Powered by Deep Web Technologies
Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Separation of Mercury from Flue Gas Desulfurization Scrubber Produced Gypsum  

SciTech Connect

Frontier Geosciences (Frontier; FGS) proposed for DOE Grant No. DE-FG02-07ER84669 that mercury control could be achieved in a wet scrubber by the addition of an amendment to the wet-FGD scrubber. To demonstrate this, a bench-scale scrubber and synthetic flue-gas supply was designed to simulate the limestone fed, wet-desulfurization units utilized by coal-fired power plants. Frontier maintains that the mercury released from these utilities can be controlled and reduced by modifying the existing equipment at installations where wet flue-gas desulfurization (FGD) systems are employed. A key element of the proposal was FGS-PWN, a liquid-based mercury chelating agent, which can be employed as the amendment for removal of all mercury species which enter the wet-FGD scrubber. However, the equipment design presented in the proposal was inadequate to demonstrate these functions and no significant progress was made to substantiate these claims. As a result, funding for a Phase II continuation of this work will not be pursued. The key to implementing the technology as described in the proposal and report appears to be a high liquid-to-gas ratio (L/G) between the flue-gas and the scrubber liquor, a requirement not currently implemented in existing wet-FGD designs. It may be that this constraint can be reduced through parametric studies, but that was not apparent in this work. Unfortunately, the bench-scale system constructed for this project did not function as intended and the funds and time requested were exhausted before the separation studies could occur.

Hensman, Carl, E., P.h.D; Baker, Trevor

2008-06-16T23:59:59.000Z

2

Re-lining of scrubbers in flue gas desulfurization plants  

SciTech Connect

Rubber lining is used as corrosion protection material in scrubbers, tanks, pipe systems etc of European flue gas desulfurization plants. Although these rubber linings show in cases more than 15 years life, re-rubber lining is still necessary. Due to the expected higher availability of the power station units the time scale of such replacement must be kept to a minimum. As an efficient method for removal of the old lining the high pressure water systems has proven successful. Based on one such case of re-lining the working steps and time scale are demonstrated.

Fenner, J. [Keramchemie GmbH, Siershahn (Germany)

1999-11-01T23:59:59.000Z

3

Relining of scrubbers in flue gas desulfurization plants  

SciTech Connect

Rubber lining is used as a corrosion protection material in European flue gas desulfurization plants, for scrubbers, tanks, pipe systems, etc. Although these rubber linings can last more than 15 years, relining still is necessary. The difficulty of shutting down power station units requires that the time scale of this replacement be kept to a minimum. High-pressure water systems have proven successful as an efficient method for removal of the old lining. The working steps and time scale are demonstrated for one such relining case.

Fenner, J. [Keramchemie GmbH (Germany)

1999-09-01T23:59:59.000Z

4

HYDROFLUORIC ACID SCRUBBER SYSTEMS  

SciTech Connect

Each year over a million gallons of water are used to scrub hydrogen fluoride (HP) vapors from waste off-gas streams. Use of other potential scrubber solutions such as potassium hydroxide (KOH), aluminum nitrate nonahydrate (ANN), and monobasic aluminum nitrate (monoban) would result in significant volume reductions. A laboratory study was initiated to (1) demonstrate the effectiveness of these scrubber solutions to sorb HF, (2) determine if unexpected reactions occurred at flowsheet conditions, and (3) determine the consequences of deviation from flowsheet conditions. Caustic or aluminum scrubber solutions remove hydrogen fluoride from off-gas streams. Solids which appear with aluminum could be avoided by heating the scrubber solution.

PANESKO JV; MERRITT HD

2011-05-18T23:59:59.000Z

5

Desulfurization of heavy oil  

Science Journals Connector (OSTI)

Strategies for heavy oil desulfurization were evaluated by reviewing desulfurization literature and critically assessing the viability of the various methods for heavy oil. The desulfurization methods includin...

Rashad Javadli; Arno de Klerk

2012-03-01T23:59:59.000Z

6

Workshop on sulfur chemistry in flue gas desulfurization  

SciTech Connect

The Flue Gas Desulfurization Workshop was held at Morgantown, West Virginia, June 7-8, 1979. The presentations dealt with the chemistry of sulfur and calcium compounds in scrubbers. DOE and EPRI programs in this area are described. Ten papers have been entered individually into EDB and ERA. (LTN)

Wallace, W.E. Jr.

