Sample records for determination acoustic monitoring

  1. acoustic monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acoustic methods have impediments as well, of course, most notably 26 Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring: The...

  2. acoustic chemometrics monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acoustic methods have impediments as well, of course, most notably 27 Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring: The...

  3. acoustic chemometric monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acoustic methods have impediments as well, of course, most notably 27 Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring: The...

  4. Platforms and Methods for Acoustic Detection and Monitoring of Key

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    #12;Platforms and Methods for Acoustic Detection and Monitoring of Key Ecosystem Properties Nils Olav Handegard #12;· Introduction · Platforms carrying acoustics · Methods · Applications ­ What we have done · Applications ­ What we would like to do #12;· Introduction · Platforms carrying acoustics

  5. Prototype acoustic resonance spectroscopy monitor

    SciTech Connect (OSTI)

    Sinha, D.N.; Olinger, C.T.

    1996-03-01T23:59:59.000Z

    This report reports on work performed for the International Atomic Energy Agency (IAEA) through the Program Office for Technical Assistance (POTAS). In this work, we investigate possible applications of nondestructive acoustics measurements to facilitate IAEA safeguards at bulk processing facilities. Two different acoustic techniques for verifying the internal structure of a processing tank were investigated. During this effort we also examined two acoustic techniques for assessing the fill level within a processing tank. The fill-level measurements could be made highly portable and have an added safeguards advantage that they can also detect stratification of fill material. This later application may be particularly useful in confirming the absence of stratification in plutonium processing tanks before accountability samples are withdrawn.

  6. Surface acoustic wave dust deposition monitor

    DOE Patents [OSTI]

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12T23:59:59.000Z

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  7. PASSIVE ACOUSTIC SENSOR NETWORK LOCALIZATION; APPLICATION TO STRUCTURE GEOMETRY MONITORING

    E-Print Network [OSTI]

    Boyer, Edmond

    work in passive identification was conducted in structural health monitoring [6], acoustic [17] and seismology [2]. In structural health monitoring, applications were released to deter- mine structural and discussed. Experimental 7th European Workshop on Structural Health Monitoring July 8-11, 2014. La Cité

  8. Structural Health Monitoring of Smart Composite Material by Acoustic Emission

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Structural Health Monitoring of Smart Composite Material by Acoustic Emission S. Masmoudia , A. El composite structures gives the opportunity to develop smart materials for health monitoring systems and structural health monitoring [1, 3]. Several studies [5, 6] were carried for the development of non

  9. TEMPERATURE AND LOAD EFFECTS ON ACOUSTIC EMISSION SIGNALS FOR STRUCTURAL HEALTH MONITORING APPLICATIONS

    E-Print Network [OSTI]

    Boyer, Edmond

    TEMPERATURE AND LOAD EFFECTS ON ACOUSTIC EMISSION SIGNALS FOR STRUCTURAL HEALTH MONITORING. KEYWORDS : Structural Health Monitoring, Acoustic Emission, Environmental and Operational Conditions2014 Author manuscript, published in "EWSHM - 7th European Workshop on Structural Health Monitoring

  10. Multipurpose Acoustic Sensor for Downhole Fluid Monitoring

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the NationalPennsylvaniaTemperatureMultipurpose Acoustic

  11. Early Detection of Steel Rebar Corrosion by Acoustic Emission Monitoring Early Detection of Steel Rebar Corrosion by Acoustic Emission

    E-Print Network [OSTI]

    Early Detection of Steel Rebar Corrosion by Acoustic Emission Monitoring Early Detection of Steel Rebar Corrosion by Acoustic Emission Monitoring Alan D. Zdunek and David Prine BIRL Industrial Research, Evanston, IL 60201 Paper No. 547 presented at CORROSION95, the NACE International Annual Conference

  12. STRUCTURAL HEALTH MONITORING OF A SMART COMPOSITE BRIDGE USING GUIDED WAVES AND ACOUSTIC EMISSION TECHNIQUES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    STRUCTURAL HEALTH MONITORING OF A SMART COMPOSITE BRIDGE USING GUIDED WAVES AND ACOUSTIC EMISSION with the development of a structural health monitoring (SHM) system implemented on a composite footbridge during in France to serve as demonstrators. KEYWORDS : Structural Health Monitoring, Acoustic emission, Guided

  13. ACOUSTIC EMISSION HEALTH MONITORING OF STEEL BRIDGES Pooria L. Pahlavan1

    E-Print Network [OSTI]

    Boyer, Edmond

    ACOUSTIC EMISSION HEALTH MONITORING OF STEEL BRIDGES Pooria L. Pahlavan1 , Joep Paulissen2 in the field of Acoustic Emission (AE) for monitoring fatigue cracks in steel structures, the implementation in the utilization of AE systems for steel bridge decks. These challenges are mainly related to the multi

  14. MONITORING OF GAS TURBINE OPERATING PARAMETERS USING ACOUSTIC EMISSION

    E-Print Network [OSTI]

    R M Douglas; S Beugné; M D Jenkins; A K Frances; J A Steel; R L Reuben; P A Kew

    In this work, Acoustic Emission (AE) sensors were mounted on several parts of a laboratory-scale gas turbine operating under various conditions, the object being to assess the value of AE for inservice condition monitoring. The turbine unit comprised a gas generator (compressor and turbine on a common shaft) and a free-power turbine for power extraction. AE was acquired from several sensor positions on the external surfaces of the equipment over a range of gas generator running speeds. Relationships between parameters derived from the acquired AE signals and the running conditions are discussed. It is shown that the compressor impeller blade passing frequency is discernible in the AE record, allowing shaft speed to be obtained, and presenting a significant blade monitoring opportunity. Further studies permit a trend to be established between the energy contained in the AE signal and the turbine running speed. In order to study the effects of damaged rotor blades a fault was simulated in opposing blades of the free-power turbine and run again under the previous conditions. Also, the effect of an additional AE source, occurring due to abnormal operation in the gas generator area (likely rubbing), is shown to produce deviations from that expected during normal operation. The findings suggest that many aspects of the machine condition can be monitored.

  15. Guided wave acoustic monitoring of corrosion in recovery boiler tubing

    SciTech Connect (OSTI)

    Quarry, M J; Chinn, D J

    2004-02-19T23:59:59.000Z

    Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This Department of Energy, Office of Industrial Technologies project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the coldside or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications. This technique appears very promising for recovery boiler tube application, potentially expediting annual inspection of tube integrity.

  16. Operational Performance Analysis of Passive Acoustic Monitoring for Killer Whales

    SciTech Connect (OSTI)

    Matzner, Shari; Fu, Tao; Ren, Huiying; Deng, Zhiqun; Sun, Yannan; Carlson, Thomas J.

    2011-09-30T23:59:59.000Z

    For the planned tidal turbine site in Puget Sound, WA, the main concern is to protect Southern Resident Killer Whales (SRKW) due to their Endangered Species Act status. A passive acoustic monitoring system is proposed because the whales emit vocalizations that can be detected by a passive system. The algorithm for detection is implemented in two stages. The first stage is an energy detector designed to detect candidate signals. The second stage is a spectral classifier that is designed to reduce false alarms. The evaluation presented here of the detection algorithm incorporates behavioral models of the species of interest, environmental models of noise levels and potential false alarm sources to provide a realistic characterization of expected operational performance.

  17. Cavitation controlled acoustic probe for fabric spot cleaning and moisture monitoring

    DOE Patents [OSTI]

    Sheen, Shuh-Haw (Naperville, IL); Chien, Hual-Te (Naperville, IL); Raptis, Apostolos C. (Downers Grove, IL)

    1997-01-01T23:59:59.000Z

    A method and apparatus are provided for monitoring a fabric. An acoustic probe generates acoustic waves relative to the fabric. An acoustic sensor, such as an accelerometer is coupled to the acoustic probe for generating a signal representative of cavitation activity in the fabric. The generated cavitation activity representative signal is processed to indicate moisture content of the fabric. A feature of the invention is a feedback control signal is generated responsive to the generated cavitation activity representative signal. The feedback control signal can be used to control the energy level of the generated acoustic waves and to control the application of a cleaning solution to the fabric.

  18. acoustic wave monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the deep ocean, they are refracted by inhomogeneities Tomsovic, Steve 14 Unidirectional propagation of designer surface acoustic waves CERN Preprints Summary: We propose an...

  19. acoustic emission monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  20. Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine

    DOE Patents [OSTI]

    Ziminsky, Willy Steve (Simpsonville, SC); Krull, Anthony Wayne (Anderson, SC); Healy, Timothy Andrew (Simpsonville, SC), Yilmaz, Ertan (Glenville, NY)

    2011-05-17T23:59:59.000Z

    A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.

  1. PASSIVE WIRELESS SURFACE ACOUSTIC WAVE SENSORS FOR MONITORING SEQUESTRATION SITES CO2 EMISSION

    SciTech Connect (OSTI)

    Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

    2012-11-30T23:59:59.000Z

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/?. The overall effect of temperature on nanocomposite resistance was -1000ppm/?. The gas response of the nanocomposite was about 10% resistance increase under pure CO2. The sensor frequency change was around 300ppm for pure CO2. With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

  2. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOE Patents [OSTI]

    Pfeifer, Kent B. (Los Lunas, NM); Hoyt, Andrea E. (Albuquerque, NM); Frye, Gregory C. (Cedar Crest, NM)

    1998-01-01T23:59:59.000Z

    The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).

  3. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOE Patents [OSTI]

    Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

    1998-08-18T23:59:59.000Z

    The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

  4. VoxNet: An Interactive, Rapidly-Deployable Acoustic Monitoring Platform

    E-Print Network [OSTI]

    Grether, Gregory

    VoxNet: An Interactive, Rapidly-Deployable Acoustic Monitoring Platform Michael Allen Cogent applica- tions and virtual fences. VoxNet is a complete hardware and software platform for distributed environments; (2) a high level pro- gramming language that abstracts the user from platform and network details

  5. Acoustic Emission and Guided Wave Monitoring of Fatigue Crack Growth on a Full Pipe Specimen

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Cumblidge, Stephen E.; Ramuhalli, Pradeep; Watson, Bruce E.; Doctor, Steven R.; Bond, Leonard J.

    2011-05-06T23:59:59.000Z

    Continuous on-line monitoring of active and passive systems, structures and components in nuclear power plants will be critical to extending the lifetimes of nuclear power plants in the US beyond 60 years. Acoustic emission and guided ultrasonic waves are two tools for continuously monitoring passive systems, structures and components within nuclear power plants and are the focus of this study. These tools are used to monitor fatigue damage induced in a SA 312 TP304 stainless steel pipe specimen. The results of acoustic emission monitoring indicate that crack propagation signals were not directly detected. However, acoustic emission monitoring exposed crack formation prior to visual confirmation through the detection of signals caused by crack closure friction. The results of guided ultrasonic wave monitoring indicate that this technology is sensitive to the presence and size of cracks. The sensitivity and complexity of GUW signals is observed to vary with respect to signal frequency and path traveled by the guided ultrasonic wave relative to the crack orientation.

  6. Acoustic emission monitoring of hot functional testing: Watts Bar Unit 1 Nuclear Reactor

    SciTech Connect (OSTI)

    Hutton, P.H.; Dawson, J.F.; Friesel, M.A.; Harris, J.C.; Pappas, R.A.

    1984-06-01T23:59:59.000Z

    Acoustic emission (AE) monitoring of selected pressure boundary areas at TVA's Watts Bar, Unit 1 Nuclear Power Plant during hot functional preservice testing is described in this report. The report deals with background, methodology, and results. The work discussed here is a major milestone in a program supported by NRC to develop and demonstrate application of AE monitoring for continuous surveillance of reactor pressure boundaries to detect and evaluate growing flaws. The subject work demonstrated that anticipated problem areas can be overcome. Work is continuing toward AE monitoring during reactor operation.

  7. An Aquatic Acoustic Metrics Interface Utility for Underwater Sound Monitoring and Analysis

    SciTech Connect (OSTI)

    Ren, Huiying; Halvorsen, Michele B.; Deng, Zhiqun; Carlson, Thomas J.

    2012-05-31T23:59:59.000Z

    Fishes and other marine mammals suffer a range of potential effects from intense sound sources generated by anthropogenic underwater processes such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording devices (USR) were built to monitor the acoustic sound pressure waves generated by those anthropogenic underwater activities, so the relevant processing software becomes indispensable for analyzing the audio files recorded by these USRs. However, existing software packages did not meet performance and flexibility requirements. In this paper, we provide a detailed description of a new software package, named Aquatic Acoustic Metrics Interface (AAMI), which is a Graphical User Interface (GUI) designed for underwater sound monitoring and analysis. In addition to the general functions, such as loading and editing audio files recorded by USRs, the software can compute a series of acoustic metrics in physical units, monitor the sound's influence on fish hearing according to audiograms from different species of fishes and marine mammals, and batch process the sound files. The detailed applications of the software AAMI will be discussed along with several test case scenarios to illustrate its functionality.

  8. Monitoring Thermal Fatigue Damage In Nuclear Power Plant Materials Using Acoustic Emission

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Watson, Bruce E.; Pitman, Stan G.; Roosendaal, Timothy J.; Bond, Leonard J.

    2012-04-26T23:59:59.000Z

    Proactive aging management of nuclear power plant passive components requires technologies to enable monitoring and accurate quantification of material condition at early stages of degradation (i.e., pre-macrocrack). Acoustic emission (AE) is well-suited to continuous monitoring of component degradation and is proposed as a method to monitor degradation during accelerated thermal fatigue tests. A key consideration is the ability to separate degradation responses from external sources such as water spray induced during thermal fatigue testing. Water spray provides a significant background of acoustic signals, which can overwhelm AE signals caused by degradation. Analysis of AE signal frequency and energy is proposed in this work as a means for separating degradation signals from background sources. Encouraging results were obtained by applying both frequency and energy filters to preliminary data. The analysis of signals filtered using frequency and energy provides signatures exhibiting several characteristics that are consistent with degradation accumulation in materials. Future work is planned to enable verification of the efficacy of AE for thermal fatigue crack initiation detection. While the emphasis has been placed on the use of AE for crack initiation detection during accelerated aging tests, this work also has implications with respect to the use of AE as a primary tool for early degradation monitoring in nuclear power plant materials. The development of NDE tools for characterization of aging in materials can also benefit from the use of a technology such as AE which can continuously monitor and detect crack initiation during accelerated aging tests.

  9. Method and apparatus for acoustically monitoring the flow of suspended solid particulate matter

    DOE Patents [OSTI]

    Roach, Paul D. (Darien, IL); Raptis, Apostolos C. (Downers Grove, IL)

    1982-01-01T23:59:59.000Z

    A method and apparatus for monitoring char flow in a coal gasifier system cludes flow monitor circuits which measure acoustic attenuation caused by the presence of char in a char line and provide a char flow/no flow indication and an indication of relative char density. The flow monitor circuits compute the ratio of signals in two frequency bands, a first frequency band representative of background noise, and a second higher frequency band in which background noise is attenuated by the presence of char. Since the second frequency band contains higher frequencies, the ratio can be used to provide a flow/no flow indication. The second band can also be selected so that attenuation is monotonically related to particle concentration, providing a quantitative measure of char concentration.

  10. Acoustic monitoring method and system in laser-induced optical breakdown (LIOB)

    DOE Patents [OSTI]

    O'Donnell, Matthew (Ann Arbor, MI); Ye, Jing Yong (Ann Arbor, MI); Norris, Theodore B. (Dexter, MI); Baker, Jr., James R. (Ann Arbor, MI); Balogh, Lajos P. (Ann Arbor, MI); Milas, Susanne M. (Ann Arbor, MI); Emelianov, Stanislav Y. (Ann Arbor, MI); Hollman, Kyle W. (Fenton, MI)

    2008-05-06T23:59:59.000Z

    An acoustic monitoring method and system in laser-induced optical breakdown (LIOB) provides information which characterize material which is broken down, microbubbles in the material, and/or the microenvironment of the microbubbles. In one embodiment of the invention, femtosecond laser pulses are focused just inside the surface of a volume of aqueous solution which may include dendrimer nanocomposite (DNC) particles. A tightly focused, high frequency, single-element ultrasonic transducer is positioned such that its focus coincides axially and laterally with this laser focus. When optical breakdown occurs, a microbubble forms and a shock or pressure wave is emitted (i.e., acoustic emission). In addition to this acoustic signal, the microbubble may be actively probed with pulse-echo measurements from the same transducer. After the microbubble forms, received pulse-echo signals have an extra pulse, describing the microbubble location and providing a measure of axial microbubble size. Wavefield plots of successive recordings illustrate the generation, growth, and collapse of microbubbles due to optical breakdown. These same plots can also be used to quantify LIOB thresholds.

  11. Method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM); Anthony, Brian W. (Clearfield, PA)

    1997-01-01T23:59:59.000Z

    A method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein. A direct correlation between the octane rating of gasoline and the frequency of corresponding acoustic resonances therein has been experimentally observed. Therefore, the octane rating of a gasoline sample can be directly determined through speed of sound measurements instead of by the cumbersome process of quantifying the knocking quality of the gasoline. Various receptacle geometries and construction materials may be employed. Moreover, it is anticipated that the measurements can be performed on flowing samples in pipes, thereby rendering the present method useful in refineries and distilleries.

  12. Method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein

    DOE Patents [OSTI]

    Sinha, D.N.; Anthony, B.W.

    1997-02-25T23:59:59.000Z

    A method is described for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein. A direct correlation between the octane rating of gasoline and the frequency of corresponding acoustic resonances therein has been experimentally observed. Therefore, the octane rating of a gasoline sample can be directly determined through speed of sound measurements instead of by the cumbersome process of quantifying the knocking quality of the gasoline. Various receptacle geometries and construction materials may be employed. Moreover, it is anticipated that the measurements can be performed on flowing samples in pipes, thereby rendering the present method useful in refineries and distilleries. 3 figs.

  13. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01T23:59:59.000Z

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  14. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    SciTech Connect (OSTI)

    Worthington, Monty [Project Director - AK] [Project Director - AK

    2014-02-05T23:59:59.000Z

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the FERC pilot project process. The Project compared results obtained from this method to results obtained from other passive hydrophone technologies and to visual observation techniques performed simultaneously. This Final Report makes recommendations on the best practice for future data collection, for ORPC’s work in Cook Inlet specifically, and for tidal power projects in general. This Project developed a marine mammal study design and compared technologies for hydroacoustic and visual data collection with potential for broad application to future tidal and hydrokinetic projects in other geographic areas. The data collected for this Project will support the environmental assessment of future Cook Inlet tidal energy projects, including ORPC’s East Foreland Tidal Energy Project and any tidal energy developments at Fire Island. The Project’s rigorous assessment of technology and methodologies will be invaluable to the hydrokinetic industry for developing projects in an environmentally sound and sustainable way for areas with high marine mammal activity or endangered populations. By combining several different sampling methods this Project will also contribute to the future preparation of a comprehensive biological assessment of ORPC’s projects in Cook Inlet.

  15. Facility effluent monitoring plan determinations for the 300 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01T23:59:59.000Z

    Facility Effluent Monitoring Plan determinations were conducted for the Westinghouse Hanford Company 300 Area facilities on the Hanford Site. These determinations have been prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans. Sixteen Westinghouse Hanford Company facilities in the 300 Area were evaluated: 303 (A, B, C, E, F, G, J and K), 303 M, 306 E, 308, 309, 313, 333, 334 A, and the 340 Waste Handling Facility. The 303, 306, 313, 333, and 334 facilities Facility Effluent Monitoring Plan determinations were prepared by Columbia Energy and Environmental Services of Richland, Washington. The 340 Central Waste Complex determination was prepared by Bovay Northwest, Incorporated. The 308 and 309 facility determinations were prepared by Westinghouse Handford Company. Of the 16 facilities evaluated, 3 will require preparation of a Facility effluent Monitoring Plan: the 313 N Fuels Fabrication Support Building, 333 N Fuels fabrication Building, and the 340 Waste Handling Facility. 26 refs., 5 figs., 10 tabs.

  16. Cosmic Rays to Acoustics: Non-intrusive Monitoring for Nuclear Applications

    SciTech Connect (OSTI)

    Stanley, S.J.; Scully, P. [Nexia Solutions, H260 Hinton House, Risley, Warrington, WA6 3AS (United Kingdom)

    2007-07-01T23:59:59.000Z

    The radioactive nature of the material handled during nuclear reprocessing or fuel manufacture often makes both process monitoring and process diagnostics most challenging. Fox example, quantifying material inside a radiation shielded storage vessel, locating sediment layers and the associated interfaces represents a difficult challenge. Alternatively, measuring the extent of sludge re-suspension and quantifying the amounts of sludge transferred during a sludge movement campaign also represents a re-occurring problem. Remote non-invasive process monitoring and imaging techniques are most applicable in the nuclear sector as they provide a means to monitor or image the given process, container or vessel allowing a remote interrogation whilst reducing operator dosage uptake. A number of currently used types of non-intrusive process monitoring and imaging techniques are discussed in this paper, each with their associated applications. Firstly, the use of (very) high energy naturally occurring cosmic ray muons for imaging the internal contents of large or radiation shielded vessels is discussed. Secondly, the use of non-invasive acoustic monitoring techniques to detect the presence of a gas-core inside a stirred vessel as well as the detection of flowing solids is described. Finally, the use of electrical resistance tomography for imaging the ease of sludge re-suspension in a storage vessel is also discussed. Within the UK Nuclear Sector, the use of non-invasive imaging and process monitoring techniques in recent years has shown a marked increase. Being able to 'see inside' the process represents a powerful tool allowing the quantification, location and characterisation of material whilst increasing the overall understanding of the given process providing significant safety, economical and operational benefits. (authors)

  17. Comparison of acoustic and net sampling systems to determine patterns in zooplankton distribution

    E-Print Network [OSTI]

    Pierce, Stephen

    Comparison of acoustic and net sampling systems to determine patterns in zooplankton distribution and with predicted volume backscatter calculated from a coincident net tow. Spatially and temporally coincident data)) and from a 1 m2 Multiple Opening Closing Net and Environmental Sensing System (MOCNESS). The combined net

  18. Hydrocarbon saturation determination using acoustic velocities obtained through casing

    DOE Patents [OSTI]

    Moos, Daniel (Houston, TX)

    2010-03-09T23:59:59.000Z

    Compressional and shear velocities of earth formations are measured through casing. The determined compressional and shear velocities are used in a two component mixing model to provides improved quantitative values for the solid, the dry frame, and the pore compressibility. These are used in determination of hydrocarbon saturation.

  19. Carbon sequestration monitoring with acoustic double-difference waveform inversion: A case study on SACROC walkaway VSP data

    E-Print Network [OSTI]

    Malcolm, Alison

    Carbon sequestration monitoring with acoustic double-difference waveform inversion: A case study National Laboratory SUMMARY Geological carbon sequestration involves large-scale injection of carbon is crucial for ensuring safe and reliable carbon storage (Bickle et al., 2007). Conventional analysis of time

  20. Final Report: Guided Acoustic Wave Monitoring of Corrosion in Recovery Boiler Tubing

    SciTech Connect (OSTI)

    Chinn, D J; Quarry, M J; Rose, J L

    2005-03-31T23:59:59.000Z

    Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This Department of Energy, Office of Industrial Technologies project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the cold side or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications. This technique appears very promising for recovery boiler tube application, potentially expediting annual inspection of tube integrity.

  1. Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method

    DOE Patents [OSTI]

    Sinha, Dipen N

    2014-02-04T23:59:59.000Z

    An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.

  2. Acoustically determined linear piezoelectric response of lithium niobate up to 1100?V

    SciTech Connect (OSTI)

    Patel, N. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Branch, D. W.; Cular, S. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Schamiloglu, E. [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87106 (United States)

    2014-04-21T23:59:59.000Z

    We present a method to measure high voltages using the piezoelectric crystal lithium niobate without using voltage dividers. A 36° Y-X cut lithium niobate crystal was coupled to two acoustic transducers, where direct current voltages were applied from 128–1100?V. The time-of-flight through the crystal was determined to be linearly dependent on the applied voltage. A model was developed to predict the time-delay in response to the applied voltage. The results show a sensitivity of 17 fs/V with a measurement error of 1 fs/V was achievable using this method. The sensitivity of this method can be increased by measuring the acoustic wave after multiple passes through the crystal. This method has many advantages over traditional techniques such as: favorable scalability for larger voltages, ease of use, cost effectiveness, and compactness.

  3. Determination of the pressure at the gas-liquid interface using acoustic speed measurements

    E-Print Network [OSTI]

    Heggelund, Dag Gustav

    1988-01-01T23:59:59.000Z

    . The density can be expressed with the use of the real gas law. This yields BP = ? (g/gc) *dz*P*M/(144*Z*R*T) BP = ? (g/gc) *dz*P*SG*MAIR/(144*Z*R*T) (26) 21 where: SG MAIR specific gravity of gas. (air= 1. 0), Molecular weight of air, 28. 966...DETERMINATION OF THE PRESSURE AT THE GAS-LIQUID INTERFACE USING ACOUSTIC SPEED MEASUREMENTS A Thesis by DAG GUSTAV HEGGELUND Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree...

  4. Method and apparatus for acoustically monitoring the flow of suspended solid particulate matter. [Patent application; monitoring char flow in coal gasifier

    DOE Patents [OSTI]

    Roach, P.D.; Raptis, A.C.

    1980-11-24T23:59:59.000Z

    A method and apparatus for monitoring char flow in a coal gasifier system includes flow monitor circuits which measure acoustic attenuation caused by the presence of char in a char line and provides a char flow/no flow indication and an indication of relative char density. The flow monitor circuits compute the ratio of signals in two frequency bands, a first frequency band representative of background noise, and a second higher frequency band in which background noise is attenuated by the presence of char. Since the second frequency band contains higher frequencies, the ratio can be used to provide a flow/no flow indication. The second band can also be selected so that attenuation is monotonically related to particle concentration, providing a quantitative measure of char concentration.

  5. Acoustic Emission Monitoring of the Syracuse Athena Temple: Scale Invariance in the Timing of Ruptures

    SciTech Connect (OSTI)

    Niccolini, G.; Carpinteri, A.; Lacidogna, G.; Manuello, A. [Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino (Italy)] [Department of Structural Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2011-03-11T23:59:59.000Z

    We perform a comparative statistical analysis between the acoustic-emission time series from the ancient Greek Athena temple in Syracuse and the sequence of nearby earthquakes. We find an apparent association between acoustic-emission bursts and the earthquake occurrence. The waiting-time distributions for acoustic-emission and earthquake time series are described by a unique scaling law indicating self-similarity over a wide range of magnitude scales. This evidence suggests a correlation between the aging process of the temple and the local seismic activity.

  6. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    SciTech Connect (OSTI)

    Mohd, Shukri [Nondestructive Testing Group, Industrial Technology Division, Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Holford, Karen M.; Pullin, Rhys [Cardiff School of Engineering, Cardiff University, Queen's Buildings, The Parade, CARDIFF CF24 3AA (United Kingdom)

    2014-02-12T23:59:59.000Z

    Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.

  7. System for monitoring an industrial process and determining sensor status

    DOE Patents [OSTI]

    Gross, K.C.; Hoyer, K.K.; Humenik, K.E.

    1995-10-17T23:59:59.000Z

    A method and system for monitoring an industrial process and a sensor are disclosed. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 17 figs.

  8. System for monitoring an industrial process and determining sensor status

    DOE Patents [OSTI]

    Gross, K.C.; Hoyer, K.K.; Humenik, K.E.

    1997-05-13T23:59:59.000Z

    A method and system are disclosed for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 17 figs.

  9. System for monitoring an industrial process and determining sensor status

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Hoyer, Kristin K. (Chicago, IL); Humenik, Keith E. (Columbia, MD)

    1995-01-01T23:59:59.000Z

    A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  10. System for monitoring an industrial process and determining sensor status

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Hoyer, Kristin K. (Chicago, IL); Humenik, Keith E. (Columbia, MD)

    1997-01-01T23:59:59.000Z

    A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  11. Dynamical Energy Analysis - determining wave energy distributions in complex vibro-acoustical structures

    E-Print Network [OSTI]

    Gregor Tanner

    2008-03-12T23:59:59.000Z

    We propose a new approach towards determining the distribution of mechanical and acoustic wave energy in complex built-up structures. The technique interpolates between standard Statistical Energy Analysis (SEA) and full ray tracing containing both these methods as limiting case. By writing the flow of ray trajectories in terms of linear phase space operators, it is suggested here to reformulate ray-tracing algorithms in terms of boundary operators containing only short ray segments. SEA can now be identified as a low resolution ray tracing algorithm and typical SEA assumptions can be quantified in terms of the properties of the ray dynamics. The new technique presented here enhances the range of applicability of standard SEA considerably by systematically incorporating dynamical correlations wherever necessary. Some of the inefficiencies inherent in typical ray tracing methods can be avoided using only a limited amount of the geometrical ray information. The new dynamical theory - Dynamical Energy Analysis (DEA) - thus provides a universal approach towards determining wave energy distributions in complex structures.

  12. Experimental Temperature Monitoring and Coagulation Detection using Ultrasound-Stimulated Acoustic Emission

    E-Print Network [OSTI]

    Konofagou, Elisa E.

    in the monitoring and control of thermal therapies, with diagnostic ultrasound and MRI demonstrating the most elements to monitor and increase the temperature in the tissue. Processing USAE vs. temperature plot WaterFrequency Generator 2 f 2 Amplifier USAE vs. temperature plot Water USAE signal Hydrophone Tissue f 1 Temperature

  13. Monitoring microbe-induced physical property changes using high-frequency acoustic waveform data: Toward the development of a microbial megascope

    SciTech Connect (OSTI)

    Williams, Kenneth Hurst

    2002-05-20T23:59:59.000Z

    A laboratory investigation was undertaken to determine the effect of microbe generated gas bubbles in controlled, saturated sediment columns utilizing a novel technique involving acoustic wave propagation. Specifically, the effect of denitrifying bacteria on saturated flow conditions was evaluated in light of the stimulated production of N{sub 2} gas and the resulting plugging of the pore throats. The propagation of high frequency acoustic waves through the sediment columns was used to locate those regions in the column where gas accumulation occurred. Over a period of six weeks, regions of gas accumulation resulted in the attenuation of acoustic wave energies with the decreases in amplitude typically greater than one order of magnitude.

  14. Arctic ocean long-term acoustic monitoring : ambient noise, environmental correlates, and transients north of Barrow, Alaska

    E-Print Network [OSTI]

    Roth, Ethan H.

    2008-01-01T23:59:59.000Z

    Environmental Correlates of Pack Ice Noise,” J. Acoust. Soc.Mechanical Behavior of Pack Ice,” in Mechanics of StructuredNoise Under Midwinter Pack Ice” J. Acoust Soc. Am. Vol. 38,

  15. Determination of efficiency of anechoic or decoupling hull coatings using water tank acoustic measurements

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    coatings consisting in surrounding the radiating parts of the hull by a layer of compliant material design regarding acoustic discretion and stealth, it is necessary to assess the efficiency of the coatings, not only the intrinsic properties of the material, but integrated on the hull. A method able

  16. Carbon sequestration monitoring with acoustic double-difference waveform inversion: A case study on SACROC walkaway VSP data

    SciTech Connect (OSTI)

    Huang, Lianjie [Los Alamos National Laboratory; Fehler, Michael [MIT; Malcolm, Alison [MIT; Yang, Di [MIT

    2011-01-01T23:59:59.000Z

    Geological carbon sequestration involves large-scale injection of carbon dioxide into underground geologic formations and is considered as a potential approach for mitigating global warming. Changes in reservoir properties resulting from the CO{sub 2} injection and migration can be characterized using waveform inversions of time-lapse seismic data. The conventional approach for analysis using waveform tomography is to take the difference of the images obtained using baseline and subsequent time-lapse datasets that are inverted independently. By contrast, double-difference waveform inversion uses timelapse seismic datasets to jointly invert for reservoir changes. We apply this method to a field time-lapse walkaway VSP data set acquired in 2008 and 2009 for monitoring CO{sub 2} injection at an enhanced oil recovery field at SACROC, Texas. The double-difference waveform inversion gives a cleaner and more easily interpreted image of reservoir changes, as compared to that obtained with the conventional scheme. Our results from the applicatoin of acoustic double-difference waveform tomography shows some zones with decreased P-wave velocity within the reservoir due to CO{sub 2} injection and migration.

