjunction with the palladium membrane, to demonstrate that 99+% H{sub 2} purity and a high degree of CO{sub 2} capture could be achieved. In summary, the stability and performance of the full-scale hydrogen selective CMS membrane/module has been verified in multiple field tests in the presence of coal/biomass gasifier off-gas under this project. A promi

  13. Holographic Superconductors with Lifshitz Scaling

    E-Print Network [OSTI]

    E. J. Brynjolfsson; U. H. Danielsson; L. Thorlacius; T. Zingg

    2010-03-27T23:59:59.000Z

    Black holes in asymptotically Lifshitz spacetime provide a window onto finite temperature effects in strongly coupled Lifshitz models. We add a Maxwell gauge field and charged matter to a recently proposed gravity dual of 2+1 dimensional Lifshitz theory. This gives rise to charged black holes with scalar hair, which correspond to the superconducting phase of holographic superconductors with z > 1 Lifshitz scaling. Along the way we analyze the global geometry of static, asymptotically Lifshitz black holes at arbitrary critical exponent z > 1. In all known exact solutions there is a null curvature singularity in the black hole region, and, by a general argument, the same applies to generic Lifshitz black holes.

  14. Scaled Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSaltonSprings,Sardinia,SawasdeeSayreville, NewScaled

  15. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess HeatingatSawDepartment ofScale

  16. CX-010689: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Generic CX Determination for Financial Assistance Awards CX(s) Applied: Unknown Date: 07/17/2013 Location(s): Illinois Offices(s): Chicago Office

  17. CX-012200: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determination of Excess Real Property CX(s) Applied: B1.36 Date: 05/01/2014 Location(s): Colorado Offices(s): Legacy Management

  18. Small-Scale Energy Loan Program

    Broader source: Energy.gov [DOE]

    The Oregon Small-Scale Energy Loan Program (SELP) - created in 1981 after voters approved a constitutional amendment authorizing the sale of bonds to finance small-scale, local energy projects - is...

  19. Proton Decay and the Planck Scale

    E-Print Network [OSTI]

    Larson, Daniel T.

    2009-01-01T23:59:59.000Z

    LBNL- 56556 PROTON DECAY AND THE PLANCK SCALE DANIEL T.ph/0410035v1 2 Oct 2004 PROTON DECAY AND THE PLANCK SCALE ?without grand uni?cation, proton decay can be a powerful

  20. Scale in object and process ontologies 

    E-Print Network [OSTI]

    Reitsma, Femke; Bittner, Thomas

    2003-01-01T23:59:59.000Z

    Scale is of great importance to the analysis of real world phenomena, be they enduring objects or perduring processes. This paper presents a new perspective on the concept of scale by considering it within two complementary ...

  1. Optimal determination of the vapor pressure critical exponent

    E-Print Network [OSTI]

    Walton, Clifford Wayne

    1977-01-01T23:59:59.000Z

    , 1969), while scaling theory predicts about 0. 1 (Vicentini-Missoni et al. , 1969; Widom and Rowlinson, 1970). The object of this study was to determine the optimum value of 0 by means of a least squares fit of various nonanalytic vapor pressure... onal : cj ence Foundation, Grant ENG76-00692, is acknowl- edged. vi TABLE OF CONTENTS Page SCOPE. CONCLUSIONS AND SIGNII'ICANCE INTRODUCTION Theory. Development of Vapor Pressure Equations PROCEDURE. Curve Fit Method (CFN). Numerical...

  2. TO: FROM: SUBJECT,

    Office of Legacy Management (LM)

    contacted --- TYPE OF OPERATION --- werearch P Development 6 Production scale testing 0 Pilot Scale 0 Bench Sea10 Process 0 Theoretical Studies 0 Sample &...

  3. --No Title--

    Broader source: Energy.gov (indexed) [DOE]

    B3.6 Sitingconstructionoperationdecommissioning of facilities for bench-scale research, conventional laboratory operations, small-scale research and development and pilot...

  4. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart Manufacturing...

  5. Range Fuels Commercial-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The Range Fuels commercial-scale biorefinery will use a variety of feedstocks to create cellulosic ethanol, methanol, and power.

  6. Evaluation of liquid-fed ceramic melter scale-up correlations

    SciTech Connect (OSTI)

    Koegler, S.S.; Mitchell, S.J.

    1988-08-01T23:59:59.000Z

    This study was conducted to determine the parameters governing factors of scale for liquid-fed ceramic melters (LFCMs) in order to design full-scale melters using smaller-scale melter data. Results of melter experiments conducted at Pacific Northwest Laboratory (PNL) and Savannah River Laboratory (SRL) are presented for two feed compositions and five different liquid-fed ceramic melters. The melter performance data including nominal feed rate and glass melt rate are correlated as a function of melter surface area. Comparisons are made between the actual melt rate data and melt rates predicted by a cold cap heat transfer model. The heat transfer model could be used in scale-up calculations, but insufficient data are available on the cold cap characteristics. Experiments specifically designed to determine heat transfer parameters are needed to further develop the model. 17 refs.

  7. Scale Setting Using the Extended Renormalization Group and the Principle of Maximal Conformality: the QCD Coupling at Four Loops

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; /SLAC; Wu, Xing-Gang; /SLAC /Chongqing U.

    2012-02-16T23:59:59.000Z

    A key problem in making precise perturbative QCD predictions is to set the proper renormalization scale of the running coupling. The extended renormalization group equations, which express the invariance of physical observables under both the renormalization scale- and scheme-parameter transformations, provide a convenient way for estimating the scale- and scheme-dependence of the physical process. In this paper, we present a solution for the scale-equation of the extended renormalization group equations at the four-loop level. Using the principle of maximum conformality (PMC)/Brodsky-Lepage-Mackenzie (BLM) scale-setting method, all non-conformal {beta}{sub i} terms in the perturbative expansion series can be summed into the running coupling, and the resulting scale-fixed predictions are independent of the renormalization scheme. Different schemes lead to different effective PMC/BLM scales, but the final results are scheme independent. Conversely, from the requirement of scheme independence, one not only can obtain scheme-independent commensurate scale relations among different observables, but also determine the scale displacements among the PMC/BLM scales which are derived under different schemes. In principle, the PMC/BLM scales can be fixed order-by-order, and as a useful reference, we present a systematic and scheme-independent procedure for setting PMC/BLM scales up to NNLO. An explicit application for determining the scale setting of R{sub e{sup +}e{sup -}}(Q) up to four loops is presented. By using the world average {alpha}{sub s}{sup {ovr MS}}(MZ) = 0.1184 {+-} 0.0007, we obtain the asymptotic scale for the 't Hooft associated with the {ovr MS} scheme, {Lambda}{sub {ovr MS}}{sup 'tH} = 245{sub -10}{sup +9} MeV, and the asymptotic scale for the conventional {ovr MS} scheme, {Lambda}{sub {ovr MS}} = 213{sub -8}{sup +19} MeV.

  8. Gradient flow and scale setting on MILC HISQ ensembles

    E-Print Network [OSTI]

    Bazavov, A; Brown, N; DeTar, C; Foley, J; Gottlieb, Steven; Heller, U M; Komijani, J; Laiho, J; Levkova, L; Sugar, R L; Toussaint, D; Van de Water, R S

    2015-01-01T23:59:59.000Z

    We report on a scale determination with gradient-flow techniques on the $N_f=2+1+1$ HISQ ensembles generated by the MILC collaboration. The ensembles include four lattice spacings, ranging from approximately 0.15 to 0.06 fm, and both physical and unphysical values of the quark masses. The scales $\\sqrt{t_0}/a$ and $w_0/a$ and their tree-level improvements, $\\sqrt{t_{0,{\\rm imp}}}$ and $w_{0,{\\rm imp}}$, are computed on each ensemble using Symanzik flow and the cloverleaf definition of the energy density $E$. Using a combination of continuum chiral perturbation theory and a Taylor-series ansatz for the lattice-spacing and strong-coupling dependence, the results are simultaneously extrapolated to the continuum and interpolated to physical quark masses. We determine the scales $\\sqrt{t_0} = 0.1416({}_{-5}^{+8})$ fm and $w_0 = 0.1717({}_{-11}^{+12})$ fm, where the errors are sums, in quadrature, of statistical and all systematic errors. The precision of $w_0$ and $\\sqrt{t_0}$ is comparable to or more precise than...

  9. Nuclear Reactions & Scaling Arguments 11 October 2011

    E-Print Network [OSTI]

    Militzer, Burkhard

    Nuclear Reactions & Scaling Arguments 11 October 2011 Goals · Review nuclear reaction rates · Practice using scaling arguments Nuclear Reactions 1. Consider the simple reaction A k1 ---- B k2 ---- C = 3. #12;nuclear reactions & scaling arguments 2 3. Frequently, we approximate nuclear reaction rates

  10. Nuclear Reactions & Scaling Arguments 11 October 2011

    E-Print Network [OSTI]

    Militzer, Burkhard

    Nuclear Reactions & Scaling Arguments 11 October 2011 Goals · Review nuclear reaction rates · Practice using scaling arguments Nuclear Reactions 1. Consider the simple reaction A k1 ---- B k2 ---- C rate for something like p + p D scales like n2 p. Think in microscopic terms. #12;nuclear reactions

  11. Web Scale Taxonomy Cleansing Taesung Lee ,

    E-Print Network [OSTI]

    Hwang, Seung-won

    Web Scale Taxonomy Cleansing Taesung Lee , Zhongyuan Wang Haixun Wang Seung-won Hwang POSTECH.wang,haixunw}@microsoft.com ABSTRACT Large ontologies and taxonomies are automatically harvested from web-scale data. These taxonomies- scale taxonomies becomes a great challenge. A natural way to en- rich a taxonomy is to map the taxonomy

  12. 6, 1092910958, 2006 Regional scale CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 10929­10958, 2006 Regional scale CO2 flux estimation using radon A. I. Hirsch Title Page Chemistry and Physics Discussions On using radon-222 and CO2 to calculate regional-scale CO2 fluxes A. I (Adam.Hirsch@noaa.gov) 10929 #12;ACPD 6, 10929­10958, 2006 Regional scale CO2 flux estimation using

  13. A parallel scaled conjugate-gradient

    E-Print Network [OSTI]

    Aykanat, Cevdet

    . The scaled conjugate- gradient method is a powerful technique for solving large sparse linear systems for form-factor computation. Key words: Gathering radiosity -- Scaled conjugate-gradient method -- Parallel, the Gauss--Jacobi (GJ) method is used in the solution phase. The scaled conjugate-gradient (SCG) method

  14. Large-Scale Renewable Energy Guide Webinar

    Broader source: Energy.gov [DOE]

    Webinar introduces the “Large Scale Renewable Energy Guide." The webinar will provide an overview of this important FEMP guide, which describes FEMP's approach to large-scale renewable energy projects and provides guidance to Federal agencies and the private sector on how to develop a common process for large-scale renewable projects.