1980-05-01T23:59:59.000Z

7

Rubber linings as surface protection in flue gas desulfurization plants  

SciTech Connect

The manufacturers of the German rubber lining industry have executed the rubber lining of over 1 million m{sup 2} of steel surfaces in over 150 scrubbers of flue gas desulfurization (FGD) plants, thereby effectively protecting them against corrosion. The application of rubber linings as surface protection in FGD plants has proven effective.

Fenner, J.

1997-04-01T23:59:59.000Z

8

Value-Added Products from FGD Sulfite-Rich Scrubber Materials  

SciTech Connect

According to the American Coal Ash Association, about 29.25 million tons of flue gas desulfurization (FGD) byproducts were produced in the USA in 2003. Out of 29.25 million tons, 17.35 million tons were sulfite-rich scrubber materials. At present, unlike its cousin FGD gypsum, the prospect for effective utilization of sulfite-rich scrubber materials is not bright. In fact, almost 16.9 million tons are leftover every year. In our pursuit to mitigate the liability of sulfite-rich FGD scrubber materials' disposal, we are attempting to develop value-added products that can commercially compete. More specifically, for this Innovative Concept Phase I project, we have the following objectives: to characterize the sulfite-rich scrubber material for toxic metals; to optimize the co-blending and processing of scrubber material and natural byproducts; to formulate and develop structural composites from sulfite-rich scrubber material; and to evaluate the composites' mechanical properties and compare them with current products on the market. After successfully demonstrating the viability of our research, a more comprehensive approach will be proposed to take these value-added materials to fruition.

Vivak Malhotra

2010-01-31T23:59:59.000Z

9

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network (OSTI)

Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

Wrathall, J.

2013-01-01T23:59:59.000Z

10

Corrosion protection by means of rubber linings in a flue gas scrubber made of concrete  

SciTech Connect

Rubber linings have been applied as a corrosion protection measure for steel surfaces, particularly in the absorbers, in the flue gas desulfurization plants of a large number of power stations in Europe and have decidedly proven their effectiveness. The rubber linings applied consist of either precured and/or cold-curing rubber sheets. In the course of the past five to seven years, the eastern European states have also begun retro-fitting their existing power stations with flue gas desulfurization plants. As the first of its kind, a scrubber in the flue gas desulfurization plant of the Konin Power Station in Poland, which operates on the basis of the limestone-gypsum process, was constructed of concrete. In this case also, the corrosion protection measures implemented consisted in the application of a precured rubber lining on the basis of butyl rubber. A surface area measuring 1,500 m{sup 2} of the concrete absorber was protected by means of this corrosion protection system.

Fenner, J.; Matos, A.; Seiffert, W. [Keramchemie GmbH, Siershahn (Germany)

1998-12-31T23:59:59.000Z

11

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

12

The Biocatalytic Desulfurization Project  

SciTech Connect

The material in this report summarizes the Diversa technical effort in development of a biocatalyst for the biodesulfurization of Petro Star diesel as well as an economic report of standalone and combined desulfurization options, prepared by Pelorus and Anvil, to support and inform the development of a commercially viable process. We will discuss goals of the projected as originally stated and their modification as guided by parallel efforts to evaluate commercialization economics and process parameters. We describe efforts to identify novel genes and hosts for the generation of an optimal biocatalyst, analysis of diesel fuels (untreated, chemically oxidized and hydrotreated) for organosulfur compound composition and directed evolution of enzymes central to the biodesulfurization pathway to optimize properties important for their use in a biocatalyst. Finally we will summarize the challenges and issues that are central to successful development of a viable biodesulfurization process.

David Nunn; James Boltz; Philip M. DiGrazia; Larry Nace

2006-03-03T23:59:59.000Z

13

(Passamaquoddy Technology Recovery Scrubber trademark , March 1992)  

SciTech Connect

The Passamaquoddy Technology Recovery Scrubber{trademark} has been built and is being demonstrated on-line at the Dragon Products Plant in Thomaston, Maine. This Innovative Clean Coal Technology is using waste cement kiln dust (CKD) to scrub sulfur dioxide, some NO{sub x}, as well as a small amount of carbon dioxide from a coal burning kiln exhaust flue gas. The process also enables the cement plant to reuse the treated CKD, eliminating the need to landfill this material. Potassium, the offending contaminant in the CKD, is extracted in a useful form, potassium sulfate, which is used as a fertilizer. These useful products generate income from operation of this Recovery Scrubber. System start-up was begun in late December of 1990. At that time, several mechanical problems were encountered. These relatively minor problems were resolved enabling Phase III to begin on August 20, 1991. While inefficiencies are still being worked out, major program objectives are being met. Resolution of remaining operability problems is well in hand and should not hamper attainment of all project goals.

