Powered by Deep Web Technologies
Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Activity-Based Costing for Electric Utilities  

Science Conference Proceedings (OSTI)

Activity-Based costing (ABC) is a cost-management approach that can help utility managers make better decisions through more-accurate process and product cost information and a better understanding of activities that either do or do not add value. This report is a primer on ABC.

1992-09-01T23:59:59.000Z

2

Evaluating Utility Costs from Cogeneration Facilities  

E-Print Network (OSTI)

This paper describes the method of calculation of incremental costs of steam, condensate, feedwater and electricity produced by the industrial cogeneration plant. (This method can also be applied to other energy production plants.) It also shows how to evaluate the energy consumption by the process facility using the costs determined by the method. The paper gives practical examples of calculation of the incremental costs of various utilities and emphasizes the importance of the calculation accuracy.

Polsky, M. P.

1983-01-01T23:59:59.000Z

3

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Low Cost High Concentration PV Systems for Utility Power Generation An...

4

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power...

5

The Total Cost and Measured Performance of Utility-Sponsored...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Total Cost and Measured Performance of Utility-Sponsored Energy Efficiency Programs Title The Total Cost and Measured Performance of Utility-Sponsored Energy Efficiency...

6

Electric Utility Sales and Revenue - EIA-826 detailed data file  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-826 detailed data Form EIA-826 detailed data The Form EIA-826 "Monthly Electric Utility Sales and Revenue Report with State Distributions" collects retail sales of electricity and associated revenue, each month, from a statistically chosen sample of electric utilities in the United States. The respondents to the Form EIA-826 are chosen from the Form EIA-861, "Annual Electric Utility Report." Methodology is based on the "Model-Based Sampling, Inference and Imputation." In 2003, EIA revised the survey to separate the transportation sales and reassign the other activities to the commercial and industrial sectors as appropriate. The "other" sector activities included public street and highway lighting, sales to public authorities, sales to railroads and railways, interdepartmental sales, and agricultural irrigations.

7

Question: What is the cost threshold for providing cost detail for subrecipient  

NLE Websites -- All DOE Office Websites (Extended Search)

Question: What is the cost threshold for providing cost detail for subrecipients or consultant Question: What is the cost threshold for providing cost detail for subrecipients or consultant information? Is there a cost threshold set for third parties? Answer: Each subawardee/subrecipient/subcontractor whose work is expected to exceed $650,000 or 50% of the total work effort (whichever is less) should complete a Budget Justification package to include the SF 424A budget form, Budget Justification Guideline Excel document, and a narrative supporting the Budget Justification Guidelines. This information may be saved as a separate file or included with the Prime Applicant's Budget.pdf file. Summary level information for subawardees is not sufficient. Detailed explanations and supporting

8

title Utility Scale Solar An Empirical Analysis of Project Cost...  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Scale Solar An Empirical Analysis of Project Cost Performance and Pricing Trends in the United States year month institution LBNL abstract p Berkeley Lab hosted a webinar...

9

Cost analysis of energy storage systems for electric utility applications  

DOE Green Energy (OSTI)

Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

1997-02-01T23:59:59.000Z

10

An economic and legal perspective on electric utility transition costs  

SciTech Connect

The issue of possibly unrecoverable cost incurred by a utility, or `stranded costs,` has emerged as a major obstacle to developing a competitive generation market. Stranded or transition costs are defined as costs incurred by a utility to serve its customers that were being recovered in rates but are no longer due to availability of lower-priced alternative suppliers. The idea of `stranded cost,` and more importantly arguments for its recovery, is a concept with little basis in economic theory, legal precedence, or precedence in other deregulated industries. The main argument recovery is that the ``regulatory compact`` requires it. This is based on the misconception that the regulator compact is simply: the utility incurs costs on behalf of its customers because of the ``obligation to serve`` so, therefore, customers are obligated to pay. This is a mischaracterization of what the compact was and how it developed. Another argument is that recovery is required for economic efficiency. This presumes, however, a very narrow definition of efficiency based on preventing ``uneconomic`` bypass of the utility and that utilities minimize costs. A broader definition of efficiency and the likelihood of cost inefficiencies in the industry suggest that the cost imposed on customers from inhibiting competition could exceed the gains from preventing uneconomic bypass. Both these issues are examined in this paper.

Rose, K.

1996-07-01T23:59:59.000Z

11

Least-cost utility planning consumer participation manual  

Science Conference Proceedings (OSTI)

This manual is designed to provide guidance to state consumer advocates and other state consumer groups interested in either initiating and/or participating in an Least-Cost Utility Planning (LCUP) process in their state. Least cost utility planning examined primarily as a regulatory framework to be implemented by an appropriate state authority -- usually the public utility commission -- for the benefit of the state's citizens and electric utility customers. LCUP is also a planning process to be used by investor owned and public utilities to select, support and justify future expenditures in resource additions. This manual is designed as a How-To'' manual for implementing and participating in a statewide LCUP process. Its goal is to guide the reader through the LCUP maze so that meaningful, forward-looking, and cost minimizing electric utility planning can be initiated and sustained in your state.

Mitchell, C.; Wellinghoff, J.; Goldberg, F.

1989-01-01T23:59:59.000Z

12

Least-cost utility planning consumer participation manual. [Final report  

Science Conference Proceedings (OSTI)

This manual is designed to provide guidance to state consumer advocates and other state consumer groups interested in either initiating and/or participating in an Least-Cost Utility Planning (LCUP) process in their state. Least cost utility planning examined primarily as a regulatory framework to be implemented by an appropriate state authority -- usually the public utility commission -- for the benefit of the state`s citizens and electric utility customers. LCUP is also a planning process to be used by investor owned and public utilities to select, support and justify future expenditures in resource additions. This manual is designed as a ``How-To`` manual for implementing and participating in a statewide LCUP process. Its goal is to guide the reader through the LCUP maze so that meaningful, forward-looking, and cost minimizing electric utility planning can be initiated and sustained in your state.

Mitchell, C.; Wellinghoff, J.; Goldberg, F.

1989-12-31T23:59:59.000Z

13

Price and cost impacts of utility DSM programs  

Science Conference Proceedings (OSTI)

More US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. In particular, should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity Most of the debates about the appropriate economic tests to use in assessing utility programs do not address the magnitude of the impacts. As a result, questions remain about the relationships among utility DSM programs and acquisition of supply resources and the effects of these choices on electricity prices and costs. This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. A dynamic model is used to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios for three utilities: a base that is typical of US utilities; a surplus utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a deficit utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. Model results show that DSM programs generally reduce electricity costs and increase electricity prices. However, the percentage reduction in costs is usually greater than the percentage increase in prices. On the other hand, most of the cost benefits of DSM programs can be obtained without raising electricity prices.

Hirst, E. (Oak Ridge National Lab., TN (United States))

1992-01-01T23:59:59.000Z

14

Cost and quality of fuels for electric utility plants, 1994  

Science Conference Proceedings (OSTI)

This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

NONE

1995-07-14T23:59:59.000Z

15

Cost and quality of fuels for electric utility plants, 1992  

Science Conference Proceedings (OSTI)

This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

Not Available

1993-08-02T23:59:59.000Z

16

Detailed cost estimate of reference residential photovoltaic designs  

DOE Green Energy (OSTI)

This report presents estimated installation costs for four reference residential photovoltaic designs. Installation cost estimates ranged from $1.28 to $2.12/W/sub p/ for arrays installed by union labor (4.1 to 6.07 kW/sub p/-systems), and from $1.22 to $1.83 W/sub p/ for non-union installations. Standoff mounting was found to increase costs from $1.63/W/sub p/ to $2.12/W/sub p/ for a representative case, whereas 25 kWh of battery storage capacity increased installation costs from $1.44/W/sub p/ to $2.08/W/sub p/. Overall system costs (union-based were $6000 to $7000 for a 4.1 kW array in the northeast, to approx. $9000 for a 6.07 kW/sub p/ array in the southwest. This range of installation costs, approx. $1 to $2/W/sub p/ (in 1980 dollars), is representative of current installation costs for residential PV systems. Any future cost reductions are likely to be small and can be accomplished only by optimization of mounting techniques, module efficiencies, and module reliability in toto.

Palmer, R.S.; Penasa, D.A.; Thomas, M.G.

1983-04-01T23:59:59.000Z

17

Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Updated Capital Cost Estimates Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies.

18

Distributed utility technology cost, performance, and environmental characteristics  

Science Conference Proceedings (OSTI)

Distributed Utility (DU) is an emerging concept in which modular generation and storage technologies sited near customer loads in distribution systems and specifically targeted demand-side management programs are used to supplement conventional central station generation plants to meet customer energy service needs. Research has shown that implementation of the DU concept could provide substantial benefits to utilities. This report summarizes the cost, performance, and environmental and siting characteristics of existing and emerging modular generation and storage technologies that are applicable under the DU concept. It is intended to be a practical reference guide for utility planners and engineers seeking information on DU technology options. This work was funded by the Office of Utility Technologies of the US Department of Energy.

Wan, Y.; Adelman, S.

1995-06-01T23:59:59.000Z

19

Load management strategies for electric utilities: a production cost simulation  

SciTech Connect

This paper deals with the development and application of a simulation model for analyzing strategies for managing the residential loads of electric utilities. The basic components of the model are (1) a production-cost model, which simulates daily operation of an electric power system; (2) a load model, which disaggregates system loads into appliance loads and other loads; and (3) a comparison model, which compares the production costs and energy consumption needed to meet a particular load profile to the corresponding costs and energy consumption required for another load profile. The profiles in each pair define alternative ways of meeting the same demand. A method for disaggregating load profiles into appliance components is discussed and several alternative strategies for residential load management for a typical northeastern electric utility are formulated. The method is based on an analysis of the composition of electric loads for a number of classes of residential customers in the model utility system. The effect of alternative load management strategies on the entire residential loadcurve is determined by predicting the effects of these strategies on the specific appliance components of the loadcurve. The results of using the model to analyze alternative strategies for residential load management suggest that load management strategies in the residential sector, if adopted by utilities whose operating and load characteristics are similar to those of the system modeled here, must take into account a wide variety of appliances to achieve significant changes in the total load profile. Moreover, the results also suggest that it is not easy to reduce costs significantly through new strategies for managing residential loads only and that, to be worthwhile, cost-reducing strategies will have to encompass many kinds of appliances.

Blair, P.D.

1979-03-01T23:59:59.000Z

20

Strategic cost-benefit analysis of energy policies: detailed projections  

DOE Green Energy (OSTI)

Current US energy policy includes many programs directed toward restructuring the energy system in order to decrease US dependence on foreign supplies and to increase our reliance on plentiful and environmentally benign energy forms. However, recent events have led to renewed concern over the direction of current energy policy. This study describes three possible energy strategies and analyzes each in terms of its economic, environmental, and national security benefits and costs. Each strategy is represented by a specific policy. In the first, no additional programs or policies are initiated beyond those currently in effect or announced. The second is directed toward reducing the growth in energy demand, i.e., energy conservation. The third promotes increased domestic supply through accelerated development of synthetic and unconventional fuels. The analysis focuses on the evaluation and comparison of these strategy alternatives with respect to their energy, economic, and environmental consequences. Results indicate that conservation can substantially reduce import dependence and slow the growth of energy demand, with only a small macroeconomic cost and with substantial environmental benefits; the synfuels policy reduces imports by a smaller amount, does not reduce the growth in energy demand, involves substantial environmental costs and slows the rate of economic growth. These relationships could be different if the energy savings per unit cost for conservation are less than anticipated, or if the costs of synthetic fuels can be significantly lowered. Given these uncertainties, both conservation and RD and D support for synfuels should be included in future energy policy. However, between these policy alternatives, conservation appears to be the preferred strategy. The results of this study are presented in three reports (see also BNL--51105 and BNL--51128). 11 references, 3 figures, 61 tables.

Davitian, H.; Groncki, P.J.; Kleeman, P.; Lukachinski, J.

1979-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Cost and Quality of Fuels for Electric Utility Plants 1997  

Gasoline and Diesel Fuel Update (EIA)

7 Tables 7 Tables May 1998 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/Cost and Quality of Fuels for Electric Utility Plants 1997 Tables ii Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) is no longer published by the EIA. The tables presented in this document are intended to replace that annual publication. Questions

22

Cost and Quality of Fuels for Electric Utility Plants  

Gasoline and Diesel Fuel Update (EIA)

1) 1) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2001 March 2004 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Preface Background The Cost and Quality of Fuels for Electric Utility Plants 2001 is prepared by the Electric Power Divi- sion; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S.

23

Low-cost load research for electric utilities  

Science Conference Proceedings (OSTI)

Golden Valley Electric Association (GVEA) developed two pragmatic approaches to meet most load-research objectives at a substantially lower cost than would be incurred with traditional techniques. GVEA serves three customer classes, with most of its load in the Fairbanks area. GVEA's new approaches simulate load curves for individual customer classes to the degree necessary to meet most load-research objectives for the utility, including applications to cost-of-service analysis, rate design, demand-side management, and load forecasting. These approaches make class load-shape information available to utilities that cannot otherwise afford to develop such data. Although the two approaches were developed for a small utility, they are likely to work at least as well for medium and large utilities. The first approach simulates class curves by combining load data from system feeders with information on customer mix and energy usage. GVEA's supervisory control and data acquisition system gives hourly data on feeder loads, and its billing database provides the number of customers and kilowatt-hour usage by customer class on each feeder. The second approach enhances load-research results by redefining target parameters. Data from several like-hours are used to calculate substitutes for the parameters traditionally defined from single-hour data points. The precision of peak responsibility estimates, for example, can be improved if several of the highest hourly demands in a given time period are used rather than the single highest hourly demand. Arguably, use of several highest hourly demands can also improve the reliability of the allocation of responsibility.

Gray, D.A.; Butcher, M.

1994-08-01T23:59:59.000Z

24

Cost of Gas Adjustment for Gas Utilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost of Gas Adjustment for Gas Utilities (Maine) Cost of Gas Adjustment for Gas Utilities (Maine) Cost of Gas Adjustment for Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Generation Disclosure Provider Public Utilities Commission This rule, applicable to gas utilities, establishes rules for calculation of gas cost adjustments, procedures to be followed in establishing gas cost adjustments and refunds, and describes reports required to be filed with

25

FACILITIES ENGINEER WEST CHICAGO Execute capital projects for manufacturing facilities and utilities systems: scope development, cost  

E-Print Network (OSTI)

improvements, including all stages of project engineering: scope development, cost estimation, system designFACILITIES ENGINEER ­ WEST CHICAGO OVERVIEW: Execute capital projects for manufacturing facilities and utilities systems: scope development, cost estimation, system design, equipment sizing

Heller, Barbara

26

Utility Scale Solar PV Cost Steven SimmonsSteven Simmons  

E-Print Network (OSTI)

, permitting) Early construction (procurement, site prep) Construction Month % of TTL Cost 12 month ­ 1% 12 month ­ 14 % 12 month ­ 85 % Month % of TTL Cost 12 month ­ 1% 12 month ­ 14 % 12 month ­ 85 % Financing.69 113.43 96.66 TTL 213.94 189.08 156.97 137.12 0 debt term 25 years 200 250 $/MWh 2012$ Levelized Cost

27

Cost Avoidance vs. Utility Bill Accounting - Explaining theDiscrepancy Between Guaranteed Savings in ESPC Projects and UtilityBills  

SciTech Connect

Federal agencies often ask if Energy Savings PerformanceContracts (ESPCs) result in the energy and cost savings projected duringthe project development phase. After investing in ESPCs, federal agenciesexpect a reduction in the total energy use and energy cost at the agencylevel. Such questions about the program are common when implementing anESPC project. But is this a fair or accurate perception? Moreimportantly, should the federal agencies evaluate the success or failureof ESPCs by comparing the utility costs before and after projectimplementation?In fact, ESPC contracts employ measurement andverification (M&V) protocols to measure and ensure kilowatt-hour orBTU savings at the project level. In most cases, the translation toenergy cost savings is not based on actual utility rate structure, but acontracted utility rate that takes the existing utility rate at the timethe contract is signed with a clause to escalate the utility rate by afixed percentage for the duration of the contract. Reporting mechanisms,which advertise these savings in dollars, may imply an impact to budgetsat a much higher level depending on actual utility rate structure. FEMPhas prepared the following analysis to explain why the utility billreduction may not materialize, demonstrate its larger implication onagency s energy reduction goals, and advocate setting the rightexpectations at the outset to preempt the often asked question why I amnot seeing the savings in my utility bill?

Kumar, S.; Sartor, D.

2005-08-15T23:59:59.000Z

28

Can Solar PV Rebates Be Funded with Utility Cost Savings?  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was given by Jan Aceti of Concord Light at the February 19, 2013, CommRE webinar which focused on how municipal utilities fund solar energy projects.

29

REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE  

Science Conference Proceedings (OSTI)

Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke (1, 2). Petroleum coke is most commonly blended with coal in proportions suitable to meet sulfur emission compliance. Petroleum coke is generally less reactive than coal; therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the combustion of petroleum coke alone. Although petroleum coke is a desirable fuel for producing relatively inexpensive electrical power, concerns about the effects of petroleum coke blending on combustion and pollution control processes exist in the coal-fired utility industry (3). The Energy & Environmental Research Center (EERC) completed a 2-year technical assessment of petroleum coke as a supplemental fuel. A survey questionnaire was sent to seven electric utility companies that are currently cofiring coal and petroleum coke in an effort to solicit specific suggestions on research needs and fuel selections. An example of the letter and survey questionnaire is presented in Appendix A. Interest was expressed by most utilities in evaluating the effects of petroleum coke blending on grindability, combustion reactivity, fouling, slagging, and fly ash emissions control. Unexpectedly, concern over corrosion was not expressed by the utilities contacted. Although all seven utilities responded to the question, only two utilities, Northern States Power Company (NSP) and Ameren, sent fuels to the EERC for evaluation. Both utilities sent subbituminous coals from the Power River Basin and petroleum shot coke samples. Petroleum shot coke is produced unintentionally during operational upsets in the petroleum refining process. This report evaluates the effects of petroleum shot coke blending on grindability, fuel reactivity, fouling/slagging, and electrostatic precipitator (ESP) fly ash collection efficiency.

Kevin C. Galbreath; Donald L. Toman; Christopher J. Zygarlicke

1999-09-01T23:59:59.000Z

30

Electric Utility Rate Design Study: embedded generation costs on a time-of-day basis for Iowa Southern Utilities Company  

SciTech Connect

This report develops a method for determining average embedded generation costs on a time-of-day basis and describes the application of the method to Iowa Southern Utilities. These costs are not allocated to customer classes. Since average embedded costs are composed of the running (or variable) costs and the capital costs, the analysis examines each of these separately. Running costs on a time-of-day basis are determined through the use of a generation dispatch model that reports the loadings by generating unit and the running costs of meeting the load. These costs are reported on an hour-by-hour basis. The dispatch model takes into account the operating characteristics of each unit and the major engineering constraints on a system; e.g., must-run units, minimum up and down time, startup cost. After reviewing several suggested capital-cost allocation procedures, a method is developed that allocates capital costs on a time-of-day basis by using a recontracting-for-capacity procedure that allows capacity to vary by hour for each month. The method results in allocations to customers who benefit from its use. An important and distinguishing feature of this method is that it allows calculation of the costs before rating periods are chosen.

1980-01-01T23:59:59.000Z

31

New, Cost-Competitive Solar Plants for Electric Utilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amonix to develop its 7700 Amonix to develop its 7700 system, which drastically reduces the requirement for costly solar cells by using Fresnel lenses to concentrate sunlight 500 times onto small, highly efficient photovoltaic cells. This reduces the cell area so that expensive solar cell materials can be replaced with inexpensive plastic lenses. Amonix Inc. (Torrance, CA), founded in 1989, develops and

32

Can Solar PV Rebates Be Funded with Utility Cost Savings?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jan Aceti Jan Aceti Concord Light February 19, 2013 Concord Municipal Light Plant Photo Credit: K.M. Peterson  7,600 Customers ◦ 6,000 Residential ◦ 1,600 Commercial/Institutional/Governmental  Retail Sales: 180,000,000 kWh per Year  Peak Electrical Demand: 40 MW  Power Purchased from Facilities in Northeast Year # of Installations kW DC kW AC 1999 1 5 5 2008 3 4.2 4.0 2009 5 75.0 74.6 2010 3 158 151 2011 7 36 35 2012 19 143 137 2013 2 8.2 7.7 Total 40 429 414 Residential 35 178 170  $1,000 per kW AC, up to $5,000  Retail Net Metering  Replaced Retail Net Metering with Wholesale Net Metering ◦ Credit at Avg. Monthly Spot Market Energy Price  Rebate: 10 Years Worth of Estimated Cost Savings, Up to 5 kW AC of Installed Capacity  Transmission Cost Savings  Forward Capacity Market Cost Savings

33

Different approaches to estimating transition costs in the electric- utility industry  

SciTech Connect

The term ``transition costs`` describes the potential revenue shortfall (or welfare loss) a utility (or other actor) may experience through government-initiated deregulation of electricity generation. The potential for transition costs arises whenever a regulated industry is subject to competitive market forces as a result of explicit government action. Federal and state proposals to deregulate electricity generation sparked a national debate on transition costs in the electric-utility industry. Industry-wide transition cost estimates range from about $20 billion to $500 billion. Such disparate estimates raise important questions on estimation methods for decision makers. This report examines different approaches to estimating transition costs. The study has three objectives. First, we discuss the concept of transition cost. Second, we identify the major cost categories included in transition cost estimates and summarize the current debate on which specific costs are appropriately included in these estimates. Finally, we identify general and specific estimation approaches and assess their strengths and weaknesses. We relied primarily on the evidentiary records established at the Federal Energy Regulatory Commission and the California Public Utilities Commission to identify major cost categories and specific estimation approaches. We also contacted regulatory commission staffs in ten states to ascertain estimation activities in each of these states. We refined a classification framework to describe and assess general estimation options. We subsequently developed and applied criteria to describe and assess specific estimation approaches proposed by federal regulators, state regulators, utilities, independent power companies, and consultants.

Baxter, L.W.

1995-10-01T23:59:59.000Z

34

Survey of state regulatory activities on least cost planning for gas utilities  

SciTech Connect

Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. Incorporating the concept of meeting customer energy service needs entails a recognition that customers' costs must be considered along with the utility's costs in the economic analysis of energy options. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. All state commissions were surveyed to assess the current status of gas planning and demand-side management and to identify significant regulatory issues faced by commissions during the next several years. The survey was to determine the extent to which they have undertaken least-cost planning for gas utilities. The survey included the following topics: (1) status of state PUC least-cost planning regulations and practices for gas utilities; (2) type and scope ofnatural gas DSM programs in effect, includeing fuel substitution; (3) economic tests and analysis methods used to evaluate DSM programs; (4) relationship between prudence reviews of gas utility purchasing practices and integrated resource planning; and (5) key regulatory issues facing gas utilities during the next five years. 34 refs., 6 figs., 10 tabs.

Goldman, C.A. (Lawrence Berkeley Lab., CA (United States) National Association of Regulatory Utility Commissioners, Washington, DC (United States)); Hopkins, M.E. (Fleming Group, Washington, DC (United States))

1991-04-01T23:59:59.000Z

35

Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Update Update Steve Kiesner Director, National Customer Markets FUPWG Spring 2010 Meeting April 14, 2010 What's On the Minds of Your Utilities?  Transformation of the Electricity Industry  Emerging smart technology  Financial reform  Reliability  Major initiatives to address climate change  Gaps / Lack of Clarity in Federal / State Decisions on Infrastructure and Market Issues  Operating in a carbon constrained world EEI  Our members serve 95% of the ultimate customers in the shareholder-owned segment of the industry,  and represent approximately 70% of the U.S. electric power industry.  We also have more than 80 international electric companies as Affiliate Members  Organized in 1933, EEI works closely with all of its members, representing their interests and

36

The effects of utility DSM programs on electricity costs and prices  

SciTech Connect

More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity? This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a ``base`` that is typical of US utilities; a ``surplus`` utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a ``deficit`` utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

Hirst, E.

1991-11-01T23:59:59.000Z

37

The effects of utility DSM programs on electricity costs and prices  

SciTech Connect

More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a base'' that is typical of US utilities; a surplus'' utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a deficit'' utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

Hirst, E.

1991-11-01T23:59:59.000Z

38

REDUCING POWER PRODUCTION COSTS BY UTILIZING PETROLEUM COKE  

SciTech Connect

A Powder River Basin subbituminous coal from the North Antelope mine and a petroleum shot coke were received from Northern States Power Company (NSP) for testing the effects of parent fuel properties on coal-coke blend grindability and evaluating the utility of petroleum coke blending as a strategy for improving electrostatic precipitator (ESP) particulate collection efficiency. Petroleum cokes are generally harder than coals, as indicated by Hardgrove grindability tests. Therefore, the weaker coal component may concentrate in the finer size fractions during the pulverizing of coal-coke blends. The possibility of a coal-coke size fractionation effect is being investigated because it may adversely affect combustion performance. Although the blending of petroleum coke with coal may adversely affect combustion performance, it may enhance ESP particulate collection efficiency. Petroleum cokes contain much higher concentrations of V relative to coals. Consequently, coke blending can significantly increase the V content of fly ash resulting from coal-coke combustion. Pentavalent vanadium oxide (V{sub 2}O{sub 5}) is a known catalyst for transforming gaseous sulfur dioxide (SO{sub 2}[g]) to gaseous sulfur trioxide (SO{sub 3}[g]). The presence of SO{sub 3}(g) strongly affects fly ash resistivity and, thus, ESP performance.

NONE

1998-09-01T23:59:59.000Z

39

Ancillary-service costs for 12 US electric utilities  

Science Conference Proceedings (OSTI)

Ancillary services are those functions performed by electrical generating, transmission, system-control, and distribution-system equipment and people to support the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission defined ancillary services as ``those services necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.`` FERC divided these services into three categories: ``actions taken to effect the transaction (such as scheduling and dispatching services) , services that are necessary to maintain the integrity of the transmission system [and] services needed to correct for the effects associated with undertaking a transaction.`` In March 1995, FERC published a proposed rule to ensure open and comparable access to transmission networks throughout the country. The rule defined six ancillary services and developed pro forma tariffs for these services: scheduling and dispatch, load following, system protection, energy imbalance, loss compensation, and reactive power/voltage control.

Kirby, B.; Hirst, E.

1996-03-01T23:59:59.000Z

40

Early, Cost-Effective Applications of Photovoltaics in the Electric Utility Industry  

Science Conference Proceedings (OSTI)

Photovoltaic (PV)-powered systems can compete economically with conventional utility approaches such as distribution line extensions and step-down transformer installation for powering small electric loads. This study identified more than 60 cost-effective applications of PV-powered systems for utilities and their customers.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative  

Science Conference Proceedings (OSTI)

This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

Busche, S.; Hockett, S.

2010-06-01T23:59:59.000Z

42

Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual  

SciTech Connect

In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

1981-06-25T23:59:59.000Z

43

High Speed Trains for California (Volume II: Detailed Segment Descriptions, Cost Estimates, and Travel Time Calculations)  

E-Print Network (OSTI)

~ o~ CalSpeed:Capital Cost Estimates OAKLAND-RICHMOND (SP r/minutes). CalSpeed:Capital Cost Estimates HERCULES-FAIRFIELDCalSpeed:Capital Cost Estimates GRAPEVINE:5.0% ALTERNATIVE

Hall, Peter; Leavitt, Dan; Vaca, Erin

1992-01-01T23:59:59.000Z

44

Public Utility Commission Regulation and Cost-Effectiveness of Title IV: Lessons for CAIR  

SciTech Connect

There is growing evidence that the cost savings potential of the Title IV SO{sub 2} cap-and-trade program is not being reached. PUC regulatory treatment of compliance options appears to provide one explanation for this finding. That suggests that PUCs and utility companies should work together to develop incentive plans that will encourage cost-minimizing behavior for compliance with the EPA's recently issued Clean Air Interstate Rule.

Sotkiewicz, Paul M.; Holt, Lynne

2005-10-01T23:59:59.000Z

45

Case Study: Sustained Utility Cost Reduction in a Large Manufacturing Facility  

E-Print Network (OSTI)

This case study presents results of a systematic utility cost reduction plan implemented at a 450,000 sq. ft. manufacturing facility in a hot and humid climate. Electricity, natural gas, and water usage were all reduced on an absolute basis in both 2002 a

Fiorino, D.

2004-01-01T23:59:59.000Z

46

Design and cost of a utility scale superconducting magnetic energy storage plant  

DOE Green Energy (OSTI)

Superconducting Magnetic Energy Storage (SMES) has potential as a viable technology for use in electric utility load leveling. The advantage of SMES over other energy storage technologies is its high net roundtrip energy efficiency. This paper reports the major features and costs of a jointly developed 5000 MWh SMES plant design.

Loyd, R.J.; Nakamura, T.; Schoenung, S.M.; Lieurance, D.W.; Hilal, M.A.; Rogers, J.D.; Purcell, J.R.; Hassenzahl, W.V.

1985-01-01T23:59:59.000Z

47

An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects  

Science Conference Proceedings (OSTI)

This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity. The projects were sorted into eight categories (capacitors, load transfer, new feeder, new line, new substation, new transformer, reconductoring, and substation capacity increase) and descriptive statistics (e.g., mean, total cost, number of observations, and standard deviation) were constructed for each project type. Furthermore, statistical analysis has been performed using ordinary least squares regression analysis to identify how various project variables (e.g., project location, the primary customer served by the project, the type of project, the reason for the upgrade, size of the upgrade) impact the unit cost of the project.

Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

2004-06-01T23:59:59.000Z

48

Low Cost High Concentration PV Systems for Utility Power Generation Amonix,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amonix, Inc. Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief fact sheet on various topics including:Low Cost High Concentration PV Systems for Utility Power Generation,High Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity Using BP Solar Crystalline Silicon Technology, Fully Integrated Building Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain Partnership to Accelerate U.S. Photovoltaic Industry Growth,AC Module PV System,Flexible Organic Polymer-Based PV For Building Integrated Commercial Applications,Flexable Integrated PV System,Delivering Grid-Parity Solar Electricity On Flat Commercial Rooftops,Fully Automated Systems Technology, Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to

49

User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates  

DOE Green Energy (OSTI)

SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

1982-05-01T23:59:59.000Z

50

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

DOE Green Energy (OSTI)

Markets for renewable energy have historically been motivated primarily by policy efforts, but a less widely recognized driver is poised to also play a major role in the coming years: utility integrated resource planning (IRP). Resource planning has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, the most recent resource plans contemplate a significant amount of renewable energy additions. These planned additions--primarily coming from wind power--are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. This report examines how twelve western utilities treat renewable energy in their recent resource plans. In aggregate, these utilities supply approximately half of all electricity demand in the western United States. Our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable energy, and (2) to identify methodological/modeling issues, and suggest possible improvements to methods used to evaluate renewable energy as a resource option. Here we summarize the key findings of the report, beginning with a discussion of the planned renewable energy additions called for by the twelve utilities, an overview of how these plans incorporated renewables into candidate portfolios, and a review of the specific technology cost and performance assumptions they made, primarily for wind power. We then turn to the utilities' analysis of natural gas price and environmental compliance risks, and examine how the utilities traded off portfolio cost and risk in selecting a preferred portfolio.

Bolinger, Mark; Wiser, Ryan

2005-08-10T23:59:59.000Z

51

Practical Handbook of Soybean Processing and UtilizationChapter 26 Cost Estimates for Soybean Processing and Soybean Oil Refining  

Science Conference Proceedings (OSTI)

Practical Handbook of Soybean Processing and Utilization Chapter 26 Cost Estimates for Soybean Processing and Soybean Oil Refining Processing eChapters Processing AOCS Press Downloadable pdf of Chapter 26 Cost Est

52

DYNASTORE operating cost analysis of energy storage for a midwest utility  

DOE Green Energy (OSTI)

The objective of this project was to determine the savings in utility operating costs that could be obtained by installing a Battery Energy Storage System (BESS). The target utility was Kansas City Power and Light (KCPL), a typical Midwestern utility with a mix of generating plants and many interconnections. The following applications of battery energy storage were modeled using an Electric Power Research Institute (EPRI) developed and supported program called DYNASTORE: (1) Spinning Reserve Only (2) Load Leveling with Spinning Reserve (3) Load Leveling Only (4) Frequency Control DYNASTORE commits energy storage units along with generating units and calculates operating costs with and without energy storage, so that savings can be estimated. Typical weeks of hourly load data are used to make up a yearly load profile. For this study, the BESS power ranged from ``small`` to 300 MW (greater than the spinning reserve requirement). BESS storage time ranged from 1 to 8 hours duration (to cover the time-width of most peaks). Savings in operating costs were calculated for each of many sizes of MW capacity and duration. Graphs were plotted to enable the reader to readily see what size of BESS affords the greatest savings in operating costs.