  15. Conundrum of the Large Scale Streaming

    E-Print Network [OSTI]

    T. M. Malm

    1999-09-12T23:59:59.000Z

    The etiology of the large scale peculiar velocity (large scale streaming motion) of clusters would increasingly seem more tenuous, within the context of the gravitational instability hypothesis. Are there any alternative testable models possibly accounting for such large scale streaming of clusters?

  16. Building Scale vs. Community Scale Net-Zero Energy Performance

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Fernandez, Nicholas; Brambley, Michael R.; Reddy, T. A.

    2010-06-30T23:59:59.000Z

    Many government and industry organizations are focusing building energy-efficiency goals around producing individual net-zero buildings (nZEBs), using photovoltaic (PV) technology to provide on-site renewable energy after substantially improving the energy efficiency of the buildings themselves. Seeking net-zero energy (NZE) at the community scale instead introduces the possibility of using a wider range of renewable energy technologies, such as solar-thermal electricity generation, solar-assisted heating/cooling systems, and wind energy, economically. This paper reports results of a study comparing NZE communities to communities consisting of individual nZEBs. Five scenarios are examined: 1) base case – a community of nZEBs with roof mounted PV systems; 2) NZE communities served by wind turbines on leased land; 3) NZE communities served by wind turbines on owned land; 4) communities served by solar-thermal electric generation; and 5) communities served by photovoltaic farms. All buildings are assumed to be highly efficient, e.g., 70% more efficient than current practice. The scenarios are analyzed for two climate locations (Chicago and Phoenix), and the levelized costs of electricity for the scenarios are compared. The results show that even for the climate in the U.S. most favorable to PV (Phoenix), more cost-effective approaches are available to achieving NZE than the conventional building-level approach (rooftop PV with aggressive building efficiency improvements). The paper shows that by expanding the measurement boundary for NZE, a community can take advantage of economies of scale, achieving improved economics while reaching the same overall energy-performance objective.

  17. Tutte polynomial of pseudofractal scale-free web

    E-Print Network [OSTI]

    Junhao Peng; Guoai Xu

    2013-05-25T23:59:59.000Z

    The Tutte polynomial of a graph is a 2-variable polynomial which is quite important in both combinatorics and statistical physics. It contains various numerical invariants and polynomial invariants, such as the number of spanning trees, the number of spanning forests, the number of acyclic orientations, the reliability polynomial, chromatic polynomial and flow polynomial. In this paper, we study and gain recursive formulas for the Tutte polynomial of pseudofractal scale-free web (PSW) which implies logarithmic complexity algorithm is obtained to calculate the Tutte polynomial of PSW although it is NP-hard for general graph. We also obtain the rigorous solution for the the number of spanning trees of PSW by solving the recurrence relations derived from Tutte polynomial, which give an alternative approach for explicitly determining the number of spanning trees of PSW. Further more, we analysis the all-terminal reliability of PSW and compare the results with that of Sierpinski gasket which has the same number of nodes and edges with PSW. In contrast with the well-known conclusion that scale-free networks are more robust against removal of nodes than homogeneous networks (e.g., exponential networks and regular networks). Our results show that Sierpinski gasket (which is a regular network) are more robust against random edge failures than PSW (which is a scale-free network). Whether it is true for any regular networks and scale-free networks, is still a unresolved problem.

  18. Corrections to tribimaximal neutrino mixing: Renormalization and Planck scale effects

    SciTech Connect (OSTI)

    Dighe, Amol [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Goswami, Srubabati [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Rodejohann, Werner [Max-Planck-Institut fuer Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

    2007-04-01T23:59:59.000Z

    We study corrections to tribimaximal (TBM) neutrino mixing from renormalization group (RG) running and from Planck scale effects. We show that while the RG effects are negligible in the standard model (SM), for quasidegenerate neutrinos and large tan{beta} in the minimal supersymmetric standard model (MSSM) all three mixing angles may change significantly. In both these cases, the direction of the modification of {theta}{sub 12} is fixed, while that of {theta}{sub 23} is determined by the neutrino mass ordering. The Planck scale effects can also change {theta}{sub 12} up to a few degrees in either direction for quasidegenerate neutrinos. These effects may dominate over the RG effects in the SM, and in the MSSM with small tan{beta}. The usual constraints on neutrino masses, Majorana phases or tan{beta} stemming from RG running arguments can then be relaxed. We quantify the extent of Planck scale effects on the mixing angles in terms of 'mismatch phases' which break the symmetries leading to TBM. In particular, we show that when the mismatch phases vanish, the mixing angles are not affected in spite of the Planck scale contribution. Similar statements may be made for {mu}-{tau} symmetric mass matrices.

  19. THE BUILDUP OF A SCALE-FREE PHOTOSPHERIC MAGNETIC NETWORK

    SciTech Connect (OSTI)

    Thibault, K.; Charbonneau, P. [Departement de Physique, Universite de Montreal, 2900 Edouard-Montpetit, Montreal, Quebec H3C 3J7 (Canada); Crouch, A. D., E-mail: kim@astro.umontreal.ca-a, E-mail: paulchar@astro.umontreal.ca-b, E-mail: ash@cora.nwra.com-c [CORA/NWRA, 3380 Mitchell Lane, Boulder, CO 80301 (United States)

    2012-10-01T23:59:59.000Z

    We use a global Monte Carlo simulation of the formation of the solar photospheric magnetic network to investigate the origin of the scale invariance characterizing magnetic flux concentrations visible on high-resolution magnetograms. The simulations include spatially and temporally homogeneous injection of small-scale magnetic elements over the whole photosphere, as well as localized episodic injection associated with the emergence and decay of active regions. Network elements form in response to cumulative pairwise aggregation or cancellation of magnetic elements, undergoing a random walk on the sphere and advected on large spatial scales by differential rotation and a poleward meridional flow. The resulting size distribution of simulated network elements is in very good agreement with observational inferences. We find that the fractal index and size distribution of network elements are determined primarily by these post-emergence surface mechanisms, and carry little or no memory of the scales at which magnetic flux is injected in the simulation. Implications for models of dynamo action in the Sun are briefly discussed.

  20. Moist multi-scale models for the hurricane embryo

    SciTech Connect (OSTI)

    Majda, Andrew J. [New York University; Xing, Yulong [ORNL; Mohammadian, Majid [University of Ottawa, Canada

    2010-01-01T23:59:59.000Z

    Determining the finite-amplitude preconditioned states in the hurricane embryo, which lead to tropical cyclogenesis, is a central issue in contemporary meteorology. In the embryo there is competition between different preconditioning mechanisms involving hydrodynamics and moist thermodynamics, which can lead to cyclogenesis. Here systematic asymptotic methods from applied mathematics are utilized to develop new simplified moist multi-scale models starting from the moist anelastic equations. Three interesting multi-scale models emerge in the analysis. The balanced mesoscale vortex (BMV) dynamics and the microscale balanced hot tower (BHT) dynamics involve simplified balanced equations without gravity waves for vertical vorticity amplification due to moist heat sources and incorporate nonlinear advective fluxes across scales. The BMV model is the central one for tropical cyclogenesis in the embryo. The moist mesoscale wave (MMW) dynamics involves simplified equations for mesoscale moisture fluctuations, as well as linear hydrostatic waves driven by heat sources from moisture and eddy flux divergences. A simplified cloud physics model for deep convection is introduced here and used to study moist axisymmetric plumes in the BHT model. A simple application in periodic geometry involving the effects of mesoscale vertical shear and moist microscale hot towers on vortex amplification is developed here to illustrate features of the coupled multi-scale models. These results illustrate the use of these models in isolating key mechanisms in the embryo in a simplified content.

  1. Scattering and; Delay, Scale, and Sum Migration

    SciTech Connect (OSTI)

    Lehman, S K

    2011-07-06T23:59:59.000Z

    How do we see? What is the mechanism? Consider standing in an open field on a clear sunny day. In the field are a yellow dog and a blue ball. From a wave-based remote sensing point of view the sun is a source of radiation. It is a broadband electromagnetic source which, for the purposes of this introduction, only the visible spectrum is considered (approximately 390 to 750 nanometers or 400 to 769 TeraHertz). The source emits an incident field into the known background environment which, for this example, is free space. The incident field propagates until it strikes an object or target, either the yellow dog or the blue ball. The interaction of the incident field with an object results in a scattered field. The scattered field arises from a mis-match between the background refractive index, considered to be unity, and the scattering object refractive index ('yellow' for the case of the dog, and 'blue' for the ball). This is also known as an impedance mis-match. The scattering objects are referred to as secondary sources of radiation, that radiation being the scattered field which propagates until it is measured by the two receivers known as 'eyes'. The eyes focus the measured scattered field to form images which are processed by the 'wetware' of the brain for detection, identification, and localization. When time series representations of the measured scattered field are available, the image forming focusing process can be mathematically modeled by delayed, scaled, and summed migration. This concept of optical propagation, scattering, and focusing have one-to-one equivalents in the acoustic realm. This document is intended to present the basic concepts of scalar scattering and migration used in wide band wave-based remote sensing and imaging. The terms beamforming and (delayed, scaled, and summed) migration are used interchangeably but are to be distinguished from the narrow band (frequency domain) beamforming to determine the direction of arrival of a signal, and seismic migration in which wide band time series are shifted but not to form images per se. Section 3 presents a mostly graphically-based motivation and summary of delay, scale, and sum beamforming. The model for incident field propagation in free space is derived in Section 4 under specific assumptions. General object scattering is derived in Section 5 and simplified under the Born approximation in Section 6. The model of this section serves as the basis in the derivation of time-domain migration. The Foldy-Lax, full point scatterer scattering, method is derived in Section 7. With the previous forward models in hand, delay, scale, and sum beamforming is derived in Section 8. Finally, proof-of-principle experiments are present in Section 9.

