National Library of Energy BETA

Sample records for determination baseload nitrate

  1. Baseload Nitrate Salt Central Receiver Power Plant Design Final Report

    SciTech Connect (OSTI)

    Tilley, Drake; Kelly, Bruce; Burkholder, Frank

    2014-12-12

    The objectives of the work were to demonstrate that a 100 MWe central receiver plant, using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator, can 1) operate, at full load, for 6,400 hours each year using only solar energy, and 2) satisfy the DOE levelized energy cost goal of $0.09/kWhe (real 2009 $). To achieve these objectives the work incorporated a large range of tasks relating to many different aspects of a molten salt tower plant. The first Phase of the project focused on developing a baseline design for a Molten Salt Tower and validating areas for improvement. Tasks included a market study, receiver design, heat exchanger design, preliminary heliostat design, solar field optimization, baseline system design including PFDs and P&IDs and detailed cost estimate. The baseline plant met the initial goal of less than $0.14/kWhe, and reinforced the need to reduce costs in several key areas to reach the overall $0.09/kWhe goal. The major improvements identified from Phase I were: 1) higher temperature salt to improve cycle efficiency and reduce storage requirements, 2) an improved receiver coating to increase the efficiency of the receiver, 3) a large receiver design to maximize storage and meet the baseload hours objective, and 4) lower cost heliostat field. The second Phase of the project looked at advancing the baseline tower with the identified improvements and included key prototypes. To validate increasing the standard solar salt temperature to 600 °C a dynamic test was conducted at Sandia. The results ultimately proved the hypothesis incorrect and showed high oxide production and corrosion rates. The results lead to further testing of systems to mitigate the oxide production to be able to increase the salt temperature for a commercial plant. Foster Wheeler worked on the receiver design in both Phase I and Phase II looking at both design and lowering costs utilizing commercial fossil boiler

  2. Baseload Concentrating Solar Power Generation | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Baseload Concentrating Solar Power Generation Baseload Concentrating Solar Power Generation Baseload Concentrating Solar Power Generation In 2010, DOE ...

  3. Baseload CSP Generation Integrated with Sulfur-Based Thermochemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage - FY13 Q1 Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage - FY13 ...

  4. Climate Change Update: Baseload Geothermal is One of the Lowest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change Update: Baseload Geothermal is One of the Lowest Emitting Energy Technologies Climate Change Update: Baseload Geothermal is One of the Lowest Emitting Energy...

  5. Project Profile: Baseload CSP Generation Integrated with Sulfur-Based

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Heat Storage | Department of Energy Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage Project Profile: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage General Atomics logo General Atomics, under the Baseload CSP FOA, demonstrated the engineering feasibility of using a sulfur-based thermochemical cycle to store heat from a CSP plant and support baseload power generation. Approach Graphic of a diagram of squares and

  6. Project Profile: Brayton Cycle Baseload Power Tower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycle Baseload Power Tower Project Profile: Brayton Cycle Baseload Power Tower Wilson logo Wilson Solarpower, under the Baseload CSP FOA, proposed a utility-scale, Brayton cycle baseload power tower system with a capacity factor of at least 75% and LCOE of $0.09/kWh. Approach Photo of a tower in the background with slanted panels connected by a wire in the foreground. Wilson developed, built, tested, and evaluated two prototype components-an unpressurized thermal storage system and an

  7. Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation | Department of Energy Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation University of South Florida logo The University of South Florida, under the Baseload CSP FOA, developed a thermal energy storage system based on encapsulated phase change materials (PCM) that meets the utility-scale baseload CSP plant requirements at significantly lower system costs. Approach Previous thermal

  8. CSP Heat Integration for Baseload Renewable Energy Deployment | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Concentrating Solar Power » CSP Heat Integration for Baseload Renewable Energy Deployment CSP Heat Integration for Baseload Renewable Energy Deployment --This project has been closed-- In October 2013, DOE announced an award under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program to advance the state of the art in CSP hybrid plants, which incorporate thermal and or chemical energy from a CSP system into a fossil fueled

  9. Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Feasibility | Department of Energy Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility eSolar logo eSolar, under the Baseload CSP FOA, designed a 100-MW, 75% capacity factor, molten salt power tower plant, based around a molten salt receiver and heliostat field module with a nominal thermal rating of 50 MWth. They used a modular approach, which can be

  10. Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage - FY13 Q1 | Department of Energy Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage - FY13 Q1 Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage - FY13 Q1 This document summarizes the progress of this General Atomics project, funded by SunShot, for the first quarter of fiscal year 2013. progress_report_baseload_generalatomics_fy13_q1.pdf (196.13 KB) More Documents & Publications Baseload CSP Generation Integrated with

  11. Project Profile: Innovative Thermal Energy Storage for Baseload...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative ... FOA, developed a thermal energy storage system based on encapsulated phase change ...

  12. Innovative Phase Change Thermal Energy Storage Solution for Baseload...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power ... salt thermal energy storage (TES) system that can interface with Infinia's ...

  13. LPG-recovery processes for baseload LNG plants examined

    SciTech Connect (OSTI)

    Chiu, C.H.

    1997-11-24

    With demand on the rise, LPG produced from a baseload LNG plant becomes more attractive as a revenue-earning product similar to LNG. Efficient use of gas expanders in baseload LNG plants for LPG production therefore becomes more important. Several process variations for LPG recovery in baseload LNG plants are reviewed here. Exergy analysis (based on the Second Law of Thermodynamics) is applied to three cases to compare energy efficiency resulting from integration with the main liquefaction process. The paper discusses extraction in a baseload plant, extraction requirements, process recovery parameters, extraction process variations, and exergy analysis.

  14. Project Profile: Baseload CSP Generation Integrated with Sulfur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Project Profile: Baseload CSP Generation Integrated with Sulfur-Based ... General Atomics is seeking a better thermal energy storage approach using ...

  15. Innovative Phase hange Thermal Energy Storage Solution for Baseload...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase hange Thermal Energy Storage Solution for Baseload Power Innovative Phase hange Thermal Energy ... for Dish Engine Solar Power Generation Dish Stirling High Performance ...

  16. Innovative Phase Change Thermal Energy Storage Solution for Baseload Power

    Office of Scientific and Technical Information (OSTI)

    Phase 1 Final Report (Technical Report) | SciTech Connect Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report Citation Details In-Document Search Title: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report The primary purpose of this project is to develop and validate an innovative, scalable phase change salt thermal energy storage (TES) system that can interface with Infinia's family of free-piston

  17. Innovative Phase Change Thermal Energy Storage Solution for Baseload Power

    Office of Scientific and Technical Information (OSTI)

    Phase 1 Final Report (Technical Report) | SciTech Connect Technical Report: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report Citation Details In-Document Search Title: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report The primary purpose of this project is to develop and validate an innovative, scalable phase change salt thermal energy storage (TES) system that can interface with Infinia's family of

  18. Flexible Coal: Evolution from Baseload to Peaking Plant (Brochure)

    SciTech Connect (OSTI)

    Cochran, J.; Lew, D.; Kumar, N.

    2013-12-01

    Twenty-first century power systems, with higher penetration levels of low-carbon energy, smart grids, and other emerging technologies, will favor resources that have low marginal costs and provide system flexibility (e.g., the ability to cycle on and off to follow changes in variable renewable energy plant output). Questions remain about both the fate of coal plants in this scenario and whether they can cost-effectively continue to operate if they cycle routinely. The experience from the CGS plant demonstrates that coal plants can become flexible resources. This flexibility - namely the ability to cycle on and off and run at lower output (below 40% of capacity) - requires limited hardware modifications but extensive modifications to operational practice. Cycling does damage the plant and impact its life expectancy compared to baseload operations. Nevertheless, strategic modifications, proactive inspections and training programs, among other operational changes to accommodate cycling, can minimize the extent of damage and optimize the cost of maintenance. CGS's cycling, but not necessarily the associated price tag, is replicable. Context - namely, power market opportunities and composition of the generation fleet - will help determine for other coal plants the optimal balance between the level of cycling-related forced outages and the level of capital investment required to minimize those outages. Replicating CGS's experience elsewhere will likely require a higher acceptance of forced outages than regulators and plant operators are accustomed to; however, an increase in strategic maintenance can minimize the impact on outage rates.

  19. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    SciTech Connect (OSTI)

    wong, bunsen

    2014-11-20

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  20. Project Profile: Advanced Nitrate Salt Central Receiver Power Plant |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nitrate Salt Central Receiver Power Plant Project Profile: Advanced Nitrate Salt Central Receiver Power Plant Abengoa logo Abengoa, under the Baseload CSP FOA, demonstrated a 100-megawatt electrical (MWe) central receiver plant using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator. Approach Photo of two lit towers surrounded by much smaller blue flat plates that are mounted on the ground. Abengoa planned to

  1. CX-003201: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Baseload Nitrate Salt Central Receiver Power Plant DesignCX(s) Applied: A9Date: 08/04/2010Location(s): ColoradoOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  2. CX-010503: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Baseload Nitrate Salt Central Receiver Power Plant Design CX(s) Applied: A9, B3.6, B5.17 Date: 06/03/2013 Location(s): Colorado, Colorado Offices(s): Golden Field Office

  3. A DOE-Funded Design Study for Pioneer Baseload Application Of...

    Open Energy Info (EERE)

    Of an Advanced Geothermal binary Cycle at a Utility Plant in Western Utah Citation W.E. Lewis, M. Ralph. 2002. A DOE-Funded Design Study for Pioneer Baseload Application Of an...

  4. Baseload gas turbine to meet utility requirements for reliability and availability

    SciTech Connect (OSTI)

    Grevstad, P.E.; Smith, M.J.; Duncan, R.L.

    1982-04-01

    The coal gasifier-gas turbine, combined cycle is described as a superior baseload electric generating system. It promises lower fuel cost, lower operating and maintenance cost, and superior siting and environmental characteristics over conventional steam systems with flue gas clean up and fluidized bed combined cycle systems. Two major new components are required: 1) the coal gasifier, and 2) the baseload gas turbine. 10 refs.

  5. Climate Change Update: Baseload Geothermal is One of the Lowest Emitting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technologies | Department of Energy Climate Change Update: Baseload Geothermal is One of the Lowest Emitting Energy Technologies Climate Change Update: Baseload Geothermal is One of the Lowest Emitting Energy Technologies June 26, 2013 - 11:53am Addthis Geothermal energy - energy derived from the heat of the earth - has the ability to produce electricity consistently around the clock, draws a small environmental footprint, and emits little or no greenhouse gases (GHG). Estimates of

  6. Flexible Coal: An Example Evolution from Baseload to Peaking Plant (Presentation)

    SciTech Connect (OSTI)

    Cochran, J.

    2014-08-01

    Twenty-first century power systems, with higher penetration levels of low-carbon energy, smart grids, and other emerging technologies, will favor resources that have low marginal costs and provide system flexibility (e.g., the ability to cycle on and off to follow changes in variable renewable energy plant output). Questions remain about both the fate of coal plants in this scenario and whether they can cost-effectively continue to operate if they cycle routinely. The experience from the CGS plant demonstrates that coal plants can become flexible resources. This flexibility - namely the ability to cycle on and off and run at lower output (below 40% of capacity) - requires limited hardware modifications but extensive modifications to operational practice. Cycling does damage the plant and impact its life expectancy compared to baseload operations. Nevertheless, strategic modifications, proactive inspections and training programs, among other operational changes to accommodate cycling, can minimize the extent of damage and optimize the cost of maintenance. CGS's cycling, but not necessarily the associated price tag, is replicable. Context - namely, power market opportunities and composition of the generation fleet - will help determine for other coal plants the optimal balance between the level of cycling-related forced outages and the level of capital investment required to minimize those outages. Replicating CGS's experience elsewhere will likely require a higher acceptance of forced outages than regulators and plant operators are accustomed to; however, an increase in strategic maintenance can minimize the impact on outage rates.

  7. Flexible Coal: An Example Evolution from Baseload to Peaking Plant (Presentation)

    SciTech Connect (OSTI)

    Cochran, J.

    2014-05-01

    Twenty-first century power systems, with higher penetration levels of low-carbon energy, smart grids, and other emerging technologies, will favor resources that have low marginal costs and provide system flexibility (e.g., the ability to cycle on and off to follow changes in variable renewable energy plant output). Questions remain about both the fate of coal plants in this scenario and whether they can cost-effectively continue to operate if they cycle routinely. The experience from the CGS plant demonstrates that coal plants can become flexible resources. This flexibility - namely the ability to cycle on and off and run at lower output (below 40% of capacity) - requires limited hardware modifications but extensive modifications to operational practice. Cycling does damage the plant and impact its life expectancy compared to baseload operations. Nevertheless, strategic modifications, proactive inspections and training programs, among other operational changes to accommodate cycling, can minimize the extent of damage and optimize the cost of maintenance. CGS's cycling, but not necessarily the associated price tag, is replicable. Context - namely, power market opportunities and composition of the generation fleet - will help determine for other coal plants the optimal balance between the level of cycling-related forced outages and the level of capital investment required to minimize those outages. Replicating CGS's experience elsewhere will likely require a higher acceptance of forced outages than regulators and plant operators are accustomed to; however, an increase in strategic maintenance can minimize the impact on outage rates.

  8. Nitrate reduction

    DOE Patents [OSTI]

    Dziewinski, Jacek J. (Los Alamos, NM); Marczak, Stanislaw (Los Alamos, NM)

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  9. Baseload, industrial-scale wind power: An alternative to coal in China

    SciTech Connect (OSTI)

    Lew, D.J.; Williams, R.H.; Xie Shaoxiong; Zhang Shihui

    1996-12-31

    This report presents a novel strategy for developing wind power on an industrial-scale in China. Oversized wind farms, large-scale electrical storage and long-distance transmission lines are integrated to deliver {open_quotes}baseload wind power{close_quotes} to distant electricity demand centers. The prospective costs for this approach to developing wind power are illustrated by modeling an oversized wind farm at Huitengxile, Inner Mongolia. Although storage adds to the total capital investment, it does not necessarily increase the cost of the delivered electricity. Storage makes it possible to increase the capacity factor of the electric transmission system, so that the unit cost for long-distance transmission is reduced. Moreover, baseload wind power is typically more valuable to the electric utility than intermittent wind power, so that storage can be economically attractive even in instances where the cost per kWh is somewhat higher than without storage. 9 refs., 3 figs., 2 tabs.

  10. Compressed air energy storage system reservoir size for a wind energy baseload power plant

    SciTech Connect (OSTI)

    Cavallo, A.J.

    1996-12-31

    Wind generated electricity can be transformed from an intermittent to a baseload resource using an oversized wind farm in conjunction with a compressed air energy storage (CAES) system. The size of the storage reservoir for the CAES system (solution mined salt cavern or porous media) as a function of the wind speed autocorrelation time (C) has been examined using a Monte Carlo simulation for a wind class 4 (wind power density 450 W m{sup -2} at 50 m hub height) wind regime with a Weibull k factor of 2.5. For values of C typically found for winds over the US Great Plains, the storage reservoir must have a 60 to 80 hour capacity. Since underground reservoirs account for only a small fraction of total system cost, this larger storage reservoir has a negligible effect on the cost of energy from the wind energy baseload system. 7 refs., 2 figs., 1 tab.

  11. Flexible Coal: Evolution from Baseload to Peaking Plant (Brochure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power market opportunities and composition of the generation fleet-will help determine for other coal plants the optimal balance between the level of cycling-related forced outages ...

  12. Brayton-Cycle Baseload Power Tower CSP System

    SciTech Connect (OSTI)

    Anderson, Bruce

    2013-12-31

    The primary objectives of Phase 2 of this Project were: 1. Engineer, fabricate, and conduct preliminary testing on a low-pressure, air-heating solar receiver capable of powering a microturbine system to produce 300kWe while the sun is shining while simultaneously storing enough energy thermally to power the system for up to 13 hours thereafter. 2. Cycle-test a high-temperature super alloy, Haynes HR214, to determine its efficacy for the system’s high-temperature heat exchanger. 3. Engineer the thermal energy storage system This Phase 2 followed Wilson’s Phase 1, which primarily was an engineering feasibility study to determine a practical and innovative approach to a full Brayton-cycle system configuration that could meet DOE’s targets. Below is a summary table of the DOE targets with Wilson’s Phase 1 Project results. The results showed that a Brayton system with an innovative (low pressure) solar receiver with ~13 hours of dry (i.e., not phase change materials or molten salts but rather firebrick, stone, or ceramics) has the potential to meet or exceed DOE targets. Such systems would consist of pre-engineered, standardized, factory-produced modules to minimize on-site costs while driving down costs through mass production. System sizes most carefully analyzed were in the range of 300 kWe to 2 MWe. Such systems would also use off-the-shelf towers, blowers, piping, microturbine packages, and heliostats. Per DOE’s instructions, LCOEs are based on the elevation and DNI levels of Daggett, CA, for a 100 MWe power plant following 2 GWe of factory production of the various system components. Success criteria DOE targets Wilson system LCOE DOE’s gas price $6.75/MBtu 9 cents/kWh 7.7 cents/kWh LCOE Current gas price $4.71/MBtu NA 6.9 cents/kWh Capacity factor 75% (6500hr) 75-100% Solar fraction 85% (5585hr) >5585hr Receiver cost $170/kWe $50/kWe Thermal storage cost $20/kWhth $13/kWhth Heliostat cost $120/m2 $89.8/m2

  13. Oil-fired cycling station converted to base-loaded, coal-burning operation

    SciTech Connect (OSTI)

    Hunt, J.; Steinbach, P.

    1982-04-01

    The Baltimore Gas and Electric Company has been able to modify its oil-fired Brandon Shores plant while under construction to a base-loaded plant able to burn either oil or coal. Utility planners had the foresight prior to the 1973 embargo to see advantages in a dual-fuel capability. Brandon Shores has experienced the same financing and fluctuating load problems as other projects, but it has evolved into a facility suited for the 1980s and 90s. The original plan included space to handle coal and wastes as well as specifying dual-fuel equipment throughout to minimize future modifications. During one construction delay, the utility initiated a preventative-maintenance program comparable to that of a nuclear plant that has been continued. Extensive environmental planning and interaction with the public have avoided other costly delays. (DCK)

  14. Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Power Generation

    SciTech Connect (OSTI)

    D. Y. Goswami

    2012-09-04

    The objective of this project is to research and develop a thermal energy storage system (operating range 3000C ???¢???????? 450 0C ) based on encapsulated phase change materials (PCM) that can meet the utility-scale base-load concentrated solar power plant requirements at much lower system costs compared to the existing thermal energy storage (TES) concepts. The major focus of this program is to develop suitable encapsulation methods for existing low-cost phase change materials that would provide a cost effective and reliable solution for thermal energy storage to be integrated in solar thermal power plants. This project proposes a TES system concept that will allow for an increase of the capacity factor of the present CSP technologies to 75% or greater and reduce the cost to less than $20/kWht.

  15. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    SciTech Connect (OSTI)

    Conklin, James C.; Forsberg, Charles W.

    2007-07-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

  16. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    SciTech Connect (OSTI)

    Conklin, Jim; Forsberg, Charles W

    2007-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

  17. Remediated Nitrate Salt Drums Background

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Providing Additional Pressure Relief to the Remediated Nitrate Salt Drums Background After the radiological event on February 14, 2014 at the Waste Isolation Pilot Plant (WIPP), Department of Energy (DOE) scientists from several national laboratories conducted extensive experiments and modeling studies to determine what caused the drum to breach. These investigations indicated that an incompatible mixture of nitrate salts and an organic absorbent created the conditions that resulted in an

  18. Alkali metal nitrate purification

    DOE Patents [OSTI]

    Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  19. WIPP Nitrate Updates 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 WIPP Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update, July 23, 2015 Waste Isolation Pilot Plant EPA I.D. Number: NM4890139088-TSDF WIPP Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update, July 16, 2015 Waste Isolation Pilot Plant EPA I.D. Number: NM4890139088-TSDF WIPP Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update, July 9, 2015 Waste Isolation Pilot Plant EPA I.D. Number: NM4890139088-TSDF WIPP Nitrate Salt Bearing

  20. Thermochemical nitrate destruction

    DOE Patents [OSTI]

    Cox, John L. (Richland, WA); Hallen, Richard T. (Richland, WA); Lilga, Michael A. (Richland, WA)

    1992-01-01

    A method is disclosed for denitrification of nitrates and nitrates present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200.degree. C. to about 600.degree. C., and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  1. Thermochemical nitrate destruction

    DOE Patents [OSTI]

    Cox, J.L.; Hallen, R.T.; Lilga, M.A.

    1992-06-02

    A method is disclosed for denitrification of nitrates and nitrites present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200 C to about 600 C, and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  2. WIPP Nitrate Updates 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Update, December 4, 2014 Waste Isolation Pilot Plant EPA I.D. Number: NM4890139088-TSDF Jose R. FrancoCBFO and Robert L. McQuinnNWP dated December 5, 2014 WIPP Nitrate Salt...

  3. Nitrate Salt Surrogate Blending Scoping Test Plan

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-13

    Test blending equipment identified in the “Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing”. Determine if the equipment will provide adequate mixing of zeolite and surrogate salt/Swheat stream; optimize equipment type and operational sequencing; impact of baffles and inserts on mixing performance; and means of validating mixing performance

  4. Purification of alkali metal nitrates

    DOE Patents [OSTI]

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  5. Using Encapsulated Phase Change Material in Thermal Energy Storage for Baseload Concentrating Solar Power (EPCM-TES)

    SciTech Connect (OSTI)

    Mathur, Anoop

    2013-12-15

    middle layer between the salt prill and the shell material. The selected polymer decomposes at temperatures below the melting point of the salt and forms gases which escape through the pores in the capsule shell thus leaving a void in the capsule. We have demonstrated the process with a commonly used inorganic nitrate salt in a low-cost shell material that can withstand over 10,000 high-temperature thermal cycles, or a thirty-year or greater life in a solar plant. The shell used to encapsulate the salt was demonstrated to be compatible with molten salt heat transfer fluid typically used in CSP plants to temperatures up to 600 °C. The above findings have led to the concept of a cascaded arrangement. Salts with different melting points can be encapsulated using the same recipe and contained in a packed bed by cascading the salt melting at higher melting point at the top over the salt melting at lower melting point towards the bottom of the tank. This cascaded energy storage is required to effectively transfer the sensible heat collected in heat transfer fluids between the operating temperatures and utilize the latent heat of fusion in the salts inside the capsule. Mathematical models indicate that over 90% of the salts will undergo phase change by using three salts in equal proportion. The salts are selected such that the salt at the top of the tank melts at about 15°C below the high operating-temperature, and the salt at the bottom of the tank melts 15°C above the low operating-temperature. The salt in the middle of tank melts in-between the operating temperature of the heat transfer fluid. A cascaded arrangement leads to the capture of 90% of the latent-heat of fusion of salts and their sensible heats. Thus the energy density is increased by over 50% from a sensible-only, two-tank thermal energy storage. Furthermore, the Terrafore cascaded storage method requires only one tank as opposed to the two-tanks used in sensible heat storage. Since heat is transferred from

  6. TREATMENT OF AMMONIUM NITRATE SOLUTIONS

    DOE Patents [OSTI]

    Boyer, T.W.; MacHutchin, J.G.; Yaffe, L.