Anderson, M.D. [Missouri Univ., Rolla, MO (United States). Dept. of Electrical Engineering; Jungst, R.G. [Sandia National Labs., Albuquerque, NM (United States)

1996-10-01T23:59:59.000Z

53

Electric-utility DSM-program costs and effects, 1991 to 2001  

SciTech Connect

For the past three years (1989, 1990, and 1991), all US electric utilities that sell more than 120 GWh/year have been required to report to the Energy Information Administration data on their demand-side management (DSM) programs. These data provide a rich and uniquely comprehensive picture of electric-utility DSM programs in the United States. Altogether, 890 utilities (of about 3250 in the United States) ran DSM programs in 1991; of these, 439 sold more than 120 GWh and reported details on their DSM programs. These 439 utilities represent more than 80% of total US electricity sales and revenues. Altogether, these utilities spent almost $1.8 billion on DSM programs in 1991, equal to 1.0% of total utility revenues that year. In return for these (and prior-year) expenditures, utility DSM programs cut potential peak demand by 26,700 MW (4.8% of the national total) and cut annual electricity use by 23,300 GWh (0.9% of the national total). These 1991 numbers represent substantial increases over the 1989 and 1990 numbers on utility DSM programs. Specifically, utility DSM expenditures doubled, energy savings increased by almost 50%, and demand reductions increased by one-third between 1989 and 1991. Utilities differed enormously in their DSM-program expenditures and effects. Almost 12% of the reporting utilities spent more than 2% of total revenues on DSM programs in 1991, while almost 60% spent less than 0.5% of revenues on DSM. Utility estimates of future DSM-program expenditures and benefits show continuing growth. By the year 2001, US utilities expect to spend 1.2% of revenues on DSM and to cut demand by 8.8% and annual sales by 2.7%. Here, too, expectations vary by region. Utilities in the West and Northwest plan to spend more than 2% of revenues on DSM that year, while utilities in the Mid-Atlantic, Midwest, Southwest, Central, and North Central regions plan to spend less than 1% of revenues on DSM.

Hirst, E.

1993-05-01T23:59:59.000Z

54

Cost Avoidance vs. Utility Bill Accounting - Explaining the Discrepancy Between Guaranteed Savings in ESPC Projects and Utility Bills  

E-Print Network (OSTI)

savings is not based on actual utility rate structure, buta contracted utility rate that takesthe existing utility rate at the time the contract is signed

Kumar, S.; Sartor, D.

2005-01-01T23:59:59.000Z

55

Cost and Quality of Fuels for Electric Utility Plants 2000 Tables  

Gasoline and Diesel Fuel Update (EIA)

0) 0) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2000 Tables August 2001 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) is no longer published by the EIA. The tables presented in this document are intended to replace that annual publication. Questions

56

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

267 267 June 2010 Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative S. Busche and S. Hockett National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-7A2-48267 June 2010 Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative S. Busche and S. Hockett Prepared under Task No. IDHW9170 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

57

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative  

NLE Websites -- All DOE Office Websites (Extended Search)

8267 8267 June 2010 Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative S. Busche and S. Hockett National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-7A2-48267 June 2010 Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative S. Busche and S. Hockett Prepared under Task No. IDHW9170 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

58

COST IMPACT OF SAFE DRINKING WATER ACT COMPLIANCE FOR COMMISSION-REGULATED WATER UTILITIES  

E-Print Network (OSTI)

(NRRI) with funding provided by participating member commissions of the National Association of Regulatory Utility Commissioners (NARUC). The views and opinions of the authors do not necessarily state or reflect the views, opinions, or policies of the NRRI, the NARUC, or NARUC member commissions. EXECUTIVE SUMMARY This study was prepared for state public utility commissioners and their staff in response to the growing concern about the effect of the Safe Drinking Water Act (SDWA) on water utilities under their jurisdiction. Compliance with the SDWA is expected to have a significant impact on water utilities and the rates they charge for service. A sensitivity analysis was developed for this report using a hypothetical water company to identify the costs associated with alternative treatment processes. A total of eighteen different treatment processes are considered, from conventional treatment to granular activated carbon (GAC) adsorption and reverse osmosis. Capital costs for these processes range from $100,000 to $3.25 million for a water plant with a designed capacity of one million

Patrick C. Mann; Janice A. Beecher

1989-01-01T23:59:59.000Z

59

A model of the Capital Cost of a natural gas-fired fuel cell based Central Utilities Plant  

DOE Green Energy (OSTI)

This model defines the methods used to estimate the cost associated with acquisition and installation of capital equipment of the fuel cell systems defined by the central utility plant model. The capital cost model estimates the cost of acquiring and installing the fuel cell unit, and all auxiliary equipment such as a boiler, air conditioning, hot water storage, and pumps. The model provides a means to adjust initial cost estimates to consider learning associated with the projected level of production and installation of fuel cell systems. The capital cost estimate is an input to the cost of ownership analysis where it is combined with operating cost and revenue model estimates.

Not Available

1993-06-30T23:59:59.000Z

60

A framework and review of customer outage costs: Integration and analysis of electric utility outage cost surveys  

E-Print Network (OSTI)

Std Dev Cost Per Annual Cost Per kWh Usage Peak kW AverageStd Dev Cost Per Annual Cost Per kWh Usage Peak kW Average3-2. Logged Outage Cost per Annual kWh Figure 3-3. Logged

Lawton, Leora; Sullivan, Michael; Van Liere, Kent; Katz, Aaron; Eto, Joseph

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A framework and review of customer outage costs: Integration and analysis of electric utility outage cost surveys  

Science Conference Proceedings (OSTI)

A clear understanding of the monetary value that customers place on reliability and the factors that give rise to higher and lower values is an essential tool in determining investment in the grid. The recent National Transmission Grid Study recognizes the need for this information as one of growing importance for both public and private decision makers. In response, the U.S. Department of Energy has undertaken this study, as a first step toward addressing the current absence of consistent data needed to support better estimates of the economic value of electricity reliability. Twenty-four studies, conducted by eight electric utilities between 1989 and 2002 representing residential and commercial/industrial (small, medium and large) customer groups, were chosen for analysis. The studies cover virtually all of the Southeast, most of the western United States, including California, rural Washington and Oregon, and the Midwest south and east of Chicago. All variables were standardized to a consistent metric and dollar amounts were adjusted to the 2002 CPI. The data were then incorporated into a meta-database in which each outage scenario (e.g., the lost of electric service for one hour on a weekday summer afternoon) is treated as an independent case or record both to permit comparisons between outage characteristics and to increase the statistical power of analysis results. Unadjusted average outage costs and Tobit models that estimate customer damage functions are presented. The customer damage functions express customer outage costs for a given outage scenario and customer class as a function of location, time of day, consumption, and business type. One can use the damage functions to calculate outage costs for specific customer types. For example, using the customer damage functions, the cost experienced by an ''average'' customer resulting from a 1 hour summer afternoon outage is estimated to be approximately $3 for a residential customer, $1,200 for small-medium commercial and industrial customer, and $82,000 for large commercial and industrial customer. Future work to improve the quality and coverage of information on the value of electricity reliability to customers is described.

Lawton, Leora; Sullivan, Michael; Van Liere, Kent; Katz, Aaron; Eto, Joseph

2003-11-01T23:59:59.000Z

62

A framework and review of customer outage costs: Integration and analysis of electric utility outage cost surveys  

E-Print Network (OSTI)

usage. Table A-1 lists the utility company, survey year, andRequested From Utility Participants v List of Figures and

Lawton, Leora; Sullivan, Michael; Van Liere, Kent; Katz, Aaron; Eto, Joseph

2003-01-01T23:59:59.000Z

63

Initial cost analysis of a desalination process utilizing hydrotalcite and permutite for ion sequestration.  

SciTech Connect

An initial cost analysis of a proposed desalination process was performed. The proposed process utilizes tailored inorganic ion exchangers, hydrotalcite and permutite, to sequester anions and cations from a brackish water solution. Three different process scenarios were considered: (1) disposal of the spent exchangers as dry waste (2) conventional chemical regeneration, and (3) acid regeneration of permutite coupled with thermal (550 C) regeneration of hydrotalcite. Disposal of the resin and conventional regeneration are not viable options from an economic standpoint. Applying limited data and optimistic assumptions to the third scenario yielded an estimate of $2.34/kgal of product water. Published values for applying conventional reverse osmosis to similar water streams range from $0.70 to $2.65/kgal. Consistent with these baseline values, the Water Treatment Estimation Routine, WaTER, developed by the United States Department of the Interior, Bureau of Reclamation produced a cost estimate of $1.16/kgal for brackish water reverse osmosis.

Miller, James Edward; Evans, Lindsey R.

2004-12-01T23:59:59.000Z

64

Biomass to Hydrogen Production Detailed Design and Economics Utilizing the Battelle Columbus Laboratory Indirectly-Heated Gasifier  

DOE Green Energy (OSTI)

This analysis developed detailed process flow diagrams and an Aspen Plus{reg_sign} model, evaluated energy flows including a pinch analysis, obtained process equipment and operating costs, and performed an economic evaluation of two process designs based on the syngas clean up and conditioning work being performed at NREL. One design, the current design, attempts to define today's state of the technology. The other design, the goal design, is a target design that attempts to show the effect of meeting specific research goals.

Spath, P.; Aden, A.; Eggeman, T.; Ringer, M.; Wallace, B.; Jechura, J.

2005-05-01T23:59:59.000Z

65

Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 4: Project cost estimate  

SciTech Connect

The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. This volume represents the total estimated costs for the W113 facility. Operating Contractor Management costs have been incorporated as received from WHC. The W113 Facility TEC is $19.7 million. This includes an overall project contingency of 14.4% and escalation of 17.4%. A January 2001 construction contract procurement start date is assumed.

NONE

1995-09-01T23:59:59.000Z

66

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

customer needs. Renewable energy cost reductions, combinedthe likely cost of renewable energy in the longer term.Renewable Energy Credits (RECs)38 5.2 Geothermal Cost

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

67

Benefit-cost analysis of DOE's Current Federal Program to increase hydrothermal resource utilization. Final report  

DOE Green Energy (OSTI)

The impact of DOE's Current Federal Program on the commercialization of hydrothermal resources between 1980 and 2000 is analyzed. The hydrothermal resources of the United States and the types of DOE activities used to stimulate the development of these resources for both electric power and direct heat use are described briefly. The No Federal Program and the Current Federal Program are then described in terms of funding levels and the resultant market penetration estimates through 2000. These market penetration estimates are also compared to other geothermal utilization forecasts. The direct benefits of the Current Federal Program are next presented for electric power and direct heat use applications. An analysis of the external impacts associated with the additional hydrothermal resource development resulting from the Current Federal Program is also provided. Included are environmental effects, national security/balance-of-payments improvements, socioeconomic impacts and materials requirements. A summary of the analysis integrating the direct benefits, external impacts and DOE program costs concludes the report.

Not Available

1981-12-10T23:59:59.000Z

68

Cost-effective applications of photovoltaics for electric utilities: An overview  

DOE Green Energy (OSTI)

Cost targets for the large-scale entry of photovoltaic (PV) systems keep moving, subject to the vagaries of global oil prices and the economic health of the world. Over the last four decades since a practical PV device was announced, costs have come down by a factor of 20 or more and this downward trend is expected to continue, albeit at a slower pace. Simultaneously, conversion efficiencies have nearly tripled. There are many applications today for which PV is cost-effective. In recognition of this, utility interest in PV is increasing and this is manifested by projects such as PVUSA and Central and South West`s renewable resource development effort. While no major technical barriers for the entry of PV systems have been uncovered, several key issues such as power quality, system reliability, ramp rates, spinning reserve requirements, and misoperation of protection schemes will have to be dealt with as the penetration of this technology increases. PV is still in the evolutionary phase and is expected to grow for several decades to come. Fueled by environmental considerations, interest in PV is showing a healthy rise both in the minds of the public and in the planning realms of the electric power community. In recognition of this, the Energy Development Subcommittee of the IEEE Energy Development and Power Generation Committee organized a Panel Session on photovoltaics applications at the 1993 International Joint Power Generation Conference held in Kansas City, Missouri. Summaries of the four presentations are assembled here for the benefit of the readers of this Review.

Bigger, J.E. [Electric Power Research Inst., Palo Alto, CA (United States)

1993-12-31T23:59:59.000Z

69

The cost and performance of utility commercial lighting programs. A report from the Database on Energy Efficiency Programs (DEEP) project  

SciTech Connect

The objective of the Database on Energy Efficiency Programs (DEEP) is to document the measured cost and performance of utility-sponsored, energy-efficiency, demand-side management (DSM) programs. Consistent documentation of DSM programs is a challenging goal because of problems with data consistency, evaluation methodologies, and data reporting formats that continue to limit the usefulness and comparability of individual program results. This first DEEP report investigates the results of 20 recent commercial lighting DSM programs. The report, unlike previous reports of its kind, compares the DSM definitions and methodologies that each utility uses to compute costs and energy savings and then makes adjustments to standardize reported program results. All 20 programs were judged cost-effective when compared to avoided costs in their local areas. At an average cost of 3.9{cents}/kWh, however, utility-sponsored energy efficiency programs are not ``too cheap to meter.`` While it is generally agreed upon that utilities must take active measures to minimize the costs and rate impacts of DSM programs, the authors believe that these activities will be facilitated by industry adoption of standard definitions and reporting formats, so that the best program designs can be readily identified and adopted.

Eto, J.; Vine, E.; Shown, L.; Sonnenblick, R.; Payne, C. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-05-01T23:59:59.000Z

70

Power Plant Cycling Costs  

Science Conference Proceedings (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

71

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

the likely cost of renewable energy in the longer term. ItBalancing Cost and Risk: The Treatment of Renewable EnergyBalancing Cost and Risk: The Treatment of Renewable Energy

Wiser, Ryan; Bolinger, Mark

2005-01-01T23:59:59.000Z

72

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

studies, however, wind integration costs used in some of theestimated by recent wind integration studies is shown to theStudies Resource Plans Wind Integration Cost ($/MWh) Wind

Wiser, Ryan; Bolinger, Mark

2005-01-01T23:59:59.000Z

73

Utility-Scale Solar 2012: An Empirical Analysis of Project Cost...  

NLE Websites -- All DOE Office Websites (Extended Search)

through key findings from this report. The webinar covers trends in not only installed project costs or prices, but also operating costs, capacity factors, and power purchase...

74

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

Cost of Wind Power Also important to how renewable energyenergy considered in these plans. Not surprisingly, the total modeled cost of wind

Wiser, Ryan; Bolinger, Mark

2005-01-01T23:59:59.000Z

75

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

costs to access in-state wind power, either in their 2004 IRPs, or in subsequent renewable energycost and performance of wind power, with limited analysis of geothermal. In its subsequent 2005 renewable energyWind Power Cost and Performance Assumptions .23 5.1.1 Busbar Costs ..26 5.1.2 Indirect Costs .29 5.1.3 Treatment of Renewable Energy

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

76

Instrumentation and Control Strategies for Plant-Wide and Fleet-Wide Cost Reduction: Utility Application Guideline  

Science Conference Proceedings (OSTI)

This CD provides guidance from the EPRI initiative on IC Strategies for Plant-Wide and Fleet-Wide Cost Reduction. Included on the CD are EPRI Technical Report 1015087, Instrumentation and Control Strategies for Plant-Wide and Fleet-Wide Cost Reduction: Utility Application Guideline, published October 2007, and two multimedia briefings. The report and briefings describe a wide range of options while emphasizing integrated modernization across the plant or fleet. Coordinated improvements to shared communi...

2008-09-03T23:59:59.000Z

77

Comparing large scale CCS deployment potential in the USA and China: a detailed analysis based on country-specific CO2 transport & storage cost curves  

Science Conference Proceedings (OSTI)

The United States and China are the two largest emitters of greenhouse gases in the world and their projected continued growth and reliance on fossil fuels, especially coal, make them strong candidates for CCS. Previous work has revealed that both nations have over 1600 large electric utility and other industrial point CO2 sources as well as very large CO2 storage resources on the order of 2,000 billion metric tons (Gt) of onshore storage capacity. In each case, the vast majority of this capacity is found in deep saline formations. In both the USA and China, candidate storage reservoirs are likely to be accessible by most sources with over 80% of these large industrial CO2 sources having a CO2 storage option within just 80 km. This suggests a strong potential for CCS deployment as a meaningful option to efforts to reduce CO2 emissions from these large, vibrant economies. However, while the USA and China possess many similarities with regards to the potential value that CCS might provide, including the range of costs at which CCS may be available to most large CO2 sources in each nation, there are a number of more subtle differences that may help us to understand the ways in which CCS deployment may differ between these two countries in order for the USA and China to work together - and in step with the rest of the world - to most efficiently reduce greenhouse gas emissions. This paper details the first ever analysis of CCS deployment costs in these two countries based on methodologically comparable CO2 source and sink inventories, economic analysis, geospatial source-sink matching and cost curve modeling. This type of analysis provides a valuable insight into the degree to which early and sustained opportunities for climate change mitigation via commercial-scale CCS are available to the two countries, and could facilitate greater collaboration in areas where those opportunities overlap.

Dahowski, Robert T.; Davidson, Casie L.; Dooley, James J.

2011-04-18T23:59:59.000Z

78

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

Determining the Real Cost: Why Renewable Power is More Cost-Previously Believed. Renewable Energy World, 6(2): pp. 52-Price Risk When Comparing Renewable to Gas-Fired Generation:

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

79

Actinide partitioning-transmutation program. V. Preconceptual designs and costs of partitioning facilities and shipping casks, Appendix 4. Final report  

SciTech Connect

This Appendix contains cost estimate documents for the Fuels Fabrication Plant Waste Treatment Facility. Plant costs are summarized by Code of Accounts and by Process Function. Costs contributing to each account are detailed. Process equipment costs are detailed for each Waste Treatment Process. Service utility costs are also summarized and detailed. Shipping cask costs are provided.

Not Available

1980-06-01T23:59:59.000Z

80

2010 Cost of Wind Energy Review  

DOE Green Energy (OSTI)

This document provides a detailed description of NREL's levelized cost of wind energy equation, assumptions and results in 2010, including historical cost trends and future projections for land-based and offshore utility-scale wind.

Tegen, S.; Hand, M.; Maples, B.; Lantz, E.; Schwabe, P.; Smith, A.

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

Energy Efficiency and Renewable Energy (Office of Planning,I. Introduction Markets for renewable electricity have grownRisk: The Treatment of Renewable Energy in Western Utility

Wiser, Ryan; Bolinger, Mark

2005-01-01T23:59:59.000Z

82

The sensitivity of wind technology utilization to cost and market parameters  

DOE Green Energy (OSTI)

This study explores the sensitivity of future wind energy market penetration to available wind resources, wind system costs, and competing energy system fuel costs for several possible energy market evolution scenarios. The methodology for the modeling is described in general terms. Cost curves for wind technology evolution are presented and used in conjunction with wind resource estimates and energy market projections to estimate wind penetration into the market. Results are presented that show the sensitivity of the growth of wind energy use to key cost parameters and to some of the underlying modeling assumptions. In interpreting the results, the authors place particular emphasis on the relative influence of the parameters studied. 4 refs., 8 figs., 1 tab.

Dodd, H.M. (Sandia National Labs., Albuquerque, NM (USA)); Hock, S.M.; Thresher, R.W. (Solar Energy Research Inst., Golden, CO (USA))

1990-11-01T23:59:59.000Z

83

Analysis of novel, above-ground thermal energy storage concept utilizing low-cost, solid medium  

E-Print Network (OSTI)

Clean energy power plants cannot effectively match peak demands without utilizing energy storage technologies. Currently, several solutions address short term demand cycles, but little work has been done to address seasonal ...

Barineau, Mark Michael

2010-01-01T23:59:59.000Z

84

Section 5.6.2 Managing Utility Costs: Greening Federal Facilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

rates for power used at times the utility establishes as off-peak. The difference in energy charges (per kWh) between on-peak and off-peak power can be a fac- tor of two to four....

85

Least cost planning regulation; Restructuring the roles of utility management and regulators  

Science Conference Proceedings (OSTI)

This purpose of this paper is to examine the roles of regulators in long-range utility resource planning. Summary of major points include: Three regulatory options exist today with respect to integrated resource planning: Command and Control Regulation; Incentive Regulation; and Flexible Regulation. If deregulation is likely in the end, flexible regulation today offers the greatest promise of long-run success. Flexible regulation requires commissions and companies to agree on underlying principles and for utility management to exercise defensible judgment.

Donovan, D.J.; Goldfield, S.R. (Richard Metzler and Associates, Northbrook, IL (US))

1992-01-01T23:59:59.000Z

86

Benefit/Cost Analysis of Geothermal Technology R&D. Volume III: Energy Extraction and Utilization Technology  

DOE Green Energy (OSTI)

This document describes the benefit/cost relationship for 44 research and development (R and D) projects being funded by the Utilization Technology Branch (UTB) of the Division of Geothermal Energy (DGE), Department of Energy (DOE) as a part of its Energy Extraction and Conversion Technology program. The benefits were computed in terms of the savings resulting from the reduction in the cost of electricity projected to be generated at 27 hydrothermal prospects in the US between 1978 and 2000, due to technological improvements brought about by successful R and D. The costs of various projects were estimated by referring to the actual expenditures already incurred and the projected future budgets for these projects. In certain cases, the expected future expenditures had to be estimated on the basis of the work which would need to be done to carry a project to the commercialization stage.

Dhillon, Harpal S.; Nguyen, Van Thanh; Pfundstein, Richard T.; Entingh, Daniel J.

1979-05-01T23:59:59.000Z

87

Actinide Partitioning-Transmutation Program Final Report. V. Preconceptual designs and costs of partitioning facilities and shipping casks (appendix 3)  

SciTech Connect

This Appendix contains cost estimate documents for the Fuels Reprocessing Plant Waste Treatment Facility. Plant costs are summarized by Code of Accounts and by Process Function. Costs contribution to each account are detailed. Process equipment costs are detailed for each Waste Treatment Process. Service utility costs are also summarized and detailed.

Not Available

1980-06-01T23:59:59.000Z

88

The cost of reducing utility S02 emissions : not as low as you might think  

E-Print Network (OSTI)

A common assertion in public policy discussions is that the cost of achieving the SO2 emissions reductions under the acid rain provisions of the Clean Air Act ("Title IV") has been only one-tenth or less of what Title IV ...

Smith, Anne E.

1998-01-01T23:59:59.000Z

89

Costs and benefits from utility-funded commissioning of energy- efficiency measures in 16 buildings  

SciTech Connect

This paper describes the costs and savings of commissioning of energy- efficiency measures in 16 buildings. A total of 46 EEMs were commissioned for all 16 buildings and 73 deficiencies were corrected. On average, commissioning was marginally cost effective on energy savings alone, although the results were mixed among all 16 buildings. When considered as a stand-alone measure, the median simple payback time of 6.5 years under the low energy prices in the Pacific Northwest. Under national average prices the median payback time is about three years. In estimating the present value of the energy savings from commissioning we considered low and high lifetimes for the persistence of savings from deficiency corrections. Under the low- lifetime case the average present value of the energy savings ($0. 21/ft{sup 2}) were about equal to the average commissioning costs ($0. 23/ft{sup 2}). Under the high-lifetime case the savings ($0.51/ft{sup 2}) were about twice the costs. Again, the savings would be about twice as large under national average prices. The results are subject to significant uncertainty because of the small sample size and lack of metered data in the evaluation. However, the findings suggest that investments in commissioning pay off. Building owners want buildings that work as intended, and are comfortable, healthy, and efficient. It is likely that the non-energy benefits, which are difficult to quantify, are larger than the energy-savings benefits.

Piette, M.A.; Nordman, B.

1995-10-01T23:59:59.000Z

90

Energy Conservation Fund: Helping Corporations Develop Energy Conservation Strategies and Reduce Utility Costs  

E-Print Network (OSTI)

Energy conservation projects can save companies significant money over time and often pay for themselves very quickly. This is especially true with the dramatic increase in energy costs over the past few years. Yet convincing corporate decision makers of their value is challenging, since most plants with limited capital tend to direct resources toward projects that increase production rather than toward those that save energy. The irony is that production projects may not realize savings if markets change, while conservation improvements usually change a plant's infrastructure in ways that ensure continued savings. Establishing a business unit or department focused on energy cost reduction and investing its profits in an Energy Conservation Fund (ECF) is part of a total energy approach that helps corporations identify projects, dedicate funds and implement changes. It makes conservation improvement projects more attractive on the front end, so companies can enjoy the long-term benefits.

Swanson, G. A.; Houston, W.

2005-01-01T23:59:59.000Z

91

Flat-plate solar collectors utilizing polymeric film for high performance and very low cost  

SciTech Connect

Polymeric films are used in the construction of the absorber and window portions of a flat plate solar collector. The absorber heat exchanger consists of a channeled liquid envelope constructed using a polymeric film and metal foil laminate. In addition, the composite films and light frame monocoque construction contribute to very light weight and low cost. The use of high-performance polymers permits low-loss designs with high thermal performance. The construction concepts are consistent with high speed mass production and installation with manufacturing cost projections of $15/m/sup 2/. Tests performed at Brookhaven National Laboratory (BNL) and elsewhere indicate performance potential consistent with applications incorporating solar absorption air conditioning.

Wilhelm, W.G.

1981-01-01T23:59:59.000Z

92

Low-Cost High-Concentration Photovoltaic Systems for Utility Power Generation  

DOE Green Energy (OSTI)

Under DOE's Technology Pathway Partnership (TPP) program, Amonix, Inc. developed a new generation of high-concentration photovoltaic systems using multijunction technology and established the manufacturing capacity needed to supply multi-megawatt power plants buing using the new Amonix 7700-series solar energy systems. For this effort, Amonix Collaborated with a variety of suppliers and partners to complete project tasks. Subcontractors included: Evonik/Cyro; Hitek; the National Renewable Energy Laboratory (NREL); Raytech; Spectrolab; UL; University of Nevada, Las Vegas; and TUV Rheinland PTL. The Amonix TPP tasks included: Task 1: Multijunction Cell Optimization for Field Operation, Task 2: Fresnel Lens R&D, Task 3: Cell Package Design & Production, Task 4: Standards Compliance and Reliability Testing, Task 5: Receiver Plate Production, Task 6: MegaModule Performance, Task 7: MegaModule Cost Reduction, Task 8: Factory Setup and MegaModule Production, Task 9: Tracker and Tracking Controller, Task 10: Installation and Balance of System (BOS), Task 11: Field Testing, and Task 12: Solar Advisor Modeling and Market Analysis. Amonix's TPP addressed nearly the complete PV value chain from epitaxial layer design and wafer processing through system design, manufacturing, deployment and O&M. Amonix has made progress toward achieving these reduced costs through the development of its 28%+ efficient MegaModule, reduced manufacturing and installation cost through design for manufacturing and assembly, automated manufacturing processes, and reduced O&M costs. Program highlights include: (1) Optimized multijunction cell and cell package design to improve performance by > 10%; (2) Updated lens design provided 7% increased performance and higher concentration; (3) 28.7% DC STC MegaModule efficiency achieved in Phase II exceeded Phase III performance goal; (4) New 16' focal length MegaModule achieved target materials and manufacturing cost reduction; (5) Designed and placed into production 25 MW/yr manufacturing capacity for complete MegaModules, including cell packages, receiver plates, and structures with lenses; (6) Designed and deployed Amonix 7700 series systems rated at 63 kW PTC ac and higher. Based on an LCOE assessment using NREL's Solar Advisor Model, Amonix met DOE's LCOE targets: Amonix 2011 LCOE 12.8 cents/kWh (2010 DOE goal 10-15); 2015 LCOE 6.4 cents/kWh (2015 goal 5-7) Amonix and TPP participants would like to thank the U.S. Department of Energy Solar Energy Technology Program for funding received under this program through Agreement No. DE-FC36-07GO17042.

McConnell, R.; Garboushian, V.; Gordon, R.; Dutra, D.; Kinsey, G.; Geer, S.; Gomez, H.; Cameron, C.

2012-03-31T23:59:59.000Z

93

Operational, cost, and technical study of large windpower systems integrated with an existing electric utility. Final report  

DOE Green Energy (OSTI)

Detailed wind energy assessment from the available wind records, and evaluation of the application of wind energy systems to an existing electric utility were performed in an area known as the Texas Panhandle, on the Great Plains. The study area includes parts of Texas, eastern New Mexico, the Oklahoma Panhandle and southern Kansas. The region is shown to have uniformly distributed winds of relatively high velocity, with average wind power density of 0.53 kW/m/sup 2/ at 30 m height at Amarillo, Texas, a representative location. The annual period of calm is extremely low. Three separate compressed air storage systems with good potential were analyzed in detail, and two potential pumped-hydro facilities were identified and given preliminary consideration. Aquifer storage of compressed air is a promising possibility in the region.

Ligon, C.; Kirby, G.; Jordan, D.; Lawrence, J.H.; Wiesner, W.; Kosovec, A.; Swanson, R.K.; Smith, R.T.; Johnson, C.C.; Hodson, H.O.

1976-04-01T23:59:59.000Z

94

Utilizing fly ash particles to produce low-cost metal matrix composites  

Science Conference Proceedings (OSTI)

Metal matrix composites (MMCs) are a blend of fine ceramic particles mixed with metals such as aluminium or magnesium. Fly ash is considerably cheaper than ceramics; aluminium-fly ash composites cost less than 60% of conventional aluminium-SiC composites making them attractive to automakers striving for lower weight and cheaper materials for brake rotors or brake drums. Ultalite.com has consulted with US researchers to to find the optimum requirements of the fly ash needed to make MMCs. Particle size 20-40 microns, low calcium oxide content and spherical particles were identified. The desired particles once extracted are stirred into molten aluminum and the resulting composite is into ingots for shipment to a casting facility. Dynamometer testing has shown that aluminium-fly ash composite brake drums have better performance and wear than cast iron drums. 6 figs., 1 tab.

Withers, G. [Ultalite.com, Melbourne, Vic. (Australia)

2008-07-01T23:59:59.000Z

95

SOLERAS - Solar Energy Water Desalination Project: Exxon Research and Engineering. System design final report. Volume 3. Appendices pilot plan and design details and subsystem direct cost support  

Science Conference Proceedings (OSTI)

Details of the design of a water desalination solar pilot plant in Yanbu, Saudi Arabia are presented. The major subsystems of the plant are defined, including solar energy collection and simulation, energy storage, energy delivery, reverse osmosis/multiple effect distillation, water storage, waste disposal, backup power generators, controls and instrumentation data acquisition, facilities and enclosures, and computers. A list of the plant equipment and a set of process flow diagrams are provided. A cost analysis of the pilot plant is included. (BCS)

Not Available

1985-01-01T23:59:59.000Z

96

Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications  

DOE Green Energy (OSTI)

This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

Humphreys, K.K.; Brown, D.R.

1990-01-01T23:59:59.000Z

97

Italian Association of Energy EconomistsYardstick Regulation of Electricity Distribution Utilities Based on the Estimation of an Average Cost Function *  

E-Print Network (OSTI)

In this paper we estimate an average-cost function for a panel of 45 Swiss electricity distribution utilities as a basis for yardstick regulation of the distribution-network access prices. Unlike the existing literature, we separate the electricity sales function of utilities from the network operation function. Several exogenous variables measuring the heterogeneity of the service areas were included in the model specification in order to allow the regulator to set differentiated benchmark prices incorporating this heterogeneity. We can identify different exogenous service area characteristics that affect average cost. These are the load factor, the customer density and the output density of different consumer groups. Moreover, the estimation results indicate the existence of significant economies of scale; i.e. most of the Swiss utilities in our sample are too small to reach minimum efficient scale. However, to give the small utilities incentives to merge the size of the utilities must not be included in the yardstick calculation. 1.

Massimo Filippini; Jrg Wild; Massimo Filippini; Jrg Wild

1999-01-01T23:59:59.000Z

98

Electric power substation capital costs  

SciTech Connect

The displacement or deferral of substation equipment is a key benefit associated with several technologies that are being developed with the support of the US Department of Energy`s Office of Utility Technologies. This could occur, for example, as a result of installing a distributed generating resource within an electricity distribution system. The objective of this study was to develop a model for preparing preliminary estimates of substation capital costs based on rudimentary conceptual design information. The model is intended to be used by energy systems analysts who need ``ballpark`` substation cost estimates to help establish the value of advanced utility technologies that result in the deferral or displacement of substation equipment. This cost-estimating model requires only minimal inputs. More detailed cost-estimating approaches are recommended when more detailed design information is available. The model was developed by collecting and evaluating approximately 20 sets of substation design and cost data from about 10 US sources, including federal power marketing agencies and private and public electric utilities. The model is principally based on data provided by one of these sources. Estimates prepared with the model were compared with estimated and actual costs for the data sets received from the other utilities. In general, good agreement (for conceptual level estimating) was found between estimates prepared with the cost-estimating model and those prepared by the individual utilities. Thus, the model was judged to be adequate for making preliminary estimates of typical substation costs for US utilities.

Dagle, J.E.; Brown, D.R.

1997-12-01T23:59:59.000Z

99

Benefit-cost analysis of DOE's Current Federal Program to increase hydrothermal resource utilization. Final report  

SciTech Connect

The impact of DOE's Current Federal Program on the commercialization of hydrothermal resources between 1980 and 2000 is analyzed. The hydrothermal resources of the United States and the types of DOE activities used to stimulate the development of these resources for both electric power and direct heat use are described briefly. The No Federal Program and the Current Federal Program are then described in terms of funding levels and the resultant market penetration estimates through 2000. These market penetration estimates are also compared to other geothermal utilization forecasts. The direct benefits of the Current Federal Program are next presented for electric power and direct heat use applications. An analysis of the external impacts associated with the additional hydrothermal resource development resulting from the Current Federal Program is also provided. Included are environmental effects, national security/balance-of-payments improvements, socioeconomic impacts and materials requirements. A summary of the analysis integrating the direct benefits, external impacts and DOE program costs concludes the report.