  2. CX-007120: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Full-Scale Mercury Control Demonstrations: Information Collection Request Sampling with Mercury ControlCX(s) Applied: A9, B3.1Date: 10/04/2011Location(s): Aurora, Saint Louis County, MissouriOffice(s): Fossil Energy, National Energy Technology Laboratory

  3. CX-007736: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rutgers University - First in Class Demonstration of Completely New type of SiC Bipolar Switch (15 kilovolt (kV)-20kV) for Utility Scale Inverters CX(s) Applied: A9, B3.6 Date: 12/08/2011 Location(s): New Jersey Offices(s): Advanced Research Projects Agency-Energy

  4. CX-009265: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oxy-Fired Pressurized Fluidized Bed Combustor Development and Scale-Up for New and Retrofit CX(s) Applied: A9, B3.6 Date: 09/11/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  5. CX-001736: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot Scale Biorefinery: Sustainable Transport Fuels from Biomass and Algal ResidueCX(s) Applied: B3.6, A9Date: 03/30/2010Location(s): IllinoisOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  6. CX-004144: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Large Scale Testing, Demonstration and Commercialization of Nanoparticle-based Fuel Cell CoolantCX(s) Applied: B3.6, B5.1Date: 09/14/2010Location(s): Whitehall, PennsylvaniaOffice(s): Energy Efficiency and Renewable Energy

  7. CX-006900: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Industrial Scale-Up of Low-Cost Zero-Emissions Magnesium by Metal Oxygen Separation Technologies ElectrolysisCX(s) Applied: B3.6Date: 09/29/2011Location(s): Kingston, Ontario, Canada, Other LocationOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  8. CX-006897: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Industrial Scale-Up of Low-Cost Zero-Emissions Magnesium by Metal Oxygen Separation Technologies ElectrolysisCX(s) Applied: B3.6Date: 09/29/2011Location(s): Tonawanda, New YorkOffice(s): Energy Efficiency and Renewable Energy

  9. CX-006895: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Industrial Scale-Up of Low-Cost Zero-Emissions Magnesium by Metal Oxygen Separation Technologies ElectrolysisCX(s) Applied: B3.6Date: 09/29/2011Location(s): Natick, Middlesex County, MassachusettsOffice(s): Energy Efficiency and Renewable Energy

  10. CX-005276: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small-Scale Solid Oxide Fuel Cell Demonstration using Bio-based and Fossil FuelsCX(s) Applied: B3.6Date: 02/18/2011Location(s): Highland Heights, OhioOffice(s): Fossil Energy, National Energy Technology Laboratory

  11. CX-003202: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass and Algae Residues via Integrated Pyrolysis and Catalytic HydroconversionCX(s) Applied: B3.6Date: 08/02/2010Location(s): Tesoro, IllinoisOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  12. CX-004104: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program Conductor Optimized Rotary Energy Mega-Watt Scale Direct Wind GeneratorCX(s) Applied: A9, B5.1Date: 09/29/2010Location(s): Ronan, MontanaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  13. CX-012473: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Commercialization of Iron-Based Coal Direct Chemical Looping for Power Prod-Lab & Pilot-Scale Testing CX(s) Applied: A9, B3.6Date: 41870 Location(s): OhioOffices(s): National Energy Technology Laboratory

  14. CX-012400: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Vapor Intrusion Mitigation Pilot Study and Potential Full-Scale Sub-Slab Depressurization System Design/Build for Building 100 at the Pinellas County, Florida Site in Largo, Florida CX(s) Applied: B3.1, B6.1, B6.2 Date: 07/10/2014 Location(s): Florida Offices(s): Legacy Management

  15. CX-003680: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low-Cost, High-Energy-Savings, Solid State Dynamic Windows (Lab Scale Tasks)CX(s) Applied: B3.6Date: 09/01/2010Location(s): Maltipas, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  16. CX-011548: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lower Length Scale Characterization and Validation of Formation and Stability of Helium Bubbles in Nano-structured Ferritic Alloys under Irradiation CX(s) Applied: B3.6 Date: 11/26/2013 Location(s): South Carolina Offices(s): Idaho Operations Office

  17. CX-001643: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Scale-Up of Hydrogen Transport Membranes (HTM) for Integrated Gasification Combined Cycle (IGCC) and FutureGen Coal-to-Hydrogen Plants (Boulder)CX(s) Applied: B3.6Date: 04/23/2010Location(s): Boulder, ColoradoOffice(s): Fossil Energy, National Energy Technology Laboratory

  18. CX-008923: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Slipstream Pilot-Scale Demonstration of a Novel Amine-Based Post-Combustion Technology for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 08/24/2012 Location(s): Alabama Offices(s): National Energy Technology Laboratory

  19. CX-000248: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Techno-Economic Modeling of the Integration of 20 Percent Wind and Large-Scale Energy Storage in Electric Reliability Council of Texas by 2030CX(s) Applied: A9, A11Date: 12/17/2009Location(s): TexasOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  20. CX-002508: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solid State Batteries for Grid-Scale Energy StorageCX(s) Applied: B3.6, A1Date: 06/01/2010Location(s): Van Nuys, CaliforniaOffice(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory

  1. CX-011577: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    The Impacts of Pore-Scale Physical and Chemical Heterogeneities on the Transport of Radionuclide-Carrying Colloids CX(s) Applied: B3.6 Date: 11/14/2013 Location(s): Colorado Offices(s): Idaho Operations Office

  2. CX-011566: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mechanical Behavior of Uranium Oxide (UO2) at Sub-grain Length Scales: Quantification of Elastic, Plastic and Creep Properties via Microscale Testing CX(s) Applied: B3.6 Date: 11/18/2013 Location(s): Arizona Offices(s): Idaho Operations Office

  3. GEET DUGGAL Algorithms for Determining

    E-Print Network [OSTI]

    Relationship to Gene Regulation Final Public Oral Examination Doctor of Philosophy Recent genome sequencing. Analyses from them have shown that the 3D structure of DNA may be closely linked to genome functions structure of DNA and genome function on the scale of the whole genome. Specifically, we designed algorithms

  4. Method and appartus for converting static in-ground vehicle scales into weigh-in-motion systems

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenior City, TN); Scudiere, Matthew B. (Oak Ridge, TN); Jordan, John K. (Oak Ridge, TN)

    2002-01-01T23:59:59.000Z

    An apparatus and method for converting in-ground static weighing scales for vehicles to weigh-in-motion systems. The apparatus upon conversion includes the existing in-ground static scale, peripheral switches and an electronic module for automatic computation of the weight. By monitoring the velocity, tire position, axle spacing, and real time output from existing static scales as a vehicle drives over the scales, the system determines when an axle of a vehicle is on the scale at a given time, monitors the combined weight output from any given axle combination on the scale(s) at any given time, and from these measurements automatically computes the weight of each individual axle and gross vehicle weight by an integration, integration approximation, and/or signal averaging technique.

  5. Scaling exponents of Forced Polymer Translocation through a nano-pore

    E-Print Network [OSTI]

    Aniket Bhattacharya; William H. Morrison; Kaifu Luo; Tapio Ala-Nissila; See-Chen Ying; Andrey Milchev; Kurt Binder

    2008-11-10T23:59:59.000Z

    We investigate several scaling properties of a translocating homopolymer through a thin pore driven by an external field present inside the pore only using Langevin Dynamics (LD) simulation in three dimension (3D). Specifically motivated by several recent theoretical and numerical studies that are apparently at odds with each other, we determine the chain length dependence of the scaling exponents of the average translocation time, the average velocity of the center of mass, $$, the effective radius of gyration during the translocation process, and the scaling exponent of the translocation coordinate ($s$-coordinate) as a function of the translocation time. We further discuss the possibility that in the case of driven translocation the finite pore size and its geometry could be responsible that the veclocity scaling exponent is less than unity and discuss the dependence of the scaling exponents on the pore geometry for the range of $N$ studied here.

  6. Determination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    consisting of AZ road dust and soot in acetonitrile carrier solvent was sprayed onto glass coupons at very brief intervals with a high volume, low pressure pneumatic sprayer....

  7. On Scale-Dependent Cosmic Shear Systematic Effects

    E-Print Network [OSTI]

    Kitching, T D; Cropper, M; Hoekstra, H; Hood, R K E; Massey, R; Niemi, S

    2015-01-01T23:59:59.000Z

    In this paper we investigate the impact that realistic scale-dependence systematic effects may have on cosmic shear tomography. We model spatially varying residual ellipticity and size variations in weak lensing measurements and propagate these through to predicted changes in the uncertainty and bias of cosmological parameters. We show that the survey strategy - whether it is regular or randomised - is an important factor in determining the impact of a systematic effect: a purely randomised survey strategy produces the smallest biases, at the expense of larger parameter uncertainties, and a very regularised survey strategy produces large biases, but unaffected uncertainties. However, by removing, or modelling, the affected scales (l-modes) in the regular cases the biases are reduced to negligible levels. We find that the integral of the systematic power spectrum is not a good metric for dark energy performance, and we advocate that systematic effects should be modelled accurately in real space, where they ent...

  8. Bridging from particle to macroscopic scales in uniaxial magnetic gels

    E-Print Network [OSTI]

    Andreas M. Menzel

    2014-11-20T23:59:59.000Z

    Connecting the different length scales of characterization is an important, but often very tedious task for soft matter systems. Here we carry out such a procedure for the theoretical description of anisotropic uniaxial magnetic gels. The so-far undetermined material parameters in a symmetry-based macroscopic hydrodynamic-like description are determined starting from a simplified mesoscopic particle-resolved model. This mesoscopic approach considers chain-like aggregates of magnetic particles embedded in an elastic matrix. Our procedure provides an illustrative background to the formal symmetry-based macroscopic description. There are presently other activities to connect such mesoscopic models as ours with more microscopic polymer-resolved approaches; together with these activities, our study complements a first attempt of scale-bridging from the microscopic to the macroscopic level in the characterization of magnetic gels.

  9. Capacitor placement and real time control in large-scale unbalanced distribution systems: Numerical studies

    SciTech Connect (OSTI)

    Wang, J.C.; Chiang, H.D.; Miu, K.N. [Cornell Univ., Ithaca, NY (United States). School of Electrical Engineering; Darling, G. [NYSEG Corp., Binghamton, NY (United States). Distribution System Dept.