Not Available

1992-03-03T23:59:59.000Z

14

Industry-Government-University Cooperative Research Program for the Development of Structural Materials from Sulfate-Rich FGD Scrubber Sludge  

SciTech Connect

The main aim of our project was to develop technology, which converts flue gas desulfurization (FGD) sulfate-rich scrubber sludge into value-added decorative materials. Specifically, we were to establish technology for fabricating cost effective but marketable materials, like countertops and decorative tiles from the sludge. In addition, we were to explore the feasibility of forming siding material from the sludge. At the end of the project, we were to establish the potential of our products by generating 64 countertop pieces and 64 tiles of various colors. In pursuit of our above-mentioned goals, we conducted Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) measurements of the binders and co-processed binders to identify their curing behavior. Using our 6-inch x 6-inch and 4-inch x 4-inch high pressure and high temperature hardened stainless steel dies, we developed procedures to fabricate countertop and decorative tile materials. The composites, fabricated from sulfate-rich scrubber sludge, were subjected to mechanical tests using a three-point bending machine and a dynamic mechanical analyzer (DMA). We compared our material's mechanical performance against commercially obtained countertops. We successfully established the procedures for the development of countertop and tile composites from scrubber sludge by mounting our materials on commercial boards. We fabricated more than 64 pieces of countertop material in at least 11 different colors having different patterns. In addition, more than 100 tiles in six different colors were fabricated. We also developed procedures by which the fabrication waste, up to 30-weight %, could be recycled in the manufacturing of our countertops and decorative tiles. Our experimental results indicated that our countertops had mechanical strength, which was comparable to high-end commercial countertop materials and contained substantially larger inorganic content than the commercial products. Our moisture sensitivity test suggested that our materials were non-water wettable and did not disintegrate on submerging the product in water for at least two months. Countertop polishing techniques were also established.

V. M. Malhotra; Y. P. Chugh

2003-08-31T23:59:59.000Z

15

Control of scale in flue gas scrubbers  

SciTech Connect

This patent describes a flue gas desulfurization system in which sulfur dioxide-containing flue gas is passed in countercurrent flow with an aqueous calcium-bearing scrubbing liquor whereby the sulfur dioxide is removed from the flue gas by being absorbed by the scrubbing liquor and converted to calcium sulfite and/or calcium sulfate. The improvement of minimizing the formation of calcium scale on the surfaces of the system comprises maintaining in the scrubbing liquor about 0.1-25 ppm of a 1:1 diisobutylene-maleic anhydride copolymer having an average molecular weight of 11000. The copolymer is incorporated in the scrubbing liquor as a 10-15% aqueous dispersion.

Thomas, P.A.; Dewitt-Dick, D.B.

1987-06-02T23:59:59.000Z

16

THE BIOCATALYTIC DESULFURIZATION PROJECT  

SciTech Connect

The analysis of Petro Star diesel sulfur species is complete and a report is attached. Further analytical efforts will concentrate on characterization of diesel fuel, hydrodesulfurized to varying degrees, in order to determine sulfur species that may be problematic to hydrogen treatment and represent potential target substrates for biodesulfurization in a combined HDS-BDS process. Quotes have been received and are being considered for the partial treatment of Petro Star Inc. marine diesel fuel. Direction of research is changing slightly; economic analysis of the hyphenated--BDSHDS, BDS-CED--has shown the highest probability of success to be with a BDS-HDS process where the biodesulfurization precedes hydrodesulfurization. Thus, the microorganisms will be tailored to focus on those compounds that tend to be recalcitrant to hydrodesulfurization and decrease the severity of the hydrodesulfurization step. A separate, detailed justification for this change is being prepared. Research activities have continued in the characterization of the desulfurization enzymes from multiple sources. Genes for all DszA, -B, -C and -D enzymes (and homologs) have been cloned and expressed. Activity determinations, on a variety of substituted benzothiophene and dibenzothiophene substrates, have been carried out and continue. In addition, chemical synthesis efforts have been carried out to generate additional substrates for analytical standards and activity determinations. The generation of a GSSM mutant library of the ''Rhodococcus IGTS8 dszA'' gene has been completed and development of protocols for a high throughput screen to expand substrate specificity are nearing completion. In an effort to obtain improved hosts as biocatalyst, one hundred-thirty ''Rhodococcus'' and related strains are being evaluated for growth characteristics and other criteria deemed important for an optimal biocatalyst strain. We have also begun an effort to generate derivatives of the entire IGTS8 BDS plasmid that will allow for its easy transfer and manipulation into a variety of hosts. To support this activity and to gain an understanding of additional genes that may potentially affect BDS activity, the nucleotide sequence of the entire complement of plasmids in IGTS8 is being determined. Lastly, we continue to develop genetic screens and selections for the discovery and improvement of the biodesulfurization genes and strains.