    1958-06-10

    The treatment of waste solutions obtained in the processing of neutron- irradiated uranium containing fission products and ammonium nitrate is described. The object of this process is to provide a method whereby the ammonium nitrate is destroyed and removed from the solution so as to permit subsequent concentration of the solution.. In accordance with the process the residual nitrate solutions are treated with an excess of alkyl acid anhydride, such as acetic anhydride. Preferably, the residual nitrate solution is added to an excess of the acetic anhydride at such a rate that external heat is not required. The result of this operation is that the ammonium nitrate and acetic anhydride react to form N/sub 2/ O and acetic acid.

  7. Plutonium nitrate bottle counter manual

    SciTech Connect (OSTI)

    Menlove, H.O.; Adams, E.L.; Holbrooks, O.R.

    1984-03-01

    A neutron coincidence counter has been designed for plutonium nitrate assay in large storage bottles. This assay system can be used in the reprocessing plant or in the nitrate-to-oxide conversion facility. The system is based on the family of neutron detectors similar to the high-level neutron coincidence counter. This manual describes the system and gives performance and calibration parameters for typical applications. 4 references, 11 figures, 9 tables.

  8. Effect of composition on the density of multi-component molten nitrate salts.

    SciTech Connect (OSTI)

    Bradshaw, Robert W.

    2009-12-01

    The density of molten nitrate salts was measured to determine the effects of the constituents on the density of multi-component mixtures. The molten salts consisted of various proportions of the nitrates of potassium, sodium, lithium and calcium. Density measurements ere performed using an Archimedean method and the results were compared to data reported in the literature for the individual constituent salts or simple combinations, such as the binary Solar Salt mixture of NaNO3 and KNO3. The addition of calcium nitrate generally ncreased density, relative to potassium nitrate or sodium nitrate, while lithium nitrate decreased density. The temperature dependence of density is described by a linear equation regardless of composition. The molar volume, and thereby, density of multi-component mixtures an be calculated as a function of temperature using a linear additivity rule based on the properties of the individual constituents.

  9. Biological denitrification of high concentration nitrate waste

    DOE Patents [OSTI]

    Francis, Chester W.; Brinkley, Frank S.

    1977-01-01

    Biological denitrification of nitrate solutions at concentrations of greater than one kilogram nitrate per cubic meter is accomplished anaerobically in an upflow column having as a packing material a support for denitrifying bacteria.

  10. Process for reducing aqueous nitrate to ammonia

    DOE Patents [OSTI]

    Mattus, Alfred J.

    1993-01-01

    Powdered aluminum is added to a nitrate-containing alkaline, aqueous solution to reduce the nitrate and/or nitrite to ammonia and co-produce a sinterable ceramic product.

  11. Process for reducing aqueous nitrate to ammonia

    DOE Patents [OSTI]

    Mattus, A.J.

    1993-11-30

    Powdered aluminum is added to a nitrate-containing alkaline, aqueous solution to reduce the nitrate and/or nitrite to ammonia and co-produce a sinterable ceramic product. 3 figures.

  12. Method of producing thin cellulose nitrate film

    DOE Patents [OSTI]

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  13. Potential Radon-222 Emissions from the Thorium Nitrate Stockpile

    SciTech Connect (OSTI)

    Terry, J.W.

    2003-09-04

    The Defense National Stockpile Center (DNSC), a field level activity of the Defense Logistics Agency, has stewardship of a stockpile of thorium nitrate that has been in storage for decades. The thorium nitrate stockpile was produced from 1959 to 1964 for the Atomic Energy Commission and previously has been under the control of several federal agencies. The stockpile consists of approximately 7 million pounds of thorium nitrate crystals (hydrate form) stored at two depot locations in the United States (75% by weight at Curtis Bay, Maryland, and 25% by weight at Hammond, Indiana). The material is stored in several configurations in over 21,000 drums. The U.S. Congress has declared the entire DNSC thorium nitrate stockpile to be in excess of the needs of the Department of Defense. Part of DNSC's mission is to safely manage the continued storage, future sales, and/or disposition of the thorium nitrate stockpile. Historically, DNSC has sold surplus thorium nitrate to domestic and foreign companies, but there is no demand currently for this material. Analyses conducted by Oak Ridge National Laboratory (ORNL) in 2001 demonstrated that disposition of the thorium nitrate inventory as a containerized waste, without processing, is the least complex and lowest-cost option for disposition. A characterization study was conducted in 2002 by ORNL, and it was determined that the thorium nitrate stockpile may be disposed of as low-level waste. The Nevada Test Site (NTS) was used as a case study for the disposal alternative, and special radiological analyses and waste acceptance requirements were documented. Among the special radiological considerations is the emission of {sup 220}Rn and {sup 222}Rn from buried material. NTS has a performance objective on the emissions of radon: 20 pCi m{sup -2} sec{sup -1} at the surface of the disposal facility. The radon emissions from the buried thorium nitrate stockpile have been modeled. This paper presents background information and summarizes

  14. EP-AREAG-PLAN-1248, R.0 TA-54 Area G Nitrate-Salt Waste Container...

    Office of Environmental Management (EM)

    EP-AREAG-PLAN-1248, R.0 TA-54 Area G Nitrate-Salt Waste Container Response Instructions Effective Date: 5282014 The Responsible Manager has determined that the following...

  15. Viscosity of multi-component molten nitrate salts : liquidus to 200 degrees C.

    SciTech Connect (OSTI)

    Bradshaw, Robert W.

    2010-03-01

    The viscosity of molten salts comprising ternary and quaternary mixtures of the nitrates of sodium, potassium, lithium and calcium was determined experimentally. Viscosity was measured over the temperature range from near the relatively low liquidus temperatures of he individual mixtures to 200C. Molten salt mixtures that do not contain calcium nitrate exhibited relatively low viscosity and an Arrhenius temperature dependence. Molten salt mixtures that contained calcium nitrate were relatively more viscous and viscosity increased as the roportion of calcium nitrate increased. The temperature dependence of viscosity of molten salts containing calcium nitrate displayed curvature, rather than linearity, when plotted in Arrhenius format. Viscosity data for these mixtures were correlated by the Vogel-Fulcher- ammann-Hesse equation.

  16. ARRAYS OF BOTTLES OF PLUTONIUM NITRATE SOLUTION

    SciTech Connect (OSTI)

    Margaret A. Marshall

    2012-09-01

    In October and November of 1981 thirteen approaches-to-critical were performed on a remote split table machine (RSTM) in the Critical Mass Laboratory of Pacific Northwest Laboratory (PNL) in Richland, Washington using planar arrays of polyethylene bottles filled with plutonium (Pu) nitrate solution. Arrays of up to sixteen bottles were used to measure the critical number of bottles and critical array spacing with a tight fitting Plexiglas reflector on all sides of the arrays except the top. Some experiments used Plexiglas shells fitted around each bottles to determine the effect of moderation on criticality. Each bottle contained approximately 2.4 L of Pu(NO3)4 solution with a Pu content of 105 g Pu/L and a free acid molarity H+ of 5.1. The plutonium was of low 240Pu (2.9 wt.%) content. These experiments were sponsored by Rockwell Hanford Operations because of the lack of experimental data on the criticality of arrays of bottles of Pu solution such as might be found in storage and handling at the Purex Facility at Hanford. The results of these experiments were used to provide benchmark data to validate calculational codes used in criticality safety assessments of [the] plant configurations (Ref. 1). Data for this evaluation were collected from the published report (Ref. 1), the approach to critical logbook, the experimenters logbook, and communication with the primary experimenter, B. Michael Durst. Of the 13 experiments preformed 10 were evaluated. One of the experiments was not evaluated because it had been thrown out by the experimenter, one was not evaluated because it was a repeat of another experiment and the third was not evaluated because it reported the critical number of bottles as being greater than 25. Seven of the thirteen evaluated experiments were determined to be acceptable benchmark experiments. A similar experiment using uranyl nitrate was benchmarked as U233-SOL-THERM-014.

  17. Nitrate removal from drinking water -- Review

    SciTech Connect (OSTI)

    Kapoor, A.; Viraraghavan, T.

    1997-04-01

    Nitrate concentrations in surface water and especially in ground water have increased in Canada, the US, Europe, and other areas of the world. This trend has raised concern because nitrates cause methemoglobiinemia in infants. Several treatment processes including ion exchange, biological denitrification, chemical denitrification, reverse osmosis, electrodialysis, and catalytic denitrification can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that ion exchange and biological denitrification are more acceptable for nitrate removal than reverse osmosis. Ion exchange is more viable for ground water while biological denitrification is the preferred alternative for surface water. This paper reviews the developments in the field of nitrate removal processes.

  18. PREPARATION OF DIBASIC ALUMINUM NITRATE

    DOE Patents [OSTI]

    Gresky, A.T.; Nurmi, E.O.; Foster, D.L.; Wischow, R.P.; Savolainen, J.E.

    1960-04-01

    A method is given for the preparation and recovery of basic aluminum nltrates having an OH: Al ratio of at least two, comprising two steps. First, metallic aluminum is dissolved in aqueous Al(NO/sub 3/)/sub 3/, in the presence of a small quantity of elemental or ionic mercury, to increase its Al: NO/sub 3/ ratio into the range 1 to 1.2. The resulting aqueous solution is then added to an excess of a special organic solvent, typically a mixture of five parts methanol and six parts diethyl ether, whereupon the basic aluminum nitrate, e.g. Al/sub 6/(OH)/sub 13/-(NO/sub 3/)/sub 5/, recoverably precipitates.

  19. Remediated Nitrate Salt Drums Safety Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated Nitrate Salt Drums Safety Update Remediated Nitrate Salt Drums Safety Update Topic: Mr. Nickless, Environmental Management Los Alamos, Provided a presentation on the status of the Nitrate Salt waste at Los Alamos.

  20. Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Instructions | Department of Energy Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response Instructions Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response Instructions This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the

  1. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the ...

  2. Remediated Nitrate Salt Drums Storage at Los Alamos National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory As a part of its national security ...

  3. Sandia Energy - Molten Nitrate Salt Initial Flow Testing is a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitrate Salt Initial Flow Testing is a Tremendous Success Home Renewable Energy News Concentrating Solar Power Solar Molten Nitrate Salt Initial Flow Testing is a Tremendous...

  4. Determination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determinants of Household Use of Selected Energy Star Appliances May 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Determinants of Household Use of Selected Energy Star Appliances i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  5. Synthesis of a new energetic nitrate ester

    SciTech Connect (OSTI)

    Chavez, David E

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  6. Energetic Material - Electro Nitration - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electro Nitration Idaho National Laboratory Contact INL About This Technology Technology Marketing SummaryINL has developed an improved method of nitrating a nitro compound by oxidizing a chemical mediator in the presence of a voltage in order to produce an oxidizing agent. Then, the agent reacts with a nitro compound and ion source in a solution in order to form a geminaldinitro compound. The electrochemical synthesis of geminaldinitro results in the formation of a nitro compound that may be

  7. Treatment of Remediated Nitrate Salts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Treatment of Remediated Nitrate Salts Treatment of Remediated Nitrate Salts Topic: Plan for remediation the nitrate salt waste from the 3706 campaign that is currently stored at Material Disposal Area G, presenter was David Funk, LANS. Nitrate Salts - November 18, 2015 (1 MB

  8. Process for the preparation of an energetic nitrate ester

    DOE Patents [OSTI]

    Chavez, David E; Naud, Darren L; Hiskey, Michael A

    2013-12-17

    A process for the preparation of an energetic nitrate ester compound and related intermediates is provided.

  9. Process for decomposing nitrates in aqueous solution

    DOE Patents [OSTI]

    Haas, Paul A.

    1980-01-01

    This invention is a process for decomposing ammonium nitrate and/or selected metal nitrates in an aqueous solution at an elevated temperature and pressure. Where the compound to be decomposed is a metal nitrate (e.g., a nuclear-fuel metal nitrate), a hydroxylated organic reducing agent therefor is provided in the solution. In accordance with the invention, an effective proportion of both nitromethane and nitric acid is incorporated in the solution to accelerate decomposition of the ammonium nitrate and/or selected metal nitrate. As a result, decomposition can be effected at significantly lower temperatures and pressures, permitting the use of system components composed of off-the-shelf materials, such as stainless steel, rather than more costly materials of construction. Preferably, the process is conducted on a continuous basis. Fluid can be automatically vented from the reaction zone as required to maintain the operating temperature at a moderate value--e.g., at a value in the range of from about 130.degree.-200.degree. C.

  10. Lithium-boron anodes in nitrate thermal battery cells

    SciTech Connect (OSTI)

    McManis III, G. E.; Fletcher, A. N.; Miles, M. H.

    1985-08-13

    A thermally activated electrochemical cell utilizes a lithium-boron anode and a molten nitrate electrolyte selected from the group consisting of lithium nitrate, a mixture of lithium nitrate and sodium nitrate, a mixture of lithium nitrate and potassium nitrate, and a mixture of lithium nitrate and sodium nitrate with potassium nitrate, to provide improved cell electrical performance. The electrolyte is contained on a fiberglass separator and the electrolyte adjacent to the cathode may contain silver nitrate as well. Current densities over 300 mA/cm/sup 2/ with a usable temperature range of over 150/sup 0/ C. have been obtained. Anode open circuit potentials of about 3.2 V were found with little polarization at 100 mA/cm/sup 2/ and with very slight polarization at 300 mA/cm/sup 2/.

  11. Laser-induced breakdown spectroscopic study of ammonium nitrate plasma

    SciTech Connect (OSTI)

    Hanif, M.; Salik, M.; Baig, M. A.

    2013-12-15

    We present the optical emission studies of the ammonium nitrate plasma produced by the fundamental (1064 nm) and second (532 nm) harmonics of a Q-switched Nd: YAG laser. The target material was placed in front of the laser beam in an open atmospheric air. The spectrum reveals numerous transitions of neutral nitrogen. We have studied the spatial behavior of the plasma temperature (T{sub e}) and electron number density (N{sub e}) determined using the Boltzmann plot method and Stark broadened line profiles, respectively. Besides, we have studied the variation of the plasma parameters as a function of the laser irradiance.

  12. SEPARATION OF URANYL NITRATE BY EXTRACTION

    DOE Patents [OSTI]

    Stoughton, R.W.; Steahly, F.L.

    1958-08-26

    A process is presented for obtaining U/sup 233/ from solutions containing Pa/sup 233/. A carrier precipitate, such as MnO/sub 2/, is formed in such solutions and carries with it the Pa/sup 233/ present. This precipitate is then dissolved in nitric acid and the solution is aged to allow decay of the Pa/ sup 233/ into U/sup 233/. After a sufficient length of time the U/sup 233/ bearing solution is made 2.5 to 4.5 Molar in manganese nitrate by addition thereof, and the solution is then treated with ether to obtain uranyl nitrate by solvent extraction techniques.

  13. Denitration of High Nitrate Salts Using Reductants

    SciTech Connect (OSTI)

    HD Smith; EO Jones; AJ Schmidt; AH Zacher; MD Brown; MR Elmore; SR Gano

    1999-05-03

    This report describes work conducted by Pacific Northwest National Laboratory (PNNL), in conjunction with Idaho National Engineering and Environmental Laboratory (INEEL), to remove nitrates in simulated low-activity waste (LAW). The major objective of this work was to provide data for identifying and demonstrating a technically viable and cost-effective approach to condition LAW for immobilization (grout).

  14. NITRATE DESTRUCTION LITERATURE SURVEY AND EVALUATION CRITERIA

    SciTech Connect (OSTI)

    Steimke, J.

    2011-02-01

    This report satisfies the initial phase of Task WP-2.3.4 Alternative Sodium Recovery Technology, Subtask 1; Develop Near-Tank Nitrate/Nitrite Destruction Technology. Some of the more common anions in carbon steel waste tanks at SRS and Hanford Site are nitrate which is corrosive, and nitrite and hydroxide which are corrosion inhibitors. At present it is necessary to periodically add large quantities of 50 wt% caustic to waste tanks. There are three primary reasons for this addition. First, when the contents of salt tanks are dissolved, sodium hydroxide preferentially dissolves and is removed. During the dissolution process the concentration of free hydroxide in the tank liquid can decrease from 9 M to less than 0.2 M. As a result, roughly half way through the dissolution process large quantities of sodium hydroxide must be added to the tank to comply with requirements for corrosion control. Second, hydroxide is continuously consumed by reaction with carbon dioxide which occurs naturally in purge air used to prevent buildup of hydrogen gas inside the tanks. The hydrogen is generated by radiolysis of water. Third, increasing the concentration of hydroxide increases solubility of some aluminum compounds, which is desirable in processing waste. A process that converts nitrate and nitrite to hydroxide would reduce certain costs. (1) Less caustic would be purchased. (2) Some of the aluminum solid compounds in the waste tanks would become more soluble so less mass of solids would be sent to High Level Vitrification and therefore it would be not be necessary to make as much expensive high level vitrified product. (3) Less mass of sodium would be fed to Saltstone at SRS or Low Level Vitrification at Hanford Site so it would not be necessary to make as much low level product. (4) At SRS less nitrite and nitrate would be sent to Defense Waste Processing Facility (DWPF) so less formic acid would be consumed there and less hydrogen gas would be generated. This task involves

  15. Nitrate to ammonia ceramic (NAC) bench scale stabilization study

    SciTech Connect (OSTI)

    Caime, W.J.; Hoeffner, S.L.

    1995-10-01

    Department of Energy (DOE) sites such as the Hanford site, Idaho National Engineering Laboratory (INEL), Savannah River site, Oak Ridge National Laboratory (ORNL) have large quantities of sodium-nitrate based liquid wastes. A process to reduce the nitrates to ammonia has been developed at ORNL. This technology creates a sludge lower in nitrates. This report describes stabilization possibilities of the sludge.

  16. CX-011252: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Concentrating Solar Power Heat Integration for Baseload Renewable Energy Deployment CX(s) Applied: A9 Date: 09/23/2013 Location(s): California Offices(s): Golden Field Office

  17. CX-003170: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Innovative Phase Change Thermal Energy Storage Solution for Baseload PowerCX(s) Applied: B3.6Date: 07/26/2010Location(s): WashingtonOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  18. CX-008586: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SkyFuel Baseload Parabolic Trough CX(s) Applied: B3.6, B5.15 Date: 07/11/2012 Location(s): Colorado Offices(s): Golden Field Office

  19. CX-000603: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Baseload Energy Inc. Brasada-Harney 115-kilovolt Transmission Line ProjectCX(s) Applied: B4.6Date: 02/04/2010Location(s): Deschutes County, OregonOffice(s): Bonneville Power Administration

  20. CX-003695: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Baseload Electricity Solar TowerCX(s) Applied: A9, B3.6Date: 09/10/2010Location(s): CaliforniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  1. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence

    SciTech Connect (OSTI)

    Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joël; Meusinger, Carl; Johnson, Matthew S.; Jost, Rémy; Bhattacharya, S. K.

    2014-06-28

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. [“Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry,” J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate ({sup 15}N, {sup 17}O, and {sup 18}O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ{sup 15}N, δ{sup 18}O, and Δ{sup 17}O). From these measurements an average photolytic isotopic fractionation of {sup 15}ε = (−15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of {sup 15}ε = (−47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from −40 to −74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of {sup 14}NO{sub 3}{sup −} and {sup 15}NO{sub 3}{sup −} in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying

  2. Toluene nitration in irradiated nitric acid and nitrite solution

    SciTech Connect (OSTI)

    Gracy Elias; Bruce J. Mincher; Stephen P. Mezyk; Jim Muller; Leigh R. Martin

    2011-04-01

    The kinetics, mechanisms, and stable products produced for the aryl alkyl mild ortho-para director - toluene, in irradiated nitric acid and neutral nitrite solutions were investigated using ?, and pulse radiolysis. Electron pulse radiolysis was used to determine the bimolecular rate constants for the reaction of toluene with different transient species produced by irradiation. HPLC with UV detection was primarily used to assess the stable reaction products. GC-MS and LC-MS were used to confirm the results from HPLC. Free-radical nitration reaction products were found in irradiated acidic and neutral media. In acidic medium, the ring substitution and side chain substitution and oxidation produced different nitro products. In ring substitution, nitrogen oxide radicals were added mainly to hydroxyl radical-produced cyclohexadienyl radical, and in side chain substitution they were added to the carbon-centered benzyl radical produced by H-atom abstraction. In neutral nitrite toluene solution, radiolytic ring nitration products approached a statistically random distribution, suggesting a free-radical reaction involving addition of the NO2 radical.

  3. Supplemental Cooling for Nitrate Salt Waste

    SciTech Connect (OSTI)

    Goldberg, Mitchell S.

    2015-08-19

    In July 2015, Los Alamos National Laboratory completed installation of a supplemental cooling system in the structure where remediated nitrate salt waste drums are stored. Although the waste currently is in a safe configuration and is monitored daily,controlling the temperature inside the structure adds another layer of protection for workers, the public,and the environment.This effort is among several layers of precautions designed to secure the waste.

  4. GRAPHITE PRODUCTION UTILIZING URANYL NITRATE HEXAHYDRATE CATALYST

    DOE Patents [OSTI]

    Sheinberg, H.; Armstrong, J.R.; Schell, D.H.

    1964-03-10

    ABS>The graphitizing of a mixture composed of furfuryl alcohol binder and uranyl nitrate hexahydrate hardener and the subsequent curing, baking, and graphitizing with pressure being initially applied prior to curing are described. The pressure step may be carried out by extrusion, methyl cellulose being added to the mixture before the completion of extrusion. Uranium oxide may be added to the graphitizable mixture prior to the heating and pressure steps. The graphitizable mixture may consist of discrete layers of different compositions. (AEC)

  5. Brayton Cycle Baseload Power Tower CSP System

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  6. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan | Department of Energy Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the Plan required by the New Mexico Environment Department Administrative Order 05-20001 issued on May 20, 2014 to the U. S. Department of Energy and Nuclear Waste Partnership LLC. The Order, at paragraph 22, requires the Permittees to submit a WIPP Nitrate Salt Bearing Waste Container

  7. Electrochemical cell having an alkali-metal-nitrate electrode

    DOE Patents [OSTI]

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  8. Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    In addition to the remediated nitrate salt (RNS) waste at the Laboratory, similar drums are underground at WIPP and at Waste Control Specialists (WCS) in Andrews, Texas.

  9. Operating Experience Level 2, Evaluation of Nitrate Bearing Transurani...

    Broader source: Energy.gov (indexed) [DOE]

    015 OE-2 2015-01: Evaluation of Nitrate Bearing Transuranic Waste Streams This Operating Experience Level 2 (OE-2) document provides actions to perform an evaluation of...

  10. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Prepared in Response to New Mexico ... (DOE) and Nuclear Waste Partnership LLC (NWP), collectively referred to as the Permittees. ...

  11. Corrosion of aluminides by molten nitrate salt

    SciTech Connect (OSTI)

    Tortorelli, P.F.; Bishop, P.S.