    1997-04-01T23:59:59.000Z

    A novel solution algorithm for capacitor placement and real-time control in real large-scale unbalanced distribution systems is evaluated and implemented to determine the number, locations, sizes, types and control schemes of capacitors to be placed on large-scale unbalanced distribution systems. A detailed numerical study regarding the solution algorithm in large scale unbalanced distribution systems is undertaken. Promising numerical results on both 292 bus and 394 bus real unbalanced distribution systems containing unbalanced loads and phasing and various types of transformers are presented. The computational performance for the capacitor control problem under load variations is encouraging.

  10. A Simplified Self-Help Approach to Sizing of Small-Scale Cogeneration Systems

    E-Print Network [OSTI]

    Somasundaram, S.; Turner, W. D.

    1987-01-01T23:59:59.000Z

    ESL-TR-87/07-04 A Simplified Self-Help Approach to Sizing of Small-Scale Cogeneration Systems A SIMPLIFIED SELF-HELP APPROACH TO SIZING OF SMALL-SCALE COGENERATION SYSTEMS A Report Submitted to The Energy Efficiency Division Public Utility... simplified and a self-help approach to determining the economic feasibility of a small-scale Cogeneration system. It has been compiled for use by the energy managers/physical plant directors of various Texas state agencies, so that an initial screening...

  11. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, C.M.; Pickett, J.B.; Brown, K.G.; Edwards, T.B.

    1998-12-08T23:59:59.000Z

    A process is described for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, {Delta}G{sub p}, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, {Delta}G{sub a}, based upon the free energy associated with weak acid dissociation, {Delta}G{sub a}{sup WA}, and accelerated matrix dissolution at high pH, {Delta}G{sub a}{sup SB} associated with solution strong base formation, and determining a final hydration free energy, {Delta}G{sub f}. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log{sub 10}(N C{sub i}(g/L))=a{sub i} + b{sub i}{Delta}G{sub f}. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained. 4 figs.

  12. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, Carol Maryanne (Aiken, SC); Pickett, John Butler (Aiken, SC); Brown, Kevin George (Augusta, GA); Edwards, Thomas Barry (Aiken, SC)

    1998-01-01T23:59:59.000Z

    A process for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, .DELTA.G.sub.p, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, .DELTA.G.sub.a, based upon the free energy associated with weak acid dissociation, .DELTA.G.sub.a.sup.WA, and accelerated matrix dissolution at high pH, .DELTA.G.sub.a.sup.SB associated with solution strong base formation, and determining a final hydration free energy, .DELTA.G.sub.f. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log.sub.10 (N C.sub.i (g/L))=a.sub.i +b.sub.i .DELTA.G.sub.f. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained.

  13. Categorical Exclusion (CX) Determinations By Date | Department...

    Office of Environmental Management (EM)

    (CX) Determinations By Date Categorical Exclusion (CX) Determinations By Date August 25, 2015 CX-012469: Categorical Exclusion Determination Gas Analysis Services CX(s) Applied:...

  14. Determining Cropland Share Rental Arrangements

    E-Print Network [OSTI]

    Dhuyvetter, Kevin C.; Kastens, Terry L.; Outlaw, Joe

    1999-06-23T23:59:59.000Z

    Determining Cropland Share Rental Arrangements Kevin C. Dhuyvetter, Terry L. Kastens and Joe L. Outlaw * Many crop producers rely heavily on rented land in their farming operations. The rental arrangements between landowners and producers can...

  15. CX-010776: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Test Reactor (ATR) Primary Coolant Leak Rate Determination System Equipment Replacement CX(s) Applied: B2.2 Date: 07/24/2013 Location(s): Idaho Offices(s): Nuclear Energy

  16. CX-008905: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Optimizing Accuracy of Determinations of Carbon Dioxide Storage Capacity and Permanence CX(s) Applied: A1, A9, B3.6 Date: 08/29/2012 Location(s): Wyoming Offices(s): National Energy Technology Laboratory

  17. Renewable Energy: Utility-Scale Policies and Programs | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Policies & Programs Renewable Energy: Utility-Scale Policies and Programs Renewable Energy: Utility-Scale Policies and Programs Utility-scale renewable energy projects are...

  18. DLFM library tools for large scale dynamic applications.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DLFM library tools for large scale dynamic applications DLFM library tools for large scale dynamic applications Large scale Python and other dynamic applications may spend huge...

  19. Cotton Gin Dust Explosibility Determinations 

    E-Print Network [OSTI]

    Vanderlick, Francis Jerome

    2014-01-06T23:59:59.000Z

    COTTON GIN DUST EXPLOSIBILITY DETERMINATIONS A Thesis by FRANCIS JEROME VANDERLICK Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree... Francis Jerome Vanderlick ii ABSTRACT Following the recent Imperial sugar dust explosion in 2008, a comprehensive survey of past dust explosions was conducted by the Occupational Safety and Health Administration (OSHA) to determine potential...

  20. Gender determination of avian embryo

    DOE Patents [OSTI]

    Daum, Keith A. (Idaho Falls, ID); Atkinson, David A. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    Disclosed is a method for gender determination of avian embryos. During the embryo incubation process, the outer hard shells of eggs are drilled and samples of allantoic fluid are removed. The allantoic fluids are directly introduced into an ion mobility spectrometer (IMS) for analysis. The resulting spectra contain the relevant marker peaks in the positive or negative mode which correlate with unique mobilities which are sex-specific. This way, the gender of the embryo can be determined.

  1. Blueprints of the No-Scale Multiverse at the LHC

    E-Print Network [OSTI]

    Tianjun Li; James A. Maxin; Dimitri V. Nanopoulos; Joel W. Walker

    2012-01-16T23:59:59.000Z

    We present a contemporary perspective on the String Landscape and the Multiverse of plausible string, M- and F-theory vacua. In contrast to traditional statistical classifications and capitulation to the anthropic principle, we seek only to demonstrate the existence of a non-zero probability for a universe matching our own observed physics within the solution ensemble. We argue for the importance of No-Scale Supergravity as an essential common underpinning for the spontaneous emergence of a cosmologically flat universe from the quantum "nothingness". Concretely, we continue to probe the phenomenology of a specific model which is testable at the LHC and Tevatron. Dubbed No-Scale F-SU(5), it represents the intersection of the Flipped SU(5) Grand Unified Theory (GUT) with extra TeV-Scale vector-like multiplets derived out of F-theory, and the dynamics of No-Scale Supergravity, which in turn imply a very restricted set of high energy boundary conditions. By secondarily minimizing the minimum of the scalar Higgs potential, we dynamically determine the ratio tan \\beta \\simeq 15-20 of up- to down-type Higgs vacuum expectation values (VEVs), the universal gaugino boundary mass M_{1/2} \\simeq 450 GeV, and consequently also the total magnitude of the GUT-scale Higgs VEVs, while constraining the low energy Standard Model gauge couplings. In particular, this local minimum minimorum lies within the previously described "golden strip", satisfying all current experimental constraints. We emphasize, however, that the overarching goal is not to establish why our own particular universe possesses any number of specific characteristics, but rather to tease out what generic principles might govern the superset of all possible universes.

  2. The effects of He I 10830 on helium abundance determinations

    E-Print Network [OSTI]

    Aver, Erik; Skillman, Evan D

    2015-01-01T23:59:59.000Z

    Observations of helium and hydrogen emission lines from metal-poor extragalactic H II regions provide an independent method for determining the primordial helium abundance, Y_p. Traditionally, the emission lines employed are in the visible wavelength range, and the number of suitable lines is limited. Furthermore, when using these lines, large systematic uncertainties in helium abundance determinations arise due to the degeneracy of physical parameters, such as temperature and density. Recently, Izotov, Thuan, & Guseva (2014) have pioneered adding the He 10830 infrared emission line in helium abundance determinations. The strong electron density dependence of He 10830 makes it ideal for better constraining density, potentially breaking the degeneracy with temperature. We revisit our analysis of the dataset published by Izotov, Thuan, & Stasinska (2007) and incorporate the newly available observations of He 10830 by scaling them using the observed-to-theoretical Paschen-gamma ratio. The solutions are b...

  3. Emerging technologies and approaches to minimize discharges into Lake Michigan Phase 2, Module 3 report.

    SciTech Connect (OSTI)

    Negri, M. C.; Gillenwater, P.; Urgun Demirtas, M. (Energy Systems)

    2011-05-11T23:59:59.000Z

    Purdue University Calumet (Purdue) and Argonne National Laboratory (Argonne) have conducted an independent study to identify deployable technologies that could help the BP Whiting Refinery, and other petroleum refineries, meet future wastewater discharge limits. This study has been funded by BP. Each organization tested a subset of the target technologies and retains sole responsibility for its respective test design and implementation, quality assurance and control, test results obtained from each of the technologies, and corresponding conclusions and recommendations. This project was divided in two phases and modules. This report summarizes the work conducted by Argonne in Phase II Module 3 (Bench Scale Testing). Other Modules are discussed elsewhere (Emerging Technologies and Approaches to Minimize Discharges into Lake Michigan, Phase 2, Modules 1-3 Report, April 2011, prepared for BP Americas by the Argonne - Purdue Task Force). The goal of this project was to identify and assess available and emerging wastewater treatment technologies for removing mercury and vanadium from the Whiting Refinery wastewater and to conduct bench-scale tests to provide comparable, transparent, and uniform results across the broad range of technologies tested. After the bench-scale testing phase, a previously developed decision matrix was refined and applied by Argonne to process and review test data to estimate and compare the preliminary performance, engineering configuration, preliminary cost, energy usage, and waste generation of technologies that were shown to be able to remove Hg and/or V to below the target limit at the bench scale. The data were used as the basis to identify the best candidates for further testing at the bench or pilot scale on a slip stream of effluent to lake (ETL) or clarifier effluent (CE) at the Whiting Refinery to determine whether future limits could be met and to generate other pertinent data for scale-up and sustainability evaluation. As a result of this technology assessment, Argonne identified several technologies that, at the bench-scale, could achieve the targeted performance for the removal of mercury and vanadium. A subset of those technologies were recommended for further testing either at the bench scale or at the pilot scale to determine whether future discharge limits could be met at the pilot-scale. The objectives of this project module are to: (1) Test at the bench-scale a subset of the technologies previously identified in Module 1 for the removal of target heavy metals down to 1.3 ppt Hg and 280 ppb V; (2) Review and process bench-scale test results on the basis of the end-point performance measures matrix to determine preliminary comparative performance, cost-effectiveness, and potential engineering configuration of tested technologies; (3) Assess the technological feasibility and readiness of the identified technologies for implementation at the Whiting Refinery; and (4) Select technically and economically feasible mercury- and vanadium-removal technologies and vendors to be recommended for pilot-scale testing at the Whiting Refinery.