  17. FINAL TECHNICAL REPORT: Underwater Active Acoustic Monitoring Network For Marine And Hydrokinetic Energy Projects

    SciTech Connect (OSTI)

    Stein, Peter J.; Edson, Patrick L.

    2013-12-20T23:59:59.000Z

    This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen™ power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, was shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.

  18. Determination of elastic properties of a MnO{sub 2} coating by surface acoustic wave velocity dispersion analysis

    SciTech Connect (OSTI)

    Sermeus, J.; Glorieux, C., E-mail: christ.glorieux@fys.kuleuven.be [Laboratory for Acoustics and Thermal Physics, KU Leuven, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee (Belgium); Sinha, R.; Vereecken, P. M. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Center for Surface Chemistry and Catalysis, KU Leuven, University of Leuven, Kasteelpark Arenberg 23, B-3001 Leuven (Belgium); Vanstreels, K. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2014-07-14T23:59:59.000Z

    MnO{sub 2} is a material of interest in the development of high energy-density batteries, specifically as a coating material for internal 3D structures, thus ensuring rapid energy deployment. Its electrochemical properties have been mapped extensively, but there are, to the best of the authors' knowledge, no records of the elastic properties of thin film MnO{sub 2}. Impulsive stimulated thermal scattering (ISTS), also known as the heterodyne diffraction or transient grating technique, was used to determine the Young's modulus (E) and porosity (?) of a 500?nm thick MnO{sub 2} coating on a Si(001) substrate. ISTS is an all optical method that is able to excite and detect surface acoustic waves (SAWs) on opaque samples. From the measured SAW velocity dispersion, the Young's modulus and porosity were determined to be E?=?25?±?1?GPa and ?=42±1%, respectively. These values were confirmed by independent techniques and determined by a most-squares analysis of the carefully fitted SAW velocity dispersion. This study demonstrates the ability of the presented technique to determine the elastic parameters of a thin, porous film on an anisotropic substrate.

  19. An innovative acoustic sensor for first in-pile fission gas release determination - REMORA 3 experiment

    SciTech Connect (OSTI)

    Rosenkrantz, E.; Ferrandis, J. Y.; Augereau, F. [CNRS - Univ. Montpellier 2, Southern Electronic Inst., UMR 5214, F-34095 Montpellier (France); Lambert, T. [CEA DEN - Nuclear Energy Direction - Fuel Studies Dept. - Cadarache, F-13108 Saint-Paul-Lez-Durance (France); Fourmentel, D. [DEN Reactor Studies Dept., French Nuclear Energy and Alternative Energies Commission, CEA Cadarache, F-13108 Saint Paul-Lez-Durance (France); Tiratay, X. [CEA DEN, Nuclear Energy Div., Nuclear Reactors and Facilities Dept., F-91191 Gif Sur Yvette (France)

    2011-07-01T23:59:59.000Z

    A fuel rod has been instrumented with a new design of an acoustic resonator used to measure in a non destructive way the internal rod plenum gas mixture composition. This ultrasonic sensor has demonstrated its ability to operate in pile during REMORA 3 irradiation experiment carried out in the OSIRIS Material Testing Reactor (CEA Saclay, France). Due to very severe experimental conditions such as temperature rising up to 150 deg.C and especially, high thermal fluence level up to 3.5 10{sup 19} n.cm{sup 2}, the initial sensor gas speed of sound efficiency measurement was strongly reduced due to the irradiation effects on the piezo-ceramic properties. Nevertheless, by adding a differential signal processing method to the initial data analysis procedure validated before irradiation, the gas resonance peaks were successfully extracted from the output signal. From these data, the molar fractions variations of helium and fission gas were measured from an adapted Virial state equation. Thus, with this sensor, the kinetics of gas release inside fuel rods could be deduced from the in-pile measurements and specific calculations. These data will also give information about nuclear reaction effect on piezo-ceramics sensor under high neutron and gamma flux. (authors)

  20. System and methods to determine and monitor changes in microstructural properties

    DOE Patents [OSTI]

    Turner, Joseph A

    2014-11-18T23:59:59.000Z

    A system and methods with which changes in microstructure properties such as grain size, grain elongation, texture, and porosity of materials can be determined and monitored over time to assess conditions such as stress and defects. An example system includes a number of ultrasonic transducers configured to transmit ultrasonic waves towards a target region on a specimen, a voltage source configured to excite the first and second ultrasonic transducers, and a processor configured to determine one or more properties of the specimen.

  1. System and methods to determine and monitor changes in microstructural properties

    DOE Patents [OSTI]

    Turner, Joseph Alan (Lincoln, NE)

    2011-05-17T23:59:59.000Z

    A system and methods with which changes in microstructure properties such as grain size, grain elongation, texture, and porosity of materials can be determined and monitored over time to assess conditions such as stress and defects. The present invention includes a database of data, wherein a first set of data is used for comparison with a second set of data to determine the conditions of the material microstructure.

  2. Apparatus and method for non-contact, acoustic resonance determination of intraocular pressure

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM); Wray, William O. (Los Alamos, NM)

    1994-01-01T23:59:59.000Z

    Apparatus and method for measuring intraocular pressure changes in an eye under investigation by detection of vibrational resonances therein. An ultrasonic transducer operating at its resonant frequency is amplitude modulated and swept over a range of audio frequencies in which human eyes will resonate. The output therefrom is focused onto the eye under investigation, and the resonant vibrations of the eye observed using a fiber-optic reflection vibration sensor. Since the resonant frequency of the eye is dependent on the pressure therein, changes in intraocular pressure may readily be determined after a baseline pressure is established.

  3. Apparatus and method for non-contact, acoustic resonance determination of intraocular pressure

    DOE Patents [OSTI]

    Sinha, D.N.; Wray, W.O.

    1994-12-27T23:59:59.000Z

    The apparatus and method for measuring intraocular pressure changes in an eye under investigation by detection of vibrational resonances therein. An ultrasonic transducer operating at its resonant frequency is amplitude modulated and swept over a range of audio frequencies in which human eyes will resonate. The output therefrom is focused onto the eye under investigation, and the resonant vibrations of the eye observed using a fiber-optic reflection vibration sensor. Since the resonant frequency of the eye is dependent on the pressure therein, changes in intraocular pressure may readily be determined after a baseline pressure is established. 3 figures.

  4. Challenges for Efficient Communication in Underwater Acoustic Sensor Networks

    E-Print Network [OSTI]

    Pompili, Dario

    Challenges for Efficient Communication in Underwater Acoustic Sensor Networks Ian F. Akyildiz for oceano- graphic data collection, pollution monitoring, offshore explo- ration and tactical surveillance in collaborative monitoring missions. Underwater acoustic network- ing is the enabling technology

  5. Acoustic techniques in nuclear safeguards

    SciTech Connect (OSTI)

    Olinger, C.T.; Sinha, D.N.

    1995-07-01T23:59:59.000Z

    Acoustic techniques can be employed to address many questions relevant to current nuclear technology needs. These include establishing and monitoring intrinsic tags and seals, locating holdup in areas where conventional radiation-based measurements have limited capability, process monitoring, monitoring containers for corrosion or changes in pressure, and facility design verification. These acoustics applications are in their infancy with respect to safeguards and nuclear material management, but proof-of-principle has been demonstrated in many of the areas listed.

  6. Method of and apparatus for determining deposition-point temperature

    DOE Patents [OSTI]

    Mansure, Arthur J. (Albuquerque, NM); Spates, James J. (Albuquerque, NM); Martin, Stephen J. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    Acoustic-wave sensor apparatus and method for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated.

  7. Method of and apparatus for determining deposition-point temperature

    DOE Patents [OSTI]

    Mansure, A.J.; Spates, J.J.; Martin, S.J.

    1998-10-27T23:59:59.000Z

    Acoustic-wave sensor apparatus and method are disclosed for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated. 5 figs.

  8. Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a SeagliderTM

    E-Print Network [OSTI]

    Baird, Robin W.

    temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle for new, cost- effective tools that allow scientists to monitor areas of interest autonomously with high anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises

  9. E-Print Network 3.0 - acoustic properties Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the signal properties. To measure acoustics... Ecological & Environmental Acoustic Remote Sensor (EcoEARS) Application for Long-Term Monitoring... is in the area of...

  10. Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2004-11-23T23:59:59.000Z

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  11. Distributed Space-Time Cooperative Schemes for Underwater Acoustic Communications

    E-Print Network [OSTI]

    Stojanovic, Milica

    Distributed Space-Time Cooperative Schemes for Underwater Acoustic Communications Madhavan, which is a main characteristic of underwater acoustic channels. A time-reversal distributed space in oceanic research, such as [3] [4]: data collec- tion, pollution monitoring, tactical surveillance

  12. Determining the Impact of Concrete Roadways on Gamma Ray Background Readings for Radiation Portal Monitoring Systems 

    E-Print Network [OSTI]

    Ryan, Christopher Michael

    2012-07-16T23:59:59.000Z

    country of origin. To combat the threat of nuclear trafficking, radiation portal monitors (RPMs) are deployed around the world to intercept illicit material while in transit by passively detecting gamma and neutron radiation. Portal monitors in some...

  13. Determining the Impact of Concrete Roadways on Gamma Ray Background Readings for Radiation Portal Monitoring Systems

    E-Print Network [OSTI]

    Ryan, Christopher Michael

    2012-07-16T23:59:59.000Z

    country of origin. To combat the threat of nuclear trafficking, radiation portal monitors (RPMs) are deployed around the world to intercept illicit material while in transit by passively detecting gamma and neutron radiation. Portal monitors in some...

  14. Method and apparatus for non-invasive monitoring of blood glucose

    DOE Patents [OSTI]

    Thomas, Graham H. (Livermore, CA); Watson, Roger M. (Modesto, CA); Noell, J. Oakey (Mishawaka, IN)

    1992-06-09T23:59:59.000Z

    A new and improved method and apparatus are provided for non-invasive monitoring of changes in blood glucose concentration in a tissue specimen and particularly in an individual. The method uses acoustic velocity measurements for monitoring the effect of glucose concentration upon the density and adiabatic compressibility of the serum. In a preferred embodiment, the acoustic velocity measurements are made through the earlobe of a subject by means of an acoustic probe or monitor which includes a transducer for transmitting and receiving ultrasonic energy pulses to and from the blood flowing in the subject's earlobe and a reflector for facilitating reflection of the acoustic pulses from the blood. The probe is designed in such a way that when properly affixed to an ear, the transducer is positioned flush against the anterior portion of an earlobe while the reflector is positioned flush against the interior portion of the earlobe. A microthermocouple is provided on the probe for monitoring the internal temperature of the blood being sampled. An electrical system, essentially comprising a frequency generator, a time intervalometer and an oscilloscope, is linked to the glucose monitoring probe. The electrical system analyzes selected ones of the pulses reflected from the blood sample in order to determine therefrom the acoustic velocity of the blood which, in turn, provides a representation of the blood glucose concentration levels at the time of the acoustic velocity measurements.

  15. Determination and Mitigation of Precipitation Effects on Portal Monitor Gamma Background Levels

    E-Print Network [OSTI]

    Revis, Stephen

    2012-07-16T23:59:59.000Z

    The purpose of this project is to establish a correlation between precipitation and background gamma radiation levels at radiation portal monitors (RPM) deployed at various ports worldwide, and to devise a mechanism by which the effects...

  16. Noninvasive identification of fluids by swept-frequency acoustic interferometry

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM)

    1998-01-01T23:59:59.000Z

    A method for rapid, noninvasive identification and monitoring of chemicals in sealed containers or containers where direct access to the chemical is not possible is described. Multiple ultrasonic acoustic properties (up to four) of a fluid are simultaneously determined. The present invention can be used for chemical identification and for determining changes in known chemicals from a variety of sources. It is not possible to identify all known chemicals based on the measured parameters, but known classes of chemicals in suspected containers, such as in chemical munitions, can be characterized. In addition, a large number of industrial chemicals can be identified.

  17. UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging

    E-Print Network [OSTI]

    Buckingham, Michael

    UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging using ambient noise ............................................................................................... xviii SECTION 1: INTRODUCTION Chapter 1: Acoustic Daylight......................................................................... 1 1.2 Acoustic Daylight

  18. ACOUSTIC WAVE TRAPPING IN ONE-DIMENSIONAL AXISYMMETRIC ARRAYS

    E-Print Network [OSTI]

    . Introduction Acoustic resonances are readily observed in axial flow compressors and this has led to many that both the acoustic and the water-wave channel problems reduced to the determination of the eigenvalues

  19. A multichannel, real-time MRI RF power monitor for independent SAR determination

    SciTech Connect (OSTI)

    El-Sharkawy, AbdEl-Monem M.; Qian Di; Bottomley, Paul A.; Edelstein, William A. [Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins, University School of Medicine, Baltimore, Maryland 21287 (United States); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins, University School of Medicine, Baltimore, Maryland 21287 (United States) and Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21287 (United States); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins, University School of Medicine, Baltimore, Maryland 21287 (United States)

    2012-05-15T23:59:59.000Z

    Purpose: Accurate measurements of the RF power delivered during clinical MRI are essential for safety and regulatory compliance, avoiding inappropriate restrictions on clinical MRI sequences, and for testing the MRI safety of peripheral and interventional devices at known RF exposure levels. The goal is to make independent RF power measurements to test the accuracy of scanner-reported specific absorption rate (SAR) over the extraordinary range of operating conditions routinely encountered in MRI. Methods: A six channel, high dynamic range, real-time power profiling system was designed and built for monitoring power delivery during MRI up to 440 MHz. The system was calibrated and used in two 3 T scanners to measure power applied to human subjects during MRI scans. The results were compared with the scanner-reported SAR. Results: The new power measurement system has highly linear performance over a 90 dB dynamic range and a wide range of MRI duty cycles. It has about 0.1 dB insertion loss that does not interfere with scanner operation. The measurements of whole-body SAR in volunteers showed that scanner-reported SAR was significantly overestimated by up to about 2.2 fold. Conclusions: The new power monitor system can accurately and independently measure RF power deposition over the wide range of conditions routinely encountered during MRI. Scanner-reported SAR values are not appropriate for setting exposure limits during device or pulse sequence testing.

  20. Localization with Dive'N'Rise (DNR) Beacons for Underwater Acoustic Sensor Networks

    E-Print Network [OSTI]

    Zhou, Shengli

    Localization with Dive'N'Rise (DNR) Beacons for Underwater Acoustic Sensor Networks Melike Erol-Based Systems]: Underwater acoustic sensor networks - localization General Terms: Performance Keywords: Underwater sensor networks, localization, positioning, mobile beacon 1. INTRODUCTION Pollution monitoring

  1. Underwater acoustic sensor networks: research challenges Ian F. Akyildiz *, Dario Pompili, Tommaso Melodia

    E-Print Network [OSTI]

    Pompili, Dario

    Underwater acoustic sensor networks: research challenges Ian F. Akyildiz *, Dario Pompili, Tommaso will find applications in oceanographic data collection, pollution monitoring, offshore exploration acoustic networking is the enabling technology for these applications. Underwater networks consist

  2. Three-dimensional and two-dimensional deployment analysis for underwater acoustic sensor networks q

    E-Print Network [OSTI]

    Pompili, Dario

    Three-dimensional and two-dimensional deployment analysis for underwater acoustic sensor networks q Accepted 23 July 2008 Available online 7 August 2008 Keywords: Underwater acoustic sensor networks data collection, pollution monitoring, offshore exploration, disaster prevention, assisted navigation

  3. For the Wiley Encyclopedia of Electrical and Electronics Engineering Underwater Acoustic Communication

    E-Print Network [OSTI]

    Stojanovic, Milica

    For the Wiley Encyclopedia of Electrical and Electronics Engineering Underwater Acoustic, MA 02115 Keywords: acoustic communications coherent equalization channel estimation multi- path communications exists in applications such as remote control in o -shore oil industry, pollution monitoring

  4. An Architecture for Ocean Bottom UnderWater Acoustic Sensor Networks (UWASN)

    E-Print Network [OSTI]

    Melodia, Tommaso

    An Architecture for Ocean Bottom UnderWater Acoustic Sensor Networks (UWASN) Dario Pompili, Tommaso collection, pollution monitoring, offshore exploration, and tactical surveillance applications. To make Acoustic Networking (UWASN) is the en- abling technology for these applications [1]. Underwater Networks

  5. Acoustic Heating Peter Ulmschneider

    E-Print Network [OSTI]

    Ulmschneider, Peter

    mechanisms. 1. The acoustic heating theory Only a few years after Edlen's (1941) discovery that the solar acoustic wave radiation- · b. field acoustic wave Figure 1. Panel a: Acoustic heating in late-type stars: effective temperature TeJ f, gravity g and mixing length parameter fr. Panel b: Acoustic heating in early

  6. Acoustic transducer

    DOE Patents [OSTI]

    Drumheller, D.S.

    1997-12-30T23:59:59.000Z

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  7. Acoustic transducer

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    1997-01-01T23:59:59.000Z

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  8. Detection of nonlinear picosecond acoustic pulses by time-resolved Brillouin scattering

    SciTech Connect (OSTI)

    Gusev, Vitalyi E., E-mail: vitali.goussev@univ-lemans.fr [LUNAM Universités, CNRS, Université du Maine, LAUM UMR-CNRS 6613, Av. O. Messiaen, 72085 Le Mans (France)

    2014-08-14T23:59:59.000Z

    In time-resolved Brillouin scattering (also called picosecond ultrasonic interferometry), the time evolution of the spatial Fourier component of an optically excited acoustic strain distribution is monitored. The wave number is determined by the momentum conservation in photon-phonon interaction. For linear acoustic waves propagating in a homogeneous medium, the detected time-domain signal of the optical probe transient reflectivity shows a sinusoidal oscillation at a constant frequency known as the Brillouin frequency. This oscillation is a result of heterodyning the constant reflection from the sample surface with the Brillouin-scattered field. Here, we present an analytical theory for the nonlinear reshaping of a propagating, finite amplitude picosecond acoustic pulse, which results in a time-dependence of the observed frequency. In particular, we examine the conditions under which this information can be used to study the time-evolution of the weak-shock front speed. Depending on the initial strain pulse parameters and the time interval of its nonlinear transformation, our theory predicts the detected frequency to either be monotonically decreasing or oscillating in time. We support these theoretical predictions by comparison with available experimental data. In general, we find that picosecond ultrasonic interferometry of nonlinear acoustic pulses provides access to the nonlinear acoustic properties of a medium spanning most of the GHz frequency range.

  9. Three-Dimensional Routing in Underwater Acoustic Sensor Networks

    E-Print Network [OSTI]

    Pompili, Dario

    Three-Dimensional Routing in Underwater Acoustic Sensor Networks Dario Pompili and Tommaso Melodia applications in oceanographic data collection, pollution monitoring, offshore exploration, disaster prevention in a 3D underwa- ter acoustic sensor network is investigated at the network layer, by considering

  10. Acoustic transducer

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    2000-01-01T23:59:59.000Z

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  11. Acoustic cryocooler

    DOE Patents [OSTI]

    Swift, Gregory W. (Santa Fe, NM); Martin, Richard A. (Los Alamos, NM); Radenbaugh, Ray (Louisville, CO)

    1990-01-01T23:59:59.000Z

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  12. Speaker verification system using acoustic data and non-acoustic data

    DOE Patents [OSTI]

    Gable, Todd J. (Walnut Creek, CA); Ng, Lawrence C. (Danville, CA); Holzrichter, John F. (Berkeley, CA); Burnett, Greg C. (Livermore, CA)

    2006-03-21T23:59:59.000Z

    A method and system for speech characterization. One embodiment includes a method for speaker verification which includes collecting data from a speaker, wherein the data comprises acoustic data and non-acoustic data. The data is used to generate a template that includes a first set of "template" parameters. The method further includes receiving a real-time identity claim from a claimant, and using acoustic data and non-acoustic data from the identity claim to generate a second set of parameters. The method further includes comparing the first set of parameters to the set of parameters to determine whether the claimant is the speaker. The first set of parameters and the second set of parameters include at least one purely non-acoustic parameter, including a non-acoustic glottal shape parameter derived from averaging multiple glottal cycle waveforms.

  13. CX-011388: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    near Eastport, Maine. This would enable the continuation of long-term monitoring of fish near a marine hydrokinetic (MHK) device, improve acoustic target identification to aid...

  14. Tunable damper for an acoustic wave guide

    DOE Patents [OSTI]

    Rogers, S.C.

    1982-10-21T23:59:59.000Z

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180/sup 0/ intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  15. Acoustic techniques for localizing holdup

    SciTech Connect (OSTI)

    Vnuk, D.

    1996-09-01T23:59:59.000Z

    Material that does not come out of a process as product or waste is called holdup. When this is fissile material, its location and quantity must be determined to improve safeguards and security as well as safety at the facility. The most common method for detecting and measuring holdup is with radiation based techniques. When using them, one must consider equipment geometry, geometry of holdup, and effects of background radiation when converting the radiation measurement into a fissile material quantity. We are developing complementary techniques that use tiny acoustic transducers, which are unaffected by background radiation, to improve holdup measurements by aiding in determining the above conversion factors for holdup measurements. Thus far, we have applied three techniques, Acoustic Interferometry, Pulse Echo, and bending Wave Propagation, of which the latter appears most effective. This paper will describe each of these techniques and show how they may ultimately reduce costs and personnel radiation exposure while increasing confidence I and accuracy of holdup measurements.

  16. Acoustic resonance spectroscopy for safeguards

    SciTech Connect (OSTI)

    Olinger, C.T. [Los Alamos National Lab., NM (United States)

    1994-12-31T23:59:59.000Z

    Acoustic resonance spectroscopy (ARS) nonintrusively assesses changes in a sealed item, such as a special nuclear material (SNM) container. The acoustic spectrum of a container is a function of its geometry, material of construction, and occupied volume and a function of the parameters of the contents, such as acoustic velocity, viscosity, and composition. Measuring the spectrum establishes a fingerprint for that item. Monitoring for changes in the fingerprint can be used to detect intrinsic changes in the contents or tampering. Spectra are obtained by inducing vibrations in a container at a given frequency with one transducer and detecting the vibrational response at that frequency with a second transducer. The excitation and detection frequency is then incremented until the desired frequency range is sampled. If desired, the signature can then be reduced to a series of resonant peaks, which facilitates the comparison of spectra for many applications. Required measurement time is typically 10 to 40 s, depending on the measurement range and resolution. Useful attributes of ARS are that spectra respond to various parameters differently, only a few seconds are required to perform an ARS measurement, and measurements can be performed without disturbing the container or its contents. Analysis for these applications of ARS is based on comparison of spectra from the same item taken at different times, so anomalies can be detected without any modeling of the system. However, some theoretical modeling can aid in interpreting spectra.

  17. Determination of power distribution in the VVER-440 core on the basis of data from in-core monitors by means of a metric analysis

    SciTech Connect (OSTI)

    Kryanev, A. V.; Udumyan, D. K. [National Research Nuclear University “MEPHI,” (Russian Federation); Kurchenkov, A. Yu., E-mail: s327@vver.kiae.ru; Gagarinskiy, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2014-12-15T23:59:59.000Z

    Problems associated with determining the power distribution in the VVER-440 core on the basis of a neutron-physics calculation and data from in-core monitors are considered. A new mathematical scheme is proposed for this on the basis of a metric analysis. In relation to the existing mathematical schemes, the scheme in question improves the accuracy and reliability of the resulting power distribution.

  18. Condition Monitoring and Management from Acoustic

    E-Print Network [OSTI]

    as it gives the freedom to describe the project in a shorter form for those who already know. The thesis instantaneous blind source separation is capable of picking out the rel- evant hidden signals. Those hidden lydbillede som følge af den manglende smøring. Lineær instantan blind signal separation kan finde de

  19. Determination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential Application to ARM MeasurementsDetermination of

  20. CX-009160: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Underwater Active Acoustic Monitoring Network for Marine and Hydrokinetic Energy Projects CX(s) Applied: B3.3 Date: 09/24/2012 Location(s): Maine Offices(s): Golden Field Office

  1. Fresnel approximations for acoustic fields of rectangularly symmetric sources

    E-Print Network [OSTI]

    Mast, T. Douglas

    Fresnel approximations for acoustic fields of rectangularly symmetric sources T. Douglas Masta for determining the acoustic fields of rectangularly symmetric, baffled, time-harmonic sources under the Fresnel. The expressions presented are generalized to three different Fresnel approximations that correspond, respectively

  2. Acoustic resonance spectroscopy in nuclear safeguards

    SciTech Connect (OSTI)

    Olinger, C.T.; Lyon, M.J.; Stanbro, W.D.; Mullen, M.F.; Sinha, D.N.

    1993-08-01T23:59:59.000Z

    Objects resonate at specific frequencies when mechanically excited. The specific resonance frequencies are a function of shape, size, material of construction, and contents of the object. This paper discusses the use of acoustic resonance spectroscopy (ARS) to monitor containers and detect tampering. Evaluation of this technique is based on simulated storage simulations. Although these simulations show promise for this application of ARS, final evaluation will require actual field testing.

  3. Acoustic resonance spectroscopy in nuclear safeguards

    SciTech Connect (OSTI)

    Olinger, C.T.; Lyon, M.J.; Stanbro, W.D.; Mullen, M.F.; Sinha, D.N. [Los Alamos National Lab., NM (United States)

    1993-12-31T23:59:59.000Z

    Objects resonate at specific frequencies when mechanically excited. The specific resonance frequencies are a function of shape, size, material of construction, and contents of the object. This paper discusses the use of acoustic resonance spectroscopy (ARS) to monitor containers and detect tampering. Evaluation of this technique is based on simulated storage situations. Although these simulations show promise for this application of ARS, final evaluation will require actual field testing.

  4. Vehicle Speed Estimation using Acoustic Wave Patterns Volkan Cevher, Member, IEEE, Rama Chellappa, Fellow, IEEE

    E-Print Network [OSTI]

    Cevher, Volkan

    1 Vehicle Speed Estimation using Acoustic Wave Patterns Volkan Cevher, Member, IEEE, Rama Chellappa, Fellow, IEEE James H. McClellan, Fellow, IEEE Abstract-- We estimate a vehicle's speed, its wheelbase acoustic sensor that records the vehicle's drive-by noise. The acoustic wave pattern is determined using

  5. History and Analysis of Distributed Acoustic Sensing (DAS) for Oilfield Applications

    E-Print Network [OSTI]

    Kimbell, Jeremiah

    2013-05-15T23:59:59.000Z

    detection, gas breakthrough, artificial lift optimization, smart-well completion monitoring, near-wellbore monitoring, real-time hydraulic fracture optimization and geophysical monitoring. They also postulated that permanently installed fiber... ............................................................. 6 2. DOWNHOLE DISTRIBUTED ACOUSTIC SENSING .................................... 8 2.1 System Components .......................................................................... 8 2.2 Oilfield Applications...

  6. Tier-Based Underwater Acoustic Routing for Applications with Reliability and Delay Constraints

    E-Print Network [OSTI]

    Melodia, Tommaso

    Tier-Based Underwater Acoustic Routing for Applications with Reliability and Delay Constraints Li of New York at Buffalo Buffalo, New York 14260 Email: tmelodia@buffalo.edu Abstract--UnderWater Acoustic and military applications such as oceanographic data collection, pollution monitoring, offshore exploration

  7. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1983-08-16T23:59:59.000Z

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  8. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16T23:59:59.000Z

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  9. Acoustic well cleaner

    DOE Patents [OSTI]

    Maki, Jr., Voldi E. (11904 Bell Ave., Austin, TX 78759-2415); Sharma, Mukul M. (Dept. of Petroleum Engr. Univ. of Texas, Austin, TX 78712)

    1997-01-21T23:59:59.000Z

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  10. Signal processing for fiber optic acoustic sensor system

    E-Print Network [OSTI]

    Zhu, Juhong

    2000-01-01T23:59:59.000Z

    pulses from a single mode laser. Signals from multiple sensors in the array are separated and demultiplexed. The acoustic pressure information is determined by processing the returned optical pulses using a fiber Mach-Zehnder interferometer as an optical...

  11. acoustic oscillation signature: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to set more robust constraints on the determinations of cosmological parameters including dark energy and its equation of state. Xiao-Chun Mao; Xiang-Ping Wu 2008-01-16 2 Acoustic...

  12. Acoustic emission and compaction creep of quartz sand at subcritical stress

    E-Print Network [OSTI]

    Lenz, Steven Christopher

    2002-01-01T23:59:59.000Z

    -assisted mechanisms. We have investigated the role of cracking during creep compaction of quartz sand by monitoring acoustic emissions (AE). Experiments on water saturated St. Peter quartz sand packs (255 ± 60 []m grain size, initial porosity ~32%) and quartz powder...

  13. Linear phase distribution of acoustical vortices

    SciTech Connect (OSTI)

    Gao, Lu; Zheng, Haixiang [Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics Science and Technology, Nanjing Normal University, 1 Wenyuan Road, Xianlin District, Nanjing 210023 (China); Ma, Qingyu, E-mail: maqingyu@njnu.edu.cn [Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics Science and Technology, Nanjing Normal University, 1 Wenyuan Road, Xianlin District, Nanjing 210023 (China); Laboratory of Modern Acoustics of MOE, Nanjing University, Nanjing 210093 (China); Tu, Juan; Zhang, Dong [Laboratory of Modern Acoustics of MOE, Nanjing University, Nanjing 210093 (China)

    2014-07-14T23:59:59.000Z

    Linear phase distribution of phase-coded acoustical vortices was theoretically investigated based on the radiation theory of point source, and then confirmed by experimental measurements. With the proposed criterion of positive phase slope, the possibility of constructing linear circular phase distributions is demonstrated to be determined by source parameters. Improved phase linearity can be achieved at larger source number, lower frequency, smaller vortex radius, and/or longer axial distance. Good agreements are observed between numerical simulations and measurement results for circular phase distributions. The favorable results confirm the feasibility of precise phase control for acoustical vortices and suggest potential applications in particle manipulation.

  14. Compact acoustic refrigerator

    DOE Patents [OSTI]

    Bennett, G.A.

    1992-11-24T23:59:59.000Z

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  15. Compact acoustic refrigerator

    DOE Patents [OSTI]

    Bennett, Gloria A. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  16. A Geophysical Characterization & Monitoring Strategy for Determining Hydrologic Processes in the Hyporheic Corridor at the Hanford 300-Area

    SciTech Connect (OSTI)

    Slater, Lee; Day-Lewis, Frederick; Lane, John; Versteeg, Roelof; Ward, Anderson; Binley, Andrew; Johnson, Timothy; Ntarlagiannis, Dimitrios

    2011-08-31T23:59:59.000Z

    The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be used to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing {approx}60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along {approx}3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged spatial variability in the depth to the Hanford-Ringold inland over a critical region where borehole information is absent, identifying evidence for a continuous depression in the H-R contact between the IFRC and the river corridor. Strong natural contrasts in temperature and specific conductance of river water compared to groundwater at this site, along with periodic river stage fluctuations driven by dam operations, were exploited to yield new insights into the dynamics of groundwater-surface water interaction. Whereas FO-DTS datasets have provided meter-scale measurements of focused groundwater discharge at the riverbed along the corridor, continuous resistivity monitoring has non-invasively imaged spatiotemporal variation in the resistivity inland driven by river stage fluctuations. Time series and time-frequency analysis of FO-DTS and 3D resistivity datasets has provided insights into the role of forcing variables, primarily daily dam operations, in regulating the occurrence of focused exchange at the riverbed and its extension inland. High amplitudes in the DTS and 3D resistivity signals for long periods that dominate the stage time series identify regions along the corridor where stage-driven exchange is preferentially focused. Our work has demonstrated how time-series analysis of both time-lapse resistivity and DTS datasets, in conjunction with resistivity/IP imaging of lithology, can improve understanding of groundwater-surface water exchange along river corridors, offering unique opportunities to connect stage-driven groundwater discharge observed with DTS on the riverbed to stage-driven groundwater and solute fluctuations captured with resistivity inland.