    1990-01-01

    The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

  12. Use of tensiometer for in situ measurement of nitrate leaching

    SciTech Connect (OSTI)

    Li, K.; Reddy, M.R.

    1999-07-01

    In order to monitor nitrate leaching from non-point source pollution, this study used tensiometers to measure in situ nitrate concentration and soil-moisture potential. Instead of filling the tensiometers with pure water, the study filled the tensiometers with nitrate ionic strength adjuster (ISA, 1 M (NH{sub 4}){sub 2}SO{sub 4}). After the installation of the tensiometers at various depths along soil profiles, a portable pressure transducer was used to measure the soil moisture potential, and a nitrate electrode attached to an ion analyzer was used to measure the nitrate concentration in situ. The measurement was continuous and non-destructive. To test this method in the laboratory, eight bottles filled with pure sand were treated with known nitrate solutions, and a tensiometer was placed in each bottle. Measurements were taken every day for 30 days. Laboratory test showed a linear relationship between the known nitrate concentration and the tensiometer readings (R{sup 2} = 0.9990). Then a field test was conducted in a watermelon field with green manure mulch. Field data indicated a potential of nitrate leaching below the soil depth of 100 cm when crop uptake of nutrients was low.

  13. Cu(II) - Catalyzed Hydrazine Reduction of Ferrous Nitrate

    SciTech Connect (OSTI)

    Karraker, D.G.

    2001-10-15

    This report discusses the results of a study of catalyzed hydrazine reduction of ferrous nitrate. It is apparent that there is a substantial reaction between hydrazine and nitrate ion (or nitric acid) to produce HN3 during both the reduction of Fe(III) and during storage at room temperature.

  14. Method for improved decomposition of metal nitrate solutions

    DOE Patents [OSTI]

    Haas, P.A.; Stines, W.B.

    1981-01-21

    A method for co-conversion of aqueous solutions of one or more heavy metal nitrates is described, wherein thermal decomposition within a temperature range of about 300 to 800/sup 0/C is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

  15. Method for improved decomposition of metal nitrate solutions

    DOE Patents [OSTI]

    Haas, Paul A.; Stines, William B.

    1983-10-11

    A method for co-conversion of aqueous solutions of one or more heavy metal nitrates wherein thermal decomposition within a temperature range of about 300.degree. to 800.degree. C. is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

  16. A literature review of radiolytic gas generation as a result of the decomposition of sodium nitrate wastes

    SciTech Connect (OSTI)

    Kasten, J.L.

    1991-01-01

    The objective of this literature review is to determine expected chemical reactions and the gas generation associated with radiolytic decomposition of radioactive sodium nitrate wastes such as the wastes stored in the Melton Valley Storage Tanks (MVST) at Oak Ridge National Laboratory (ORNL). The literature survey summarizes expected chemical reactions and identifies the gases expected to be generated as a result of the radiolytic decomposition. The literature survey also identifies G values, which are the expression for radiation chemical yields as molecules of gas formed per 100 eV of absorbed energy, obtained from experimental studies of the radiolytic decomposition of water and sodium nitrate. 2 tabs., 32 refs.

  17. Nitrate contamination of groundwater: A conceptual management framework

    SciTech Connect (OSTI)

    Almasri, Mohammad N. . E-mail: mnmasri@najah.edu

    2007-04-15

    In many countries, public concern over the deterioration of groundwater quality from nitrate contamination has grown significantly in recent years. This concern has focused increasingly on anthropogenic sources as the potential cause of the problem. Evidence indicates that the nitrate (NO{sub 3}) levels routinely exceed the maximum contaminant level (MCL) of 10 mg/l NO{sub 3}-N in many aquifer systems that underlie agriculture-dominated watersheds. Degradation of groundwater quality due to nitrate pollution along with the increasing demand for potable water has motivated the adoption of restoration actions of the contaminated aquifers. Restoration efforts have intensified the dire need for developing protection alternatives and management options such that the ultimate nitrate concentrations at the critical receptors are below the MCL. This paper presents a general conceptual framework for the management of groundwater contamination from nitrate. The management framework utilizes models of nitrate fate and transport in the unsaturated and saturated zones to simulate nitrate concentration at the critical receptors. To study the impact of different management options considering both environmental and economic aspects, the proposed framework incorporates a component of a multi-criteria decision analysis. To enhance spatiality in model development along with the management options, the utilization of a land use map is depicted for the allocation and computation of on-ground nitrogen loadings from the different sources.

  18. LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT HANFORD SITE

    SciTech Connect (OSTI)

    BYRNES ME

    2008-06-05

    This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU.

  19. Evaluation of Nitrate-Bearing Transuranic Waste Streams

    Energy Savers [EERE]

    OE-2: 2015-1 June 2015 Evaluation of Nitrate-Bearing Transuranic Waste Streams PURPOSE This Operating Experience Level 2 (OE-2) document provides actions to perform an evaluation...

  20. Decontamination of water using nitrate selective ion exchange resin

    DOE Patents [OSTI]

    Lockridge, J.E.; Fritz, J.S.

    1990-07-31

    A method for nitrate decontamination of water which involves passing the water through a bed of alkyl phosphonium anion exchange resin which has pendant alkyl groups of C[sub 3] or larger.

  1. Decontamination of water using nitrate selective ion exchange resin

    DOE Patents [OSTI]

    Lockridge, James E.; Fritz, James S.

    1990-07-31

    A method for nitrate decontamination of water which involves passing the water through a bed of alkyl phosphonium anion exchange resin which has pendant alkyl groups of C.sub.3 or larger.

  2. Nonaqueous purification of mixed nitrate heat transfer media

    DOE Patents [OSTI]

    Fiorucci, Louis C.; Morgan, Michael J.

    1983-12-20

    A nonaqueous, in-line method for removing carbonate and hydroxide contamination from a molten mixed sodium nitrate/potassium nitrate heat transfer salt. The method comprises dissolving a stoichiometric quantity of anhydrous Ca(NO.sub.3).sub.2 in the melt whereby an insoluble CaCO.sub.3 and Ca(OH).sub.2 precipitate is formed. The precipitate can be removed by settling, filtration or floatation techniques.

  3. Molecular recognition of nitrated fatty acids by PPAR[gamma

    SciTech Connect (OSTI)

    Li, Yong; Zhang, Jifeng; Schopfer, Francisco J.; Martynowski, Dariusz; Garcia-Barrio, Minerva T.; Kovach, Amanda; Suino-Powell, Kelly; Baker, Paul R.S.; Freeman, Bruce A.; Chen, Y. Eugene; Xu, H. Eric

    2010-03-08

    Peroxisome proliferator activated receptor-{gamma} (PPAR{gamma}) regulates metabolic homeostasis and adipocyte differentiation, and it is activated by oxidized and nitrated fatty acids. Here we report the crystal structure of the PPAR{gamma} ligand binding domain bound to nitrated linoleic acid, a potent endogenous ligand of PPAR{gamma}. Structural and functional studies of receptor-ligand interactions reveal the molecular basis of PPAR{gamma} discrimination of various naturally occurring fatty acid derivatives.

  4. Analytical Characterization of the Thorium Nitrate Stockpile

    SciTech Connect (OSTI)

    Mattus, CH

    2003-12-30

    For several years, Oak Ridge National Laboratory (ORNL) has been supporting the Defense Logistics Agency-Defense National Stockpile Center with stewardship of a thorium nitrate (ThN) stockpile. The effort for fiscal year 2002 was to prepare a sampling and analysis plan and to use the activities developed in the plan to characterize the ThN stockpile. The sampling was performed in June and July 2002 by RWE NUKEM with oversight by ORNL personnel. The analysis was performed by Southwest Research Institute of San Antonio, Texas, and data validation was performed by NFT, Inc., of Oak Ridge, Tennessee. Of the {approx} 21,000 drums in the stockpile, 99 were sampled and 53 were analyzed for total metals composition, radiological constituents (using alpha and gamma spectrometry), and oxidizing characteristics. Each lot at the Curtis Bay Depot was sampled. Several of the samples were also analyzed for density. The average density of the domestic ThN was found to be 1.89 {+-} 0.08 g/cm{sup 3}. The oxidizer test was performed following procedures issued by the United Nations in 1999. Test results indicated that none of the samples tested was a Division 5.1 oxidizer per Department of Transportation definition. The samples were analyzed for total metals following the U.S. Environmental Protection Agency methods SW-846-6010B and 6020 (EPA 2003) using a combination of inductively coupled plasma--atomic emission spectroscopy and inductively coupled plasma--mass spectroscopy techniques. The results were used to compare the composition of the eight Resource Conservation and Recovery Act metals present in the sample (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) to regulatory limits. None of the samples was found to be hazardous for toxicity characteristics. The radiological analyses confirmed, when possible, the results obtained by the inductively coupled plasma analyses. These results--combined with the historical process knowledge acquired on the material

  5. CX-003844: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility ProjectCX(s) Applied: A9, B3.6Date: 09/07/2010Location(s): CaliforniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  6. CX-003199: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Using Encapsulated Phase Change Material in Thermal Storage for Baseload Concentrating Solar Power PlantsCX(s) Applied: B3.6Date: 08/04/2010Location(s): Riverside, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  7. CX-003706: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Solar Power GenerationCX(s) Applied: A9, B3.6Date: 09/09/2010Location(s): Tampa, FloridaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  8. CX-003712: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Brayton-Cycle Baseload Power Tower Concentrated Solar Power SystemCX(s) Applied: A9, B3.6Date: 09/09/2010Location(s): Woburn, MassachusettsOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  9. Thorium Nitrate Stockpile--From Here to Eternity

    SciTech Connect (OSTI)

    Hermes, W. H.; Hylton, T. D.; Mattus, C.H.; Storch, S. N.; Singley, P.S.; Terry. J. W.; Pecullan, M.; Reilly, F. K.

    2003-02-26

    The Defense National Stockpile Center (DNSC), a field level activity of the Defense Logistics Agency (DLA) has stewardship of a stockpile of thorium nitrate that has been in storage for decades. The stockpile is made up of approximately 3.2 million kg (7 million lb) of thorium nitrate crystals (hydrate form) stored at two depot locations in the United States. DNSC sought technical assistance from Oak Ridge National Laboratory (ORNL) to define and quantify the management options for the thorium nitrate stockpile. This paper describes methodologies and results comprising the work in Phase 1 and Phase 2. The results allow the DNSC to structure and schedule needed tasks to ensure continued safe long-term storage and/or phased disposal of the stockpile.

  10. Handling of Ammonium Nitrate Mother-Liquid Radiochemical Production - 13089

    SciTech Connect (OSTI)

    Zherebtsov, Alexander; Dvoeglazov, Konstantine; Volk, Vladimir; Zagumenov, Vladimir; Zverev, Dmitriy; Tinin, Vasiliy; Kozyrev, Anatoly; Shamin, Dladimir; Tvilenev, Konstantin

    2013-07-01

    The aim of the work is to develop a basic technology of decomposition of ammonium nitrate stock solutions produced in radiochemical enterprises engaged in the reprocessing of irradiated nuclear fuel and fabrication of fresh fuel. It was necessary to work out how to conduct a one-step thermal decomposition of ammonium nitrate, select and test the catalysts for this process and to prepare proposals for recycling condensation. Necessary accessories were added to a laboratory equipment installation decomposition of ammonium nitrate. It is tested several types of reducing agents and two types of catalyst to neutralize the nitrogen oxides. It is conducted testing of modes of the process to produce condensation, suitable for use in the conversion of a new technological scheme of production. It is studied the structure of the catalysts before and after their use in a laboratory setting. It is tested the selected catalyst in the optimal range for 48 hours of continuous operation. (authors)

  11. Electrochemical reduction of nitrate in the presence of an amide

    DOE Patents [OSTI]

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2002-01-01

    The electrochemical reduction of nitrates in aqueous solutions thereof in the presence of amides to gaseous nitrogen (N.sub.2) is described. Generally, electrochemical reduction of NO.sub.3 proceeds stepwise, from NO.sub.3 to N.sub.2, and subsequently in several consecutive steps to ammonia (NH.sub.3) as a final product. Addition of at least one amide to the solution being electrolyzed suppresses ammonia generation, since suitable amides react with NO.sub.2 to generate N.sub.2. This permits nitrate reduction to gaseous nitrogen to proceed by electrolysis. Suitable amides include urea, sulfamic acid, formamide, and acetamide.

  12. EP-AREAG-PLAN-1248, R.0 TA-54 Area G Nitrate-Salt Waste Container Response Instructions

    Office of Environmental Management (EM)

    EP-AREAG-PLAN-1248, R.0 TA-54 Area G Nitrate-Salt Waste Container Response Instructions Effective Date: 5/28/2014 The Responsible Manager has determined that the following organizations' review/concurrence is required for the initial document and for major revisions a same type and level review is required. Review documentation is contained in the Document History File: EWMO Engineering LANL TRU Programs - Shipping and Safe Storage Disposition LANL TRU Programs - Drum Disposition Project LANL

  13. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  14. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  15. Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory Background Technical Area (TA) 54 is Los Alamos National Laboratory's transuranic (TRU) and low-level waste storage, characterization, and remediation area. The 63-acre site is located one mile from the community of White Rock and approximately one-eighth mile from the boundary be- tween Pueblo de San Ildefonso and the Laboratory. As a part of its national security mission, the Laboratory conducts research that generates

  16. WIPP Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update May 12, 2015 Panel 6 and Panel 7, Room 7 a. Rollback * Contamination Assessment-This prerequisite is complete and therefore status updates are no longer required. * Fixing/Decontamination Activities-Decontaminated equipment has been removed from Room 7 of Panel 7 to prepare for Room 7 closure activities. Remaining items in Panel 7, Room 7 include thirteen empty magnesium oxide racks, about 200 roof bolts, nine messenger

  17. Watershed scale fungal community characterization along a pH gradient in a subsurface environment co-contaminated with uranium and nitrate

    SciTech Connect (OSTI)

    Jasrotia, Puja; Green, Stefan; Canion, Andy; Overholt, Will; Prakash, Om; Wafula, Dennis; Hubbard, Daniela; Watson, David B; Schadt, Christopher Warren; Brooks, Scott C; Kostka,

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment co-contaminated with uranium and nitrate at the watershed scale, and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution and diversity of fungi in subsurface groundwater samples were determined using quantitative and semi-quantitative molecular techniques, including quantitative PCR of eukaryotic SSU rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH < 4.5) conditions. Fungal isolates recovered from subsurface sediments were shown to reduce nitrate to nitrous oxide, including cultures of the genus Coniochaeta that were detected in abundance in pyrosequence libraries of site groundwater samples. Denitrifying fungal isolates recovered from the site were classified, and found to be distributed broadly within the phylum Ascomycota, and within a single genus within the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.

  18. Real time in situ detection of organic nitrates in atmospheric aerosols

    SciTech Connect (OSTI)

    Rollins, Andrew W.; Smith, Jared D.; Wilson, Kevin R.; Cohen, Ronald C.

    2010-06-11

    A new field instrument is described that quantifies total particle phase organic nitrates. The instrument is based on the thermal dissociation laser induced fluorescence (TD-LIF) method that thermally converts nitrates to NO2 which is then detected by LIF. This instrument is unique in its ability to provide fast sensitive measurements of particle phase organic nitrates, without interference from inorganic nitrate. Here we use it to quantify organic nitrates in SOA generated from high-NOx photooxidation of limonene, a-pinene, D-3-carene, and tridecane. In these experiments the organic nitrate moiety is observed to be 6-15percent of the total SOA mass, depending on the organic precursor.

  19. Criticality Calculations Using the Isopiestic Density Law of Actinide Nitrates

    SciTech Connect (OSTI)

    Leclaire, Nicolas P.; Anno, Jacques A.; Courtois, Gerard; Dannus, Pascal; Poullot, Gilles; Rouyer, Veronique

    2003-12-15

    Up to now, criticality safety experts used density laws fitted on experimental data and applied them outside the measurement range. Depending on the case, such an approach could be wrong for nitrate solutions. Seven components are concerned: UO{sub 2}(NO{sub 3}){sub 2}, U(NO{sub 3}){sub 4}, Pu(NO{sub 3}){sub 4}, Pu(NO{sub 3}){sub 3}, Th(NO{sub 3}){sub 4}, Am(NO{sub 3}){sub 3}, and HNO{sub 3}. To obviate this problem, a new methodology based on the thermodynamic concept of mixtures of binary electrolytes solutions (one electrolyte + water) at constant water activity, a so-called 'isopiestic' solution, has been developed by the Institute de Radioprotection et de Surete Nucleaire (IRSN) to calculate the nitrate solutions density. This paper presents its qualification by using criticality experiments. The theory and the implementation are also given.Qualification results of the uranyl and plutonium nitrate solutions show that the new density law (also called the isopiestic law) is in good agreement with the benchmarks. Thus, no bias is put into evidence for the uranium solutions, and a small negative bias equal to 0.2% is found for the plutonium solutions.Moreover, the isopiestic law corrects the observed 1% overestimation of k{sub eff} due to the empirical IRSN Leroy and Jouan density law for uranium solutions and the observed 3.4% underestimation of k{sub eff} due to the ARH-600 density law for plutonium solutions.The isopiestic density law has been implemented in CIGALES V2.0, the graphical user interface of the French criticality safety package CRISTAL that calculates the atom densities of nuclides (and writes the input file for CRISTAL computations)

  20. Low-melting point inorganic nitrate salt heat transfer fluid

    DOE Patents [OSTI]

    Bradshaw, Robert W.; Brosseau, Douglas A.

    2009-09-15

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  1. Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    SciTech Connect (OSTI)

    He, Q.; He, Z.; Joyner, D.C.; Joachimiak, M.; Price, M.N.; Yang, Z.K.; Yen, H.-C. B.; Hemme, C. L.; Chen, W.; Fields, M.; Stahl, D. A.; Keasling, J. D.; Keller, M.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2010-07-15

    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.

  2. Investigating In Situ Bioremediation Approaches for Sustained Uranium Immobilization Independent of Nitrate Reduction

    SciTech Connect (OSTI)

    Phelps, Tommy; Balkwill, David

    2006-06-01

    The daunting prospect of complete nitrate removal at DOE sites, such as the ERSP Oak Ridge Field Research Center (FRC), provides strong incentive to explore bioremediation strategies that will allow for uranium bioreduction and long-term stabilization in the presence of nitrate. The cost and effort required for complete nitrate removal from the FRC and similar DOE-contaminated sites may prove to be unworkable. For example, field tests of uranium bioreduction at the FRC have shown that nitrate levels rebound quickly and completely after cessation of active biostimulation.

  3. Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response...

    Broader source: Energy.gov (indexed) [DOE]

    Pilot Plant on February 14, 2014, report in Attachment F. Bibliography and References, are available on various public websites. Technical Area (TA)-54 Area G Nitrate-Salt ...

  4. Memo - Legacy Technical Area (TA)-55 Nitrate Salt Wastes at TA...

    Office of Environmental Management (EM)

    Plant on February 14, 2014, report in Attachment F. Bibliography and References, are available on various public websites. Memo - Legacy Technical Area (TA)-55 Nitrate Salt ...

  5. SEPARATION OF BARIUM VALUES FROM URANYL NITRATE SOLUTIONS

    DOE Patents [OSTI]

    Tompkins, E.R.

    1959-02-24

    The separation of radioactive barium values from a uranyl nitrate solution of neutron-irradiated uranium is described. The 10 to 20% uranyl nitrate solution is passed through a flrst column of a cation exchange resin under conditions favoring the adsorption of barium and certain other cations. The loaded resin is first washed with dilute sulfuric acid to remove a portion of the other cations, and then wash with a citric acid solution at pH of 5 to 7 to recover the barium along with a lesser amount of the other cations. The PH of the resulting eluate is adjusted to about 2.3 to 3.5 and diluted prior to passing through a smaller second column of exchange resin. The loaded resin is first washed with a citric acid solution at a pH of 3 to elute undesired cations and then with citric acid solution at a pH of 6 to eluts the barium, which is substantially free of undesired cations.

  6. Solvent Modification in Ion-Pair Extraction: Effect on Sodium Nitrate Transport in Nitrobenzene Using a Crown Ether

    SciTech Connect (OSTI)

    Levitskaia, Tatiana G.; Lumetta, Gregg J.

    2005-10-31

    A comparative quantitative analysis of the effect of solvent modifiers on an ion-pair extraction of an inorganic salt by a crown ether was conducted. Two classes of the solvent modifiers that possess electron-pair donor (EPD) or hydrogen-bond donor (HBD) groups were investigated. The equilibrium constants corresponding to the extraction of sodium nitrate into nitrobenzene (NB) employing model neutral host cis-syn-cis-dicyclohexano-18-crown-6 (1) with and without solvent modifier were determined using the SXLSQI computer model. For a series of EPD modifiers—including tri-n-butyl- and tri-phenylphosphate, tri-n-butyl- and tri-phenylphosphine oxide, N,N-di-n-butyl- and N,N-di-phenyl acetamide—the enhancement of the NaNO3 extraction by 1 was found to be dependent on the hydrogen-bond acceptance ability of the modifier quantified by the b solvatochromic parameter. Application of the solvent EPD modifier improved solvation of the sodium ion, lowering the large energy barrier of Na+ partitioning into the extraction phase. A HBD modifier 3,5-di-t-butylphenol 8 that forms strong hydrogen bonds with nitrate anion in NB, exhibited even greater enhancement of the NaNO3 extraction by 1. The determined extraction constants were correlated with the b or a solvatochromic parameters of the solvent modifiers and linear trends were observed. Hydrogen bond interaction between 3,5-di-t-butylphenol 8 and nitrate anion in the presence of the sodium-loaded crown ether in the extraction phases was studied by vibrational spectroscopy. Formation of the simple 1:1 adduct was demonstrated.