1981-12-10T23:59:59.000Z

100

Mixed strategies for energy conservation and alternative energy utilization (solar) in buildings. Final report. Volume II. Detailed results. [New York, Atlanta, Omaha, and Albuquerque  

DOE Green Energy (OSTI)

The mixed-strategy analysis was a tradeoff analysis between energy-conservation methods and an alternative energy source (solar) considering technical and economic benefits. The objective of the analysis was to develop guidelines for: reducing energy requirements; reducing conventional fuel use; and identifying economic alternatives for building owners. The analysis was done with a solar system in place. This makes the study unique in that it is determining the interaction of energy conservation with a solar system. The study, therefore, established guidelines as to how to minimize capital investment while reducing the conventional fuel consumption through either a larger solar system or an energy-conserving technique. To focus the scope of energy-conservation techniques and alternative energy sources considered, five building types (house, apartment buildings, commercial buildings, schools, and office buildings) were selected. Finally, the lists of energy-conservation techniques and alternative energy sources were reduced to lists of manageable size by using technical attributes to select the best candidates for further study. The resultant energy-conservation techniques were described in detail and installed costs determined. The alternative energy source reduced to solar. Building construction characteristics were defined for each building for each of four geographic regions of the country. A mixed strategy consisting of an energy-conservation technique and solar heating/hot water/cooling system was analyzed, using computer simulation to determine the interaction between energy conservation and the solar system. Finally, using FEA fuel-price scenarios and installed costs for the solar system and energy conservation techniques, an economic analysis was performed to determine the cost effectiveness of the combination. (MCW)

None

1977-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Options for Reducing Environmental-Related Utility Costs Associated With Dielectric Fluids Employed in Cables and Transformers  

Science Conference Proceedings (OSTI)

This report represents results of a literature review and technical workshop on environmental management of dielectric fluids, with emphasis on those properties that strongly influence transport, fate, impacts, and costs of a dielectric fluid release into the environment. From this basis, options are presented for new or modified dielectric fluids that could reduce environmental impacts and lower management costs.

1998-12-02T23:59:59.000Z

102

Reliable, Low-Cost Distributed Generator/Utility System Interconnect: Final Subcontract Report, November 2001-March 2004  

Science Conference Proceedings (OSTI)

This report summarizes the detailed study and development of new GE anti-islanding controls for two classes of distributed generation. One is inverter-interfaced, while the other is synchronous machine interfaced.

Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.; Li, L.; Zhou, R.; Garces, L.; Dame, M.

2006-03-01T23:59:59.000Z

103

Utility rate structures and distributed thermal energy storage: a cost/benefit analysis. Basic research report, October 1978-February 1979  

SciTech Connect

This paper examines three alternative methods by which electric utilities might take advantage of distributed thermal energy storage to smooth out their load profiles. These three methods are: time-specific rates, time-invariant rates with subsidized storage, and direct load controls. The optimal form of each of these policies is determined, and formulas indicating the relative desirability of each policy are developed.

Koening, E.F.; Cambel, A.B.

1979-02-01T23:59:59.000Z

104

Evaluating Utility Executives' Perceptions of Smart Grid Costs, Benefits and Adoption Plans To Assess Impacts on Building Design and Construction  

E-Print Network (OSTI)

Smart Grid technology is likely to be implemented in various magnitudes across utilities in the near future. To accommodate these technologies significant changes will have to be incorporated in building design construction and planning. This research paper attempts to evaluate public utility executives plans to adopt smart grid technologies and to assess timing of smart grid impacts on future design and construction practices. Telephone survey was the data collection method used to collect information from executives at cooperative and municipal utilities. The study focuses on small and medium utilities with more than five thousand customers and fewer than one hundred thousand customers. A stratified random sampling approach was applied and sample results for fifty-nine survey responses were used to predict the timing of smart grid implementation and the timing of smart grid impacts on future design and construction practices. Results of this research indicate that design and construction professionals should already be developing knowledge and experience to accommodate smart grid impacts on the built environment.

Rao, Ameya Vinayak

2010-08-01T23:59:59.000Z

105

Operations, Maintenance, and Replacement 10-year plan, 1990-1999 : 1989 Utility OM&R Comparison : A Comparison of BPA (Bonneville Power Administration) and Selected Utility Transmission, Operations and Maintenance Costs.  

SciTech Connect

For the past several years, competing resource demands within BPA have forced the Agency to stretch Operations, Maintenance and Replacement (OM R) resources. There is a large accumulation of tasks that were not accomplished when scheduled. Maintenance and replacements and outages, due to material and equipment failure, appear to be increasing. BPA has made a strategic choice to increase its emphasis on OM R programs by implementing a multi-year, levelized OM R plan which is keyed to high system reliability. This strategy will require a long-term commitment of a moderate increase in staff and dollars allocated to these programs. In an attempt to assess the direction BPA has taken in its OM R programs, a utility comparison team was assembled in early January 1989. The team included representatives from BPA's Management Analysis, Internal Audit and Financial Management organizations, and operation and maintenance program areas. BPA selected four utilities from a field of more than 250 electric utilities in the US and Canada. The selection criteria generally pertained to size, with key factors including transformation capacity, load, gross revenue, and interstate transmission and/or marketing agreements, and their OM R programs. Information was gathered during meetings with managers and technical experts representing the four utilities. Subsequent exchanges of information also took place to verify findings. The comparison focused on: Transmission operations and maintenance program direction and emphasis; Organization, management and implementation techniques; Reliability; and Program costs. 2 figs., 21 tabs.

United States. Bonneville Power Administration.

1990-09-01T23:59:59.000Z

106

An R&D Project Management and Selection System for the Utilization Technology Branch, Division of Geothermal Energy, Volume III - Project Selection Procedure and Benefit/Cost Analysis  

DOE Green Energy (OSTI)

This report in three volumes describes an R and D project management and selection system developed for the Utilization Technology Branch of the Division of Geothermal Energy, Department of Energy. The proposed project management system (PMS) consists of a project data system (PDS) and a project selection procedure (PSP). The project data system consists of a series of project data forms and project status logs, and descriptions of information pathways. The PDS emphasizes timely monitoring of the technical and financial progress of projects, maintenance of the history of the project and rapid access to project information to facilitate responsive reporting to DGE and DOE Upper Management. The project selection procedure emphasizes a R and D product-oriented approach to benefit/cost analysis of individual projects. The report includes: (a) a description of the system, and recommendations for its implementation, (b) the PDS forms and explanation of their use, (c) a glossary of terms for use on the forms, (d) a description of the benefit/cost approach, (e) a data base for estimating R and D benefits, and (f) examples of test applications of the system to nine current DGE projects. This volume describes a proposed procedure for R and D project selection. The benefit/cost analysis part of the procedure estimates financial savings expected to result from the commercial use of hardware or process products of R and D. Savings are estimated with respect to the geothermal power plants expected to come on line between 1978 and 2000.

Dhillon, Harpal S.; Entingh, Daniel J.

1978-05-01T23:59:59.000Z

107

PRELIMINARY DESIGN AND COST ESTIMATE FOR THE PRODUCTION OF CENTRAL STATION POWER FROM AN AQUEOUS HOMOGENEOUS REACTOR UTILIZING THORIUM-URANIUM-233  

SciTech Connect

The design and economics of the Aqueous Homogeneous Reactor as basically under development at the Oak Ridge National Laboratory are presented. The reactor system utilizes thorium-U-233 fuel. Conditions accompanying reactor systems generating up to l080 mw of net electrical energy are covered. The study indicates that a generating station, with a net thermal efficiency of 28.l%, might be constructed for approximately 0/kw and 0/kw at the l80 mw and l080 mw electrical levels, respectively. These values result in capital expenses of approximately 4.72 and 2.86 milis/kwh. A major part of fuel cost is the expense of chemical processing. It is therefore advantageous 10 schedule fuel through a relatively large processing system since fixed charges are insensitive to chemical plant size. By handling fuel through a plant large enough for processing 200 kg of thorium per day, total fuel costa of about 1 mill/kwh result. This cost for fuel processing appears applicable to generating stations up to abeut 540 mw in size, decreasing to about 0.6 mills/kwh at the l080 mw level. Operating and maintenance expense, including heavy water cost on a lease basis, varies between l.34 and 0.89 mills/kwh for l80 and l080 megawatts respectively. If the purchase of heavy water is required, 0.3 to 0.4 mills/kwh must be added. It is concluded that the Aqueous Homogeneous Reactor may produce electrical power competitive with conventional generating systems when the remaining technical problems are solved. It is felt ihat the research and development now programed by the Oak Ridge National Laboratory will solve these problems and affect costs favorably. (auth)

Carson, H.G.; Landrum, L.H. eds.

1955-02-01T23:59:59.000Z

108

Utility battery storage systems program report for FY 94  

DOE Green Energy (OSTI)

Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

Butler, P.C.

1995-03-01T23:59:59.000Z

109

Using consensus building to improve utility regulation  

Science Conference Proceedings (OSTI)

The utility industry and its regulatory environment are at a crossroads. Utilities, intervenors and even public utility commissions are no longer able to initiate and sustain changes unilaterally. Traditional approaches to regulation are often contentious and costly, producing results that are not perceived as legitimate or practical. Consensus building and alternative dispute resolution have the potential to help utilities, intervenors and regulators resolve a host of regulatory issues. This book traces the decline of consensus in utility regulation and delineates current controversies. It presents the theory and practice of alternative dispute resolution in utility regulation and offers a framework for evaluating the successes and failures of attempts to employ these processes. Four regulatory cases are analyzed in detail: the Pilgrim nuclear power plant outage settlement, the use of DSM collaboratives, the New Jersey resource bidding policy and the formation of integrated resource management rules in Massachusetts.

Raab, J.

1994-12-31T23:59:59.000Z

110

Prime movers reduce energy costs  

SciTech Connect

Many industrial plants have found that reciprocating engines used to power generator sets and chiller systems are effective in reducing energy costs as part of a load management strategy, while meeting other plant energy needs. As the trend towards high electric utility costs continues, familiarity with basic analyses used to determine the economic viability of engine-driven systems is essential. A basic method to determine the economic viability of genset or chiller systems is to review the supplying utility`s rate structure, determine approximate costs to install and operate an engine-driven system, and calculate a simple equipment payback period. If the initial analysis shows that significant savings are possible and a quick payback is likely, a thorough analysis should be conducted to analyze a plant`s actual electric load profile. A load profile analysis takes into consideration average loads, peak loads, and peak duration. A detailed study should cover myriad considerations, including local air quality regulations and permitting, space availability, auxiliary system components, and financing options. A basic analysis takes relatively little time and can rule out the need for a detailed study.

Swanson, J.E. [Caterpillar, Inc., Mossville, IL (United States)

1996-01-01T23:59:59.000Z

111

Electricity prices in a competitive environment: Marginal cost pricing of generation services and financial status of electric utilities. A preliminary analysis through 2015  

SciTech Connect

The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated {open_quotes}cost-of-service{close_quotes} pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? This study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices.

1997-08-01T23:59:59.000Z

112

Climate Change and Water Resources in California: The Cost of Conservation versus Supply Augmentation for the East Bay Municipal Utility District  

E-Print Network (OSTI)

2009-2040: aggressive water conservation and the enlargementrationing, recycled water, conservation, and supplementalwhile meetings its costs. Water conservation versus supply

Mourad, Bessma

2009-01-01T23:59:59.000Z

113

Marginal cost of electricity 1980-1995: an approximation based on the cost of new coal and nuclear generating plants  

SciTech Connect

This report presents estimates of the costs of new coal and nuclear base-load generating capacity which is either currently under construction or planned by utilities to meet their load-growth expectations during the period from 1980 to 1995. These capacity cost estimates are used in conjunction with announced plant capacities and commercial-operation dates to develop state-level estimates of busbar costs of electricity. From these projected busbar costs, aggregated estimates of electricity costs at the retail level are developed for DOE Regions. The introductory chapter explains the rationale for using the cost of electricity from base-load plants to approximate the marginal cost of electricity. The next major section of the report outlines the methodology and major assumptions used. This is followed by a detailed description of the empirical analysis, including the equations used for each of the cost components. The fourth section presents the resultant marginal cost estimates.

Nieves, L.A.; Patton, W.P.; Harrer, B.J.; Emery, J.C.

1980-07-01T23:59:59.000Z

114

Utility battery storage systems. Program report for FY95  

DOE Green Energy (OSTI)

Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the U.S. Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1995.

Butler, P.C.

1996-03-01T23:59:59.000Z

115

Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities  

DOE Green Energy (OSTI)

The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. However, system cost reductions are not necessarily realized or realized in a timely manner by many customers. Many reasons exist for the apparent disconnects between installation costs, component prices, and system prices; most notable is the impact of fair market value considerations on system prices. To guide policy and research and development strategy decisions, it is necessary to develop a granular perspective on the factors that underlie PV system prices and to eliminate subjective pricing parameters. This report's analysis of the overnight capital costs (cash purchase) paid for PV systems attempts to establish an objective methodology that most closely approximates the book value of PV system assets.

Goodrich, A.; James, T.; Woodhouse, M.

2012-02-01T23:59:59.000Z

116

Cogeneration - A Utility Perspective  

E-Print Network (OSTI)

Cogeneration has become an extremely popular subject when discussing conservation and energy saving techniques. One of the key factors which effect conservation is the utility viewpoint on PURPA and cogeneration rule making. These topics are discussed from a utility perspective as how they influence utility participation in future projects. The avoided cost methodology is examined, and these payments for sale of energy to the utility are compared with utility industrial rates. In addition to utilities and industry, third party owner/operation is also a viable option to cogeneration. These options are also discussed as to their impact on the utility and the potential of these ownership arrangements.

Williams, M.

1983-01-01T23:59:59.000Z

117

Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)  

Science Conference Proceedings (OSTI)

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

2014-01-01T23:59:59.000Z

118

Microsoft Word - January 2012 Utility Incentives  

NLE Websites -- All DOE Office Websites (Extended Search)

Incentives and Rebates for Energy-Efficient Windows Incentives and Rebates for Energy-Efficient Windows offered through utility and state programs Presented by the Efficient Windows Collaborative, January 2012  Do you intend to equip your home with high-performance, energy-efficient windows?  Do you plan to improve your home in a way that lowers energy costs and provides for a comfortable interior?  Are you looking for utility programs within your state that can help you finance such an investment in efficient windows? The following pages give an overview of utility and state programs to help finance improvements in window energy efficiency. Programs are listed by state and by the specific utility companies that administer the programs. For detailed information about each program, please refer to the web links in the list.

119

Transition-cost issues for a restructuring US electricity industry  

Science Conference Proceedings (OSTI)

Utilities regulators can use a variety of approaches to calculate transition costs. We categorized these approaches along three dimensions. The first dimension is the use of administrative vs. market procedures to value the assets in question. Administrative approaches use analytical techniques to estimate transition costs. Market valuation relies on the purchase price of particular assets to determine their market values. The second dimension concerns when the valuation is done, either before or after the restructuring of the electricity industry. The third dimension concerns the level of detail involved in the valuation, what is often called top-down vs. bottom-up valuation. This paper discusses estimation approaches, criteria to assess estimation methods, specific approaches to estimating transition costs, factors that affect transition-cost estimates, strategies to address transition costs, who should pay transition costs, and the integration of cost recovery with competitive markets.

NONE

1997-03-01T23:59:59.000Z

120

Estimating decommissioning costs: The 1994 YNPS decommissioning cost study  

Science Conference Proceedings (OSTI)

Early this year, Yankee Atomic Electric Company began developing a revised decommissioning cost estimate for the Yankee Nuclear Power Station (YNPS) to provide a basis for detailed decommissioning planning and to reflect slow progress in siting low-level waste (LLW) and spent-nuclear-fuel disposal facilities. The revision also reflects the need to change from a cost estimate that focuses on overall costs to a cost estimate that is sufficiently detailed to implement decommissioning and identify the final cost of decommissioning.

Szymczak, W.J.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Highly Insulating Windows - Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost Cost The following is an estimate of the cost effective incremental cost of highly-insulating windows (U-factor=0.20 Btu/hr-ft2-F) compared to regular ENERGY STAR windows (U-factor 0.35 Btu/hr-ft2-F). Energy savings from lower U-factors were simulated with RESFEN over an assumed useful window life of 25 years. To determine the maximum incremental cost at which highly-insulating windows would still be cost-effective, we used a formula used by many utility companies to calculate the cost of saved energy from energy efficiency programs, based on the programs' cost and savings. We turned this formula around so that the cost of saved energy equals the present energy prices in the studied locations, whereas the program cost (the incremental cost of the windows) is the dependent variable. By entering 5%

122

Building Energy Software Tools Directory: Utility Manager  

NLE Websites -- All DOE Office Websites (Extended Search)

costs and usage. Screen Shots Keywords Central capture of utility data for cost and energy usage reporting and reduction ValidationTesting Software has been rigorously...

123

Utility spot pricing study : Wisconsin  

E-Print Network (OSTI)

Spot pricing covers a range of electric utility pricing structures which relate the marginal costs of electric generation to the prices seen by utility customers. At the shortest time frames prices change every five ...

Caramanis, Michael C.

1982-01-01T23:59:59.000Z

124

Rising Electricity Costs: A Challenge For Consumers, Regulators...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities Presentation covers...

125

Shakopee Public Utilities - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shakopee Public Utilities - Commercial and Industrial Energy Shakopee Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program Shakopee Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate 50% of total project cost Program Info Expiration Date 12/15/2012 State Minnesota Program Type Utility Rebate Program Rebate Amount New Lighting and Upgrade: $1 - $130/fixture; varies greatly, see program website for specific details Custom Project: $0.05/kWh saved up to 50% of cost Ductless Heat Pump: $100 Geothermal Heat Pump: $100 PTHP Heat Pump: $35 Chiller: $40/ton

126

Mandatory Photovoltaic System Cost Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Photovoltaic System Cost Analysis Mandatory Photovoltaic System Cost Analysis Eligibility Utility Savings For Solar Buying & Making Electricity Program Information...

127

Driltac (Drilling Time and Cost Evaluation)  

Science Conference Proceedings (OSTI)

The users manual for the drill tech model for estimating the costs of geothermal wells. The report indicates lots of technical and cost detail. [DJE-2005

None

1986-08-01T23:59:59.000Z

128

Long-run marginal costs lower than average costs  

SciTech Connect

The thesis of this article is that the long-run marginal costs of electricity are not always greater than the present average costs, as is often assumed. As long as short-run costs decrease with new plant additions, the long-run marginal cost is less than long-run average cost. When average costs increase with new additions, long-run marginal costs are greater than long-run average costs. The long-run marginal costs of a particular utility may be less than, equal to, or greater than its long-run average costs - even with inflation present. The way to determine which condition holds for a given utility is to estimate costs under various combinations of assumptions: probable load growth, zero load growth, and load growth greater than expected; and changes in load factor with attendant costs. Utilities that can demonstrate long-run marginal costs lower than long-run average costs should be encouraged to build plant and increase load, for the resulting productivity gains and slowing of inflation. Utilities that face long-run marginal costs greater than long-run average costs should discourage growth in sales through any available means.

Hunter, S.R.

1980-01-03T23:59:59.000Z

129

Electric utility capacity expansion and energy production models for energy policy analysis  

DOE Green Energy (OSTI)

This report describes electric utility capacity expansion and energy production models developed for energy policy analysis. The models use the same principles (life cycle cost minimization, least operating cost dispatching, and incorporation of outages and reserve margin) as comprehensive utility capacity planning tools, but are faster and simpler. The models were not designed for detailed utility capacity planning, but they can be used to accurately project trends on a regional level. Because they use the same principles as comprehensive utility capacity expansion planning tools, the models are more realistic than utility modules used in present policy analysis tools. They can be used to help forecast the effects energy policy options will have on future utility power generation capacity expansion trends and to help formulate a sound national energy strategy. The models make renewable energy source competition realistic by giving proper value to intermittent renewable and energy storage technologies, and by competing renewables against each other as well as against conventional technologies.

Aronson, E.; Edenburn, M.

1997-08-01T23:59:59.000Z

130

What solar heating costs  

SciTech Connect

Few people know why solar energy systems cost what they do. Designers and installers know what whole packages cost, but rarely how much goes to piping, how much for labor and how much for the collectors. Yet one stands a better chance of controlling costs if one can compare where the money is going against where it should be going. A detailed Tennessee Valley Authority study of large solar projects shows how much each component contributes to the total bill.

Adams, J.A.

1985-05-01T23:59:59.000Z

131

CAES Updated Cost Assessment  

Science Conference Proceedings (OSTI)

Compressed Air Energy Storage Systems (CAES) for bulk energy storage applications have been receiving renewed interest. Increased penetration of large quantities of intermittent wind generation are requiring utilities to re-examine the cost and value of CAES systems. New second generation CAES cycles have been identified which offer the potential for lower capital and operating costs. This project was undertaken to update and summarize the capital and operating costs and performance features of second ge...

2008-12-23T23:59:59.000Z

132

Maintenance cost studies of present aircraft subsystems  

E-Print Network (OSTI)

This report describes two detailed studies of actual maintenance costs for present transport aircraft. The first part describes maintenance costs for jet transport aircraft broken down into subsystem costs according to an ...

Pearlman, Chaim Herman Shalom

1966-01-01T23:59:59.000Z

133

Photovoltaics: New opportunities for utilities  

SciTech Connect

This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

Not Available

1991-07-01T23:59:59.000Z

134

Calculating Cycling Wear and Tear Costs: Methodology and Data Requirements  

Science Conference Proceedings (OSTI)

This interim report describes development of a methodology and database that utilities can use to calculate unit-specific incremental costs for cycling operation of fossil-fueled power plants. The three-level approach will allow users to choose an easy-to-use solution based on a pure "top-down" approach of peer-unit average values, a modified top-down approach, or a detailed "bottom-up" approach based on equipment condition assessment and engineering analysis.

1997-12-15T23:59:59.000Z

135

US electric utility demand-side management, 1994  

SciTech Connect

The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

NONE

1995-12-26T23:59:59.000Z

136

Utility Solar Business Models  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) and the Solar Electric Power Association (SEPA) are conducting an ongoing joint research effort, initiated in 2011, to define, track, and evaluate the expanding range of regulated utility solar energy acquisition activities. This report provides a high-level overview of the conceptual framework by which EPRI-SEPA are classifying regulated utility solar business models (USBMs) in the United States. It then provides five case studies detailing existing ...

2012-12-31T23:59:59.000Z

137

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Water Heating Maximum Rebate 50% of cost See individual programs on Avista web site for incentive details Program Info Start Date 1/1/2011 State Idaho Program Type Utility Rebate Program Rebate Amount Clothes Washer: $200 Food Service Equipment: Varies Lighting: Varies Motors: Varies Power management for PC Networks: $10/controlled unit Retro-Commissioning Study: $0.10/conditioned sq. ft. (agents receive $0.02/kWh) VFD Fans: $80/HP VFD Cooling Pump: $85/HP VFD Heating Pump: $100/HP Insulation: $0.28--$0.35/sq. ft. New Windows: $1/sq. ft. Retrofit Windows: $3.50/sq. ft. Standby Generator Block Heater: $400 Custom: $0.08 - $0.20/kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or

138

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Commercial Lighting Lighting Water Heating Maximum Rebate 50% of cost See individual programs on Avista web site for incentive details Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Clothes Washer: $200 Food Service Equipment: Varies Lighting: Varies Motors: Varies Power management for PC Networks: $10/controlled unit Retro-Commissioning Study: $0.10/conditioned sq. ft. (agents receive $0.02/kWh) VFD Fans: $80/HP VFD Cooling Pump: $85/HP VFD Heating Pump: $100/HP Insulation: $0.28--$0.35/sq. ft. New Windows: $1/sq. ft. Retrofit Windows: $3.50/sq. ft. Standby Generator Block Heater: $400 Custom: $0.08 - $0.20/kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or

139

Utilizing optimization in municipal stormwater management  

E-Print Network (OSTI)

planning methodology which utilizes an optimization routine as its primary decision making tool. A thorough literature review presents the historical and current trends in the general area of stormwater quality. A detailed explanation and analysis is also provided on a current linear programming optimization model-Parameters, such as relationships between costs to implement stormwater management practices and their associated pollutant removal efficiencies, needed in the utilization of the model are developed for use in a general application. The systematic planning routine is then outlined, and a case study is performed to illustrate the methodology. Through this research, the planning methodology is proven to be beneficial in determining the best combination of management practices to use in the reduction of pollution caused from urban stormwater runoff.

Dorman, Stephen Paul

1995-01-01T23:59:59.000Z

140

Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility  

E-Print Network (OSTI)

are placed into a utilitys rate base where the investmentis not technically part of the utilitys rate base. Energytechnically part of the utilitys rate base. D.2 Costs Most

Cappers, Peter

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Engineering and economic feasibility of utilizing geothermal heat from the Heber reservoir for industrial processing purposes at Valley Nitrogen Producers Inc. , El Centro agricultural chemical plant. Final report  

DOE Green Energy (OSTI)

The engineering and economic feasibility of utilizing geothermal heat from the Heber KGRA for industrial processing purposes at the Valley Nitrogen Producers, Inc. El Centro, California agricultural chemical plant was investigated. The analysis proceeds through the preliminary economics to determine the restraints imposed by geothermal modification size on internal rates of return, and through the energy utilization evaluation to determine the best method for substituting geothermal energy for existing fossil fuel energy. Finally, several geothermal utilization schemes were analyzed for detailed cost-benefit evaluation. An economically viable plan for implementing geothermal energy in the VNP Plant was identified and the final conclusions and recommendations were made based on these detailed cost-benefit analyses. Costs associated with geothermal energy production and implementation were formulated utilizing a modified Battelle Pacific Northwest Laboratories' ''GEOCOST'' program.

Sherwood, P.B.; Newman, K.L.

1977-09-01T23:59:59.000Z

142

By-Products Utilization  

E-Print Network (OSTI)

was produced by Wisconsin Electric's coal-fired power plants. The criteria for selecting these mixtures was to utilize minimal cost materials, such as coal combustion by-products (fly ash, bottom ash, etc of sufficient strength to withstand handling, transfer and long term exposure. The final phase (4) was designed

Wisconsin-Milwaukee, University of

143

cost | OpenEI  

Open Energy Info (EERE)

cost cost Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

144

NSLS Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilities Utilities The Utilities Group, led by project engineer Ron Beauman, is responsible for providing Utilities Engineering and Technical services to NSLS, Users, and SDL including cooling water at controlled flow rates, pressures, and temperatures, compressed air and other gases. In addition, they provide HVAC engineering, technical, and electrical services as needed. Utilities systems include cooling and process water, gas, and compressed air systems. These systems are essential to NSLS operations. Working behind the scenes, the Utilities group continuously performs preventative maintenance to ensure that the NSLS has minimal downtime. This is quite a feat, considering that the Utilities group has to maintain seven very large and independent systems that extent throughout NSLS. Part of the group's

145

Consumer's Guide to the economics of electric-utility ratemaking  

SciTech Connect

This guide deals primarily with the economics of electric utilities, although certain legal and organizational aspects of utilities are discussed. Each of the seven chapters addresses a particular facet of public-utility ratemaking. Chapter One contains a discussion of the evolution of the public-utility concept, as well as the legal and economic justification for public utilities. The second chapter sets forth an analytical economic model which provides the basis for the next four chapters. These chapters contain a detailed examination of total operating costs, the rate base, the rate of return, and the rate structure. The final chapter discusses a number of current issues regarding electric utilities, mainly factors related to fuel-adjustment costs, advertising, taxes, construction work in progress, and lifeline rates. Some of the examples used in the Guide are from particular states, such as Illinois and California. These examples are used to illustrate specific points. Consumers in other states can generalize them to their states and not change the meaning or significance of the points. 27 references, 8 tables.

1980-05-01T23:59:59.000Z

146

Annual Electric Utility Data - Form EIA-906 Database  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed data files > Historic Form EIA-906 Historic Form EIA-906 Detailed Data with previous form data (EIA-759) Historic electric utility data files include information on net...

147

February 19, 2013 Webinar: Exploring How Municipal Utilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebates with Utility Cost Savings Concord Light provides rebates to customers who install rooftop or ground-mounted solar systems on their property. The utility funds these rebates...

148

2003 Exhibition: Exhibitor Details  

Science Conference Proceedings (OSTI)

At a cost of less than $1.00 per prospect, this may be your most cost efficient and ... $20.00 per square footfor reservations received before September 15,...

149

OpenEI - US utilities  

Open Energy Info (EERE)

Electric Utility Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) http://en.openei.org/datasets/node/899 This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (Utilities" title="http://en.openei.org/wiki/Gateway:Utilities">http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011.

150

1992 CBECS Detailed Tables  

Gasoline and Diesel Fuel Update (EIA)

Detailed Tables Detailed Tables To download all 1992 detailed tables: Download Acrobat Reader for viewing PDF files. Yellow Arrow Buildings Characteristics Tables (PDF format) (70 tables, 230 pages, file size 1.39 MB) Yellow Arrow Energy Consumption and Expenditures Tables (PDF format) (47 tables, 208 pages, file size 1.28 MB) Yellow Arrow Energy End-Use Tables (PDF format) (6 tables, 6 pages, file size 31.7 KB) Detailed tables for other years: Yellow Arrow 1999 CBECS Yellow Arrow 1995 CBECS Background information on detailed tables: Yellow Arrow Description of Detailed Tables and Categories of Data Yellow Arrow Statistical Significance of Data 1992 Commercial Buildings Energy Consumption Survey (CBECS) Detailed Tables Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables:

151

Why is Utility Data Important | Open Energy Information  

Open Energy Info (EERE)

is Utility Data Important is Utility Data Important Jump to: navigation, search With access to detailed information about how much energy you are consuming, it is easier for you to save money by lowering your energy bills. This is true for both residential and commercial energy users. In your home, information on how your energy use changes based on the time of day or time of year and knowing how you compare with your neighbors can help you save money. You can learn to make changes to appliance use to lower your bill or add energy efficiency technologies to your home to save energy. For commercial energy users, detailed energy data can help you set sound energy management goals, identify cost-effective energy efficiency measures, and target efficiency investments. Benchmarking Benchmarking is the practice of comparing how efficiently a building

152

U.S. Refining Capacity Utilization  

Reports and Publications (EIA)

This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in reported crude oil distillation capacities and utilization rates among different classes of refineries.

Tancred Lidderdale

1995-10-01T23:59:59.000Z

153

Springfield Utility Board- Energy Savings Plan Program  

Energy.gov (U.S. Department of Energy (DOE))

The Springfield Utility Board provides industrial customers with a comprehensive report to identify cost effective efficiency improvements. Eligible measures include high efficiency motors,...

154

Qualified Projects of Natural Gas Utilities (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

Permits a natural gas utility to construct the necessary facilities of a qualifying project and to recover the eligible infrastructure development costs necessary to develop the eligible...

155

1995 Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Households, Buildings & Industry > Commercial Buildings Energy Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey > Detailed Tables 1995 Detailed Tables Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Summary Table—All Principal Buildings Activities (HTML Format) Background information on detailed tables: Description of Detailed Tables and Categories of Data Statistical Significance of Data

156

DOE Pursues SunShot Initiative to Achieve Cost Competitive Solar Energy by  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pursues SunShot Initiative to Achieve Cost Competitive Solar Pursues SunShot Initiative to Achieve Cost Competitive Solar Energy by 2020 DOE Pursues SunShot Initiative to Achieve Cost Competitive Solar Energy by 2020 February 4, 2011 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced additional details of the Department of Energy's "SunShot" initiative to reduce the total costs of photovoltaic solar energy systems by about 75 percent so that they are cost competitive at large scale with other forms of energy without subsidies before the end of the decade. By reducing the cost for utility scale installations by about 75 percent to roughly $1 a watt - which would correspond to roughly 6 cents per kilowatt-hour - solar energy systems could be broadly deployed across the country.

157

Carrots for Utilities: Providing Financial Returns for Utility Investments  

Open Energy Info (EERE)

Carrots for Utilities: Providing Financial Returns for Utility Investments Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Focus Area: Energy Efficiency Topics: Socio-Economic Website: www.aceee.org/research-report/u111 Equivalent URI: cleanenergysolutions.org/content/carrots-utilities-providing-financial Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Cost Recovery/Allocation This report examines state experiences with shareholder financial incentives that encourage investor-owned utilities to provide energy

158

USDA - High Energy Cost Grant Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Energy Cost Grant Program USDA - High Energy Cost Grant Program Eligibility Commercial Industrial Institutional Local Government Municipal Utility Nonprofit Residential...

159

Identifying Cost-Effective Residential Energy Efficiency Opportunities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative Identifying Cost-Effective Residential Energy Efficiency...