  17. Nonlinear acoustics experimental characterization of microstructure evolution in Inconel 617

    SciTech Connect (OSTI)

    Yao, Xiaochu; Liu, Yang; Lissenden, Cliff J. [Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-02-18T23:59:59.000Z

    Inconel 617 is a candidate material for the intermediate heat exchanger in a very high temperature reactor for the next generation nuclear power plant. This application will require the material to withstand fatigue-ratcheting interaction at temperatures up to 950°C. Therefore nondestructive evaluation and structural health monitoring are important capabilities. Acoustic nonlinearity (which is quantified in terms of a material parameter, the acoustic nonlinearity parameter, ?) has been proven to be sensitive to microstructural changes in material. This research develops a robust experimental procedure to track the evolution of damage precursors in laboratory tested Inconel 617 specimens using ultrasonic bulk waves. The results from the acoustic non-linear tests are compared with stereoscope surface damage results. Therefore, the relationship between acoustic nonlinearity and microstructural evaluation can be clearly demonstrated for the specimens tested.

  18. Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound

    SciTech Connect (OSTI)

    Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

    2012-03-30T23:59:59.000Z

    Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic community as to whether strong currents produce propagating sound. (2) Analyzed data collected from a tidal turbine operating at the European Marine Energy Center to develop a profile of turbine sound and developed a framework to evaluate the acoustic effects of deploying similar devices in other locations. This framework has been applied to Public Utility District No. 1 of Snohomish Country's demonstration project in Admiralty Inlet to inform postinstallation acoustic and marine mammal monitoring plans. (3) Demonstrated passive acoustic techniques to characterize the ambient noise environment at tidal energy sites (fixed, long-term observations recommended) and characterize the sound from anthropogenic sources (drifting, short-term observations recommended). (4) Demonstrated the utility and limitations of instrumentation, including bottom mounted instrumentation packages, infrared cameras, and vessel monitoring systems. In doing so, also demonstrated how this type of comprehensive information is needed to interpret observations from each instrument (e.g., hydrophone data can be combined with vessel tracking data to evaluate the contribution of vessel sound to ambient noise). (5) Conducted a study that suggests harbor porpoise in Admiralty Inlet may be habituated to high levels of ambient noise due to omnipresent vessel traffic. The inability to detect behavioral changes associated with a high intensity source of opportunity (passenger ferry) has informed the approach for post-installation marine mammal monitoring. (6) Conducted laboratory exposure experiments of juvenile Chinook salmon and showed that exposure to a worse than worst case acoustic dose of turbine sound does not result in changes to hearing thresholds or biologically significant tissue damage. Collectively, this means that Chinook salmon may be at a relatively low risk of injury from sound produced by tidal turbines located in or near their migration path. In achieving these accomplishments, the project has significantly advanced the District's goals of developing a demonstration-scale tidal energy proj

  19. Determination of Depleted Uranium in Environmental Bio-monitor Samples and Soil from Target sites in Western Balkan Region

    SciTech Connect (OSTI)

    Sahoo, Sarata K.; Enomoto, Hiroko; Tokonami, Shinji; Ishikawa, Tetsuo [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Ujic, Predrag; Celikovic, Igor; Zunic, Zora S. [Institute of Nuclear Sciences, Vinca, Mike Petrovica Alasa 12-14, 11000 Belgrade (Serbia)

    2008-08-07T23:59:59.000Z

    Lichen and Moss are widely used to assess the atmospheric pollution by heavy metals and radionuclides. In this paper, we report results of uranium and its isotope ratios using mass spectrometric measurements (followed by chemical separation procedure) for mosses, lichens and soil samples from a depleted uranium (DU) target site in western Balkan region. Samples were collected in 2003 from Han Pijesak (Republika Srpska in Bosnia and Hercegovina). Inductively coupled plasma mass spectrometry (ICP-MS) measurements show the presence of high concentration of uranium in some samples. Concentration of uranium in moss samples ranged from 5.2-755.43 Bq/Kg. We have determined {sup 235}U/{sup 238}U isotope ratio using thermal ionization mass spectrometry (TIMS) from the samples with high uranium content and the ratios are in the range of 0.002097-0.002380. TIMS measurement confirms presence of DU in some samples. However, we have not noticed any traces of DU in samples containing lesser amount of uranium or from any samples from the living environment of same area.

  20. Introduction to smart materials and their applications to structural health monitoring and control

    E-Print Network [OSTI]

    system: energy supply & management, energy harvesting Research Objectives for Smart StructurePage 1 Introduction to smart materials and their applications to structural health monitoring making, prediction, signal processing, structural health monitoring Senses: mechanical, acoustic, optical

  1. Spacetime transformation acoustics

    E-Print Network [OSTI]

    C. García-Meca; S. Carloni; C. Barceló; G. Jannes; J. Sánchez-Dehesa; A. Martínez

    2014-07-08T23:59:59.000Z

    A recently proposed analogue transformation method has allowed the extension of transformation acoustics to general spacetime transformations. We analyze here in detail the differences between this new analogue transformation acoustics (ATA) method and the standard one (STA). We show explicitly that STA is not suitable for transformations that mix space and time. ATA takes as starting point the acoustic equation for the velocity potential, instead of that for the pressure as in STA. This velocity-potential equation by itself already allows for some transformations mixing space and time, but not all of them. We explicitly obtain the entire set of transformations that do not leave its form invariant. It is in these cases that ATA shows its true potential, allowing for building a transformation acoustics method that enables the full range of spacetime transformations. We provide an example of an important transformation which cannot be achieved with STA. Using this transformation, we design and simulate an acoustic frequency converter via the ATA approach. Furthermore, in those cases in which one can apply both the STA and ATA approaches, we study the different transformational properties of the corresponding physical quantities.

  2. Automatic monitoring of vibration welding equipment

    DOE Patents [OSTI]

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14T23:59:59.000Z

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  3. Acoustic emission intrusion detector

    DOE Patents [OSTI]

    Carver, Donald W. (Knoxville, TN); Whittaker, Jerry W. (Knoxville, TN)

    1980-01-01T23:59:59.000Z

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  4. Time-lapse seismic monitoring of subsurface fluid flow

    E-Print Network [OSTI]

    Yuh, Sung H.

    2004-09-30T23:59:59.000Z

    Time-lapse seismic monitoring repeats 3D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic...

  5. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect (OSTI)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31T23:59:59.000Z

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  6. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect (OSTI)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01T23:59:59.000Z

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  7. Development of a geothermal acoustic borehole televiewer

    SciTech Connect (OSTI)

    Heard, F.E.; Bauman, T.J.

    1983-08-01T23:59:59.000Z

    Most geothermal wells are drilled in hard rock formations where fluid flow is through systems of open fractures. Productivity of these wells is usually determined by the extent of intersection of the wellbore with the fracture system. A need exists for fracture mapping methods and tools which can operate in a geothermal environment. In less hostile environments, the acoustic borehole televiewer has been shown to be a useful tool for determining location, orientation, and characterization of fractures as they intersect the borehole and for general wellbore and casing inspection. The development conducted at Sandia National Laboratories to adapt an acoustic borehole televiewer for operation in a geothermal environment is described. The modified instrument has been successfully tested at temperatures as high as 280/sup 0/C and pressures up to 5000 psi, and used successfully to map fractures and casing damage in geothermal wells.

  8. Acoustic measurement of potato cannon velocity

    E-Print Network [OSTI]

    Courtney, M; Courtney, Amy; Courtney, Michael

    2006-01-01T23:59:59.000Z

    This article describes measurement of potato cannon velocity with a digitized microphone signal. A microphone is attached to the potato cannon muzzle and a potato is fired at an aluminum target about 10 m away. The potato's flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato velocity is simply the flight distance divided by the flight time.

  9. ACOUSTIC CAVITATION ASSESSMENT OF THE REVERSIBILITY AND PERMEABILITY OF THE ULTRASOUND-INDUCED BLOOD-BRAIN BARRIER OPENING

    E-Print Network [OSTI]

    Konofagou, Elisa E.

    ACOUSTIC CAVITATION ASSESSMENT OF THE REVERSIBILITY AND PERMEABILITY cavitation can be potentially used to assess the reversibility and permeability of the induced BBB opening. Method: This study links the microbubble dynamics, represented by the cavitation dose, as monitored

  10. A cabled acoustic telemetry system for detecting and tracking juvenile salmon: Part 1. Engineering design and instrumentation

    SciTech Connect (OSTI)

    Weiland, Mark A.; Deng, Zhiqun; Seim, Thomas A.; Lamarche, Brian L.; Choi, Eric Y.; Fu, Tao; Carlson, Thomas J.; Thronas, Aaron I.; Eppard, Matthew B.

    2011-05-26T23:59:59.000Z

    The U.S. Army Corps of Engineers-Portland District started development of the Juvenile Salmon Acoustic Telemetry System (JSATS), a nonproprietary technology, in 2001 to meet the needs for monitoring the survival of juvenile salmonids through the 31 federal dams in the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters, and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006 the Pacific Northwest National Laboratory (PNNL) was tasked with development of an acoustic receiver system for deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in 2 or 3-dimensions as the fish passed at the facility for determining route of passage. The additional route of passage information, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities and through the FCRPS.

  11. Monitored Performance Data from a Hybrid RAPS System and the Determination of Control Set Points for Simulation Studies Patel ISES 2001 Solar World Congress 1

    E-Print Network [OSTI]

    for Simulation Studies Patel ISES 2001 Solar World Congress 1 Monitored Performance Data from a Hybrid RAPS). The PV modules are mounted on five - single axis vertical trackers tracking from east to west. The module voltage of 240 ac Volts. · Three AERL 1800 BHV solar regulators. #12;Monitored Performance Data from

  12. Acoustic paramagnetic logging tool

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1988-01-01T23:59:59.000Z

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth3 s magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation . The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores.

  13. A versatile scanning acoustic platform

    E-Print Network [OSTI]

    N G Parker; P V Nelson; M J W Povey

    2010-02-01T23:59:59.000Z

    We present a versatile and highly configurable scanning acoustic platform. This platform, comprising of a high frequency transducer, bespoke positioning system and temperature-regulated sample unit, enables the acoustic probing of materials over a wide range of length scales and with minimal thermal aberration. In its bare form the platform acts as a reflection-mode acoustic microscope, while optical capabilities are readily incorporated to extend its abilities to the acousto-optic domain. Here we illustrate the capabilities of the platform through its incarnation as an acoustic microscope. Operating at 55 MHz we demonstrate acoustic imaging with a lateral resolution of 25 microns. We outline its construction, calibration and capabilities as an acoustic microscope, and discuss its wider applications.

  14. Characterizing, synthesizing, and/or canceling out acoustic signals from sound sources

    DOE Patents [OSTI]

    Holzrichter, John F. (Berkeley, CA); Ng, Lawrence C. (Danville, CA)

    2007-03-13T23:59:59.000Z

    A system for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate and animate sound sources. Electromagnetic sensors monitor excitation sources in sound producing systems, such as animate sound sources such as the human voice, or from machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The systems disclosed enable accurate calculation of transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  15. Truck acoustic data analyzer system

    DOE Patents [OSTI]

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04T23:59:59.000Z

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  16. Acoustic Character Of Hydraulic Fractures In Granite

    E-Print Network [OSTI]

    Paillet, Frederick I.

    1983-01-01T23:59:59.000Z

    Hydraulic fractures in homogeneous granitic rocks were logged with conventional acoustic-transit-time, acoustic-waveform, and acoustic-televiewer logging systems. Fractured intervals ranged in depth from 45 to 570m. and ...

  17. Three-Dimensional Nonlinear Acoustical Holography

    E-Print Network [OSTI]

    Niu, Yaying

    2013-05-06T23:59:59.000Z

    Nearfield Acoustical Holography (NAH) is an acoustic field visualization technique that can be used to reconstruct three-dimensional (3-D) acoustic fields by projecting two-dimensional (2-D) data measured on a hologram surface. However, linear NAH...

  18. Acoustic cavitation and its chemical consequences

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Acoustic cavitation and its chemical consequences By Kenneth S. Suslick, Yuri Didenko, Ming M. Fang Acoustic cavitation is responsible for both sonochemistry and sonoluminescence. Bubble collapse in liquids, sonochemistry and sonoluminescence derive principally from acoustic cavitation: the formation, growth

  19. Broadband Acoustic Environment at a Tidal Energy Site in Puget Sound

    SciTech Connect (OSTI)

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.

    2012-04-04T23:59:59.000Z

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines. Several monitoring technologies are being considered to determine the presence of SRKW near the turbines. Broadband noise level measurements are critical for determining design and operational specifications of these technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array from three different cruises during high tidal period in February, May, and June 2011. The ambient noise level decreases approximately 25 dB re 1 ?Pa per octave from frequency ranges of 1 kHz to 70 kHz, and increases approximately 20 dB re 1 ?Pa per octave for the frequency from 70 kHz to 200 kHz. The difference of noise pressure levels in different months varies from 10 to 30 dB re 1 ?Pa for the frequency range below 70 kHz. Commercial shipping and ferry vessel traffic were found to be the most significant contributors to sound pressure levels for the frequency range from 100 Hz to 70 kHz, and the variation could be as high as 30 dB re 1 ?Pa. These noise level measurements provide the basic information for designing and evaluating both active and passive monitoring systems proposed for deploying and operating for tidal power generation alert system.

  20. acoustics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Leningrad unknown authors 4 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  1. Acoustic evidence of airway opening during recruitment in excised dog lungs Z. Hantos,1

    E-Print Network [OSTI]

    Alencar, Adriano Mesquita

    Acoustic evidence of airway opening during recruitment in excised dog lungs Z. Hantos,1 J. Tolnai,1. Majumdar, and B. Suki. Acoustic evidence of airway opening during recruitment in excised dog lungs. J Appl-volume curve in the normal lung are primarily determined by airway reopen- ings via avalanches rather than

  2. Surface acoustic wave probe implant for predicting epileptic seizures

    DOE Patents [OSTI]

    Gopalsami, Nachappa (Naperville, IL); Kulikov, Stanislav (Sarov, RU); Osorio, Ivan (Leawood, KS); Raptis, Apostolos C. (Downers Grove, IL)

    2012-04-24T23:59:59.000Z

    A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.

  3. The electron geodesic acoustic mode

    SciTech Connect (OSTI)

    Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Guzdar, P. N. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Kaw, P. K. [Institute for Plasma Research Bhat, Gandhinagar 382428 (India)

    2012-09-15T23:59:59.000Z

    In this report, a novel new mode, named the electron geodesic acoustic mode, is presented. This mode can occur in toroidal plasmas like the conventional geodesic acoustic mode (GAM). The frequency of this new mode is much larger than that of the conventional GAM by a factor equal to the square root of the ion to electron mass ratio.

  4. Acoustic metafluids Andrew N. Norrisa

    E-Print Network [OSTI]

    Norris, Andrew

    of material that surrounds the object to be rendered acoustically "invisible." Stealth can also be achieved of material necessary to achieve stealth. We define these materials as acoustic metafluids, which as we are materials with anisotropic inertia and the elastic properties of what are known as pentamode materials

  5. Monitoring materials

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    The apparatus and method provide techniques for effectively implementing alpha and/or beta and/or gamma monitoring of items or locations as desired. Indirect alpha monitoring by detecting ions generated by alpha emissions, in conjunction with beta and/or gamma monitoring is provided. The invention additionally provides for screening of items prior to alpha monitoring using beta and/or gamma monitoring, so as to ensure that the alpha monitoring apparatus is not contaminated by proceeding direct to alpha monitoring of a heavily contaminated item or location. The invention provides additional versatility in the emission forms which can be monitored, whilst maintaining accuracy and avoiding inadvertent contamination.

  6. Performance Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Performance Monitoring Performance Monitoring A redirector page has been set up without anywhere to redirect to. Last edited: 2014-08-25 14:37:27...

  7. Acoustic wave device using plate modes with surface-parallel displacement

    DOE Patents [OSTI]

    Martin, S.J.; Ricco, A.J.

    1988-04-29T23:59:59.000Z

    Solid-state acoustic sensors for monitoring conditions at a surface immersed in a liquid and for monitoring concentrations of species in a liquid and for monitoring electrical properties of a liquid are formed by placing interdigital input and output transducers on a piezoelectric substrate and propagating acoustic plate modes therebetween. The deposition or removal of material on or from, respectively, a thin film in contact with the surface, or changes in the mechanical properties of a thin film in contact with the surface, or changes in the electrical characteristics of the solution, create perturbations in the velocity and attenuation of the acoustic plate modes as a function of these properties or changes in them. 6 figs.

  8. NON-STATIONARY CONDITION MONITORING THROUGH EVENT

    E-Print Network [OSTI]

    in large diesel engines used for propulsion and power generation. Such operation involves frequent changes the technique for non-stationary condition monitoring of large diesel engines based on acoustical emission that cannot be separated from alarms originating from real faults. MAN B&W Diesel has conducted experiments

  9. Opto-acoustic thrombolysis

    DOE Patents [OSTI]

    Celliers, Peter (Berkeley, CA); Da Silva, Luiz (Danville, CA); Glinsky, Michael (Livermore, CA); London, Richard (Orinda, CA); Maitland, Duncan (Livermore, CA); Matthews, Dennis (Moss Beach, CA); Fitch, Pat (Livermore, CA)

    2000-01-01T23:59:59.000Z

    This invention is a catheter-based device for generating an ultrasound excitation in biological tissue. Pulsed laser light is guided through an optical fiber to provide the energy for producing the acoustic vibrations. The optical energy is deposited in a water-based absorbing fluid, e.g. saline, thrombolytic agent, blood or thrombus, and generates an acoustic impulse in the fluid through thermoelastic and/or thermodynamic mechanisms. By pulsing the laser at a repetition rate (which may vary from 10 Hz to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus or treating vasospasm. The catheter can also incorporate thrombolytic drug treatments as an adjunct therapy and it can be operated in conjunction with ultrasonic detection equipment for imaging and feedback control and with optical sensors for characterization of thrombus type and consistency.

  10. Texas Rangeland Monitoring: Level Three

    E-Print Network [OSTI]

    Hanselka, C. Wayne; Hart, Charles R.; McGinty, Allan

    2006-10-09T23:59:59.000Z

    L-5455 10/06 Texas Rangeland Monitoring: Level Three C. Wayne Hanselka, Charles R. Hart and Allan McGinty* Monitoring is an essential tool in rangeland management. Monitoring is the way to determine whether goals are being achieved with current...

  11. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOE Patents [OSTI]

    Datskos, Panagiotis G.

    2003-11-25T23:59:59.000Z

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  12. Wireless device monitoring systems and monitoring devices, and associated methods

    DOE Patents [OSTI]

    McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W

    2014-05-27T23:59:59.000Z

    Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.

  13. Electromagnetic acoustic transducer

    DOE Patents [OSTI]

    Alers, George A. (Albuquerque, NM); Burns, Jr., Leigh R. (Albuquerque, NM); MacLauchlan, Daniel T. (Sandia Park, NM)

    1988-01-01T23:59:59.000Z

    A noncontact ultrasonic transducer for studying the acoustic properties of a metal workpiece includes a generally planar magnetizing coil positioned above the surface of the workpiece, and a generally planar eddy current coil between the magnetizing coil and the workpiece. When a large current is passed through the magnetizing coil, a large magnetic field is applied to the near-surface regions of the workpiece. The eddy current coil can then be operated as a transmitter by passing an alternating current therethrough to excite ultrasonic waves in the surface of the workpiece, or operated as a passive receiver to sense ultrasonic waves in the surface by measuring the output signal. The geometries of the two coils can be varied widely to be effective for different types of ultrasonic waves. The coils are preferably packaged in a housing which does not interfere with their operation, but protects them from a variety of adverse environmental conditions.

  14. Proc. Inst. Acoust. 19(9): 115122 (1997) A LOW-COST, HIGH-PERFORMANCE SOUND CAPTURE AND ARCHIVING

    E-Print Network [OSTI]

    1997-01-01T23:59:59.000Z

    , currents, animals and plants, and even electromagnetic fields can be sources of problems. Recently earlier this year at Hopkins Marine Station (HMS), Monterey, California. The system is used to monitor-collection and archival system) #12;SUBTIDAL ACOUSTIC MONITORING SYSTEM 2. THE WET END: A SUBTIDAL-ZONE HYDROPHONE ARRAY

  15. VOICE-COILS AS RECIPROCAL TRANSDUCERS IN STRUCTURAL HEALTH MONITORING APPLICATIONS

    E-Print Network [OSTI]

    Boyer, Edmond

    VOICE-COILS AS RECIPROCAL TRANSDUCERS IN STRUCTURAL HEALTH MONITORING APPLICATIONS Patrik Fröjd in a seismic network for structural health monitoring purposes, transmitting relatively undamped low frequency for structural health monitoring of such structures are probably modal analysis of bending modes and Acoustic

  16. Acoustically Enhanced Boiling Heat Transfer

    E-Print Network [OSTI]

    Z. W. Douglas; M. K. Smith; A. Glezer

    2008-01-07T23:59:59.000Z

    An acoustic field is used to increase the critical heat flux (CHF) of a flat-boiling-heat-transfer surface. The increase is a result of the acoustic effects on the vapor bubbles. Experiments are performed to explore the effects of an acoustic field on vapor bubbles in the vicinity of a rigid-heated wall. Work includes the construction of a novel heater used to produce a single vapor bubble of a prescribed size and at a prescribed location on a flatboiling surface for better study of an individual vapor bubble's reaction to the acoustic field. Work also includes application of the results from the single-bubble heater to a calibrated-copper heater used for quantifying the improvements in CHF.

  17. Acoustic Characterization of Mesoscale Objects

    SciTech Connect (OSTI)

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13T23:59:59.000Z

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  18. Investigation of the Sintering Process Using Non-Contact Electromagnetic Acoustic Transducers

    SciTech Connect (OSTI)

    James C. Foley; David K. Rehbein; Daniel J. Barnard

    2001-05-30T23:59:59.000Z

    In-situ characterizations of green state part density and sintering state have long been desired in the powder metal community. Recent advances in non-contact electromagnetic acoustic transducer (EMAT) technology have enabled in-situ monitoring of acoustic amplitude and velocity as sintering proceeds. Samples were made from elemental powders of Al (99.99%), Al (99.7%), Ag, (99.99%), Cu (99.99%) and Fe (99.9%). The powders were pressed in a uniaxial die and examined with acoustic waves for changes in velocity and amplitude during sintering for the samples containing Al, Ag, and Cu. The changes in acoustic properties were correlated with sample microstructures and mechanical properties. Evolution of a series of reverberating echoes during sintering is shown to provide information on the state of sintering, and changes in sintering kinetics as well as having the potential for detection of interior flaws.

  19. Backcoupling of acoustic streaming on the temperature field inside high-intensity discharge lamps

    E-Print Network [OSTI]

    Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2015-01-01T23:59:59.000Z

    Operating high-intensity discharge lamps in the high frequency range (20-300 kHz) provides energy-saving and cost reduction potentials. However, commercially available lamp drivers do not make use of this operating strategy because light intensity fluctuations and even lamp destruction are possible. The reason for the fluctuating discharge arc are acoustic resonances in this frequency range that are excited in the arc tube. The acoustic resonances in turn generate a fluid flow that is caused by the acoustic streaming effect. Here, we present a 3D multiphysics model to determine the influence of acoustic streaming on the temperature field in the vicinity of an acoustic eigenfrequency. In that case a transition from stable to instable behavior occurs. The model is able to predict when light flicker can be expected. The results are in very good accordance with accompanying experiments.

  20. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOE Patents [OSTI]

    Holzrichter, John F. (Berkeley, CA); Burnett, Greg C. (Livermore, CA); Ng, Lawrence C. (Danville, CA)

    2007-10-16T23:59:59.000Z

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  1. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOE Patents [OSTI]

    Holzrichter, John F; Burnett, Greg C; Ng, Lawrence C

    2013-05-21T23:59:59.000Z

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  2. Reflective echo tomographic imaging using acoustic beams

    DOE Patents [OSTI]

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25T23:59:59.000Z

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  3. Acoustic sand detector for fluid flowstreams

    DOE Patents [OSTI]

    Beattie, Alan G. (Corrales, NM); Bohon, W. Mark (Frisco, TX)

    1993-01-01T23:59:59.000Z

    The particle volume and particle mass production rate of particulate solids entrained in fluid flowstreams such as formation sand or fracture proppant entrained in oil and gas production flowstreams is determined by a system having a metal probe interposed in a flow conduit for transmitting acoustic emissions created by particles impacting the probe to a sensor and signal processing circuit which produces discrete signals related to the impact of each of the particles striking the probe. The volume or mass flow rate of particulates is determined from making an initial particle size distribution and particle energy distribution and comparing the initial energy distribution and/or the initial size distribution with values related to the impact energies of a predetermined number of recorded impacts. The comparison is also used to recalibrate the system to compensate for changes in flow velocity.

  4. A preliminary study of acoustic propagation in thick foam tissue scaffolds composed of poly(lactic-co-glycolic acid)

    E-Print Network [OSTI]

    Parker, N G; Morgan, S P; Povey, M J W

    2010-01-01T23:59:59.000Z

    The exclusive ability of acoustic waves to probe the structural, mechanical and fluidic properties of foams may offer novel approaches to characterise the porous scaffolds employed in tissue engineering. Motivated by this we conduct a preliminary investigation into the acoustic properties of a typical biopolymer and the feasibility of acoustic propagation within a foam scaffold thereof. Focussing on poly(lactic-co-glycolic acid), we use a pulse-echo method to determine the longitudinal speed of sound, whose temperature-dependence reveals the glass transition of the polymer. Finally, we demonstrate the first topographic and tomographic acoustic images of polymer foam tissue scaffolds.

  5. A preliminary study of acoustic propagation in thick foam tissue scaffolds composed of poly(lactic-co-glycolic acid)

    E-Print Network [OSTI]

    N. G. Parker; M. L. Mather; S. P. Morgan; M. J. W. Povey

    2010-02-26T23:59:59.000Z

    The exclusive ability of acoustic waves to probe the structural, mechanical and fluidic properties of foams may offer novel approaches to characterise the porous scaffolds employed in tissue engineering. Motivated by this we conduct a preliminary investigation into the acoustic properties of a typical biopolymer and the feasibility of acoustic propagation within a foam scaffold thereof. Focussing on poly(lactic-co-glycolic acid), we use a pulse-echo method to determine the longitudinal speed of sound, whose temperature-dependence reveals the glass transition of the polymer. Finally, we demonstrate the first topographic and tomographic acoustic images of polymer foam tissue scaffolds.

  6. Acoustic signal estimation using multiple blind observations

    E-Print Network [OSTI]

    Lee, Joonsung

    2006-01-01T23:59:59.000Z

    This thesis proposes two algorithms for recovering an acoustic signal from multiple blind measurements made by sensors (microphones) over an acoustic channel. Unlike other algorithms that use a posteriori probabilistic ...

  7. Acoustic data transmission through a drill string

    DOE Patents [OSTI]

    Drumheller, D.S.

    1988-04-21T23:59:59.000Z

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  8. Acoustical Communications for Wireless Downhole Telemetry Systems

    E-Print Network [OSTI]

    Farraj, Abdallah

    2012-08-22T23:59:59.000Z

    This dissertation investigates the use of advanced acoustical communication techniques for wireless downhole telemetry systems. Using acoustic waves for downhole telemetry systems is investigated in order to replace the wired communication systems...

  9. Multipurpose Acoustic Sensor for Downhole Fluid Monitoring | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - Technology ProjectEnergy Novel sensor design

  10. Multipurpose Acoustic Sensor for Downhole Fluid Monitoring | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energy 3 MonthlyDepartmentMultimediaUS DOE

  11. Particle analysis in an acoustic cytometer

    DOE Patents [OSTI]

    Kaduchak, Gregory; Ward, Michael D

    2012-09-18T23:59:59.000Z

    The present invention is a method and apparatus for acoustically manipulating one or more particles. Acoustically manipulated particles may be separated by size. The particles may be flowed in a flow stream and acoustic radiation pressure, which may be radial, may be applied to the flow stream. This application of acoustic radiation pressure may separate the particles. In one embodiment, the particles may be separated by size, and as a further example, the larger particles may be transported to a central axis.

  12. Multi-reflective acoustic wave device

    DOE Patents [OSTI]

    Andle, Jeffrey C.

    2006-02-21T23:59:59.000Z

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  13. Gas sensing with acoustic devices

    SciTech Connect (OSTI)

    Martin, S.J.; Frye, G.C. [Sandia National Labs., Albuquerque, NM (United States); Spates, J.J. [Ktech Corp., Albuquerque, NM (United States); Butler, M.A. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31T23:59:59.000Z

    A survey is made of acoustic devices that are suitable as gas and vapor sensors. This survey focuses on attributes such as operating frequency, mass sensitivity, quality factor (Q), and their ability to be fabricated on a semiconductor substrate to allow integration with electronic circuitry. The treatment of the device surface with chemically-sensitive films to detect species of interest is discussed. Strategies for improving discrimination are described, including sensor arrays and species concentration and separation schemes. The advantages and disadvantages of integrating sensors with microelectronics are considered, along with the effect on sensitivity of scaling acoustic gas sensors to smaller size.

  14. Method for distinguishing multiple targets using time-reversal acoustics

    DOE Patents [OSTI]

    Berryman, James G.

    2004-06-29T23:59:59.000Z

    A method for distinguishing multiple targets using time-reversal acoustics. Time-reversal acoustics uses an iterative process to determine the optimum signal for locating a strongly reflecting target in a cluttered environment. An acoustic array sends a signal into a medium, and then receives the returned/reflected signal. This returned/reflected signal is then time-reversed and sent back into the medium again, and again, until the signal being sent and received is no longer changing. At that point, the array has isolated the largest eigenvalue/eigenvector combination and has effectively determined the location of a single target in the medium (the one that is most strongly reflecting). After the largest eigenvalue/eigenvector combination has been determined, to determine the location of other targets, instead of sending back the same signals, the method sends back these time reversed signals, but half of them will also be reversed in sign. There are various possibilities for choosing which half to do sign reversal. The most obvious choice is to reverse every other one in a linear array, or as in a checkerboard pattern in 2D. Then, a new send/receive, send-time reversed/receive iteration can proceed. Often, the first iteration in this sequence will be close to the desired signal from a second target. In some cases, orthogonalization procedures must be implemented to assure the returned signals are in fact orthogonal to the first eigenvector found.

  15. Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma

    SciTech Connect (OSTI)

    Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of); Haghtalab, T.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand 97179-63384 (Iran, Islamic Republic of)

    2011-11-15T23:59:59.000Z

    A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.

  16. LLNL`s acoustic spectrometer

    SciTech Connect (OSTI)

    Baker, J.

    1997-03-17T23:59:59.000Z

    This paper describes the development of a frequency sensitive acoustic transducer that operates in the 10 Hz to 10 kHz regime. This device uses modem silicon microfabrication techniques to form mechanical tines that resonate at specified frequencies. This high-sensitivity device is intended for low-power battery powered applications.

  17. Ion Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2003-11-18T23:59:59.000Z

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  18. Chinook Salmon Adult Abundance Monitoring; Hydroacoustic Assessment of Chinook Salmon Escapement to the Secesh River, Idaho, 2002-2004 Final Report.