  4. Setting the Renormalization Scale in QCD: The Principle of Maximum Conformality

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; Di Giustino, Leonardo; /SLAC

    2011-08-19T23:59:59.000Z

    A key problem in making precise perturbative QCD predictions is the uncertainty in determining the renormalization scale {mu} of the running coupling {alpha}{sub s}({mu}{sup 2}): The purpose of the running coupling in any gauge theory is to sum all terms involving the {beta} function; in fact, when the renormalization scale is set properly, all non-conformal {beta} {ne} 0 terms in a perturbative expansion arising from renormalization are summed into the running coupling. The remaining terms in the perturbative series are then identical to that of a conformal theory; i.e., the corresponding theory with {beta} = 0. The resulting scale-fixed predictions using the 'principle of maximum conformality' (PMC) are independent of the choice of renormalization scheme - a key requirement of renormalization group invariance. The results avoid renormalon resummation and agree with QED scale-setting in the Abelian limit. The PMC is also the theoretical principle underlying the BLM procedure, commensurate scale relations between observables, and the scale-setting method used in lattice gauge theory. The number of active flavors nf in the QCD {beta} function is also correctly determined. We discuss several methods for determining the PMC/BLM scale for QCD processes. We show that a single global PMC scale, valid at leading order, can be derived from basic properties of the perturbative QCD cross section. The elimination of the renormalization scheme ambiguity using the PMC will not only increase the precision of QCD tests, but it will also increase the sensitivity of collider experiments to new physics beyond the Standard Model.

  5. Scaling Rules for Pre-Injector Design

    SciTech Connect (OSTI)

    Tom Schwarz; Dan Amidei

    2003-07-13T23:59:59.000Z

    Proposed designs of the prebunching system of the NLC and TESLA are based on the assumption that scaling the SLC design to NLC/TESLA requirements should provide the desired performance. A simple equation is developed to suggest a scaling rule in terms of bunch charge and duration. Detailed simulations of prebunching systems scaled from a single design have been run to investigate these issues.

  6. Halanay type inequalities on time scales

    E-Print Network [OSTI]

    Ad\\ivar, Murat

    2011-01-01T23:59:59.000Z

    This paper aims to introduce Halanay type inequalities on time scales. By means of these inequalities we derive new global stability conditions for nonlinear dynamic equations on time scales. Giving several examples we show that beside generalization and extension to q-difference case, our results also provide improvements for the existing theory regarding differential and difference inequalites, which are the most important particular cases of dynamic inequalities on time scales.

  7. Temperature scaling in a dense vibro-fluidised granular material

    E-Print Network [OSTI]

    P. Sunthar; V. Kumaran

    1999-04-16T23:59:59.000Z

    The leading order "temperature" of a dense two dimensional granular material fluidised by external vibrations is determined. An asymptotic solution is obtained where the particles are considered to be elastic in the leading approximation. The velocity distribution is a Maxwell-Boltzmann distribution in the leading approximation. The density profile is determined by solving the momentum balance equation in the vertical direction, where the relation between the pressure and density is provided by the virial equation of state. The predictions of the present analysis show good agreement with simulation results at higher densities where theories for a dilute vibrated granular material, with the pressure-density relation provided by the ideal gas law, are in error. The theory also predicts the scaling relations of the total dissipation in the bed reported by McNamara and Luding (PRE v 58, p 813).

  8. Micro-Scale Heterogeneity in Biogeochemical Uranium Cycling

    SciTech Connect (OSTI)

    Ginder-Vogel, M.; Wu, W.-M.; Kelly, S.; Criddle, C.S.; Carley, J.; Jardine, P.; Kemner, K.M.; Fendorf, S.

    2009-06-04T23:59:59.000Z

    One method for the in situ remediation of uranium contaminated subsurface environments is the removal of highly soluble U(VI) from groundwater by microbial reduction to the sparingly soluble U(IV) mineral uraninite. Success of this remediation strategy will, in part, be determined by the extent and products of microbial reduction. In heterogeneous subsurface environments, microbial processes will likely yield a combination of U(IV) and U(VI) phases distributed throughout the soil matrix. Here, we use a combination of bulk X-ray absorption spectroscopy (XAS) and micro-focused XAS and X-ray diffraction to determine uranium speciation and distribution with sediment from a pilot-scale uranium remediation project located in Oak Ridge, TN.

  9. CX-000616: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000616: Categorical Exclusion Determination Enhanced Wind Resource Assessment at Naval Station Newport; National Renewable Energy Laboratory...

  10. CX-008582: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-008582: Categorical Exclusion Determination Bay Area Photovoltaics Consortium, Photovoltaic (PV) Manufacturing Initiative - Core Subawards CX(s)...

  11. CX-011845: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    45: Categorical Exclusion Determination CX-011845: Categorical Exclusion Determination Materials Characterization Laboratory & RadiologicalEnvironment, Safety and Health Training...

  12. CX-005367: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    67: Categorical Exclusion Determination CX-005367: Categorical Exclusion Determination Project T-222 Hazardous Materials Management Emergency Response (HAMMER) Training Facility...

  13. CX-002612: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002612: Categorical Exclusion Determination Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate...

  14. CX-002609: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002609: Categorical Exclusion Determination Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate...

  15. CX-000462: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000462: Categorical Exclusion Determination Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate...

  16. CX-002611: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002611: Categorical Exclusion Determination Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate...

  17. DOE Publishes Supplemental Proposed Determination for Miscellaneous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proposed Determination for Miscellaneous Residential Refrigeration Products DOE Publishes Supplemental Proposed Determination for Miscellaneous Residential Refrigeration Products...

  18. CX-006275: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006275: Categorical Exclusion Determination Energy Audit; Efficiency Improvements; and Renewable Energy Installations; Township of...

  19. Unreviewed Safety Question Determination - Processing Waste in...

    Office of Environmental Management (EM)

    Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox Unreviewed Safety Question Determination - Processing Waste in the Waste...

  20. Categorical Exclusion Determinations: Science | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Categorical Exclusion Determinations: Science Categorical Exclusion Determinations issued by Science. DOCUMENTS AVAILABLE FOR DOWNLOAD February 9, 2012 CX-008000:...

  1. CX-001459: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-001459: Categorical Exclusion Determination Air Quality VIII: An International Conference on Carbon Management, Mercury, Trace Elements,...

  2. CX-000771: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-000771: Categorical Exclusion Determination New York Revised Narrative Information Worksheet for Energy Efficiency Program for...

  3. CX-001276: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-001276: Categorical Exclusion Determination Install Photovoltaic Roof System, Energy Efficiency Retrofits, Building Audits, and Hire a Committee...

  4. CX-000477: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000477: Categorical Exclusion Determination Install a Photovoltaic Power Generation Array and Electric Car Charging Stations, Environmental Molecular...

  5. CX-003975: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination CX-003975: Categorical Exclusion Determination State Energy Program - American Recovery and Reinvestment Act Green Jobs Training Program -...

  6. CX-001915: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    15: Categorical Exclusion Determination CX-001915: Categorical Exclusion Determination Green Vision Community Energy Program and Evergreen Municipal Energy Efficiency Program-...

  7. CX-005022: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005022: Categorical Exclusion Determination Small Wind Turbine Regional Test Center, Canyon Texas; National Renewable Energy Laboratory Tracking...

  8. CX-009310: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-009310: Categorical Exclusion Determination Optimization of Reservoir Storage Capacity in Different Depositional Environments (Rock...

  9. CX-009311: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-009311: Categorical Exclusion Determination Optimization of Reservoir Storage Capacity in Different Depositional Environments (Champaign)...

  10. CX-005490: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005490: Categorical Exclusion Determination Thermal Analysis of Radioactive Materials by Thermagravimetric Analysis, Differential Scanning...

  11. CX-005708: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005708: Categorical Exclusion Determination Phase 3 - Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems CX(s)...

  12. CX-002132: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-002132: Categorical Exclusion Determination Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below...

  13. Scaling the practical education experience Joel Sommers

    E-Print Network [OSTI]

    Haddadi, Hamed

    Scaling the practical education experience Joel Sommers Colgate University jsommers outline a successful This work was done in part while Joel Sommers was visiting the University

  14. Small-Scale Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Vermont's Small Scale Renewable Energy Incentive Program (SSREIP), initiated in June 2003, provides funding for new solar water heating, solar electric (photovoltaic), modern wood pellet heating,...

  15. Extreme Scale Computing, Co-design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Extreme Scale (ACES) partnership to design and develop the supercomputer Cielo (Spanish for "sky"), which was built by Cray Inc. Cielo can perform more than one quadrillion...

  16. Extreme Scale Computing, Co-Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Analyzing the evolution of large scale structures in the universe with velocity based methods," IEEE Pacific Visualization Symposium, 49-56 (2012). Christopher M. Brislawn,...

  17. Commercial-Scale Renewable-Energy Grants

    Broader source: Energy.gov [DOE]

    The Rhode Island Commerce Corporation (Commerce RI) seeks to fund commercial scale renewable energy projects to generate electricity for onsite consumption. Commerce RI provides incentives for...

  18. Sandia National Laboratories: utility-scale power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    utility-scale power Sandia Has Signed a Memorandum of Understanding with Case Western Reserve University On January 28, 2014, in Computational Modeling & Simulation, Energy, Energy...

  19. Design of a Small-Scale Biodiesel Production System Jeffrey Anderson, Jessica Caceres, Ali Khazaei, Jedidiah Shirey

    E-Print Network [OSTI]

    Design of a Small-Scale Biodiesel Production System Jeffrey Anderson, Jessica Caceres, Ali Khazaei acreage and biodiesel output. Monte Carlo Simulation Objective: 1) Biodiesel Production Simulation: Determines biodiesel yield and Net Energy Ration of each crop alternative 1) Business Simulation: Determines

  20. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    SciTech Connect (OSTI)

    Oji, L.