  7. MCNP5 CALCULATIONS REPLICATING ARH-600 NITRATE DATA

    SciTech Connect (OSTI)

    FINFROCK SH

    2011-10-25

    This report serves to extend the previous document: 'MCNP Calculations Replicating ARH-600 Data' by replicating the nitrate curves found in ARH-600. This report includes the MCNP models used, the calculated critical dimension for each analyzed parameter set, and the resulting data libraries for use with the CritView code. As with the ARH-600 data, this report is not meant to replace the analysis of the fissile systems by qualified criticality personnel. The M CNP data is presented without accounting for the statistical uncertainty (although this is typically less than 0.001) or bias and, as such, the application of a reasonable safety margin is required. The data that follows pertains to the uranyl nitrate and plutonium nitrate spheres, infinite cylinders, and infinite slabs of varying isotopic composition, reflector thickness, and molarity. Each of the cases was modeled in MCNP (version 5.1.40), using the ENDF/B-VI cross section set. Given a molarity, isotopic composition, and reflector thickness, the fissile concentration and diameter (or thicknesses in the case of the slab geometries) were varied. The diameter for which k-effective equals 1.00 for a given concentration could then be calculated and graphed. These graphs are included in this report. The pages that follow describe the regions modeled, formulas for calculating the various parameters, a list of cross-sections used in the calculations, a description of the automation routine and data, and finally the data output. The data of most interest are the critical dimensions of the various systems analyzed. This is presented graphically, and in table format, in Appendix B. Appendix C provides a text listing of the same data in a format that is compatible with the CritView code. Appendices D and E provide listing of example Template files and MCNP input files (these are discussed further in Section 4). Appendix F is a complete listing of all of the output data (i.e., all of the analyzed dimensions and the

  8. Stainless steel corrosion by molten nitrates : analysis and lessons learned.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael

    2011-09-01

    A secondary containment vessel, made of stainless 316, failed due to severe nitrate salt corrosion. Corrosion was in the form of pitting was observed during high temperature, chemical stability experiments. Optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were all used to diagnose the cause of the failure. Failure was caused by potassium oxide that crept into the gap between the primary vessel (alumina) and the stainless steel vessel. Molten nitrate solar salt (89% KNO{sub 3}, 11% NaNO{sub 3} by weight) was used during chemical stability experiments, with an oxygen cover gas, at a salt temperature of 350-700 C. Nitrate salt was primarily contained in an alumina vessel; however salt crept into the gap between the alumina and 316 stainless steel. Corrosion occurred over a period of approximately 2000 hours, with the end result of full wall penetration through the stainless steel vessel; see Figures 1 and 2 for images of the corrosion damage to the vessel. Wall thickness was 0.0625 inches, which, based on previous data, should have been adequate to avoid corrosion-induced failure while in direct contact with salt temperature at 677 C (0.081-inch/year). Salt temperatures exceeding 650 C lasted for approximately 14 days. However, previous corrosion data was performed with air as the cover gas. High temperature combined with an oxygen cover gas obviously drove corrosion rates to a much higher value. Corrosion resulted in the form of uniform pitting. Based on SEM and EDS data, pits contained primarily potassium oxide and potassium chromate, reinforcing the link between oxides and severe corrosion. In addition to the pitting corrosion, a large blister formed on the side wall, which was mainly composed of potassium, chromium and oxygen. All data indicated that corrosion initiated internally and moved outward. There was no evidence of intergranular corrosion nor were there any indication of fast pathways along grain boundaries. Much of the

  9. Innovative Phase Change Thermal Energy Storage Solution for Baseload...

    Office of Scientific and Technical Information (OSTI)

    This TES technology is also appropriate for Rankine and Brayton power converters. Solar ... DOE has funded four different concepts for solar phase change TES, including one other ...

  10. Baseload coal investment decisions under uncertain carbon legislation

    SciTech Connect (OSTI)

    Joule A. Bergerson; Lester B. Lave

    2007-05-15

    More than 50% of electricity in the U.S. is generated by coal. The U.S. has large coal resources, the cheapest fuel in most areas. Coal fired power plants are likely to continue to provide much of U.S. electricity. However, the type of power plant that should be built is unclear. Technology can reduce pollutant discharges and capture and sequester the CO{sub 2} from coal-fired generation. The U.S. Energy Policy Act of 2005 provides incentives for large scale commercial deployment of Integrated Coal Gasification Combined Cycle (IGCC) systems (e.g., loan guarantees and project tax credits). This analysis examines whether a new coal plant should be pulverized coal (PC) or IGCC. Do stricter emissions standards (PM, SO{sub 2}, NOx, Hg) justify the higher costs of IGCC over PC? How does potential future carbon legislation affect the decision to add carbon capture and storage (CCS) technology? Finally, can the impact of uncertain carbon legislation be minimized? We find that SO{sub 2}, NOx, PM, and Hg emission standards would have to be far more stringent than twice current standards to justify the increased costs of the IGCC system. A CO{sub 2} tax less than $29/ton would lead companies to continuing to choose PC, paying the tax for emitted CO{sub 2}. The earlier a decision-maker believes the carbon tax will be imposed and the higher the tax, the more likely companies will choose IGCC with CCS. Having government announce the date and level of a carbon tax would promote more sensible decisions, but government would have to use a tax or subsidy to induce companies to choose the technology that is best for society. 14 refs., 6 figs., 4 tabs.

  11. Project Profile: Modular and Scalable Baseload Molten Salt Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (receiver, field piping, thermal storage, and steam generator) and their integration with eSolar's heliostat technology and a conventional reheat steam turbine power block. ...

  12. Climate Change Update: Baseload Geothermal is One of the Lowest...

    Office of Environmental Management (EM)

    Geothermal energy - energy derived from the heat of the earth - has the ability to produce electricity consistently around the clock, draws a small environmental footprint, and ...

  13. Innovative Phase Change Thermal Energy Storage Solution for Baseload...

    Office of Scientific and Technical Information (OSTI)

    The Phase 1 objectives are to design, build and test a 1-hour TES proof-of-concept lab demonstrator integrated with an Infinia 3 kW Stirling engine, and to conduct a preliminary ...

  14. Innovative Phase hange Thermal Energy Storage Solution for Baseload Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  15. Combined Extraction of Cesium and Strontium from Akaline Nitrate Solutions

    SciTech Connect (OSTI)

    Delmau, Laetitia Helene; Bonnesen, Peter V; Engle, Nancy L; Haverlock, Tamara; Sloop Jr, Frederick {Fred} V; Moyer, Bruce A

    2006-01-01

    The combined extraction of cesium and strontium from caustic wastes can be achieved by adding a crown ether and a carboxylic acid to the Caustic-Side Solvent Extraction (CSSX) solvent. The ligand 4,4'(5')-di(tert-butyl)cyclohexano-18-crown-6 and one of four different carboxylic acids were combined with the components of the CSSX solvent optimized for the extraction of cesium, allowing for the simultaneous extraction of cesium and strontium from alkaline nitrate media simulating alkaline high level wastes present at the U.S. Department of Energy Savannah River Site. Extraction and stripping experiments were conducted independently and exhibited adequate results for mimicking waste simulant processing through batch contacts. The promising results of these batch tests showed that the system could reasonably be tested on actual waste.

  16. Analysis of Enriched Uranyl Nitrate in Nested Annular Tank Array

    SciTech Connect (OSTI)

    John D. Bess; James D. Cleaver

    2009-06-01

    Two series of experiments were performed at the Rocky Flats Critical Mass Laboratory during the 1980s using highly enriched (93%) uranyl nitrate solution in annular tanks. [1, 2] Tanks were of typical sizes found in nuclear production plants. Experiments looked at tanks of varying radii in a co-located set of nested tanks, a 1 by 2 array, and a 1 by 3 array. The co-located set of tanks had been analyzed previously [3] as a benchmark for inclusion within the International Handbook of Evaluated Criticality Safety Benchmark Experiments. [4] The current study represents the benchmark analysis of the 1 by 3 array of a series of nested annular tanks. Of the seventeen configurations performed in this set of experiments, twelve were evaluated and nine were judged as acceptable benchmarks.

  17. Hydroxylamine Nitrate Decomposition under Non-radiological Conditions

    SciTech Connect (OSTI)

    McFarlane, Joanna; Delmau, Laetitia Helene; DePaoli, David W.; Mattus, Catherine H.; Phelps, Clarice E.; Roach, Benjamin D.

    2015-07-01

    Hydroxylamine nitrate (HAN) is used to reduce Pu(IV) to Pu(III) in the separation of plutonium from uranium. HAN becomes unstable under certain conditions and has been known to explode, causing injury to humans including death. Hence, it is necessary to deactivate HAN once the reduction of plutonium is finished. This report reviews what is known about the chemistry of HAN and various methods to achieve a safe decomposition. However, there are areas where more information is needed to make a decision about the handling of HAN in reprocessing of nuclear fuel. Experiments have demonstrated a number of non-radiolytic ways to safely decompose HAN, including heating in HNO3, photolytic oxidation in the presence of H2O2, and the addition of a metal such as Fe(III) that will oxidize the HAN.

  18. Solidification of Acidic, High Nitrate Nuclear Wastes by Grouting or Absorption on Silica Gel

    SciTech Connect (OSTI)

    A. K. Herbst; S. V. Raman; R. J. Kirkham

    2004-01-01

    The use of grout and silica gel were explored for the solidification of four types of acidic, high nitrate radioactive wastes. Two methods of grouting were tested: direct grouting and pre-neutralization. Two methods of absorption on silica gel were also tested: direct absorption and rotary spray drying. The waste simulant acidity varied between 1 N and 12 N. The waste simulant was neutralized by pre-blending calcium hydroxide with Portland cement and blast furnace slag powders prior to mixing with the simulant for grout solidification. Liquid sodium hydroxide was used to partially neutralize the simulant to a pH above 2 and then it was absorbed for silica gel solidification. Formulations for each of these methods are presented along with waste form characteristics and properties. Compositional variation maps for grout formulations are presented which help determine the optimum "recipe" for a particular waste stream. These maps provide a method to determine the proportions of waste, calcium hydroxide, Portland cement, and blast furnace slag that provide a waste form that meets the disposal acceptance criteria. The maps guide researchers in selecting areas to study and provide an operational envelop that produces acceptable waste forms. The grouts both solidify and stabilize the wastes, while absorption on silica gel produces a solid waste that will not pass standard leaching procedures (TCLP) if required. Silica gel wastes can be made to pass most leach tests if heated to 600C.

  19. Preliminary safe-handling experiments on a mixture of cesium nickel ferrocyanide and equimolar sodium nitrate/nitrite

    SciTech Connect (OSTI)

    Scheele, R.D. ); Cady, H.H. )

    1992-01-01

    As part of the Hanford Site's evaluation of the potential hazards associated with the storage of ferrocyanide wastes generated when ferrocyanide was used to scavenge radiocesium from waste supernates in the 1950s, the Pacific Northwest Laboratory (PNL) subcontracted with Los Alamos National Laboratory (LANL) to perform a series of sensitivity tests. These test supplement PNL's thermal sensitivity testing results on the reactivity of cesium nickel ferrocyanide (Cs{sub 2}NiFe(CN){sub 6}) and nitrates and nitrites (Burger and Schelle 1991). LANL used a selected set of their standard tests to determine the sensitivity of a mixture of Cs{sub 2}NiFe(CN){sub 6} (FECN-1) and equimolar sodium nitrate and nitrite oxidant to nonthermal and thermal stimuli. The stoichiometric ratio of oxidant to Cs{sub 2}NiFe(CN){sub 6} in the tested mixture FECN-1 was 1.1:1. The appendix presents the results of the LANL testing of the sensitivity of FECN-1 to initiation by mechanical impact, spark, friction, and various thermal conditions. In addition to the sensitivity testing, LANL used an Accelerating Rate Calorimeter (ARC) to estimate the behavior of large batches of the mixture.

  20. Preliminary safe-handling experiments on a mixture of cesium nickel ferrocyanide and equimolar sodium nitrate/nitrite

    SciTech Connect (OSTI)

    Scheele, R.D.; Cady, H.H.

    1992-01-01

    As part of the Hanford Site`s evaluation of the potential hazards associated with the storage of ferrocyanide wastes generated when ferrocyanide was used to scavenge radiocesium from waste supernates in the 1950s, the Pacific Northwest Laboratory (PNL) subcontracted with Los Alamos National Laboratory (LANL) to perform a series of sensitivity tests. These test supplement PNL`s thermal sensitivity testing results on the reactivity of cesium nickel ferrocyanide (Cs{sub 2}NiFe(CN){sub 6}) and nitrates and nitrites (Burger and Schelle 1991). LANL used a selected set of their standard tests to determine the sensitivity of a mixture of Cs{sub 2}NiFe(CN){sub 6} (FECN-1) and equimolar sodium nitrate and nitrite oxidant to nonthermal and thermal stimuli. The stoichiometric ratio of oxidant to Cs{sub 2}NiFe(CN){sub 6} in the tested mixture FECN-1 was 1.1:1. The appendix presents the results of the LANL testing of the sensitivity of FECN-1 to initiation by mechanical impact, spark, friction, and various thermal conditions. In addition to the sensitivity testing, LANL used an Accelerating Rate Calorimeter (ARC) to estimate the behavior of large batches of the mixture.

  1. Ab initio calculations of singlet and triplet excited states of chlorine nitrate and nitric acid

    SciTech Connect (OSTI)

    Grana, A.M.; Head-Gordon, M. |; Lee, T.J.

    1995-03-16

    Ab initio calculations of vertical excitations to single and triplet excited states of chlorine nitrate and nitric acid are reported, using the CIS, CIS(D), and CCSD methods. The effects of basis set composition and calculational methods are investigated. The nature of the electronic transitions are examined by decomposing the difference density into the sum of detachment and attachment densities. Counterparts for the three lowest singlet excited states of nitric acid survive relatively unperturbed in chlorine nitrate, while other low lying singlet states of chlorine nitrate appear to be directly dissociative in the CIO chromophore. These results suggest an assignment of the two main peaks in the experimental chlorine nitrate absorption spectrum. In addition, triplet vertical excitations and the lowest optimized triplet geometries of both molecules are studied. 70 refs., 2 figs., 6 tabs.

  2. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; et al

    2015-05-13

    The nitrate (NO3–) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO3– derived from atmospheric deposition versus that derived from microbial nitrification.

  3. Separation of thorium impurity from plutonium in the nitrate anion exchange process

    SciTech Connect (OSTI)

    Marsh, S.F.; Phillips, B.J.; Aldaz, E.A.; Williams, W.E.

    1989-04-01

    Thorium is a common impurity in many materials processed at the Los Alamos Plutonium Facility. Although the thorium impurity level is usually less than 1000 ppM, it frequently exceeds the maximum allowable limit of 100 ppM. Thorium is especially difficult to separate from plutonium because it accompanies plutonium in the three aqueous nitrate processes used at Los Alamos: nitrate anion exchange, oxalate precipitation, and peroxide precipitation. Nitrate anion exchange, the major aqueous plutonium purification process, has recently been modified to remove most of the thorium from sorbed plutonium by washing the column with 4.7 M nitric acid-0.007 M hydrofluoric acid. This chromatographic washing technique requires careful process control that is readily attainable with the recently developed Los Alamos On-Line Gamma Monitor. The successful separation of thorium using this modification has been demonstrated in routine, full-scale, nitrate anion exchange operations. 3 refs., 8 figs.

  4. EMRTC Report RF 10-13: Application to LANL Evaporator Nitrate...

    Office of Environmental Management (EM)

    and recommendation. Conclusions: 1. Nitrate salts not yet remediated having no free liquid should be mixed with at least 1.2 volumes of Kitty LitterZeolite clay per...

  5. Analytical Chemistry and Materials Characterization Results for Debris Recovered from Nitrate Salt Waste Drum S855793

    SciTech Connect (OSTI)

    Martinez, Patrick Thomas; Chamberlin, Rebecca M.; Schwartz, Daniel S.; Worley, Christopher Gordon; Garduno, Katherine; Lujan, Elmer J. W.; Borrego, Andres Patricio; Castro, Alonso; Colletti, Lisa Michelle; Fulwyler, James Brent; Holland, Charlotte S.; Keller, Russell C.; Klundt, Dylan James; Martinez, Alexander; Martin, Frances Louise; Montoya, Dennis Patrick; Myers, Steven Charles; Porterfield, Donivan R.; Schake, Ann Rene; Schappert, Michael Francis; Soderberg, Constance B.; Spencer, Khalil J.; Stanley, Floyd E.; Thomas, Mariam R.; Townsend, Lisa Ellen; Xu, Ning

    2015-09-16

    Solid debris was recovered from the previously-emptied nitrate salt waste drum S855793. The bulk sample was nondestructively assayed for radionuclides in its as-received condition. Three monoliths were selected for further characterization. Two of the monoliths, designated Specimen 1 and 3, consisted primarily of sodium nitrate and lead nitrate, with smaller amounts of lead nitrate oxalate and lead oxide by powder x-ray diffraction. The third monolith, Specimen 2, had a complex composition; lead carbonate was identified as the predominant component, and smaller amounts of nitrate, nitrite and carbonate salts of lead, magnesium and sodium were also identified. Microfocused x-ray fluorescence (MXRF) mapping showed that lead was ubiquitous throughout the cross-sections of Specimens 1 and 2, while heteroelements such as potassium, calcium, chromium, iron, and nickel were found in localized deposits. MXRF examination and destructive analysis of fragments of Specimen 3 showed elevated concentrations of iron, which were broadly distributed through the sample. With the exception of its high iron content and low carbon content, the chemical composition of Specimen 3 was within the ranges of values previously observed in four other nitrate salt samples recovered from emptied waste drums.

  6. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry

    SciTech Connect (OSTI)

    Meusinger, Carl; Johnson, Matthew S. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joel, E-mail: jsavarino@lgge.obs.ujf-grenoble.fr [Univ. Grenoble Alpes, LGGE, F-38000 Grenoble (France); CNRS, LGGE, F-38000 Grenoble (France)

    2014-06-28

    Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude apparently a result of whether nitrate is located at the air-ice interface or in the ice matrix constituting the largest uncertainty in models of snowpack NO{sub x} emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NO{sub x} emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200nm band was found to be ?1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study.

  7. Uranyl nitrate-exposed rat alveolar macrophages cell death: Influence of superoxide anion and TNF ? mediators

    SciTech Connect (OSTI)

    Orona, N.S.; Tasat, D.R.

    2012-06-15

    Uranium compounds are widely used in the nuclear fuel cycle, military and many other diverse industrial processes. Health risks associated with uranium exposure include nephrotoxicity, cancer, respiratory, and immune disorders. Macrophages present in body tissues are the main cell type involved in the internalization of uranium particles. To better understand the pathological effects associated with depleted uranium (DU) inhalation, we examined the metabolic activity, phagocytosis, genotoxicity and inflammation on DU-exposed rat alveolar macrophages (12.5200 ?M). Stability and dissolution of DU could differ depending on the dissolvent and in turn alter its biological action. We dissolved DU in sodium bicarbonate (NaHCO{sub 3} 100 mM) and in what we consider a more physiological vehicle resembling human internal media: sodium chloride (NaCl 0.9%). We demonstrate that uranyl nitrate in NaCl solubilizes, enters the cell, and elicits its cytotoxic effect similarly to when it is diluted in NaHCO{sub 3}. We show that irrespective of the dissolvent employed, uranyl nitrate impairs cell metabolism, and at low doses induces both phagocytosis and generation of superoxide anion (O{sub 2}{sup ?}). At high doses it provokes the secretion of TNF? and through all the range of doses tested, apoptosis. We herein suggest that at DU low doses O{sub 2}{sup ?} may act as the principal mediator of DNA damage while at higher doses the signaling pathway mediated by O{sub 2}{sup ?} may be blocked, prevailing damage to DNA by the TNF? route. The study of macrophage functions after uranyl nitrate treatment could provide insights into the pathophysiology of uranium?related diseases. -- Highlights: ? Uranyl nitrate effect on cultured macrophages is linked to the doses and independent of its solubility. ? At low doses uranyl nitrate induces generation of superoxide anion. ? At high doses uranyl nitrate provokes secretion of TNF?. ? Uranyl nitrate induces apoptosis through all the range of

  8. Nitrate Biogeochemistry and Reactive Transport in California Groundwater: LDRD Final Report

    SciTech Connect (OSTI)

    Esser, B K; Beller, H; Carle, S; Cey, B; Hudson, G B; Leif, R; LeTain, T; Moody-Bartel, C; Moore, K; McNab, W; Moran, J; Tompson, A

    2006-02-24

    Nitrate is the number one drinking water contaminant in the United States. It is pervasive in surface and groundwater systems,and its principal anthropogenic sources have increased dramatically in the last 50 years. In California alone, one third of the public drinking-water wells has been lost since 1988 and nitrate contamination is the most common reason for abandonment. Effective nitrate management in groundwater is complicated by uncertainties related to multiple point and non-point sources, hydrogeologic complexity, geochemical reactivity, and quantification of denitrification processes. In this paper, we review an integrated experimental and simulation-based framework being developed to study the fate of nitrate in a 25 km-long groundwater subbasin south of San Jose, California, a historically agricultural area now undergoing rapid urbanization with increasing demands for groundwater. The modeling approach is driven by a need to integrate new and archival data that support the hypothesis that nitrate fate and transport at the basin scale is intricately related to hydrostratigraphic complexity, variability of flow paths and groundwater residence times, microbial activity, and multiple geochemical reaction mechanisms. This study synthesizes these disparate and multi-scale data into a three-dimensional and highly resolved reactive transport modeling framework.

  9. Atmospheric formation and removal of C3-C5 peroxyacyl nitrates

    SciTech Connect (OSTI)

    Grosjean, D.

    1993-12-31

    The C3-C5 peroxyacyl nitrates RC(O)OONO{sub 2} (R=Et, n-Pr, i-Pr, n-Bu, i-Bu, sec-Bu, t-Bu, Ch{sub 2}=CH- and CH{sub 2}=C(CH{sub 3})-) have been synthesized and prepared in situ and have been characterized by electron capture gas chromatography. Their thermal decomposition rates have been measured and are similar to that of PAN (R = CH{sub 3}). Carbonyl products have been identified and the corresponding reaction mechanisms have been outlined. Ambient levels of several peroxyacyl nitrates (R =CH{sub 3}, Et, n-Pr and CH{sub 2}=(CH{sub 3})-) have been measured. The results are discussed with focus on atmospheric hydrocarbons as precursors to C3-C5 peroxyacyl nitrates in the atmosphere.

  10. Providing Additional Pressure Relief to the Remediated Nitrate Salt

    Broader source: Energy.gov [DOE]

    After the radiological event on February 14, 2014 at the Waste Isolation Pilot Plant (WIPP), Department of Energy (DOE) scientists from several national laboratories conducted extensive experiments and modeling studies to determine what caused the drum to breach.

  11. Biological Redox Cycling Of Iron In Nontronite And Its Potential Application In Nitrate Removal

    SciTech Connect (OSTI)

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.; Zeng, Qiang; Edelmann, Richard E.; Pentrak, Martin; Agrawal, Abinash

    2015-05-05

    Redox cycling of structural Fe in phyllosilicates provides a potential method to remediate nitrate contamination in natural environment. Past research has only studied chemical redox cycles or a single biologically mediated redox cycle of Fe in phyllosilicates. The objective of this research was to study three microbially driven redox cycles of Fe in one phyllosilicate, nontronite (NAu-2). During the reduction phase structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacteria Shewanella putrefaciens CN32 as mediator in bicarbonate-buffered and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served an electron donor, nitrate as electron acceptor, and nitrate-dependent Fe(II)-oxidizing bacteria Pseudogulbenkiania sp. strain 2002 as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo 3 redox cycles without significant reductive or oxidative dissolution. X-ray diffraction and scanning and transmission electron microscopy revealed that NAu-2 was the dominant residual mineral throughout the 3 redox cycles with some dissolution textures but no significant secondary mineralization. Mssbauer spectroscopy revealed that Fe(II) in bio-reduced samples likely occurred in two distinct environments, at edges and the interior of the NAu-2 structure. Nitrate was completely reduced to nitrogen gas under both buffer conditions and this extent and rate did not change with Fe redox cycles. Mssbauer spectroscopy further revealed that nitrate reduction was coupled to predominant/preferred oxidation of edge Fe(II). These results suggest that structural Fe in phyllosilicates may represent a renewable source to continuously remove nitrate in natural environments.