    SciTech Connect (OSTI)

    Johnson, R.; McKinstry, C.; Mueller, R.

    2004-01-01T23:59:59.000Z

    Accurate determination of adult salmon spawner abundance is key to the assessment of recovery actions for wild Snake River spring/summer Chinook salmon (Onchorynchus tshawytscha), a species listed as 'threatened' under the Endangered Species Act (ESA). As part of the Bonneville Power Administration Fish and Wildlife Program, the Nez Perce Tribe operates an experimental project in the South Fork of the Salmon River subbasin. The project has involved noninvasive monitoring of Chinook salmon escapement on the Secesh River between 1997 and 2000 and on Lake Creek since 1998. The overall goal of this project is to accurately estimate adult Chinook salmon spawning escapement numbers to the Secesh River and Lake Creek. Using time-lapse underwater video technology in conjunction with their fish counting stations, Nez Perce researchers have successfully collected information on adult Chinook salmon spawner abundance, run timing, and fish-per-redd numbers on Lake Creek since 1998. However, the larger stream environment in the Secesh River prevented successful implementation of the underwater video technique to enumerate adult Chinook salmon abundance. High stream discharge and debris loads in the Secesh caused failure of the temporary fish counting station, preventing coverage of the early migrating portion of the spawning run. Accurate adult abundance information could not be obtained on the Secesh with the underwater video method. Consequently, the Nez Perce Tribe now is evaluating advanced technologies and methodologies for measuring adult Chinook salmon abundance in the Secesh River. In 2003, the use of an acoustic camera for assessing spawner escapement was examined. Pacific Northwest National Laboratory, in a collaborative arrangement with the Nez Perce Tribe, provided the technical expertise to implement the acoustic camera component of the counting station on the Secesh River. This report documents the first year of a proposed three-year study to determine the efficacy of using an acoustic camera to count adult migrant Chinook salmon as they make their way to the spawning grounds on the Secesh River and Lake Creek. A phased approach to applying the acoustic camera was proposed, starting with testing and evaluation in spring 2003, followed by a full implementation in 2004 and 2005. The goal of this effort is to better assess the early run components when water clarity and night visibility preclude the use of optical techniques. A single acoustic camera was used to test the technology for enumerating adult salmon passage at the Secesh River. The acoustic camera was deployed on the Secesh at a site engineered with an artificial substrate to control the river bottom morphometry and the passage channel. The primary goal of the analysis for this first year of deployment was to validate counts of migrant salmon. The validation plan involved covering the area with optical video cameras so that both optical and acoustic camera images of the same viewing region could be acquired simultaneously. A secondary test was contrived after the fish passage was complete using a controlled setting at the Pacific Northwest National Laboratory in Richland, Washington, in which we tested the detectability as a function of turbidity levels. Optical and acoustic camera multiplexed video recordings of adult Chinook salmon were made at the Secesh River fish counting station from August 20 through August 29, 2003. The acoustic camera performed as well as or better than the optical camera at detecting adult Chinook salmon over the 10-day test period. However, the acoustic camera was not perfect; the data reflected adult Chinook salmon detections made by the optical camera that were missed by the acoustic camera. The conditions for counting using the optical camera were near ideal, with shallow clear water and good light penetration. The relative performance of the acoustic camera is expected to be even better than the optical camera in early spring when water clarity and light penetration are limited. Results of the laboratory tests at the Pacific North

  19. Nonlinear dust acoustic waves and shocks

    SciTech Connect (OSTI)

    Merlino, R. L.; Heinrich, J. R.; Hyun, S.-H.; Meyer, J. K. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

    2012-05-15T23:59:59.000Z

    We describe experiments on (1) nonlinear dust acoustic waves and (2) dust acoustic shocks performed in a direct current (DC) glow discharge dusty plasma. First, we describe experiments showing nonlinear dust acoustic waves characterized by waveforms of the dust density that are typically sharper in the wave crests and flatter in the wave troughs (compared to sinusoidal waves), indicating the development of wave harmonics. We discuss this behavior in terms of a second-order fluid theory for dust acoustic waves. Second, experimental observations of the propagation and steepening of large-amplitude dust acoustic waves into dust acoustic shock waves are presented. The observed shock wave evolution is compared with numerical calculations based on the Riemann solution of the fully nonlinear fluid equations for dust acoustic waves.

  20. Method and apparatus for generating acoustic energy

    DOE Patents [OSTI]

    Guerrero, Hector N. (Evans, GA)

    2002-01-01T23:59:59.000Z

    A method and apparatus for generating and emitting amplified coherent acoustic energy. A cylindrical transducer is mounted within a housing, the transducer having an acoustically open end and an acoustically closed end. The interior of the transducer is filled with an active medium which may include scattering nuclei. Excitation of the transducer produces radially directed acoustic energy in the active medium, which is converted by the dimensions of the transducer, the acoustically closed end thereof, and the scattering nuclei, to amplified coherent acoustic energy directed longitudinally within the transducer. The energy is emitted through the acoustically open end of the transducer. The emitted energy can be used for, among other things, effecting a chemical reaction or removing scale from the interior walls of containment vessels.

  1. Electrostatic monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Cumbria, GB); Luff, Craig Janson (Cumbria, GB); Dockray, Thomas (Cumbria, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.

  2. Mechanical fault detection in induction motor drives through stator current monitoring -Theory

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    vibrations lead to acoustic noise, noise monitoring is also a possible approach. However, these methods0 Mechanical fault detection in induction motor drives through stator current monitoring - Theory machines are a key element in many electrical systems. Amongst all types of electric motors, induction

  3. Cylindrical acoustic levitator/concentrator

    DOE Patents [OSTI]

    Kaduchak, Gregory (Los Alamos, NM); Sinha, Dipen N. (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  4. Acoustic horizons in nuclear fluids

    E-Print Network [OSTI]

    Niladri Sarkar; Abhik Basu; Jayanta K. Bhattacharjee; Arnab K. Ray

    2014-04-13T23:59:59.000Z

    We consider a hydrodynamic description of the spherically symmetric outward flow of nuclear matter, accommodating dispersion in it as a very weak effect. About the resulting stationary conditions in the flow, we apply an Eulerian scheme to derive a fully nonlinear equation of a time-dependent radial perturbation. In its linearized limit, with no dispersion, this equation implies the static acoustic horizon of an analogue gravity model. We, however, show that time-dependent nonlinear effects destabilize the static horizon. We also model the perturbation as a high-frequency travelling wave, and perform a {\\it WKB} analysis, in which the effect of weak dispersion is studied iteratively. We show that even arbitrarily small values of dispersion make the horizon fully opaque to any acoustic disturbance propagating against the bulk flow, with the amplitude and the energy flux of the radial perturbation undergoing a discontinuity at the horizon, and decaying exponentially just outside it.

  5. Achieving selective interrogation and sub-wavelength resolution in thin plates with embedded metamaterial acoustic lenses

    SciTech Connect (OSTI)

    Semperlotti, F., E-mail: fsemperl@nd.edu; Zhu, H. [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2014-08-07T23:59:59.000Z

    In this study, we present an approach to ultrasonic beam-forming and high resolution identification of acoustic sources having critical implications for applications such as structural health monitoring. The proposed concept is based on the design of dynamically tailored structural elements via embedded acoustic metamaterial lenses. This approach provides a completely new alternative to conventional phased-array technology enabling the formation of steerable and collimated (or focused) ultrasonic beams by exploiting a single transducer. Numerical results show that the ultrasonic beam can be steered by simply tuning the frequency of the excitation. Also, the embedded lens can be designed to achieve sub-wavelength resolution to clustered acoustic sources, which is a typical scenario encountered in incipient structural damage.

  6. CX-005201: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005201: Categorical Exclusion Determination Tall Tower Wind Energy Monitoring and Numerical Model Validation in Southern Nevada CX(s) Applied: A9,...

  7. Acoustic resonance phase locked photoacoustic spectrometer

    DOE Patents [OSTI]

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-08-19T23:59:59.000Z

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell to generate a photoacoustic signal, the acoustic source having a source frequency; continuously measuring detection phase of the photoacoustic signal with respect to source frequency or a harmonic thereof; and employing the measured detection phase to provide magnitude and direction for correcting the source frequency to the resonance frequency.

  8. Acoustic resonance frequency locked photoacoustic spectrometer

    DOE Patents [OSTI]

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-09-09T23:59:59.000Z

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell, the acoustic source having a source frequency; repeatedly and continuously sweeping the source frequency across the resonance frequency at a sweep rate; and employing an odd-harmonic of the source frequency sweep rate to maintain the source frequency sweep centered on the resonance frequency.

  9. Wind Turbine Acoustic Noise A white paper

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

  10. Acoustics of finite-aperture vortex beams

    E-Print Network [OSTI]

    Mitri, F G

    2014-01-01T23:59:59.000Z

    A method based on the Rayleigh-Sommerfeld surface integral is provided, which makes it feasible to rigorously model, evaluate and compute the acoustic scattering and other mechanical effects of finite-aperture vortex beams such as the acoustic radiation force and torque on a viscoelastic sphere in various applications in acoustic tweezers and microfluidics, particle entrapment, manipulation and rotation. Partial-wave series expansions are derived for the incident field of acoustic spiraling (vortex) beams, comprising high-order Bessel and Bessel-Gauss beams.

  11. Acoustic resonance for nonmetallic mine detection

    SciTech Connect (OSTI)

    Kercel, S.W.

    1998-04-01T23:59:59.000Z

    The feasibility of acoustic resonance for detection of plastic mines was investigated by researchers at the Oak Ridge National Laboratory`s Instrumentation and Controls Division under an internally funded program. The data reported in this paper suggest that acoustic resonance is not a practical method for mine detection. Representative small plastic anti-personnel mines were tested, and were found to not exhibit detectable acoustic resonances. Also, non-metal objects known to have strong acoustic resonances were tested with a variety of excitation techniques, and no practical non-contact method of exciting a consistently detectable resonance in a buried object was discovered. Some of the experimental data developed in this work may be useful to other researchers seeking a method to detect buried plastic mines. A number of excitation methods and their pitfalls are discussed. Excitation methods that were investigated include swept acoustic, chopped acoustic, wavelet acoustic, and mechanical shaking. Under very contrived conditions, a weak response that could be attributed to acoustic resonance was observed, but it does not appear to be practical as a mine detection feature. Transfer properties of soil were investigated. Impulse responses of several representative plastic mines were investigated. Acoustic leakage coupling, and its implications as a disruptive mechanism were investigated.

  12. Method for chemically analyzing a solution by acoustic means

    DOE Patents [OSTI]

    Beller, L.S.

    1997-04-22T23:59:59.000Z

    A method and apparatus are disclosed for determining a type of solution and the concentration of that solution by acoustic means. Generally stated, the method consists of: immersing a sound focusing transducer within a first liquid filled container; locating a separately contained specimen solution at a sound focal point within the first container; locating a sound probe adjacent to the specimen, generating a variable intensity sound signal from the transducer; measuring fundamental and multiple harmonic sound signal amplitudes; and then comparing a plot of a specimen sound response with a known solution sound response, thereby determining the solution type and concentration. 10 figs.

  13. Method for chemically analyzing a solution by acoustic means

    DOE Patents [OSTI]

    Beller, Laurence S. (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A method and apparatus for determining a type of solution and the concention of that solution by acoustic means. Generally stated, the method consists of: immersing a sound focusing transducer within a first liquid filled container; locating a separately contained specimen solution at a sound focal point within the first container; locating a sound probe adjacent to the specimen, generating a variable intensity sound signal from the transducer; measuring fundamental and multiple harmonic sound signal amplitudes; and then comparing a plot of a specimen sound response with a known solution sound response, thereby determining the solution type and concentration.

  14. Quantum corrections to nonlinear ion acoustic wave with Landau damping

    SciTech Connect (OSTI)

    Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)

    2014-07-15T23:59:59.000Z

    Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter ?{sub 1}=?(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=?{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.

  15. Method of measuring reactive acoustic power density in a fluid

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1985-09-03T23:59:59.000Z

    A method for determining reactive acoustic power density level and its direction in a fluid using a single sensor is disclosed. In the preferred embodiment, an apparatus for conducting the method, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas. 5 figs.

  16. Method of measuring reactive acoustic power density in a fluid

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1985-01-01T23:59:59.000Z

    A method for determining reactive acoustic power density level and its direction in a fluid using a single sensor is disclosed. In the preferred embodiment, an apparatus for conducting the method, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  17. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    The present invention relates to a monitoring well which includes an enclosure defining a cavity and a water reservoir enclosed within the cavity and wherein the reservoir has an inlet and an outlet. The monitoring well further includes a porous housing borne by the enclosure and which defines a fluid chamber which is oriented in fluid communication with the outlet of the reservoir, and wherein the porous housing is positioned in an earthen soil location below-grade. A geophysical monitoring device is provided and mounted in sensing relation relative to the fluid chamber of the porous housing; and a coupler is selectively moveable relative to the outlet of reservoir to couple the porous housing and water reservoir in fluid communication. An actuator is coupled in force transmitting relation relative to the coupler to selectively position the coupler in a location to allow fluid communication between the reservoir and the fluid chamber defined by the porous housing.

  18. COPE-MAC: A Contention-based Medium Access Control Protocol with Parallel Reservation for Underwater Acoustic Networks

    E-Print Network [OSTI]

    Zhou, Shengli

    collection, oil/gas field monitoring, and undersea persistent surveillance [1]­[4]. Since radio does not work propagation delays (acoustic signals propagate 5 orders of magnitude slower than electromagnetic waves). Due in underwater networks tend to improve the system energy efficiency by using either RTS/CTS like handshaking

  19. acoustic impedance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nassir Navab 6 ACOUSTIC IMPEDANCE INVERSION FOR STATIC AND DYNAMIC CHARACTERIZATION OF A CO2 EOR PROJECT, Fossil Fuels Websites Summary: ACOUSTIC IMPEDANCE INVERSION FOR STATIC...

  20. acoustic impedance inversion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Topic Index 1 ACOUSTIC IMPEDANCE INVERSION FOR STATIC AND DYNAMIC CHARACTERIZATION OF A CO2 EOR PROJECT, Fossil Fuels Websites Summary: ACOUSTIC IMPEDANCE INVERSION FOR STATIC...

  1. acoustic wave resonator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helmholtz resonators Physics Websites Summary: Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators Bruno Acoustic wave propagation in a...

  2. acoustic wave resonators: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helmholtz resonators Physics Websites Summary: Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators Bruno Acoustic wave propagation in a...

  3. acoustic band gaps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    type of phononic crystals manufactured Institute of Physics. DOI: 10.10631.2167794 The propagation of acoustic waves in periodic composite Deymier, Pierre 2 Acoustic band gap...

  4. amplitude acoustic wave: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    same.29 Keywords: Nonlinear standing wave; Closed acoustic Heller, Barbara 4 Long-range propagation of finite-amplitude acoustic waves in an ocean waveguide Geosciences Websites...

  5. alternative proposal acoustic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in theory. However, two critical Zhou, Shengli 80 ACOUSTIC STUDY OF THE UD GAMESA WIND TURBINE PROJECT Environmental Sciences and Ecology Websites Summary: ACOUSTIC STUDY OF THE...

  6. acoustic noise reduction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acoustic receivers of vessels using spectral subtraction Physics Websites Summary: , cavitation etc. created by the propellers generate immense acoustic noise in the vicinity...

  7. acoustic background noise: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or remove acoustic background noise uses setups Paris-Sud XI, Universit de 3 Wind Turbine Acoustic Noise A white paper Renewable Energy Websites Summary: Wind Turbine...

  8. acoustic desorption liad: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coverage... Juwono, Tjipto 2013-01-01 18 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  9. acoustic neurinomas early: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Leningrad unknown authors 10 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  10. acoustic equipment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was to be Music 302 Maher, Robert C. 13 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  11. assisted acoustic focusing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and solved. A. G. Ramm 2008-05-16 28 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  12. acoustic microscopy risswachstumsstudien: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zhang; Rong-Gen Cai 2004-11-18 8 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  13. acoustic insulation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teo, Chi Yan Jeffrey 2011-01-01 17 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  14. acoustic passive localization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inter-sensor propagation Boyer, Edmond 2 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  15. acoustic neurinoma presenting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testable. Visser, M 1999-01-01 18 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  16. acoustic howling suppression: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Leningrad unknown authors 15 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  17. acoustics ultrasonic imaging: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Junjie Gong; Fangfang Shi; Yijing Ke 2 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  18. acoustic noise: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of anisotropy in oceanic ambient noise fields and its relevance to Acoustic Daylight imaging CiteSeer Summary: Acoustic Daylight is a new technique for creating pictorial...

  19. acoustic 4f imaging: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    24 25 Next Page Last Page Topic Index 1 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  20. acoustic neuroma mimicking: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    botnet owners have Stojmenovic, Ivan 12 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  1. acoustic 3-d imaging: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    landmarks or com- plete Delson, Eric 20 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  2. acoustic microscopy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zhang; Rong-Gen Cai 2004-11-18 8 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  3. acoustic neuroma surgery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Leningrad unknown authors 8 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  4. acoustic trauma evokes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Course Requirements Lockery, Shawn 18 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  5. airborne acoustical noise: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of anisotropy in oceanic ambient noise fields and its relevance to Acoustic Daylight imaging CiteSeer Summary: Acoustic Daylight is a new technique for creating pictorial...

  6. acoustic overstimulation modifies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    synthesizer can Johnson, Michael T. 13 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  7. acoustic neuroma treatment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Leningrad unknown authors 10 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  8. acoustic neuroma resection: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Leningrad unknown authors 6 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  9. acoustic nmr: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isaac; Steffen, Matthias 2004-01-01 9 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  10. acoustic neurinoma removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Leningrad unknown authors 4 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  11. acoustic wave based: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acoustic dispersion over SAW wavelengths down to 200 nm, meaning the SAW propagation ... Siemens, Mark 44 Excitation of kinetic geodesic acoustic modes by drift waves in...

  12. acoustic wave sensors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acoustic wave devices can be used as wireless sensor elements (SAW transponders Zachmann, Gabriel 30 Underwater Acoustic Sensor Networks: Research Challenges CiteSeer...

  13. acoustic wave sensor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acoustic wave devices can be used as wireless sensor elements (SAW transponders Zachmann, Gabriel 30 Underwater Acoustic Sensor Networks: Research Challenges CiteSeer...

  14. acoustical testing laboratory: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Acoustics, Vol. 9, No. 3 (2001) 1215-1225 c IMACS AIRBORNE ACOUSTICS October 1999 Revised 16 April 2000 A recently developed theoretical model of the airborne...

  15. acoustics ultrasound device: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at low frequencies (5-35MHz Gizeli, Electra 6 Ultrasound acoustic emission in water-stressed plants of Picea abies Karst. Physics Websites Summary: Ultrasound acoustic...

  16. Comparative Performance of Acoustic-tagged and PIT-tagged Juvenile Salmonids

    SciTech Connect (OSTI)

    Hockersmith, Eric E.; Brown, Richard S.; Liedtke, Theresa L.

    2008-02-01T23:59:59.000Z

    Numerous research tools and technologies are currently being used to evaluate fish passage and survival to determine the impacts of the Federal Columbia River Power System (FCRPS) on endangered and threatened juvenile salmonids, including PIT tags, balloon tags, hydroacoustic evaluations, radio telemetry, and acoustic telemetry. Each has advantages and disadvantages, but options are restricted in some situations because of limited capabilities of a specific technology, lack of detection capability downstream, or availability of adequate numbers of fish. However, there remains concern about the comparative effects of the tag or the tagging procedure on fish performance. The recently developed Juvenile Salmonid Acoustic Telemetry System (JSATS) acoustic transmitter is the smallest active acoustic tag currently available. The goal of this study was to determine whether fish tagged with the JSATS acoustic-telemetry tag can provide unbiased estimates of passage behavior and survival within the performance life of the tag. We conducted both field and laboratory studies to assess tag effects. For the field evaluation we released a total of 996 acoustic-tagged fish in conjunction with 21,026 PIT-tagged fish into the tailrace of Lower Granite Dam on 6 and 13 May. Travel times between release and downstream dams were not significantly different for the majority of the reaches between acoustic-tagged and PIT-tagged fish. In addition to the field evaluation, a series of laboratory experiments were conducted to determine if growth and survival of juvenile Chinook salmon surgically implanted with acoustic transmitters is different than untagged or PIT tagged juvenile Chinook salmon. Only yearling fish with integrated and non-integrated transmitters experienced mortalities, and these were low (<4.5%). Mortality among sub-yearling control and PIT-tag treatments ranged up to 7.7% while integrated and non-integrated treatments had slightly higher rates (up to 8.3% and 7.9% respectively). No acoustic transmitters were shed by yearling fish during the course of the 90 day study. Up to 7.8% of subyearling fish expelled transmitters. Tags were expelled from 5 to 63 days post-surgery. The average time to expulsion was 27 days; few fish expelled transmitters within 14 days of implantation or less. Histological results suggest that inflammation associated with implantation of an acoustic transmitter can produce fibrous tissue which can invade and possibly damage internal organs soon after implantation. Reactions severe enough to damage organs however, were limited to only ~20% of subyearling Chinook salmon, all of which were under 101mm and 12g at tagging. The infiltration of the fibrous tissue into organs was observed most often in fish held for 21 days and appeared to decrease in subsequent holding times.

  17. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

  18. Monitoring well

    DOE Patents [OSTI]

    Hubbell, J.M.; Sisson, J.B.

    1999-06-29T23:59:59.000Z

    A monitoring well is described which includes: a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto. 8 figs.

  19. In Situ Evaluation of Density, Viscosity and Thickness of Adsorbed Soft Layers by Combined Surface Acoustic Wave and Surface Plasmon Resonance

    E-Print Network [OSTI]

    L. Francis; J. -M. Friedt; C. Zhou; P. Bertrand

    2006-04-28T23:59:59.000Z

    We show the theoretical and experimental combination of acoustic and optical methods for the in situ quantitative evaluation of the density, the viscosity and the thickness of soft layers adsorbed on chemically tailored metal surfaces. For the highest sensitivity and an operation in liquids, a Love mode surface acoustic wave (SAW) sensor with a hydrophobized gold coated sensing area is the acoustic method, while surface plasmon resonance (SPR) on the same gold surface as the optical method is monitored simultaneously in a single set-up for the real-time and label-free measurement of the parameters of adsorbed soft layers, which means for layers with a predominant viscous behavior. A general mathematical modeling in equivalent viscoelastic transmission lines is presented to determine the correlation between experimental SAW signal shifts and the waveguide structure including the presence of the adsorbed layer and the supporting liquid from which it segregates. A methodology is presented to identify from SAW and SPR simulations the parameters representatives of the soft layer. During the absorption of a soft layer, thickness or viscosity changes are observed in the experimental ratio of the SAW signal attenuation to the SAW signal phase and are correlated with the theoretical model. As application example, the simulation method is applied to study the thermal behavior of physisorbed PNIPAAm, a polymer whose conformation is sensitive to temperature, under a cycling variation of temperature between 20 and 40 oC. Under the assumption of the bulk density and the bulk refractive index of PNIPAAm, thickness and viscosity of the film are obtained from simulations; the viscosity is correlated to the solvent content of the physisorbed layer.

  20. Method and system for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Johnson Paul A. (Santa Fe, NM); Ten Cate, James A. (Los Alamos, NM); Guyer, Robert (Reno, NV); Le Bas, Pierre-Yves (Los Alamos, NM); Vu, Cung (Houston, TX); Nihei, Kurt (Oakland, CA); Schmitt, Denis P. (Katy, TX); Skelt, Christopher (Houston, TX)

    2012-02-14T23:59:59.000Z

    A compact array of transducers is employed as a downhole instrument for acoustic investigation of the surrounding rock formation. The array is operable to generate simultaneously a first acoustic beam signal at a first frequency and a second acoustic beam signal at a second frequency different than the first frequency. These two signals can be oriented through an azimuthal rotation of the array and an inclination rotation using control of the relative phases of the signals from the transmitter elements or electromechanical linkage. Due to the non-linearity of the formation, the first and the second acoustic beam signal mix into the rock formation where they combine into a collimated third signal that propagates in the formation along the same direction than the first and second signals and has a frequency equal to the difference of the first and the second acoustic signals. The third signal is received either within the same borehole, after reflection, or another borehole, after transmission, and analyzed to determine information about rock formation. Recording of the third signal generated along several azimuthal and inclination directions also provides 3D images of the formation, information about 3D distribution of rock formation and fluid properties and an indication of the dynamic acoustic non-linearity of the formation.

  1. Characterization of acoustically forced swirl flame dynamics

    E-Print Network [OSTI]

    Lieuwen, Timothy C.

    of the flame to acoustic excitation is required. This study presents an analysis of phase-locked OH PLIF images of acoustically excited swirl flames, to identify the key controlling physical processes and qualitatively discuss, and whose relative significance depends upon forcing frequency, amplitude of excitation, and flame

  2. Cooperative Multihop Communication for Underwater Acoustic Networks

    E-Print Network [OSTI]

    Zhou, Shengli

    Cooperative Multihop Communication for Underwater Acoustic Networks Cecilia Carbonelli and Urbashi propagation 1. INTRODUCTION Underwater sensor networks will find applications in data collection, pollution acoustic (UWA) channels differ from those in other media, such as radio channels, due to the high temporal

  3. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T.T.; Keller, J.O.

    1987-07-10T23:59:59.000Z

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  4. Thermoacoustic Stirling Engine --An acoustic amplifier

    E-Print Network [OSTI]

    Lee, Dongwon

    Thermoacoustic Stirling Engine -- An acoustic amplifier: ambient heat exchanger (water) stacked kW sound hot diesel exhaust hot diesel exhaust 34" 24" Thermoacoustic Stirling Engine -- An acoustic@lanl.gov 505-667-7545 A lighter, smaller, faster, cheaper version of free-piston Stirling 500W Lightweight

  5. An optimized international vehicle monitor

    SciTech Connect (OSTI)

    York, R.L.; Close, D.A.; Fehlau, P.E.

    1997-03-01T23:59:59.000Z

    The security plans for many DOE facilities require the monitoring of pedestrians and vehicles to control the movement of special nuclear material (SNM). Vehicle monitors often provide the outer-most barrier against the theft of SNM. Automatic monitors determine the presence of SNM by comparing the gamma-ray and neutron intensity while occupied, to the continuously updated background radiation level which is measured while the unit is unoccupied. The most important factors in choosing automatic vehicle monitors are sensitivity, cost and in high traffic applications total monitoring time. The two types of automatic vehicle monitors presently in use are the vehicle monitoring station and the drive-through vehicle monitor. These two types have dramatically different cost and sensitivities. The vehicle monitoring station has a worst-case detection sensitivity of 40 g of highly enriched uranium, HEU, and a cost approximately $180k. This type of monitor is very difficult to install and can only be used in low traffic flow locations. The drive-through vehicle portal has a worst-case detection sensitivity of 1 kg of HEU and a cost approximately $20k. The world`s political situation has created a pressing need to prevent the diversion of SNM from FSU nuclear facilities and across international borders. Drive-through vehicle monitors would be an effective and practical nuclear material proliferation deterrent if their sensitivity can be improved to a sufficient level. The goal of this project is to evaluate different detector configurations as a means of improving the sensitivity of these instruments to achieve a vehicle monitor that is economical, practical to install, and has adequate sensitivity to be an effective barrier to illegal transportation of SNM.

  6. Piezoelectric materials used in underwater acoustic transducers

    SciTech Connect (OSTI)

    Li, Huidong; Deng, Zhiqun; Carlson, Thomas J.

    2012-07-07T23:59:59.000Z

    Piezoelectric materials have been used in underwater acoustic transducers for nearly a century. In this paper, we reviewed four different types of piezoelectric materials: piezoelectric ceramics, single crystals, composites, and polymers, which are widely used in underwater acoustic transducers nowadays. Piezoelectric ceramics are the most dominant material type and are used as a single-phase material or one of the end members in composites. Piezoelectric single crystals offer outstanding electromechanical response but are limited by their manufacturing cost. Piezoelectric polymers provide excellent acoustic impedance matching and transducer fabrication flexibility although their piezoelectric properties are not as good as ceramics and single crystals. Composites combined the merits of ceramics and polymers and are receiving increased attention. The typical structure and electromechanical properties of each type of materials are introduced and discussed with respect to underwater acoustic transducer applications. Their advantages and disadvantages are summarized. Some of the critical design considerations when developing underwater acoustic transducers with these materials are also touched upon.

  7. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming leg, Carol

    2010-06-08T23:59:59.000Z

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  8. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H. (Albuquerque, NM); El-Kady, Ihab F. (Albuquerque, NM); McCormick, Frederick (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Fleming, legal representative, Carol (Albuquerque, NM)

    2010-11-23T23:59:59.000Z

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  9. Ion acoustic solitary waves and double layers in a plasma with two temperature electrons featuring Tsallis distribution

    SciTech Connect (OSTI)

    Shalini,, E-mail: shal.phy29@gmail.com; Saini, N. S., E-mail: nssaini@yahoo.com [Department of Physics, Guru Nanak Dev University, Amritsar-143005 (India)

    2014-10-15T23:59:59.000Z

    The propagation properties of large amplitude ion acoustic solitary waves (IASWs) are studied in a plasma containing cold fluid ions and multi-temperature electrons (cool and hot electrons) with nonextensive distribution. Employing Sagdeev pseudopotential method, an energy balance equation has been derived and from the expression for Sagdeev potential function, ion acoustic solitary waves and double layers are investigated numerically. The Mach number (lower and upper limits) for the existence of solitary structures is determined. Positive as well as negative polarity solitary structures are observed. Further, conditions for the existence of ion acoustic double layers (IADLs) are also determined numerically in the form of the critical values of q{sub c}, f and the Mach number (M). It is observed that the nonextensivity of electrons (via q{sub c,h}), concentration of electrons (via f) and temperature ratio of cold to hot electrons (via ?) significantly influence the characteristics of ion acoustic solitary waves as well as double layers.

  10. Performance Assessment of Suture Type in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters

    SciTech Connect (OSTI)

    Deters, Katherine A.; Brown, Richard S.; Carter, Kathleen M.; Boyd, James W.

    2009-02-27T23:59:59.000Z

    The objective of this study was to determine the best overall suture material to close incisions from the surgical implantation of Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic microtransmitters in subyearling Chinook salmon Oncorhynchus tshawytscha. The effects of seven suture materials, four surgeons, and two water temperatures on suture retention, incision openness, tag retention, tissue inflammation, and tissue ulceration were quantified. The laboratory study, conducted by researchers at the Pacific Northwest National Laboratory, supports a larger effort under way for the U.S. Army Corps of Engineers, Portland District, aimed at determining the suitability of acoustic telemetry for estimating short- and longer-term (30-60 days) juvenile-salmonid survival at Columbia and Snake River dams and through the lower Columbia River.