160

U.S. electric utility demand-side management 1996  

SciTech Connect

The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

U.S. electric utility demand-side management 1995  

SciTech Connect

The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

1997-01-01T23:59:59.000Z

162

chapter 5. Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

5. Detailed Tables 5. Detailed Tables Chapter 5. Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1994 Residential Transportation Energy Consumption Survey. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle-miles traveled (VMT) or gallons consumed; (2) tables of per household statistics such as VMT per household; and (3) tables of per-vehicle statistics, such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model-year data or family-income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table.

163

Low Cost Hydrogen Production Platform  

DOE Green Energy (OSTI)

A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the cost to produce small volume on-site hydrogen using existing process technologies. The cost mo

Timothy M. Aaron, Jerome T. Jankowiak

2009-10-16T23:59:59.000Z

164

Electric Utility Sales and Revenue EIA-826 detailed data file  

U.S. Energy Information Administration (EIA)

The "other" sector activities included public street and highway lighting, sales to public authorities, sales to railroads and railways, interdepartmental sales, ...

165

New Report Urges More Detailed Utility Metering to Improve ...  

Science Conference Proceedings (OSTI)

... In fact, US buildings account for more than 40 percent of total US energy consumption, including 72 percent of electricity use. ...

2011-11-09T23:59:59.000Z

166

Review of demand-side bidding programs: Impacts, costs, and cost-effectiveness  

SciTech Connect

In December 1987, Central Maine Power (CMP) instituted the first competitive bidding program that allowed developers to propose installation of conservation measures. Since then, about 30 utilities in 14 states have solicited bids from energy service companies (ESCOs) and customers to reduce energy demand in residential homes and in commercial and industrial facilities. Interest in the use of competitive procurement mechanisms for demand-side resources continues to grow. In this study, the authors build upon earlier work conducted by LBL in collaboration with others (Goldman and Busch 1992; Wolcott and Goldman 1992). They have developed methods to compare bid prices and program costs among utilities. They also characterize approaches used by utilities and developers to allocate risks associated with DSM resources based on their review of a large sample of signed contracts. These contracts are analyzed in some detail because they provide insights into the evolving roles and responsibilities of utilities, customers, and third party contractors in providing demand-side management (DSM) services. The analysis also highlights differences in the allocation of risks between traditional utility rebate programs and DSM bidding programs.

Goldman, C.A.; Kito, M.S. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-05-01T23:59:59.000Z

167

Electric Demand Cost Versus Labor Cost: A Case Study  

E-Print Network (OSTI)

Electric Utility companies charge industrial clients for two things: demand and usage. Depending on type of business and hours operation, demand cost could be very high. Most of the operations scheduling in a plant is achieved considering labor cost. For small plants, it is quite possible that a decrease in labor could result in an increase in electric demand and cost or vice versa. In this paper two cases are presented which highlight the dependence of one on other.

Agrawal, S.; Jensen, R.

1998-04-01T23:59:59.000Z

168

Low Cost Exploration, Testing, And Development Of The Chena Geothermal  

Open Energy Info (EERE)

Cost Exploration, Testing, And Development Of The Chena Geothermal Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Low Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Details Activities (2) Areas (1) Regions (0) Abstract: The Chena Hot Springs geothermal field was intensively explored, tested, and developed without a wireline unit between October 2005 and August 2006. Due to the remote location of the project and its small size of 0.4 MW, it was necessary to perform the work without the geothermal industry infrastructure typically utilized in the 48 contiguous states. This could largely be done because some of the wells were capable of artesian flow at below boiling temperatures. The geology, consisting of

169

Coal Utilization Science Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Utilization SCienCe Program Coal Utilization SCienCe Program Description The Coal Utilization Science (CUS) Program sponsors research and development (R&D) in fundamental science and technology areas that have the potential to result in major improvements in the efficiency, reliability, and environmental performance of advanced power generation systems using coal, the Nation's most abundant fossil fuel resource. The challenge for these systems is to produce power in an efficient and environmentally benign manner while remaining cost effective for power providers as well as consumers. The CUS Program is carried out by the National Energy Technology Laboratory (NETL) under the Office of Fossil Energy (FE) of the U.S. Department of Energy (DOE). The program supports DOE's Strategic Plan to:

170

utilities | OpenEI  

Open Energy Info (EERE)

utilities utilities Dataset Summary Description Datasets are for the US electricity grid system interconnect regions (ASCC, FRCC, HICC, MRO, NPCC, RFC, SERC, SPP, TRE, WECC) for 2008. The data is provided in life cycle inventory (LCI) forms (both xls and xml). A module report and a detailed spreadsheet are also included. Source US Life Cycle Inventory Database Date Released May 01st, 2011 (3 years ago) Date Updated Unknown Keywords ASCC FRCC HICC interconnect region LCI life cycle inventory MRO NPCC RFC SERC SPP TRE unit process US utilities WECC Data application/zip icon interconnect_lci_datasets_2008.zip (zip, 6.3 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

171

US utilities | OpenEI  

Open Energy Info (EERE)

6489 6489 Varnish cache server US utilities Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB) text/csv icon Non-IOU rates by zipcode (csv, 2.1 MiB)

172

Electricity Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Emissions Caps and the Impact of a Radical Change in Nuclear Electricity Costs journal International Journal of Energy Economics and Policy volume year month chapter...

173

Transmission line capital costs  

Science Conference Proceedings (OSTI)

The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

Hughes, K.R.; Brown, D.R.

1995-05-01T23:59:59.000Z

174

Production Cost Optimization Assessments  

Science Conference Proceedings (OSTI)

The benefits of improved thermal performance of coal-fired power plants continue to grow, as the costs of fuel rise and the prospect of a carbon dioxide cap and trade program looms on the horizon. This report summarizes the efforts to date of utilities committed to reducing their heat rate by 1.0% in the Production Cost Optimization (PCO) Project. The process includes benchmarking of plant thermal performance using existing plant data and a site-specific performance appraisal. The appraisal determines po...

2008-12-11T23:59:59.000Z

175

1999 CBECS Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables 1999 CBECS Detailed Tables Building Characteristics | Consumption & Expenditures Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. A table of Relative Standard Errors (RSEs) is included as a worksheet tab in each Excel tables. Complete sets of RSE tables are also available in .pdf format. (What is an RSE?) Preliminary End-Use Consumption Estimates for 1999 | Description of 1999 Detailed Tables and Categories of Data

176

Colorado Public Utility Commission's Xcel Wind Decision  

DOE Green Energy (OSTI)

In early 2001 the Colorado Public Utility Commission ordered Xcel Energy to undertake good faith negotiations for a wind plant as part of the utility's integrated resource plan. This paper summarizes the key points of the PUC decision, which addressed the wind plant's projected impact on generation cost and ancillary services. The PUC concluded that the wind plant would cost less than new gas-fired generation under reasonable gas cost projections.

Lehr, R. L. (NRUC/NWCC); Nielsen, J. (Land and Water Fund of the Rockies); Andrews, S.; Milligan, M. (National Renewable Energy Laboratory)

2001-09-20T23:59:59.000Z

177

Building Energy Software Tools Directory: Utility Manager  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Manager Utility Manager Utility Manager logo Utility Manager™ captures data from historical and current utility bills every month into its centralized database, helping clients measure and energy costs and usage. Utility Manager™ provides energy, operational and financial managers with a series of customizable reports to help shape future decisions regarding energy costs and usage. Screen Shots Keywords Central capture of utility data for cost and energy usage reporting and reduction Validation/Testing Software has been rigorously tested internally throughout the course of its development and ongoing maintenance and enhancement (more than 15 years). Expertise Required Basic computer skills and understanding of energy accounting principles. Users 400-500 U.S. and Canada (primarily U.S.).

178

Clean Cities: NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

Tweet about Clean Cities: NewsDetail on Twitter Bookmark Clean Cities: NewsDetail on Google Bookmark Clean Cities: NewsDetail on Delicious Rank Clean Cities: NewsDetail on Digg...

179

Idled MODUs require detailed inspection  

Science Conference Proceedings (OSTI)

When drilling contracts first began to disappear, many contractors prepared rigs for what they believed would be a short-term inactive situation. This article reports that following the utilization rate's plunge, it has become apparent that for many units, the stacked mode is to be a long-term affair. The quality of maintenance performed on a stacked drilling rig is critical to the future of the rig, and in some cases, the contractor who owns it. The most important variable involved in adequately maintaining a rig is the number of skilled personnel to operate and care for the equipment on a regular basis. Due to the prohibitive cost of keeping an idle rig manned, many rigs are going without proper care. A drilling contractor's decision, especially if he is financially over-extended, to refrain from performing vital maintenance is often made with short-term corporate survival in mind.

Johnson, A.

1986-11-01T23:59:59.000Z

180

Facilities & Administrative (F&A) Costs at NIU F&A costs at NIU  

E-Print Network (OSTI)

project, instructional or public service activity. Such costs include utilities, buildings and facilities accrue only as projects dollars are expended. As a result, F&A costs are collected and allocatedFacilities & Administrative (F&A) Costs at NIU #12;F&A costs at NIU What are Facilities

Karonis, Nicholas T.

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Detailed Test Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Detailed Test Information Detailed Test Information EPA tests vehicles by running them through a series of driving routines, also called cycles or schedules, that specify vehicle speed for each point in time during the laboratory tests. For 2007 and earlier model year vehicles, only the city and highway schedules were used. Beginning with 2008 models, three additional tests will be used to adjust the city and highway estimates to account for higher speeds, air conditioning use, and colder temperatures. Note: EPA has established testing criteria for electric vehicles and plug-in hybrids that are slightly different than those for conventional vehicles. New Tests City Highway High Speed Air Conditioning Cold Temperature Detailed Comparison EPA Federal Test Procedure (City Schedule): Shows vehicle speed (mph) at each second of test

182

Research and Development of a Low Cost Solar Collector  

Science Conference Proceedings (OSTI)

This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

2012-08-01T23:59:59.000Z

183

Research and Development of a Low Cost Solar Collector  

SciTech Connect

This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

2012-08-01T23:59:59.000Z

184

Types of Costs Types of Cost Estimates  

E-Print Network (OSTI)

· Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408: Mining the equipment for reclamation? Types of Costs #12;· Marginal Cost: ­ Change in total cost ­ Any production process involves fixed and variable costs. As production increases/expands, fixed costs are unchanged, so

Boisvert, Jeff

185

Well Flix Program Details  

E-Print Network (OSTI)

Well Flix's in the Well-U library. These DVD's have been made available so employees may learn about a variety of fitness for a one-week basis at no cost. Contact Well U at well-u-info@rochester.edu for DVD rental. Click the link

Portman, Douglas

186

Cost Containment Through Energy Efficiency in Texas State-Owned Buildings  

E-Print Network (OSTI)

"The Energy Cost Containment Through Energy Efficiency" in Texas State-owned buildings project was begun in the spring of 1984 as a part of a multipronged effort to reduce rising energy costs in State operations. Energy audits of 21 million square feet (22% of total conditioned space) were conducted by three energy engineering firms and Texas Engineering Extension Service personnel under contract to the Public Utility Commission of Texas. Retrofits totaling $15.6 million with annual savings of $9.2 million were identified (59% ROI). This paper will detail the objectives of the project, summarize audit results, and outline financing options for individual projects.

Ponder, W. M.; Verdict, M. E.

1985-01-01T23:59:59.000Z

187

Utility Service Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Service Renovations Utility Service Renovations Utility Service Renovations October 16, 2013 - 4:59pm Addthis Renewable Energy Options for Utility Service Renovations Photovoltaics Wind Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies

188

PFBC Utility Demonstration Project  

Science Conference Proceedings (OSTI)

This report provides a summary of activities by American Electric Power Service Corporation during the first budget period of the PFBC Utility Demonstration Project. In April 1990, AEP signed a Cooperative Agreement with the US Department of Energy to repower the Philip Sporn Plant, Units 3 4 in New Haven, West Virginia, with a 330 KW PFBC plant. The purpose of the program was to demonstrate and verify PFBC in a full-scale commercial plant. The technical and cost baselines of the Cooperative Agreement were based on a preliminary engineering and design and a cost estimate developed by AEP subsequent to AEP's proposal submittal in May 1988, and prior to the signing of the Cooperative Agreement. The Statement of Work in the first budget period of the Cooperative Agreement included a task to develop a preliminary design and cost estimate for erecting a Greenfield plant and to conduct a comparison with the repowering option. The comparative assessment of the options concluded that erecting a Greenfield plant rather than repowering the existing Sporn Plant could be the technically and economically superior alternative. The Greenfield plant would have a capacity of 340 MW. The ten additional MW output is due to the ability to better match the steam cycle to the PFBC system with a new balance of plant design. In addition to this study, the conceptual design of the Sporn Repowering led to several items which warranted optimization studies with the goal to develop a more cost effective design.

Not Available

1992-11-01T23:59:59.000Z

189

Energy Conservation and Management for Electric Utility Industrial Customers  

E-Print Network (OSTI)

Comprehensive energy management assistance within the industrial section is currently being offered by a growing number of electric utilities as part of their efforts to - provide additonal demand side services to their industrial customers. One of the keys to these enhanced services is the availability of a unique Industrial Energy Conservation and Management (EC&M) computer model that can be used to evaluate the technical and economic benefits of installing proposed process related energy management systems within an industrial plant. Details of an EPRI sponsored pilot program are summarized and results presented on the use of the computer model to provide comprehensive EC&M system evaluations of potential energy management opportunities in HL&P's and other utility service areas. This capability is currently being offered to HL&P's industrial customers and is primarily concerned with identifying and evaluating possible process heat recovery and other energy management opportunities to show how a plant's energy related operating costs can be reduced.

McChesney, H. R.; Obee, T. N.; Mangum, G. F.

1985-05-01T23:59:59.000Z

190

Materials selection guidelines for geothermal energy utilization systems  

DOE Green Energy (OSTI)

This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

Ellis, P.F. II; Conover, M.F.

1981-01-01T23:59:59.000Z

191

Interruption Cost Estimate Calculator | Open Energy Information  

Open Energy Info (EERE)

Interruption Cost Estimate Calculator Interruption Cost Estimate Calculator Jump to: navigation, search Tool Summary Name: Interruption Cost Estimate (ICE) Calculator Agency/Company /Organization: Freeman, Sullivan & Co. Sector: Energy Focus Area: Grid Assessment and Integration, Energy Efficiency Resource Type: Online calculator, Software/modeling tools User Interface: Website Website: icecalculator.com/ Country: United States Cost: Free Northern America References: [1] Logo: Interruption Cost Estimate (ICE) Calculator This calculator is a tool designed for electric reliability planners at utilities, government organizations or other entities that are interested in estimating interruption costs and/or the benefits associated with reliability improvements. About The Interruption Cost Estimate (ICE) Calculator is an electric reliability

192

Updated Costs for Decommissioning Nuclear Power Facilities  

Science Conference Proceedings (OSTI)

This update of 1978 NRC cost estimates--in 1984 dollars--also estimates the costs of several special manpower and licensing options for decommissioning nuclear power facilities. The fully developed methodology offers utilities a sound basis on which to estimate the costs of decommissioning specific plants.

1985-05-13T23:59:59.000Z

193

What does a negawatt really cost?  

E-Print Network (OSTI)

We use data from ten utility conservation programs to calculate the cost per kWh of electricity saved -- the cost of a "negawatthour" -- resulting from these programs. We first compute the life-cycle cost per kWh saved ...

Joskow, Paul L.

1991-01-01T23:59:59.000Z

194

Federal Energy Management Program: Federal Utility Partnership Working  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Partnership Working Group Utility Partnership Working Group The Federal Utility Partnership Working Group (FUPWG) establishes partnerships and facilitates communications among Federal agencies, utilities, and energy service companies. The group develops strategies to implement cost-effective energy efficiency and water conservation projects through utility incentive programs at Federal sites. The mission and objectives of the Federal Utility Partnership Working Group are to: Enhance existing or foster new partnerships between Federal agencies and their servicing utilities to identify, develop, and implement cost-effective energy efficiency, water conservation, and renewable energy projects at Federal sites Identify how utilities can help Federal agencies meet energy management goals required by legislation

195

RMR CRSP Capital Investment Plan FY12-FY21 Detail  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan FY12-FY21 Detail Yellow Highlight New Project to list W Total Western Only Costs Red Text Change from previous version O Total Trust and Joint Participation...

196

Congeneration and utilities: Status and prospects: Final report  

SciTech Connect

The cogeneration industry has grown and changed considerably since the passage of the Public Utility Regulatory Policies Act (PURPA) in 1978. It has moved from infancy to a major industry that must be addressed in electric utility resource planning. This report examines the utility perspective on cogeneration. The report begins with a brief outline of the history of the US cogeneration industry, including an in-depth look at recent developments. An assessment of the industry as it currently stands is then presented. This assessment includes a look at who is cogenerating now and who is likely to be cogenerating in the future. It also includes an analysis of the key market sensitivities and how they affect the individuals who must make the decisions to cogenerate. These discussions provide a framework for the central issue addressed in the next section: the effect of cogeneration on the electric utilities. After the alternative responses to cogeneration are outlined, the report details the impacts of cogeneration on utility planning and policy. Special utility concerns relative to cogeneration are raised including potential ratemaking approaches, the issue of cogeneration reliability and approaches to planning for it, and the costs and benefits of cogeneration to non-participant ratepayers. Next the planning and economic benefits which can accrue from utility ownership of and participation in cogeneration projects are discussed in the context of cogeneration as an electric utility opportunity. The final sections of the report define and classify various types of cogeneration technologies and outline the current status of EPRI's cogeneration research. 21 figs., 22 tabs.

Limaye, D.R.; Jacobs, L.; McDonald, C.

1988-11-01T23:59:59.000Z

197

Utility Energy Services Contracts: Enabling Documents Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Documents Documents Update San Diego, CA November 28, 2007 Deb Beattie & Karen Thomas Overview  Legislative & Executive Actions  Legal Opinions  Agency Guidance  Contracts  Sample Documents  Resources www.eere.energy.gov/femp/pdfs/28792.pdf Enabling Legislation for Utility Programs Energy Policy Act of 1992 Section 152(f) - Utility Incentive Programs Section 152(f) - Utility Incentive Programs Agencies:  Are authorized and encouraged to participate in utility programs generally available to customers  May accept utility financial incentives, goods, and services generally available to customers  Are encouraged to enter into negotiations with utilities to design cost effective programs to address unique needs of facilities used by agency

198

Utility Conservation Programs: Opportunities and Strategies  

E-Print Network (OSTI)

This paper examines the use of conservation programs to achieve utility goals in an electric industry environment subject to change. First, the importance of articulating clear goals for the mission of a utility is discussed. Second, a strategic framework for analysis of utility promotion of conservation investment is presented. Third, the rationale, design and marketing of basic conservation strategies based on differences in utility capacity and cost situations are examined. Particular attention is given to evaluating the establishment of a subsidiary by a utility to offer energy management services -- a relatively new concept that: may present great opportunities for many utilities.

Norland, D. L.; Wolf, J. L.

1986-06-01T23:59:59.000Z

199

Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liberty Utilities (Electric) - Commercial Energy Efficiency Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive Programs Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive Programs < Back Eligibility Commercial Industrial Local Government Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom Incentives: amount that buys down the cost of the project to a 1 year simple payback Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount Custom Retrofits and Engineering Studies: 50% of project cost Fluorescent Lighting: $10-$50 High Bay: $70 or $100 (retrofit) Metal Halide: $50 or $70 LED Exit Signs: $12 LED Traffic Signals: $50

200

Electric utility restructuring and the California biomass energy industry  

Science Conference Proceedings (OSTI)

A shock jolted the electric power industry in April 1994, when the California Public Utilities Commission (CPUC) announced its intention to restructure the industry. The proposal, commonly referred to as retail wheeling, is based on the principle that market deregulation and competition will bring down the cost of electricity for all classes of customers. It would effectively break up the monopoly status of the regulated utilities and allow customers to purchase electricity directly from competing suppliers. According to the original CPUC proposal, cost alone would be the basis for determining which generating resources would be used. The proposal was modified in response to public inputs, and issued as a decision at the end of 1995. The final proposal recognized the importance of renewables, and included provisions for a minimum renewables purchase requirement (MRPR). A Renewables Working Group convened to develop detailed proposals for implementing the CPUC`s renewables program. Numerous proposals, which represented the range of possible programs that can be used to support renewables within the context of a restructured electric utility industry, were received.

Morris, G. [Future Resources Associates, Inc., Berkeley, CA (United States)

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Economic Impacts of Carbon Taxes: Detailed Results  

Science Conference Proceedings (OSTI)

Due to the possibility that rising concentrations of atmospheric greenhouse gases might cause undesirable climate change, policies to restrict emissions of carbon dioxide, a greenhouse gas, have been proposed. Such proposals frequently take the form of carbon taxes. This report presents the detailed results of an examination of the economic costs of carbon taxes, including where and how the U.S. economy would be impacted.

1995-01-04T23:59:59.000Z

202

Detailed Course Module Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Course Module Description Course Module Description Module/Learning Objectives Level of Detail in Module by Audience Consumers Gen Ed/ Community College Trades 1. Energy Issues and Building Solutions High High High Learning Objectives: * Define terms of building science, ecological systems, economics of consumption * Relate building science perspective, ecology, social science * Explain historical energy and environmental issues related to buildings * Compare Site and source energy * Examine the health, safety and comfort issues in buildings * Examine the general context for building solutions (zero energy green home with durability as the goal) * Explain a basic overview of alternative energy (total solar flux) - do we have enough energy * Examine cash flow to homeowners

203

Solar Valuation in Utility Planning Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Valuation in Utility Planning Studies Solar Valuation in Utility Planning Studies Title Solar Valuation in Utility Planning Studies Publication Type Presentation Year of Publication 2013 Authors Mills, Andrew D., and Ryan H. Wiser Keywords electricity markets and policy group, energy analysis and environmental impacts department, renewable energy: policy Abstract This webinar was presented by the Clean Energy States Alliance and featured Andrew Mills of Lawrence Berkeley National Lab (LBNL) discussing new research on solar valuation that he and his colleague, Ryan Wiser, have recently published. As renewable technologies mature, recognizing and evaluating their economic value will become increasingly important for justifying their expanded use. In their report, Mills and Wiser used a unique investment and dispatch model to evaluate the changes in the long-run value of variable renewables with increasing penetration levels, based on a case study of California. They found that the value of solar is high at low penetration levels owing to the capacity and energy value of solar, even accounting for an increased need for ancillary services and imperfect forecastability. At higher penetration levels, the marginal value of additional PV and concentrating solar power (CSP) without thermal storage declines, largely due to a decrease in capacity value. The value of CSP with thermal storage remains higher for similar penetration levels owing to the ability to continue to produce energy for hours after the sun goes down. By way of comparison, in California the value of wind at low penetrations is less than the value of solar at low penetrations, but its value is less sensitive to penetration levels. In addition to discussing these findings, Mills reviewed a recent sample of utility planning studies and procurement processes to identify how current practices reflect these drivers of solar's economic value. The LBNL report found that many of the utilities have a framework to capture and evaluate solar's value, but approaches vary widely: only a few studies appear to complement the framework with detailed analysis of key factors such as capacity credits, integration costs, and tradeoffs between distributed and utility-scale photovoltaics. In particular Mills and Wiser found that studies account for the capacity value of solar, though capacity credit estimates with increasing penetration can be improved. Similarly, few planning studies currently reflect the full range of potential benefits from adding thermal storage and/or natural gas augmentation to concentrating solar power plants.

204

2001 Housing Characteristics Detailed Tables  

U.S. Energy Information Administration (EIA)

2001 Residential Energy Consumption Survey-Housing Characteristics, 2001 Detailed Tables, Energy Information Administration

205

Solar heating and cooling system for an office building at Reedy Creek Utilities  

DOE Green Energy (OSTI)

This final report describes in detail the solar energy system installed in a new two-story office building at the Reedy Creek Utilities Company, which provides utility service to Walt Disney World at Lake Buena Vista, Florida. The solar components were partly funded by the Department of Energy under Contract EX-76-C-01-2401, and the technical management was by NASA/George C. Marshall Space Flight Center. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The collector is a modular cylindrical concentrator type with an area of 3.840 square feet. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled. Design, construction, operation, cost, maintenance, and performance are described in depth. Detailed drawings are included.

Not Available

1978-08-01T23:59:59.000Z

206

Port Angeles Public Works and Utilities - Commercial and Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting: up to 70% of project cost All Custom: up to 70% of incremental energy project costs Program Info State District of Columbia Program Type Utility Rebate Program Rebate...

207

Inventory of Electric Utility Power Plants in the United States  

Reports and Publications (EIA)

Final issue of this report. Provides detailed statistics on existing generating units operated by electric utilities as of December 31, 2000, and certain summary statistics about new generators planned for operation by electric utilities during the next 5 years.

Information Center

2002-03-01T23:59:59.000Z

208

Hualapai Tribal Utility Development Project  

SciTech Connect

The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribes tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West mini-grid sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribes wind resources.

Hualapai Tribal Nation

2008-05-25T23:59:59.000Z

209

Anaheim Public Utilities- Low-Interest Energy Efficiency Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Anaheim Public Utilities offers low-cost financing for energy efficiency measures through State Assistance Fund for Enterprise, Business and Industrial Development Corporation ([http://www.safe...

210

Realities of Chiller Plant Operation: Utility Impacts on Owner...  

NLE Websites -- All DOE Office Websites (Extended Search)

plant operating costs. The building owner, another engineering consultant, and the local utility representatives were confused by the rates and missed an opportunity to cut...

211

ENERGY AND UTILITIES ORNL-2219 Microorganisms Having Enhanced ...  

increases the ethanol cost due to both ethanol production rate and total ... ENERGY AND UTILITIES ... (Related Compositions and Methods of Use) ORNL-2219 Contact:

212

Most Viewed Documents - Energy Storage, Conversion, and Utilization...  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002)...

213

NETL: News Release - New Projects Positioning Coal-Fired Utilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Control Standards with New, Lower Cost Technologies With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S....

214

Anaheim Public Utilities- Commercial & Industrial New Construction Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Anaheim Public Utilities (APU) offers commercial, industrial, and institutional customers the New Construction Incentives Program to offset construction and installation costs of energy efficient...

215

PRODCOST: an electric utility generation simulation code  

SciTech Connect

The PRODCOST computer code simulates the operation of an electric utility generation system. Through a probabilistic simulation the expected energy production, fuel consumption, and cost of operation for each plant are determined. Total system fuel consumption, energy generation by type, total generation costs, as well as system loss of load probability and expected unserved energy are also calculated.

Hudson, II, C. R.; Reynolds, T. M.; Smolen, G. R.

1981-02-01T23:59:59.000Z

216

storage (CCS) technologies. CCSI will util  

NLE Websites -- All DOE Office Websites (Extended Search)

(CCS) technologies. CCSI will utilize a software infrastructure (CCS) technologies. CCSI will utilize a software infrastructure to accelerate the development and deployment of new, cost-effective CCS technologies. This will be achieved by identifying promising concepts through rapid computational screening of devices and processes; reducing the time and expense to design and troubleshoot new devices and processes through science-based optimal designs;

217

Clean Cities: Clean Cities Financial Opps Details NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Printable Version Share this resource Send a link to Clean Cities: Clean Cities Financial Opps Details NewsDetail to someone by E-mail Share Clean Cities:...

218

Cost of Fuel to General Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Fuel to Generate Electricity of Fuel to Generate Electricity Cost of Fuel to Generate Electricity Herb Emmrich Gas Demand Forecast, Economic Analysis & Tariffs Manager SCG/SDG&E SCG/SDG&E Federal Utility Partnership Working Group (FUPWG) 2009 Fall Meeting November 18, 2009 Ontario, California The Six Main Costs to Price Electricity are:  Capital costs - the cost of capital investment (debt & equity), depreciation, Federal & State income taxes and property taxes and property taxes  Fuel costs based on fuel used to generate electricity - hydro, natural gas, coal, fuel oil, wind, solar, photovoltaic geothermal biogas photovoltaic, geothermal, biogas  Operating and maintenance costs  Transmission costs  Distribution costs  Social adder costs - GHG adder, low income adder,

219

ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM  

E-Print Network (OSTI)

to be less. Item Battery Mode Cost Hours required Backgroundwiring Total battery mode capital costs Adjustments fora detailed list of costs in the battery mode of operation.

Kay, J.

2009-01-01T23:59:59.000Z

220

Tracking the Sun III The Installed Cost of Photovoltaics  

E-Print Network (OSTI)

Contents The Installed Cost of Photovoltaics in the U.S. from 1998-2009 Environmental Energy Technologies .................................................................... 10 4. PV Incentive and Net Installed Cost Trends ....................................... 27 5 Appendix A: Data Cleaning, Coding, and Standardization ....................... 36 Appendix B: Detailed

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Utility Data Collection Service  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data Collection Service Data Collection Service Federal-Utility Partnership Working Group 4 May 2006 Paul Kelley, Chief of Operations, 78 th CES, Robins AFB David Dykes, Industrial Segment Mgr, Federal, GPC Topics  Background  Commodities Metered  Data Collection  Cost  Results Background  Robins AFB (RAFB) needed to:  Control electricity usage and considered Demand Control  Track and bill base tenants for energy usage  Metering Project Originated in 1993  $$ requirements limited interest  Developed criteria for available $$  Energy Policy Act 2005:  All facilities sub-metered by 2012  $$ no longer restricts metering project Metering Criteria prior to EPACT 2005  All New Construction - (per Air Force Instructions)

222

Annual Electric Utility Data - EIA-906/920/923 Data File  

Gasoline and Diesel Fuel Update (EIA)

923 detailed data with previous form data (EIA-906/920) 923 detailed data with previous form data (EIA-906/920) The survey Form EIA-923 collects detailed electric power data -- monthly and annually -- on electricity generation, fuel consumption, fossil fuel stocks, and receipts at the power plant and prime mover level. Specific survey information provided: Schedule 2 - fuel receipts and costs Schedules 3A & 5A - generator data including generation, fuel consumption and stocks Schedule 4 - fossil fuel stocks Schedules 6 & 7 - non-utility source and disposition of electricity Schedules 8A-F - environmental data Monthly data (M) - over 1,900 plants from the monthly survey Annual final data - approximately 1,900 monthly plants + 4,100 plants from the annual survey

223

Dynamic Portfolio Optimization with Transaction Costs: Heuristics ...  

E-Print Network (OSTI)

Aug 10, 2010 ... 1The special case with a quadratic utility and quadratic transaction costs and no portfolio .... The risk-free rate rf is assumed to be known.

224

A multiple secretary problem with switch costs  

E-Print Network (OSTI)

In this thesis, we utilize probabilistic reasoning and simulation methods to determine the optimal selection rule for the secretary problem with switch costs, in which a known number of applicants appear sequentially in a ...

Ding, Jiachuan

2007-01-01T23:59:59.000Z

225

Automatic monitoring helps reduce lighting costs  

SciTech Connect

A Benton, Arkansas utility is using a dimmable ballast system to curb high-intensity-discharge (HID) lighting costs. The system also incorpoates a monitoring control system. This control automatically maintains minimum illumination levels.

1978-11-01T23:59:59.000Z

226

Types of Costs Types of Cost Estimates  

E-Print Network (OSTI)

05-1 · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408) costs apply to those items that are consumed in production process and are roughly proportional to level in cash flow analysis and in the decision to use the equipment for reclamation? Types of Costs #12

Boisvert, Jeff

227

Design of small, low-cost, underwater fin manipulator.  

E-Print Network (OSTI)

??This thesis details the development of a small, low cost, underwater manipulator for use on the XAUV. At this time, there are no cheap underwater (more)

Roberts, Megan Johnson

2008-01-01T23:59:59.000Z

228

Financial Statistics of Major U.S. Investor-Owned Electric Utilities  

Reports and Publications (EIA)

1996 - Final issue. Presents summary and detailed financial accounting data on the investor-owned electric utilities.

Information Center

1997-12-01T23:59:59.000Z

229

Actions You Can Take to Reduce Cooling Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheet Actions You Can Take to Reduce Cooling Costs Cooling costs can be a substantial part of your facility's annual utility bill. A number of energy savings opportunities...

230

Carbon Dioxide Transport and Storage Costs in NETL Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering and Economic Assessment. 2 This study utilized a similar basis for pipeline costs (Oil and Gas Journal's pipeline cost data up to the year 2000) but added a CO 2...

231

Energy and Cost Savings Calculators for Energy-Efficient Products  

Energy.gov (U.S. Department of Energy (DOE))

The energy and cost calculators below allow Federal agencies to enter their own input values (such as utility rates, hours of use) to estimate energy and cost savings for energy-efficient products....

232

Industry/Utility Partnerships: Formula for Success  

E-Print Network (OSTI)

Industry/utility partnerships are created when both parties work productively toward common goals. American industry faces tough global competition and to be successful must create and operate modern production facilities. Cost and energy efficient electrotechnologies play a critical role in their competitiveness. Utilities can play a central role in industrial competitiveness, not only by providing competitively priced and reliable power, but also by helping their customers to identify and implement the most appropriate technologies. When the correct environment is created, both win. Industry reduces costs and produces high quality products. The utility gains customer loyalty and achieves business success.

Smith, W. R.; Spriggs, H. D.