    2014-09-23T23:59:59.000Z

    The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent of dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min{sup -1} and 1.07E-03 ± 7.51E-05 min{sup -1}. Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10.8 hours. Based on averaging the two half-lives from the 2H scale acid dissolution in 1.25 and 1.5 M nitric acid solutions, a reasonable half-live for the dissolution of 2H scales in dilute nitric acid is 11.7 ± 1.3 hours. The plant operational time for chemically cleaning (soaking) the 2H evaporator with dilute nitric acid is 32 hours. It therefore may require about 3 half-lives or less to completely dissolve most of the scales in the Evaporator pot which come into contact with the dilute nitric acid solution. On a mass basis, the Al-to-Si ratio for the scale dissolution in 1.5 M nitric acid averaged 1.30 ± 0.20 and averaged 1.18 ± 0.10 for the 2H scale dissolution in 1.25 M nitric acid. These aluminum-to-silicon ratios are in fairly good agreement with ratios from previous studies. Therefore, there is still more aluminum in the 2H evaporator scales than silicon which implies that there are no significant changes in scale properties which will exclude nitric acid as a viable protic solvent for aluminosilicate scale buildup dissolution from the 2H evaporator. Overall, the monitoring of the scale decomposition reaction in 1.25 and 1.5 M nitric acid may be better ascertained through the determination of aluminum concentration in solution than monitoring silicon in solution. Silicon solution chemistry may lead to partial precipitating of silicon with time as the scale and acid solution is heated.

  1. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. Second annual technical report for the period 1978 September 1-1979 December 31

    SciTech Connect (OSTI)

    Bruno, M.J.

    1980-10-01T23:59:59.000Z

    A new computer program was developed for simultaneously solving heat and mass balance at steady state for a flowing one-dimensional chemical reactor. Bench scale reactor results confirmed that minimum final stage reaction temperature is 1950 to 2000/sup 0/C, depending on the Fe/sub 2/O/sub 3/ concentration in the burden. Additions of Fe/sub 2/O/sub 3/ to the charge produced significant increase in metallic yield. A new bench reactor was designed, built, and operated to facilitate semi-continuous operation, using O/sub 2/ injection to burn coke supporting the burden, resulting in burden movement. Validity of the equipment and test procedures was demonstrated by successfully operating the reactor as an iron blast furnace at 1500/sup 0/C. Bench scale fractional crystallizer runs were continued to determine the impurity effects of Fe up to 6.9% and Ti up to 1.25% on alloy product purity and yield. High initial impurity concentrations resulted in less pure Al-Si product and product yield below 50% due to Al and Si losses as Fe-Si-Al and Ti-Si-Al intermetallics. Long term testing was continued in the large bench scale membrane cell to evaluate woven cloth membrane and other construction materials, operating procedures, and effects of operating parameters on cell performance. Included in the latter were starting alloy composition, current density, anode-cathode spacing, and electrolyte composition.

  2. Large scale DNA microsequencing device

    DOE Patents [OSTI]

    Foote, R.S.

    1999-08-31T23:59:59.000Z

    A microminiature sequencing apparatus and method provide means for simultaneously obtaining sequences of plural polynucleotide strands. The apparatus comprises a microchip into which plural channels have been etched using standard lithographic procedures and chemical wet etching. The channels include a reaction well and a separating section. Enclosing the channels is accomplished by bonding a transparent cover plate over the apparatus. A first oligonucleotide strand is chemically affixed to the apparatus through an alkyl chain. Subsequent nucleotides are selected by complementary base pair bonding. A target nucleotide strand is used to produce a family of labelled sequencing strands in each channel which are separated in the separating section. During or following separation the sequences are determined using appropriate detection means. 11 figs.

  3. Large scale DNA microsequencing device

    DOE Patents [OSTI]

    Foote, Robert S. (Oak Ridge, TN)

    1997-01-01T23:59:59.000Z

    A microminiature sequencing apparatus and method provide means for simultaneously obtaining sequences of plural polynucleotide strands. The apparatus comprises a microchip into which plural channels have been etched using standard lithographic procedures and chemical wet etching. The channels include a reaction well and a separating section. Enclosing the channels is accomplished by bonding a transparent cover plate over the apparatus. A first oligonucleotide strand is chemically affixed to the apparatus through an alkyl chain. Subsequent nucleotides are selected by complementary base pair bonding. A target nucleotide strand is used to produce a family of labelled sequencing strands in each channel which are separated in the separating section. During or following separation the sequences are determined using appropriate detection means.

  4. Large scale DNA microsequencing device

    DOE Patents [OSTI]

    Foote, Robert S. (Oak Ridge, TN)

    1999-01-01T23:59:59.000Z

    A microminiature sequencing apparatus and method provide means for simultaneously obtaining sequences of plural polynucleotide strands. The apparatus comprises a microchip into which plural channels have been etched using standard lithographic procedures and chemical wet etching. The channels include a reaction well and a separating section. Enclosing the channels is accomplished by bonding a transparent cover plate over the apparatus. A first oligonucleotide strand is chemically affixed to the apparatus through an alkyl chain. Subsequent nucleotides are selected by complementary base pair bonding. A target nucleotide strand is used to produce a family of labelled sequencing strands in each channel which are separated in the separating section. During or following separation the sequences are determined using appropriate detection means.

  5. Large scale DNA microsequencing device

    DOE Patents [OSTI]

    Foote, R.S.

    1997-08-26T23:59:59.000Z

    A microminiature sequencing apparatus and method provide a means for simultaneously obtaining sequences of plural polynucleotide strands. The apparatus cosists of a microchip into which plural channels have been etched using standard lithographic procedures and chemical wet etching. The channels include a reaction well and a separating section. Enclosing the channels is accomplished by bonding a transparent cover plate over the apparatus. A first oligonucleotide strand is chemically affixed to the apparatus through an alkyl chain. Subsequent nucleotides are selected by complementary base pair bonding. A target nucleotide strand is used to produce a family of labelled sequencing strands in each channel which are separated in the separating section. During or following separation the sequences are determined using appropriate detection means. 17 figs.

  6. SusyHD: Higgs mass Determination in Supersymmetry

    E-Print Network [OSTI]

    Javier Pardo Vega; Giovanni Villadoro

    2015-04-20T23:59:59.000Z

    We present the state-of-the-art of the effective field theory computation of the MSSM Higgs mass, improving the existing ones by including extra threshold corrections. We show that, with this approach, the theoretical uncertainty is within 1 GeV in most of the relevant parameter space. We confirm the smaller value of the Higgs mass found in the EFT computations, which implies a slightly heavier SUSY scale. We study the large tan(\\beta) region, finding that sbottom thresholds might relax the upper bound on the scale of SUSY. We present SusyHD, a fast computer code that computes the Higgs mass and its uncertainty for any SUSY scale, from the TeV to the Planck scale, even in Split SUSY, both in the DRbar and in the on-shell schemes. Finally, we apply our results to derive bounds on some well motivated SUSY models, in particular we show how the value of the Higgs mass allows to determine the complete spectrum in minimal gauge mediation.

  7. SusyHD: Higgs mass Determination in Supersymmetry

    E-Print Network [OSTI]

    Vega, Javier Pardo

    2015-01-01T23:59:59.000Z

    We present the state-of-the-art of the effective field theory computation of the MSSM Higgs mass, improving the existing ones by including extra threshold corrections. We show that, with this approach, the theoretical uncertainty is within 1 GeV in most of the relevant parameter space. We confirm the smaller value of the Higgs mass found in the EFT computations, which implies a slightly heavier SUSY scale. We study the large tan(\\beta) region, finding that sbottom thresholds might relax the upper bound on the scale of SUSY. We present SusyHD, a fast computer code that computes the Higgs mass and its uncertainty for any SUSY scale, from the TeV to the Planck scale, even in Split SUSY, both in the DRbar and in the on-shell schemes. Finally, we apply our results to derive bounds on some well motivated SUSY models, in particular we show how the value of the Higgs mass allows to determine the complete spectrum in minimal gauge mediation.

  8. Determining solar abundances using helioseismology

    E-Print Network [OSTI]

    H. M. Antia; Sarbani Basu

    2006-02-28T23:59:59.000Z

    The recent downward revision of solar photospheric abundances of Oxygen and other heavy elements has resulted in serious discrepancies between solar models and solar structure as determined through helioseismology. In this work we investigate the possibility of determining the solar heavy-element abundance without reference to spectroscopy by using helioseismic data. Using the dimensionless sound-speed derivative in the solar convection zone, we find that the heavy element abundance, Z, of 0.0172 +/- 0.002, which is closer to the older, higher value of the abundances.

  9. 6, 43254340, 2006 Scaling in ozone and

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 6, 4325­4340, 2006 Scaling in ozone and temperature C. Varotsos and D. Kirk-Davidoff Title Chemistry and Physics Discussions Long-memory processes in global ozone and temperature variations C #12;ACPD 6, 4325­4340, 2006 Scaling in ozone and temperature C. Varotsos and D. Kirk-Davidoff Title

  10. Scale invariance, unimodular gravity and dark energy

    E-Print Network [OSTI]

    Mikhail Shaposhnikov; Daniel Zenhausern

    2008-12-16T23:59:59.000Z

    We demonstrate that the combination of the ideas of unimodular gravity, scale invariance, and the existence of an exactly massless dilaton leads to the evolution of the universe supported by present observations: inflation in the past, followed by the radiation and matter dominated stages and accelerated expansion at present. All mass scales in this type of theories come from one and the same source.

  11. Dynamic method to measure calcium carbonate scaling

    SciTech Connect (OSTI)

    Zidovec, D. [Ashland Chemical, Boonton, NJ (United States)

    1999-11-01T23:59:59.000Z

    A method to measure scaling rate and the effect of scale control agents are discussed. It is based on calcium carbonate growth under controlled conditions in a capillary stainless steel column. The efficacy of blended compositions can be predicted when the response of individual components is known.