  11. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

  12. Stereotactic Radiosurgery for Acoustic Neuromas: What Happens Long Term?

    SciTech Connect (OSTI)

    Roos, Daniel E., E-mail: daniel.roos@health.sa.gov.au [Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia (Australia); University of Adelaide School of Medicine, Adelaide, South Australia (Australia); Potter, Andrew E. [Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia (Australia); Brophy, Brian P. [Department of Neurosurgery, Royal Adelaide Hospital, Adelaide, South Australia (Australia); University of Adelaide School of Medicine, Adelaide, South Australia (Australia)

    2012-03-15T23:59:59.000Z

    Purpose: To determine the clinical outcomes for acoustic neuroma treated with low-dose linear accelerator stereotactic radiosurgery (SRS) >10 years earlier at the Royal Adelaide Hospital using data collected prospectively at a dedicated SRS clinic. Methods and Materials: Between November 1993 and December 2000, 51 patients underwent SRS for acoustic neuroma. For the 44 patients with primary SRS for sporadic (unilateral) lesions, the median age was 63 years, the median of the maximal tumor diameter was 21 mm (range, 11-34), and the marginal dose was 14 Gy for the first 4 patients and 12 Gy for the other 40. Results: The crude tumor control rate was 97.7% (1 patient required salvage surgery for progression at 9.75 years). Only 8 (29%) of 28 patients ultimately retained useful hearing (interaural pure tone average {<=}50 dB). Also, although the Kaplan-Meier estimated rate of hearing preservation at 5 years was 57% (95% confidence interval, 38-74%), this decreased to 24% (95% confidence interval, 11-44%) at 10 years. New or worsened V and VII cranial neuropathy occurred in 11% and 2% of patients, respectively; all cases were transient. No case of radiation oncogenesis developed. Conclusions: The long-term follow-up data of low-dose (12-14 Gy) linear accelerator SRS for acoustic neuroma have confirmed excellent tumor control and acceptable cranial neuropathy rates but a continual decrease in hearing preservation out to {>=}10 years.

  13. Acoustic resonance spectroscopy intrinsic seals

    SciTech Connect (OSTI)

    Olinger, C.T.; Burr, T.; Vnuk, D.R.

    1994-08-01T23:59:59.000Z

    We have begun to quantify the ability of acoustic resonance spectroscopy (ARS) to detect the removal and replacement of the lid of a simulated special nuclear materials drum. Conceptually, the acoustic spectrum of a container establishcs a baseline fingerprint, which we refer to as an intrinsic seal, for the container. Simply removing and replacing the lid changes some of the resonant frequencies because it is impossible to exactly duplicate all of the stress patterns between the lid and container. Preliminary qualitative results suggested that the ARS intrinsic seal could discriminate between cases where a lid has or has not been removed. The present work is directed at quantifying the utility of the ARS intrinsic seal technique, including the technique`s sensitivity to ``nuisance`` effects, such as temperature swings, movement of the container, and placement of the transducers. These early quantitative tests support the potential of the ARS intrinsic seal application, but also reveal a possible sensitivity to nuisance effects that could limit environments or conditions under which the technique is effective.

  14. Tritium monitor

    DOE Patents [OSTI]

    Chastagner, Philippe (Augusta, GA)

    1994-01-01T23:59:59.000Z

    A system for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream.

  15. Tritium monitor

    DOE Patents [OSTI]

    Chastagner, P.

    1994-06-14T23:59:59.000Z

    A system is described for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream. 1 fig.

  16. A network security monitor

    SciTech Connect (OSTI)

    Heberlein, L.T.; Dias, G.V.; Levitt, K.N.; Mukherjee, B.; Wood, J.; Wolber, D. (California Univ., Davis, CA (USA). Dept. of Electrical Engineering and Computer Science)

    1989-11-01T23:59:59.000Z

    The study of security in computer networks is a rapidly growing area of interest because of the proliferation of networks and the paucity of security measures in most current networks. Since most networks consist of a collection of inter-connected local area networks (LANs), this paper concentrates on the security-related issues in a single broadcast LAN such as Ethernet. Specifically, we formalize various possible network attacks and outline methods of detecting them. Our basic strategy is to develop profiles of usage of network resources and then compare current usage patterns with the historical profile to determine possible security violations. Thus, our work is similar to the host-based intrusion-detection systems such as SRI's IDES. Different from such systems, however, is our use of a hierarchical model to refine the focus of the intrusion-detection mechanism. We also report on the development of our experimental LAN monitor currently under implementation. Several network attacks have been simulated and results on how the monitor has been able to detect these attacks are also analyzed. Initial results demonstrate that many network attacks are detectable with our monitor, although it can surely be defeated. Current work is focusing on the integration of network monitoring with host-based techniques. 20 refs., 2 figs.

  17. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOE Patents [OSTI]

    Martin, S.J.; Ricco, A.J.

    1993-08-10T23:59:59.000Z

    A chemical or intrinsic physical property sensor is described comprising: (a) a substrate; (b) an interaction region of said substrate where the presence of a chemical or physical stimulus causes a detectable change in the velocity and/or an attenuation of an acoustic wave traversing said region; and (c) a plurality of paired input and output interdigitated electrodes patterned on the surface of said substrate where each of said paired electrodes has a distinct periodicity, where each of said paired electrodes is comprised of an input and an output electrode; (d) an input signal generation means for transmitting an input signal having a distinct frequency to a specified input interdigitated electrode of said plurality so that each input electrode receives a unique input signal, whereby said electrode responds to said input signal by generating an acoustic wave of a specified frequency, thus, said plurality responds by generating a plurality of acoustic waves of different frequencies; (e) an output signal receiving means for determining an acoustic wave velocity and an amplitude of said acoustic waves at several frequencies after said waves transverses said interaction region and comparing these values to an input acoustic wave velocity and an input acoustic wave amplitude to produce values for perturbations in acoustic wave velocities and for acoustic wave attenuation as a function of frequency, where said output receiving means is individually coupled to each of said output interdigitated electrode; (f) a computer means for analyzing a data stream comprising information from said output receiving means and from said input signal generation means to differentiate a specified response due to a perturbation from a subsequent specified response due to a subsequent perturbation to determine the chemical or intrinsic physical properties desired.

  18. Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino

    E-Print Network [OSTI]

    Merlino, Robert L.

    Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino Department of Physics and Astronomy with their announcement that: "We find that a new type of sound wave, namely, the dust-acoustic waves, can appear" [1 and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some

  19. 15 Acoustic Daylight Imaging in the Michael J. Buckingham

    E-Print Network [OSTI]

    Buckingham, Michael

    15 Acoustic Daylight Imaging in the Ocean Michael J. Buckingham Scripps Institution of Oceanography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 15.4 Acoustic daylight images . . . . . . . . . . . . . . . . . . . . . . . . 420 15.5 Concluding. Sensors and Imaging ISBN 0­12­379771­3/$30.00 #12;416 15 Acoustic Daylight Imaging in the Ocean Acoustic

  20. Correlation time of ocean ambient noise intensity in San Diego Bay and target recognition in acoustic daylight images

    E-Print Network [OSTI]

    Wadsworth, Adam J.

    2010-01-01T23:59:59.000Z

    Intensity Data Chapter 3 Acoustic Daylight Image TargetC. L. Epifanio. Acoustic Daylight: Passive Acoustic ImagingRecognition in Acoustic Daylight Images A Thesis submitted

  1. Vertical vibration and shape oscillation of acoustically levitated water drops

    SciTech Connect (OSTI)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710072 (China)

    2014-09-08T23:59:59.000Z

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  2. Writing magnetic patterns with surface acoustic waves

    SciTech Connect (OSTI)

    Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi, E-mail: dhagat@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331 (United States)

    2014-05-07T23:59:59.000Z

    A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10??m wide stripes of alternating magnetization and a 3??m dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.

  3. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T. Tazwell (Livermore, CA); Keller, Jay O. (Oakland, CA)

    1989-01-01T23:59:59.000Z

    A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.

  4. Copper vapor laser acoustic thermometry system

    DOE Patents [OSTI]

    Galkowski, Joseph J. (Livermore, CA)

    1987-01-01T23:59:59.000Z

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  5. Total Energy Monitor

    SciTech Connect (OSTI)

    Friedrich, S

    2008-08-11T23:59:59.000Z

    The total energy monitor (TE) is a thermal sensor that determines the total energy of each FEL pulse based on the temperature rise induced in a silicon wafer upon absorption of the FEL. The TE provides a destructive measurement of the FEL pulse energy in real-time on a pulse-by-pulse basis. As a thermal detector, the TE is expected to suffer least from ultra-fast non-linear effects and to be easy to calibrate. It will therefore primarily be used to cross-calibrate other detectors such as the Gas Detector or the Direct Imager during LCLS commissioning. This document describes the design of the TE and summarizes the considerations and calculations that have led to it. This document summarizes the physics behind the operation of the Total Energy Monitor at LCLS and derives associated engineering specifications.

  6. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOE Patents [OSTI]

    Spates, J.J.; Martin, S.J.; Mansure, A.J.

    1997-08-26T23:59:59.000Z

    An acoustic-wave sensor apparatus and method are disclosed. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal microbalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recovery, transport, storage, refining and use of petroleum and petroleum-based products. 7 figs.

  7. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOE Patents [OSTI]

    Spates, James J. (Albuquerque, NM); Martin, Stephen J. (Albuquerque, NM); Mansure, Arthur J. (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    An acoustic-wave sensor apparatus and method. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal mircrobalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recover transport, storage, refining and use of petroleum and petroleum-based products.

  8. Description of Stellar Acoustic Modes Using the Local Wave Concept

    E-Print Network [OSTI]

    P. A. P. Nghiem

    2006-06-26T23:59:59.000Z

    An understanding of stellar acoustic oscillations is attempted, using the local wave concept in semi-analytical calculations. The local homogeneity approximation allows to obtain simplified equations that can nevertheless describe the wave behavior down to the central region, as the gravitational potential perturbation is not neglected. Acoustic modes are calculated as classical standing waves in a cavity, by determining the cavity limits and the wave phases at these limits. The internal boundary condition is determined by a fitting with an Airy function. The external boundary condition is defined as the limit where the spatial variation of the background is important compared to the wavelength. This overall procedure is in accordance with the JWKB approximation. When comparing the results with numerical calculations, some drawbacks of the isothermal atmosphere approximation are revealed. When comparing with seismic observations of the Sun, possible improvements at the surface of solar models are suggested. The present semi-analytical method can potentially predict eigenfrequencies at the precision of +-3microHz in the range 800-5600 microHz, for the degrees l=0-10. A numerical calculation using the same type of external boundary conditions could reach a global agreement with observations better than 1 microHz. This approach could contribute to better determine the absolute values of eigenfrequencies for asteroseismology.

  9. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    SciTech Connect (OSTI)

    Parra, J.O.

    2001-01-26T23:59:59.000Z

    The objective of this project was to develop an advanced imaging method, including pore scale imaging, to integrate magnetic resonance (MR) techniques and acoustic measurements to improve predictability of the pay zone in two hydrocarbon reservoirs. This was accomplished by extracting the fluid property parameters using MR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurements were compared with petrographic analysis results to determine the relative roles of petrographic elements such as porosity type, mineralogy, texture, and distribution of clay and cement in creating permeability heterogeneity.

  10. TEMPERATURE MONITORING OPTIONS AVAILABLE AT THE IDAHO NATIONAL LABORATORY ADVANCED TEST REACTOR

    SciTech Connect (OSTI)

    J.E. Daw; J.L. Rempe; D.L. Knudson; T. Unruh; B.M. Chase; K.L Davis

    2012-03-01T23:59:59.000Z

    As part of the Advanced Test Reactor National Scientific User Facility (ATR NSUF) program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced sensors for irradiation testing. To meet recent customer requests, an array of temperature monitoring options is now available to ATR users. The method selected is determined by test requirements and budget. Melt wires are the simplest and least expensive option for monitoring temperature. INL has recently verified the melting temperature of a collection of materials with melt temperatures ranging from 100 to 1000 C with a differential scanning calorimeter installed at INL’s High Temperature Test Laboratory (HTTL). INL encapsulates these melt wires in quartz or metal tubes. In the case of quartz tubes, multiple wires can be encapsulated in a single 1.6 mm diameter tube. The second option available to ATR users is a silicon carbide temperature monitor. The benefit of this option is that a single small monitor (typically 1 mm x 1 mm x 10 mm or 1 mm diameter x 10 mm length) can be used to detect peak irradiation temperatures ranging from 200 to 800 C. Equipment has been installed at INL’s HTTL to complete post-irradiation resistivity measurements on SiC monitors, a technique that has been found to yield the most accurate temperatures from these monitors. For instrumented tests, thermocouples may be used. In addition to Type-K and Type-N thermocouples, a High Temperature Irradiation Resistant ThermoCouple (HTIR-TC) was developed at the HTTL that contains commercially-available doped molybdenum paired with a niobium alloy thermoelements. Long duration high temperature tests, in furnaces and in the ATR and other MTRs, demonstrate that the HTIR-TC is accurate up to 1800 C and insensitive to thermal neutron interactions. Thus, degradation observed at temperatures above 1100 C with Type K and N thermocouples and decalibration due to transmutation with tungsten-rhenium and platinum rhodium thermocouples can be avoided. INL is also developing an Ultrasonic Thermometry (UT) capability. In addition to small size, UT’s offer several potential advantages over other temperature sensors. Measurements may be made near the melting point of the sensor material, potentially allowing monitoring of temperatures up to 3000 C. In addition, because no electrical insulation is required, shunting effects are avoided. Most attractive, however, is the ability to introduce acoustic discontinuities to the sensor, as this enables temperature measurements at several points along the sensor length. As discussed in this paper, the suite of temperature monitors offered by INL is not only available to ATR users, but also to users at other MTRs.

  11. Surface wave acoustics of granular packing under gravity

    SciTech Connect (OSTI)

    Clement, Eric; Andreotti, Bruno [PMMH, ESPCI, CNRS (UMR 7636) and Univ. Paris 6 and Paris 7, 10 rue Vauquelin, 75005 Paris (France); Bonneau, Lenaic [PMMH, ESPCI, CNRS (UMR 7636) and Univ. Paris 6 and Paris 7, 10 rue Vauquelin, 75005 Paris (France)

    2009-06-18T23:59:59.000Z

    Due to the non-linearity of Hertzian contacts, the speed of sound in granular matter increases with pressure. For a packing under gravity and in the presence of a free surface, bulk acoustic waves cannot propagate due to the inherent refraction toward the surface (the mirage effect). Thus, only modes corresponding to surface waves (Raleigh-Hertz modes) are able to propagate the acoustic signal. First, based on a non-linear elasticity model, we describe the main features associated to these surface waves. We show that under gravity, a granular packing is from the acoustic propagation point of view an index gradient waveguide that selects modes of two distinct families i.e. the sagittal and transverse waves localized in the vicinity of the free surface. A striking feature of these surface waves is the multi-modal propagation: for both transverse and sagittal waves, we show the existence of a infinite but discrete series of propagating modes. In each case, we determine the mode shape and and the corresponding dispersion relation. In the case of a finite size system, a geometric waveguide is superimposed to the index gradient wave guide. In this later case, the dispersion relations are modified by the appearance of a cut-off frequency that scales with depth. The second part is devoted to an experimental study of surface waves propagating in a granular packing confined in a long channel. This set-up allows to tune a monomodal emission by taking advantage of the geometric waveguide features combined with properly designed emitters. For both sagittal and transverses waves, we were able to isolate a single mode (the fundamental one) and to plot the dispersion relation. This measurements agree well with the Hertzian scaling law as predicted by meanfield models. Furthermore, it allows us to determine quantitatively relations on the elastic moduli. However, we observe that our data yield a shear modulus abnormally weak when compared to several meanfield predictions.

  12. Focused acoustic beam imaging of grain structure and local Young's modulus with Rayleigh and surface skimming longitudinal waves

    SciTech Connect (OSTI)

    Martin, R. W.; Sathish, S. [University of Dayton Research Institute, Structural Integrity Division 300 College Park Drive, Dayton, OH, 45469 (United States); Blodgett, M. P. [Air Force Research Lab, RXCA, Wright Patterson AFB, OH, 45433 (United States)

    2013-01-25T23:59:59.000Z

    The interaction of a focused acoustic beam with materials generates Rayleigh surface waves (RSW) and surface skimming longitudinal waves (SSLW). Acoustic microscopic investigations have used the RSW amplitude and the velocity measurements, extensively for grain structure analysis. Although, the presence of SSLW has been recognized, it is rarely used in acoustic imaging. This paper presents an approach to perform microstructure imaging and local elastic modulus measurements by combining both RSW and SSLW. The acoustic imaging of grain structure was performed by measuring the amplitude of RSW and SSLW signal. The microstructure images obtained on the same region of the samples with RSW and SSLW are compared and the difference in the contrast observed is discussed based on the propagation characteristics of the individual surface waves. The velocity measurements are determined by two point defocus method. The surface wave velocities of RSW and SSLW of the same regions of the sample are combined and presented as average Young's modulus image.

  13. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, L.C.; Simpson, M.L.

    1995-01-17T23:59:59.000Z

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  14. Milliwave melter monitoring system

    DOE Patents [OSTI]

    Daniel, William E. (North Augusta, SC); Woskov, Paul P. (Bedford, MA); Sundaram, Shanmugavelayutham K. (Richland, WA)

    2011-08-16T23:59:59.000Z

    A milliwave melter monitoring system is presented that has a waveguide with a portion capable of contacting a molten material in a melter for use in measuring one or more properties of the molten material in a furnace under extreme environments. A receiver is configured for use in obtaining signals from the melt/material transmitted to appropriate electronics through the waveguide. The receiver is configured for receiving signals from the waveguide when contacting the molten material for use in determining the viscosity of the molten material. Other embodiments exist in which the temperature, emissivity, viscosity and other properties of the molten material are measured.

  15. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, Lonnie C. (Powell, TN); Simpson, Marc L. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  16. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOE Patents [OSTI]

    Martin, Stephen J. (Albuquerque, NM); Ricco, Antonio J. (Albuquerque, NM)

    1993-01-01T23:59:59.000Z

    A chemical sensor (1) includes two or more pairs of interdigital electrodes (10) having different periodicities. Each pair is comprised of a first electrode (10a) and a second electrode (10b). The electrodes are patterned on a surface of a piezoelectric substrate (12). Each pair of electrodes may launch and receive various acoustic waves (AW), including a surface acoustic wave (SAW), and may also launch and receive several acoustic plate modes (APMs). The frequencies associated with each are functions of the transducer periodicity as well as the velocity of the particular AW in the chosen substrate material. An AW interaction region (13) exists between each pair of electrodes. Circuitry (20, 40) is used to launch, receive, and monitor the propagation characteristics of the AWs and may be configured in an intermittent measurement fashion or in a continuous measurement fashion. Perturbations to the AW velocity and attenuation are recorded at several frequencies and provide the sensor response.

  17. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOE Patents [OSTI]

    Kaduchak, Gregory; Ward, Michael D

    2014-10-21T23:59:59.000Z

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  18. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOE Patents [OSTI]

    Kaduchak, Gregory (Los Alamos, NM); Ward, Michael D. (Los Alamos, NM)

    2011-12-27T23:59:59.000Z

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  19. Review of structural health and cure monitoring techniques for large wind turbine P.J. Schubel*, R.J. Crossley, E.K.G. Boateng, J.R. Hutchinson

    E-Print Network [OSTI]

    McCalley, James D.

    Review Review of structural health and cure monitoring techniques for large wind turbine blades P October 2012 Keywords: SHM Structural health monitoring Wind turbine blade Composite materials Acoustic monitoring is presented for the wind turbine blade industry. A comparison is presented for dielectric

  20. Body monitoring and imaging apparatus and method

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-06-16T23:59:59.000Z

    A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a grating path. The pulses transmitted along the transmit path drive Oh impulse, generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. The impulse generator in the transmit path can be replaced with a pulsed RF generator. 13 figs.

  1. Body monitoring and imaging apparatus and method

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a gating path. The pulses transmitted along the transmit path drive an impulse generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung.

  2. Body monitoring and imaging apparatus and method

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-01-01T23:59:59.000Z

    A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a grating path. The pulses transmitted along the transmit path drive Oh impulse, generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. The impulse generator in the transmit path can be replaced with a pulsed RF generator.

  3. Body monitoring and imaging apparatus and method

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-11-12T23:59:59.000Z

    A non-acoustic pulse-echo radar monitor is employed in the repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that modulates an audio oscillator to produce a tone that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. The monitor converts the detected voltage to an audible signal with both amplitude modulation and Doppler effect. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a gating path. The pulses transmitted along the transmit path drive an impulse generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. 12 figs.

  4. L.L.Thompson: Finite element methods for acoustics, Preprint: J.Acoust.Soc.Am. A review of finite element methods for time-harmonic acoustics

    E-Print Network [OSTI]

    Thompson, Lonny L.

    L.L.Thompson: Finite element methods for acoustics, Preprint: J.Acoust.Soc.Am. A review of finite element methods for time-harmonic acoustics Lonny L. Thompson Department of Mechanical Engineering, Clemson University Clemson, South Carolina, 29634-0921, USA Email: lonny.thompson@ces.clemson.edu (Dated

  5. MACHINE MONITORING USING PROBABILITY THRESHOLDS

    E-Print Network [OSTI]

    Pollock, Stephen

    MACHINE MONITORING USING PROBABILITY THRESHOLDS AND SYSTEM OPERATING CHARACTERISTICS Stephen M and Jeffrey M. Alden G.M. R&D Center Warren, MI 48090 IOE Tech Report 95-14 #12;1. Introduction We a discrete-part production machine, with the objective of effectively determining when to shut the machine

  6. Synthesis of anisotropic swirling surface acoustic waves by inverse filter, towards integrated generators of acoustical vortices

    E-Print Network [OSTI]

    Riaud, Antoine; Charron, Eric; Bussonnière, Adrien; Matar, Olivier Bou

    2015-01-01T23:59:59.000Z

    From radio-electronics signal analysis to biological samples actuation, surface acoustic waves (SAW) are involved in a multitude of modern devices. Despite this versatility, SAW transducers developed up to date only authorize the synthesis of the most simple standing or progressive waves such as plane and focused waves. In particular, acoustical integrated sources able to generate acoustical vortices (the analogue of optical vortices) are missing. In this work, we propose a flexible tool based on inverse filter technique and arrays of SAW transducers enabling the synthesis of prescribed complex wave patterns at the surface of anisotropic media. The potential of this setup is illustrated by the synthesis of a 2D analog of 3D acoustical vortices, namely "swirling surface acoustic waves". Similarly to their 3D counterpart, they appear as concentric structures of bright rings with a phase singularity in their center resulting in a central dark spot. Swirling SAW can be useful in fragile sensors whose neighborhood...

  7. Method and apparatus of spectro-acoustically enhanced ultrasonic detection for diagnostics

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN); Norton, Stephen J. (Raleigh, NC)

    2001-01-01T23:59:59.000Z

    An apparatus for detecting a discontinuity in a material includes a source of electromagnetic radiation has a wavelength and an intensity sufficient to induce an enhancement in contrast between a manifestation of an acoustic property in the material and of the acoustic property in the discontinuity, as compared to when the material is not irradiated by the electromagnetic radiation. An acoustic emitter directs acoustic waves to the discontinuity in the material. The acoustic waves have a sensitivity to the acoustic property. An acoustic receiver receives the acoustic waves generated by the acoustic emitter after the acoustic waves have interacted with the material and the discontinuity. The acoustic receiver also generates a signal representative of the acoustic waves received by the acoustic receiver. A processor, in communication with the acoustic receiver and responsive to the signal generated by the acoustic receiver, is programmed to generate informational output about the discontinuity based on the signal generated by the acoustic receiver.

  8. Micromachined Optical and Acoustic Waveguide Systems for Advance Sensing and Imaging Applications

    E-Print Network [OSTI]

    Chang, Cheng-Chung

    2014-07-08T23:59:59.000Z

    it possible to utilize single-crystalline silicon as a structural material for acoustic wave propagation. It enables the development of high-performance integrated acoustic circuits and allows direct acoustic signal processing and control. The acoustic...

  9. Micromachined Optical and Acoustic Waveguide Systems for Advance Sensing and Imaging Applications 

    E-Print Network [OSTI]

    Chang, Cheng-Chung

    2014-07-08T23:59:59.000Z

    it possible to utilize single-crystalline silicon as a structural material for acoustic wave propagation. It enables the development of high-performance integrated acoustic circuits and allows direct acoustic signal processing and control. The acoustic...

  10. CX-010245: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Development of a 300 Degree, 200 Level, 3C Fiber Optic Downhole Seismic Receiver Array for Surveying and Monitoring of Geothermal Reservoirs CX(s) Applied:...

  11. CX-007886: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Development of a 300C, 200 level, 3C Fiber Optic Downhole Seismic Receiver Array for Surveying and Monitoring of Geothermal Reservoirs CX(s) Applied:...

  12. Stack Monitor Operating Experience Review

    SciTech Connect (OSTI)

    L. C. Cadwallader; S. A. Bruyere

    2009-05-01T23:59:59.000Z

    Stack monitors are used to sense radioactive particulates and gases in effluent air being vented from rooms of nuclear facilities. These monitors record the levels and types of effluents to the environment. This paper presents the results of a stack monitor operating experience review of the U.S. Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS) database records from the past 18 years. Regulations regarding these monitors are briefly described. Operating experiences reported by the U.S. DOE and in engineering literature sources were reviewed to determine the strengths and weaknesses of these monitors. Electrical faults, radiation instrumentation faults, and human errors are the three leading causes of failures. A representative “all modes” failure rate is 1E-04/hr. Repair time estimates vary from an average repair time of 17.5 hours (with spare parts on hand) to 160 hours (without spare parts on hand). These data should support the use of stack monitors in any nuclear facility, including the National Ignition Facility and the international ITER project.

  13. Dual excitation acoustic paramagnetic logging tool

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1989-01-01T23:59:59.000Z

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in gelogical formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleous present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described.

  14. Dual excitation acoustic paramagnetic logging tool

    DOE Patents [OSTI]

    Vail, W.B. III.

    1989-02-14T23:59:59.000Z

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be performed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described. 6 figs.

  15. Laser and acoustic lens for lithotripsy

    DOE Patents [OSTI]

    Visuri, Steven R. (Livermore, CA); Makarewicz, Anthony J. (San Ramon, CA); London, Richard A. (Orinda, CA); Benett, William J. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Da Silva, Luiz B. (Pleasanton, CA)

    2002-01-01T23:59:59.000Z

    An acoustic focusing device whose acoustic waves are generated by laser radiation through an optical fiber. The acoustic energy is capable of efficient destruction of renal and biliary calculi and deliverable to the site of the calculi via an endoscopic procedure. The device includes a transducer tip attached to the distal end of an optical fiber through which laser energy is directed. The transducer tip encapsulates an exogenous absorbing dye. Under proper irradiation conditions (high absorbed energy density, short pulse duration) a stress wave is produced via thermoelastic expansion of the absorber for the destruction of the calculi. The transducer tip can be configured into an acoustic lens such that the transmitted acoustic wave is shaped or focused. Also, compressive stress waves can be reflected off a high density/low density interface to invert the compressive wave into a tensile stress wave, and tensile stresses may be more effective in some instances in disrupting material as most materials are weaker in tension than compression. Estimations indicate that stress amplitudes provided by this device can be magnified more than 100 times, greatly improving the efficiency of optical energy for targeted material destruction.

  16. Sustainable Energy Solutions Task 2.0: Wind Turbine Reliability and Maintainability Enhancement through System-wide Structure Health Monitoring and Modifications to Rotating Components

    SciTech Connect (OSTI)

    Janet M Twomey, PhD

    2010-04-30T23:59:59.000Z

    EXECUTIVE SUMARRY An evaluation of nondestructive structural health monitoring methods was completed with over 132 documents, 37 specifically about wind turbines, summarized into a technology matrix. This matrix lists the technology, what can be monitored with this technology, and gives a short summary of the key aspects of the technology and its application. Passive and active acoustic emission equipment from Physical Acoustics Corp. and Acellent Technologies have been evaluated and selected for use in experimental state loading and fatigue tests of composite wind turbine blade materials. Acoustic Emission (AE) and Active Ultrasonic Testing (AUT), were applied to composite coupons with both simulated and actual damage. The results found that, while composites are more complicated in nature, compared to metallic structures, an artificial neural network analysis could still be used to determine damage. For the AE system, the failure mode could be determined (i.e. fiber breakage, delamination, etc.). The Acellent system has been evaluated to work well with composite materials. A test-rig for reliability testing of the rotating components was constructed. The research on the types of bearings used in the wind turbines indicated that in most of the designs, the main bearings utilized to support the shaft are cylindrical roller bearings. The accelerated degradation testing of a population of bearings was performed. Vibration and acoustic emission data was collected and analyzed in order to identify a representative degradation signal for each bearing to identify the initiation of the degradation process in the bearings. Afterwards, the RMS of the vibration signal from degradation initiation up to the end of the useful life of the bearing was selected to predict the remaining useful life of the bearing. This step included fitting Autoregressive Moving Average (ARMA) models to the degradation signals and approximating the probability distribution function (PDF) of remaining useful life based on the results of Monte-Carlo simulation of the ARMA models. This step was performed for different percentages of the degradation signal of each bearing. The accuracy of the proposed approach then was assessed by comparing the actual life of the bearing and the estimated life of the bearing from the developed models. The results were impressive and indicated that the accuracy of the models improved as more data was utilized in developing the ARMA models (we get closer to the end of the life of the bearing).

  17. Acoustic modes in combustors with complex impedances and multidimensional active

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Acoustic modes in combustors with complex impedances and multidimensional active flames F. Nicoud-acoustic modes in combustors. In the case of a non-isothermal reacting medium, the wave equation for the pressure

  18. Acoustic clouds: standing sound waves around a black hole analogue

    E-Print Network [OSTI]

    Carolina L. Benone; Luis C. B. Crispino; Carlos Herdeiro; Eugen Radu

    2015-01-28T23:59:59.000Z

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  19. Acoustic clouds: standing sound waves around a black hole analogue

    E-Print Network [OSTI]

    Benone, Carolina L; Herdeiro, Carlos; Radu, Eugen

    2014-01-01T23:59:59.000Z

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  20. Acoustic characteristics of bay bottom sediments in Lavaca Bay, TX

    E-Print Network [OSTI]

    Patch, Mary Catherine

    2005-08-29T23:59:59.000Z

    acoustic return of the bay bottom, and 2) strong, shallow reflectors??surface strong, mounds, buried strong, andburied multiples, which describe strong acoustic returns in the upper 5 m of stratigraphy. Within the lower package, four categories were...

  1. acoustic wave equation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    media Josselin Garnier in acoustics4,34 , and also in other domains, such as seismic wave propagation7,8,35 . Experimental observations show that the attenuation of acoustic waves...

  2. Acoustic measurement of the Deepwater Horizon Macondo well flow rate

    E-Print Network [OSTI]

    Camilli, Richard

    On May 31, 2010, a direct acoustic measurement method was used to quantify fluid leakage rate from the Deepwater Horizon Macondo well prior to removal of its broken riser. This method utilized an acoustic imaging sonar and ...

  3. Methods and apparatus for multi-parameter acoustic signature inspection

    DOE Patents [OSTI]

    Diaz, Aaron A. (Richland, WA); Samuel, Todd J. (Pasco, WA); Valencia, Juan D. (Kennewick, WA); Gervais, Kevin L. (Richland, WA); Tucker, Brian J. (Pasco, WA); Kirihara, Leslie J. (Richland, WA); Skorpik, James R. (Kennewick, WA); Reid, Larry D. (Benton City, WA); Munley, John T. (Benton City, WA); Pappas, Richard A. (Richland, WA); Wright, Bob W. (West Richland, WA); Panetta, Paul D. (Richland, WA); Thompson, Jason S. (Richland, WA)

    2007-07-24T23:59:59.000Z

    A multiparameter acoustic signature inspection device and method are described for non-invasive inspection of containers. Dual acoustic signatures discriminate between various fluids and materials for identification of the same.

  4. Hybrid percussion : extending physical instruments using sampled acoustics

    E-Print Network [OSTI]

    Aimi, Roberto Mario, 1973-

    2007-01-01T23:59:59.000Z

    This thesis presents a system architecture for creating hybrid digital-acoustic percussion instruments by combining extensions of existing signal processing techniques with specially-designed semi-acoustic physical ...

  5. Acoustic and Seismic Modalities for Unattended Ground Sensors

    SciTech Connect (OSTI)

    Elbring, G.J.; Ladd, M.D.; McDonald, T.S.; Sleefe, G.E.