  12. EMRTC Report RF 10-13: Application to LANL Evaporator Nitrate Salts

    Office of Environmental Management (EM)

    Amount of Zeolite Required to Meet the Constraints Established by the EMRTC Report RF 10-13: Application to LANL Evaporator Nitrate Salts 5/8/2012 LANL-Carlsbad Office Difficult Waste Team P2010-3306 Amount of Zeolite Required to Meet the Constraints Established by the EMRTC Report RF 10- 13: Application to LANL Evaporator Nitrate Salts 2 Purpose: The following document was developed in support of the Los Alamos National Laboratory Transuranic Program (LTP) by the LANL-Carlsbad Office, Difficult

  13. [Task 1.] Biodenitrification of low nitrate solar pond waters using sequencing batch reactors. [Task 2.] Solidification/stabilization of high strength and biodenitrified heavy metal sludges with a Portland cement/flyash system

    SciTech Connect (OSTI)

    Figueroa, L.; Cook, N.E.; Siegrist, R.L.; Mosher, J.; Terry, S.; Canonico, S.

    1995-09-22

    Process wastewater and sludges were accumulated on site in solar evaporation ponds during operations at the Department of Energy's Rocky Flats Plant (DOE/RF). Because of the extensive use of nitric acid in the processing of actinide metals, the process wastewater has high concentrations of nitrate. Solar pond waters at DOE/RF contain 300-60,000 mg NO{sub 3}{sup {minus}}/L. Additionally, the pond waters contain varying concentrations of many other aqueous constituents, including heavy metals, alkali salts, carbonates, and low level radioactivity. Solids, both from chemical precipitation and soil material deposition, are also present. Options for ultimate disposal of the pond waters are currently being evaluated and include stabilization and solidification (S/S) by cementation. Removal of nitrates can enhance a wastes amenability to S/S, or can be a unit operation in another treatment scheme. Nitrate removal is also a concern for other sources of pollution at DOE/RF, including contaminated groundwater collected by interceptor trench systems. Finally, nitrate pollution is a problem at many other DOE facilities where actinide metals were processed. The primary objective of this investigation was to optimize biological denitrification of solar pond waters with nitrate concentrations of 300--2,100 mg NO{sub 3}{sup {minus}}/L to below the drinking water standard of 45 mg NO{sub 3}{sup {minus}}/L (10 mg N/L). The effect of pH upon process stability and denitrification rate was determined. In addition, the effect Cr(VI) on denitrification and fate of Cr(VI) in the presence of denitrifying bacteria was evaluated.

  14. In situ BTEX biotransformation under enhanced nitrate- and sulfate-reducing conditions

    SciTech Connect (OSTI)

    Reinhard, M.; Shang, S.; Kitanidis, P.K.; Orwin, E.; Hopkins, G.D.; LeBron, C.A.

    1997-01-01

    In situ anaerobic biotransformation of BTEX (benzene, toluene, ethylbenzene, o-xylene, and m-xylene) was investigated under enhanced nitrate- and sulfate-reducing conditions. Controlled amounts of BTEX compounds added to slugs of treated groundwater were released into a gasoline-contaminated aquifer at Seal Beach, CA. In a series of studies, the slugs, 470-1700 L in volume, were released into the aquifer through a multi-port injection/extraction well and were subsequently withdrawn over a 2-3 month period. To evaluate unamended in situ conditions, the injectate was treated with granular activated carbon (GAC) and augmented with bromide as a tracer. To evaluate nitrate- and sulfate-reducing conditions, the injectate was also deionized and augmented with 200-300 {mu}g/L BTEX, nitrate or sulfate, and background electrolytes. Under unamended conditions, transformation appeared to be limited to the slow removal of toluene and m,p-xylene (i.e. sum of m+p-xylene). Under nitrate-reducing conditions, toluene, ethylbenzene, and m-xylene were transformed without a lag phase in less than 10 days, and o-xylene was transformed in 72 days. Under sulfate-reducing conditions, toluene, m-xylene and o-xylene were completely transformed in less then 50 days, and ethylbenzene was removed in 60 days. Benzene appeared to be removed under sulfate-reducing conditions, but the trend was pronounced only at some levels. 47 refs., 11 figs., 2 tabs.

  15. Sodium nitrate containing mixture for producing ceramic-glass-ceramic seal by microwave heating

    DOE Patents [OSTI]

    Blake, R.D.; Meek, T.T.

    1984-10-10

    A mixture for, and method of using such a mixture, for producing a ceramic-glass-ceramic seal by the use of microwave energy are disclosed, wherein the mixture comprises a glass sealing material, a coupling agent, and an oxidizer. The seal produced exhibits greater strength due to its different microstructure. Sodium nitrate is the most preferred oxidizer.

  16. DWPF coupled feed flowsheet material balance with batch one sludge and copper nitrate catalyst

    SciTech Connect (OSTI)

    Choi, A.S.

    1993-09-28

    The SRTC has formally transmitted a recommendation to DWPF to replace copper formate with copper nitrate as the catalyst form during precipitate hydrolysis [1]. The SRTC was subsequently requested to formally document the technical bases for the recommendation. A memorandum was issued on August 23, 1993 detailing the activities (and responsible individuals) necessary to address the impact of this change in catalyst form on process compatibility, safety, processibility environmental impact and product glass quality [2]. One of the activities identified was the preparation of a material balance in which copper nitrate is substituted for copper formate and the identification of key comparisons between this material balance and the current Batch 1 sludge -- Late Wash material balance [3].

  17. CONTINUOUS PRECIPITATION METHOD FOR CONVERSION OF URANYL NITRATE TO URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Reinhart, G.M.; Collopy, T.J.

    1962-11-13

    A continuous precipitation process is given for converting a uranyl nitrate solution to uranium tetrafluoride. A stream of the uranyl nitrate solution and a stream of an aqueous ammonium hydroxide solution are continuously introduced into an agitated reaction zone maintained at a pH of 5.0 to 6.5. Flow rates are adjusted to provide a mean residence time of the resulting slurry in the reaction zone of at least 30 minutes. After a startup period of two hours the precipitate is recovered from the effluent stream by filtration and is converted to uranium tetrafluoride by reduction to uranium dioxide with hydrogen and reaction of the uranium dioxide with anhydrous hydrogen fluoride. (AEC)

  18. Options assessment report: Treatment of nitrate salt waste at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-09-16

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognized that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and the a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL's preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  19. Aqueous nitrate waste treatment: Technology comparison, cost/benefit, and market analysis

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitrate waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.

  20. A Solution-Based Approach for Mo-99 Production: Considerations for Nitrate versus Sulfate Media

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Youker, Amanda J.; Chemerisov, Sergey D.; Kalensky, Michael; Tkac, Peter; Bowers, Delbert L.; Vandegrift, George F.

    2013-01-01

    Molybdenum-99 is the parent of Technetium-99m, which is used in nearly 80% of all nuclear medicine procedures. The medical community has been plagued by Mo-99 shortages due to aging reactors, such as the NRU (National Research Universal) reactor in Canada. There are currently no US producers of Mo-99, and NRU is scheduled for shutdown in 2016, which means that another Mo-99 shortage is imminent unless a potential domestic Mo-99 producer fills the void. Argonne National Laboratory is assisting two potential domestic suppliers of Mo-99 by examining the effects of a uranyl nitrate versus a uranyl sulfate target solution configuration onmore » Mo-99 production. Uranyl nitrate solutions are easier to prepare and do not generate detectable amounts of peroxide upon irradiation, but a high radiation field can lead to a large increase in pH, which can lead to the precipitation of fission products and uranyl hydroxides. Uranyl sulfate solutions are more difficult to prepare, and enough peroxide is generated during irradiation to cause precipitation of uranyl peroxide, but this can be prevented by adding a catalyst to the solution. A titania sorbent can be used to recover Mo-99 from a highly concentrated uranyl nitrate or uranyl sulfate solution; however, different approaches must be taken to prevent precipitation during Mo-99 production.« less

  1. Effect of Phosphate, Fluoride, and Nitrate on Gibbsite Dissolution Rate and Solubility

    SciTech Connect (OSTI)

    Herting, Daniel L.

    2014-01-29

    Laboratory tests have been completed with simulated tank waste samples to investigate the effects of phosphate, fluoride, and nitrate on the dissolution rate and equilibrium solubility of gibbsite in sodium hydroxide solution at 22 and 40{degrees}C. Results are compared to relevant literature data and to computer model predictions. The presence of sodium nitrate (3 M) caused a reduction in the rate of gibbsite dissolution in NaOH, but a modest increase in the equilibrium solubility of aluminum. The increase in solubility was not as large, though, as the increase predicted by the computer model. The presence of phosphate, either as sodium phosphate or sodium fluoride phosphate, had a negligible effect on the rate of gibbsite dissolution, but caused a slight increase in aluminum solubility. The magnitude of the increased solubility, relative to the increase caused by sodium nitrate, suggests that the increase is due to ionic strength (or water activity) effects, rather than being associated with the specific ion involved. The computer model predicted that phosphate would cause a slight decrease in aluminum solubility, suggesting some Al-PO4 interaction. No evidence was found of such an interaction.

  2. Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the Midwestern and Northeastern United States

    SciTech Connect (OSTI)

    E.M. Elliott; C. Kendall; S.D. Wanke; D.A. Burns; E.W. Boyer; K. Harlin; D.J. Bain; T.J. Butler

    2007-11-15

    Global inputs of NOx are dominated by fossil fuel combustion from both stationary and vehicular sources and far exceed natural NOx sources. However, elucidating NOx sources to any given location remains a difficult challenge, despite the need for this information to develop sound regulatory and mitigation strategies. We present results from a regional-scale study of nitrogen isotopes (15N) in wet nitrate deposition across 33 sites in the midwestern and northeastern U.S. We demonstrate that spatial variations in 15N are strongly correlated with NOx emissions from surrounding stationary sources and additionally that 15N is more strongly correlated with surrounding stationary source NOx emissions than pH, SO{sub 4}{sup 2-}, or NO{sub 3}{sup -} concentrations. Although emission inventories indicate that vehicle emissions are the dominant NOx source in the eastern U.S., our results suggest that wet NO{sub 3}{sup -} deposition at sites in this study is strongly associated with NOx emissions from power plants. This suggests that large areas of the landscape potentially receive atmospheric NOy deposition inputs in excess of what one would infer from existing monitoring data alone. Moreover, we determined that spatial patterns in 15N values are a robust indicator of stationary NOx contributions to wet NO{sub 3}{sup -} deposition and hence a valuable complement to existing tools for assessing relationships between NO{sub 3}{sup -} deposition, regional emission inventories, and for evaluating progress toward NOx reduction goals. 44 refs., 3 figs.

  3. TREATMENT TESTS FOR EX SITU REMOVAL OF CHROMATE & NITRATE & URANIUM (VI) FROM HANFORD (100-HR-3) GROUNDWATER FINAL REPORT

    SciTech Connect (OSTI)

    BECK MA; DUNCAN JB

    1994-01-03

    This report describes batch and ion exchange column laboratory scale studies investigating ex situ methods to remove chromate (chromium [VI]), nitrate (NO{sub 3}{sup -}) and uranium (present as uranium [VI]) from contaminated Hanford site groundwaters. The technologies investigated include: chemical precipitation or coprecipitation to remove chromate and uranium; and anion exchange to remove chromate, uranium and nitrate. The technologies investigated were specified in the 100-HR-3 Groundwater Treatability Test Plan. The method suggested for future study is anion exchange.

  4. Crystal structure of a new amine nitrate: 4-dimethylaminopyridinium nitrate (C{sub 7}H{sub 11}N{sub 2})NO{sub 3}

    SciTech Connect (OSTI)

    Benhassan, D. Rekik, W.; Naïli, H.; Ślepokura, Katarzyna

    2015-12-15

    The title compound (C{sub 7}H{sub 11}N{sub 2})NO{sub 3} (I) was obtained by the slow evaporation method at room temperature. Its crystal structure consists of organic cations (C{sub 7}H{sub 11}N{sub 2}){sup +} and nitrate anions (NO{sub 3}){sup –} linked by two types of hydrogen bonds. Each monoprotonated nitrogen atom, called bifurcated, is engaged in two N–H···O hydrogen bonds with two symmetric oxygen atoms. In addition, the crystal structure stability is established by C–H···O hydrogen bonds that ensure the formation of infinite layers, parallel to (001) plane. These layers are related together through π···π interactions established between aromatic amines.

  5. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina

    SciTech Connect (OSTI)

    Simpson, Philippa J.L.; Codd, Rachel; School of Medical Sciences and Bosch Institute, University of New South Wales, New South Wales 2006

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Cold-adapted phenotype of NapA from the Antarctic bacterium Shewanella gelidimarina. Black-Right-Pointing-Pointer Protein homology model of NapA from S. gelidimarina and mesophilic homologue. Black-Right-Pointing-Pointer Six amino acid residues identified as lead candidates governing NapA cold adaptation. Black-Right-Pointing-Pointer Molecular-level understanding of designing cool-temperature in situ oxyanion sensors. -- Abstract: The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo-MGD) cofactor and one [4Fe-4S] iron-sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap{sub Sgel}) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap{sub Sput}) was examined at varied temperature. Irreversible deactivation of Nap{sub Sgel} and Nap{sub Sput} occurred at 54.5 and 65 Degree-Sign C, respectively. When Nap{sub Sgel} was preincubated at 21-70 Degree-Sign C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 Degree-Sign C, which suggested that Nap{sub Sgel} was poised for optimal catalysis at modest temperatures and, unlike Nap{sub Sput}, did not benefit from thermally-induced refolding. At 20 Degree-Sign C, Nap{sub Sgel} reduced selenate at 16% of the rate of nitrate reduction. Nap{sub Sput} did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap{sub Sgel} that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap{sub Sgel} cold-adapted phenotype. Protein homology modeling of Nap{sub Sgel} using a

  6. Comparison of FTIR and Particle Mass Spectrometry for the Measurement of Paticulate Organic Nitrates

    SciTech Connect (OSTI)

    Bruns, Emily; Perraud, Veronique; Zelenyuk, Alla; Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Imre, D.; Finlayson-Pitts, Barbara J.; Alexander, M. L.

    2010-02-01

    While multifunctional organic nitrates are formed during the atmospheric oxidation of volatile organic compounds, relatively little is known about their signatures in particle mass spectrometers. High resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) was applied to NH4NO3, NaNO3 and isosorbide 5-mononitrate (IMN) particles, and to secondary organic aerosol (SOA) from NO3 radical reactions at 22 C and 1 atm in air with and pinene, 3-carene, limonene and isoprene. For comparison, single particle laser ablation mass spectra (SPLAT II) were also obtained for IMN and SOA from the pinene reaction. The mass spectra of all particles exhibit significant intensity at m/z 30, and for the SOA, weak peaks corresponding to various organic fragments containing nitrogen [CxHyNzOa]+ were identified using HR-ToF-AMS. The NO+/NO2+ ratios from HR-ToF-AMS were 10-15 for IMN and the SOA from the and pinene, 3-carene and limonene reactions, ~5 for the isoprene reaction, 2.4 for NH4NO3 and 80 for NaNO3. The N/H ratios from HR-ToF-AMS for the SOA were smaller by a factor of 2 to 4 than the -ONO2/C-H ratios measured using FTIR on particles impacted on ZnSe windows. While the NO+/NO2+ ratio may provide a generic indication of organic nitrates under some conditions, specific identification of particulate organic nitrates awaits further development of particle mass spectrometry techniques.

  7. Process for converting sodium nitrate-containing, caustic liquid radioactive wastes to solid insoluble products

    DOE Patents [OSTI]

    Barney, Gary S.; Brownell, Lloyd E.

    1977-01-01

    A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.

  8. Investigations on spectral and dielectric properties of semi-organic single crystal – morpholinium nitrate

    SciTech Connect (OSTI)

    Arul, H.; Babu, D. Rajan Vizhi, R. Ezhil

    2015-06-24

    Semi organic nonlinear optical crystal Morpholinium nitrate (MN) was synthesized and subsequently grown from the solution by slow evaporation method. The sample has been subjected to powder X-ray diffraction to identify the crystalline nature and the prominent peaks were indexed. The crystal belongs to the monoclinic system with a space group P2{sub 1}/C. Carbon NMR analysis confirms the presence of carbon in the structure of the title compound. Dielectric studies have been carried out on the grown crystal as a function of frequencies at different temperatures. Dielectric constant, dielectric loss and AC conductivity were also calculated.

  9. Conversion of actinide and RE oxides into nitrates and their recovery into fluids

    SciTech Connect (OSTI)

    Bondin, V.V.; Bychkov, S.I.; Efremov, I.G.; Revenko, Y.A.; Babain, V.A.; Murzin, A.A.; Romanovsky, V.N; Fedorov, Y.S.; Shadrin, A.Y.; Ryabkova, N.V.; Li, E.N.

    2007-07-01

    The conditions for uranium oxides completely convert into uranyl nitrate hexahydrate in nitrogen tetra-oxide media (75 deg. C, 0,5-3,0 MPa, [UO{sub x}]:[H{sub 2}O]:[NO{sub 2}]=1:8:6) were found out. The conversion of Pu contained simulator of oxide spent nuclear fuel of thermal reactors was successfully demonstrated. The possibility of uranium recovery up to 95% from TR SNF without plutonium separation from FP is practically showed, what corresponds with Non-proliferation Treaty. (authors)

  10. The gas-phase bis-uranyl nitrate complex [(UO2)2(NO3)5]-: infrared spectrum and structure

    SciTech Connect (OSTI)

    Groenewold, G. S.; van Stipdonk, Michael J.; Oomens, Jos; De Jong, Wibe A.; McIIwain, Michael E.

    2011-12-01

    The infrared spectrum of the bis-uranyl nitrate complex [(UO2)2(NO3)5]- was measured in the gas phase using multiple photon dissociation (IRMPD). Intense absorptions corresponding to the nitrate symmetric and asymmetric vibrations, and the uranyl asymmetric vibration were observed. The nitrate v3 vibrations indicate the presence of nitrate in a bridging configuration bound to both uranyl cations, and probably two distinct pendant nitrates in the complex. The coordination environment of the nitrate ligands and the uranyl cations were compared to those in the mono-uranyl complex. Overall, the uranyl cation is more loosely coordinated in the bis-uranyl complex [(UO2)2(NO3)5]- compared to the mono-complex [UO2(NO3)3]-, as indicated by a higher O-U-O asymmetric stretching (v3) frequency. However, the pendant nitrate ligands are more strongly bound in the bis-complex than they are in the mono-uranyl complex, as indicated by the v3 frequencies of the pendant nitrate, which are split into nitrosyl and O-N-O vibrations as a result of bidentate coordination. These phenomena are consistent with lower electron density donation per uranyl by the nitrate bridging two uranyl centers compared to that of a pendant nitrate in the mono-uranyl complex. The lowest energy structure predicted by density functional theory (B3LYP functional) calculations was one in which the two uranyl molecules bridged by a single nitrate coordinated in a bis-bidentate fashion. Each uranyl molecule was coordinated by two pendant nitrate ligands. The corresponding vibrational spectrum was in excellent agreement with the IRMPD measurement, confirming the structural assignment.

  11. Efficient frequency conversion by stimulated Raman scattering in a sodium nitrate aqueous solution

    SciTech Connect (OSTI)

    Ganot, Yuval E-mail: ibar@bgu.ac.il; Bar, Ilana E-mail: ibar@bgu.ac.il

    2015-09-28

    Frequency conversion of laser beams, based on stimulated Raman scattering (SRS) is an appealing technique for generating radiation at new wavelengths. Here, we investigated experimentally the SRS due to a single pass of a collimated frequency-doubled Nd:YAG laser beam (532 nm) through a saturated aqueous solution of sodium nitrate (NaNO{sub 3}), filling a 50 cm long cell. These experiments resulted in simultaneous generation of 1st (564 nm) and 2nd (599 nm) Stokes beams, corresponding to the symmetric stretching mode of the nitrate ion, ν{sub 1}(NO{sub 3}{sup −}), with 40 and 12 mJ/pulse maximal converted energies, equivalent to 12% and 4% efficiencies, respectively, for a 340 mJ/pulse pump energy. The results indicate that the pump and SRS beams were thermally defocused and that four-wave mixing was responsible for the second order Stokes process onset.

  12. Speciation model selection by Monte Carlo analysis of optical absorption spectra: Plutonium(IV) nitrate complexes

    SciTech Connect (OSTI)

    Berg, John M.; Veirs, D. Kirk; Vaughn, Randolph B.; Cisneros, Michael R.; Smith, Coleman A.

    2000-06-01

    Standard modeling approaches can produce the most likely values of the formation constants of metal-ligand complexes if a particular set of species containing the metal ion is known or assumed to exist in solution equilibrium with complexing ligands. Identifying the most likely set of species when more than one set is plausible is a more difficult problem to address quantitatively. A Monte Carlo method of data analysis is described that measures the relative abilities of different speciation models to fit optical spectra of open-shell actinide ions. The best model(s) can be identified from among a larger group of models initially judged to be plausible. The method is demonstrated by analyzing the absorption spectra of aqueous Pu(IV) titrated with nitrate ion at constant 2 molal ionic strength in aqueous perchloric acid. The best speciation model supported by the data is shown to include three Pu(IV) species with nitrate coordination numbers 0, 1, and 2. Formation constants are {beta}{sub 1}=3.2{+-}0.5 and {beta}{sub 2}=11.2{+-}1.2, where the uncertainties are 95% confidence limits estimated by propagating raw data uncertainties using Monte Carlo methods. Principal component analysis independently indicates three Pu(IV) complexes in equilibrium. (c) 2000 Society for Applied Spectroscopy.

  13. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  14. Method and apparatus for nitrogen oxide determination

    DOE Patents [OSTI]

    Hohorst, Frederick A.

    1990-01-01

    Method and apparatus for determining nitrogen oxide content in a high temperature process gas, which involves withdrawing a sample portion of a high temperature gas containing nitrogen oxide from a source to be analyzed. The sample portion is passed through a restrictive flow conduit, which may be a capillary or a restriction orifice. The restrictive flow conduit is heated to a temperature sufficient to maintain the flowing sample portion at an elevated temperature at least as great as the temperature of the high temperature gas source, to thereby provide that deposition of ammonium nitrate within the restrictive flow conduit cannot occur. The sample portion is then drawn into an aspirator device. A heated motive gas is passed to the aspirator device at a temperature at least as great as the temperature of the high temperature gas source. The motive gas is passed through the nozzle of the aspirator device under conditions sufficient to aspirate the heated sample portion through the restrictive flow conduit and produce a mixture of the sample portion in the motive gas at a dilution of the sample portion sufficient to provide that deposition of ammonium nitrate from the mixture cannot occur at reduced temperature. A portion of the cooled dilute mixture is then passed to analytical means capable of detecting nitric oxide.