Scott Collins; David Nunn

2003-10-01T23:59:59.000Z

17

EFFECTS OF WATER SPRAYS AND SCRUBBER EXHAUST ON FACE METHANE CONCENTRATIONS  

E-Print Network (OSTI)

methane levels. KEYWORDS Ventilation, water sprays, methane, coal mining, dust scrubber INTRODUCTIONChapter 65 EFFECTS OF WATER SPRAYS AND SCRUBBER EXHAUST ON FACE METHANE CONCENTRATIONS Ch.D. Taylor-mounted scrubber and water sprays can reduced methane levels at the face. The current research was conducted

Saylor, John R.

18

Recovery and utilization of gypsum and limestone from scrubber sludge. Technical report, December 1, 1992--February 28, 1993  

SciTech Connect

Wet flue-gas desulfurization units in coal-fired power plants produce a large amount of sludge which must be disposed of, and which is currently landfilled in most cases. Increasing landfill costs are gradually forcing utilities to find other alternatives. In principle, this sludge can be used to make gypsum (CaSO{sub 4}-2H{sub 2}O) for products such as plaster-of-Paris and wallboard, but only if impurities such as unreacted limestone and soluble salts are removed, and the calcium sulfite (CaSO{sub 3}) is oxidized to calcium sulfate (CaSO{sub 4}). This project is investigating methods for removing the impurities from the sludge so that high-quality, salable gypsum products can be made. Work done in the previous quarter concentrated on developing a dependable technique for analysis of scrubber sludge, so that it would be possible to determine exactly how well a particular purification process was working. This technique was then used to characterize the sludge from a particular Illinois power station. In the current quarter, studies were carried out using froth flotation to produce a product that could be oxidized to high-purity gypsum. These experiments have been quite successful, due to certain properties of the limestone impurity that makes it easier to remove by this method than was expected.

Kawatra, S.K.; Eisele, T.C. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Metallurgical and Materials Engineering; Banerjee, D. [Illinois Clean Coal Inst., Carterville, IL (United States)

1993-05-01T23:59:59.000Z

19

Mercury removal in utility wet scrubber using a chelating agent  

DOE Patents (OSTI)

A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

Amrhein, Gerald T. (Louisville, OH)

2001-01-01T23:59:59.000Z

20

Flue gas desulfurization sludge: establishment of vegetation on ponded and soil-applied waste. Final report January 1977-September 1981  

SciTech Connect

The report gives results of research to identify and evaluate forms of vegetation and methods of their establishment for reclaiming retired flue gas desulfurization sludge ponds. Also studied were the soil liming value of limestone scrubber sludge (LSS) and plant uptake and percolation losses of some chemical nutrients in the sludge. Several vegetation schemes were evaluated between 1977 and 1982 for covering and stabilizing LSS at Colbert Steam Plant, Cherokee, AL, and Shawnee Steam Plant, Paducah, KY. Eleven tree and 10 grass or legume species were tested for adaptability and survival when planted directly in LSS or in LSS amended with soil, municipal sewage sludge, or standard potting mix. Other studies indicated that LSS apparently has sufficient unreacted limestone to be a satisfactory soil liming agent.

Giordano, P.M.; Mays, D.A.; Soileau, J.M.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EVALUATION OF AEROSOL EMISSIONS DOWNSTREAM OF AN AMMONIA-BASED SO2 SCRUBBER  