    1999-03-31T23:59:59.000Z

    In this paper, we have presented the relative advantages and complementary aspects of acoustic and seismic ground sensors. A detailed description of both acoustic and seismic ground sensing methods has been provided. Acoustic and seismic phenomenology including source mechanisms, propagation paths, attenuation, and sensing have been discussed in detail. The effects of seismo-acoustic and acousto-seismic interactions as well as recommendations for minimizing seismic/acoustic cross talk have been highlighted. We have shown representative acoustic and seismic ground sensor data to illustrate the advantages and complementary aspects of the two modalities. The data illustrate that seismic transducers often respond to acoustic excitation through acousto-seismic coupling. Based on these results, we discussed the implications of this phenomenology on the detection, identification, and localization objectives of unattended ground sensors. We have concluded with a methodology for selecting the preferred modality (acoustic and/or seismic) for a particular application.

  6. Ultrafast photo-acoustic spectroscopy of super-cooled liquids

    E-Print Network [OSTI]

    Klieber, Christoph

    2010-01-01T23:59:59.000Z

    Picosecond laser ultrasonic techniques for acoustic wave generation and detection were adapted to probe longitudinal and transverse acoustic waves in liquids at gigahertz frequencies. The experimental effort was designed ...

  7. Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers

    E-Print Network [OSTI]

    Shen, Chen

    In this paper, we investigate a type of anisotropic, acoustic complementary metamaterial (CMM) and its application in restoring acoustic fields distorted by aberrating layers. The proposed quasi two-dimensional (2D), ...

  8. 13.811 Advanced Structural Dynamics and Acoustics, Spring 2004

    E-Print Network [OSTI]

    Schmidt, Henrik

    Foundations of 3D elasticity. Fluid and elastic wave equations. Elastic and plastic waves in rods and beams. Waves in plates. Interaction with an acoustic fluid. Dynamics and acoustics of cylindrical shells. Radiation and ...

  9. Whole facility energy use monitoring

    SciTech Connect (OSTI)

    Mazzucchi, R.P.; Jo, J.

    1989-05-01T23:59:59.000Z

    Pacific Northwest Laboratory (PNL) is conducting numerous field monitoring studies of the induces of energy in buildings. Energy use monitoring techniques have been developed to provide reliable empirical measurements of energy consumption according to enduse and time of day. These measurements are analyzed in conjunction with climate and site characteristics data to determine energy use efficiencies and identify energy conservation and load management opportunities. This paper draws upon this experience to advance an approach to minimize the cost and maximize the benefits of field data collection projects for entire facilities.

  10. Accelerated Analyte Uptake on Single Beads in Microliter-scale Batch Separations using Acoustic Streaming: Plutonium Uptake by Anion Exchange for Analysis by Mass Spectrometry

    SciTech Connect (OSTI)

    Paxton, Walter F.; O'Hara, Matthew J.; Peper, Shane M.; Petersen, Steven L.; Grate, Jay W.

    2008-06-01T23:59:59.000Z

    The use of acoustic streaming as a non-contact mixing platform to accelerate mass transport-limited diffusion processes in small volume heterogeneous reactions has been investigated. Single bead anion exchange of plutonium at nanomolar and sub-picomolar concentrations in 20 microliter liquid volumes was used to demonstrate the effect of acoustic mixing. Pu uptake rates on individual ~760 micrometer diameter AG 1x4 anion exchange resin beads were determined using acoustic mixing and compared with Pu uptake rates achieved by static diffusion alone. An 82 MHz surface acoustic wave (SAW) device was placed in contact with the underside of a 384-well microplate containing flat-bottomed semiconical wells. Acoustic energy was coupled into the solution in the well, inducing acoustic streaming. Pu uptake rates were determined by the plutonium remaining in solution after specific elapsed time intervals, using liquid scintillation counting (LSC) for nanomolar concentrations and thermal ionization mass spectrometry (TIMS) analysis for the sub-picomolar concentration experiments. It was found that this small batch uptake reaction could be accelerated by a factor of about five-fold or more, depending on the acoustic power applied.

  11. acoustical response: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 10 Sources of Wind Turbine Sound Massachusetts at Amherst, University of 195 Acoustic Laptops as a research...

  12. Oscillatory Flame Response in Acoustically Coupled Fuel Droplet Combustion

    E-Print Network [OSTI]

    Sevilla Esparza, Cristhian Israel

    2013-01-01T23:59:59.000Z

    acoustic excitation. The thermoacoustic instability fosteredgain motivation from thermoacoustic phenomena pervasive into the quantification of thermoacoustic instabil- ity in an

  13. An experimental and theoretical acoustic investigation of single disc propellers

    E-Print Network [OSTI]

    Bumann, Elizabeth Ann

    1988-01-01T23:59:59.000Z

    performance strip analysis which utilized a NACA 4-digit series airfoil data bank to calculate the lift and drag for each blade segment given the shape and motion of the propeller. A RPM range between 3500 and 7000 RPM in 250 increments was used for each... ACOUSTIC PREDICTION TECHNIQUES . . 4 Gutin Garrick and Watkins Lighthill's Acoustic Analogy Ffowcs - Williams and Hawkings Farassat Ha. nson Woan and Gregorek . 8 10 11 III ACOUSTIC COMPACT SOURCE THEOR'I Blade Element Theory Acoustic...

  14. Active micromixer using surface acoustic wave streaming

    DOE Patents [OSTI]

    Branch; Darren W. (Albuquerque, NM), Meyer; Grant D. (Ithaca, NY), Craighead; Harold G. (Ithaca, NY)

    2011-05-17T23:59:59.000Z

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  15. Terahertz inline wall thickness monitoring system for plastic pipe extrusion

    SciTech Connect (OSTI)

    Hauck, J., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Stich, D., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Heidemeyer, P., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Bastian, M., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Hochrein, T., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de [SKZ - German Plastics Center, Wuerzburg (Germany)

    2014-05-15T23:59:59.000Z

    Conventional and commercially available inline wall thickness monitoring systems for pipe extrusion are usually based on ultrasonic or x-ray technology. Disadvantages of ultrasonic systems are the usual need of water as a coupling media and the high damping in thick walled or foamed pipes. For x-ray systems special safety requirements have to be taken into account because of the ionizing radiation. The terahertz (THz) technology offers a novel approach to solve these problems. THz waves have many properties which are suitable for the non-destructive testing of plastics. The absorption of electrical isolators is typically very low and the radiation is non-ionizing in comparison to x-rays. Through the electromagnetic origin of the THz waves they can be used for contact free measurements. Foams show a much lower absorption in contrast to acoustic waves. The developed system uses THz pulses which are generated by stimulating photoconductive switches with femtosecond laser pulses. The time of flight of THz pulses can be determined with a resolution in the magnitude of several ten femtoseconds. Hence the thickness of an object like plastic pipes can be determined with a high accuracy by measuring the time delay between two reflections on materials interfaces e.g. at the pipe's inner and outer surface, similar to the ultrasonic technique. Knowing the refractive index of the sample the absolute layer thickness from the transit time difference can be calculated easily. This method in principle also allows the measurement of multilayer systems and the characterization of foamed pipes.

  16. A new acoustic three dimensional intensity and energy density probe

    E-Print Network [OSTI]

    Boyer, Edmond

    A new acoustic three dimensional intensity and energy density probe F. Aymea , C. Carioub , M is a great advantage. In this frame, a new intensity acoustic probe has been developed to compute acoustic quantities which can be input data for energetic identification methods. 1 Introduction Noise matters

  17. Wormhole-Resilient Secure Neighbor Discovery in Underwater Acoustic Networks

    E-Print Network [OSTI]

    Zhang, Rui

    ), Unmanned Underwater Vehicles (UUV), and surface stations, and nearby nodes communicate via acoustic ratherWormhole-Resilient Secure Neighbor Discovery in Underwater Acoustic Networks Rui Zhang and Yanchao in underwater acoustic networks (UANs) with floating node mobility. In hostile environments, neighbor discovery

  18. ACOUSTIC POLLUTION HOW HUMAN ACTIVITIES DISRUPT WILDLIFE COMMUNICATION

    E-Print Network [OSTI]

    Gray, Matthew

    4/17/2011 1 ACOUSTIC POLLUTION HOW HUMAN ACTIVITIES DISRUPT WILDLIFE COMMUNICATION Emily Hockman M of acoustic pollution in the oceans and effects on marine mammals Where do we go from here? #12;4/17/2011 2 ON ACOUSTIC POLLUTION Anthropogenic sound generation Transportation Army/Navy Research Commercial Birds

  19. Offices and dwellings: what building acoustics for sustainable development?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Offices and dwellings: what building acoustics for sustainable development? M. Asselineau, A.asselineau@peutz.fr Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France 3211 #12;Sustainability for sustainable projects as defined in the French standards, one specifically deals with acoustic comfort. Over

  20. Ion acoustic shock waves in degenerate plasmas

    SciTech Connect (OSTI)

    Akhtar, N. [Theoretical Plasma Physics Division, PINSTECH, Nilore, Islamabad 44000 Pakistan (Pakistan); Hussain, S. [Theoretical Plasma Physics Division, PINSTECH, Nilore, Islamabad 44000 Pakistan (Pakistan); Department of Physics and Applied Mathematics, PIEAS, Nilore, Islamabad 44000 Pakistan (Pakistan)

    2011-07-15T23:59:59.000Z

    Korteweg de Vries Burgers equation for negative ion degenerate dissipative plasma has been derived using reductive perturbation technique. The quantum hydrodynamic model is used to study the quantum ion acoustic shock waves. The effects of different parameters on quantum ion acoustic shock waves are studied. It is found that quantum parameter, electrons Fermi temperature, temperature of positive and negative ions, mass ratio of positive to negative ions, viscosity, and density ratio have significant impact on the shock wave structure in negative ion degenerate plasma.

  1. Acoustic probing of salt using sonar

    E-Print Network [OSTI]

    Butler, Kenneth Bryan

    1977-01-01T23:59:59.000Z

    , glycerine, and s1li cone oil provi ded satisfactory performance. In spite of these results, Gupta did not develop a workable means of us1ng 11quid coupl1ng media under mine condit1ons. In his field tests, Gupta used dental impression plaster (a coupling... acoustic pulses which are coupled 1nto the salt via a castor oil coupling medium. The acoustic source signa'i is a square-enveloped pulse of compress1onal waves; a pulse duration of e1ther 0. 3 ms or 1. 1 ms is used. The ranges to discontinuities...

  2. Acoustic microscope surface inspection system and method

    DOE Patents [OSTI]

    Khuri-Yakub, B.T.; Parent, P.; Reinholdtsen, P.A.

    1991-02-26T23:59:59.000Z

    An acoustic microscope surface inspection system and method are described in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respect to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations. 7 figures.

  3. Test plan for air monitoring during the Cryogenic Retrieval Demonstration

    SciTech Connect (OSTI)

    Yokuda, E.

    1992-06-01T23:59:59.000Z

    This report presents a test plan for air monitoring during the Cryogenic Retrieval Demonstration (CRD). Air monitors will be used to sample for the tracer elements neodymium, terbium, and ytterbium, and dysprosium. The results from this air monitoring will be used to determine if the CRD is successful in controlling dust and minimizing contamination. Procedures and equipment specifications for the test are included.

  4. Monitoring probe for groundwater flow

    DOE Patents [OSTI]

    Looney, B.B.; Ballard, S.

    1994-08-23T23:59:59.000Z

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  5. Monitoring probe for groundwater flow

    DOE Patents [OSTI]

    Looney, Brian B. (Aiken, SC); Ballard, Sanford (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

  6. Suncatcher monitoring project

    SciTech Connect (OSTI)

    Maeda, B.

    1980-01-01T23:59:59.000Z

    An intensive microcomputer-based energy monitoring project was conducted on a passively heated and cooled residence in Davis, California. The building performance was estimated in the design phase by both a simplified method and an hourly simulation. In the monitoring phase, more than 75 sensors, located in the building elements, interior spaces, appliances, and the ambient environment provide data about temperatures, energy use and radiation. These data are used to determine the actual solar system contributions, and to validate and improve design calculation tools. Information was gathered on the Suncatcher system for almost three years. Daily min/max temperatures inside and outside of the house and utility use have been reduced and analyzed. From these data we calculate the monthly net heating load and the percentage of that met by solar energy. To date, it has averaged 71%. Hourly data, gathered by the custom-made data acquisition system, show how daily temperature and radiation patterns change. Natural cooling supplied 100% of the cooling need. During the hot summers typical of the Davis area, the house has remained very comfortable virtually all of the time, except for two or three afternoons each summer, where temperatures reached a stuffy 83 or 84F. The other solar energy source, the solar hot water system, has provided 50 to 60% of the hot water needed by the residents, who use less domestic hot water than average.

  7. HP Steam Trap Monitoring

    E-Print Network [OSTI]

    Pascone, S.

    2011-01-01T23:59:59.000Z

    STEAM MONITORING HP Steam Trap Monitoring HP Steam Trap Monitoring ? 12-18 months payback! ? 3-5% permanent reduction in consumption ? LEED Pt.? Innovation in Operations EB O&M ? Saved clients over $1,000,000 Annual consumption... Steam Trap Monitoring ? Real-time monitoring for high-pressure critical traps (>15 PSIG) ? Average total system cost $25K - $50K ? Web-Based or Modbus/BMS Integration Basic Installation Wireless Signal Transmitter Receiver Repeater...

  8. Non-Riemannian geometry of vortex acoustics

    SciTech Connect (OSTI)

    Garcia de Andrade, L.C. [Departamento de Fisica Teorica, Instituto de Fisica, Universidade Estadual do Rio de Janeiro, Rua Sao Francisco Xavier 524, Maracana, 20550, Rio de Janeiro, RJ (Brazil)

    2004-09-15T23:59:59.000Z

    The concept of acoustic torsion is introduced by making use of the scalar wave equation in Riemann-Cartan spacetime. Acoustic torsion extends the acoustic metric previously given by Unruh (PRL-1981). The wave equation describes irrotational perturbations in rotational nonrelativistic fluids. This physical motivation allows us to show that the acoustic line element can be conformally mapped to the line element of a stationary torsion loop in non-Riemannian gravity. Two examples of such sonic analogues are given. The first is the stationary torsion loop in teleparallel gravity. In the far from the vortex approximation, the Cartan torsion vector is shown to be proportional to the quantum vortex number of the superfluid. The torsion vector is also shown to be proportional to the superfluid vorticity in the presence of vortices. The formation of superfluid vortices is shown not to be favored by torsion loops in Riemann-Cartan spacetime, as long as this model is concerned. It is suggested that the teleparallel model may help to find a model for superfluid neutron stars vortices based on non-Riemannian gravity.

  9. Ocean Climate Change: Comparison of Acoustic

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Ocean Climate Change: Comparison of Acoustic Tomography, Satellite Altimetry, and Modeling The ATOC to thermal expansion. Interpreting climate change signals from fluctuations in sea level is therefore in the advective heat flux. Changes in oceanic heat storage are a major expected element of future climate shifts

  10. Cylinder monitoring program

    SciTech Connect (OSTI)

    Alderson, J.H. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31T23:59:59.000Z

    Cylinders containing depleted uranium hexafluoride (UF{sub 6}) in storage at the Department of Energy (DOE) gaseous diffusion plants, managed by Martin Marietta Energy Systems, Inc., are being evaluated to determine their expected storage life. Cylinders evaluated recently have been in storage service for 30 to 40 years. In the present environment, the remaining life for these storage cylinders is estimated to be 30 years or greater. The group of cylinders involved in recent tests will continue to be monitored on a periodic basis, and other storage cylinders will be observed as on a statistical sample population. The program has been extended to all types of large capacity UF{sub 6} cylinders.

  11. Experimental observation of acoustic sub-harmonic diffraction by a grating

    SciTech Connect (OSTI)

    Liu, Jingfei, E-mail: benjamin.jf.liu@gatech.edu; Declercq, Nico F., E-mail: declercqdepatin@gatech.edu [Laboratory for Ultrasonic Nondestructive Evaluation “LUNE,” Georgia Tech Lorraine, Georgia Tech-CNRS UMI2958, Georgia Institute of Technology, 2, rue Marconi, Metz 57070 (France)

    2014-06-28T23:59:59.000Z

    A diffraction grating is a spatial filter causing sound waves or optical waves to reflect in directions determined by the frequency of the waves and the period of the grating. The classical grating equation is the governing principle that has successfully described the diffraction phenomena caused by gratings. However, in this work, we show experimental observation of the so-called sub-harmonic diffraction in acoustics that cannot be explained by the classical grating equation. Experiments indicate two physical phenomena causing the effect: internal scattering effects within the corrugation causing a phase shift and nonlinear acoustic effects generating new frequencies. This discovery expands our current understanding of the diffraction phenomenon, and it also makes it possible to better design spatial diffraction spectra, such as a rainbow effect in optics with a more complicated color spectrum than a traditional rainbow. The discovery reveals also a possibly new technique to study nonlinear acoustics by exploitation of the natural spatial filtering effect inherent to an acoustic diffraction grating.

  12. Effects of passing energetic particles on geodesic acoustic mode

    SciTech Connect (OSTI)

    Ren, Haijun, E-mail: hjren@ustc.edu.cn; Dong, Chao [Department of Modern Physics, The Collaborative Innovation Center for Advanced Fusion Energy and Plasma Science, University of Science and Technology of China, Hefei 230026 (China)

    2014-10-15T23:59:59.000Z

    Effects of passing energetic particles on geodesic acoustic modes (GAMs) are investigated using the hybrid kinetic-fluid model. The local dispersion relation of GAM is derived by adopting the equilibrium distribution function for slowing-down energetic ions with a single pitch angle. The dependence of the distribution function on the poloidal angle is first taken into account and shows to play a crucial role in determining the instability criterion as well as the frequency of GAM, although the poloidal asymmetry is of order O(?). A high frequency branch of GAM resonantly excited is always stable, and a low frequency branch could be unstable. The case of zero pitch angle is specifically discussed. This case is always responsible for stable modes when disregarding the poloidal asymmetry, but can be unstable when the poloidal asymmetry is considered.

  13. Improved Bacterial and Viral Recoveries from 'Complex' Samples using Electrophoretically Assisted Acoustic Focusing

    SciTech Connect (OSTI)

    Ness, K; Rose, K; Jung, B; Fisher, K; Mariella, Jr., R P

    2008-03-27T23:59:59.000Z

    Automated front-end sample preparation technologies can significantly enhance the sensitivity and reliability of biodetection assays [1]. We are developing advanced sample preparation technologies for biowarfare detection and medical point-of-care diagnostics using microfluidic systems with continuous sample processing capabilities. Here we report an electrophoretically assisted acoustic focusing technique to rapidly extract and enrich viral and bacterial loads from 'complex samples', applied in this case to human nasopharyngeal samples as well as simplified surrogates. The acoustic forces capture and remove large particles (> 2 {micro}m) such as host cells, debris, dust, and pollen from the sample. We simultaneously apply an electric field transverse to the flow direction to transport small ({le} 2 {micro}m), negatively-charged analytes into a separate purified recovery fluid using a modified H-filter configuration [Micronics US Patent 5,716,852]. Hunter and O'Brien combined transverse electrophoresis and acoustic focusing to measure the surface charge on large particles, [2] but to our knowledge, our work is the first demonstration combining these two techniques in a continuous flow device. Marina et al. demonstrated superimposed dielectrophoresis (DEP) and acoustic focusing for enhanced separations [3], but these devices have limited throughput due to the rapid decay of DEP forces. Both acoustic standing waves and electric fields exert significant forces over the entire fluid volume in microchannels, thus allowing channels with larger dimensions (> 100 {micro}m) and high throughputs (10-100 {micro}L/min) necessary to process real-world volumes (1 mL). Previous work demonstrated acoustic focusing of microbeads [4] and biological species [5] in various geometries. We experimentally characterized our device by determining the biological size-cutoff where acoustic radiation pressure forces no longer transport biological particles. Figure 1 shows images of E.Coli ({approx}1 {micro}m) and yeast ({approx}4-5 {micro}m) flowing in a microchannel (200 {micro}m deep, 500 {micro}m wide) at a flow rate of 10 {micro}L/min. The E.Coli does not focus in the acoustic field while the yeast focuses at the channel centerline. This result suggests the acoustic size-cutoff for biological particles in our device lies between 2 and 3 {micro}m. Transverse electrophoresis has been explored extensively in electric field flow fractionation [6] and isoelectric focusing devices [7]. We demonstrated transverse electrophoretic transport of a wide variety of negatively-charged species, including fluorophores, beads, viruses, E.Coli, and yeast. Figure 2 shows the electromigration of a fluorescently labeled RNA virus (MS2) from the lower half of the channel to the upper half region with continuous flow. We demonstrated the effectiveness of our electrophoretically assisted acoustic focusing device by separating virus-like particles (40 nm fluorescent beads, selected to aid in visualization) from a high background concentration of yeast contaminants (see Figure 3). Our device allows for the efficient recovery of virus into a pre-selected purified buffer while background contaminants are acoustically captured and removed. We also tested the device using clinical nasopharyngeal samples, both washes and lavages, and demonstrated removal of unknown particulates (>2 ?m size) from the sample. Our future research direction includes spiking known amounts of bacteria and viruses into clinical samples and performing quantitative off-chip analysis (real-time PCR and flow cytometry).

  14. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2005-08-01T23:59:59.000Z

    A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. A year into the life of this cooperative agreement, we note the following achievements: (1) Progress on the vertical line array (VLA) of sensors: (A) Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, (B) Cabling upgrade to allow installation of positioning sensors, (C) Adaptation of SDI's Angulate program to use acoustic slant ranges and DGPS data to compute and map the bottom location of the vertical array, (D) Progress in T''0'' delay and timing issues for improved control in data recording, (E) Successful deployment and recovery of the VLA twice during an October, 2003 cruise, once in 830m water, once in 1305m water, (F) Data collection and recovery from the DATS data logger, (G) Sufficient energy supply and normal functioning of the pressure compensated battery even following recharge after the first deployment, (H) Survival of the acoustic modem following both deployments though it was found to have developed a slow leak through the transducer following the second deployment due, presumably, to deployment in excess of 300m beyond its rating. (2) Progress on the Sea Floor Probe: (A) The Sea Floor Probe and its delivery system, the Multipurpose sled have been completed, (B) The probe has been modified to penetrate the <1m blanket of hemipelagic ooze at the water/sea floor interface to provide the necessary coupling of the accelerometer with the denser underlying sediments, (C) The MPS has been adapted to serve as an energy source for both p- and s-wave studies at the station as well as to deploy the horizontal line arrays and the SFP. (3) Progress on the Electromagnetic Bubble Detector and Counter: (A) Components for the prototype have been assembled, including a dedicated microcomputer to control power, readout and logging of the data, all at an acceptable speed, (B) The prototype has been constructed and preliminary data collected, (C) The construction of the field system is underway. (4) Progress on the Acoustic Systems for Monitoring Gas Hydrates: (A) Video recordings of bubbles emitted from a seep in Mississippi Canyon have been made from a submersible dive and the bubbles analyzed with respect to their size, number, and rise rate. These measurements have been used to determine the parameters to build the system capable of measuring gas escaping at the site of the monitoring station, (B) Laboratory tests performed using the project prototype have produced a conductivity data set that is being used to refine parameters of the field model. (5) Progress on the Mid-Infrared Sensor for Continuous Methane Monitoring: (A) Preliminary designs of mounting pieces for electrical components of ''sphereIR'' have been completed using AutoCAD software, (B) The preliminary design of an electronics baseplate has been completed and aided in the optimization of

  15. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, Lyle W. (Albuquerque, NM)

    1985-01-01T23:59:59.000Z

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  16. APS Building Monitors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Monitors For non-401 Building Monitors, select: LOMs Other APS Buildings 401 West WCtr Lab Wing ECtr East 5th Floor Yiying Ge na na na na 4th Floor Rick Fenner Karen...

  17. Corrosion monitoring apparatus

    DOE Patents [OSTI]

    Isaacs, Hugh S. (Shoreham, NY); Weeks, John R. (Stony Brook, NY)

    1980-01-01T23:59:59.000Z

    A corrosion monitoring device in an aqueous system which includes a formed crevice and monitoring the corrosion of the surfaces forming the crevice by the use of an a-c electrical signal.

  18. Acoustic data transmission through a drillstring

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    1992-01-01T23:59:59.000Z

    A method and apparatus for acoustically transmitting data along a drillstring is presented. In accordance with one embodiment of the present invention, acoustic data signals are conditioned to counteract distortions caused by the drillstring. Preferably, this conditioning step comprises multiplying each frequency component of the data signal by exp (-ikL) where L is the transmission length of the drillstring, k is the wave number in the drillstring at the frequency of each component and i is (-1).sup.1/2. In another embodiment of this invention, data signals having a frequency content in at least one passband of the drillstring are generated preferably traveling in only one direction (e.g., up the drillstring) while echoes in the drillstring resulting from the data transmission are suppressed.

  19. Acoustic data transmission through a drillstring

    DOE Patents [OSTI]

    Drumheller, D.S.

    1992-07-07T23:59:59.000Z

    A method and apparatus for acoustically transmitting data along a drillstring are presented. In accordance with one embodiment of the present invention, acoustic data signals are conditioned to counteract distortions caused by the drillstring. Preferably, this conditioning step comprises multiplying each frequency component of the data signal by exp ([minus]ikL) where L is the transmission length of the drillstring, k is the wave number in the drillstring at the frequency of each component and i is ([minus]1)[sup 1/2]. In another embodiment of this invention, data signals having a frequency content in at least one passband of the drillstring are generated preferably traveling in only one direction (e.g., up the drillstring) while echoes in the drillstring resulting from the data transmission are suppressed. 20 figs.

  20. Pulse combusted acoustic agglomeration apparatus and process

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1993-01-01T23:59:59.000Z

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance bimodal agglomeration of particulates which may be collected and removed using a conventional separation apparatus. A particulate having a size different from the size of the particulate in the gas stream to be cleaned is introduced into the system to effectuate the bimodal process. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, the added particulate may be a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  1. Pulse combusted acoustic agglomeration apparatus and process

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD); Chandran, Ravi (Ellicott City, MD)

    1994-01-01T23:59:59.000Z

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance agglomeration of particulates which may be collected and removed using a conventional separation apparatus. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, added particulates may include a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  2. Electromagnetic effects on geodesic acoustic modes

    SciTech Connect (OSTI)

    Bashir, M. F., E-mail: frazbashir@yahoo.com [Salam Chair in Physics, G. C. University Lahore, Katchery Road, Lahore 54000 (Pakistan); Department of Physics, G. C. University Lahore, Katchery Road, Lahore 54000 (Pakistan); Smolyakov, A. I. [University of Saskatchewan, 116 Science Place, Saskatoon S7N 5E2 (Canada); Institute of Tokamak Physics, NRC “Kurchatov Institute,” 123182 Moscow (Russian Federation); Elfimov, A. G. [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil); Melnikov, A. V. [Institute of Tokamak Physics, NRC “Kurchatov Institute,” 123182 Moscow (Russian Federation); National Research Nuclear University MEPhI, 115409, Moscow (Russian Federation); Murtaza, G. [Visiting Professor, Department of Physics, Quaid-e-Azam University, Islamabad (Pakistan)

    2014-08-15T23:59:59.000Z

    By using the full electromagnetic drift kinetic equations for electrons and ions, the general dispersion relation for geodesic acoustic modes (GAMs) is derived incorporating the electromagnetic effects. It is shown that m?=?1 harmonic of the GAM mode has a finite electromagnetic component. The electromagnetic corrections appear for finite values of the radial wave numbers and modify the GAM frequency. The effects of plasma pressure ?{sub e}, the safety factor q, and the temperature ratio ? on GAM dispersion are analyzed.

  3. Underwater Acoustic Detection of Ultra High Energy Neutrinos

    E-Print Network [OSTI]

    V. Niess; V. Bertin

    2006-04-21T23:59:59.000Z

    We investigate the acoustic detection method of 10^18-20 eV neutrinos in a Mediterranean Sea environment. The acoustic signal is re-evaluated according to dedicated cascade simulations and a complex phase dependant absorption model, and compared to previous studies. We detail the evolution of the acoustic signal as function of the primary shower characteristics and of the acoustic propagation range. The effective volume of detection for a single hydrophone is given taking into account the limitations due to sea bed and surface boundaries as well as refraction effects. For this 'benchmark detector' we present sensitivity limits to astrophysical neutrino fluxes, from which sensitivity bounds for a larger acoustic detector can be derived. Results suggest that with a limited instrumentation the acoustic method would be more efficient at extreme energies, above 10^20 eV.

  4. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers

    E-Print Network [OSTI]

    Baresch, Diego; Marchiano, Régis

    2014-01-01T23:59:59.000Z

    The ability to manipulate matter precisely is critical for the study and development of a large variety of systems. Optical tweezers are excellent tools to handle particles ranging in size from a few micrometers to hundreds of nanometers but become inefficient and damaging on larger objects. We demonstrate for the first reported time the trapping of elastic particles by the large gradient force of a single acoustical beam in three dimensions. We show that at equal power, acoustical forces overtake by 8 orders of magnitude that of optical ones on macroscopic objects. Acoustical tweezers can push, pull and accurately control both the position of the particle and the forces exerted under damage-free conditions. The large spectrum of frequencies covered by coherent ultrasonic sources will provide a wide variety of manipulation possibilities from macro- to microscopic length scales. We believe our observations improve the prospects for wider use of non-contact manipulation in biology, biophysics, microfluidics and...

  5. Seismic Imaging and Monitoring

    SciTech Connect (OSTI)

    Huang, Lianjie [Los Alamos National Laboratory

    2012-07-09T23:59:59.000Z

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  6. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2008-03-12T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problems; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) explains the rationale and design criteria for the environmental monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document changes in the environmental monitoring program. Guidance for preparation of EMPs is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  7. Scanning acoustic microscopy for mapping the microstructure of soft materials

    E-Print Network [OSTI]

    N. G. Parker; M. J. W. Povey

    2009-04-30T23:59:59.000Z

    Acoustics provides a powerful modality with which to 'see' the mechanical properties of a wide range of elastic materials. It is particularly adept at probing soft materials where excellent contrast and propagation distance can be achieved. We have constructed a scanning acoustic microscope capable of mapping the microstructure of such materials. We review the general principles of scanning acoustic microscopy and present new examples of its application in imaging biological matter, industrial materials and particulate systems.

  8. Electret Acoustic Transducer Array For Computerized Ultrasound Risk Evaluation System

    DOE Patents [OSTI]

    Moore, Thomas L. (Livermore, CA); Fisher, Karl A. (Brentwood, CA)

    2005-08-09T23:59:59.000Z

    An electret-based acoustic transducer array is provided and may be used in a system for examining tissue. The acoustic transducer array is formed with a substrate that has a multiple distinct cells formed therein. Within each of the distinct cells is positioned an acoustic transducing element formed of an electret material. A conductive membrane is formed over the distinct cells and may be flexible.

  9. Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Holland, R.C. [Science Applications International Corp., San Diego, CA (United States)

    1993-07-01T23:59:59.000Z

    This Environmental Monitoring Plan was written to fulfill the requirements of Department of Energy (DOE) Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories/California. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. This revision to the Environmental Monitoring Plan was written to document the changes made to the Monitoring Program during 1992. Some of the data (most notably the statistical analyses of past monitoring data) has not been changed.