1995-04-01T23:59:59.000Z

233

NET PRED UTILITY  

Energy Science and Technology Software Center (OSTI)

002602IBMPC00 Normalized Elution Time Prediction Utility http://omics.pnl.gov/software/NETPredictionUtility.php

234

I/O Benchmarking Details  

NLE Websites -- All DOE Office Websites (Extended Search)

IO Benchmarking Details IO Benchmarking Details These benchmarks are simply the transfer rate for copying some files from an eliza file system to TMPDIR on a batch node. Each...

235

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 6 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2013 Chevrolet Volt VIN: 1G1RA6E40DU103929 Propulsion System: Multi-Mode PHEV (EV, Series,...

236

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BU100815 Propulsion System: Multi-Mode PHEV (EV, Series, and...

237

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: Frequency Comb, Ultrafast Laser. ...

238

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: Iron-Based Superconductors. Description ...

239

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: Space Weather Forecasts. Description ...

240

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: Organic Solar Power. Description ...

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect

Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

2012-11-01T23:59:59.000Z

242

DEMEC Member Utilities - Green Energy Program Incentives (8 utilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Member Utilities - Green Energy Program Incentives (8 utilities) DEMEC Member Utilities - Green Energy Program Incentives (8 utilities) Eligibility Agricultural Commercial...

243

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network (OSTI)

2007. "Utility Wind Integration and Operating Impact Statethat the integration of 20% wind into US electricity marketsand integration costs, Figure 8 provides a supply curve for wind

Wiser, Ryan H

2010-01-01T23:59:59.000Z

244

Report on Transmission Cost Allocation for RTOs and Others (Presentation)  

SciTech Connect

This presentation describes in summary fashion some present transmission cost allocation methods, especially as this relates to the development of utility-scale renewable power sources.

Coles, L.; Porter, K.

2011-05-01T23:59:59.000Z

245

Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Utilities Electric Utility Rates The Utilities Gateway houses OpenEI's free, community-editable utility rate repository. OpenEI users may browse, edit and add new electric utility rates to OpenEI's repository. EIA provides the authoritative list of utility companies in the United States, and thus OpenEI limits utility rates to companies listed by EIA. 43,031 rates have been contributed for 3,832 EIA-recognized utility companies. Browse rates by zip code Browse rates by utility name Create or edit a rate Number of Utility Companies by State Click on a state to view summaries for that state. See a list of all U.S. utility companies and aliases Utility Rate Database Description The Utility Rate Database (URDB) is a free storehouse of rate structure

246

Decommissioning Experiences and Lessons Learned: Decommissioning Costs  

Science Conference Proceedings (OSTI)

In 1995, the United States (US) Nuclear Regulatory Commission (NRC) issued revised decommissioning regulations that provided a dose-based site release limit and detailed supporting regulatory guidance. This report summarizes the decommissioning cost experiences at US nuclear plants, including information about radwaste volumes and the cost of radwaste disposal based on the current regulatory situation in the US.

2011-11-29T23:59:59.000Z

247

Price of electricity tracks cost of living  

SciTech Connect

The retail price of electricity and the consumer price index are rising at about the same rate: 241.5 and 242.6, respectively, based on a 1967 index of 100. Increases in fossil fuel costs, wages, and the cost of borrowed funds have contributed to these changes. Details of the annual percentage changes are summarized in five tables. (DCK)

Not Available

1980-09-01T23:59:59.000Z

248

Utility advanced turbine systems (ATS) technology readiness testing  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

2000-09-15T23:59:59.000Z

249

Utility advanced turbine systems (ATS) technology readiness testing  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

2000-09-15T23:59:59.000Z

250

GAO Cost Estimating and Assessment Guide Twelve Steps of a High-Quality Cost Estimating Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GAO Cost Estimating and Assessment Guide GAO Cost Estimating and Assessment Guide Twelve Steps of a High-Quality Cost Estimating Process Step Description Associated task 1 Define estimate's purpose Determine estimate's purpose, required level of detail, and overall scope; Determine who will receive the estimate 2 Develop estimating plan Determine the cost estimating team and develop its master schedule; Determine who will do the independent cost estimate; Outline the cost estimating approach; Develop the estimate timeline 3 Define program characteristics In a technical baseline description document, identify the program's

251

Audit Costs for the 1986 Texas Energy Cost Containment Program  

E-Print Network (OSTI)

Direct program costs for detailed audits of 13.5 million square feet of institutional building space in the 1986 Texas Energy Cost Containment Program were $0.047/SF. The building area was 63 percent simple (offices, schools, and universities) and 37 percent complex (medical buildings and power plants). Allowing for the influence of one large facility which received less-extensive treatment due to previous work, thorough audits were obtained for an average cost of $0.050/SF. Large medical buildings (greater than about 170,000 square feet) were audited for $0.050/SF or less, and program costs for survey audits of 17.2 million square feet were $0.0028/SF. The effect on audit costs of complexity of recommended modifications, amount of savings determined, amount of implementation costs, building size, and building complexity are discussed. Primary effects on audit costs are size and complexity of buildings. Program guidelines limited consideration of projects with greater than a four year payback.

Heffington, W. M.; Lum, S. K.; Bauer, V. A.; Turner, W. D.

1987-01-01T23:59:59.000Z

252

NREL: Energy Analysis - Energy Technology Cost and Performance Data for  

NLE Websites -- All DOE Office Websites (Extended Search)

Bookmark and Share Bookmark and Share Energy Technology Cost and Performance Data for Distributed Generation Transparent Cost Database Button Recent cost estimates for distributed generation (DG) renewable energy technologies are available across capital costs, operations and maintenance (O&M) costs, and levelized cost of energy (LCOE). Use the tabs below to navigate the charts. The LCOE tab provides a simple calculator for both utility-scale and DG technologies that compares the combination of capital costs, O&M, performance, and fuel costs. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost (September 2013 Update)

253

Cost Reduction Strategies for Mixed Waste  

Science Conference Proceedings (OSTI)

The potential for generating mixed waste is a reality at all nuclear power plants. The report provides utilities with a means for developing cost reduction strategies to minimize the volume of waste generated, optimize treatment and disposal options, and maximize overall cost savings.

1998-12-31T23:59:59.000Z

254

Projected cost-effectiveness of alternative residential space cooling systems in the Sacramento area  

SciTech Connect

Electric utilities around the country are seeking to evaluate new demand-side management (DSM) programs and technologies on an equal basis with supply-side resources. In evaluating future demand and supply resources, utilities need to consider uncertainties inherent in prediction. In this paper, five residential space cooling technologies (high efficiency heat pumps, some coupled with utility direct load control or with thermal energy storage), are defined and computer simulation of their performance are described. Cost-effectiveness of the five alternatives are then evaluated, and the relative uncertainty of the data inputs are tested by using the Monte Carlo technique of probability analysis. This comparative analysis comprises an initial screening of potential DSM technologies, and provides a framework and direction for more detailed analysis of these technologies in the future.

Kallett, R.H. (Sacramento Municipal Utility District, Box 15830, Sacramento, CA (US))

1988-08-01T23:59:59.000Z

255

PAFC Cost Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

PAFC Cost Challenges Sridhar Kanuri Manager, PAFC Technology *Sridhar.Kanuri@utcpower.com 2 AGENDA Purecell 400 cost challenge Cost reduction opportunities Summary 3 PURECELL ...

256

Renewable energy and utility regulation  

DOE Green Energy (OSTI)

This report summarizes the results of a joint project on renewable energy of the National Association of Regulatory Utility Commissioners (NARUC) and the US DOE. NARUC`S Task Force on Renewable Energy conducted a review of the current state of renewable energy technologies to evaluate their potential and extract key policy lessons from experience already gained in deployment of these technologies in numerous states. The main focus of this effort has been to clarify how utility regulators affect the development of renewable energy resources. The goal of the project was twofold: (1) identify the factors that have led to success or failure or renewable energy technologies in various energy markets, and (2) to develop an agenda on renewable energy and utility regulation for NARUC and the DOE. This report consists of three sections: renewable energy contributions, costs and potential; factors affecting development of renewable energy resources; and a renewable energy agenda for NARUC.

Not Available

1991-04-10T23:59:59.000Z

257

Renewable energy and utility regulation  

DOE Green Energy (OSTI)

This report summarizes the results of a joint project on renewable energy of the National Association of Regulatory Utility Commissioners (NARUC) and the US DOE. NARUC'S Task Force on Renewable Energy conducted a review of the current state of renewable energy technologies to evaluate their potential and extract key policy lessons from experience already gained in deployment of these technologies in numerous states. The main focus of this effort has been to clarify how utility regulators affect the development of renewable energy resources. The goal of the project was twofold: (1) identify the factors that have led to success or failure or renewable energy technologies in various energy markets, and (2) to develop an agenda on renewable energy and utility regulation for NARUC and the DOE. This report consists of three sections: renewable energy contributions, costs and potential; factors affecting development of renewable energy resources; and a renewable energy agenda for NARUC.

Not Available

1991-04-10T23:59:59.000Z

258

CBECS 1992 - Consumption & Expenditures, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Figure on Energy Consumption in Commercial Buildings by Energy Source, 1992 Divider Line The 49 tables present detailed energy consumption and expenditure data for buildings in the commercial sector. This section provides assistance in reading the tables by explaining some of the headings for the data categories. It will also explain the use of row and column factors to compute both the confidence levels of the estimates given in the tables and the statistical significance of differences between the data in two or more categories. The section concludes with a "Quick-Reference Guide" to the statistics in the different tables. Categories of Data in the Tables After Table 3.1, which is a summary table, the tables are grouped into the major fuel tables (Tables 3.2 through 3.13) and the specific fuel tables (Tables 3.14 through 3.29 for electricity, Tables 3.30 through 3.40 for natural gas, Tables 3.41 through 3.45 for fuel oil, and Tables 3.46 through 3.47 for district heat). Table 3.48 presents energy management and DSM data as reported by the building respondent. Table 3.49 presents data on participation in electric utility-sponsored DSM programs as reported by both the building respondent and the electricity supplier.

259

Nome Joint Utility Systems | Open Energy Information  

Open Energy Info (EERE)

Joint Utility Systems Joint Utility Systems Jump to: navigation, search Name Nome Joint Utility Systems Place Alaska Utility Id 13642 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electrical Charge Residential Power Cost Equalization Average Rates Residential: $0.3600/kWh Commercial: $0.3310/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Nome_Joint_Utility_Systems&oldid=411195

260

Price impacts of electric-utility DSM programs  

Science Conference Proceedings (OSTI)

As competition in the electricity industry increases, utilities (and others) worry more about the upward pressure on electricity prices that demand-side management (DSM) programs often impose. Because of these concerns, several utilities have recently reduced the scope of their DSM programs or focused these programs more on customer service and peak-demand reductions and less on improving energy efficiency. This study uses the Oak Ridge Financial Model (ORFIN) to calculate the rate impacts of DSM. The authors use ORFIN to examine the two factors that contribute to DSM`s upward pressure on prices: the cost of the programs themselves and the loss of revenue associated with fixed-cost recovery. This second factor reflects the reduction in revenues caused by the DSM-induced energy and demand savings that exceed the reduction in utility costs. This analysis examines DSM price impacts as functions of the following factors: the DSM program itself (cost, conservation load factor, geographic focus on deferral of transmission and distribution investments, and mix across customer classes); the utility`s cost and pricing structures (factors at least partly under the utility`s control, such as retail tariffs, fixed vs variable operating costs, and capital costs not related to kW or kWh growth); and external economic and regulatory factors (the level and temporal pattern of avoided energy and capacity costs; ratebasing vs expensing of DSM-program costs; shareholder incentives for DSM programs; load growth; and the rates for income, property, and revenue taxes).

Hirst, E.; Hadley, S.

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Google's looking smarter about advanced metering than long-laboring utilities  

Science Conference Proceedings (OSTI)

In late May, Google announced a partnership with eight utilities in six states in the U.S. plus Canada and India to enable roughly 10 million customers to 'access detailed information on their home energy use.' What is different about the new product is that consumers can view simple graphical displays of their power usage more or less in real time from anywhere there is access to the Internet. That may ultimately turn PowerMeter into a powerful tool to manage electricity consumption on truly large scale and at very low cost.

NONE

2009-07-15T23:59:59.000Z

262

Integrated Analysis of Fuel, Technology and Emission Allowance Markets: Electric Utility Responses to the Clean Air Act Amendments o f 1990  

Science Conference Proceedings (OSTI)

This report provides a detailed analysis of the strategic responses of the electric utility industry to the Clean Air Act Amendments of 1990. The study analyzes the competitive interactions between fuel switching, scrubbing, and emission trading options and provides information on future regional coal demands and prices, the adoption of SO2 control technologies, compliance costs, and the character of SO2 emission allowance markets.

1993-08-30T23:59:59.000Z

263

Utility Locating in the DOE Environment  

SciTech Connect

Some advances have been made in utility locating in recent years and standards have been recently published to try and categorize the level of information known about the utility in the subsurface. At the same time some characterization about the level of effort or technology in the geophysicist approach to utility locating may be generalized. The DOE environment poses some added difficulties and this presentation covers these issues, costs and the technical approach that has been developed at the INEEL to prevent utility hits and how it fits into the generalized classification of effort.

Clark Scott; Gail Heath

2006-04-01T23:59:59.000Z

264

Minimum Changeover Cost Arborescence  

E-Print Network (OSTI)

having minimum changeover cost, a cost that we now describe. ... We define the changeover cost at j, denoted by d(j), as the sum of the costs at j paid for each of ...

265

Design of a portable CAT scanner for utility pole inspection  

SciTech Connect

Work is under way at the University of Missouri, Columbia (UMC) to design, build, and test a portable computerized axial tomography (CAT) device for the nondestructive, field imaging of wooden utility poles. CAT is a well-established medical technology that has recently been applied to a number of industrial applications. Wooden utility poles are prone to rot and decay at ground level; current techniques to assess this loss of strength are relatively primitive, i.e., tapping the pole (hitting the pole with a hammer) or boring into the pole for samples and then testing inside the bore hole with an electrical pulse device. The accuracy in identifying poles needing replacement using these techniques is approx. 70%. Since the cost of replacing a pole ranges from hundreds to thousands of dollars, an accurate, nondestructive method is needed. CAT can accurately image a wooden utility pole (since the size, density, and atomic elements of a pole are similar to the human head to torso), as was confirmed by imaging poles using the UMC nuclear engineering EMI-1010 medical scanner. Detailed images have been produced showing the ring structure of the wood and voids due to rot or decay. Images approaching this quality have also been produced on living trees using semiportable systems by other researchers.

Miller, W.H.

1986-01-01T23:59:59.000Z

266

Optimization of Transmission Line Design Using Life Cycle Costing  

Science Conference Proceedings (OSTI)

When an overhead line is designed, all costs incurred during the expected life of the line should be considered. The total cost during the life or life-cycle cost of a transmission line is a combination of the initial capital cost, operation and maintenance (O&M) cost, cost of electrical losses over its entire life, and dependability associated costs. The option that has the lowest life-cycle cost is selected as the optimized design. A tool is required by utility engineers to help them readily select an ...

2009-12-22T23:59:59.000Z

267

Optimization of Transmission Line Design Using Life-Cycle Costing  

Science Conference Proceedings (OSTI)

When an overhead line is designed, all costs incurred during the expected life of the line should be considered. The total cost during the life, or life-cycle cost, of a transmission line is a combination of the initial capital cost, operation and maintenance (O&M) cost, cost of electrical losses over its entire life, and dependability-associated costs. The option that has the lowest life-cycle cost is selected as the optimized design. A tool is required by utility engineers to help them readily select a...

2008-12-09T23:59:59.000Z

268

The unit cost factors and calculation methods for decommissioning - Cost estimation of nuclear research facilities  

SciTech Connect

Available in abstract form only. Full text of publication follows: The uncertainties of decommissioning costs increase high due to several conditions. Decommissioning cost estimation depends on the complexity of nuclear installations, its site-specific physical and radiological inventories. Therefore, the decommissioning costs of nuclear research facilities must be estimated in accordance with the detailed sub-tasks and resources by the tasks of decommissioning activities. By selecting the classified activities and resources, costs are calculated by the items and then the total costs of all decommissioning activities are reshuffled to match with its usage and objectives. And the decommissioning cost of nuclear research facilities is calculated by applying a unit cost factor method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning costs of nuclear research facilities are composed of labor cost, equipment and materials cost. Of these three categorical costs, the calculation of labor costs are very important because decommissioning activities mainly depend on labor force. Labor costs in decommissioning activities are calculated on the basis of working time consumed in decommissioning objects and works. The working times are figured out of unit cost factors and work difficulty factors. Finally, labor costs are figured out by using these factors as parameters of calculation. The accuracy of decommissioning cost estimation results is much higher compared to the real decommissioning works. (authors)

Kwan-Seong Jeong; Dong-Gyu Lee; Chong-Hun Jung; Kune-Woo Lee [Korea Atomic Energy Research Institute, Deokjin-dong 150, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

2007-07-01T23:59:59.000Z

269

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image No 150 DPI Version 300 DPI Image. Title: Ultrafast Laser Speeds Up Quest for Atomic Control. ...

270

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: House; Trees. Description: *BFRL. Subjects (names): ...

271

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. No 72 DPI Version No 150 DPI Version 300 DPI Image. Title: Gold Nano Anchors Put Nanowires in Their Place. ...

272

Solar production of industrial process steam. Final detail design report  

SciTech Connect

The application of solar energy to produce 110 psig industrial steam for processing laundry and drycleaning for a facility in Pasadena, California, is described. The system uses tracking parabolic trough collectors. The collectors, the detailed process analyses, solar calculations and insolation data, energy reduction analyses, economic analyses, design of the solar system, construction, and costs are presented in detail. Included in appendices are the following: mechanical specifications and calculations, electrical specifications and calculations, and structural specifications and calculations. (MHR)

Eldridge, B.G.

1978-06-15T23:59:59.000Z

273

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... by NIST with funding from the US Environmental Protection Agency (EPA), the system supports an EPA program requiring coal-fired electric utility ...

274

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... from the US Environmental Protection Agency (EPA), the system supports an EPA program requiring coal-fired electric utility plants to accurately ...

275

1998 Cost and Quality Annual  

Gasoline and Diesel Fuel Update (EIA)

8) 8) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 1998 Tables June 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) is no longer published by the EIA. The tables presented in this document are intended to replace that annual publication. Questions regarding the availability of these data should

276

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network (OSTI)

production(abovetheutilityratefor electricitysoldlocalenergycostsandutilityrate structures. NetZero1:BaseCaseInputs Theutilityratesusedshouldalsobe

Al-Beaini, S.

2010-01-01T23:59:59.000Z

277

Federal Utility Partnership Working Group | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Funding » Utility Energy Service Contracts » Federal Project Funding » Utility Energy Service Contracts » Federal Utility Partnership Working Group Federal Utility Partnership Working Group October 7, 2013 - 2:31pm Addthis The Federal Utility Partnership Working Group (FUPWG) establishes partnerships and facilitates communications among Federal agencies, utilities, and energy service companies. The group develops strategies to implement cost-effective energy efficiency and water conservation projects through utility incentive programs at Federal sites. The mission and objectives of the Federal Utility Partnership Working Group are to: Enhance existing or foster new partnerships between Federal agencies and their servicing utilities to identify, develop, and implement cost-effective energy efficiency, water conservation, and renewable energy

278

Low Cost Emergency VAR Compensator  

Science Conference Proceedings (OSTI)

The barriers to commercialization of the Capacitor Bank Group Shorting (CAPS) concept were investigated in this study. Also, the application of mechanically switched CAPS systems was examined from the technical and cost points of view. In addition, a semiconductor (thyristor) switched or controlled CAPS arrangement was studied. Although only three utilities were surveyed in the market assessment part of the study, it was concluded that if there is a need for additional shunt compensation systems or a nee...

2000-11-08T23:59:59.000Z

279

Avoided Gigawatts Through Utility Capital Recovery Fees  

E-Print Network (OSTI)

Electric rate structures can be used to provide customers with the proper pricing signals as well as provide economic incentives for increased market penetration for energy efficient new buildings. An innovative, marginal (replacement cost) rate structure is possible through the use of capital recovery fees for new electric meter hookups similar to those commonly used for new water and wastewater hookups where the developer/owner is required to capitalize the marginal cost of new demand. By giving credit for the more efficient loads placed on an electric utility system, a utility could rapidly advance the market penetration of commercially available, highly efficient building systems and equipment resulting in potential gigawatts of conserved energy. Simultaneously, the capital costs of new generating plants could be shifted to the end-user from the already debt-burdened electric utility industry. This paper will explore this pricing option and analyze its potential on future electric load growth and the design of efficient new buildings.

Frosenfeld, A. N.; Verdict, M. E.

1985-01-01T23:59:59.000Z

280

Public Service Commission Authorization to Utilize an Alternative Method of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Service Commission Authorization to Utilize an Alternative Public Service Commission Authorization to Utilize an Alternative Method of Cost Recovery for Certain Base Load Generation (Mississippi) Public Service Commission Authorization to Utilize an Alternative Method of Cost Recovery for Certain Base Load Generation (Mississippi) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Green Power Purchasing Industry Recruitment/Support Performance-Based Incentive Public Benefits Fund Provider Public Service Commission The Senate Bill 2793 authorizes the Public Service Commission (PSC) to

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Utilization of Composite Materials in Low Cost Motor Rehabilitation ...  

Science Conference Proceedings (OSTI)

Lignocellulosic-Based Carbon Fibers from Biofuel Production Wastes Magnesium Sheets Produced by Extrusion Magnetite Formation Observed with TEM on...

282

Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity: 30 Years of Electricity: 30 Years of Electricity: 30 Years of Electricity: 30 Years of Industry Change Industry Change David K. Owens Executive Vice President Edison Electric Institute 30 Years of Energy Information and Analysis April 7, 2008 EIA Key to Policy Development and EIA Key to Policy Development and Advocacy Activities Advocacy Activities EIA Has Kept Pace With an Evolving EIA Has Kept Pace With an Evolving Energy Industry Energy Industry n EIA clearly provides more with less budgetary support l 1979: $347 million l 2007: $91 million (both in Real $2007) n EIA staff resource distribution has tracked changing energy markets and information needs Resource Management Oil & Gas Coal, Nuclear, Electric, Alt Fuels Energy Markets & End Use Integrated Analysis / Forecasting Information Technology

283

The Cost and Performance of Utility Commercial Lighting Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

and Christopher T. Payne Date Published 051994 Institution LBNL Keywords demand-side management (dsm), energy efficiency Abstract The objective of the Database on Energy...

284

Reducing Power Production Costs by Utilizing Petroleum Coke  

Science Conference Proceedings (OSTI)

Petroleum coke, a byproduct of the petroleum-refining process, is an attractive primary or supplemental fuel for power production primarily because of a progressive and predictable increase in the production volumes of petroleum coke. It is most commonly blended with coal in proportions suitable to meet sulfur emission compliance, and is generally less reactive than coal. Therefore, the cofiring of petroleum coke with coal typically improves ignition, flame stability, and carbon loss relative to the comb...

2000-05-05T23:59:59.000Z

285

The Direct Costs and Benefits of US Electric Utility Divestitures  

E-Print Network (OSTI)

. We find that divestiture reduces distribution efficiency but increases power sourcing efficiency. Both effects depend on the amount of own nuclear generation output but not fossil-fuel or hydro output. The net present value for all divestitures in our...

Triebs, Thomas P.; Pollitt, Michael G.; Kwoka, John E.

286

Updated Capital Cost Estimates for Utility Scale Electricity  

E-Print Network (OSTI)

, and juvenile progeny will be sampled and genotyped for 16 microsatellite markers (0). Estimate Connectivity altered the routes and conditions resident salmonids must undertake to connect with neighboring for the status of mountain whitefish. Population connectivity is a measurement of interbreeding among arbitrary

287

Doing business with business: Municipal utility energy audits  

Science Conference Proceedings (OSTI)

This article is a review of the ways in which municipal utilities can use energy audits to identify the energy efficiency measures that are most effective for themselves and their customers. Two examples, Osage Municipal Utilities in Iowa and Sacramento Municipal Utility District in California, are used to illustrate the strategies that are most cost effective.

NONE

1995-12-01T23:59:59.000Z

288

Financial statistics of major publicly owned electric utilities, 1991  

Science Conference Proceedings (OSTI)

The Financial Statistics of Major Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with data that can be used for policymaking and decisionmaking purposes relating to publicly owned electric utility issues.

Not Available

1993-03-31T23:59:59.000Z

289

Utility Data Accessibility Map | Open Energy Information  

Open Energy Info (EERE)

Utility Data Accessibility Map Utility Data Accessibility Map Jump to: navigation, search Residential Commercial Benchmarking Energy Efficiency Delivery of Data Time Period Frequency of Data Access to Data Residential frequency of data access Ua Utility Data Access Map Having access to your electricity use data is a very important step in understanding your overall energy usage. Comparing historical data to your current usage is one way to see trends and determine ways for reducing electricity costs and improving overall efficiency. We asked all U.S. electric utility companies to tell us how accessible their electricity use data is for both residential and commercial customers. The results are updated live based on the responses we have to date. As more utilities provide information, the utility boundaries will be automatically colored

290

Solving the problems facing the electric utilities  

SciTech Connect

The dimensions of the current problems of attracting capital for utilities investment, of achieving more efficient utilization of capacity, of siting and construction of new power plants, and of utilities receiving a return on their investment large enough to enable them to continue their service to American consumers are examined. Federal actions that are being taken to help get the utilities out of their current state of malaise are described. The author concludes that positive electric power load management, through a system of cost-based pricing incentives and load controls, can achieve a balanced future both for total electricity usage and for peak demand. This would minimize the consumption of scarce fossil fuels in electricity generation, moderate the future need for construction of new capacity, improve utility revenues, and eventually reduce the need for rate increases to maintain utility viability. The FEA feels that is a reasonable, attainable objective for substantial electrification of the economy beyond 1985. (MCW)

Hill, J.A.

1975-01-01T23:59:59.000Z

291

Role of wind power in electric utilities  

SciTech Connect

Current estimates suggest that the cost of wind-generated power is likely to be competitive with conventionally generated power in the near future in regions of the United States with favorable winds and high costs for conventionally generated electricity. These preliminary estimates indicate costs of $500 to 700 per installed kW for mass-produced wind turbines. This assessment regarding competitiveness includes effects of reduced reliability of wind power compared to conventional sources. Utilities employing wind power are likely to purchase more peaking capacity and less baseload capacity than they would have otherwise to provide the lowest-cost reserve power. This reserve power is needed mainly when wind outages coincide with peak loads. The monetary savings associated with this shift contribute substantially to the value of wind energy to a utility.

Davitian, H

1977-09-01T23:59:59.000Z

292

Gas utilization technologies  

SciTech Connect

One of the constant challenges facing the research community is the identification of technology needs 5 to 15 years from now. A look back into history indicates that the forces driving natural gas research have changed from decade to decade. In the 1970s research was driven by concerns for adequate supply; in the 1980s research was aimed at creating new markets for natural gas. What then are the driving forces for the 1990s? Recent reports from the natural gas industry have helped define a new direction driven primarily by market demand for natural gas. A study prepared by the Interstate Natural Gas Association of America Foundation entitled ``Survey of Natural Research, Development, and Demonstration RD&D Priorities`` indicated that in the 1990s the highest research priority should be for natural gas utilization and that technology development efforts should not only address efficiency and cost, but environmental and regulatory issues as well. This study and others, such as the report by the American Gas Association (A.G.A.) entitled ``Strategic Vision for Natural Gas Through the Year 2000,`` clearly identify the market sectors driving today`s technology development needs. The biggest driver is the power generation market followed by the industrial, transportation, appliance, and gas cooling markets. This is best illustrated by the GRI 1994 Baseline Projection on market growth in various sectors between the year 1992 and 2010. This paper highlights some of the recent technology developments in each one of these sectors.

Biljetina, R.

1994-09-01T23:59:59.000Z

293

The Sacramento power utility experience in solar  

SciTech Connect

An overview of the development of three solar power technologies for use in Sacramento, California is provided. A central receiver power plant, Solar One, is being converted to a molten salt design with thermal energy storage by the Sacramento Municipal Utility District (SMUD) and six other utilities. SMUD is also investigating a solar dish/sterling engine system and technologies to reduce photovoltaic conversion costs.

Smeloff, E. [Sacramento Municipal Utility District (SMUD), CA (United States)

1993-12-31T23:59:59.000Z

294

Substation Equipment Asset Management: Utility Experience Sharing  

Science Conference Proceedings (OSTI)

Utilities have been maintaining substation equipment reliably since the industrys inception, but now many are facing increased challenges to reduce operating and maintenance costs without adversely affecting service levels. In this setting, utilities may benefit from knowing which programs and techniques their peers have implemented. To that end, the Electric Power Research Institute (EPRI) conducted a series of industry surveys assessing key substation equipment maintenance practices. As ...

2013-12-18T23:59:59.000Z

295

Utility Documentation of Switching and Clearance Procedures  

Science Conference Proceedings (OSTI)

This report builds on previous research, notably EPRI Report 1013109 Study of Outage Request Switching and Clearance Forms, and examines the documentation that specifies how utility personnel are expected to perform switching tagging and clearance activities. Materials were collected from some 20 utilities and were analyzed to evaluate characteristics of the documents related to ease of use and effective presentation of information. The research also examines completeness and the level of detail of the i...

2006-11-13T23:59:59.000Z

296

Electric utilities and residential solar systems  

DOE Green Energy (OSTI)

The long-run incremental cost (LRIC) of providing electricity for solar heating and hot water systems is estimated for three utilities using a utility capacity expansion model and compared to the cost of providing electricity to electric-only systems. All investment, fuel and operating costs are accounted for. Hot water systems and combined heating and hot water systems are analyzed separately. It is found that the LRIC for solar backup is no more than the LRIC of electricity used for purely electric heating and hot water devices and also no more than the incremental cost of normal load growth. For the three utilities studied, there appears to be little basis for rate distinctions between solar devices using electric backup and electric-only heating and hot water devices. Off-peak storage heating and hot water devices have a much lower LRIC than the standard systems; again, there appears to be no basis for distinguishing between solar and electric off-peak devices. Compared to average cost pricing, incremental cost pricing offers considerable benefits to customers using solar and electric heat and hot water, especially if a separate lower rate is adopted for off-peak storage devices; these benefits can amount to several hundred dollars per year. Substantial savings in the use of oil and gas fuels can be achieved if residences using these fuels convert to solar systems, savings not necessarily achievable by a shift, instead, to electric systems.

Bright, R; Davitian, H

1980-04-01T23:59:59.000Z

297

2003 CBECS Detailed Tables: Summary  

U.S. Energy Information Administration (EIA) Indexed Site

2003 Detailed Tables 2003 Detailed Tables 2003 CBECS Detailed Tables most recent available Released: September 2008 Building Characteristics | Consumption & Expenditures | End-Use Consumption In the 2003 CBECS, the survey procedures for strip shopping centers and enclosed malls ("mall buildings") were changed from those used in previous surveys, and, as a result, mall buildings are now excluded from most of the 2003 CBECS tables. Therefore, some data in the majority of the tables are not directly comparable with previous CBECS tables, all of which included mall buildings. Some numbers in the 2003 tables will be slightly lower than earlier surveys since the 2003 figures do not include mall buildings. See "Change in Data Collection Procedures for Malls" for a more detailed explanation.

298

Research experiments detailed design review  

DOE Green Energy (OSTI)

The illustrations for the detailed design review of the heliostats for a solar thermal pilot plant are presented. Also included are the program schedule, meeting agenda, and component design features. (MHR)

Not Available

1976-01-01T23:59:59.000Z

299

Financing for Utility Energy Service Contracts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Financing for Utility Energy Service Contracts Financing for Utility Energy Service Contracts Financing for Utility Energy Service Contracts October 7, 2013 - 2:21pm Addthis Financing is a significant portion of utility energy service contract (UESC) costs. Experience shows several things the Federal Government can do to get the best value by reducing UESC financial transaction costs and interest. Interest Rates Interest rates are based on the sum of an index rate on the date the transaction is signed and a "premium" or "adders" usually measured in basis points where 100 basis points is equal to 1%. The premium reflects the costs of obtaining the financing under prevailing market conditions, financial risk, transaction costs, and profit for the finance company. The cost of financing varies depending upon a number of factors. Optimizing

300

NREL: Energy Analysis - Utility-Scale Energy Technology Capacity Factors  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility-Scale Energy Technology Capacity Factors Utility-Scale Energy Technology Capacity Factors This chart indicates the range of recent capacity factor estimates for utility-scale renewable energy technologies. The dots indicate the average, and the vertical lines represent the range: Average +1 standard deviation and average -1 standard deviation. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost (September 2013 Update) Operations & Maintenance (September 2013 Update) Utility-Scale Capacity Factors Useful Life Land Use by System Technology LCOE Calculator Capacity factor for energy technologies. For more information, please download supporting data for energy technology costs.

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy utilization analysis of buildings  

DOE Green Energy (OSTI)

The accurate calculation of the energy requirements and heating and cooling equipment sizes for buildings is one of the most important, as well as one of the most difficult, problems facing the engineer. The fundamental principles utilized in the procedures developed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) are explained and brief descriptions of the computer programs using these procedures are given. Such computer programs generally are capable of: simulating the thermal response of a building to all sources of heat gains and losses, accounting for all non-thermal energy requirements in the building or on the sites, translating the building operating schedules into energy demand and consumption, identifying the peak capacity requirements of heating and cooling equipment, and performing an economic analysis that would select the most economical overall owning and operating cost equipment and energy source that minimize the building's life cycle cost.