  12. OVERVIEW OF SCALE 6.2

    SciTech Connect (OSTI)

    Rearden, Bradley T [ORNL] [ORNL; Dunn, Michael E [ORNL] [ORNL; Wiarda, Dorothea [ORNL] [ORNL; Celik, Cihangir [ORNL] [ORNL; Bekar, Kursat B [ORNL] [ORNL; Williams, Mark L [ORNL] [ORNL; Peplow, Douglas E. [ORNL] [ORNL; Perfetti, Christopher M [ORNL] [ORNL; Gauld, Ian C [ORNL] [ORNL; Wieselquist, William A [ORNL] [ORNL; Lefebvre, Jordan P [ORNL] [ORNL; Lefebvre, Robert A [ORNL] [ORNL; Havluj, Frantisek [Nuclear Research Institute, Rez, Czech Republic] [Nuclear Research Institute, Rez, Czech Republic; Skutnik, Steven [The University of Tennessee] [The University of Tennessee; Dugan, Kevin [Texas A& M University] [Texas A& M University

    2013-01-01T23:59:59.000Z

    SCALE is an industry-leading suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a plug-and-play framework that includes three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport as well as activation, depletion, and decay calculations. SCALE s graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2 provides several new capabilities and significant improvements in many existing features, especially with expanded CE Monte Carlo capabilities for criticality safety, shielding, depletion, and sensitivity and uncertainty analysis. A brief overview of SCALE capabilities is provided with emphasis on new features for SCALE 6.2.

  13. Jet Energy Scale March 31, 2009

    E-Print Network [OSTI]

    Jet Energy Scale March 31, 2009 #12;Jet energy vs parton energy Eta-dependent corrections: even scale: conversion from calo measurement to underlying jet Underlying event and out-of-cone corrections region, near-100% efficiency ·Excellent momentum measurement #12;Jet clustering · Jets are formed

  14. Scale evolution of double parton correlations

    E-Print Network [OSTI]

    Tomas Kasemets

    2014-11-17T23:59:59.000Z

    We review the effect of scale evolution on a number of different correlations in double parton scattering (DPS). The strength of the correlations generally decreases with the scale but at a rate which greatly varies between different types. Through studies of the evolution, an understanding of which correlations can be of experimental relevance in different processes and kinematical regions is obtained.

  15. Microfluidic Large-Scale Integration: The Evolution

    E-Print Network [OSTI]

    Quake, Stephen R.

    Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation, polydimethylsiloxane Abstract Microfluidic large-scale integration (mLSI) refers to the develop- ment of microfluidic, are discussed. Several microfluidic components used as building blocks to create effective, complex, and highly

  16. Cosmological parameters from observational data on the large scale structure of the Universe

    E-Print Network [OSTI]

    B. Novosyadlyj; R. Durrer; S. Apunevych

    2000-09-29T23:59:59.000Z

    The observational data on the large scale structure (LSS) of the Universe are used to determine cosmological parameters within the class of adiabatic inflationary models. We show that a mixed dark matter model with cosmological constant ($\\Lambda$MDM model) and parameters $\\Omega_m=0.37^{+0.25}_{-0.15}$, $\\Omega_{\\Lambda}=0.69^{+0.15}_{-0.20}$, $\\Omega_{\

  17. Study of spatial scaling in braided river patterns using synthetic aperture radar imagery

    E-Print Network [OSTI]

    Foufoula-Georgiou, Efi

    imagery was used to extract braided river patterns such that their spatial scaling characteristics could to build bridges across sections of braided rivers, to harvest the rich mineral deposits left on their bars, determin- istic approach of water flow over a cohesionless bed. Their model reproduced the main spatial

  18. URL: www.swpc.noaa.gov/NOAAscales April 7, 2011 NOAA Space Weather Scales

    E-Print Network [OSTI]

    : induced pipeline currents affect preventive measures, HF radio propagation sporadic, satellite navigation measure Average Frequency (1 cycle = 11 years) Scale Descriptor Duration of event will influence severity of effects Geomagnetic Storms Kp values* determined every 3 hours Number of storm events when Kp level

  19. Large-scale hybrid poplar production economics: 1995 Alexandria, Minnesota establishment cost and management

    SciTech Connect (OSTI)

    Downing, M. [Oak Ridge National Lab., TN (United States); Langseth, D. [WesMinn Resource Conservation and Development District, Alexandria, MN (United States); Stoffel, R. [Minnesota Dept. of Natural Resources, Alexandria, MN (United States); Kroll, T. [Minnesota Dept. of Natural Resources, St. Paul, MN (United States). Forestry Div.

    1996-12-31T23:59:59.000Z

    The purpose of this project was to track and monitor costs of planting, maintaining, and monitoring large scale commercial plantings of hybrid poplar in Minnesota. These costs assists potential growers and purchasers of this resource to determine the ways in which supply and demand may be secured through developing markets.

  20. Effective Darcy-scale contact angles in porous media imbibing solutions of various surface tensions

    E-Print Network [OSTI]

    Selker, John

    Effective Darcy-scale contact angles in porous media imbibing solutions of various surface tensions was to develop and test a methodology to determine whether these surface tension effects predictably alter of 25° for the NaNO3 solution solely on the basis of surface tension contrast. The results of this study

  1. Determining Cropland Cash Rental Arrangements

    E-Print Network [OSTI]

    Dhuyvetter, Kevin C.; Kastens, Terry L.; Outlaw, Joe

    1999-06-23T23:59:59.000Z

    Determining Cropland Cash Rental Arrangements Kevin C. Dhuyvetter, Terry L. Kastens and Joe L. Outlaw* Many crop producers rely heavily on rented land in their farming operations. Crop land is typically rented in one of three ways: (1) cash rent; (2...

  2. CX-011104: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Coupled Thermo-Mechanical and Photo-Chemical Degradation Mechanisms that Determine the Reliability and Operational Lifetimes for Concentrated Photovoltaic Technologies CX(s) Applied: A9, B3.6 Date: 08/29/2013 Location(s): California Offices(s): Golden Field Office

  3. CX-100019: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Determination of Rare Earths in Geothermal Brines and Evaluation of Potential Extraction Techniques CX(s) Applied: A9, B3.1, B3.6 Date: 08/18/2014 Location(s): California Offices(s): Golden Field Office Technology Office: Geothermal Technologies Award Number: DE-EE0006750

  4. CX-008738: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determination of Microstructure and Chemical State Changes in Ion-Irradiated Fuels and Structural Components with a High Kinetic Energy Electron Detector – Illinois Institute of Technology CX(s) Applied: B3.6 Date: 05/22/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  5. Gutenberg-Richter Scaling - A New Paradigm

    E-Print Network [OSTI]

    Serino, C A; Klein, W

    2010-01-01T23:59:59.000Z

    We introduce a new model for an earthquake fault system that is composed of non-interacting simple lattice models with different levels of damage denoted by $q$. The undamaged lattice models ($q=0$) have Gutenberg-Richter scaling with a cumulative exponent $\\beta=1/2$, whereas the damaged models do not have well defined scaling. However, if we consider the "fault system" consisting of all models, damaged and undamaged, we get excellent scaling with the exponent depending on the relative frequency with which faults with a particular amount of damage occur in the fault system. This paradigm combines the idea that Gutenberg-Richter scaling is associated with an underlying critical point with the notion that the structure of a fault system also affects the statistical distribution of earthquakes. In addition, it provides a framework in which the variation, from one tectonic region to another, of the scaling exponent, or $b$-value, can be understood.

  6. Bare Higgs mass at Planck scale

    E-Print Network [OSTI]

    Yuta Hamada; Hikaru Kawai; Kin-ya Oda

    2015-01-19T23:59:59.000Z

    We compute one- and two-loop quadratic divergent contributions to the bare Higgs mass in terms of the bare couplings in the Standard Model. We approximate the bare couplings, defined at the ultraviolet cutoff scale, by the MS-bar ones at the same scale, which are evaluated by the two-loop renormalization group equations for the Higgs mass around 126GeV in the Standard Model. We obtain the cutoff scale dependence of the bare Higgs mass, and examine where it becomes zero. We find that when we take the current central value for the top quark pole mass, 173GeV, the bare Higgs mass vanishes if the cutoff is about 10^{23}GeV. With a 1.3 sigma smaller mass, 170GeV, the scale can be of the order of the Planck scale.

  7. Lower scaling dimensions of quarks and gluons and new energy scales

    E-Print Network [OSTI]

    F. Palumbo

    1996-05-08T23:59:59.000Z

    We consider the possibility that quarks and gluons, due to confinement, have lower scaling dimensions. In such a case there appear naturally new energy scales below which the standard theory is recovered. Arguments are given whereby for dimension $1/2$ of the quarks the theory is unitary also above these energy scales.

  8. Impact of Friction and Scale-Dependent Initial Stress on Radiated Energy-Moment Scaling

    E-Print Network [OSTI]

    Shaw, Bruce E.

    . Shaw Lamont­Doherty Earth Observatory, Columbia University, New York, USA The radiated energy coming271 Impact of Friction and Scale-Dependent Initial Stress on Radiated Energy-Moment Scaling Bruce E of elucidat- ing their radiated energy-moment scaling. We find, contrary to expectations, that apparent stress

  9. EEHG Performance and Scaling Laws

    SciTech Connect (OSTI)

    Penn, Gregory

    2013-10-09T23:59:59.000Z

    This note will calculate the idealized performance of echo-enabled harmonic generation performance (EEHG), explore the parameter settings, and look at constraints determined by incoherent synchrotron radiation (ISR) and intrabeam scattering (IBS). Another important effect, time-of-flight variations related to transverse emittance, is included here but without detailed explanation because it has been described previously. The importance of ISR and IBS is that they lead to random energy shifts that lead to temporal shifts after the various beam manipulations required by the EEHG scheme. These effects give competing constraints on the beamline. For chicane magnets which are too compact for a given R56, the magnetic fields will be sufficiently strong that ISR will blur out the complex phase space structure of the echo scheme to the point where the bunching is strongly suppressed. The effect of IBS is more omnipresent, and requires an overall compact beamline. It is particularly challenging for the second pulse in a two-color attosecond beamline, due to the long delay between the first energy modulation and the modulator for the second pulse.