  15. A study of the organic emission from a turbocharged diesel engine running on 12 percent hexyl nitrate dissolved in ethanol

    SciTech Connect (OSTI)

    Walde, N.; Westerholm, R.; Persson, K.-A.

    1984-01-01

    A highly rated turbocharged diesel engine adapted for an alternative fuel based on ethanol and hexyl nitrate has been investigated with respect to the emission of organic compounds in the exhausts. The adaption involves: ignition nozzles with larger holes, a change of injection timing and more fuel injected per stroke. Emissions were measured at four different driving modes ie, 1, 8, 10 and 12 respectively, in the California Cycle. The exhaust composition are different compared to conventional diesel emissions. The main part of the organic pollutants consists of unburned ethanol and hexyl nitrate, acetaldehyde being the most abundant aldehyde.

  16. Structural Aspects of Hydrogen Bonding with Nitrate and Sulfate: Design Criteria for Polyalcohol Hosts

    SciTech Connect (OSTI)

    Hay, Benjamin P.; Dixon, David A.; Lumetta, Gregg J.; Vargas, Rubicelia; Garza, Jorge

    2004-01-01

    Organic hosts for oxyanion complexation can be constructed by combining two or more hydrogen bonding sites. The deliberate design of architectures for such hosts requires knowledge of the optimal geometry for the hydrogen bonds formed between the host and the guest. Important structural parameters include the O--H distance, the O--H-D angle, the X-O--H angle, and the X-O--H-D dihedral angle (H-D=hydrogen bond donor, X=any atom). This information can be obtained through the analysis of hydrogen bonding observed in crystal structures and electronic structure calculations on simple gas-phase complexes. In this chapter, we present an analysis of hydrogen bonding structural parameters for alcohol hydrogen donors and the oxygen atom acceptors in nitrate and sulfate.

  17. Thermal behavior of glassy phase stabilized ammonium nitrate (PSAN) thin films

    SciTech Connect (OSTI)

    Yeager, J. D.; Chellappa, R.; Singh, S.; Majewski, J.

    2015-06-01

    Ammonium nitrate (AN) is a high interest material because of its wide usage in propellants and explosives but can be difficult to handle from a formulation standpoint. It is soluble in many common solvents and has complex phase behavior. Here, we formulate phase stabilized AN (PSAN) films in a polymer matrix and characterize thermal and phase behavior using neutron reflectometry and ellipsometry. Our PSAN films are generally stable up to 160 °C, though we observe small material loss between 60 and 100 °C, which we attribute to solvent interactions with the PSAN. Crystallization of AN from supersaturated polymer is most common at thicker regions of the film, suggesting a critical nucleation thickness for the AN which can be avoided by making very thin films.

  18. Thermal behavior of glassy phase stabilized ammonium nitrate (PSAN) thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yeager, J. D.; Chellappa, R.; Singh, S.; Majewski, J.

    2015-06-01

    Ammonium nitrate (AN) is a high interest material because of its wide usage in propellants and explosives but can be difficult to handle from a formulation standpoint. It is soluble in many common solvents and has complex phase behavior. Here, we formulate phase stabilized AN (PSAN) films in a polymer matrix and characterize thermal and phase behavior using neutron reflectometry and ellipsometry. Our PSAN films are generally stable up to 160 °C, though we observe small material loss between 60 and 100 °C, which we attribute to solvent interactions with the PSAN. Crystallization of AN from supersaturated polymer is mostmore » common at thicker regions of the film, suggesting a critical nucleation thickness for the AN which can be avoided by making very thin films.« less

  19. Thermal behavior of glassy phase stabilized ammonium nitrate (PSAN) thin films

    SciTech Connect (OSTI)

    Yeager, J. D.; Chellappa, R.; Singh, S.; Majewski, J.

    2015-06-01

    Ammonium nitrate (AN) is a high interest material because of its wide usage in propellants and explosives but can be difficult to handle from a formulation standpoint. It is soluble in many common solvents and has complex phase behavior. Here, we formulate phase stabilized AN (PSAN) films in a polymer matrix and characterize thermal and phase behavior using neutron reflectometry and ellipsometry. Our PSAN films are generally stable up to 160 C, though we observe small material loss between 60 and 100 C, which we attribute to solvent interactions with the PSAN. Crystallization of AN from supersaturated polymer is most common at thicker regions of the film, suggesting a critical nucleation thickness for the AN which can be avoided by making very thin films.

  20. FLUIDIZED BED STEAM REFORMING TECHNOLOGY FOR ORGANIC AND NITRATE SALT SUPERNATE

    SciTech Connect (OSTI)

    Jantzen, C; Michael02 Smith, M

    2007-03-30

    About two decades ago a process was developed at the Savannah River Site (SRS) to remove Cs137 from radioactive high level waste (HLW) supernates so the supernates could be land disposed as low activity waste (LAW). Sodium tetraphenylborate (NaTPB) was used to precipitate Cs{sup 137} as CsTPB. The flowsheet called for destruction of the organic TPB by acid hydrolysis so that the Cs{sup 137} enriched residue could be mixed with other HLW sludge, vitrified, and disposed of in a federal geologic repository. The precipitation process was demonstrated full scale with actual HLW waste and a 2.5 wt% Cs137 rich precipitate containing organic TPB was produced admixed with 240,000 gallons of salt supernate. Organic destruction by acid hydrolysis proved to be problematic and other disposal technologies were investigated. Fluidized Bed Steam Reforming (FBSR), which destroys organics by pyrolysis, is the current baseline technology for destroying the TPB and the waste nitrates prior to vitrification. Bench scale tests were designed and conducted at the Savannah River National Laboratory (SRNL) to reproduce the pyrolysis reactions. The formation of alkali carbonate phases that are compatible with DWPF waste pre-processing and vitrification were demonstrated in the bench scale tests. Test parameters were optimized for a pilot scale FBSR demonstration that was performed at the SAIC Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003. An engineering scale demonstration was completed by THOR{reg_sign} Treatment Technologies (TTT) and SRNL in 2006 at the Hazen Research, Inc. test facility in Golden, CO. The same mineral carbonate phases, the same organic destruction (>99.99%) and the same nitrate/nitrite destruction (>99.99%) were produced at the bench scale, pilot scale, and engineering scale although different sources of carbon were used during testing.

  1. Enhanced liquid-liquid anion exchange using macrocyclic anion receptors: effect of receptor structure on sulphate-nitrate exchange selectivity

    SciTech Connect (OSTI)

    Moyer, Bruce A; Sloop Jr, Frederick {Fred} V; Fowler, Christopher J; Haverlock, Tamara; Kang, Hyun Ah; Delmau, Laetitia Helene; Bau, Diadra; Hossain, Alamgir; Bowman-James, Kristin; Shriver, James A.; Gross, Mr. Dustin E.; Bill, Nathan; Marquez, Manuel; Lynch, Vincent M.; Sessler, Jonathan L.

    2010-01-01

    When certain macrocyclic anion receptors are added to a chloroform solution of the nitrate form of a lipophilic quaternary ammonium salt (methyltri-C8,10-ammonium nitrate, Aliquat 336N), the extraction of sulphate from an aqueous sodium nitrate solution via exchange with the organic-phase nitrate is significantly enhanced. Eight macrocycles were surveyed, including two derivatives of a tetraamide macrocycle, five derivatives of calix[4]pyrrole and -decafluorocalix[5]pyrrole. Under the hypothesis that the enhancement originates from sulphate binding by the anion receptors in the chloroform phase, it was possible to obtain reasonable fits to the sulphate distribution survey data based on the formation of 1:1 and 2:1 receptor:sulphate complexes in the chloroform phase. Apparent 1:1 sulphate-binding constants obtained from the model in this system fell in the range . Comparison of the results for the various anion receptors included in this study reveals that sulphate binding is sensitive to the nature of the substituents on the parent macrocycle scaffolds in a way that does not follow straightforwardly from simple chemical expectations, such as electron-withdrawing effects on hydrogen-bond donor strength.

  2. Draft Genome Sequence for Microbacterium laevaniformans Strain OR221, a Bacterium Tolerant to Metals, Nitrate, and Low pH

    SciTech Connect (OSTI)

    Brown, Steven D; Palumbo, Anthony Vito; Panikov, Nikolai; Ariyawansa, Thilini; Klingeman, Dawn Marie; Johnson, Courtney M; Land, Miriam L; Utturkar, Sagar M; Epstein, Slava

    2012-01-01

    Microbacterium laevaniformans strain OR221 was isolated from subsurface sediments obtained from the Field Research Center (FRC) in Oak Ridge, TN. It was characterized as a bacterium tolerant to heavy metals such as uranium, nickel, cobalt, cadmium, as well as nitrate and low pH. We present its draft genome sequence.

  3. THE SENSITIVITY OF CARBON STEELS' SUSCEPTIBILITY TO LOCALIZED CORROSION TO THE PH OF NITRATE BASED NUCLEAR WASTES

    SciTech Connect (OSTI)

    BOOMER KD

    2010-01-14

    The Hanford tank reservation contains approximately 50 million gallons of liquid legacy radioactive waste from cold war weapons production, which is stored in 177 underground storage tanks. The tanks will be in use until waste processing operations are completed. The wastes tend to be high pH (over 10) and nitrate based. Under these alkaline conditions carbon steels tend to be passive and undergo relatively slow uniform corrosion. However, the presence of nitrate and other aggressive species, can lead to pitting and stress corrosion cracking. This work is a continuation of previous work that investigated the propensity of steels to suffer pitting and stress corrosion cracking in various waste simulants. The focus of this work is an investigation of the sensitivity of the steels' pitting and stress corrosion cracking susceptibility tosimulant pH. Previous work demonstrated that wastes that are high in aggressive nitrate and low in inhibitory nitrite are susceptible to localized corrosion. However, the previous work involved wastes with pH 12 or higher. The current work involves wastes with lower pH of 10 or 11. It is expected that at these lower pHs that a higher nitrite-to-nitrate ratio will be necessary to ensure tank integrity. This experimental work involved both electrochemical testing, and slow strain rate testing at either the free corrosion potential or under anodic polarization. The results of the current work will be discussed, and compared to work previously presented.

  4. Uranyl nitrate inhibits lactate gluconeogenesis in isolated human and mouse renal proximal tubules: A {sup 13}C-NMR study

    SciTech Connect (OSTI)

    Renault, Sophie; Faiz, Hassan; Gadet, Rudy; Ferrier, Bernard; Martin, Guy; Baverel, Gabriel; Conjard-Duplany, Agnes

    2010-01-01

    As part of a study on uranium nephrotoxicity, we investigated the effect of uranyl nitrate in isolated human and mouse kidney cortex tubules metabolizing the physiological substrate lactate. In the millimolar range, uranyl nitrate reduced lactate removal and gluconeogenesis and the cellular ATP level in a dose-dependent fashion. After incubation in phosphate-free Krebs-Henseleit medium with 5 mM L-[1-{sup 13}C]-, or L-[2-{sup 13}C]-, or L-[3-{sup 13}C]lactate, substrate utilization and product formation were measured by enzymatic and NMR spectroscopic methods. In the presence of 3 mM uranyl nitrate, glucose production and the intracellular ATP content were significantly reduced in both human and mouse tubules. Combination of enzymatic and NMR measurements with a mathematical model of lactate metabolism revealed an inhibition of fluxes through lactate dehydrogenase and the gluconeogenic enzymes in the presence of 3 mM uranyl nitrate; in human and mouse tubules, fluxes were lowered by 20% and 14% (lactate dehydrogenase), 27% and 32% (pyruvate carboxylase), 35% and 36% (phosphoenolpyruvate carboxykinase), and 39% and 45% (glucose-6-phosphatase), respectively. These results indicate that natural uranium is an inhibitor of renal lactate gluconeogenesis in both humans and mice.

  5. Rapid formation of the Bi{sub 2{minus}x}Pb{sub x}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} high {Tc}-phase, using spray-dried nitrate precursor powders

    SciTech Connect (OSTI)

    Van Driessche, I.; Mouton, R.; Hoste, S.

    1996-08-01

    This study describes the use of spray-dried nitrate precursor powders in the synthesis of Bi-2223 high {Tc}-superconductors. The decomposition of the precursor powder is studied using TGA/DTA, XRD, IR, and nitrogen analyses. The particle size is determined using SEM. The low decomposition temperature of the nitrates ({approximately}600 C) and the small particle size of the spray dried powder ({approximately}3{center_dot}10{sup {minus}6} m), resulting in a lowering of the calcination temperature and a shortening of the sinter time, enabled the authors to synthesize a > 96% pure Bi-2223 phase (from XRD peak intensities) after a thermal process of 5h at 650 C and 60 h at 855 C.

  6. Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage- FY12 Q4

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this General Atomics project, funded by SunShot, for the fourth quarter of fiscal year 2012.

  7. Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this General Atomics project, funded by SunShot, for the second quarter of fiscal year 2013.

  8. Cost-Effective Integration of Efficient Low-Lift Baseload Cooling Equipment: FY08 Final Report

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Armstrong, P. R.; Wang, Weimin; Fernandez, Nicholas; Cho, Heejin; Goetzler, W.; Burgos, J.; Radhakrishnan, R.; Ahlfeldt, C.

    2010-01-31

    Documentation of a study to investigate one heating, ventilation and air conditioning (HVAC) system option, low-lift cooling, which offers potentially exemplary HVAC energy performance relative to American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004.

  9. The combination of once-through Fischer-Tropsch with baseload IGCC Technology

    SciTech Connect (OSTI)

    Tam, S.S.; Pollock, D.C.; Fox, J.M. III

    1993-12-31

    Integrated Gasification Combined Cycle (IGCC) is an emerging technology for electric power generation from coal with minimum impact on the environment. Power is generated efficiently by a combination of syngas-driven gas turbines and steam turbines. Studies have shown that the capital cost of an IGCC plant is relatively high when compared to a natural-gas-fired combined cycle plant while its variable operating costs are comparatively low because coal is a lower priced fuel. Favorable IGCC economics thus require high capacity utilization as well as the high availability and reliability normally required for utility industry power plans. A base load plant will meet these criteria if adequate attention is paid to gasifier reliability. In a study sponsored by Florida Power and Light Company (FPL) and the Electric Power Research Institute (EPRI), Bechtel investigated the addition of an operating spare gasification train with methanol co-production from the syngas in order to improve the reliability of a base load electric power plant. As shown, the net result was an improved plant availability along with the co-production of a valuable by-product which paid for the addition of the spare gasifier. Co-production of hydrocarbons via Fischer-Tropsch (F-T) technology is a logical alternative to methanol co-production because it can offer the similar synergistic effects on the power plant similar to the methanol co-production scheme. Bechtel is currently carrying out a Baseline Design/Economics Study for Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC) on indirect coal liquefaction using advanced F-T technology.

  10. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2011-03-01

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

  11. Development of an Advanced, Low-Cost parabolic Trough Collector for Baseload Operation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  12. Polyethylene encapsulatin of nitrate salt wastes: Waste form stability, process scale-up, and economics

    SciTech Connect (OSTI)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1991-07-01

    A polyethylene encapsulation system for treatment of low-level radioactive, hazardous, and mixed wastes has been developed at Brookhaven National Laboratory. Polyethylene has several advantages compared with conventional solidification/stabilization materials such as hydraulic cements. Waste can be encapsulated with greater efficiency and with better waste form performance than is possible with hydraulic cement. The properties of polyethylene relevant to its long-term durability in storage and disposal environments are reviewed. Response to specific potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation are examined. These data are supported by results from extensive waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. The bench-scale process has been successfully tested for application with a number of specific problem'' waste streams. Quality assurance and performance testing of the resulting waste form confirmed scale-up feasibility. Use of this system at Rocky Flats Plant can result in over 70% fewer drums processed and shipped for disposal, compared with optimal cement formulations. Based on the current Rocky Flats production of nitrate salt per year, polyethylene encapsulation can yield an estimated annual savings between $1.5 million and $2.7 million, compared with conventional hydraulic cement systems. 72 refs., 23 figs., 16 tabs.

  13. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    SciTech Connect (OSTI)

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir E.; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; Wullschleger, Stan D.

    2015-06-08

    The nitrate (NO??) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO?? derived from at NO?? signal with ??N averaging 4.8 1.0 (standard error of the mean) and ??O averaging 70.2 1.7. In active layer pore waters, NO?? primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average ??N and ??O of NO?? from high-centered polygons were 0.5 1.1 and 4.1 0.6, respectively. When compared to the ??N of reduced nitrogen (N) sources, and the ??O of soil pore waters, it was evident that NO?? in high-centered polygons was primarily from microbial nitrification. Permafrost NO?? had ??N ranging from approximately 6 to 10, similar to atmospheric and microbial NO??, and highly variable ??O ranging from approximately 2 to 38. Permafrost ice wedges contained a significant atmospheric component of NO??, while permafrost textural ice contained a greater proportion of microbially derived NO??. Large-scale permafrost thaw in this environment would release NO?? with a ??O signature intermediate to that of atmospheric and microbial NO?. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO?? dual isotope technique in tundra environments, attribution of NO?? from thawing permafrost will not be straightforward. The NO?? isotopic signature, however, appears useful in identifying NO?? sources in extant permafrost ice.

  14. Combined uranous nitrate production consisting of undivided electrolytic cell and divided electrolytic cell (Electrolysis ? Electrolytic cell)

    SciTech Connect (OSTI)

    Yuan, Zhongwei; Yan, Taihong; Zheng, Weifang; Li, Xiaodong; Yang, Hui; Xian, Liang

    2013-07-01

    The electrochemical reduction of uranyl nitrate is a green, mild way to make uranous ions. Undivided electrolyzers whose maintenance is less but their conversion ratio and current efficiency are low, have been chosen. However, at the beginning of undivided electrolysis, high current efficiency can also be maintained. Divided electrolyzers' conversion ratio and current efficiency is much higher because the re-oxidation of uranous on anode is avoided, but their maintenance costs are more, because in radioactive environment the membrane has to be changed after several operations. In this paper, a combined method of uranous production is proposed which consists of 2 stages: undivided electrolysis (early stage) and divided electrolysis (late stage) to benefit from the advantages of both electrolysis modes. The performance of the combined method was tested. The results show that in combined mode, after 200 min long electrolysis (80 min undivided electrolysis and 120 min divided electrolysis), U(IV) yield can achieve 92.3% (500 ml feed, U 199 g/l, 72 cm{sup 2} cathode, 120 mA/cm{sup 2}). Compared with divided mode, about 1/3 working time in divided electrolyzer is reduced to achieve the same U(IV) yield. If 120 min long undivided electrolysis was taken, more than 1/2 working time can be reduced in divided electrolyzer, which means that about half of the maintenance cost can also be reduced. (authors)

  15. Materials corrosion of high temperature alloys immersed in 600C binary nitrate salt.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-03-01

    Thirteen high temperature alloys were immersion tested in a 60/40 binary nitrate salt. Samples were interval tested up to 3000 hours at 600%C2%B0C with air as the ullage gas. Chemical analysis of the molten salt indicated lower nitrite concentrations present in the salt, as predicted by the equilibrium equation. Corrosion rates were generally low for all alloys. Corrosion products were identified using x-ray diffraction and electron microprobe analysis. Fe-Cr based alloys tended to form mixtures of sodium and iron oxides, while Fe-Ni/Cr alloys had similar corrosion products plus oxides of nickel and chromium. Nickel based alloys primarily formed NiO, with chromium oxides near the oxide/base alloy interface. In625 exhibited similar corrosion performance in relation to previous tests, lending confidence in comparisons between past and present experiments. HA230 exhibited internal oxidation that consisted of a nickel/chromium oxide. Alloys with significant aluminum alloying tended to exhibit superior performance, due formation of a thin alumina layer. Soluble corrosion products of chromium, molybdenum, and tungsten were also formed and are thought to be a significant factor in alloy performance.

  16. Description of Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer

    SciTech Connect (OSTI)

    Prakash, Om; Green, Stefan; Jasrotia, Puja; Overholt, Will; Canion, Andy; Watson, David B; Brooks, Scott C; Kostka,

    2012-01-01

    Bacterial strains 2APBS1T and 116-2 were isolated from the subsurface of a nuclear legacy waste site where sediments are co-contaminated with large amounts of acidity, nitrate, metal radionuclides and other heavy metals. A combination of physiological and genetic assays indicated that these strains represent the first members of the Rhodanobacter genus shown to be capable of complete denitrification. Cells of strain 2APBS1T and 116-2 were Gram negative, non-spore-forming, rods, 3-5 micro;m long and 0.25-0.5 m in diameter. The isolates were facultative anaerobes, and had temperature and pH optima for growth at 30 C and pH 6.5, respectively, and could tolerate up to 2.0 % NaCl, though growth improved in its absence. Strains 2APBS1T and 116-2 contained fatty acid profiles and 100 % Q-8 ubiquinone, that are characteristic features of the genus Rhodanobacter. Although strains 2APBS1T and 116-2 share high SSU rRNA gene sequence similarity to R. thiooxydans (>99%), DNA-DNA hybridization values were substantially below the 70% threshold used to designate novel species. Thus, based on genotypic, phylogenetic, chemotaxonomic and physiological differences, strains 2APBS1T and 116-2 are considered to represent a novel species of the genus Rhodanobacter, for which the name Rhodanobacter denitrificans sp. nov is proposed. The type strain is 2APBS1T (=DSM 23569T =JCM 17641T). Strain 116-2 (=DSM 24678 = JCM 17642) is a reference strain.

  17. Criticality experiments with planar arrays of three-liter bottles containing plutonium nitrate solution

    SciTech Connect (OSTI)

    Durst, B.M.; Clayton, E.D.; Smith, J.H.

    1985-01-01

    The objective of these experiments was to provide benchmark data to validate calculational codes used in critically safety assessments of plant configurations. Arrays containing up to as many as sixteen three-liter bottles filled with plutonium nitrate were used in the experiments. A split-table device was used in the final assembly of the arrays. Ths planar arrays were reflected with close fitting plexiglas on each side and on the bottom but not the top surface. The experiments addressed a number of factors effecting criticality: the critical air gap between bottles in an array of fixed number of bottles, the number of bottles required for criticality if the bottles were touching, and the effect on critical array spacing and critical bottle number due to the insertion of an hydrogeneous substance into the air gap between bottles. Each bottle contained about 2.4l of Pu(NO{sub 3}){sub 4} solution at a Pu concentration of 105g Pu/l, with the {sup 240}Pu content being 2.9 wt% at a free acid molarity H{sup +} of 5.1. After the initial series of experiments were performed with bottles separated by air gaps, plexiglas shells of varying thicknesses were placed around each bottle to investigate how moderation between bottles affects both the number of bottles required for criticality and the critical spacing between each bottle. The minimum of bottles required for criticality was found to be 10.9 bottles, occurring for a square array with bottles in contact. As the bottles were spaced apart, the critical number increased. For sixteen bottles in a square array, the critical separation between surfaces in both x and y direction was 0.96 cm. The addition of plexiglas around each bottle decreased the critical bottle number, compared to those separated in air, but the critical bottle number, even with interstitial plastic in place was always greater than 10.9 bottles. The most reactive configuration was a tightly packed array of bottles with no intervening material.