  10. Argon–oxygen dc magnetron discharge plasma probed with ion acoustic waves

    SciTech Connect (OSTI)

    Saikia, Partha, E-mail: partha.008@gmail.com; Saikia, Bipul Kumar; Goswami, Kalyan Sindhu [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur, Kamrup, Assam 782 402 (India); Phukan, Arindam [Madhabdev College, Narayanpur, Lakhimpur, Assam 784164 (India)

    2014-05-15T23:59:59.000Z

    The precise determination of the relative concentration of negative ions is very important for the optimization of magnetron sputtering processes, especially for those undertaken in a multicomponent background produced by adding electronegative gases, such as oxygen, to the discharge. The temporal behavior of an ion acoustic wave excited from a stainless steel grid inside the plasma chamber is used to determine the relative negative ion concentration in the magnetron discharge plasma. The phase velocity of the ion acoustic wave in the presence of negative ions is found to be faster than in a pure argon plasma, and the phase velocity increases with the oxygen partial pressure. Optical emission spectroscopy further confirms the increase in the oxygen negative ion density, along with a decrease in the argon positive ion density under the same discharge conditions. The relative negative ion concentration values measured by ion acoustic waves are compared with those measured by a single Langmuir probe, and a similarity in the results obtained by both techniques is observed.

  11. acoustical engineering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electricity Thermoacoustic Energy Conversion Waste or prime heat soundThermoacoustic Stirling Engine -- An acoustic amplifier: ambient heat exchanger (water) stacked Lee, Dongwon...

  12. acoustic field application: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INVERSION FOR STATIC AND DYNAMIC CHARACTERIZATION OF A CO2 EOR PROJECT, POSTLE FIELD, OKLAHOMA by Alana Robinson 12;ii 12;iii ABSTRACT Seismic inversion for acoustic...

  13. Independent trapping and manipulation of microparticles using dexterous acoustic tweezers

    SciTech Connect (OSTI)

    Courtney, Charles R. P., E-mail: c.r.p.courtney@bath.ac.uk [Department of Mechanical Engineering, University of Bath, Bath (United Kingdom); Demore, Christine E. M.; Wu, Hongxiao; Cochran, Sandy [Institute of Medical Science and Technology, University of Dundee, Dundee (United Kingdom); Grinenko, Alon; Wilcox, Paul D.; Drinkwater, Bruce W. [Department of Mechanical Engineering, University of Bristol, Bristol (United Kingdom)

    2014-04-14T23:59:59.000Z

    An electronically controlled acoustic tweezer was used to demonstrate two acoustic manipulation phenomena: superposition of Bessel functions to allow independent manipulation of multiple particles and the use of higher-order Bessel functions to trap particles in larger regions than is possible with first-order traps. The acoustic tweezers consist of a circular 64-element ultrasonic array operating at 2.35?MHz which generates ultrasonic pressure fields in a millimeter-scale fluid-filled chamber. The manipulation capabilities were demonstrated experimentally with 45 and 90-?m-diameter polystyrene spheres. These capabilities bring the dexterity of acoustic tweezers substantially closer to that of optical tweezers.

  14. acoustically driven microcentrifugation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The (more) Philips, Scott M., 1980- 2007-01-01 9 Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics CiteSeer Summary: This article reviews...

  15. acoustic wave total: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Access Theses and Dissertations Summary: ??Surface acoustic wave-based (SAW) microfluidics attracts attention from microfluidic research community due to its simple...

  16. Data Mining Applied to Acoustic Bird Species Recognition

    E-Print Network [OSTI]

    Vilches, Erika; Escobar, Ivan A.; Vallejo, E E; Taylor, C E

    2006-01-01T23:59:59.000Z

    I. ; Frank, E. ; Data Mining: Practical Machine LearningData Mining Applied to Acoustic Bird Species Recognitionthe application of data mining techniques to the problem of

  17. acoustic wave secondary: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the deep ocean, they are refracted by inhomogeneities Tomsovic, Steve 10 Unidirectional propagation of designer surface acoustic waves CERN Preprints Summary: We propose an...

  18. acoustic sources numerical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solitons CERN Preprints Summary: Acoustic solitons can be obtained by considering the propagation of large amplitude sound waves across a set of Helmholtz resonators. The model...

  19. acoustic wave atomization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of fluid and acoustic computations, hybrid methodologies still Kohlenbach, Ulrich 12 Propagation of atomic matter waves inside an atom wave guide Quantum Physics (arXiv)...

  20. acoustic wave chemical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the deep ocean, they are refracted by inhomogeneities Tomsovic, Steve 11 Unidirectional propagation of designer surface acoustic waves CERN Preprints Summary: We propose an...

  1. acoustic gravity waves: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the deep ocean, they are refracted by inhomogeneities Tomsovic, Steve 29 Unidirectional propagation of designer surface acoustic waves CERN Preprints Summary: We propose an...

  2. acoustic solitary waves: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dust acoustic solitary waves in a dusty plasma CERN Preprints Summary: The excitation and propagation of finite amplitude low frequency solitary waves are investigated in an Argon...

  3. acoustic wave actuated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the deep ocean, they are refracted by inhomogeneities Tomsovic, Steve 17 Unidirectional propagation of designer surface acoustic waves CERN Preprints Summary: We propose an...

  4. acoustic waves: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the deep ocean, they are refracted by inhomogeneities Tomsovic, Steve 9 Unidirectional propagation of designer surface acoustic waves CERN Preprints Summary: We propose an...

  5. acoustic wave induced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inside the drop. Brunet, P; Matar, O Bou; Zoueshtiagh, F 2010-01-01 5 Unidirectional propagation of designer surface acoustic waves CERN Preprints Summary: We propose an...

  6. acoustic phonon scattering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    type of phononic crystals manufactured Institute of Physics. DOI: 10.10631.2167794 The propagation of acoustic waves in periodic composite Deymier, Pierre 19 Carrier and Phonon...

  7. acoustic wave sensing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the deep ocean, they are refracted by inhomogeneities Tomsovic, Steve 12 Unidirectional propagation of designer surface acoustic waves CERN Preprints Summary: We propose an...

  8. acoustic wave vapor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the deep ocean, they are refracted by inhomogeneities Tomsovic, Steve 9 Unidirectional propagation of designer surface acoustic waves CERN Preprints Summary: We propose an...

  9. acoustic wave integrated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the deep ocean, they are refracted by inhomogeneities Tomsovic, Steve 17 Unidirectional propagation of designer surface acoustic waves CERN Preprints Summary: We propose an...

  10. acoustic wave oxygen: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the deep ocean, they are refracted by inhomogeneities Tomsovic, Steve 9 Unidirectional propagation of designer surface acoustic waves CERN Preprints Summary: We propose an...

  11. acoustic wave biosensor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the deep ocean, they are refracted by inhomogeneities Tomsovic, Steve 11 Unidirectional propagation of designer surface acoustic waves CERN Preprints Summary: We propose an...

  12. acoustic cavitation bubble: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G. Simon; M. T. Levinsen 2002-09-11 204 Analytical and experimental investigations of gas turbine model combustor acoustics operated at atmospheric pressure Physics Websites...

  13. acoustic emission characterization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  14. acoustic emission weld: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  15. acoustic emission characteristics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  16. acoustic emission tests: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  17. acoustic emission analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  18. acoustic experience shapes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  19. acoustic emission study: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  20. acoustic emission signal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  1. alloy acoustic emission: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  2. active acoustic emission: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  3. acoustic emission studies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  4. acoustic propagation experiment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  5. acoustic emission sensors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  6. acoustic emission spectroscopy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  7. acoustic emission sensor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  8. acoustic emissions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  9. acoustic emission signals: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  10. acoustic emission parameters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  11. acoustic emission: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  12. acoustic emission testing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  13. acoustic emission techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  14. acoustic emission method: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  15. acoustic emission technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  16. acoustic cardiographic assessment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  17. acoustic emission technique: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods such as acoustic emission as a global method associated to a local method such as TOFD technique which permits an accurate characterization and precise sizing of flaw...

  18. Finite Element Methods for Nonlinear Acoustics in Fluids

    E-Print Network [OSTI]

    The non- linear terms in these wave equations imply that the sound speed ... ics, the finite element formulation of nonlinear acoustic equations for fluids has.

  19. acoustic wave devices: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Baron, G. Martin, T. Laroche, and S. Ballandras FEMTO Paris-Sud XI, Universit de 7 Design and Fabrication of Acoustic Wave Actuated Microgenerator for Portable Electronic...

  20. acoustic wave device: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Baron, G. Martin, T. Laroche, and S. Ballandras FEMTO Paris-Sud XI, Universit de 7 Design and Fabrication of Acoustic Wave Actuated Microgenerator for Portable Electronic...

  1. acoustic source localization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dan 113 2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2011, New Paltz, NY INFORMED SOURCE SEPARATION: UNDERDETERMINED SOURCE SIGNAL...

  2. acoustic environments prediction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1998, 2001 production by small animals limit the efficiency of sound communication (Bennet-Clark, 1998; Larsen Elias, Damian Octavio 135 Acoustic Source Localization Using the...

  3. acoustic wave properties: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1998, 2001 production by small animals limit the efficiency of sound communication (Bennet-Clark, 1998; Larsen Elias, Damian Octavio 136 Effect of drift-acoustic waves on...

  4. acoustic mate recognition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    occurs when an expected phone is pronounced as a different one, which leads to erroneous recognition. Acoustic confusion occurs when the pronounced phone is found to lie...

  5. acoustic streaming devices: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    frequency and the acoustic contrast factor, while it is inversely proportional to the kinematic viscosity. Barnkob, Rune; Laurell, Thomas; Bruus, Henrik 2012-01-01 27...

  6. acoustic power absorption: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The distribution of acoustic power over sunspots shows an enhanced absorption near the umbra--penumbra boundary. Earlier studies revealed that the region of enhanced absorption...

  7. acoustic field evaluation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The distribution of acoustic power over sunspots shows an enhanced absorption near the umbra--penumbra boundary. Earlier studies revealed that the region of enhanced absorption...

  8. acoustic field produced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The distribution of acoustic power over sunspots shows an enhanced absorption near the umbra--penumbra boundary. Earlier studies revealed that the region of enhanced absorption...

  9. acoustic focusing devices: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in suitable environment, therefore to produce maximum efficiency. In this paper, we present an acoustic wave actuated micro-generator for power system by using the energy of...

  10. acoustic particle manipulator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fields. Two types of manipulations are considered: (1) front-pushing, where the micro-robot pushes Sitti, Metin 38 Particle Filter Design using Importance Sampling for Acoustic...

  11. acoustic doppler current: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Vibro-Acoustic Heart Signals: Correlation. In this work, heart sounds, apical pulse, and arterial pulse signals were simultaneously acquired, along analysis of...

  12. acoustic space development: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    paper Liu, Yijun 10 ACOUSTIC SPACE DIMENSIONALITY SELECTION AND COMBINATION USING THE MAXIMUM ENTROPY PRINCIPLE Computer Technologies and Information Sciences Websites Summary:...

  13. acoustic testing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sets in the field cricket genus Robillard, Tony 3 EXPERIMENTAL TESTING OF THE BLIND OCEAN ACOUSTIC TOMOGRAPHY CONCEPT Engineering Websites Summary: EXPERIMENTAL TESTING OF THE...

  14. Soundfield simulation : the prediction and validation of acoustical behavior with compute models

    E-Print Network [OSTI]

    Saad, Omar, 1974-

    2004-01-01T23:59:59.000Z

    In the past, acoustical consultants could only try to convince the client/architect that with calculations and geometrical plots they could create an acoustically superb space. Now, by modeling the significant acoustical ...

  15. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival Proportions at John Day Dam, 2009

    SciTech Connect (OSTI)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Deng, Zhiqun; Fu, Tao; Kim, Jin A.; Johnson, Gary E.; Fischer, Eric S.; Khan, Fenton; Zimmerman, Shon A.; Faber, Derrek M.; Carter, Kathleen M.; Boyd, James W.; Townsend, Richard L.; Skalski, J. R.; Monter, Tyrell J.; Cushing, Aaron W.; Wilberding, Matthew C.; Meyer, Matthew M.

    2011-09-28T23:59:59.000Z

    The overall purpose of the acoustic telemetry study at JDA during 2009 was to determine the best configuration and operation for JDA prior to conducting BiOp performance standard tests. The primary objective was to determine the best operation between 30% and 40% spill treatments. Route-specific and JDA to TDA forebay survival estimates, passage distribution, and timing/behavior metrics were used for comparison of 30% to a 40% spill treatments. A secondary objective was to evaluate the performance of TSWs installed in spill bays 15 and 16 and to estimate fish survival rates and passage efficiencies under 30% and 40% spill-discharge treatments each season.

  16. Interaction of ion-acoustic solitons with electron beam in warm plasmas with superthermal electrons

    E-Print Network [OSTI]

    Esfandyari-Kalejahi, A R

    2012-01-01T23:59:59.000Z

    Propagation of ion-acoustic solitary waves (IASWs) is studied using the hydrodynamic equations coupled with the Poisson equation in a warm plasma consisting of adiabatic ions and superthermal (Kappa distributed) electrons in presence of an electron-beam component. In the linear limit, the dispersion relation for ion-acoustic (IA) waves is obtained by linearizing of basic equations. On the other hand, in the nonlinear analysis, an energy-balance like equation involving Sagdeev's pseudo-potential is derived in order to investigate arbitrary amplitude IA solitons. The Mach number range is determined in which, propagation and characteristics of IA solitons are analyzed both parametrically and numerically. The variation of amplitude and width of electrostatic (ES) excitations as a result of superthermality (via) and also the physical parameters (ion temperature, soliton speed, electron-beam density and electron-beam velocity) are examined. A typical interaction between IASWs and the electron-beam in plasma is conf...

  17. Line asymmetry of solar p-modes: Properties of acoustic sources

    E-Print Network [OSTI]

    Pawan Kumar; Sarbani Basu

    1999-02-19T23:59:59.000Z

    The observed solar p-mode velocity power spectra are compared with theoretically calculated power spectra over a range of mode degree and frequency. The shape of the theoretical power spectra depends on the depth of acoustic sources responsible for the excitation of p-modes, and also on the multipole nature of the source. We vary the source depth to obtain the best fit to the observed spectra. We find that quadrupole acoustic sources provide a good fit to the observed spectra provided that the sources are located between 700 km and 1050 km below the top of the convection zone. The dipole sources give a good fit for significantly shallower source, with a source-depth of between 120 km and 350 km. The main uncertainty in the determination of depth arises due to poor knowledge of nature of power leakages from modes with adjacent degrees, and the background in the observed spectra.

  18. Sandia Energy - Structural Health Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Health Monitoring Home Stationary Power Energy Conversion Efficiency Wind Energy Materials, Reliability, & Standards Structural Health Monitoring Structural Health...

  19. Standard evaluation techniques for containment and surveillance radiation monitors

    SciTech Connect (OSTI)

    Fehlau, P.E.

    1982-01-01T23:59:59.000Z

    Evaluation techniques used at Los Alamos for personnel and vehicle radiation monitors that safeguard nuclear material determine the worst-case sensitivity. An evaluation tests a monitor's lowest sensitivity regions with sources that have minimum emission rates. The result of our performance tests are analyzed as a binomial experiment. The number of trials that are required to verify the monitor's probability of detection is determined by a graph derived from the confidence limits for a binomial distribution. Our testing results are reported in a way that characterizes the monitor yet does not compromise security by revealing its routine performance for detecting process materials.

  20. alv-x1 liftoff acoustic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The reduction of weight of multi 23 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  1. acoustic wave-assisted scanning: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gent transportation systems (ITS 17 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  2. Acoustical and Noise Control Criteria and Guidelines for Building Design and Operations

    E-Print Network [OSTI]

    Evans, J. B.; Himmel, C. N.

    Noise, vibration and acoustical design, construction, commissioning and operation practices influence building cost, efficiency, performance and effectiveness. Parameters for structural vibration, building systems noise, acoustics and environmental...

  3. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2001-07-01T23:59:59.000Z

    Mechanically weak formations, such as chalks, high porosity sandstones, and marine sediments, pose significant problems for oil and gas operators. Problems such as compaction, subsidence, and loss of permeability can affect reservoir production operations. For example, the unexpected subsidence of the Ekofisk chalk in the North Sea required over one billion dollars to re-engineer production facilities to account for losses created during that compaction (Sulak 1991). Another problem in weak formations is that of shallow water flows (SWF). Deep water drilling operations sometimes encounter cases where the marine sediments, at shallow depths just below the seafloor, begin to uncontrollably flow up and around the drill pipe. SWF problems created a loss of $150 million for the Ursa development project in the U.S. Gulf Coast SWF (Furlow 1998a,b; 1999a,b). The goal of this project is to provide a database on both the rock mechanical properties and the geophysical properties of weak rocks and sediments. These could be used by oil and gas companies to detect, evaluate, and alleviate potential production and drilling problems. The results will be useful in, for example, pre-drill detection of events such as SWF's by allowing a correlation of seismic data (such as hazard surveys) to rock mechanical properties. The data sets could also be useful for 4-D monitoring of the compaction and subsidence of an existing reservoir and imaging the zones of damage. During the second quarter of the project the research team has: (1) completed acoustic sensor construction, (2) conducted reconnaissance tests to map the deformational behaviors of the various rocks, (3) developed a sample assembly for the measurement of dynamic elastic and poroelastic parameters during triaxial testing, and (4) conducted a detailed review of the scientific literature and compiled a bibliography of that review. During the first quarter of the project the research team acquired several rock types for testing including: (a) Danian chalk, (b) Cordoba Cream limestone, (c) Indiana limestone, (d) Ekofisk chalk, (e) Oil Creek sandstone, (f) unconsolidated Oil Creek sand, and (g) unconsolidated Brazos river sand. During the second quarter experiments were begun on these rock types. A series of reconnaissance experiments have been carried out on all but the Ekofisk (for which there is a preliminary data set already inhouse). A series of triaxial tests have been conducted on the Danian chalk, the Cordoba Cream limestone, the Indiana limestone, and sand samples to make a preliminary determination of the deformational mechanisms present in these samples.

  4. Optimization of Concurrent Deployments of the Juvenile Salmon Acoustic Telemetry System and Other Hydroacoustic Equipment at John Day Dam

    SciTech Connect (OSTI)

    Ploskey, Gene R.; Hughes, James S.; Khan, Fenton; Kim, Jina; Lamarche, Brian L.; Johnson, Gary E.; Choi, Eric Y.; Faber, Derrek M.; Wilberding, Matthew C.; Deng, Zhiqun; Weiland, Mark A.; Zimmerman, Shon A.; Fischer, Eric S.; Cushing, Aaron W.

    2008-09-01T23:59:59.000Z

    The purpose of this report is to document the results of the acoustic optimization study conducted at John Day Dam during January and February 2008. The goal of the study was to optimize performance of the Juvenile Salmon Acoustic Telemetry System (JSATS) by determining deployment and data acquisition methods to minimize electrical and acoustic interference from various other acoustic sampling devices. Thereby, this would allow concurrent sampling by active and passive acoustic methods during the formal evaluations of the prototype surface flow outlets at the dam during spring and summer outmigration seasons for juvenile salmonids. The objectives for the optimization study at John Day Dam were to: 1. Design and test prototypes and provide a total needs list of pipes and trolleys to deploy JSATS hydrophones on the forebay face of the powerhouse and spillway. 2. Assess the effect on mean percentage decoded of JSATS transmissions from tags arrayed in the forebay and detected on the hydrophones by comparing: turbine unit OFF vs. ON; spill bay OPEN vs. CLOSED; dual frequency identification sonar (DIDSON) and acoustic Doppler current profiler (ADCP) both OFF vs. ON at a spill bay; and, fixed-aspect hydroacoustic system OFF vs. ON at a turbine unit and a spill bay. 3. Determine the relationship between fixed-aspect hydroacoustic transmit level and mean percentage of JSATS transmissions decoded. The general approach was to use hydrophones to listen for transmissions from JSATS tags deployed in vertical arrays in a series perpendicular to the face of the dam. We used acoustic telemetry equipment manufactured by Technologic and Sonic Concepts. In addition, we assessed old and new JSATS signal detectors and decoders and two different types of hydrophone baffling. The optimization study consisted of a suite of off/on tests. The primary response variable was mean percentage of tag transmissions decoded. We found that there was no appreciable adverse effect on mean percentage decoded for JSATS transmitters from: turbine operations; spillway operations; DIDSON/ADCP acoustic energy; and PAS hydroacoustic systems at transmit level of -12 dB, although there was a significant impact at all higher transmit levels (-11 to -6 dB). The main conclusion from this optimization study is that valid JSATS telemetry data can be collected simultaneously with a DIDSON/ADCP and a PAS hydroacoustic system at transmit level -12 dB. Multiple evaluation tools should be considered to increase the robustness and thoroughness of future fish passage evaluations at John Day and other dams.

  5. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-02-19T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problem; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) has been written to contain the rationale and design criteria for the monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document any proposed changes in the environmental monitoring program. Guidance for preparation of Environmental Monitoring Plans is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance. The plan will be effective when it is approved by the appropriate Head of Field Organization or their designee. The plan discusses major environmental monitoring and hydrology activities at the WIPP and describes the programs established to ensure that WIPP operations do not have detrimental effects on the environment. This EMP is to be reviewed annually and updated every three years unless otherwise requested by the DOE or contractor.

  6. Proceedings of Acoustics 2012 -Fremantle 21-23 November 2012, Fremantle, Australia Australian Acoustical Society 1

    E-Print Network [OSTI]

    New South Wales, University of

    Proceedings of Acoustics 2012 - Fremantle 21-23 November 2012, Fremantle, Australia Australian consequently became the one of the dominant styles in Western and other musics. THE VOICE vs. OTHER MUSICAL string is excited by striking--an impulsive and therefore broad-band mechanism for energy input. In bowed

  7. Spring 2014 ME 720 Acoustics II ENG ME 720 Acoustics II

    E-Print Network [OSTI]

    Lin, Xi

    of the wave equation using Green's functions and compact Green's functions; retarded potentials; energy flux of fluid mechanics and acoustics should aim to build a library of classic texts. These are usually classics are now out of print, but are often available from libraries and online sources. Course grading

  8. Real-time combustion control and diagnostics sensor-pressure oscillation monitor

    DOE Patents [OSTI]

    Chorpening, Benjamin T. (Morgantown, WV); Thornton, Jimmy (Morgantown, WV); Huckaby, E. David (Morgantown, WV); Richards, George A. (Morgantown, WV)

    2009-07-14T23:59:59.000Z

    An apparatus and method for monitoring and controlling the combustion process in a combustion system to determine the amplitude and/or frequencies of dynamic pressure oscillations during combustion. An electrode in communication with the combustion system senses hydrocarbon ions and/or electrons produced by the combustion process and calibration apparatus calibrates the relationship between the standard deviation of the current in the electrode and the amplitudes of the dynamic pressure oscillations by applying a substantially constant voltage between the electrode and ground resulting in a current in the electrode and by varying one or more of (1) the flow rate of the fuel, (2) the flow rate of the oxidant, (3) the equivalence ratio, (4) the acoustic tuning of the combustion system, and (5) the fuel distribution in the combustion chamber such that the amplitudes of the dynamic pressure oscillations in the combustion chamber are calculated as a function of the standard deviation of the electrode current. Thereafter, the supply of fuel and/or oxidant is varied to modify the dynamic pressure oscillations.

  9. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, J.E.; Bolton, R.D.

    1999-03-02T23:59:59.000Z

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  10. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, James E. (Los Alamos, NM); Bolton, Richard D. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  11. Sound Science: Taking Action with Acoustics

    SciTech Connect (OSTI)

    Sinha, Dipen

    2014-07-16T23:59:59.000Z

    From tin whistles to sonic booms, sound waves interact with each other and with the medium through which they travel. By observing these interactions, we can identify substances that are hidden in sealed containers and obtain images of buried objects. By manipulating the ability of sound to push matter around, we can create novel structures and unique materials. Join the Lab's own sound hound, Dipen Sinha, as he describes how he uses fundamental research in acoustics for solving problems in industry, security and health.

  12. Acoustic resonator and method of making same

    DOE Patents [OSTI]

    Kline, G.R.; Lakin, K.M.

    1985-03-05T23:59:59.000Z

    A method is disclosed of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers. 4 figs.

  13. Equivalence Principle and the Baryon Acoustic Peak

    E-Print Network [OSTI]

    Baldauf, Tobias; Simonovi?, Marko; Zaldarriaga, Matias

    2015-01-01T23:59:59.000Z

    We study the dominant effect of a long wavelength density perturbation $\\delta(\\lambda_L)$ on short distance physics. In the non-relativistic limit, the result is a uniform acceleration, fixed by the equivalence principle, and typically has no effect on statistical averages due to translational invariance. This same reasoning has been formalized to obtain a "consistency condition" on the cosmological correlation functions. In the presence of a feature, such as the acoustic peak at $l_{\\rm BAO}$, this naive expectation breaks down for $\\lambda_Lpower spectrum. Finally, the success of BAO reconstruction schemes is argue...

  14. Sound Science: Taking Action with Acoustics

    ScienceCinema (OSTI)

    Sinha, Dipen

    2014-07-21T23:59:59.000Z

    From tin whistles to sonic booms, sound waves interact with each other and with the medium through which they travel. By observing these interactions, we can identify substances that are hidden in sealed containers and obtain images of buried objects. By manipulating the ability of sound to push matter around, we can create novel structures and unique materials. Join the Lab's own sound hound, Dipen Sinha, as he describes how he uses fundamental research in acoustics for solving problems in industry, security and health.

  15. Acoustic resonator and method of making same

    DOE Patents [OSTI]

    Kline, G.R.; Lakin, K.M.

    1983-10-13T23:59:59.000Z

    A method of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers.

  16. acoustic detection test: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acoustic detection test First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Feasibility of acoustic...

  17. Resonant acoustic transducer system for a well drilling string

    DOE Patents [OSTI]

    Nardi, Anthony P. (Burlington, MA)

    1981-01-01T23:59:59.000Z

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  18. Resonant acoustic transducer system for a well drilling string

    DOE Patents [OSTI]

    Kent, William H. (Westford, MA); Mitchell, Peter G. (Concord, MA)

    1981-01-01T23:59:59.000Z

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  19. A decade of acoustic thermometry in the North Pacific Ocean

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    A decade of acoustic thermometry in the North Pacific Ocean B. D. Dushaw,1 P. F. Worcester,2 W. H of acoustic thermometry in the North Pacific Ocean, J. Geophys. Res., 114, C07021, doi:10.1029/2008JC005124. 1 of basin-scale heat content in the northeast Pacific Ocean were made using a broadband 133-Hz source

  20. Final evaluation of the acoustics of the APS conference center

    SciTech Connect (OSTI)

    Restrepo, J.M.

    1995-11-01T23:59:59.000Z

    Along with a description of the changes that I prescribed on the original design, this report is an evaluation of the acoustical properties of the new Advanced Photon Source Auditorium at Argonne National Laboratory. Acoustical deficiencies in the hall are presented with several options for their expedient and economical solution.

  1. Exploiting the BandwidthDistance Relationship in Underwater Acoustic Networks

    E-Print Network [OSTI]

    Stojanovic, Milica

    (UWASNs) may also be augmented with autonomous underwater vehicles (AUVs); for example, this unmanned1 Exploiting the Bandwidth­Distance Relationship in Underwater Acoustic Networks Paolo Casari consumption, and transmission delay in a Underwater Wireless Acoustic Sensor Network (UWASN). We compare

  2. Acoustic wave propagation in two-phase heterogeneous porous media

    E-Print Network [OSTI]

    J. I. Osypik; N. I. Pushkina; Ya. M. Zhileikin

    2015-03-19T23:59:59.000Z

    The propagation of an acoustic wave through two-phase porous media with spatial variation in porosity is studied. The evolutionary wave equation is derived, and the propagation of an acoustic wave is numerically analyzed in application to marine sediments with various physical parameters.

  3. ON THE ACOUSTIC SINGLE LAYER POTENTIAL: STABILIZATION AND FOURIER ANALYSIS

    E-Print Network [OSTI]

    Buffa, Annalisa

    ON THE ACOUSTIC SINGLE LAYER POTENTIAL: STABILIZATION AND FOURIER ANALYSIS A. BUFFA AND S. SAUTER in the stability and convergence estimates attains its minumum. Key words. Acoustic scattering, Galerkin boundary discretizations for the Helmholtz problem suffer from the pollution effect, i.e., the constants in the Galerkin

  4. Autonomous Data Collection from Underwater Sensor Networks using Acoustic Communication

    E-Print Network [OSTI]

    Sukhatme, Gaurav S.

    for an autonomous underwater vehicle (AUV) to collect data from an underwater sensor network. The sensors. A potential solution is the use of a mobile autonomous under- water vehicle (AUV) equipped with an acousticAutonomous Data Collection from Underwater Sensor Networks using Acoustic Communication Geoffrey A

  5. An Advanced Channel Framework for Improved Underwater Acoustic Network Simulations

    E-Print Network [OSTI]

    Zhou, Shengli

    such as pollution, climate change and severe weather events is rapidly increasing. At the same time, as ocean underwater sensors, vehicles and devices together using acoustic communication. Network protocol development operation. However, acoustic communication performance is dynamic and dependent upon the environment

  6. ACOUSTIC STUDY OF THE UD / GAMESA WIND TURBINE PROJECT

    E-Print Network [OSTI]

    Firestone, Jeremy

    ACOUSTIC STUDY OF THE UD / GAMESA WIND TURBINE PROJECT LEWES, DELAWARE January 2009 #12;ACOUSTIC STUDY OF THE UNIVERSITY OF DELAWARE / GAMESA WIND TURBINE PROJECT LEWES, DELAWARE Prepared for SUMMARY The University of Delaware (UD), Lewes proposes to locate a Gamesa G90 2.0MW wind turbine

  7. STOCHASTIC SEISMIC EMISSION FROM ACOUSTIC GLORIES AND THE QUIET SUN

    E-Print Network [OSTI]

    Braun, Douglas C.

    STOCHASTIC SEISMIC EMISSION FROM ACOUSTIC GLORIES AND THE QUIET SUN A.-C. DONEA1, C. LINDSEY2 and D; accepted 8 January 2000) Abstract. Helioseismic images of multipolar active regions show enhanced seismic'. The acoustic glories contain elements that sustain an average seismic emission 50% greater than similar

  8. Optimal control techniques for thermo-acoustic tomography Maitine Bergounioux

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . These hybrid systems use an electromagnetic pulse as an input and record ultrasound waves as an output-acoustic tomography (TAT) when the heating is realized by means of microwaves, and of photo-acoustic tomography (PAT) when optical heating is used. While in TAT waves of radio frequency range are used to trigger

  9. acoustic absorption peak: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acoustic absorption peak First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 On the variations of acoustic...

  10. Routine environmental monitoring schedule, calendar year 1995

    SciTech Connect (OSTI)

    Schmidt, J.W.; Markes, B.M.; McKinney, S.M.

    1994-12-01T23:59:59.000Z

    This document provides Bechtel Hanford, Inc. (BHI) and Westinghouse Hanford Company (WHC) a schedule of monitoring and sampling routines for the Operational Environmental Monitoring (OEM) program during calendar year (CY) 1995. Every attempt will be made to consistently follow this schedule; any deviation from this schedule will be documented by an internal memorandum (DSI) explaining the reason for the deviation. The DSI will be issued by the scheduled performing organization and directed to Near-Field Monitoring. The survey frequencies for particular sites are determined by the technical judgment of Near-Field Monitoring and may depend on the site history, radiological status, use and general conditions. Additional surveys may be requested at irregular frequencies if conditions warrant. All radioactive wastes sites are scheduled to be surveyed at least annually. Any newly discovered wastes sites not documented by this schedule will be included in the revised schedule for CY 1995.

  11. Acoustic velocity measurements in materials using a regenerative method

    DOE Patents [OSTI]

    Laine, Edwin F. (Alamo, CA)

    1986-01-01T23:59:59.000Z

    Acoustic energy is propagated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  12. Acoustic-velocity measurements in materials using a regenerative method

    DOE Patents [OSTI]

    Laine, E.F.