Lokmanhekim, M.

1978-06-01T23:59:59.000Z

302

Advanced Manufacturing Office: NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: NewsDetail on Twitter Bookmark Advanced Manufacturing Office: NewsDetail on Google Bookmark Advanced Manufacturing Office: NewsDetail on Delicious Rank Advanced...

303

Building Technologies Office: Buildings NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

NewsDetail on Twitter Bookmark Building Technologies Office: Buildings NewsDetail on Google Bookmark Building Technologies Office: Buildings NewsDetail on Delicious Rank Building...

304

Building Technologies Office: NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: NewsDetail on Twitter Bookmark Building Technologies Office: NewsDetail on Google Bookmark Building Technologies Office: NewsDetail on Delicious Rank Building...

305

EERE Postdoctoral Research Awards: NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

NewsDetail on Twitter Bookmark EERE Postdoctoral Research Awards: NewsDetail on Google Bookmark EERE Postdoctoral Research Awards: NewsDetail on Delicious Rank EERE...

306

Costs to build Fermilab in 1984 dollars  

SciTech Connect

It is of current interest to examine the costs incurred to date to build Fermi National Accelerator Laboratory and to determine what those costs are when stated in FY 1984 constant dollars. The appended tables are in support of this exercise and are based on all costs for Equipment items (reduced by obsolescence) and all Plant Projects which have been appropriated through FY 1984. Also included are non-plant costs which are required to complete the Energy Saver, Tevatron I and II projects (i.e., Equipment and R and D in support of Construction). This study makes the assumption that all funding through FY 1984 will have been costed by the end of FY 1986. Those costs incurred in FY 1985 and FY 1986 have been deflated to FY 1984 dollars. See Appendix A for the DOE inflation factors used in the conversion to FY 1984 dollars. The costs are identified in three categories. The Accelerator Facilities include all accelerator components, the buildings which enclose them and utilities which support them. The Experimental Facilities include all beam lines, enclosures, utilities and experimental equipment which are usable in current experimental programs. The Support Facilities include lab and office space, shops, assembly facilities, roads, grounds and the utilities which do not specifically support the Accelerator or Experimental Facilities, etc.

Jordan, N.G.; Livdahl, P.V.

1984-02-01T23:59:59.000Z

307

Technology Management Benchmark Study - Phase 2: Volume 2 - Detailed Report  

Science Conference Proceedings (OSTI)

EPRI and eleven U.S. domestic power companies participated in a benchmark study of the most successful technology management practices of leading non-utility companies. This report contains the detailed findings of the Technology Management Best Practices Study -- Phase 2 conducted from July 2001 to May 2002.

2002-06-27T23:59:59.000Z

308

Cost Study Manual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28, 2012 28, 2012 Cost Study Manual Executive Summary This Cost Study Manual documents the procedures for preparing a Cost Study to compare the cost of a contractor's employee benefits to the industry average from a broad-based national benefit cost survey. The annual Employee Benefits Cost Study Comparison (Cost Study) assists with the analysis of contractors' employee benefits costs. The Contracting Officer (CO) may require corrective action when the average benefit per capita cost or the benefit cost as a percent of payroll exceeds the comparator group by more than five percent. For example, if per capita benefit costs for the comparator group are $10,000 and the benefit costs as a percent of payroll for the comparator group are 20%, the threshold for the contractor's benefits as a

309

2006 Update of Business Downtime Costs  

SciTech Connect

The objective of this paper is to assess the downtime cost of power outages to businesses in the commercial and industrial sectors, updating and improving upon studies that have already been published on this subject. The goal is to produce a study that, relative to existing studies, (1) applies to a wider set of business types (2) reflects more current downtime costs, (3) accounts for the time duration factor of power outages, and (4) includes data on the costs imposed by real outages in a well-defined market. This study examines power outage costs in 11 commercial subsectors and 5 industrial subsectors, using data on downtime costs that was collected in the 1990's. This study also assesses power outage costs for power outages of 20 minutes, 1 hour, and 4 hours duration. Finally, this study incorporates data on the costs of real power outages for two business subsectors. However, the current limited state of data availability on the topic of downtime costs means there is room to improve upon this study. Useful next steps would be to generate more recent data on downtime costs, data that covers outages shorter than 20 minutes duration and longer than 4 hours duration, and more data that is based on the costs caused by real-world outages. Nevertheless, with the limited data that is currently available, this study is able to generate a clear and detailed picture of the downtime costs that are faced by different types of businesses.

Hinrichs, Mr. Doug [Sentech, Inc.; Goggin, Mr. Michael [Sentech, Inc.

2007-01-01T23:59:59.000Z

310

2006 Update of Business Downtime Costs  

SciTech Connect

The objective of this paper is to assess the downtime cost of power outages to businesses in the commercial and industrial sectors, updating and improving upon studies that have already been published on this subject. The goal is to produce a study that, relative to existing studies, (1) applies to a wider set of business types (2) reflects more current downtime costs, (3) accounts for the time duration factor of power outages, and (4) includes data on the costs imposed by real outages in a well-defined market. This study examines power outage costs in 11 commercial subsectors and 5 industrial subsectors, using data on downtime costs that was collected in the 1990's. This study also assesses power outage costs for power outages of 20 minutes, 1 hour, and 4 hours duration. Finally, this study incorporates data on the costs of real power outages for two business subsectors. However, the current limited state of data availability on the topic of downtime costs means there is room to improve upon this study. Useful next steps would be to generate more recent data on downtime costs, data that covers outages shorter than 20 minutes duration and longer than 4 hours duration, and more data that is based on the costs caused by real-world outages. Nevertheless, with the limited data that is currently available, this study is able to generate a clear and detailed picture of the downtime costs that are faced by different types of businesses.

Hinrichs, Mr. Doug [Sentech, Inc.; Goggin, Mr. Michael [Sentech, Inc.

2007-01-01T23:59:59.000Z

311

A fresh look at cost estimation, process models and risk analysis, EDSER-1  

E-Print Network (OSTI)

Reliable cost estimation is indispensable for industrial software development. A detailed analysis shows why the existing cost models are unreliable. Cost estimation should integrate software process modelling and risk analysis. A novel approach based on probability theory is proposed. A probabilistic cost model could provide a solid basis for cost-benefit analyses. 1

Frank Padberg

1999-01-01T23:59:59.000Z

312

Utilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities Utilities Utilities Below are resources for Tribes about utilities. The Economics of Electric System Municipalization Looks at the economic environment in California to determine whether municipalization would be a beneficial option for many California cities. Source: Bay Area Economic Forum. Establishing a Tribal Utility Authority Handbook Provides an introduction to electric utility operation and general guidance for the steps required to form a tribal utility authority. Funded by an economic development grant awarded by the U.S. Department of the Interior's Office of Indian Energy and Economic Development to the Ak-Chin Indian Community and its tribal utility authority, Ak-Chin Energy Services. Source: Leonard S. Gold, Utility Strategies Consulting Group,

313

Liquefaction and Pipeline Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

factors add 20 percent to liquefaction plant total installed cost 6 Distribution Pipeline Costs Collected historical Oil & Gas Journal data, and surveyed for current urban and...

314

Launching Agency and Utility Participation and Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launching Agency and Utility Launching Agency and Utility Participation and Projects (UESC Lessons Learned & Breaking Down the Barriers) [Direct Assistance] Working Session: Facilitated Group Discussion Cape Canaveral, Florida May 1, 2007 Objectives of this Working Session Outcomes of the San Francisco working session * Increase awareness of UESC vehicles * Better promote FUPWG * Improve communication among partners and stakeholders * Educate key stakeholders * Provide technical assistance to kick-start projects * Reach out to new partners * Make UESC website easier to find Overview of FEMP UESC Assistance Utility Energy Services Contract (UESC) Direct Assistance provides guidance, training and direct support to agencies so that they may accomplish cost effective, sensible, and comprehensive

315

FEMP Utility Services  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Services Utility Services Karen Thomas & Deb Beattie  SPONSORED BY THE FEDERAL ENERGY MANAGEMENT PROGRAM  Overview  UESC Project Support  Agency / Utility Partnerships  Renewable Project Support  Design Assistance  Agency Energy Implementation Plans * * * * * * UESC Project Support Education UESC Workshops Agency Briefings Utility Briefings On-site team training Communications Web site Enabling documents * Case studies UESC Project Support Direct Project Assistance Project facilitation Advise & Consult In depth Contract development Technical Proposal review Performance Verification Agency / Utility Partnerships Federal Utility Partnership Working Group Strategic Partnering Meeting Renewable Projects  Resource Screening: - PV - Solar Hot Water

316

Public Utility Regulatory Policies Act of 1978 (PURPA) | Department of  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Utility Regulatory Policies Act of 1978 Public Utility Regulatory Policies Act of 1978 (PURPA) Public Utility Regulatory Policies Act of 1978 (PURPA) "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) The Energy Policy Act of 2005 (EPACT 2005) Subtitle E contains three sections (secs. 1251, 1252, and 1254) that add additional "States-must-consider" standards to the Public Utility Regulatory Policies Act of 1978 (PURPA). Specifically, EPACT 2005 adds five new Federal standards to PURPA Section 111(d): (11) NET METERING (see EPACT 2005 Sec. 1251 for details) (12) FUEL SOURCES (see EPACT 2005 Sec. 1251 for details) (13) FOSSIL FUEL GENERATION EFFICIENCY (see EPACT 2005 Sec. 1251 for details) (14) TIME-BASED METERING AND COMMUNICATIONS (see EPACT 2005 Sec.

317

Details Details... The Impact of Market Rules on Emerging "Green" Energy Markets  

NLE Websites -- All DOE Office Websites (Extended Search)

1812 1812 Details, Details . . . The Impact of Market Rules on Emerging "Green" Energy Markets Ryan Wiser, Steven Pickle, and Joseph Eto Environmental Energy Technologies Division September 1998 The work described in this study was funded by the Assistant Secretary of Energy Efficiency and Renewable Energy, Office of Utility Technologies of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. For the sake of this paper, green power is defined as electricity that is differentiated based on its environmental attributes. 1 As a practical matter, nearly all such green power products include renewable energy. To the extent that customer purchases of green power offset conventional power supply, net environmental gains can be expected. 1 ABSTRACT

318

Avoiding Distribution System Upgrade Costs Using Distributed Generation  

Science Conference Proceedings (OSTI)

PNNL, in cooperation with three utilities, developed a database and methodology to analyze and characterize the avoided costs of Distributed Generation (DG) deployment as an alternative to traditional distribution system investment. After applying a number of screening criteria to the initial set of 307 cases, eighteen were selected for detailed analysis. Alternative DG investment scenarios were developed for these cases to permit capital, operation, maintenance, and fuel costs to be identified and incorporated into the analysis. The customer-owned backup power generator option was also investigated. The results of the analysis of the 18 cases show that none yielded cost savings under the alternative DG scenarios. However, the DG alternative systems were configured using very restrictive assumptions concerning reliability, peak rating, engine types and acceptable fuel. In particular it was assumed that the DG alternative in each case must meet the reliability required of conventional distribution systems (99.91% reliability). The analysis was further constrained by a requirement that each substation meet the demands placed upon it by a one in three weather occurrence. To determine if, by relaxing these requirements, the DG alternative might be more viable, one project was re-examined. The 99.91% reliability factor was still assumed for normal operating conditions but redundancy required to maintain reliability was relaxed for the relatively few hours every three years where extreme weather caused load to exceed present substation capacity. This resulted in the deferment of capital investment until later years and reduced the number of engines required for the project. The cost of both the conventional and DG alternative also dropped because the centralized power generation, variable O&M, and DG fuels costs were calculated based on present load requirements in combination with long-term forecasts of load growth, as opposed to load requirements plus a buffer based on predictions of extraordinary weather conditions. Application of the relaxed set of assumptions reduced the total cost of the DG alternative by roughly 57 percent from $7.0 million to $3.0 million. The reduction, however, did not change the overall result of the analysis, as the cost of the conventional distribution system upgrade alternative remained lower at $1.7 million. This paper also explores the feasibility of using a system of backup generators to defer investment in distribution system infrastructure. Rather than expanding substation capacity at substations experiencing slow load growth rates, PNNL considered a scenario where diesel generators were installed on location at customers participating in a program designed to offer additional power security and reliability to the customer and connection to the grid. The backup generators, in turn, could be used to meet peak demand for a limited number of hours each year, thus deferring distribution system investment. Data from an existing program at one of the three participating utilities was used to quantify the costs associated with the backup generator scenario. The results of the customer owned backup power generator analysis showed that in all cases the nominal cost of the DG scenario is more than the nominal cost of the base-case conventional distribution system upgrade scenario. However, in two of the cases the total present value costs of the alternative backup generator scenarios were between 15 and 22% less than those for the conventional scenarios. Overall, the results of the study offer considerable encouragement that the use of DG systems can defer conventional distribution system upgrades under the right conditions and when the DG configurations are intelligently designed. Using existing customer-owned DG to defer distribution system upgrades appears to be an immediate commercially-viable opportunity.

Schienbein, Lawrence A.; Balducci, Patrick J.; Nguyen, Tony B.; Brown, Daryl R.; DeSteese, John G.; Speer, Gregory A.

2004-01-20T23:59:59.000Z

319

" Federal Utility Energy Service Contracts"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Utility Energy Service Contracts" Federal Utility Energy Service Contracts" "*KEY ON SHEET 2*" "Agency","Facility","Utility","Contract Type","Contract Term","Task Order/Delivery Order","Award Date","Completion Date","Energy Conservation Measures Implemented In Project (Enter as many as applicable - See Key)","Project's Capital Cost ($)","Percent of Total Cost 3rd Party Financed","Rebate Amount ($)","Estimated Annual Cost Savings ($)","Estimated Annual kWh Saved","Estimated Annual KW Saved","Estimated Annual Natural Gas savings (please specify cubic feet, therms or MMBtu)","Estimated Annual Oil savings (gallons)","Estimated Annual water savings (gallons)"

320

Where did the money go? The cost and performance of the largest commercial sector DSM program  

SciTech Connect

We calculate the total resource cost (TRC) of energy savings for 40 of the largest 1992 commercial sector DSM programs. The calculation includes the participating customer`s cost contribution to energy saving measures and all utility costs, including incentives received by customers, program administrative and overhead costs, measurement and evaluation costs, and shareholder incentives paid to the utility. All savings are based on post-program savings evaluations. We find that, on a savings-weighted basis, the programs have saved energy at a cost of 3.2 {cents}/kWh. Taken as a whole, the programs have been highly cost effective when compared to the avoided costs faced by the utilities when the programs were developed. We investigate reasons for differences in program costs and examine uncertainties in current utility practices for reporting costs and evaluating savings.

Eto, J.; Kito, S.; Shown, L.; Sonnenblick, R.

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Level-of-Detail Shaders  

E-Print Network (OSTI)

Current graphics hardware can render objects using simple procedural shaders in real-time. However, detailed, highquality shaders will continue to stress the resources of hardware for some time to come. Shaders written for film production and software renderers may stretch to thousands of lines. The difficulty of rendering efficiently is compounded when there is not just one, but a scene full of shaded objects, surpassing the capability of any hardware to render. This problem has many similarities to the rendering of large models, a problem that has inspired extensive research in geometric level-of-detail and geometric simplification. We introduce an analogous process for shading, shader simplification. Starting from an initial detailed shader, shader simplification produces a new shader with extra level-of-detail parameters that control the shader execution. The resulting level-of-detail shader, can automatically adjust its rendered appearance based on measures of distance, size, or importance as well as physical limits such as rendering time budget or texture usage.

Marc Olano; Bob Kuehne

2003-01-01T23:59:59.000Z

322

COST FUNCTION STUDIES FOR POWER REACTORS  

SciTech Connect

A function to evaluate the cost of electricity produced by a nuclear power reactor was developed. The basic equation, revenue = capital charges + profit + operating expenses, was expanded in terms of various cost parameters to enable analysis of multiregion nuclear reactors with uranium and/or plutonium for fuel. A corresponding IBM 704 computer program, which will compute either the price of electricity or the value of plutonium, is presented in detail. (auth)

Heestand, J.; Wos, L.T.

1961-11-01T23:59:59.000Z

323

Revisiting the "Buy versus Build" decision for publicly owned utilities in California considering wind and geothermal resources  

E-Print Network (OSTI)

in comparing the costs of renewable energy across ownershipof low-cost debt, and (2) the renewable energy productionCost Recovery System Non-Utility Generator Power Purchase Agreement Public Power Renewable Energy

Bolinger, Mark; Wiser, Ryan; Golove, William

2001-01-01T23:59:59.000Z

324

Clark Public Utilities - Residential Weatherization Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weatherization Loan Program Weatherization Loan Program Clark Public Utilities - Residential Weatherization Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Windows, Doors, & Skylights Maximum Rebate $15,000 Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount up to $15,000 Provider Clark Public Utilities Loans of up to $15,000 at a 5.25% interest are available through Clark Public Utilities' Weatherization Loan Program. The loans can pay for the average local cost of eligible measures, based on recently completed projects. Customers have up to seven years to repay the loans, but monthly payments will be at least $25. The utility charges a $225 or $350 loan set-up fee, depending on the loan amount, which can be paid up front or

325

Power Sales to Electric Utilities  

SciTech Connect

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

1989-02-01T23:59:59.000Z

326

Power Sales to Electric Utilities  

SciTech Connect

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

None

1989-02-01T23:59:59.000Z

327

Applying DSM evaluation results to utility planning  

SciTech Connect

This paper describes the results of a study to assess the application of DSM evaluation results to utility forecasting and planning. The paper has three objectives: (1) identify forecasting and planning applications of evaluation studies, (2) identify major obstacles and problems associated with applying evaluation results to forecasting and planning, and (3) suggest approaches to address the major problems. The paper summarizes results from interviews with utilities, regulators, and consultants to determine how the utility industry currently applies evaluation results in forecasting and planning. The paper also includes results from a detailed case study of Sacramento Municipal Utility District (SMUD) and Southern California Edison Company (SCE), two utilities with large DSM programs and active evaluation efforts.

Baxter, L.W.

1995-07-01T23:59:59.000Z

328

Promoting Energy Efficiency in Industry: Utility Roles and Perspectives  

E-Print Network (OSTI)

This paper identifies the factors that influence industrial firms' decisions to invest in energy efficiency and notes how the emerging wave of electric utility 'demand-side' planning and marketing can help industry control costs of production and also improve utility operations. The external and internal influences on electric utility demand-side management are identified, along with typical objectives of utility marketing programs. The concept of 'strategic marketing' is also introduced. Finally, a summary of selected electric utility experiences with industrial programs is provided, along with emerging trends in utility marketing.

Limaye, D. R.; Davis, T. D.

1984-01-01T23:59:59.000Z

329

Utility Brownfields Resource Guide  

Science Conference Proceedings (OSTI)

EPRI has established a program designed to assist utilities wishing to participate in local Brownfields redevelopment projects. EPRI developed this Brownfields guide to educate utility economic and real estate development personnel in identifying, screening, and supporting Brownfields projects.

1998-12-18T23:59:59.000Z

330

Avista Utilities- Net Metering  

Energy.gov (U.S. Department of Energy (DOE))

Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

331

Ancillary service details: Voltage control  

SciTech Connect

Voltage control is accomplished by managing reactive power on an alternating-current power system. Reactive power can be produced and absorbed by both generation and transmission equipment. Reactive-power devices differ substantially in the magnitude and speed of response and in their capital costs. System operators, transmission owners, generators, customers, power marketers, and government regulators need to pay close attention to voltage control as they restructure the U.S. electricity industry. Voltage control can affect reliability and commerce in three ways: (1) Voltages must be maintained within an acceptable range for both customer and power-system equipment to function properly. (2) The movement of reactive power consumes transmission resources, which limits the ability to move real power and worsens congestion. (3) The movement of reactive power results in real-power losses. When generators are required to supply excessive amounts of reactive power, their real-power production must be curtailed. These opportunity costs are not currently compensated for in most regions. Current tariffs are based on embedded costs. These embedded-cost tariffs average about $0.51/MWh, equivalent to $1.5 billion annually for the United States as a whole. Although this cost is low when compared with the cost of energy, it still aggregates to a significant amount of money. This report takes a basic look at why the power system requires reactive power (an appendix explains the fundamentals of real and reactive power). The report then examines the various types of generation and transmission resources used to supply reactive power and to control voltage. Finally it discusses how these resources are deployed and paid for in several reliability regions around the country. As the U.S. electricity industry is restructured, the generation, transmission, and system-control equipment and functions that maintain voltages within the appropriate ranges are being deintegrated.

Kirby, B.; Hirst, E.

1997-12-01T23:59:59.000Z

332

Using DOE Industrial Energy Audit Data for Utility Program Design  

E-Print Network (OSTI)

The U.S. Department of Energy (DOE), Energy Analysis and Diagnostic Center Program has offered no-cost energy conservation audits to industrial plants since 1976. The EADC program has maintained a database of detailed plant and audit information since 1980. In 1992, DOE and Baltimore Gas & Electric Company (BG&E) agreed to conduct a joint demonstration project in which the EADC database would be used to assist BG&E in planning demand-side management (DSM) programs for its industrial customers. BG&E identified a variety of useful applications of the database including: estimating conservation potential, identifying conservation measures for inclusion in programs, target marketing of industries, projecting DSM program impacts, and focusing implementation efforts. Over the course of the project, BG&E identified a variety of strengths and limitations associated with the database when used for utility planning. To encourage the use of the data by other utilities and interested parties, DOE is preparing an EADC database package for general distribution in April 1993.

Glaser, C. J.; Packard, C. P.; Parfomak, P.

1993-03-01T23:59:59.000Z

333

APT cost scaling: Preliminary indications from a Parametric Costing Model (PCM)  

Science Conference Proceedings (OSTI)

A Parametric Costing Model has been created and evaluate as a first step in quantitatively understanding important design options for the Accelerator Production of Tritium (APT) concept. This model couples key economic and technical elements of APT in a two-parameter search of beam energy and beam power that minimizes costs within a range of operating constraints. The costing and engineering depth of the Parametric Costing Model is minimal at the present {open_quotes}entry level{close_quotes}, and is intended only to demonstrate a potential for a more-detailed, cost-based integrating design tool. After describing the present basis of the Parametric Costing Model and giving an example of a single parametric scaling run derived therefrom, the impacts of choices related to resistive versus superconducting accelerator structures and cost of electricity versus plant availability ({open_quotes}load curve{close_quotes}) are reported. Areas of further development and application are suggested.

Krakowski, R.A.

1995-02-03T23:59:59.000Z

334

Light duty utility arm startup plan  

SciTech Connect

This plan details the methods and procedures necessary to ensure a safe transition in the operation of the Light Duty Utility Arm (LDUA) System. The steps identified here outline the work scope and identify responsibilities to complete startup, and turnover of the LDUA to Characterization Project Operations (CPO).

Barnes, G.A.

1998-09-01T23:59:59.000Z

335

By-Products Utilization  

E-Print Network (OSTI)

for rapid identification of buried utilities, blended coal ash, and non-spec./off-spec. aggregates and fly

Wisconsin-Milwaukee, University of

336

Transparent Cost Database | Transparent Cost Database  

Open Energy Info (EERE)

Hide data for this chart (-)Show data for this chart (+) Loading data... Transparent Cost Database Generation Showing: Historical Projections Year Published: Release mouse to...

337

City Utilities of Springfield - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Utilities of Springfield - Residential Energy Efficiency City Utilities of Springfield - Residential Energy Efficiency Rebate Program City Utilities of Springfield - Residential Energy Efficiency Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Heating Heat Pumps Appliances & Electronics Maximum Rebate Varies by equipment and type of residence Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Home Performance with Energy Star: $250 - $800 Energy Star Home Rating: 50% of certification cost, up to $400 Programmable Thermostat: $15 Insulation Upgrade: 20% of cost up $300 Natural Gas Furnace: $400 Natural Gas Furnace Tune-Up: $30

338

Ashland Electric Utility - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ashland Electric Utility - Residential Energy Efficiency Rebate Ashland Electric Utility - Residential Energy Efficiency Rebate Programs Ashland Electric Utility - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Heat Pumps Water Heating Windows, Doors, & Skylights Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Washing Machines: $35 - $100 Dishwashers: $25 - $60 Refrigerators: $25 - $35 Refrigerator Recycling: $30 Water Heaters: $65 Ductwork: 80% of the cost up to $300 Insulation: Up to 70% of the cost Windows: $6.00 per square foot High-Efficiency Heat Pumps: $600

339

Coldwater Board of Public Utilities - Commercial and Industrial Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coldwater Board of Public Utilities - Commercial and Industrial Coldwater Board of Public Utilities - Commercial and Industrial Lighting Rebate Program Coldwater Board of Public Utilities - Commercial and Industrial Lighting Rebate Program < Back Eligibility Commercial Industrial Local Government Multi-Family Residential Nonprofit Savings Category Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Heating & Cooling Commercial Heating & Cooling Cooling Buying & Making Electricity Maximum Rebate 50% of Project Cost Cannot exceed 100% of a single energy efficient measure's cost. Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom: Not Specified Lighting Fluorescent Lighting: $2 - $50/fixture HID Lighting: $20 - $25/fixture Induction Bulb: $10 Metal Halide PAR Bulb: $20

340

YEAR 2 BIOMASS UTILIZATION  

DOE Green Energy (OSTI)

This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

Christopher J. Zygarlicke

2004-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating Procedures INDEPENDENT COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) Standard Operating...

342

Residential Duct Sealing Cost-Benefit Analysis  

Science Conference Proceedings (OSTI)

Residential air duct leakage can account for as much as 15 percent of a utility bill. Research has shown that houses with supply leakage fractions of 10 percent or greater are viable candidates for air duct sealing or retrofit. This report details the development of a regional program designed to measure and improve residential heating system distribution efficiency via air duct sealing and retrofits. The program consolidates the efforts of several utilities and coordinates a region-wide assessment of th...

2000-06-05T23:59:59.000Z

343

Mandatory Photovoltaic System Cost Estimate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Photovoltaic System Cost Estimate Mandatory Photovoltaic System Cost Estimate Mandatory Photovoltaic System Cost Estimate < Back Eligibility Utility Savings Category Solar Buying & Making Electricity Program Info State Colorado Program Type Line Extension Analysis Provider Colorado Public Utilities Commission At the request of a customer or a potential customer, Colorado electric utilities are required to conduct a cost comparison of a photovoltaic (PV) system to any proposed distribution line extension if the customer or potential customer provides the utility with load data (estimated monthly kilowatt-hour usage) requested by the utility to conduct the comparison, and if the customer's or potential customer's peak demand is estimated to be less than 25 kilowatts (kW). In performing the comparison analysis, the

344

Price caps for standard offer service: A hidden stranded cost  

Science Conference Proceedings (OSTI)

Some utility commissions or legislatures, concerned about mis-estimating the market line when calculating stranded costs, are choosing to require a price-capped standard offer service (SOS) to be offered by utilities in the competitive marketplace. This grants to customers the flexibility to switch from a fixed-price alternative with the utility to (or even to and from) a non-utility power supplier. Given the enormous uncertainty in future power market prices, this flexibility, which is being bestowed free-of-charge to customers, may prove to be of considerable value. Valuation of this SOS flexibility using call option techniques shows that this can be a non-trivial fraction of total stranded costs. The costs of price-capped SOS can be ameliorated through the structure of the price cap. This article describes the option-based techniques for valuing SOS and some approaches to limiting its cost to utilities.

Graves, F.; Liu, P. [Brattle Group, Cambridge, MA (United States)]|[Brattle Group, Washington, DC (United States)]|[Brattle Group, London (United Kingdom)

1998-12-01T23:59:59.000Z

345

UTILITY RESTRUCTURING Electric Utility Restructuring: What Does It Mean for Residential and Small Retail Consumers in Maine?  

E-Print Network (OSTI)

poses both advantages and disadvantages to residential and small retail consumers in Maine. While electric restructuring in Maine has been thoughtfully developed, the basic question of whether electricity rates will be lower for the average consumer will remain uncertain for some time. This uncertainty is linked not only to Maines electricity rate bidding process but also to potentially oligopolistic national trends. In addition, whether individual consumers achieve savings in their electricity costs will be determined, in part, by their choice of electricity supplier. While some consumers may prefer a higher-cost supplier because of the value-added services that accompany that option, others may make no choice and, by default, receive the standard optionwhere rates are determined by the Maine Public Utilities Commission (MPUC). ? In this article, the authors describe the factors that initiated the push toward restructuring, the history of the enabling legislation, and relevant portions of the MPUCs Consumer Education Program. To consumers, the authors emphasize the importance of aggregationclusters of buying groupsand detail how the nature of open competition may affect them. In particular, they call attention to the additional services that may be provided by electricity suppliers. Finally, in discussing the implications of deregulation, they lay out the uncertainties that lie ahead for consumers, policymakers, and regulators as Maine opens itself up to competition in the electric power market.

Lewis Tagliaferre; Susan Greenwood

2000-01-01T23:59:59.000Z

346

Early Station Costs Questionnaire  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Station Costs Questionnaire Early Station Costs Questionnaire Marc Melaina Hydrogen Technologies and Systems Center Market Readiness Workshop February 16-17th, 2011 Washington, DC Questionnaire Goals * The Early Station Costs questionnaire provides an anonymous mechanism for organizations with direct experience with hydrogen station costs to provide feedback on current costs, near-term costs, economies of scale, and R&D priorities. * This feedback serves the hydrogen community and government agencies by increasing awareness of the status of refueling infrastructure costs National Renewable Energy Laboratory Innovation for Our Energy Future Questions for Market Readiness Workshop Attendees * Are these questions the right ones to be asking?

347

Low Cost, Durable Seal  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost, Durable Seal Cost, Durable Seal George M. Roberts UTC Power Corporation February 14, 2007 This presentation does not contain any proprietary or confidential information 1 LOW COST, DURABLE SEAL Outline * Project Objective * Technical Approach * Timeline * Team Roles * Budget * Q&A 2 LOW COST, DURABLE SEAL Project Objective Develop advanced, low cost, durable seal materials and sealing techniques amenable to high volume manufacture of PEM cell stacks. DOE Targets/Goals/Objectives Project Goal Durability Transportation: 5,000 hr Stationary: 40,000 hr Durability Improve mechanical and chemical stability to achieve 40,000 hr of useful operating life. Low Cost Low Cost A material cost equivalent to or less than the cost of silicones in common use. 3 LOW COST, DURABLE SEAL

348

Sustained utility implementation of photovoltaics. Final report  

DOE Green Energy (OSTI)

SMUD is a leader in utility grid-connected applications of PVs with the world`s largest distributed PV power system. SMUD is continuing its ambitious sustained, orderly development (SOD) commercialization effort of the grid-connected, utility PV market. This program is aimed at developing the experience needed to successfully integrate PV as distributed generation into the utility system, develop market and long-term business strategies and to stimulate the collaborative processes needed to accelerate the cost-reductions necessary for PV to be cost-competitive in these applications by about the year 2002. This report documents the progress made in the 1994/1995 SMUD PV Program under this contract and the PV projects partially supported by this contract. This contract has been considered a Pre-cursor to the TEAM-UP program implemented the following year.

Osborn, D.E.

1998-05-01T23:59:59.000Z

349

OOTW COST TOOLS  

Science Conference Proceedings (OSTI)

This document reports the results of a study of cost tools to support the analysis of Operations Other Than War (OOTW). It recommends the continued development of the Department of Defense (DoD) Contingency Operational Support Tool (COST) as the basic cost analysis tool for 00TWS. It also recommends modifications to be included in future versions of COST and the development of an 00TW mission planning tool to supply valid input for costing.

HARTLEY, D.S.III; PACKARD, S.L.

1998-09-01T23:59:59.000Z

350

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

Unknown

1999-10-01T23:59:59.000Z

351

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

Unknown

1999-10-01T23:59:59.000Z

352

Practical Application of Second Law Costing Methods  

E-Print Network (OSTI)

The key to proper allocation of fuel and feedstock costs to the products from a plant or from any one of its components is the commodity called exergy - the central concept of the Second Law of Thermodynamics, commonly named available energy or availability. The methods for composing exergy cost flow diagrams will be explained. The results will be shown for several plants - electric-power, co-generation, coal-gasification, and others. The application of such results will be shown for cost-accounting, for plant operation economics, for maintenance decisions, and for design decisions - at both the preliminary and detailed design states.

Wepfer, W. J.; Gaggioli, R. A.

1983-01-01T23:59:59.000Z

353

An economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell: a model of a central utility plant.  