  18. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir E.; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; et al

    2015-06-08

    The nitrate (NO₃⁻) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO₃⁻ derived from at NO₃⁻ signal with δ¹⁵N averaging –4.8 ± 1.0‰ (standard error of the mean) and δ¹⁸O averaging 70.2 ±1.7‰. In active layer pore waters, NO₃⁻ primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average δ¹⁵N and δ¹⁸O of NO₃⁻ from high-centered polygons were 0.5 ± 1.1‰ and –4.1 ± 0.6‰, respectively. When compared to the δ¹⁵N of reduced nitrogen (N) sources,more » and the δ¹⁸O of soil pore waters, it was evident that NO₃⁻ in high-centered polygons was primarily from microbial nitrification. Permafrost NO₃⁻ had δ¹⁵N ranging from approximately –6‰ to 10‰, similar to atmospheric and microbial NO₃⁻, and highly variable δ¹⁸O ranging from approximately –2‰ to 38‰. Permafrost ice wedges contained a significant atmospheric component of NO₃⁻, while permafrost textural ice contained a greater proportion of microbially derived NO₃⁻. Large-scale permafrost thaw in this environment would release NO₃⁻ with a δ¹⁸O signature intermediate to that of atmospheric and microbial NO₃. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO₃⁻ dual isotope technique in tundra environments, attribution of NO₃⁻ from thawing permafrost will not be straightforward. The NO₃⁻ isotopic signature, however, appears useful in identifying NO₃⁻ sources in extant permafrost ice.« less

  19. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    SciTech Connect (OSTI)

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir E.; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; Wullschleger, Stan D.

    2015-06-08

    The nitrate (NO₃⁻) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO₃⁻ derived from at NO₃⁻ signal with δ¹⁵N averaging –4.8 ± 1.0‰ (standard error of the mean) and δ¹⁸O averaging 70.2 ±1.7‰. In active layer pore waters, NO₃⁻ primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average δ¹⁵N and δ¹⁸O of NO₃⁻ from high-centered polygons were 0.5 ± 1.1‰ and –4.1 ± 0.6‰, respectively. When compared to the δ¹⁵N of reduced nitrogen (N) sources, and the δ¹⁸O of soil pore waters, it was evident that NO₃⁻ in high-centered polygons was primarily from microbial nitrification. Permafrost NO₃⁻ had δ¹⁵N ranging from approximately –6‰ to 10‰, similar to atmospheric and microbial NO₃⁻, and highly variable δ¹⁸O ranging from approximately –2‰ to 38‰. Permafrost ice wedges contained a significant atmospheric component of NO₃⁻, while permafrost textural ice contained a greater proportion of microbially derived NO₃⁻. Large-scale permafrost thaw in this environment would release NO₃⁻ with a δ¹⁸O signature intermediate to that of atmospheric and microbial NO₃. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO₃⁻ dual isotope technique in tundra environments, attribution of NO₃⁻ from thawing permafrost will not be straightforward. The NO₃⁻ isotopic signature, however, appears useful in identifying NO₃⁻ sources in extant permafrost ice.

  20. Fluidized Bed Steam Reforming (FBSR) Mineralization for High Organic and Nitrate Waste Streams for the Global Nuclear Energy Partnership (GNEP)

    SciTech Connect (OSTI)

    Jantzen, C.M.; Williams, M.R. [Savannah River National Laboratory, Aiken, SC (United States)

    2008-07-01

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NOx in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 deg. C) compared to vitrification (1150-1300 deg. C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {>=}1000 deg. C. Pollucite mineralization creates secondary aqueous waste streams and NOx. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O. (authors)

  1. FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP

    SciTech Connect (OSTI)

    Jantzen, C; Michael Williams, M

    2008-01-11

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

  2. Highly Enriched Uranyl Nitrate in Annular Tanks with Concrete Reflection: 1 x 3 Line Array of Nested Pairs of Tanks

    SciTech Connect (OSTI)

    James Cleaver; John D. Bess; Nathan Devine; Fitz Trumble

    2009-09-01

    A series of seven experiments were performed at the Rocky Flats Critical Mass Laboratory beginning in August, 1980 (References 1 and 2). Highly enriched uranyl nitrate solution was introduced into a 1-3 linear array of nested stainless steel annular tanks. The tanks were inside a concrete enclosure, with various moderator and absorber materials placed inside and/or between the tanks. These moderators and absorbers included boron-free concrete, borated concrete, borated plaster, and cadmium. Two configurations included placing bottles of highly enriched uranyl nitrate between tanks externally. Another experiment involved nested hemispheres of highly enriched uranium placed between tanks externally. These three configurations are not evaluated in this report. The experiments evaluated here are part of a series of experiments, one set of which is evaluated in HEU-SOL-THERM-033. The experiments in this and HEU-SOL-THERM-033 were performed similarly. They took place in the same room and used the same tanks, some of the same moderators and absorbers, some of the same reflector panels, and uranyl nitrate solution from the same location. There are probably additional similarities that existed that are not identified here. Thus, many of the descriptions in this report are either the same or similar to those in the HEU-SOL-THERM-033 report. Seventeen configurations (sixteen of which were critical) were performed during seven experiments; six of those experiments are evaluated here with thirteen configurations. Two configurations were identical, except for solution height, and were conducted to test repeatability. The solution heights were averaged and the two were evaluated as one configuration, which gives a total of twelve evaluated configurations. One of the seventeen configurations was subcritical. Of the twelve critical configurations evaluated, nine were judged as acceptable as benchmarks.

  3. Ferrocyanide Safety Project Dynamic X-Ray Diffraction studies of sodium nickel ferrocyanide reactions with equimolar nitrate/nitrite salts

    SciTech Connect (OSTI)

    Dodds, J.N. |

    1994-07-01

    Dynamic X-ray Diffraction (DXRD) has been to used to identify and quantify the solid state reactions that take place between sodium nickel ferrocyanide, Na{sub 2}NiFe(CN){sub 6}, and equimolar concentrations of sodium nitrate/nitrite, reactions of interest to the continued environmental safety of several large underground waste storage tanks at the Hanford site in eastern Washington. The results are supportive of previous work, which indicated that endothermic dehydration and melting of the nitrates take place before the occurrence of exothermic reactions that being about 300{degrees}C. The DXRD results show that a major reaction set at these temperatures is the occurrence of a series reaction that produces sodium cyanate, NaCNO, as an intermediate in a mildly exothermic first step. In the presence of gaseous oxygen, NaCNO subsequently reacts exothermally and at a faster rate to form metal oxides. Measurements of the rate of this reaction are used to estimate the heat release. Comparisons of this estimated heat release rate with heat transfer rates from a hypothetical ``hot spot`` show that, even in a worst-case scenario, the heat transfer rates are approximately eight times higher than the rate of energy release from the exothermic reactions.

  4. MOLECULAR APPROACHES FOR IN SITU IDENTIFCIATION OF NITRATE UTILIZATION BY MARINE BACTERIA AND PHYTOPLANKTON

    SciTech Connect (OSTI)

    Frischer, Marc E.; Verity, Peter G.; Gilligan, Mathew R.; Bronk, Deborah A.; Zehr, Jonathan P.; Booth, Melissa G.

    2013-09-12

    Traditionally, the importance of inorganic nitrogen (N) for the nutrition and growth of marine phytoplankton has been recognized, while inorganic N utilization by bacteria has received less attention. Likewise, organic N has been thought to be important for heterotrophic organisms but not for phytoplankton. However, accumulating evidence suggests that bacteria compete with phytoplankton for nitrate (NO3-) and other N species. The consequences of this competition may have a profound effect on the flux of N, and therefore carbon (C), in ocean margins. Because it has been difficult to differentiate between N uptake by heterotrophic bacterioplankton versus autotrophic phytoplankton, the processes that control N utilization, and the consequences of these competitive interactions, have traditionally been difficult to study. Significant bacterial utilization of DIN may have a profound effect on the flux of N and C in the water column because sinks for dissolved N that do not incorporate inorganic C represent mechanisms that reduce the atmospheric CO2 drawdown via the ?biological pump? and limit the flux of POC from the euphotic zone. This project was active over the period of 1998-2007 with support from the DOE Biotechnology Investigations ? Ocean Margins Program (BI-OMP). Over this period we developed a tool kit of molecular methods (PCR, RT-PCR, Q-PCR, QRT-PCR, and TRFLP) and combined isotope mass spectrometry and flow-cytometric approaches that allow selective isolation, characterization, and study of the diversity and genetic expression (mRNA) of the structural gene responsible for the assimilation of NO3- by heterotrophic bacteria (nasA). As a result of these studies we discovered that bacteria capable of assimilating NO3- are ubiquitous in marine waters, that the nasA gene is expressed in these environments, that heterotrophic bacteria can account for a significant fraction of total DIN uptake in different ocean margin systems, that the expression of nasA is

  5. Utilization of Common Automotive Three-Way NO{sub x} Reduction Catalyst for Managing Off- Gas from Thermal Treatment of High-Nitrate Waste - 13094

    SciTech Connect (OSTI)

    Foster, Adam L.; Ki Song, P.E.

    2013-07-01

    Studsvik's Thermal Organic Reduction (THOR) steam reforming process has been tested and proven to effectively treat radioactive and hazardous wastes streams with high nitrate contents to produce dry, stable mineral products, while providing high conversion (>98%) of nitrates and nitrites directly to nitrogen gas. However, increased NO{sub x} reduction may be desired for some waste streams under certain regulatory frameworks. In order to enhance the NO{sub x} reduction performance of the THOR process, a common Three-Way catalytic NO{sub x} reduction unit was installed in the process gas piping of a recently completed Engineering Scale Technology Demonstration (ESTD). The catalytic DeNO{sub x} unit was located downstream of the main THOR process vessel, and it was designed to catalyze the reduction of residual NO{sub x} to nitrogen gas via the oxidation of the hydrogen, carbon monoxide, and volatile organic compounds that are inherent to the THOR process gas. There was no need for auxiliary injection of a reducing gas, such as ammonia. The unit consisted of four monolith type catalyst sections positioned in series with a gas mixing section located between each catalyst section. The process gas was monitored for NO{sub x} concentration upstream and downstream of the catalytic DeNO{sub x} unit. Conversion efficiencies ranged from 91% to 97% across the catalytic unit, depending on the composition of the inlet gas. Higher concentrations of hydrogen and carbon monoxide in the THOR process gas increased the NO{sub x} reduction capability of the catalytic DeNO{sub x} unit. The NO{sub x} destruction performance of THOR process in combination with the Three-Way catalytic unit resulted in overall system NO{sub x} reduction efficiencies of greater than 99.9% with an average NO{sub x} reduction efficiency of 99.94% for the entire demonstration program. This allowed the NO{sub x} concentration in the ESTD exhaust gas to be maintained at less than 40 parts per million (ppm), dry

  6. Modeling of early age loss of lithium ions from pore solution of cementitious systems treated with lithium nitrate

    SciTech Connect (OSTI)

    Kim, Taehwan Olek, Jan

    2015-01-15

    Addition of lithium nitrate admixture to the fresh concrete mixture helps to minimize potential problems related to alkali-silica reaction. For this admixture to function as an effective ASR control measure, it is imperative that the lithium ions remain in the pore solution. However, it was found that about 50% of the originally added lithium ions are removed from the pore solution during early stages of hydration. This paper revealed that the magnitude of the Li{sup +} ion loss is highly dependent on the concentration of Li{sup +} ions in the pore solution and the hydration rate of the cementitious systems. Using these findings, an empirical model has been developed which can predict the loss of Li{sup +} ions from the pore solution during the hydration period. The proposed model can be used to investigate the effects of mixture parameters on the loss of Li{sup +} ions from the pore solution of cementitious system.

  7. Aqueous Binary Lanthanide(III) Nitrate Ln(NO3)3 Electrolytes Revisited: Extended Pitzer and Bromley Treatments

    SciTech Connect (OSTI)

    Chatterjee, Sayandev; Campbell, Emily L.; Neiner, Doinita; Pence, Natasha; Robinson, Troy; Levitskaia, Tatiana G.

    2015-09-11

    To date, only limited thermodynamic models describing activity coefficients of the aqueous solutions of lanthanide ions are available. This work expands the existing experimental osmotic coefficient data obtained by classical isopiestic technique for the aqueous binary trivalent lanthanide nitrate Ln(NO3)3 solutions using a combination of water activity and vapor pressure osmometry measurements. The combined osmotic coefficient database for each aqueous lanthanide nitrate at 25°C, consisting of literature available data as well as data obtained in this work, was used to test the validity of Pitzer and Bromley thermodynamic models for the accurate prediction of mean molal activity coefficients of the Ln(NO3)3 solutions in wide concentration ranges. The new and improved Pitzer and Bromley parameters were calculated. It was established that the Ln(NO3)3 activity coefficients in the solutions with ionic strength up to 12 mol kg-1 can be estimated by both Pitzer and single-parameter Bromley models, even though the latter provides for more accurate prediction, particularly in the lower ionic strength regime (up to 6 mol kg-1). On the other hand for the concentrated solutions, the extended three-parameter Bromley model can be employed to predict the Ln(NO3)3 activity coefficients with remarkable accuracy. The accuracy of the extended Bromley model in predicting the activity coefficients was greater than ~95% and ~90% for all solutions with the ionic strength up to 12 mol kg-1 and and 20 mol kg-1, respectively. This is the first time that the activity coefficients for concentrated lanthanide solutions have been predicted with such a remarkable accuracy.

  8. Aromatic nitration with ion radical pairs (ArH/sup +/,NO/sub 2/) as reactive intermediates. Time-resolved studies of charge-transfer activation of dialkoxybenzenes

    SciTech Connect (OSTI)

    Sankararaman, S.; Haney, W.A.; Kochi, J.K.

    1987-08-19

    Aromatic nitrations carried out both under electrophilic conditions and by charge-transfer activation afford the same yields and isomer distributions of nitration products from a common series of aromatic ethers (ArH). Time-resolved spectroscopy establishes the charge-transfer nitration to proceed via the ion radical pair (ArH/sup +/,NO/sub 2/), generated by the deliberate excitation of the electron donor-acceptor or ..pi.. complex of the arene with C(NO/sub 2/)/sub 4/. Laser flash photolysis of the charge-transfer band defines the evolution of the arene cation radical ArH/sup +/ and allows its decay kinetics to be delineated in various solvents and with added salts. The internal trapping of ArH/sup +/ is examined in the substituted p-dimethoxybenzenes CH/sub 3/OC/sub 6/H/sub 4/OCH/sub 2/X with X = CO/sub 2/H, CO/sub 2//sup -/, CO/sub 2/Et, and CH/sub 2/OH as the pendant functional groups. The mechanistic relevance of the collapse of (ArH/sup +/, NO/sub 2/) to the Wheland intermediate is discussed in the context of electrophilic aromatic nitrations.

  9. Corrosion resistance of stainless steels during thermal cycling in alkali nitrate molten salts.

    SciTech Connect (OSTI)

    Bradshaw, Robert W.; Goods, Steven Howard

    2001-09-01

    The corrosion behavior of three austenitic stainless steels was evaluated during thermal cycling in molten salt mixtures consisting of NaNO{sub 3} and KNO{sub 3}. Corrosion tests were conducted with Types 316, 316L and 304 stainless steels for more than 4000 hours and 500 thermal cycles at a maximum temperature of 565 C. Corrosion rates were determined by chemically descaling coupons. Metal losses ranged from 5 to 16 microns and thermal cycling resulted in moderately higher corrosion rates compared to isothermal conditions. Type 316 SS was somewhat more corrosion resistant than Type 304 SS in these tests. The effect of carbon content on corrosion resistance was small, as 316L SS corroded only slightly slower than 316 SS. The corrosion rates increased as the dissolved chloride content of the molten salt mixtures increased. Chloride concentrations approximating 1 wt.%, coupled with thermal cycling, resulted in linear weight loss kinetics, rather than parabolic kinetics, which described corrosion rates for all other conditions. Optical microscopy and electron microprobe analysis revealed that the corrosion products consisted of iron-chromium spinel, magnetite, and sodium ferrite, organized as separate layers. Microanalysis of the elemental composition of the corrosion products further demonstrated that the chromium content of the iron-chromium spinel layer was relatively high for conditions in which parabolic kinetics were observed. However, linear kinetics were observed when the spinel layer contained relatively little chromium.

  10. Re-passivation Potential of Alloy 22 in Chloride plus Nitrate Solutions using the Potentiodynamic-Galvano-static-Potentiostatic Method

    SciTech Connect (OSTI)

    Evans, Kenneth J.; Rebak, Raul B.

    2007-07-01

    In general, the susceptibility of Alloy 22 to suffer crevice corrosion is measured using the Cyclic Potentiodynamic Polarization (CPP) technique. This is a fast technique that gives rather accurate and reproducible values of re-passivation potential (ER1) in most cases. In the fringes of susceptibility, when the environment is not highly aggressive, the values of re-passivation potential using the CPP technique may not be highly reproducible, especially because the technique is fast. To circumvent this, the re-passivation potential of Alloy 22 was measured using a slower method that combines Potentiodynamic-Galvano-static-Potentiostatic steps (called here the Tsujikawa-Hisamatsu Electrochemical or THE method). The THE method applies the charge to the specimen in a more controlled way, which may give more reproducible re-passivation potential values, especially when the environment is not aggressive. The values of re-passivation potential of Alloy 22 in sodium chloride plus potassium nitrate solutions were measured using the THE and CPP methods. Results show that both methods yield similar values of re-passivation potential, especially under aggressive conditions. (authors)

  11. Temperature determination using pyrometry

    DOE Patents [OSTI]

    Breiland, William G.; Gurary, Alexander I.; Boguslavskiy, Vadim

    2002-01-01

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  12. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Marchand, Alan P.

    2001-06-01

    Disposal of high-level nuclear waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 1000-fold by ordinary inorganic chemicals. Treatment processes themselves can exacerbate the problem by adding further volume to the waste. Waste retrieval and sludge washing, for example, will require copious amounts of sodium hydroxide. If the needed sodium hydroxide could be separated from the waste and recycled, however, the addition of fresh sodium hydroxide could be avoided, ultimately reducing the final waste volume and associated disposal costs. The major objective of this research is to explore new liquid-liquid extraction approaches to the selective separation of sodium hydroxide from alkaline high-level wastes stored in underground tanks at the Hanford and Savannah River sites. Consideration is also given to separating potassium and abundant anions, including nitrate, nitrite, aluminate, and carbonate. Salts of these ions represent possible additional value for recycle, alternative disposal, or even use as commodity chemicals. A comprehensive approach toward understanding the extractive chemistry of these salts is envisioned, involving systems of varying complexity, from use of simple solvents to new bifunctional host molecules for ion-pair recognition. These extractants will ideally require no adjustment of the waste composition and will release the extracted salt into water, thereby consuming no additional chemicals and producing no additional waste volume. The overall goal of this research is to provide a scientific foundation upon which the feasibility of new liquid-liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated.

  13. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Marchand, Alan P.

    2000-06-01

    Disposal of high- level waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 1000-fold by ordinary inorganic chemicals. Treatment processes themselves can exacerbate the problem by adding further volume to the waste. Waste retrieval and sludge washing, for example, will require copious amounts of sodium hydroxide. If the needed sodium hydroxide could be separated from the waste and recycled, however, the addition of fresh sodium hydroxide could be avoided, ultimately reducing the final waste volume and associated disposal costs. The major objective of this research is to explore new liquid- liquid extraction approaches to the selective separation of sodium hydroxide from alkaline high-level wastes stored in underground tanks at the Hanford and Savannah River sites. Consideration is also given to separating potassium and abundant anions, including nitrate, nitrite, aluminate, and carbonate. Salts of these ions represent possible additional value for recycle, alternative disposal, or even use as commodity chemicals. A comprehensive approach toward understanding the extractive chemistry of these salts is envisioned, involving systems of varying complexity, from use of simple solvents to new bifunctional host molecules for ion-pair recognition. These extractants will ideally require no adjustment of the waste composition and will release the extracted salt into water, thereby consuming no additional chemicals and producing no additional waste volume. The overall goal of this research is to provide a scientific foundation upon which the feasibility of new liquid-liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated.

  14. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Marchand, Alan P.; Bryan, Jeffrey C.; Bonnesen, Peter V.

    1999-06-01

    The objective of this research is to explore new liquid-liquid extraction approaches to the selective separation of major sodium salts from alkaline high-level wastes stored in underground tanks at Hanford, Savannah River, and Oak Ridge sites. Disposal of high level waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 1000-fold by ordinary inorganic chemicals. Since the residual bulk chemicals must still undergo expensive treatment and disposal after most of the hazardous radionuclides have been removed, large cost savings will result from processes that reduce the overall waste volume. It is proposed that major cost savings can be expected if sodium hydroxide needed for sludge washing can be obtained from the waste itself, thus avoiding the addition of yet another bulk chemical to the waste and still further increase of the waste volume and disposal cost. Secondary priority is given to separating potassium an d abundant anions, including nitrate, nitrite, aluminate, and carbonate. Salts of these ions represent possible additional value for recycle, alternative disposal, or even use as commodity chemicals. A comprehensive approach toward understanding the extractive chemistry of these salts is envisioned, involving systems of varying complexity, from use of simple solvents to new bifunctional host molecules for ion-pair recognition. These extractants will ideally require no adjustment of the waste composition and will release the extracted salt into water, thereby consuming no additional chemicals and producing no additional waste volume. The overall goal of this research is to provide a scientific foundation upon which the feasibility of new liquid-liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated.

  15. NEPA Determination Complete

    Broader source: Energy.gov [DOE]

    DOE has determined that this proposed project is a major Federal action that may significantly affect the quality of the human environment. To comply with the National Environmental Policy Act ...

  16. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  17. Uranyl Nitrate Flow Loop

    SciTech Connect (OSTI)

    Ladd-Lively, Jennifer L

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study was sponsored by the U.S. Department of Energy (DOE) NA-241, Office of Dismantlement and Transparency.

  18. Categorical Exclusion Determinations: Environmental Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consolidated Business Service Center Categorical Exclusion Determinations: Environmental Management Consolidated Business Service Center Categorical Exclusion Determinations issued ...