SciTech Connect

Depending on the size and type of boiler, the 1990 Clean Air Act Amendments required specific reductions in SO{sub 2} emissions from coal-fired electric utilities. To meet these requirements, SO{sub 2} reduction strategies have included installing scrubbing technology, switching to a more expensive low-sulfur coal, or purchasing SO{sub 2} allowances. It is expected that over the next 10 years there will be an increase in the price of low-sulfur coals, but that higher-sulfur coal costs will remain the same. Technologies must be strongly considered that allow the use of high-sulfur fuels while at the same time meeting current and future SO{sub 2} emission limits. One such technology is the ammonia based flue gas desulfurization (FGD) (NH{sub 3}-based FGD) system manufactured by Marsulex Environmental Technologies (MET). The MET scrubber is a patented NH{sub 3}-based FGD process that efficiently converts SO{sub 2} (>95%) into a fertilizer product, ammonium sulfate ([NH{sub 4}]{sub 2}SO{sub 4}). A point of concern for the MET technology, as well as other FGD systems, is the emission of sulfuric acid/SO{sub 3} aerosols that could result in increased opacity at the stack. This is a direct result of firing high-sulfur fuels that naturally generate more SO{sub 3} than do low-sulfur coals. SO{sub 3} is formed during the coal combustion process. SO{sub 3} is converted to gaseous H{sub 2}SO{sub 4} by homogeneous condensation, leading to a submicron acid fume that is very difficult to capture in a dry electrostatic precipitator (ESP). The condensed acid can also combine with the fly ash in the duct and scale the duct wall, potentially resulting in corrosion of both metallic and nonmetallic surfaces. Therefore, SO{sub 3} in flue gas can have a significant impact on the performance of coal-fired utility boilers, air heaters, and ESPs. In addition to corrosion problems, excess SO{sub 3} emissions can result in plume opacity problems. Thus the Energy & Environmental Research Center (EERC) was contracted by MET and the U.S. Department of Energy (DOE) to evaluate the potential of a wet ESP for reducing SO{sub 3} emissions. The work consisted of pilot-scale tests using the EERC's slagging furnace system (SFS) to determine the effectiveness of a wet ESP to control SO{sub 3}/H{sub 2}SO{sub 4} aerosol emissions in conjunction with a dry ESP and MET's NH{sub 3}-based FGD. Because these compounds are in the form of fine particles, it is speculated that a relatively small, highly efficient wet ESP following the MET scrubber would remove these fine aerosol particles. The performance target for the wet ESP was a particulate mass collection efficiency of >90%; this level of performance would likely ensure a stack opacity of <10%.

Dennis L. Laudal

2002-04-01T23:59:59.000Z

22

[Passamaquoddy Technology Recovery Scrubber{trademark}, March 1992  

SciTech Connect

The Passamaquoddy Technology Recovery Scrubber{trademark} has been built and is being demonstrated on-line at the Dragon Products Plant in Thomaston, Maine. This Innovative Clean Coal Technology is using waste cement kiln dust (CKD) to scrub sulfur dioxide, some NO{sub x}, as well as a small amount of carbon dioxide from a coal burning kiln exhaust flue gas. The process also enables the cement plant to reuse the treated CKD, eliminating the need to landfill this material. Potassium, the offending contaminant in the CKD, is extracted in a useful form, potassium sulfate, which is used as a fertilizer. These useful products generate income from operation of this Recovery Scrubber. System start-up was begun in late December of 1990. At that time, several mechanical problems were encountered. These relatively minor problems were resolved enabling Phase III to begin on August 20, 1991. While inefficiencies are still being worked out, major program objectives are being met. Resolution of remaining operability problems is well in hand and should not hamper attainment of all project goals.

Not Available

1992-03-03T23:59:59.000Z

23

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

24

Flue gas desulfurization/denitrification using metal-chelate additives  

DOE Patents (OSTI)

A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

1985-08-05T23:59:59.000Z

25

Desulfurization of lignite using steam and air  

E-Print Network (OSTI)

OF CONTENTS PAGE INTRODUCTION LITERATURE REVIEW Sulfur Removal Using a Fixed Bed Reactor Sulfur Removal Using a Batch Fluidized Bed Reactor . . 9 Continuous Fluidized Bed Reactor Systems for Desulfurization of Coal Clean Coke Process IGT Process... . This study was aimed primarily at producing better metallurgical coke. The ef+ects of various gases on +he sulfur remova1 wo re measured 0 for coal samples at varying t mperatures up to 1273 K The sample was h ated. at a constant ra+ e until the t. st...

Carter, Glenn Allen

2012-06-07T23:59:59.000Z

26

Ultrasound-promoted chemical desulfurization of Illinois coals  

SciTech Connect

The overall objectives of the program were to investigate the use of ultrasound to promote coal desulfurization reactions and to evaluate chemical coal desulfurization schemes under mild conditions through a fundamental understanding of their reaction mechanisms and kinetics. The ultimate goal was to develop an economically feasible mild chemical process to reduce the total sulfur content of Illinois Basin Coals, while retaining their original physical characteristics, such as calorific value and volatile matter content. During the program, potential chemical reactions with coal were surveyed under various ultrasonic irradiation conditions for desulfurization, to formulate preliminary reaction pathways, and to select a few of the more promising chemical processes for more extensive study.