DOE Green Energy (OSTI)

This central utilities plant model details the major elements of a central utilities plant for several classes of users. The model enables the analyst to select optional, cost effective, plant features that are appropriate to a fuel cell application. These features permit the future plant owner to exploit all of the energy produced by the fuel cell, thereby reducing the total cost of ownership. The model further affords the analyst an opportunity to identify avoided costs of the fuel cell-based power plant. This definition establishes the performance and capacity information, appropriate to the class of user, to support the capital cost model and the feasibility analysis. It is detailed only to the depth required to identify the major elements of a fuel cell-based system. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

Not Available

1993-06-30T23:59:59.000Z

354

U.S. electric utility demand-side management 1993  

SciTech Connect

This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

NONE

1995-07-01T23:59:59.000Z

355

Chapter 41 Acquisition of Utility Services - This Chapter has...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 41 Acquisition of Utility Services - This Chapter has been revised and updated. The changes are editorial in nature. Chapter 42.1 Indirect Cost Rates - This Chapter has...

356

A Survey of Utility Experience with Real Time Pricing  

E-Print Network (OSTI)

charge. Energy charges are calculated by Duke Power based onenergy costs, and to promote efficient utilization of DukesDuke Power77 Exelon (Commonwealth Edison)79 Exelon (Commonwealth Edison) and The Community Energy

Barbose, Galen; Goldman, Charles; Neenan, Bernie

2004-01-01T23:59:59.000Z

357

Integrated Renewable Hydrogen Utility System  

DOE Green Energy (OSTI)

Products based on Proton Exchange Membrane (PEM) technology offer a unique solution to today's energy conversion storage needs. PEM products have undergone continual development since the late 1950's for many diverse applications. Rooted in rigorous aerospace applications, this technology is now ''breaking away'' to provide commercial solutions to common power, energy, and industrial gas feedstock problems. Important developments in PEM electrolyzers and various energy conversion devices (e.g. engines and fuel cells) can now be combined to form the basis for a revolutionary energy storage system that provides a much needed link to renewable resources, and offers a credible alternative for off-grid power applications. This technology operates by converting electrical energy into chemical energy in the form of hydrogen as part of a water electrolysis process when excess power is available. When the primary source of power is unavailable, chemical energy is converted into electrical energy through an external combustion heat engine or other energy conversion device. The Phase II portion of this program began in May of 2000. The goal of Phase II of the project was to cost reduce the hydrogen generator as a critical link to having a fully sustainable hydrogen energy system. The overall goal is to enable the link to sustainability by converting excess renewable power into hydrogen and having that hydrogen available for conversion back to power, on demand. Furthermore, the cost of the capability must be less the $1,000 per kW (electrical power into the generator) and allow for a variety of renewable technology inputs. This cost target is based on a production volume of 10,000 units per year. To that end, Proton undertook an aggressive approach to cost reduction activities surrounding the 6kW, 40 standard cubic foot per hour (scfh) HOGEN hydrogen generator. The electrical side of the system targeted a number of areas that included approaches to reduce the cost of the power supply and associated electronics as well as improving efficiency, implementing a circuit board to replace the discreet electrical components in the unit, and evaluating the system issues when operating the unit with a variety of renewable inputs. On the mechanical side of the system the targets involved creative use of manifolds to reduce components and plumbing, overall fitting reduction through layout simplification and welded tube assemblies, and the development of an inexpensive gas drying methodology to remove moisture and improve gas purity. Lastly, activities surrounding the electrolysis cell stack focused on lower cost stack compression approaches and cost reduction of critical components. The last year of this project focused on validating the cost reductions mentioned above and advancing these cost reductions forward into a larger hydrogen generator. This larger hydrogen generator is a 60kW, 380 scfh, HOGEN hydrogen generator. Most of these efforts were in the control board and manifold development areas. The results achieved over the life of this program are in line with the goals of the Department of Energy. Proton projects that the current design of the 40 scfh generator projected to a volume of 10,000 units per year would be in the range of $1,500 per kilowatt. Furthermore, continuing efforts on materials substitution and design enhancements over the next few years should bring the cost of the system to the $1,000 per kilowatt goal for a system of this size. This report provides the technical details behind the cost reduction efforts undertaken during the Phase II portion of the program.

Proton Energy Systems

2003-04-01T23:59:59.000Z

358

Integrated Renewable Hydrogen Utility System  

SciTech Connect

Products based on Proton Exchange Membrane (PEM) technology offer a unique solution to today's energy conversion storage needs. PEM products have undergone continual development since the late 1950's for many diverse applications. Rooted in rigorous aerospace applications, this technology is now ''breaking away'' to provide commercial solutions to common power, energy, and industrial gas feedstock problems. Important developments in PEM electrolyzers and various energy conversion devices (e.g. engines and fuel cells) can now be combined to form the basis for a revolutionary energy storage system that provides a much needed link to renewable resources, and offers a credible alternative for off-grid power applications. This technology operates by converting electrical energy into chemical energy in the form of hydrogen as part of a water electrolysis process when excess power is available. When the primary source of power is unavailable, chemical energy is converted into electrical energy through an external combustion heat engine or other energy conversion device. The Phase II portion of this program began in May of 2000. The goal of Phase II of the project was to cost reduce the hydrogen generator as a critical link to having a fully sustainable hydrogen energy system. The overall goal is to enable the link to sustainability by converting excess renewable power into hydrogen and having that hydrogen available for conversion back to power, on demand. Furthermore, the cost of the capability must be less the $1,000 per kW (electrical power into the generator) and allow for a variety of renewable technology inputs. This cost target is based on a production volume of 10,000 units per year. To that end, Proton undertook an aggressive approach to cost reduction activities surrounding the 6kW, 40 standard cubic foot per hour (scfh) HOGEN hydrogen generator. The electrical side of the system targeted a number of areas that included approaches to reduce the cost of the power supply and associated electronics as well as improving efficiency, implementing a circuit board to replace the discreet electrical components in the unit, and evaluating the system issues when operating the unit with a variety of renewable inputs. On the mechanical side of the system the targets involved creative use of manifolds to reduce components and plumbing, overall fitting reduction through layout simplification and welded tube assemblies, and the development of an inexpensive gas drying methodology to remove moisture and improve gas purity. Lastly, activities surrounding the electrolysis cell stack focused on lower cost stack compression approaches and cost reduction of critical components. The last year of this project focused on validating the cost reductions mentioned above and advancing these cost reductions forward into a larger hydrogen generator. This larger hydrogen generator is a 60kW, 380 scfh, HOGEN hydrogen generator. Most of these efforts were in the control board and manifold development areas. The results achieved over the life of this program are in line with the goals of the Department of Energy. Proton projects that the current design of the 40 scfh generator projected to a volume of 10,000 units per year would be in the range of $1,500 per kilowatt. Furthermore, continuing efforts on materials substitution and design enhancements over the next few years should bring the cost of the system to the $1,000 per kilowatt goal for a system of this size. This report provides the technical details behind the cost reduction efforts undertaken during the Phase II portion of the program.

Proton Energy Systems

2003-04-01T23:59:59.000Z

359

Legislative Findings: Least-Cost Energy Sources (Nebraska) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Legislative Findings: Least-Cost Energy Sources (Nebraska) Legislative Findings: Least-Cost Energy Sources (Nebraska) Legislative Findings: Least-Cost Energy Sources (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Public Power District

360

Utility downsizings pose a dilemma for regulators  

Science Conference Proceedings (OSTI)

A utility's job-generating potential is critical to most local economies. At the same time, however, high utility employment levels maintain an upward pressure on rates, an effect that does not escape regulators' notice, especially during an economic slowdown. More than on regulator has been heard to say that hard-hit ratepayers should not be called on to support what some may seen as a bloated utility workforce scaled to better times. To complicate things even more, popular cost-cutting goals that include improving productivity and relying more on conservation could mean fewer jobs, at least at the utility. What's more, utility rates play a significant role in how local industries and businesses respond to an economic slowdown. This interplay of economic forces has complicated the ratemaking process. The size of a utility's workforce is an issue of growing significance in rate hearings. Forecasts for test-period salary and wage expenses are less reliable. Early retirement plans promise future savings for ratepayers, but at a cost today.

Cross, P.S.

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Seize Opportunities to Reduce Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Specify for maximum energy savings Specify for maximum energy savings Windows must meet local energy code requirements. For even higher energy performance, consider ENERGY STAR windows, which are recommended for low-rise dwellings and are often suitable for mid-rise dwellings as well. For window and storm window options with superior performance in cold climates, check out the U.S. Department of Energy's highly insulating windows purchasing program (see next page). Seize Opportunities to Reduce Cost Government or utility incentives and financing may be available for energy efficiency in low-income housing. Check www.dsireusa.org for up-to-date information on incentive

362

A good integrated resource plan: Guidelines for electric utilities and regulators  

SciTech Connect

Integrated resource planning helps utilities and state regulatory commissions consistently assess a broad range of demand and supply resources to meet customer energy-service needs cost-effectively. Key characteristics of this planning approach include: explicit consideration and fair treatment of a wide variety of demand and supply options, consideration of the environmental and other social costs of providing energy services, public participation in the development of the resource plan, and analysis of the uncertainties associated with different external factors and resource options. Integrated resource planning differs from traditional planning in the types and scope of resources considered, the owners of the resources, the organizations involved in resource planning, and the criteria for resource selection. This report presents suggestions to utilities on how to conduct such planning and what to include in their resource-planning reports. These suggestions are based on a review of about 50 resource plans as well as discussions with and presentations to regulators and utilities. The suggestions cover four broad topics; the technical competence with which the plan was developed; the adequacy, detail, and consistency (with the long-term plan) of the short-term action plan; the extent to which the interests of various stakeholders was considered, both in public participation in plan development and in the variety of resource plans developedand assessed; and the clarity and comprehensiveness of the utility`s report on its plan. Technical competence includes energy and demand forecasts, assessment of supply and demand resources, resource integration, and treatment of uncertainty. Issues associated with forecasts include forecasting approaches; links between the forecasts of energy use and peak demands; and links between the forecasts and the effects of past, present, and future demand-side management programs.

Hirst, E.

1992-12-01T23:59:59.000Z

363

Wireless Product Applications for Utilities: Technical Services for Power Utilities in Wireless Communications  

Science Conference Proceedings (OSTI)

Wireless technology applications are abundant, with products and services ranging from two-way paging to Personal Communications Services (PCS) to low cost satellite data transmission. With this in mind, utilities are encouraged to develop relationships and business arrangements with telecommunication companies--relationships that can benefit both industries. These arrangements promise to streamline utility operations and, in selected cases, create new businesses and provide sources of revenue for utilit...

1997-02-12T23:59:59.000Z

364

Realities of Chiller Plant Operation: Utility Impacts on Owner Operating  

NLE Websites -- All DOE Office Websites (Extended Search)

Realities of Chiller Plant Operation: Utility Impacts on Owner Operating Realities of Chiller Plant Operation: Utility Impacts on Owner Operating Costs and Societal Environmental Issues Speaker(s): Don Aumann Date: March 21, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Satkartar K. Kinney Don Aumann, a Senior Consultant from BKi in Oakland, will present an overview of two projects he completed for the electric utility industry. The first, a case study evaluation of a hybrid chiller plant in Jefferson City, Missouri, demonstrates the importance of carefully evaluating the impact of utility rate structures on plant operating costs. The building owner, another engineering consultant, and the local utility representatives were confused by the rates and missed an opportunity to cut chiller-plant operating costs by about 20%, totaling $15,000 per year. In

365

Nuclear plant cancellations: causes, costs, and consequences  

Science Conference Proceedings (OSTI)

This study was commissioned in order to help quantify the effects of nuclear plant cancellations on the Nation's electricity prices. This report presents a historical overview of nuclear plant cancellations through 1982, the costs associated with those cancellations, and the reasons that the projects were terminated. A survey is presented of the precedents for regulatory treatment of the costs, the specific methods of cost recovery that were adopted, and the impacts of these decisions upon ratepayers, utility stockholders, and taxpayers. Finally, the report identifies a series of other nuclear plants that remain at risk of canellation in the future, principally as a result of similar demand, finance, or regulatory problems cited as causes of cancellation in the past. The costs associated with these potential cancellations are estimated, along with their regional distributions, and likely methods of cost recovery are suggested.

Not Available

1983-04-01T23:59:59.000Z

366

Standardized Cost Structure for the Environmental Industry  

Science Conference Proceedings (OSTI)

The underlying key to developing successful estimates, tracking project costs, and utilizing historical project cost information is the development of standardized and well-defined hierarchical listing of cost categories. Committees within the U.S. Federal agencies have pioneered efforts toward developing the Environmental Cost Element Structure (ECES), which is key in achieving these goals. The ECES was developed using an iterative process with input from federal agencies and industry. Experts from several disciplines participated including engineers, cost estimators, project/program managers, and contract personnel. The ECES benefits from an intense analytical effort, the knowledge gained from the maturation of the environmental industry, and incorporation of past user's experiences. Building upon this foundation, the E06 committee of the ASTM International has now fully developed and published a standard (ASTM 2150-04) that provides standardized cost categories with complete cost category definitions. This standard affords environmental and nuclear D and D project managers the opportunity to have a well defined hierarchical listing of their estimates and actual costs, readily adapted to performing summations and roll-ups, supported by a multi-level dictionary specifically defining the content of the cost elements as well as the summations. Owing to the dynamic nature of the environmental technologies, efforts need to be made to continue to update this standard by adding new technologies and methods as they are developed and employed in the field. Lastly, the Environmental Cost Element Structure that is embodied in this standard also presents opportunities to develop historical cost databases and comprehensive life cycle cost estimates and standardized cost estimating tools. (authors)

Skokan, B.; Melamed, D.; Guevara, K. [US DOE, Office of Project Planning and Controls, EM-32, 1000 Independence Ave. SW, Washington, DC 20585 (United States); Mallick, P. [US DOE, Office of Performance Assessment, EM-43, 1000 Independence Ave. SW, Washington, DC 20585 (United States); Bierman, G. [Legin Group, Inc., P.O. Box 3788, Gaithersburg, MD 20885-3788 (United States); Marshall, H.E. [Building and Fire Research Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8603, Gaithersburg, MD 20899-8603 (United States)

2006-07-01T23:59:59.000Z

367

New Details of Ferroelectric Switching  

NLE Websites -- All DOE Office Websites (Extended Search)

New Details of Ferroelectric Switching New Details of Ferroelectric Switching All of our current information technology relies on devices that process information as binary ones and zeroes. Ferroelectric materials are of special interest to developers of the next generation of such devices because they exhibit polarized electronic states that can represent bits of information. Moreover, these materials retain their polarization states without consuming electrical power, making ferroelectrics the subject of intense study for nonvolatile memory applications in which data is stored even when the power is turned off. One problem, however, is polarization fatigue: after a number of cycles, the switchable polarization begins to taper off, rendering the device unusable. Recently, a team of researchers

368

Electric Power detailed State data  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed State Data Detailed State Data Annual data for 2012 Release Date: November 12, 2013 Next Release Date: November 2014 Revision/Corrections Annual data format 1990 - 2012 Net Generation by State by Type of Producer by Energy Source (EIA-906, EIA-920, and EIA-923)1 XLS 1990 - 2012 Fossil Fuel Consumption for Electricity Generation by Year, Industry Type and State (EIA-906, EIA-920, and EIA-923)2 XLS 1990 - 2011 Existing Nameplate and Net Summer Capacity by Energy Source, Producer Type and State (EIA-860)1, 3 XLS 2011 - 2016 Proposed Nameplate and Net Summer Capacity by Year, Energy Source, and State (EIA-860)1 XLS 1990 - 2011 U.S. Electric Power Industry Estimated Emissions by State (EIA-767, EIA-906, EIA-920, and EIA-923)4 XLS 1990 - 2012 Average Price by State by Provider (EIA-861)5 XLS

369

Energy-conserving and passive-solar construction details  

DOE Green Energy (OSTI)

Diagrams are presented which show construction details for insulating foundations, walls, joists, roofs, and other components of energy-conserving residential and light commercial buildings; glazing systems; installing thermal mass; rock beds; and a passive hot air collector. The emphasis is on using commercially available building materials in new applications to minimize costs and maximize thermal design. The costs are given which are typical of what builders have incurred in different parts of the country. The thermal performance figures and comments are included. (LEW)

Taylor, R D

1981-04-01T23:59:59.000Z

370

Minimum cost model energy code envelope requirements  

SciTech Connect

This paper describes the analysis underlying development of the U.S. Department of Energy`s proposed revisions of the Council of American Building Officials (CABO) 1993 Model Energy Code (MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. This analysis resulted in revised MEC envelope conservation levels based on an objective methodology that determined the minimum-cost combination of energy efficiency measures (EEMs) for residences in different locations around the United States. The proposed MEC revision resulted from a cost-benefit analysis from the consumer`s perspective. In this analysis, the costs of the EEMs were balanced against the benefit of energy savings. Detailed construction, financial, economic, and fuel cost data were compiled, described in a technical support document, and incorporated in the analysis. A cost minimization analysis was used to compare the present value of the total long-nm costs for several alternative EEMs and to select the EEMs that achieved the lowest cost for each location studied. This cost minimization was performed for 881 cities in the United States, and the results were put into the format used by the MEC. This paper describes the methodology for determining minimum-cost energy efficiency measures for ceilings, walls, windows, and floors and presents the results in the form of proposed revisions to the MEC. The proposed MEC revisions would, on average, increase the stringency of the MEC by about 10%.

Connor, C.C.; Lucas, R.G.; Turchen, S.J.

1994-08-01T23:59:59.000Z

371

levelized cost of energy | OpenEI Community  

Open Energy Info (EERE)

levelized cost of energy levelized cost of energy Home Kch's picture Submitted by Kch(24) Member 9 April, 2013 - 13:30 MHK Cost Breakdown Structure Draft CBS current energy GMREC LCOE levelized cost of energy marine energy MHK ocean energy The generalized Cost Breakdown Structure (CBS) for marine and hydrokinetic (MHK) projects is a hierarchical structure designed to facilitate the collection and organization of lifecycle costs of any type of MHK project, including wave energy converters and current energy convertners. At a high level, the categories in the CBS will be applicable to all projects; at a detailed level, however, the CBS includes many cost categories that will pertain to one project but not others. It is expected that many of the detailed levels of the CBS will be populated with "NA" or left blank.Upload

372

Operations Cost Allocation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Consolidation Project Operations Consolidation Project Operations Consolidation Project (OCP) Cost Allocation Presentation - September 20, 2011 OCP Cost Allocation Customer Presentation List of Acronyms OCP Cost Allocation Spreadsheets OCP Cost Allocation Customer Presentation - Questions and Answers - September 19 - 20, 2011 Additional Questions and Answers Customer Comments/Questions and Answers: Arizona Municipal Power Users Association Arizona Power Authority Central Arizona Project Colorado River Commission Colorado River Energy Distributors Association City of Gilbert, AZ Irrigation and Electrical Districts Association of Arizona Town of Marana, AZ City of Mesa, AZ Town of Wickenburg, AZ Western's Final Decision Regarding the Long-Term Cost Allocation Methodology for Operations Staff Costs

373

Minimum Cost Arborescences ?  

E-Print Network (OSTI)

In this paper, we analyze the cost allocation problem when a group of agents or nodes have to be connected to a source, and where the cost matrix describing the cost of connecting each pair of agents is not necessarily symmetric, thus extending the well-studied problem of minimum cost spanning tree games, where the costs are assumed to be symmetric. The focus is on rules which satisfy axioms representing incentive and fairness properties. We show that while some results are similar, there are also significant differences between the frameworks corresponding to symmetric and asymmetric cost matrices.

Bhaskar Dutta; Debasis Mishra; We Thank Daniel Granot; Anirban Kar; Herve Moulin For Comments

2011-01-01T23:59:59.000Z

374

Nuclear fuel cycle costs  

Science Conference Proceedings (OSTI)

The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel cycle costs are given for the pressurized water reactor once-through and fuel recycle systems, and for the liquid-metal fast breeder reactor system. These calculations show that fuel cycle costs are a small part of the total power costs. For breeder reactors, fuel cycle costs are about half that of the present once-through system. The total power cost of the breeder reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment.

Burch, W.D.; Haire, M.J.; Rainey, R.H.

1982-02-01T23:59:59.000Z

375

Evaluation of lead/carbon devices for utility applications : a study for the DOE Energy Storage Program.  

DOE Green Energy (OSTI)

This report describes the results of a three-phase project that evaluated lead-based energy storage technologies for utility-scale applications and developed carbon materials to improve the performance of lead-based energy storage technologies. In Phase I, lead/carbon asymmetric capacitors were compared to other technologies that used the same or similar materials. At the end of Phase I (in 2005) it was found that lead/carbon asymmetric capacitors were not yet fully developed and optimized (cost/performance) to be a viable option for utility-scale applications. It was, however, determined that adding carbon to the negative electrode of a standard lead-acid battery showed promise for performance improvements that could be beneficial for use in utility-scale applications. In Phase II various carbon types were developed and evaluated in lead-acid batteries. Overall it was found that mesoporous activated carbon at low loadings and graphite at high loadings gave the best cycle performance in shallow PSoC cycling. Phase III studied cost/performance benefits for a specific utility application (frequency regulation) and the full details of this analysis are included as an appendix to this report.

Walmet, Paula S. (MeadWestvaco Corporation,North Charleston, SC)

2009-06-01T23:59:59.000Z

376

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network (OSTI)

as sources of low-cost baseload power. 4.6.3 LargeScaleEEb is the variable cost of baseload power purchases, and L isbut simply avoids baseload power purchases. Utilities that

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

377

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

378

OpenEI Community - Utility+Utility Access Map  

Open Energy Info (EERE)

Finding Utility Finding Utility Companies Under a Given Utility ID http://en.openei.org/community/blog/finding-utility-companies-under-given-utility-id  Here's a quick way to find all the utility company pages under a given utility id.  From the Special Ask page, in the query box enter the following: [[Category:Utility Companies]][[EiaUtilityId::15248]] substituting your utility id of interest for 15248, and click "Find results". http://en.openei.org/community/blog/finding-utility-companies-under-given-utility-id#comments

379

Carrots for Utilities: Providing Financial Returns for Utility...  

Open Energy Info (EERE)

Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Name Carrots for Utilities: Providing Financial Returns...

380

Parametric analysis of the electric utility market for advanced load-leveling batteries. Final report  

SciTech Connect

This task examines the market for batteries in utility load-leveling service as a function of the Battery System Cost characteristics in order to give DOE a method of assessing the results of various program alternatives. The sensitivity of the benefits (barrels of oil saved) that might be derived to the timing of the market (i.e. when it begins) is also investigated. (The real cost of fuel is to be assumed to increase 2.4% per year.) How large is the total market for a new technology; how is the relative effectiveness of Battery Storage Systems related to the cost of fuel, the capital cost of the battery, and the perception of the credits associated with batery systems; and how do these vary with time required answers in order to estimate how the market for battery systems might develop. Most of the answers were obtained by studying the data developed by MITRE/METREK for a market assessment of battery systems using lead/acid batteries. MITRE's market analysis considered a large variety of variables; since the resources and time available for the present task were limited, it was not possible to either duplicate or confirm their work in detail. The initial results of this study depend on the assumptions used by MITRE. However, where these assumptions were incomplete, the results are adjusted. The supplementary information was obtained from studies performed by Arthur D. Little, Inc. and by PSE and G.

1979-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Utility Solar Business Models  

Science Conference Proceedings (OSTI)

Many utilities are initiating business plans that enable them to play a more integral role in the solar power value chain. This report summarizes research completed to identify and track utility solar business models (USBMs) in the United States. EPRI and the Solar Electric Power Association (SEPA) are conducting an ongoing joint research effort to evaluate the expanding range of utility activities in acquiring solar energy, including photovoltaic (PV) asset ownership. Throughout 2011, USBMs have been ca...

2011-11-21T23:59:59.000Z

382

Cost update technology, safety, and costs of decommissioning a reference uranium hexafluoride conversion plant  

Science Conference Proceedings (OSTI)

The purpose of this study is to update the cost estimates developed in a previous report, NUREG/CR-1757 (Elder 1980) for decommissioning a reference uranium hexafluoride conversion plant from the original mid-1981 dollars to values representative of January 1993. The cost updates were performed by using escalation factors derived from cost index trends over the past 11.5 years. Contemporary price quotes wee used for costs that have increased drastically or for which is is difficult to find a cost trend. No changes were made in the decommissioning procedures or cost element requirements assumed in NUREG/CR-1757. This report includes only information that was changed from NUREG/CR-1757. Thus, for those interested in detailed descriptions and associated information for the reference uranium hexafluoride conversion plant, a copy of NUREG/CR-1757 will be needed.

Miles, T.L.; Liu, Y.

1995-08-01T23:59:59.000Z

383

Utilities weather the storm  

SciTech Connect

Utilities must restore power to storm-damaged transmission and distribution systems, even if it means going out in ice storms or during lightning and hurricane conditions. Weather forecasting helps utilities plan for possible damage as well as alerting them to long-term trends. Storm planning includes having trained repair personnel available and adjusting the system so that less power imports are needed. Storm damage response requires teamwork and cooperation between utilities. Utilities can strengthen equipment in storm-prone or vulnerable areas, but good data are necessary to document the incidence of lighning strikes, hurricanes, etc. 2 references, 8 figures.

Lihach, N.

1984-11-01T23:59:59.000Z

384

Tribal Utility Feasibility Study  

DOE Green Energy (OSTI)

Facility scale, net metered renewable energy systems These are renewable energy systems that provide power to individual households or facilities that are connected to conventional electric utility grid.

Engel, R. A.; Zoellick, J. J.

2007-06-30T23:59:59.000Z

385

Municipal Utility Districts (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

Municipal Utility Districts, regulated by the Texas Commission on Environmental Quality, may be created for the following purposes: (1) the control, storage, preservation, and distribution of its...

386

Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India  

E-Print Network (OSTI)

Scale Energy Efficiency Programs On Consumer Tariffs andtariffs of implementing utility-funded cost-effective energyaverage tariff depends on the percentage reduction in energy

Abhyankar, Nikit

2011-01-01T23:59:59.000Z

387

Table 8.13 Electric Utility Demand-Side Management Programs ...  

U.S. Energy Information Administration (EIA)

Energy Savings: Electric Utility Costs 4: ... motor drive) with less electricity. Examples include high-efficiency appliances, ... advanced electric motor drives, and

388

Strategies to address transition costs in the electricity industry  

SciTech Connect

Transition costs are the potential monetary losses that electric- utility shareholders, ratepayers, or other parties might experience because of structural changes in the electricity industry. Regulators, policy analysts, utilities, and consumer groups have proposed a number of strategies to address transition costs, such as immediately opening retail electricity markets or delaying retail competition. This report has 3 objectives: identify a wide range of strategies available to regulators and utilities; systematically examine effects of strategies; and identify potentially promising strategies that may provide benefits to more than one set of stakeholders. The many individual strategies are grouped into 6 major categories: market actions, depreciation options, rate-making actions, utility cost reductions, tax measures, and other options. Of the 34 individual strategies, retail ratepayers have primary or secondary responsibility for paying transition costs in 19 of the strategies, shareholders in 12, wheeling customers in 11, taxpayers in 8, and nonutility suppliers in 4. Most of the strategies shift costs among different segments of the economy, although utility cost reductions can be used to offset transition costs. Most of the strategies require cooperation of other parties, including regulators, to be implemented successfully; financial stakeholders must be engages in negotiations that hold the promise of shared benefits. Only by rejecting ``winner-take-all`` strategies will the transition-cost issue be expeditiously resolved.

Baxter, L.; Hadley, S.; Hirst, E.

1996-07-01T23:59:59.000Z

389

American Municipal Power (Public Electric Utilities) - Residential  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Municipal Power (Public Electric Utilities) - Residential American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) < Back Eligibility Residential Savings Category Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info Funding Source American Municipal Power Start Date 01/2011 Expiration Date 12/31/2013 State Ohio Program Type Utility Rebate Program Rebate Amount Ceiling Fan with Lights: $15 Dehumidifier: $25 Select Clothes Washer: $50 ENERGY STAR Refrigerator: $50 Refrigerator/Freezer Recycling: $50 Furnace Fan with ECM: $100 Heat Pump Water Heaters: $250 CFLs: up to 85% of cost Efficiency Smart (tm) provides energy efficiency incentives to the American

390

Community Energy Systems and the Law of Public Utilities. Volume Fifty. West Virginia  

SciTech Connect

A detailed description is presented of the laws and programs of the State of West Virginia governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

Feurer, D.A.; Weaver, C.L.

1981-01-01T23:59:59.000Z

391

Community Energy Systems and the Law of Public Utilities. Volume Forty-nine. Washington  

SciTech Connect

A detailed description is presented of the laws and programs of the State of Washington governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

Feurer, D.A.; Weaver, C.L.

1981-01-01T23:59:59.000Z

392

Hydrogen Threshold Cost Calculation  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Fuel Cell Technologies) Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing vehicles [gasoline in hybrid-electric vehicles (HEVs)] in 2020. This record documents the methodology and assumptions used to calculate that threshold cost. Principles: The cost threshold analysis is a "top-down" analysis of the cost at which hydrogen would be

393

Hydrogen Pathway Cost Distributions  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathway Cost Distributions Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric hybrids are benchmarks * R&D guidance provided in two forms * Evolved gasoline ICE defines a threshold hydrogen cost used to screen or eliminate options which can't show ability to meet target * Gasoline-electric hybrid defines a lower hydrogen cost used to prioritize projects for resource allocation

394

Documents: Cost Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Search Documents: Search PDF Documents View a list of all documents Cost Analysis PDF Icon Summary of the Cost Analysis Report for the Long-term Management of Depleted UF6...

395

Reduce Oil Dependence Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduce Oil Dependence Costs U.S. Petroleum Use, 1970-2010 Nearly 40% of the oil we use is imported, costing us roughly 300 billion annually. Increased domestic oil production from...

396

Chemical Lifecycle Management Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Lifecycle Management Cost Presented by: J.M. Hieb, CH2M HILL Plateau Remediation Company CHPRC1204-04 Chemical Lifecycle Management Cost Everyone is trying to stretch a...

397

Financial Statistics of Major U.S. Publicly Owned Electric Utilities  

Reports and Publications (EIA)

2000 - Final issue. Presents summary financial data for 1994 through 2000 and detailed financial data for 2000 on major publicly owned electric utilities.

Tom Leckey

2001-11-01T23:59:59.000Z

398

Design of small, low-cost, underwater fin manipulator  

E-Print Network (OSTI)

This thesis details the development of a small, low cost, underwater manipulator for use on the XAUV. At this time, there are no cheap underwater servos commercially available. The design involves modifying a commercially ...

Roberts, Megan Johnson

2008-01-01T23:59:59.000Z

399

SunShot Initiative: NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

SunShot Initiative: NewsDetail on Twitter Bookmark SunShot Initiative: NewsDetail on Google Bookmark SunShot Initiative: NewsDetail on Delicious Rank SunShot Initiative:...

400

Solid-State Lighting: NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: NewsDetail on Twitter Bookmark Solid-State Lighting: NewsDetail on Google Bookmark Solid-State Lighting: NewsDetail on Delicious Rank Solid-State Lighting:...

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fuel Cell Technologies Office: NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: NewsDetail on Twitter Bookmark Fuel Cell Technologies Office: NewsDetail on Google Bookmark Fuel Cell Technologies Office: NewsDetail on Delicious Rank Fuel Cell...

402

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

utilities use more electricity for distribution (48 millionthe most electricity for distribution. For the utilitiesUse Treatment electricity cost Distribution electricity use

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

403

Cost Estimation Recommendations  

Science Conference Proceedings (OSTI)

...D.P. Hoult and C.L. Meador, Manufacturing Cost Estimating, Materials Selection and Design, Vol 20, ASM Handbook,

404

A Review of Coal Mine Methane Recovery for Electric Utilities  

Science Conference Proceedings (OSTI)

Recovery of methane from coal mines might be a cost-effective offset method for some utilities looking for ways to reduce or offset their greenhouse gas emissions. This report provides an evaluation of potential recovery amounts and costs for U.S. mines along with a discussion of technical and legal issues.