    1982-09-30T23:59:59.000Z

    Acoustic energy is propatated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  13. Generation of Sound Bullets with a Nonlinear Acoustic Lens

    E-Print Network [OSTI]

    Alessandro Spadoni; Chiara Daraio

    2009-08-31T23:59:59.000Z

    Acoustic lenses are employed in a variety of applications, from biomedical imaging and surgery, to defense systems, but their performance is limited by their linear operational envelope and complexity. Here we show a dramatic focusing effect and the generation of large amplitude, compact acoustic pulses (sound bullets) in solid and fluid media, enabled by a tunable, highly nonlinear acoustic lens. The lens consists of ordered arrays of granular chains. The amplitude, size and location of the sound bullets can be controlled by varying static pre-compression on the chains. We support our findings with theory, numerical simulations, and corroborate the results experimentally with photoelasticity measurements. Our nonlinear lens makes possible a qualitatively new way of generating high-energy acoustic pulses, enabling, for example, surgical control of acoustic energy.

  14. Determining Reactor Neutrino Flux

    E-Print Network [OSTI]

    Jun Cao

    2012-03-08T23:59:59.000Z

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

  15. Marine Animal Alert System -- Task 2.1.5.3: Development of Monitoring Technologies -- FY 2011 Progress Report

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Deng, Zhiqun; Myers, Joshua R.; Matzner, Shari; Copping, Andrea E.

    2011-09-30T23:59:59.000Z

    The Marine Animal Alert System (MAAS) in development by the Pacific Northwest National Laboratory is focused on providing elements of compliance monitoring to support deployment of marine hydrokinetic energy devices. An initial focus is prototype tidal turbines to be deployed in Puget Sound in Washington State. The MAAS will help manage the risk of injury or mortality to marine animals from blade strike or contact with tidal turbines. In particular, development has focused on detection, classification, and localization of listed Southern Resident killer whales within 200 m of prototype turbines using both active and passive acoustic approaches. At the close of FY 2011, a passive acoustic system consisting of a pair of four-element star arrays and parallel processing of eight channels of acoustic receptions has been designed and built. Field tests of the prototype system are scheduled for the fourth quarter of calendar year 2011. Field deployment and testing of the passive acoustic prototype is scheduled for the first quarter of FY 2012. The design of an active acoustic system that could be built using commercially available off-the-shelf components from active acoustic system vendors is also in the final stages of design and specification.

  16. Scaling and dimensional analysis of acoustic streaming jets

    SciTech Connect (OSTI)

    Moudjed, B.; Botton, V.; Henry, D.; Ben Hadid, H. [Laboratoire de Mécanique des Fluides et d’Acoustique, CNRS/Université de Lyon, Ecole Centrale de Lyon/Université Lyon 1/INSA de Lyon, ECL, 36 Avenue Guy de Collongue, 69134 Ecully Cedex (France); Garandet, J.-P. [CEA, Laboratoire d’Instrumentation et d’Expérimentation en Mécanique des Fluides et Thermohydraulique, DEN/DANS/DM2S/STMF/LIEFT, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France)

    2014-09-15T23:59:59.000Z

    This paper focuses on acoustic streaming free jets. This is to say that progressive acoustic waves are used to generate a steady flow far from any wall. The derivation of the governing equations under the form of a nonlinear hydrodynamics problem coupled with an acoustic propagation problem is made on the basis of a time scale discrimination approach. This approach is preferred to the usually invoked amplitude perturbations expansion since it is consistent with experimental observations of acoustic streaming flows featuring hydrodynamic nonlinearities and turbulence. Experimental results obtained with a plane transducer in water are also presented together with a review of the former experimental investigations using similar configurations. A comparison of the shape of the acoustic field with the shape of the velocity field shows that diffraction is a key ingredient in the problem though it is rarely accounted for in the literature. A scaling analysis is made and leads to two scaling laws for the typical velocity level in acoustic streaming free jets; these are both observed in our setup and in former studies by other teams. We also perform a dimensional analysis of this problem: a set of seven dimensionless groups is required to describe a typical acoustic experiment. We find that a full similarity is usually not possible between two acoustic streaming experiments featuring different fluids. We then choose to relax the similarity with respect to sound attenuation and to focus on the case of a scaled water experiment representing an acoustic streaming application in liquid metals, in particular, in liquid silicon and in liquid sodium. We show that small acoustic powers can yield relatively high Reynolds numbers and velocity levels; this could be a virtue for heat and mass transfer applications, but a drawback for ultrasonic velocimetry.

  17. Acoustic Mine Detection UsingAcoustic Mine Detection Using the Navy' CASS/GRAB Modelthe Navy' CASS/GRAB Model

    E-Print Network [OSTI]

    Chu, Peter C.

    Acoustic Mine Detection UsingAcoustic Mine Detection Using the Navy' CASS/GRAB Modelthe Navy' CASS hunting component of the U.S. Navy's Mine Hunting and Countermeasure ships. #12;Detection Sonar and MOODS. Global GDEM has a 30'30' resolution U.S. Navy's Operationally important areas contain resolutions

  18. Acoustically enhanced remediation of contaminated soils and ground water. Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The Phase 1 laboratory bench-scale investigation results have shown that acoustically enhanced remediation (AER) technology can significantly accelerate the ground water remediation of non-aqueous phase liquids (NAPLs) in unconsolidated soils. The testing also determined some of the acoustic parameters which maximize fluid and contaminant extraction rates. A technology merit and trade analysis identified the conditions under which AER could be successfully deployed in the field, and an analysis of existing acoustical sources and varying methods for their deployment found that AER technology can be successfully deployed in-situ. Current estimates of deployability indicate that a NAPL plume 150 ft in diameter can be readily remediated. This program focused on unconsolidated soils because of the large number of remediation sites located in this type of hydrogeologic setting throughout the nation. It also focused on NAPLs and low permeability soil because of the inherent difficult in the remediation of NAPLs and the significant time and cost impact caused by contaminated low permeability soils. This overall program is recommended for Phase 2 which will address the technology scaling requirements for a field scale test.

  19. A simple toy model of the advective-acoustic instability I. Perturbative approach

    E-Print Network [OSTI]

    T. Foglizzo

    2008-12-14T23:59:59.000Z

    Some general properties of the advective-acoustic instability are described and understood using a toy model which is simple enough to allow for analytical estimates of the eigenfrequencies. The essential ingredients of this model, in the unperturbed regime, are a stationary shock and a subsonic region of deceleration. For the sake of analytical simplicity, the 2D unperturbed flow is parallel and the deceleration is produced adiabatically by an external potential. The instability mechanism is determined unambiguously as the consequence of a cycle between advected and acoustic perturbations. The purely acoustic cycle, considered alone, is proven to be stable in this flow. Its contribution to the instability can be either constructive or destructive. A frequency cut-off is associated to the advection time through the region of deceleration. This cut-off frequency explains why the instability favours eigenmodes with a low frequency and a large horizontal wavelength. The relation between the instability occurring in this highly simplified toy model and the properties of SASI observed in the numerical simulations of stellar core-collapse is discussed. This simple set up is proposed as a benchmark test to evaluate the accuracy, in the linear regime, of numerical simulations involving this instability. We illustrate such benchmark simulations in a companion paper.

  20. Extraordinary acoustic transmission mediated by Helmholtz resonators

    SciTech Connect (OSTI)

    Koju, Vijay [Computation Science Program, Middle Tennessee State University, Murfreesboro, Tennessee 37132 (United States); Rowe, Ebony [Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, Tennessee 37132 (United States); Robertson, William M., E-mail: William.Robertson@mtsu.edu [Computation Science Program, Middle Tennessee State University, Murfreesboro, Tennessee 37132 (United States); Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, Tennessee 37132 (United States)

    2014-07-15T23:59:59.000Z

    We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of ? radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

  1. Opto-acoustic transducer for medical applications

    DOE Patents [OSTI]

    Benett, W.; Celliers, P.; Da Silva, L.; Glinsky, M.; London, R.; Maitland, D.; Matthews, D.; Krulevich, P.; Lee, A.

    1999-08-31T23:59:59.000Z

    This invention is an optically activated transducer for generating acoustic vibrations in a biological medium. The transducer is located at the end of a fiber optic which may be located within a catheter. Energy for operating the transducer is provided optically by laser light transmitted through the fiber optic to the transducer. Pulsed laser light is absorbed in the working fluid of the transducer to generate a thermal pressure and consequent adiabatic expansion of the transducer head such that it does work against the ambient medium. The transducer returns to its original state by a process of thermal cooling. The motion of the transducer within the ambient medium couples acoustic energy into the medium. By pulsing the laser at a high repetition rate (which may vary from CW to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus. The catheter may also incorporate anti-thrombolytic drug treatments as an adjunct therapy and it may be operated in conjunction with ultrasonic detection equipment for imaging and feedback control. 7 figs.

  2. Diving with microparticles in acoustic fields

    E-Print Network [OSTI]

    Marin, Alvaro; Barnkob, Rune; Augustsson, Per; Muller, Peter; Bruus, Henrik; Laurell, Thomas; Kaehler, Christian

    2012-01-01T23:59:59.000Z

    Sound can move particles. A good example of this phenomenon is the Chladni plate, in which an acoustic wave is induced in a metallic plate and particles migrate to the nodes of the acoustic wave. For several years, acoustophoresis has been used to manipulate microparticles in microscopic scales. In this fluid dynamics video, submitted to the 30th Annual Gallery of Fluid Motion, we show the basic mechanism of the technique and a simple way of visualize it. Since acoustophoretic phenomena is essentially a three-dimensional effect, we employ a simple technique to visualize the particles in 3D. The technique is called Astigmatism Particle Tracking Velocimetry and it consists in the use of cylindrical lenses to induce a deformation in the particle shape, which will be then correlated with its distance from the observer. With this method we are able to dive with the particles and observe in detail particle motion that would otherwise be missed. The technique not only permits visualization but also precise quantitat...

  3. Opto-acoustic transducer for medical applications

    DOE Patents [OSTI]

    Benett, William (Livermore, CA); Celliers, Peter (Berkeley, CA); Da Silva, Luiz (Danville, CA); Glinsky, Michael (Livermore, CA); London, Richard (Orinda, CA); Maitland, Duncan (Livermore, CA); Matthews, Dennis (Moss Beach, CA); Krulevich, Peter (Pleasanton, CA); Lee, Abraham (Walnut Creek, CA)

    1999-01-01T23:59:59.000Z

    This invention is an optically activated transducer for generating acoustic vibrations in a biological medium. The transducer is located at the end of a fiber optic which may be located within a catheter. Energy for operating the transducer is provided optically by laser light transmitted through the fiber optic to the transducer. Pulsed laser light is absorbed in the working fluid of the transducer to generate a thermal pressure and consequent adiabatic expansion of the transducer head such that it does work against the ambient medium. The transducer returns to its original state by a process of thermal cooling. The motion of the transducer within the ambient medium couples acoustic energy into the medium. By pulsing the laser at a high repetition rate (which may vary from CW to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus. The catheter may also incorporate anti-thrombolytic drug treatments as an adjunct therapy and it may be operated in conjunction with ultrasonic detection equipment for imaging and feedback control.

  4. Opto-acoustic transducer for medical applications

    DOE Patents [OSTI]

    Benett, William (Livermore, CA); Celliers, Peter (Berkeley, CA); Da Silva, Luiz (Danville, CA); Glinsky, Michael (Livermore, CA); London, Richard (Orinda, CA); Maitland, Duncan (Livermore, CA); Matthews, Dennis (Moss Beach, CA); Krulevich, Peter (Pleasanton, CA); Lee, Abraham (Walnut Creek, CA)

    2002-01-01T23:59:59.000Z

    This invention is an optically activated transducer for generating acoustic vibrations in a biological medium. The transducer is located at the end of a fiber optic which may be located within a catheter. Energy for operating the transducer is provided optically by laser light transmitted through the fiber optic to the transducer. Pulsed laser light is absorbed in the working fluid of the transducer to generate a thermal pressure and consequent adiabatic expansion of the transducer head such that it does work against the ambient medium. The transducer returns to its original state by a process of thermal cooling. The motion of the transducer within the ambient medium couples acoustic energy into the medium. By pulsing the laser at a high repetition rate (which may vary from CW to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus. The catheter may also incorporate anti-thrombolytic drug treatments as an adjunct therapy and it may be operated in conjunction with ultrasonic detection equipment for imaging and feedback control.

  5. Global nuclear material monitoring

    SciTech Connect (OSTI)

    Howell, J.A.; Monlove, H.O.; Goulding, C.A.; Martinez, B.J.; Coulter, C.A.

    1997-08-01T23:59:59.000Z

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project provided a detailed systems design for advanced integrated facility monitoring and identified the components and enabling technologies required to facilitate the development of the monitoring system of the future.

  6. Transmission Line Security Monitor

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  7. Transmission Line Security Monitor

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  8. Method and apparatus for real time weld monitoring

    DOE Patents [OSTI]

    Leong, Keng H. (Lemont, IL); Hunter, Boyd V. (Bolingbrook, IL)

    1997-01-01T23:59:59.000Z

    An improved method and apparatus are provided for real time weld monitoring. An infrared signature emitted by a hot weld surface during welding is detected and this signature is compared with an infrared signature emitted by the weld surface during steady state conditions. The result is correlated with weld penetration. The signal processing is simpler than for either UV or acoustic techniques. Changes in the weld process, such as changes in the transmitted laser beam power, quality or positioning of the laser beam, change the resulting weld surface features and temperature of the weld surface, thereby resulting in a change in the direction and amount of infrared emissions. This change in emissions is monitored by an IR sensitive detecting apparatus that is sensitive to the appropriate wavelength region for the hot weld surface.

  9. Optimiziing the laboratory monitoring of biological wastewater-purification systems

    SciTech Connect (OSTI)

    S.V. Gerasimov [OAO Koks, Kemerovo (Russian Federation)

    2009-05-15T23:59:59.000Z

    Optimization of the laboratory monitoring of biochemical wastewater-treatment systems at coke plants is considered, for the example of OAO Koks. By adopting a methodological approach to determine the necessary data from chemical analysis, it is possible to reduce the time, labor, and materials required for monitoring, without impairing the purification process or compromising the plant's environmental policies.

  10. Urea biosensor for hemodialysis monitoring

    DOE Patents [OSTI]

    Glass, Robert S. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    An electrochemical sensor capable of detecting and quantifying urea in fluids resulting from hemodialysis procedures. The sensor is based upon measurement of the pH change produced in an aqueous environment by the products of the enzyme-catalyzed hydrolysis of urea. The sensor may be fabricated using methods amenable to mass fabrication, resulting in low-cost sensors and thus providing the potential for disposable use. In a typical application, the sensor could be used in treatment centers, in conjunction with an appropriate electronics/computer system, in order to determine the hemodialysis endpoint. The sensor can also be utilized to allow at-home testing to determine if dialysis was necessary. Such a home monitor is similar, in principle, to devices used for blood glucose testing by diabetics, and would require a blood droplet sample by using a finger prick.

  11. Urea biosensor for hemodialysis monitoring

    DOE Patents [OSTI]

    Glass, R.S.

    1999-01-12T23:59:59.000Z

    This research discloses an electrochemical sensor capable of detecting and quantifying urea in fluids resulting from hemodialysis procedures. The sensor is based upon measurement of the pH change produced in an aqueous environment by the products of the enzyme-catalyzed hydrolysis of urea. The sensor may be fabricated using methods amenable to mass fabrication, resulting in low-cost sensors and thus providing the potential for disposable use. In a typical application, the sensor could be used in treatment centers, in conjunction with an appropriate electronics/computer system, in order to determine the hemodialysis endpoint. The sensor can also be utilized to allow at-home testing to determine if dialysis was necessary. Such a home monitor is similar, in principle, to devices used for blood glucose testing by diabetics, and would require a blood droplet sample by using a finger prick. 9 figs.

  12. Droplet Combustion and Non-Reactive Shear-Coaxial Jets with Transverse Acoustic Excitation

    E-Print Network [OSTI]

    Teshome, Sophonias

    2012-01-01T23:59:59.000Z

    Related Works in Droplet Combustion . . . . . . . .of Acoustics on Droplet Combustion . . . . . . . . . . . .Fuel Droplet Combustion . . . . . . . . . . . . . . .

  13. A SpaceTime Finite Element Method for the Exterior Acoustics Problem

    E-Print Network [OSTI]

    Thompson, Lonny L.

    A Space­Time Finite Element Method for the Exterior Acoustics Problem by Lonny L. Thompson problem in exterior domains is discussed. The space­time formulation for the exterior acoustics problem acoustics problem. i #12; Contents 1 Introduction 1 2 The Exterior Acoustics Problem 3 3 Space­time finite

  14. Multiple Event Localization in a Sparse Acoustic Sensor Network Using UAVs as Data Mules

    E-Print Network [OSTI]

    Hespanha, João Pedro

    , localization, and verification of mul- tiple acoustic events using sparsely deployed unattended ground sensors

  15. Acoustic testing and modeling: An advanced undergraduate laboratory Daniel A. Russella)

    E-Print Network [OSTI]

    Russell, Daniel A.

    -depth experience. However, while the vast majority of acoustics education takes place at the graduate level, undergraduate acoustics education has been a concern of members of the Acoustical Society of America courses in acoustics,2­4 and offers an academic minor in acous- tics for physics and engineering students

  16. Theory and Observations of Low Frequency Eigenmodes due to Alfvén Acoustic Coupling in Toroidal Fusion Plasmas

    E-Print Network [OSTI]

    Theory and Observations of Low Frequency Eigenmodes due to Alfvén Acoustic Coupling in Toroidal Fusion Plasmas

  17. High-temperature Pump Monitoring - High-temperature ESP Monitoring...

    Broader source: Energy.gov (indexed) [DOE]

    7 4.4.4 High-temperature Pump Monitoring - High-temperature ESP Monitoring Presentation Number: 018 Investigator: Dhruva, Brindesh (Schlumberger Technology Corp.) Objectives: To...

  18. Environmental monitoring plan - environmental monitoring section. Revision 1

    SciTech Connect (OSTI)

    Wilt, G.C. [ed.; Tate, P.J.; Brigdon, S.L. [and others

    1994-11-01T23:59:59.000Z

    This report presents the environmental monitoring plan for the Lawrence Livermore National Laboratory. A site characterization is provided along with monitoring and measurement techniques and quality assurance measures.

  19. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement

    SciTech Connect (OSTI)

    Friedt, J.-M [SENSeOR, 32 Avenue de l'Observatoire, 25044 Besancon (France); Droit, C.; Martin, G.; Ballandras, S. [Department of Time and Frequency, FEMTO-ST, 32 Avenue de l'Observatoire, 25044 Besancon (France)

    2010-01-15T23:59:59.000Z

    Monitoring physical quantities using acoustic wave devices can be advantageously achieved using the wave characteristic dependence to various parametric perturbations (temperature, stress, and pressure). Surface acoustic wave (SAW) resonators are particularly well suited to such applications as their resonance frequency is directly influenced by these perturbations, modifying both the phase velocity and resonance conditions. Moreover, the intrinsic radio frequency (rf) nature of these devices makes them ideal for wireless applications, mainly exploiting antennas reciprocity and piezoelectric reversibility. In this paper, we present a wireless SAW sensor interrogation unit operating in the 434 MHz centered ISM band--selected as a tradeoff between antenna dimensions and electromagnetic wave penetration in dielectric media--based on the principles of a frequency sweep network analyzer. We particularly focus on the compliance with the ISM standard which reveals complicated by the need for switching from emission to reception modes similarly to radar operation. In this matter, we propose a fully digital rf synthesis chain to develop various interrogation strategies to overcome the corresponding difficulties and comply with the above-mentioned standard. We finally assess the reader interrogation range, accuracy, and dynamics.

  20. Section 12: Waves and acoustics 1 Section 12: Waves and acoustics

    E-Print Network [OSTI]

    Kohlenbach, Ulrich

    Highly Porous Media Abstract 13:50 ­ 14:10: Hoffmann, N.P., Chabchoub, A. (TU Hamburg-Harburg): Experiments on Peregrine soliton type deep water gravity waves Abstract 14:10 ­ 14:30: Thomas Müllner (TU Wien): Acoustical performance of concreted wood fiber materials Abstract S12.4: Elastic Waves Wed, 16:00­18:00 Chair

  1. Apparatus and method for comparing corresponding acoustic resonances in liquids

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Almos, NM)

    1999-01-01T23:59:59.000Z

    Apparatus and method for comparing corresponding acoustic resonances in liquids. The present invention permits the measurement of certain characteristics of liquids which affect the speed of sound therein. For example, a direct correlation between the octane rating of gasoline and the speed of sound in a gasoline sample has been experimentally observed. Therefore, changes in the speed of sound therein can be utilized as a sensitive parameter for determining changes in composition of a liquid sample. The present apparatus establishes interference patterns inside of a liquid without requiring the use of very thin, rigorously parallel ceramic discs, but rather uses readily available piezoelectric transducers attached to the outside surface of the usual container for the liquid and located on the same side thereof in the vicinity of one another. That is, various receptacle geometries may be employed, and the driving and receiving transducers may be located on the same side of the receptacle. The cell may also be constructed of any material that is inert to the liquid under investigation. A single-transducer embodiment, where the same transducer provides the excitation to the sample container and receives signals impressed therein, is also described.

  2. Apparatus and method for comparing corresponding acoustic resonances in liquids

    DOE Patents [OSTI]

    Sinha, D.N.

    1999-03-23T23:59:59.000Z

    Apparatus and method are disclosed for comparing corresponding acoustic resonances in liquids. The present invention permits the measurement of certain characteristics of liquids which affect the speed of sound therein. For example, a direct correlation between the octane rating of gasoline and the speed of sound in a gasoline sample has been experimentally observed. Therefore, changes in the speed of sound therein can be utilized as a sensitive parameter for determining changes in composition of a liquid sample. The present apparatus establishes interference patterns inside of a liquid without requiring the use of very thin, rigorously parallel ceramic discs, but rather uses readily available piezoelectric transducers attached to the outside surface of the usual container for the liquid and located on the same side thereof in the vicinity of one another. That is, various receptacle geometries may be employed, and the driving and receiving transducers may be located on the same side of the receptacle. The cell may also be constructed of any material that is inert to the liquid under investigation. A single-transducer embodiment, where the same transducer provides the excitation to the sample container and receives signals impressed therein, is also described. 5 figs.

  3. Systems and methods for monitoring a solid-liquid interface

    DOE Patents [OSTI]

    Stoddard, Nathan G; Lewis, Monte A.; Clark, Roger F

    2013-06-11T23:59:59.000Z

    Systems and methods are provided for monitoring a solid-liquid interface during a casting process. The systems and methods enable determination of the location of a solid-liquid interface during the casting process.

  4. FY09 PROGRESS: MULTI-ISOTOPE PROCESS (MIP) MONITOR

    SciTech Connect (OSTI)

    Schwantes, Jon M.; Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard; Laspe, Amy R.; Ward, Rebecca M.

    2009-10-18T23:59:59.000Z

    Model and experimental estimates of the Multi-Isotope Process Monitor performance for determining burnup after dissolution and acid concentration during solvent extraction steps during reprocessing of spent nuclear fuel are presented.

  5. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers

    E-Print Network [OSTI]

    Diego Baresch; Jean-Louis Thomas; Régis Marchiano

    2014-11-07T23:59:59.000Z

    The ability to manipulate matter precisely is critical for the study and development of a large variety of systems. Optical tweezers are excellent tools to handle particles ranging in size from a few micrometers to hundreds of nanometers but become inefficient and damaging on larger objects. We demonstrate for the first reported time the trapping of elastic particles by the large gradient force of a single acoustical beam in three dimensions. We show that at equal power, acoustical forces overtake by 8 orders of magnitude that of optical ones on macroscopic objects. Acoustical tweezers can push, pull and accurately control both the position of the particle and the forces exerted under damage-free conditions. The large spectrum of frequencies covered by coherent ultrasonic sources will provide a wide variety of manipulation possibilities from macro- to microscopic length scales. We believe our observations improve the prospects for wider use of non-contact manipulation in biology, biophysics, microfluidics and robotics and bridge the gap that had remained to the macroscopic scale.

  6. Tensile strain measurements of ceramic fibers using scanning laser acoustic microscopy

    SciTech Connect (OSTI)

    Kent, R.M.; Vary, A.

    1992-01-01T23:59:59.000Z

    A noncontacting technique using scanning laser acoustic microscopy for making in situ tensile strain measurements of small diameter fibers was implemented for the tensile strain analysis of individual Nicalon SiC fibers (nominal diameter 15 microns). Stress versus strain curves for the fibers were plotted from the experimental data. The mean elastic modulus of the fibers was determined to be 185.3 GPa. Similar measurements were made for Carborundum SiC fibers (nominal diameter 28 microns) and Saphikon sapphire fibers (nominal diameter 140 microns), yielding and elastic modulus of 401 and 466.8 GPa, respectively.

  7. Tensile strain measurements of ceramic fibers using scanning laser acoustic microscopy

    SciTech Connect (OSTI)

    Kent, R.M.; Vary, A.

    1992-08-01T23:59:59.000Z

    A noncontacting technique using scanning laser acoustic microscopy for making in situ tensile strain measurements of small diameter fibers was implemented for the tensile strain analysis of individual Nicalon SiC fibers (nominal diameter 15 microns). Stress vs strain curves for the fibers were plotted from the experimental data. The mean elastic modulus of the fibers was determined to be 185.3 GPa. Similar measurements were made for Carborundum SiC fibers (nominal diameter 28 microns) and Saphikon sapphire fibers (nominal diameter 140 microns). 8 refs.

  8. Neural network prediction of aluminum-lithium weld strengths from acoustic emission amplitude data

    SciTech Connect (OSTI)

    Hill, E.V.K. (Embry-Riddle Aeronautical Univ., Daytona Beach, FL (United States). Aerospace Engineering Dept.); Israel, P.L. (Lamar Univ., Beaumont, TX (United States). Computer Science Dept.); Knotts, G.L. (Acoustic Emissions Consultants, Madison, AL (United States))

    1993-09-01T23:59:59.000Z

    Acoustic emission (AE) flaw growth activity was monitored in aluminum-lithium weld specimens from the onset of tensile loading to failure. Data on actual ultimate strengths together with AE data from the beginning of loading up to 25 percent of the expected ultimate strength were used to train a backpropagation neural network to predict ultimate strengths. Architecturally, the fully interconnected network consisted of an input layer for the AE amplitude data, a hidden layer to accommodate failure mechanism mapping, and an output layer for ultimate strength prediction. The trained network was then applied to the prediction of ultimate strengths in the remaining six specimens. The worst case prediction error was found to be +2.6 percent.

  9. Implementation of an acoustic emission proximity detector for use in generating glass optics

    SciTech Connect (OSTI)

    Blaedel, K.L.; Piscotty, M.A.; Taylor, J.S.

    1996-11-11T23:59:59.000Z

    We are using the approach acoustic emission (AE) signal during a grinding operation to detect the proximity of the grinding wheel relative to a brittle material workpiece and are using this detection as a feed- back control signal in our CNC. The repeatability of the AE signal during the wheel approach is the key that allows AE to be used as a proximity detector and is demonstrated at LLNL to be about mm. We noted significant changes of the AE signal as process parameters are modified, but conclude that with a quick CNC calibration routine and holding the parameters constant during a given operation, the AE system can be successfully used to sense pre- contact wheel- to- workpiece separation. Additionally, the AE sensing system allows real- time monitoring during grinding to provide in- process information. The first prototype of an AE system on a commercially available generator is currently be tested at the Center for Optics Manufacturing.

  10. Acoustic stabilization of electric arc instabilities in nontransferred plasma torches

    SciTech Connect (OSTI)

    Rat, V.; Coudert, J. F. [CNRS, University of Limoges, SPTCS UMR6638, 123 Avenue A. Thomas, 87060 Limoges Cedex (France)

    2010-03-08T23:59:59.000Z

    Electric arc instabilities in dc plasma torches lead to nonhomogeneous treatments of nanosized solid particles or liquids injected within thermal plasma jets. This paper shows that an additional acoustic resonator mounted on the cathode cavity allows reaching a significant damping of these instabilities, particularly the Helmholtz mode of arc oscillations. The acoustic resonator is coupled with the Helmholtz resonator of the plasma torch limiting the amplitude of arc voltage variations. It is also highlighted that this damping is dependent on friction effects in the acoustic resonator.

  11. Design and demonstration of broadband thin planar diffractive acoustic lenses

    SciTech Connect (OSTI)

    Wang, Wenqi; Xie, Yangbo; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A., E-mail: cummer@ee.duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2014-09-08T23:59:59.000Z

    We present here two diffractive acoustic lenses with subwavelength thickness, planar profile, and broad operation bandwidth. Tapered labyrinthine unit cells with their inherently broadband effective material properties are exploited in our design. Both the measured and the simulated results are showcased to demonstrate the lensing effect over more than 40% of the central frequency. The focusing of a propagating Gaussian modulated sinusoidal pulse is also demonstrated. This work paves the way for designing diffractive acoustic lenses and more generalized phase engineering diffractive elements with labyrinthine acoustic metamaterials.

  12. Electromechanical transducer for acoustic telemetry system

    DOE Patents [OSTI]

    Drumheller, D.S.

    1993-06-22T23:59:59.000Z

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  13. Analog circuit for controlling acoustic transducer arrays

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    1991-01-01T23:59:59.000Z

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  14. Electromechanical transducer for acoustic telemetry system

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    1993-01-01T23:59:59.000Z

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  15. A perspective on the CMB acoustic peak

    E-Print Network [OSTI]

    T. A. Marriage

    2002-03-11T23:59:59.000Z

    CMB angular spectrum measurements suggest a flat universe. This paper clarifies the relation between geometry and the spherical harmonic index of the first acoustic peak ($\\ell_{peak}$). Numerical and analytic calculations show that $\\ell_{peak}$ is approximately a function of $\\Omega_K/\\Omega_M$ where $\\Omega_K$ and $\\Omega_M$ are the curvature ($\\Omega_K > 0$ implies an open geometry) and mass density today in units of critical density. Assuming $\\Omega_K/\\Omega_M \\ll 1$, one obtains a simple formula for $\\ell_{peak}$, the derivation of which gives another perspective on the widely-recognized $\\Omega_M$-$\\Omega_\\Lambda$ degeneracy in flat models. This formula for near-flat cosmogonies together with current angular spectrum data yields familiar parameter constraints.

  16. ORISE: Media Analysis and Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Analysis and Monitoring The Oak Ridge Institute for Science and Education (ORISE) uses comprehensive media analysis and monitoring tools to define media interest and the...

  17. Noise Localization via Acoustic Emission Monitoring on a Rolling Leaf Bascule Bridge

    E-Print Network [OSTI]

    - ing and closing of a large, double-leaf rolling-lift bascule bridge. The data were analyzed using paint was not removed. Our testing method was consistent with that described in the project proposal eddy- current displacement sensors and two Schaevitz Accustar II electronic clinometers were affixed

  18. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 2, Radiation Monitoring and Sampling

    SciTech Connect (OSTI)

    NSTec Aerial Measurement Systems

    2012-07-31T23:59:59.000Z

    The FRMAC Monitoring and Sampling Manual, Volume 2 provides standard operating procedures (SOPs) for field radiation monitoring and sample collection activities that are performed by the Monitoring group during a FRMAC response to a radiological emergency.

  19. Multidimensionality of parental monitoring

    E-Print Network [OSTI]

    Secrest, Laura A

    2001-01-01T23:59:59.000Z

    whether the monitoring construct is unitary or multidimensional. The LISREL 8.3 program was used to perform confirmatory factor analyses and structural modeling analyses on the proposed theoretical models. A total of 419 elementary school children...

  20. Monitoring Energy Losses

    E-Print Network [OSTI]

    Eulinger, R. D.

    control systems. Older power plants may have nothing but gauges and dials on a control board. Plants such as these are not typically candidates for a performance monitor unless they ere also being considered for a control system upgrade, including a... planned future control system upgrade. With this method, a utility can have the benefits of a performance monitor prior to a major control system upgrade. When the system is finally upgraded, the data logger can be moved to another unit and reused...