  10. Using Focused Regression for Accurate Time-Constrained Scaling of Scientific Applications

    SciTech Connect (OSTI)

    Barnes, B; Garren, J; Lowenthal, D; Reeves, J; de Supinski, B; Schulz, M; Rountree, B

    2010-01-28T23:59:59.000Z

    Many large-scale clusters now have hundreds of thousands of processors, and processor counts will be over one million within a few years. Computational scientists must scale their applications to exploit these new clusters. Time-constrained scaling, which is often used, tries to hold total execution time constant while increasing the problem size along with the processor count. However, complex interactions between parameters, the processor count, and execution time complicate determining the input parameters that achieve this goal. In this paper we develop a novel gray-box, focused median prediction errors are less than 13%. regression-based approach that assists the computational scientist with maintaining constant run time on increasing processor counts. Combining application-level information from a small set of training runs, our approach allows prediction of the input parameters that result in similar per-processor execution time at larger scales. Our experimental validation across seven applications showed that median prediction errors are less than 13%.

  11. Leaching scale effect for radioactive wastes encapsulated in cement, bitumen or polymer

    SciTech Connect (OSTI)

    Nomine, J.C.; Ferriot, J.F. [CEA Centre d`Etude de Saclay, Gif-sur-Yvette (France); Girard, J.; Montigon, J.F. [CEA Centre d`Etude de Cadarache, St. Paul-lez-Durance (France)

    1993-12-31T23:59:59.000Z

    An effective method to determine of the radioactive waste package s acceptable for a final disposal and in accordance with the requirements is by leaching tests. For many reasons the leaching tests are conducted on small size samples rather than full scale blocks. Nevertheless, it is necessary to demonstrate that laboratory or cored samples are representative of real form-scale embedding (in accordance with the specific activity, the chemical composition of the waste, the matrix and structure) for the leaching tests. This paper gives the results of studies on the leaching behavior of waste embeddings in three different cases (hydraulic binder, bitumen and polymer matrices). For cesium, even if no scale effect on its leaching mechanism has been shown, it is difficult to prove before testing that small samples are representative of the real waste forms. For cobalt, results on bitumen or polymer embedded waste show no scale effect on its leaching mechanism.

  12. Summary of pilot-scale activities with resorcinol ion exchange resin

    SciTech Connect (OSTI)

    Cicero, C.A. [Westinghouse Savannah River Company, AIKEN, SC (United States); Bickford, D.F.; Sargent, T.N.; Andrews, M.K.; Bibler, J.P.; Bibler, N.E.; Jantzen, C.M.

    1995-10-02T23:59:59.000Z

    The Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE) is currently investigating vitrification technology for treatment of low level mixed wastes (LLMW). They have chartered the Savannah River Technology Center (SRTC) to study vitrification of the wastes through an Office of Technology Development (OTD) Technical Task Plan (TTP). SRTC`s efforts have included crucible-scale studies and pilot scale testing on simulated LLMW sludges, resins, soils, and other solid wastes. Results from the crucible-scale studies have been used as the basis for the pilot-scale demonstrations. As part of the fiscal year (FY) 1995 activities, SRTC performed crucible-scale studies with organic resins. This waste stream was selected because of the large number of DOE sites, as well as commercial industries, that use resins for treatment of liquid wastes. Pilot-scale studies were to be completed in FY 1995, but could not be due to a reduction in funding. Instead, a compilation of pilot-scale tests with organic resins performed under the guidance of SRTC was provided in this report. The studies which will be discussed used a resorcinol- formaldehyde resin loaded with non-radioactive cesium, which was fed with simulated wastewater treatment sludge feed. The first study was performed at the SRTC in the mini-melter, 1/100th scale of the Defense Waste Processing Facility (DWPF) melter, and also involved limited crucible-scale studies to determine the resin loading obtainable. The other study was performed at the DOE/Industrial Center for Vitrification Research (Center) and involved both crucible and pilot-scale testing in the Stir-Melter stirred-melter. Both studies were successful in vitrifying the resin in simulated radioactive sludge and glass additive feeds.

  13. Large-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect (OSTI)

    Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

    2013-08-01T23:59:59.000Z

    One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the relevant physical properties projected for actual WTP process streams.

  14. Small-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect (OSTI)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, G. N.; Mahoney, Lenna A.; Tran, Diana N.; Burns, Carolyn A.; Kurath, Dean E.

    2013-08-01T23:59:59.000Z

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are largely absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale. The small-scale testing and resultant data are described in Mahoney et al. (2012b) and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the relevant physical properties projected for actual WTP process streams.

  15. The No-Scale Multiverse at the LHC

    E-Print Network [OSTI]

    Tianjun Li; James A. Maxin; Dimitri V. Nanopoulos; Joel W. Walker

    2011-04-01T23:59:59.000Z

    We present a contemporary perspective on the String Landscape and the Multiverse of plausible string, M- and F-theory vacua, seeking to demonstrate a non-zero probability for the existence of a universe matching our own observed physics within the solution ensemble, arguing for the importance of No-Scale Supergravity as an essential common underpinning. Our context is a highly detailed phenomenological probe of No-Scale F-SU(5), a model representing the intersection of the F-lipped SU(5) X U(1)_X Grand Unified Theory (GUT) with extra TeV-Scale vector-like multiplets derived out of F-theory, and the dynamics of No-Scale Supergravity. We present a highly constrained "Golden" region with tan(beta) \\sim 15, m_t = 173.0 - 174.4 GeV, M_1/2 = 455 - 481 GeV, and M_V = 691 - 1020 GeV, which simultaneously satisfies all known experimental constraints. We supplement this bottom-up phenomenological perspective with a top-down theoretical analysis of the one-loop effective Higgs potential, achieving a striking consonance via the dynamic determination of tan(beta) and M_1/2 at the local secondary minimization of the spontaneously broken electroweak Higgs vacuum V_min. We present the distinctive signatures of No-Scale F-SU(5) at the LHC, where a light stop and gluino are expected to generate a surplus of ultra-high multiplicity (>= 9) hadronic jet events. We propose modest alterations to the canonical background selection cut strategy which would enhance resolution of these events, while readily suppressing the contribution of all Standard Model processes, and allowing a clear differentiation from competing models of new physics. Detection by the LHC of the ultra-high jet signal would constitute a suggestive evocation of the intimately linked stringy origins of F-SU(5), and could provide a glimpse into the fundamental string moduli, and possibly even the workings of the No-Scale Multiverse.

  16. Small-scale magnetic buoyancy and magnetic pumping effects in a turbulent convection

    E-Print Network [OSTI]

    I. Rogachevskii; N. Kleeorin

    2006-05-18T23:59:59.000Z

    We determine the nonlinear drift velocities of the mean magnetic field and nonlinear turbulent magnetic diffusion in a turbulent convection. We show that the nonlinear drift velocities are caused by the three kinds of the inhomogeneities, i.e., inhomogeneous turbulence; the nonuniform fluid density and the nonuniform turbulent heat flux. The inhomogeneous turbulence results in the well-known turbulent diamagnetic and paramagnetic velocities. The nonlinear drift velocities of the mean magnetic field cause the small-scale magnetic buoyancy and magnetic pumping effects in the turbulent convection. These phenomena are different from the large-scale magnetic buoyancy and magnetic pumping effects which are due to the effect of the mean magnetic field on the large-scale density stratified fluid flow. The small-scale magnetic buoyancy and magnetic pumping can be stronger than these large-scale effects when the mean magnetic field is smaller than the equipartition field. We discuss the small-scale magnetic buoyancy and magnetic pumping effects in the context of the solar and stellar turbulent convection. We demonstrate also that the nonlinear turbulent magnetic diffusion in the turbulent convection is anisotropic even for a weak mean magnetic field. In particular, it is enhanced in the radial direction. The magnetic fluctuations due to the small-scale dynamo increase the turbulent magnetic diffusion of the toroidal component of the mean magnetic field, while they do not affect the turbulent magnetic diffusion of the poloidal field.

  17. Determining the Appropriate Asset Allocation

    E-Print Network [OSTI]

    Johnson, Jason; Polk, Wade

    2002-08-12T23:59:59.000Z

    more aggres- sive investments, assuming you aren?t averse to risk. As time goes by, your portfolio has less time to recover from market dips, so you might choose to shift gradually to a more conservative asset alloca- tion. E-160 8-02 DETERMINING... assets. Different asset classes have different levels of liquidity. Liquidity is less of a consideration for money invested to meet longer term goals. Diversification Diversification is a key compo- nent of asset allocation. A diversi- fied portfolio...

  18. Method for determining gene knockouts

    DOE Patents [OSTI]

    Maranas, Costas D. (Port Matilda, PA); Burgard, Anthony R. (State College, PA); Pharkya, Priti (State College, PA)

    2011-09-27T23:59:59.000Z

    A method for determining candidates for gene deletions and additions using a model of a metabolic network associated with an organism, the model includes a plurality of metabolic reactions defining metabolite relationships, the method includes selecting a bioengineering objective for the organism, selecting at least one cellular objective, forming an optimization problem that couples the at least one cellular objective with the bioengineering objective, and solving the optimization problem to yield at least one candidate.

  19. Method for determining gene knockouts

    DOE Patents [OSTI]

    Maranas, Costa D; Burgard, Anthony R; Pharkya, Priti

    2013-06-04T23:59:59.000Z

    A method for determining candidates for gene deletions and additions using a model of a metabolic network associated with an organism, the model includes a plurality of metabolic reactions defining metabolite relationships, the method includes selecting a bioengineering objective for the organism, selecting at least one cellular objective, forming an optimization problem that couples the at least one cellular objective with the bioengineering objective, and solving the optimization problem to yield at least one candidate.

  20. Determining boiler-water makeup

    SciTech Connect (OSTI)

    Beecher, J.; Herman, K. [Ashland Chemical Co., Boonton, NJ (United States). Drew Industrial Div.

    1995-10-01T23:59:59.000Z

    In boiler operations, it is desirable to determine blowdown--and, thus, the feedwater`s concentration cycles--because it enables operators to calculate the theoretical concentrations of iron, copper or dispersant in the system. These calculations are important for maintaining boiler cleanliness. In practice, however, it isn`t always feasible to determine blowdown. For example, if the steam, feedwater and blowdown flows are not measured in a system, or if the measurements are not accurate, the blowdown and feedwater concentration cycles cannot be accurately determined. Also, if demineralized makeup water with very-low silica concentrations is mixed with essentially silica-free condensate, the ratio of silica in the boiler water to the silica in the feedwater may not yield accurate values for the concentration cycle. This method for calculating concentration cycles is accurate to within 5%, when the accuracy of the parameters measured are within the following limits: steam flow (2%); phosphate, residual (5%); micro calcium (50%); micro iron (25%); and phosphate, feed (10%).