  19. Nitrative DNA damage induced by multi-walled carbon nanotube via endocytosis in human lung epithelial cells

    SciTech Connect (OSTI)

    Guo, Feiye; Ma, Ning; Horibe, Yoshiteru; Kawanishi, Shosuke; Murata, Mariko; Hiraku, Yusuke

    2012-04-15

    Carbon nanotube (CNT) has a promising usage in the field of material science for industrial purposes because of its unique physicochemical property. However, intraperitoneal administration of CNT was reported to cause mesothelioma in experimental animals. Chronic inflammation may contribute to carcinogenesis induced by fibrous materials. 8-Nitroguanine is a mutagenic DNA lesion formed during inflammation and may play a role in CNT-induced carcinogenesis. In this study, we examined 8-nitroguanine formation in A549 human lung alveolar epithelial cells treated with multi-walled CNT (MWCNT) by fluorescent immunocytochemistry. Both MWCNTs with diameter of 2030 nm (CNT20) and 4070 nm (CNT40) significantly induced 8-nitroguanine formation at 5 and 10 ?g/ml (p < 0.05), which persisted for 24 h, although there was no significant difference in DNA-damaging abilities of these MWCNTs. MWCNTs significantly induced the expression of inducible nitric oxide synthase (iNOS) for 24 h (p < 0.05). MWCNTs also significantly increased the level of nitrite, a hydrolysis product of oxidized NO, in the culture supernatant at 4 and 8 h (p < 0.05). MWCNT-induced 8-nitroguanine formation and iNOS expression were largely suppressed by inhibitors of iNOS (1400 W), nuclear factor-?B (Bay11-7082), actin polymerization (cytochalasin D), caveolae-mediated endocytosis (methyl-?-cyclodextrin, MBCD) and clathrin-mediated endocytosis (monodansylcadaverine, MDC). Electron microscopy revealed that MWCNT was mainly located in vesicular structures in the cytoplasm, and its cellular internalization was reduced by MBCD and MDC. These results suggest that MWCNT is internalized into cells via clathrin- and caveolae-mediated endocytosis, leading to inflammatory reactions including iNOS expression and resulting nitrative DNA damage, which may contribute to carcinogenesis. Highlights: ?Multi-walled carbon nanotube (MWCNT) caused DNA damage in A549 cells. ?MWCNT formed 8-nitroguanine, a DNA lesion associated

  20. Time-Resolved Infrared Reflectance Studies of the Dehydration-Induced Transformation of Uranyl Nitrate Hexahydrate to the Trihydrate Form

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Mausolf, Edward J.; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; McNamara, Bruce K.

    2015-10-01

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s the different phases were studied by infrared transmission spectroscopy, but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparation and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm-1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm-1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the trihydrate solid. The phase transformation and crystal structures were confirmed by density functional theory calculations and optical microscopy methods, both of which showed a transformation with two distinct sites for the uranyl cation in the trihydrate, with but one in the hexahydrate.

  1. Time-resolved infrared reflectance studies of the dehydration-induced transformation of uranyl nitrate hexahydrate to the trihydrate form

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Edward J. Mausolf; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; Bruce K. McNamara

    2015-09-08

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s, the different phases were studied by infrared transmission spectroscopy but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparationmore » and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm–1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm–1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the trihydrate solid. As a result, the phase transformation and crystal structures were confirmed by density functional theory calculations and optical microscopy methods, both of which showed a transformation with two distinct sites for the uranyl cation in the trihydrate, with only one in the hexahydrate.« less

  2. Waste Determination Equivalency - 12172

    SciTech Connect (OSTI)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposed of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the

  3. Dual nitrate isotopes clarify the role of biological processing and hydrologic flow paths on nitrogen cycling in subtropical low-gradient watersheds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Griffiths, Natalie A.; Jackson, C. Rhett; McDonnell, Jeffrey J.; Klaus, Julian; Du, Enhao; Bitew, Menberu M.

    2016-02-08

    Nitrogen (N) is an important nutrient as it often limits productivity but in excess can impair water quality. Most studies on watershed N cycling have occurred in upland forested catchments where snowmelt dominates N export; fewer studies have focused on low-relief watersheds that lack snow. We examined watershed N cycling in three adjacent, low-relief watersheds in the Upper Coastal Plain of the southeastern United States to better understand the role of hydrological flow paths and biological transformations of N at the watershed scale. Groundwater was the dominant source of nitrified N to stream water in two of the three watersheds,more » while atmospheric deposition comprised 28% of stream water nitrate in one watershed. The greater atmospheric contribution may have been due to the larger stream channel area relative to total watershed area or the dominance of shallow subsurface flow paths contributing to stream flow in this watershed. There was a positive relationship between temperature and stream water ammonium concentrations and a negative relationship between temperature and stream water nitrate concentrations in each watershed suggesting that N cycling processes (i.e., nitrification and denitrification) varied seasonally. However, there were no clear patterns in the importance of denitrification in different water pools possibly because a variety of factors (i.e., assimilatory uptake, dissimilatory uptake, and mixing) affected nitrate concentrations. In conclusion, together, these results highlight the hydrological and biological controls on N cycling in low-gradient watersheds and variability in N delivery flow paths among adjacent watersheds with similar physical characteristics.« less

  4. NEPA Determination Form

    National Nuclear Security Administration (NNSA)

    LA NEPA COMPLIANCE DETERMINATION FORM PRID - 09P-0059 V2 Page 1 of 8 Project/Activity Title: TA-3 Substation Replacement Project PRID: 09P-0059 V2 Date: February 16, 2016 Purpose: The proposed demolition and replacement of the Los Alamos National Laboratory's (LANL) Technical Area (TA)-3 electrical power substation is needed to provide reliable and efficient electrical distribution systems with sufficient electrical capacity to support the national security missions. The electrical distribution

  5. Award Fee Determination Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 CH2M Hill Plateau Remediation Company Contract Number: DE-AC06-08RL14788 Final Fee Determination for Base funded Performance Measures Basis of Evaluation: Completion of Performance Measures contained in Section J, Attachment J.4, Performance Evaluation and Measurement Plan, according to the identified completion criteria. Evaluation Results: FY 2012 Base Period Fee Available Fee allocated to FY 2012* Performance Measures $10,399,033.60 Incremental Fee $4,490,000.00 Provisional Fee

  6. Award Fee Determination Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 CH2M Hill Plateau Remediation Company Contract Number: DE-AC06-08RL14788 Final Fee Determination for Base funded and American Recovery and Reinvestment Act (Recovery) funded Performance Measures Basis of Evaluation: Completion of Performance Measures contained in Section J, AttachmentJ.4, Performance Evaluation and Measurement Plan, according to the identified completion criteria. Evaluation Results: Fiscal Year 2011 (Oct 1, 2010 - Sept 30, 2011) Base Funded Fee Recovery Funded Fee Available

  7. Interim Action Determination

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interim Action Determination Processing of Plutonium Materials from the DOE Standard 3013 Surveillance Program in H-Canyon at the Savannah River Site The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS, DOE/EIS-0283-S2). DOE is evaluating alternatives for disposition of non-pit plutonium that is surplus to the national security needs of the United States. Although the Deputy Secretary of Energy approved Critical

  8. Time-resolved infrared reflectance studies of the dehydration-induced transformation of uranyl nitrate hexahydrate to the trihydrate form

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Edward J. Mausolf; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; Bruce K. McNamara

    2015-09-08

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s, the different phases were studied by infrared transmission spectroscopy but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparation and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm–1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm–1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the

  9. Studies on lanthanoid complexes of open chain multidentate ligands. VIII. Preparation and structural characterization of the undecacoordinate complex of neodymium nitrate with N,N{prime}-bis(4-methoxyphenyl)tetraglycollic diamide

    SciTech Connect (OSTI)

    Zhijian Liang; Xinmin Gan; Ning Tang; Minyu Tan; Kaibei Yu; Ganzu Tan

    1993-12-31

    The title compound [Nd(L)(NO{sub 3}){sub 3}]2CH{sub 3}CN was formed by reaction of neodymium nitrate with N,N{prime}-bis(4-methoxyphenyl)tetraglycollic diamide (L). The complex crystallizes in the monoclinic system, space group Cc with Z = 4, a = 21.305(6), b = 11.470(4), c = 14.436(3) {angstrom}, {beta} = 97.41(2), V = 3498(2) {angstrom}{sup 3}. The pentadentate organic ligand wraps around the neodymium ion which is also bonded to three bidentate nitrate groups, achieving uncommon undecacoordination with the following mean bond lengths: Nd-O(etheric), 2.703; Nd-O(carbonyl), 2.518; Nd-O(nitrate), 2.546 {angstrom}. 18 refs., 2 figs., 3 tabs.

  10. Determination of radar MTF

    SciTech Connect (OSTI)

    Chambers, D.

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  11. Categorical Exclusion Determinations: Mississippi | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 30, 2015 CX-013741: Categorical Exclusion Determination Statistical Analysis of ... March 30, 2015 CX-013758: Categorical Exclusion Determination Statistical Analysis of ...

  12. Total carbon dioxide, hydrographic, and nitrate measurements in the Southwest Pacific during Austral autumn, 1990: Results from NOAA/PMEL CGC-90 cruise

    SciTech Connect (OSTI)

    Lamb, M.F.; Feely, R.A.; Moore, L.

    1995-10-01

    In support of the National Oceanic and Atmospheric Administration (NOAA) Climate and Global Change (C&GC) Program, Pacific Marine Environmental Laboratory (PMEL) scientists have been measuring the growing burden of greenhouse gases in the thermocline waters of the Pacific Ocean since 1980. Collection of data at a series of hydrographic stations along longitude 170{degrees} W during austral autumn of 1990 was designed to enhance understanding of the increase in the column burden of chlorofluorocarbons and carbon dioxide in the thermocline waters since the last expedition in 1984. This document presents the procedures and methods used to obtain total carbon dioxide (TCO{sub 2}), hydrographic, and nitrate data during the NOAA/PMEL research vessel (R/V) Malcolm Baldrige CGC-90 Cruise. Data were collected along two legs; sampling for Leg 1 began along 170{degrees} W from 15{degrees} S to 60{degrees} S, then angled northwest toward New Zealand across the Western Boundary Current. Leg 2 included a reoccupation of some stations between 30{degrees} S and 15{degrees} S on 170{degrees} W and measurements from 15{degrees} S to 5{degrees} N along 170{degrees} W. The following data report summarizes the TCO{sub 2}, salinity, temperature, and nitrate measurements from 63 stations. The TCO, concentration in seawater samples was measured using a coulometric/extraction system (Models 5011 and 5030, respectively) originated by Ken Johnson. The NOAA/PMEL R/V Malcolm Baldrige CGC-90 Cruise data set is available without charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of two oceanographic data files, two FORTRAN 77 data retrieval routine files, a {open_quotes}readme{close_quotes} file, and this printed documentation, which describes the contents and format of all files as well as the procedures and methods used to obtain the data.

  13. Intracellular L-arginine concentration does not determine NO production in endothelial cells: Implications on the 'L-arginine paradox'

    SciTech Connect (OSTI)

    Shin, Soyoung; Mohan, Srinidi; Fung, Ho-Leung

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Our findings provide a possible solution to the 'L-arginine paradox'. Black-Right-Pointing-Pointer Extracellular L-arginine concentration is the major determinant of NO production. Black-Right-Pointing-Pointer Cellular L-arginine action is limited by cellular ARG transport, not the K{sub m} of NOS. Black-Right-Pointing-Pointer We explain how L-arginine supplementation can work to increase endothelial function. -- Abstract: We examined the relative contributory roles of extracellular vs. intracellular L-arginine (ARG) toward cellular activation of endothelial nitric oxide synthase (eNOS) in human endothelial cells. EA.hy926 human endothelial cells were incubated with different concentrations of {sup 15}N{sub 4}-ARG, ARG, or L-arginine ethyl ester (ARG-EE) for 2 h. To modulate ARG transport, siRNA for ARG transporter (CAT-1) vs. sham siRNA were transfected into cells. ARG transport activity was assessed by cellular fluxes of ARG, {sup 15}N{sub 4}-ARG, dimethylarginines, and L-citrulline by an LC-MS/MS assay. eNOS activity was determined by nitrite/nitrate accumulation, either via a fluorometric assay or by{sup 15}N-nitrite or estimated {sup 15}N{sub 3}-citrulline concentrations when {sup 15}N{sub 4}-ARG was used to challenge the cells. We found that ARG-EE incubation increased cellular ARG concentration but no increase in nitrite/nitrate was observed, while ARG incubation increased both cellular ARG concentration and nitrite accumulation. Cellular nitrite/nitrate production did not correlate with cellular total ARG concentration. Reduced {sup 15}N{sub 4}-ARG cellular uptake in CAT-1 siRNA transfected cells vs. control was accompanied by reduced eNOS activity, as determined by {sup 15}N-nitrite, total nitrite and {sup 15}N{sub 3}-citrulline formation. Our data suggest that extracellular ARG, not intracellular ARG, is the major determinant of NO production in endothelial cells. It is likely that once transported inside the cell

  14. Radiolytic Degradation in Lanthanide/Actinide Separation LigandsNOPOPO: Radical Kinetics and Efficiencies Determinations

    SciTech Connect (OSTI)

    Katy L. Swancutt; Stephen P. Mezyk; Richard D. Tillotson; Sylvie Pailloux; Manab Chakravarty; Robert T. Paine; Leigh R. Martin

    2011-07-01

    Trivalent lanthanide/actinide separations from used nuclear fuel occurs in the presence radiation fields that degrades the extraction ligands and solvents. Here we have investigated the stability of a new ligand for lanthanide/actinide separation; 2,6-bis[(di(2-ethylhexyl)phosphino)methyl] pyridine N,P,P-trioxide, TEH(NOPOPO). The impact of {gamma}-radiolysis on the distribution ratios for actinide (Am) and Lanthanide (Eu) extraction both in the presence and absence of an acidic aqueous phase by TEH(NOPOPO) was determined. Corresponding reaction rate constants for the two major radicals, hydroxyl and nitrate, were determined for TEH(NOPOPO) in the aqueous phase, with room temperature values of (3.49 {+-} 0.10) x 10{sup 9} and (1.95 {+-} 0.15) x 10{sup 8} M{sup -1} s{sup -1}, respectively. The activation energy for this reaction was found to be 30.2 {+-} 4.1 kJ mol{sup -1}. Rate constants for two analogues (2-methylphosphonic acid pyridine N,P-dioxide and 2,6-bis(methylphosphonic acid) pyridine N,P,P-trioxide) were also determined to assist in determining the major reaction pathways.

  15. CX-012200: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determination of Excess Real Property CX(s) Applied: B1.36 Date: 05/01/2014 Location(s): Colorado Offices(s): Legacy Management

  16. Categorical Exclusion Determinations: Pennsylvania | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... August 3, 2015 CX-014051: Categorical Exclusion Determination A Scaling Study of Microbially-Enhanced Coalbed Methane (MECBM): Optimizing Nutrient Delivery for Maximized Methane ...

  17. CX-010689: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Generic CX Determination for Financial Assistance Awards CX(s) Applied: Unknown Date: 07/17/2013 Location(s): Illinois Offices(s): Chicago Office

  18. Categorical Exclusion Determinations: Nationwide | Department...

    Broader source: Energy.gov (indexed) [DOE]

    ... February 18, 2016 CX-014630: Categorical Exclusion Determination Inspection and Repair of West Hackberry-Sun 42-Inch Crude Oil Pipeline CX(s) Applied: 0 Date: 02182016 ...

  19. Structural Criteria for the Rational Design of Selective Ligands: Convergent Hydrogen Bonding Sites for the Nitrate Anion

    SciTech Connect (OSTI)

    Hay, Benjamin P.; Gutowski, Maciej S.; Dixon, David A.; Garza , Jorge; Vargas, Rubicelia; Moyer, Bruce A.

    2004-06-30

    Molecular hosts for anion complexation are often constructed by combining two or more hydrogen bonding functional groups, DH. The deliberate design of complementary host architectures requires knowledge of the optimal geometry for the hydrogen bonds formed between the host and the guest. Herein, we present a detailed study of the structural aspects of hydrogen bonding interactions with the NO3 anion. A large number of crystal structures are analyzed to determine the number of hydrogen bond contacts per anion and to further characterize the structural aspects of these interactions. Electronic structure calculations are used to determine stable geometries and interaction energies for NO3 complexes with several simple molecules possessing DH groups, including water, methanol, N-methylformamide, and methane. Theoretical results are reported at several levels of density functional theory, including BP86/DN**, B3LYP/TZVP, and B3LYP/TZVP+, and at MP2/aug-cc-pVDZ. In addition, MP2 binding energies for these complexes were obtained at the complete basis set limit by extrapolating from single point energies obtained with larger correlation-consistent basis sets. The results establish that NO3 has an intrinsic hydrogen bonding topography in which there are six optimal sites for proton location. The structural features observed in crystal structures and in the optimized geometries of complexes are explained by a preference to locate the DH protons in these positions. For the strongest hydrogen bonding interactions, the NOH angle is bent at an angle of 115 10, and the hydrogen atom lies in the NO3 plane giving ONOH dihedral angles of 0 and 180. In addition, the D-H vector points towards the oxygen atom, giving DHO angles that are near linear, 170 10. Due to steric hindrance, simple alcohol OH and amide NH donors form 3:1 complexes with NO3, with HO distances of 1.85 0.5 . Thus, the optimal cavity radius for a tridentate host, defined as the

  20. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate

    SciTech Connect (OSTI)

    Moyer, Bruce A.; Marchand, Alan P.; Bonnesen, Peter V.; Bryan, Jeffrey C.; Haverlock, Tamara J.

    2002-03-30

    This research has focused on new liquid-liquid extraction chemistry applicable to separation of major sodium salts from alkaline tank waste. It was the overall goal to provide the scientific foundation upon which the feasibility of liquid-liquid extraction chemistry for bulk reduction of the volume of tank waste can be evaluated. Sodium hydroxide represented the initial test case and primary focus. It is a primary component of the waste1 and has the most value for recycle. A full explanation of the relevance of this research to USDOE Environmental Management needs will be given in the Relevance, Impact, and Technology Transfer section below. It should be noted that this effort was predicated on the need for sodium removal primarily from low-activity waste, whereas evolving needs have shifted attention to volume reduction of the high-activity waste. The results of the research to date apply to both applications, though treatment of high-activity wastes raises new questions that will be addressed in the renewal period. Toward understanding the extractive chemistry of sodium hydroxide and other sodium salts, it was the intent to identify candidate extractants and determine their applicable basic properties regarding selectivity, efficiency, speciation, and structure. A hierarchical strategy was to be employed in which the type of liquid-liquid-extraction system varied in sophistication from simple, single-component solvents to solvents containing designer host molecules. As an aid in directing this investigation toward addressing the fundamental questions having the most value, a conceptualization of an ideal process was advanced. Accordingly, achieving adequate selectivity for sodium hydroxide represented a primary goal, but this result is worthwhile for waste applications only if certain conditions are met.

  1. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, Carol Maryanne; Pickett, John Butler; Brown, Kevin George; Edwards, Thomas Barry

    1998-01-01

    A process for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, .DELTA.G.sub.p, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, .DELTA.G.sub.a, based upon the free energy associated with weak acid dissociation, .DELTA.G.sub.a.sup.WA, and accelerated matrix dissolution at high pH, .DELTA.G.sub.a.sup.SB associated with solution strong base formation, and determining a final hydration free energy, .DELTA.G.sub.f. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log.sub.10 (N C.sub.i (g/L))=a.sub.i +b.sub.i .DELTA.G.sub.f. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained.

  2. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, C.M.; Pickett, J.B.; Brown, K.G.; Edwards, T.B.

    1998-12-08

    A process is described for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, {Delta}G{sub p}, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, {Delta}G{sub a}, based upon the free energy associated with weak acid dissociation, {Delta}G{sub a}{sup WA}, and accelerated matrix dissolution at high pH, {Delta}G{sub a}{sup SB} associated with solution strong base formation, and determining a final hydration free energy, {Delta}G{sub f}. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log{sub 10}(N C{sub i}(g/L))=a{sub i} + b{sub i}{Delta}G{sub f}. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained. 4 figs.

  3. Isotopic Composition and Origin of Indigenous Natural Perchlorate and Co-Occurring Nitrate in the Southwestern United States

    SciTech Connect (OSTI)

    Jackson, Andrew; Bohlke, J. K.; Gu, Baohua; Hatzinger, Paul B.; Sturchio, N. C.

    2010-01-01

    Perchlorate (ClO4-) has been detected over an expansive area in groundwater and soils in the southwestern United States. Because of its wide distribution, much of the ClO4- is presumed to be from natural sources, primarily atmospheric deposition and accumulation. The objective of this study was to evaluate the range of the isotopic composition of natural ClO4- indigenous to the southwestern U.S. Stable isotope ratios of Cl and O were determined for ClO4- collected from numerous sources, including: groundwater from several locations in the southern high plains (SHP) of Texas and New Mexico and the middle Rio Grande Basin in New Mexico, vadose zone soil from the SHP, and surface NO3--rich caliches from four locations in Death Valley, CA. The data suggest that natural ClO4- in the southwestern U.S. has at least two distinctive isotope signatures that differ both from each other and from those previously reported for natural ClO4- from the Atacama Desert of Chile and all anthropogenic ClO4- sources tested to date. The ClO4- in four caliche samples collected in Death Valley has high 17O values (8.6 to 18.4 ), similar to those described for ClO4- from the Atacama, and suggesting atmospheric formation via reaction with ozone (O3). However, the Death Valley samples have 37Cl values (-3.1 to -0.8 ) and 18O values (+2.9 to +26.1 ), that are appreciably higher than Atacama perchlorate ( 37Cl; -14.3 to -10.2 and 18O; (-10.5 to -2.2 , respectively). In contrast, samples from 8 locations in West Texas and New Mexico were characterized by only a slight elevation in 17O (0.3 to 1.3 ), suggesting either that this material is not primarily generated with O3 as a reactant or that the ClO4- has been consistently altered post-deposition by one or more processes that caused isotopic exchange of O. The 37Cl values in the SHP perchlorate (+ 3.4 to + 5.1 ) were consistently higher than for the Atacama or Death Valley salts, while the 18O values (+ 0.5 to + 4.8 ) overlapped significantly

  4. CX-000768: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determining the Variability of Continuous Mercury Monitors at Low Mercury LevelsCX(s) Applied: B3.6Date: 02/07/2010Location(s): Grand Forks, North DakotaOffice(s): Fossil Energy, National Energy Technology Laboratory

  5. CX-010776: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Test Reactor (ATR) Primary Coolant Leak Rate Determination System Equipment Replacement CX(s) Applied: B2.2 Date: 07/24/2013 Location(s): Idaho Offices(s): Nuclear Energy

  6. CX-008905: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Optimizing Accuracy of Determinations of Carbon Dioxide Storage Capacity and Permanence CX(s) Applied: A1, A9, B3.6 Date: 08/29/2012 Location(s): Wyoming Offices(s): National Energy Technology Laboratory

  7. CX-012121: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Notice of Preliminary Determination of Energy Savings for ANSI/ASHRAE/IES Standard 90.1-2013 CX(s) Applied: A6 Date: 04/25/2014 Location(s): CX: none Offices(s): Golden Field Office

  8. CX-004264: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Phase II, Determination of Uranium in GroundwaterCX(s) Applied: B3.8Date: 09/27/2010Location(s): Richland, WashingtonOffice(s): Environmental Management, Office of River Protection-Richland Office

  9. CX-010493: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determining Distribution Coefficients by Surface-Enhanced Raman Spectroscopy (SERS) CX(s) Applied: B3.6 Date: 05/14/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  10. CX-014390: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    National Environmental Policy Act Determination at Fermi National Accelerator Laboratory CX(s) Applied: B1.15Date: 12/03/2015 Location(s): IllinoisOffices(s): Fermi Site Office