1997-01-12T23:59:59.000Z

405

Decommissioning Cost Estimating Factors And Earned Value Integration  

Science Conference Proceedings (OSTI)

The Rocky Flats 771 Project progressed from the planning stage of decommissioning a plutonium facility, through the strip-out of highly-contaminated equipment, removal of utilities and structural decontamination, and building demolition. Actual cost data was collected from the strip-out activities and compared to original estimates, allowing the development of cost by equipment groupings and types and over time. Separate data was developed from the project control earned value reporting and compared with the equipment data. The paper discusses the analysis to develop the detailed factors for the different equipment types, and the items that need to be considered during characterization of a similar facility when preparing an estimate. The factors are presented based on direct labor requirements by equipment type. The paper also includes actual support costs, and examples of fixed or one-time start-up costs. The integration of the estimate and the earned value system used for the 771 Project is also discussed. The paper covers the development of the earned value system as well as its application to a facility to be decommissioned and an existing work breakdown structure. Lessons learned are provided, including integration with scheduling and craft supervision, measurement approaches, and verification of scope completion. In summary: The work of decommissioning the Rocky Flats 771 Project process equipment was completed in 2003. Early in the planning process, we had difficulty in identifying credible data and implementing processes for estimating and controlling this work. As the project progressed, we were able to collect actual data on the costs of removing plutonium contaminated equipment from various areas over the life of this work and associate those costs with individual pieces of equipment. We also were able to develop and test out a system for measuring the earned value of a decommissioning project based on an evolving estimate. These were elements that would have been useful to us in our early planning process, and we would expect that they would find application elsewhere as the DOE weapons complex and some commercial nuclear facilities move towards closure. (authors)

Sanford, P.C.; Cimmarron, E. [Englewood, CO, B. Skokan, Office of Project Management Oversight, EM-53, United States Department of Energy, Washington, DC (United States)

2008-07-01T23:59:59.000Z

406

Anaheim Public Utilities - Small Business Energy Management Assistance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaheim Public Utilities - Small Business Energy Management Anaheim Public Utilities - Small Business Energy Management Assistance Program Anaheim Public Utilities - Small Business Energy Management Assistance Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Maximum Rebate T8 Fluorescent lights, electronic ballasts and controls: 5,000 Programmable thermostats: 800 Program Info State California Program Type Utility Rebate Program Rebate Amount T8 Fluorescent lights, electronic ballasts and controls: 75% of the cost Refrigeration and A/C tune-up: free Programmable thermostats: free Expert energy survey: free Provider Anaheim Public Utilities The Small Business Energy Management System Program provides participating

407

EUV lithography cost of ownership analysis  

SciTech Connect

The cost of fabricating state-of-the-art integrated circuits (ICs) has been increasing and it will likely be economic rather than technical factors that ultimately limit the progress of ICs toward smaller devices. It is estimated that lithography currently accounts for approximately one-third the total cost of fabricating modem ICs({sup 1}). It is expected that this factor will be fairly stable for the forseeable future, and as a result, any lithographic process must be cost-effective before it can be considered for production. Additionally, the capital equipment cost for a new fabrication facility is growing at an exponential rate (2); it will soon require a multibillion dollar investment in capital equipment alone to build a manufacturing facility. In this regard, it is vital that any advanced lithography candidate justify itself on the basis of cost effectiveness. EUV lithography is no exception and close attention to issues of wafer fabrication costs have been a hallmark of its early history. To date, two prior cost analyses have been conducted for EUV lithography (formerly called {open_quotes}Soft X-ray Projection Lithography{close_quotes}). The analysis by Ceglio, et. al., provided a preliminary system design, set performance specifications and identified critical technical issues for cost control. A follow-on analysis by Early, et.al., studied the impact of issues such as step time, stepper overhead, tool utilization, escalating photoresist costs and limited reticle usage on wafer exposure costs. This current study provides updated system designs and specifications and their impact on wafer exposure costs. In addition, it takes a first cut at a preliminary schematic of an EUVL fabrication facility along with an estimate of the capital equipment costs for such a facility.

Hawryluk, A.M.; Ceglio, N.M.

1995-01-19T23:59:59.000Z

408

Case against private utility involvement in solar/insulation programs  

SciTech Connect

The arguments against private utility involvement are arranged under the following headings: excessive profit-taking, monopolization/favoritism, increased cost to consumers, homeowners would pay twice, the lack of accountability, the lack of commitment to solar by utilities, solar/political/ethical considerations, solar/conservation technologies are inherently decentralized, and the other alternatives. (MHR)

Bossong, K.

1977-06-08T23:59:59.000Z

409

Lassen Municipal Utility District - PV Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lassen Municipal Utility District - PV Rebate Program Lassen Municipal Utility District - PV Rebate Program Lassen Municipal Utility District - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $5,000 or 50% of system cost, whichever is less Commercial: $23,000 or 50% of system cost, whichever is less. Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $3.00/W-AC Commercial: $2.10/W-AC Provider Lassen Municipal Utility District Lassen Municipal Utility District (LMUD) is providing incentives for its customers to purchase solar electric photovoltaic (PV) systems. Rebate levels will decrease annually over the life of the program. Through June 30, 2014, rebates of $3.00 per watt-AC up to $5,000 are available for

410

Moreno Valley Electric Utility - Solar Electric Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential systems 30 kW or less: $14,000 or 50% of cost, whichever is less Small commercial systems 30 kW or less: $50,000 or 50% of cost, whichever is less Program Info State California Program Type Utility Rebate Program Rebate Amount Systems 30 kW or less: $2.00 per W-AC Systems larger than 30 kW: $0.06 per kWh for 5 years Provider Moreno Valley Electric Utility Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30 kilowatts (kW) or less can

411

Utility+Utility Access Map | OpenEI Community  

Open Energy Info (EERE)

the utility company pages under a given utility id. From the Special Ask page, in the query box enter the following: Category:Utility CompaniesEiaUtilityId::15248...

412

Conceptual HALT (Hydrate Addition at Low Temperature) scaleup design: Capital and operating costs: Part 5. [Hydrate addition at low temperature for the removal of SO/sub 2/  

SciTech Connect

Hydrate addition at low temperature (or the HALT process) is a retrofit option for moderate SO/sub 2/ removal efficiency in coal burning utility plants. This dry FGD process involves injecting calcium based dry hydrate particles into flue gas ducting downstream of the air preheater where the flue gas temperature is typically in the range of 280-325/degree/F. This report is comprised of the conceptual scaleup design of the HALT process to a 180 MW and a 500 MW coal fired utility station followed by detailed capital and operating cost estimates. A cost sensitivity analysis of major process variables for the 500 MW unit is also included. 1 fig.

Babu, M.; Kerivan, D.; Hendrick, C.; Kosek, B.; Tackett, D.; Golightley, M.

1988-12-01T23:59:59.000Z

413

Utility Battery Storage Systems Program report for FY93  

DOE Green Energy (OSTI)

Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses, contract development, and testing of rechargeable batteries and systems for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1993.

Butler, P.C.

1994-02-01T23:59:59.000Z

414

Show details for [Energy Storage III: Materials ...  

Science Conference Proceedings (OSTI)

Show details for [ACerS ACerS Arthur L. Friedberg Memorial Lecture. Show details for [ACerS ACerS Cooper Award...

415

BISICLES Captures Details of Retreating Antarctic Ice  

NLE Websites -- All DOE Office Websites (Extended Search)

BISICLES Captures Details of Retreating Antarctic Ice BISICLES Captures Details of Retreating Antarctic Ice March 30, 2013 | Tags: Climate Research, Hopper, Math & Computer Science...

416

Technology, safety and costs of decommissioning a reference boiling water reactor power station. Appendices. Volume 2  

SciTech Connect

Appendices are presented concerning the evaluations of decommissioning financing alternatives; reference site description; reference BWR facility description; radiation dose rate and concrete surface contamination data; radionuclide inventories; public radiation dose models and calculated maximum annual doses; decommissioning methods; generic decommissioning information; immediate dismantlement details; passive safe storage, continuing care, and deferred dismantlement details; entombment details; demolition and site restoration details; cost estimating bases; public radiological safety assessment details; and details of alternate study bases.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

417

NREL EFM DATA: Disaggregated Residential Load Cost Data The  

Open Energy Info (EERE)

EFM DATA: Disaggregated Residential Load Cost Data The followingdata-setis for a benchmark residential home for all TMY3 locations across all utilities in the US. The...

418

Bringing Energy Efficiency and Cost of Ownership to Online Shopping  

NLE Websites -- All DOE Office Websites (Extended Search)

no easy way to calculate how much it will cost to operate a product based on one's local electricity rate (there are over 3,000 different US utilities) and personalized usage...

419

Research on Chronological Cost Simulation of Demand-Side Programs  

Science Conference Proceedings (OSTI)

Many electric power utilities use Direct Load Control (DLC) to reduce operational costs and peak capacity requirements. This report proposes a very effective and unique method for DLC dispatch.

1999-08-13T23:59:59.000Z

420

NETL: News Release - DOE-Funded Technology Slashes NOx, Costs...  

NLE Websites -- All DOE Office Websites (Extended Search)

November 7, 2005 DOE-Funded Technology Slashes NOx, Costs in Coal-Fired Cyclone Boiler Utility Reconsiders Plans to Install Standard NOx-control Technology After Successful Field...

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Developing an activity-based costing approach for system development and implementation  

Science Conference Proceedings (OSTI)

This paper proposes the use of the Activity Based Costing (ABC) approach to software estimation. Like other more traditional approaches to software estimation, ABC provides man-day estimates. In addition, it also provides detailed costing information ... Keywords: IS project planning, activity-based costing, effort estimation, organizational learning, software process measurement, time and cost estimation

Ginny Ooi; Christina Soh

2003-08-01T23:59:59.000Z

422

A quantitative methodology for mapping project costs to engineering decisions in Naval Ship Design and procurement .  

E-Print Network (OSTI)

??Alternative methods for cost estimation are important in the early conceptual stages of a design when there is not enough detail to allow for a (more)

Netemeyer, Kristopher David

2010-01-01T23:59:59.000Z

423

Quantifying the system balancing cost when wind energy is incorporated into electricity generation system.  

E-Print Network (OSTI)

??Incorporation of wind energy into the electricity generation system requires a detailed analysis of wind speed in order to minimize system balancing cost and avoid (more)

Issaeva, Natalia

2009-01-01T23:59:59.000Z

424

Sec. Chu Announces More 'SunShot' Details | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sec. Chu Announces More 'SunShot' Details Sec. Chu Announces More 'SunShot' Details Sec. Chu Announces More 'SunShot' Details February 4, 2011 - 1:30pm Addthis Sec. Chu Announces More 'SunShot' Details. | Department of Energy Photo | Courtesy of National Renewable Energy Laboratory | Public Domain | Sec. Chu Announces More 'SunShot' Details. | Department of Energy Photo | Courtesy of National Renewable Energy Laboratory | Public Domain | Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What does this project do? The SunShot initiative will bring the cost of solar energy down by about 75 percent, making it cost competitive with fossil fuels, like coal, by the end of the decade. Visit the SunShot website for more information. Today, Secretary Chu announced more details of the Department's

425

Potential Effects of Climate Change on Electric Utilities  

Science Conference Proceedings (OSTI)

In recent years, increasing attention has been focused on the potential for greenhouse gas emissions to modify the global climate system. Significant climate change could affect utility operations and costs through impacts on electricity demand and on generation and delivery systems. Utilities, moreover, may be called upon to take actions to reduce their emissions of CO2, an important greenhouse gas. This report summarizes an assessment of the long-term risks to individual utilities posed by the potentia...

1995-03-17T23:59:59.000Z

426

An Innovative Approach to Plant Utility Audits Yields Significant Results  

E-Print Network (OSTI)

This paper presents innovative methods to conduct powerhouse audits when applying advanced energy management to utility systems. Specifically, a new class of Energy Management and Reporting Systems (EMRS) applied to plant wide utility control systems is a cost effective method to improve overall system efficiency and reliability. Typical returns for an industrial CHP fuel-switching powerhouse utilizing an EMRS range from $150K/Month to $450K/Month based on the facility size, functionality, and fuel types.

Robinson, J. E.; Moore, D. A.

2005-01-01T23:59:59.000Z

427

Cost Maps for Fossil Assets Management: Based on a Case Study With Minnesota Power Company  

Science Conference Proceedings (OSTI)

The key to effective management of utility assets is determining the benefits and costs of options over various timeframes. This report describes and illustrates a structured approach to asset management decision making using cost maps.

1995-04-13T23:59:59.000Z

428

Cost and quality of fuels for electric plants 1993  

Science Conference Proceedings (OSTI)

The Cost and Quality of Fuels for Electric Utility Plants (C&Q) presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

Not Available

1994-07-01T23:59:59.000Z

429

A utility`s perspective of the market for IGCC  

SciTech Connect

I believe, in the short-term U. S. market that IGCC`s primary competition is, natural gas-fired combined cycle technology. I believe that in order for IGCC to compete on a commercial basis, that natural gas prices have to rise relative to coal prices, and that the capital cost of the technology must come down. While this statement may seem to be somewhat obvious, it raises two interesting points. The first is that while the relative pricing of natural gas and coal is not generally within the technology supplier`s control, the capital cost is. The reduction of capital cost represents a major challenge for the technology suppliers in order for this technology to become commercialized. The second point is that the improvements being achieved with IGCC efficiencies probably won`t help it outperform the effects of natural gas pricing. This is due to the fact that the combined cycle portion of the IGCC technology is experiencing the most significant improvements in efficiency. I do see, however, a significant advantage for IGCC technology compared to conventional pulverized coal-fired units. As IGCC efficiencies continue to improve, combined with their environmentally superior performance, I believe that IGCC will be the ``technology of choice`` for utilities that install new coal-fired generation. We have achieved economic justification of our project by virtue of the DOE`s funding of $120 million awarded in Round III of their Clean Coal Technology Program. This program provides the bridge between current technology economics and those of the future. And Tampa Electric is pleased to be taking a leadership position in furthering the IGCC knowledge base.

Black, C.R. [Tampa Electric Co., FL (United States)

1993-08-01T23:59:59.000Z

430

Estimating and understanding DOE waste management costs`  

SciTech Connect

This paper examines costs associated with cleaning up the US Department of Energy`s (DOE`s) nuclear facilities, with particular emphasis on the waste management program. Life-cycle waste management costs have been compiled and reported in the DOE Baseline Environmental Management Report (BEMR). Waste management costs are a critical issue for DOE because of the current budget constraints. The DOE sites are struggling to accomplish their environmental management objectives given funding scenarios that are well below anticipated waste management costs. Through the BEMR process, DOE has compiled complex-wide cleanup cost estimates and has begun analysis of these costs with respect to alternative waste management scenarios and policy strategies. From this analysis, DOE is attempting to identify the major cost drivers and prioritize environmental management activities to achieve maximum utilization of existing funding. This paper provides an overview of the methodology DOE has used to estimate and analyze some waste management costs, including the key data requirements and uncertainties.

Kang, J.S. [USDOE, Washington, DC (United States); Sherick, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-12-01T23:59:59.000Z

431

Anaheim Public Utilities - Commercial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaheim Public Utilities - Commercial Energy Efficiency Rebate Anaheim Public Utilities - Commercial Energy Efficiency Rebate Programs Anaheim Public Utilities - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Construction Industrial Multi-Family Residential Nonprofit Savings Category Other Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Construction Design & Remodeling Ventilation Manufacturing Heat Pumps Commercial Lighting Lighting Insulation Water Heating Windows, Doors, & Skylights Maximum Rebate Heat Pump Incentives: $50,000 per meter, per project or 50% of cost Lighting Incentives: $50,000 per meter, per project or 50% of cost Efficient Exit Sign Program: $10,000 per project Program Info

432

Confidential data in a competitive utility environment: A regulatory perspective  

SciTech Connect

Historically, the electric utility industry has been regarded as one of the most open industries in the United States in sharing information but their reputation is being challenged by competitive energy providers, the general public, regulators, and other stakeholders. As the prospect of competition among electricity power providers has increased in recent years, many utilities have been requesting that the data they submit to their utility regulatory commissions remain confidential. Withholding utility information from the public is likely to have serious and significant policy implications with respect to: (1) consumer education, the pursuit of truth, mutual respect among parties, and social cooperation; (2) the creation of a fair market for competitive energy services; (3) the regulatory balance; (4) regional and national assessments of energy-savings opportunities; (5) research and development; and (6) evaluations of utility programs, plans, and policies. In a telephone survey of all public utility commissions (PUCs) that regulate electric and gas utilities in the U.S., we found that almost all PUCs have received requests from utility companies for data to be filed as confidential, and confidential data filings appear to have increased (both in scope and in frequency) in those states where utility restructuring is being actively discussed. The most common types of data submitted as confidential by utilities dealt with specific customer data, market data, avoided costs, and utility costs.

Vine, E.

1996-08-01T23:59:59.000Z

433

Load-curve responsiveness to weather and the cost-effectiveness of conservation  

SciTech Connect

A cost-benefit analysis of home-weatherization projects using average incremental power costs instead of peak or off-peak costs shows that some programs are no longer cost-effective. Weatherization improves the energy efficiency of houses and reduces demand on the utility, but a study of how monthly load curves at a Pacific Northwest utility responded to weather over a 12-month period indicates that abnormal weather shifts the entire load curve. 1 figure. (DCK)

Hellman, M.M.

1982-09-30T23:59:59.000Z

434

MHK Cost Breakdown Structure Draft | OpenEI Community  

Open Energy Info (EERE)

MHK Cost Breakdown Structure Draft MHK Cost Breakdown Structure Draft Home > Groups > Water Power Forum Kch's picture Submitted by Kch(24) Member 9 April, 2013 - 13:30 CBS current energy GMREC LCOE levelized cost of energy marine energy MHK ocean energy The generalized Cost Breakdown Structure (CBS) for marine and hydrokinetic (MHK) projects is a hierarchical structure designed to facilitate the collection and organization of lifecycle costs of any type of MHK project, including wave energy converters and current energy convertners. At a high level, the categories in the CBS will be applicable to all projects; at a detailed level, however, the CBS includes many cost categories that will pertain to one project but not others. It is expected that many of the detailed levels of the CBS will be populated with "NA" or left blank.

435

Tracking the Sun II The Installed Cost of Photovoltaics  

E-Print Network (OSTI)

the Sun II Contents The Installed Cost of Photovoltaics in the U.S. from 1998-2008 Environmental Energy .................................................................... 10 4. PV Incentive and Net Installed Cost Trends ....................................... 24 5 Appendix A: Data Cleaning, Coding, and Standardization ....................... 33 Appendix B: Detailed

436

Metal Detectives: New Book Details Titanic Investigation  

Science Conference Proceedings (OSTI)

Metal Detectives: New Book Details Titanic Investigation. For Immediate Release: April 15, 2008. ...

2012-10-02T23:59:59.000Z

437

Modeling On-Site Utility Systems Using "APLUS"  

E-Print Network (OSTI)

Most energy saving schemes on industrial sites lead to reductions in the steam and/or power demands on an on-site utility system. Accurate knowledge of the marginal and incremental costs of the available levels of steam and shaft power from such systems is, therefore, essential for the correct economic evaluation of proposed retrofit schemes. Knowledge of marginal costs is also essential for continuous optimal operation of on-site utility systems. "APLUS" is an IBM-PC based software package developed for evaluation of marginal and incremental costs of on-site utilities. "APLUS" allows the user to configure steam/power systems using sets of predefined icons. Once a flowsheet has been configured, the program can be used to solve the heat and mass balance and to generate accurate marginal costs. An overview of the package and examples illustrating its applications are presented in this paper.

Ranade, S. M.; Jones, D. H.; Shrec, S. C.

1988-09-01T23:59:59.000Z

438

Commercial equipment cost database  

SciTech Connect

This report, prepared for DOE, Office of Codes and Standards, as part of the Commercial Equipment Standards Program at Pacific Northwest Laboratory, specifically addresses the equipment cost estimates used to evaluate the economic impacts of revised standards. A database including commercial equipment list prices and estimated contractor costs was developed, and through statistical modeling, estimated contractor costs are related to equipment parameters including performance. These models are then used to evaluate cost estimates developed by the ASHRAE 90.1 Standing Standards Project Committee, which is in the process of developing a revised ASHRAE 90.1 standard. The database will also be used to support further evaluation of the manufacturer and consumer impacts of standards. Cost estimates developed from the database will serve as inputs to economic modeling tools, which will be used to estimate these impacts. Preliminary results suggest that list pricing is a suitable measure from which to estimate contractor costs for commercial equipment. Models developed from these cost estimates accurately predict estimated costs. The models also confirm the expected relationships between equipment characteristics and cost. Cost models were developed for gas-fired and electric water heaters, gas-fired packaged boilers, and warm air furnaces for indoor installation. Because of industry concerns about the use of the data, information was not available for the other categories of EPAct-covered equipment. These concerns must be addressed to extend the analysis to all EPAct equipment categories.

Freeman, S.L.

1995-01-01T23:59:59.000Z

439

A good integrated resource plan: Guidelines for electric utilities and regulators  

SciTech Connect

Integrated resource planning helps utilities and state regulatory commissions consistently assess a broad range of demand and supply resources to meet customer energy-service needs cost-effectively. Key characteristics of this planning approach include: explicit consideration and fair treatment of a wide variety of demand and supply options, consideration of the environmental and other social costs of providing energy services, public participation in the development of the resource plan, and analysis of the uncertainties associated with different external factors and resource options. Integrated resource planning differs from traditional planning in the types and scope of resources considered, the owners of the resources, the organizations involved in resource planning, and the criteria for resource selection. This report presents suggestions to utilities on how to conduct such planning and what to include in their resource-planning reports. These suggestions are based on a review of about 50 resource plans as well as discussions with and presentations to regulators and utilities. The suggestions cover four broad topics; the technical competence with which the plan was developed; the adequacy, detail, and consistency (with the long-term plan) of the short-term action plan; the extent to which the interests of various stakeholders was considered, both in public participation in plan development and in the variety of resource plans developedand assessed; and the clarity and comprehensiveness of the utility's report on its plan. Technical competence includes energy and demand forecasts, assessment of supply and demand resources, resource integration, and treatment of uncertainty. Issues associated with forecasts include forecasting approaches; links between the forecasts of energy use and peak demands; and links between the forecasts and the effects of past, present, and future demand-side management programs.

Hirst, E.

1992-12-01T23:59:59.000Z

440

Clark Public Utilities - Commercial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark Public Utilities - Commercial Energy Efficiency Rebate Clark Public Utilities - Commercial Energy Efficiency Rebate Programs Clark Public Utilities - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Commercial/Industrial Lighting: Up to 50% project costs Custom Industrial Retrofit: $0.25/kWh up to 50% of cost Custom Industrial New Construction: $0.20 - $0.27/kWh up to 50% of cost

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sensitivity of PDR Calculations to Microphysical Details  

E-Print Network (OSTI)

Our understanding of physical processes in Photodissociation regions or Photon Dominated Regions (PDRs) largely depends on the ability of spectral synthesis codes to reproduce the observed infrared emission-line spectrum. In this paper, we explore the sensitivity of a single PDR model to microphysical details. Our calculations use the Cloudy spectral synthesis code, recently modified to include a wealth of PDR physical processes. We show how the chemical/thermal structure of a PDR, along with the calculated spectrum, changes when the treatment of physical processes such as grain physics and atomic/molecular rates are varied. We find a significant variation in the intensities of PDR emission lines, depending on different treatments of the grain physics. We also show how different combinations of the cosmic-ray ionization rate, inclusion of grain-atom/ion charge transfer, and the grain size distribution can lead to very similar results for the chemical structure. Additionally, our results show the utility of Cloudy for the spectral modeling of molecular environments.

N. P. Abel; P. A. M. van Hoof; G. Shaw; G. J. Ferland; T. Elwert

2008-08-19T23:59:59.000Z

442

Unit Cost Natural Gas | OpenEI  

Open Energy Info (EERE)

2 2 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281532 Varnish cache server Unit Cost Natural Gas Dataset Summary Description Provides annual energy usage for years 1989 through 2010 for UT at Austin; specifically, electricity usage (kWh), natural gas usage (Mcf), associated costs. Also provides water consumption for 2005 through 2010. Source University of Texas (UT) at Austin, Utilities & Energy Management Date Released Unknown Date Updated Unknown Keywords Electricity Consumption Natural Gas Texas Unit Cost Electricity Unit Cost Natural Gas University Water Data application/vnd.ms-excel icon Energy and Water Use Data for UT-Austin (xls, 32.8 KiB) Quality Metrics

443

Unit Cost Electricity | OpenEI  

Open Energy Info (EERE)

8 8 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281518 Varnish cache server Unit Cost Electricity Dataset Summary Description Provides annual energy usage for years 1989 through 2010 for UT at Austin; specifically, electricity usage (kWh), natural gas usage (Mcf), associated costs. Also provides water consumption for 2005 through 2010. Source University of Texas (UT) at Austin, Utilities & Energy Management Date Released Unknown Date Updated Unknown Keywords Electricity Consumption Natural Gas Texas Unit Cost Electricity Unit Cost Natural Gas University Water Data application/vnd.ms-excel icon Energy and Water Use Data for UT-Austin (xls, 32.8 KiB) Quality Metrics

444

Low Cost, High Performance, 50-year Electrode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

this ARPA-E project, Primus Power will develop an this ARPA-E project, Primus Power will develop an extremely durable, highly active, conductive, and inexpensive electrode for flow batteries. Flow batteries offer one of the most exciting opportunities for affordable grid storage, however electrodes are costly and are the single largest cost component in a well integrated design. Grid storage can yield numerous benefits in utility and customer- owned applications:  renewable firming  peak load reduction  load shifting  capital deferral  frequency regulation By incorporating volume production practices from the chlorine, filter media, and electroplating industries, Primus Power will effectively reduce electrode costs to exceed GRIDS cost targets while providing the durability essential for widespread grid-scale adoption.

445

DOE Hydrogen Analysis Repository: H2 Fueling Appliances Cost and  

NLE Websites -- All DOE Office Websites (Extended Search)

H2 Fueling Appliances Cost and Performance H2 Fueling Appliances Cost and Performance Project Summary Full Title: H2 Production Infrastructure Analysis - Task 2: Cost and Performance of H2 Fueling Appliances Project ID: 80 Principal Investigator: Brian James Keywords: Costs; steam methane reforming (SMR); autothermal reforming (ATR); hydrogen fueling Purpose The purpose of the analysis was to estimate the capital cost and the resulting cost of hydrogen of several types of methane-fueled hydrogen production systems. A bottoms-up cost analysis was conducted of each system to generate a system design and detailed bill-of-materials. Estimates of the overall capital cost of the hydrogen production appliance were generated. This work supports Systems Analysis Milestone A1. ("Complete techno-economic analysis on production and delivery technologies currently

446

Factors Associated with Photovoltaic System Costs (Topical Issues Brief)  

Science Conference Proceedings (OSTI)

A variety of factors can affect the cost of photovoltaic systems. This report analyses the relationship among such factors by using information entered into a voluntary registry of PV systems and performing regression analyses. The results showed statistically significant relationships between photovoltaic system cost and (a) grid connection, (b) installation year, (c) areas where the utility had entered into volume purchasing agreements.

Mortensen, J.

2001-06-12T23:59:59.000Z

447

Estimates of Production Cost Variance Using Chronological Simulation  

Science Conference Proceedings (OSTI)

Forecasts of production costs are key inputs in the operational planning decisions of electric power utilities. This report describes the effects of uncertainty in annual load variation and uncertainty in generation availability on the variance of cost in an electrical power system.

1999-09-29T23:59:59.000Z

448

Life-cycle cost analysis project. Final report  

Science Conference Proceedings (OSTI)

An investigation was conducted to demonstrate the impact of life-cycle costing in Ohio's residential building sector. Typical single-family, townhouse, and multifamily housing units were modeled using sophisticated computer programs to predict annual energy comsumption. Energy conservation techniques were applied to the typical units and the resulting utility savings were computed. Installed costs were estimated for each energy conservation technique.

Davies, G.R.; Temming, S.J.

1980-09-30T23:59:59.000Z

449

Dekker PMIS Extraction Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1217. The Extraction Utility is used for retrieving project 1217. The Extraction Utility is used for retrieving project management data from a variety of source systems for upload into the Dekker PMIS(tm) (Dekker iPursuit®, Dekker iProgram(tm), or DOE PARSII). This release incorporates a number of new features and updates primarily focused to improve the existing functionality. The quality of each Dekker PMIS(tm) Extraction Utility release is a primary consideration at Dekker, Ltd. Since every customer environment is unique, Dekker strongly recommends that each implementation site validate all software updates prior to release into the production environment. Dekker continually strives to enhance the features and capabilities of the Dekker PMIS(tm) Extraction Utility. We are very excited about this update and look forward to its implementation in your

450

Dekker PMIS Extraction Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0907. The Extraction Utility is used for retrieving project 0907. The Extraction Utility is used for retrieving project management data from a variety of source systems for upload into Dekker PMIS(tm) (Dekker iPursuit®, Dekker iProgram(tm), or DOE PARSII). This release incorporates a number of new features and updates focused to improve existing functionality. The quality of each Dekker PMIS(tm) Extraction Utility release is a primary consideration at Dekker, Ltd. Since every customer environment is unique, Dekker strongly recommends that each implementation validate any software update prior to its release into the production environment. Dekker continually strives to enhance the features and capabilities of the Dekker PMIS(tm) Extraction Utility. We are very excited about this update and look forward to its implementation in your

451

Electric Utility Industry Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

452

Gas Utilities (New York)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

453

Methods | Transparent Cost Database  

Open Energy Info (EERE)

Methods Methods Disclaimer The data gathered here are for informational purposes only. Inclusion of a report in the database does not represent approval of the estimates by DOE or NREL. Levelized cost calculations DO NOT represent real world market conditions. The calculation uses a single discount rate in order to compare technology costs only. About the Cost Database For emerging energy technologies, a variety of cost and performance numbers are cited in presentations and reports for present-day characteristics and potential improvements. Amid a variety of sources and methods for these data, the Office of Energy Efficiency and Renewable Energy's technology development programs determine estimates for use in program planning. The Transparent Cost Database collects program cost and performance

454

Low cost MCFC anodes  

DOE Green Energy (OSTI)

This paper outlines a project, funded under a DOE SBIR grant, which tested a potentially lower cost method of manufacturing MCFC stack anodes and evaluated the feasibility of using the technology in the existing M-C Power Corp. manufacturing facility. The procedure involves adding activator salts to the anode tape casting slurry with the Ni and Cr or Al powders. Two different processes occur during heat treatment in a reducing environment: sintering of the base Ni structure, and alloying or cementation of the Cr or Al powders. To determine whether it was cost-effective to implement the cementation alloying manufacturing process, the M-C Power manufacturing cost model was used to determine the impact of different material costs and processing parameters on total anode cost. Cost analysis included equipment expenditures and facility modifications required by the cementation alloying process.

Erickson, D.S.

1996-12-31T23:59:59.000Z

455

SYSPLAN. Load Leveling Battery System Costs  

SciTech Connect

SYSPLAN evaluates capital investment in customer side of the meter load leveling battery systems. Such systems reduce the customer`s monthly electrical demand charge by reducing the maximum power load supplied by the utility during the customer`s peak demand. System equipment consists of a large array of batteries, a current converter, and balance of plant equipment and facilities required to support the battery and converter system. The system is installed on the customer`s side of the meter and controlled and operated by the customer. Its economic feasibility depends largely on the customer`s load profile. Load shape requirements, utility rate structures, and battery equipment cost and performance data serve as bases for determining whether a load leveling battery system is economically feasible for a particular installation. Life-cycle costs for system hardware include all costs associated with the purchase, installation, and operation of battery, converter, and balance of plant facilities and equipment. The SYSPLAN spreadsheet software is specifically designed to evaluate these costs and the reduced demand charge benefits; it completes a 20 year period life cycle cost analysis based on the battery system description and cost data. A built-in sensitivity analysis routine is also included for key battery cost parameters. The life cycle cost analysis spreadsheet is augmented by a system sizing routine to help users identify load leveling system size requirements for their facilities. The optional XSIZE system sizing spreadsheet which is included can be used to identify a range of battery system sizes that might be economically attractive. XSIZE output consisting of system operating requirements can then be passed by the temporary file SIZE to the main SYSPLAN spreadsheet.

Hostick, C.J. [Pacific Northwest Lab., Richland, WA (United States)

1988-03-22T23:59:59.000Z

456

NREL: Energy Analysis - Levelized Cost of Energy Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Levelized Cost of Energy Calculator Levelized Cost of Energy Calculator Transparent Cost Database Button The levelized cost of energy (LCOE) calculator provides a simple calculator for both utility-scale and distributed generation (DG) renewable energy technologies that compares the combination of capital costs, operations and maintenance (O&M), performance, and fuel costs. Note that this does not include financing issues, discount issues, future replacement, or degradation costs. Each of these would need to be included for a thorough analysis. To estimate simple cost of energy, use the slider controls or enter values directly to adjust the values. The calculator will return the LCOE expressed in cents per kilowatt-hour (kWh). The U.S. Department of Energy (DOE) Federal Energy Management Program

457

Dissecting the Cost of the Smart Grid | Open Energy Information  

Open Energy Info (EERE)

Dissecting the Cost of the Smart Grid Dissecting the Cost of the Smart Grid Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Dissecting the Cost of the Smart Grid Focus Area: Crosscutting Topics: System & Application Design Website: www.greentechmedia.com/articles/read/dissecting-the-cost-of-the-smart- Equivalent URI: cleanenergysolutions.org/content/dissecting-cost-smart-grid Language: English Policies: Regulations Regulations: "Resource Integration Planning,Cost Recovery/Allocation,Net Metering & Interconnection" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

458

Cost analysis guidelines  

Science Conference Proceedings (OSTI)

The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

Strait, R.S.

1996-01-10T23:59:59.000Z

459

Development and Evaluation of Low Cost Mercury Sorbents  

Science Conference Proceedings (OSTI)

EPRI is conducting research to investigate sorbent injection for mercury removal in utility flue gas. This report describes laboratory work conducted from mid-1999 through mid-2000 to investigate the ability of low-cost sorbents to remove mercury from simulated and actual flue gas. The goal of this program is the development of effective mercury sorbents that can be produced at lower costs than existing commercial activated carbons. In this work, low-cost sorbents were prepared and then evaluated in labo...

2000-11-27T23:59:59.000Z

460

Target Cost Management Strategy  

E-Print Network (OSTI)

Target cost management (TCM) is an innovation of Japanese management accounting system and by common sense has been considered with great interest by practitioners. Nowadays, TCM related

Okano, Hiroshi

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "details utility costs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.