Chao, S.S.

1991-01-01T23:59:59.000Z

27

Desulfurization of Texas lignite using steam and air  

E-Print Network (OSTI)

in Coal Sulfur Removal From Coal By Pyrolysis EXPERIMENTAL METHOD Experimental Apparatus Experimental Procedure Analyses of the Products RESULTS AND DISCUSSION Temperature Effect Upon Desulfurization Pressure Effect Upon Desulfurization... . Treatment Composition Effect Pyrolysis Conditions vs. Addition of' Air V1 V111 ix 10 15 20 24 31 31 35 39 43 45 49 52 53 V11 TABLE OF CONTENTS (Continued) PAGE Pyrolysis Conditions vs. Addition of Steam and Air . . 53 Sulfur Removal...

Stone, Robert Reginald

1981-01-01T23:59:59.000Z

28

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-01-01T23:59:59.000Z

29

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-12-01T23:59:59.000Z

30

Deep Desulfurization of Diesel Oil and Crude Oils by a Newly Isolated Rhodococcus erythropolis Strain  

Science Journals Connector (OSTI)

...released from fossil fuel combustion...acid rain and air pollution (6, 22...5 ml metal solution (16). A...desulfurization of fossil fuels. FIG. 1...enrichments. Water Air Soil Pollut...desulfurization of fossil fuels. Nat. Biotechnol...

Bo Yu; Ping Xu; Quan Shi; Cuiqing Ma

2006-01-01T23:59:59.000Z

31

A NOVEL APPROACH TO CATALYTIC DESULFURIZATION OF COAL  

SciTech Connect

Column chromatographic separation of the S=PBu{sub 3}/PBu{sub 3} product mixture followed by weighing the S=PBu{sub 3}, and by vacuum distillation of S=PBu{sub 3}/PBu{sub 3}mixture followed by gas chromatographic analysis are described. Effects of coal mesh size, pre-treatment with methanol Coal (S) + excess PR{sub 3} {yields} Coal + S=PR{sub 3}/PBu{sub 3} and sonication on sulfur removal by PBu{sub 3} revealed that particle size was not observed to affect desulfurization efficiency in a consistent manner. Coal pretreatment with methanol to induce swelling or the addition of a filter aid such as Celite reduced desulfurization efficiency of the PBu{sub 3} and sonication was no more effective than heating. A rationale is put forth for the lack of efficacy of methanol pretreatment of the coal in desulfurization runs with PBu{sub 3}. Coal desulfurization with PBu{sub 3} was not improved in the presence of miniscule beads of molten lithium or sodium as a desulfurizing reagent for SPBu{sub 3} in a strategy aimed at regenerating PBu{sub 3} inside coal pores. Although desulfurization of coals did occur in sodium solutions in liquid ammonia, substantial loss of coal mass was also observed. Of particular concern is the mass balance in the above reaction, a problem which is described in some detail. In an effort to solve this difficulty, a specially designed apparatus is described which we believe can solve this problem reasonably effectively. Elemental sodium was found to remove sulfur quantitatively from a variety of polycyclic organosulfur compounds including dibenzothiophene and benzothiophene under relatively mild conditions (150 C) in a hydrocarbon solvent without requiring the addition of a hydrogen donor. Lithium facilitates the same reaction at a higher temperature (254 C). Mechanistic pathways are proposed for these transformations. Curiously, dibenzothiophene and its corresponding sulfone was virtually quantitatively desulfurized in sodium solutions in liquid ammonia at -33 C, although the yield of biphenyl was only about 20 to 30%. On the other hand, benzothiophene gave a high yield of 2-ethylthiophenol under these conditions. Although our superbase P(MeNCH{sub 2}CH{sub 2}){sub 3}N, which is now commercially available, is a more effective desulfurizing agent for a variety of organophosphorus compounds than PPh{sub 3} or its acyclic analogue P(NMe){sub 3}, it does not desulfurize benzothiophene or dibenzothiophene.

John G. Verkade

2001-11-01T23:59:59.000Z

32

LIFAC sorbent injection desulfurization demonstration project  

SciTech Connect

In December 1990, the US Department of Energy selected 13 projects for funding under the Federal Clean Coal Technology Program (Round 3). One of the projects selected was the project sponsored by LIFAC North America, (LIFAC NA), titled LIFAC Sorbent Injection Desulfurization Demonstration Project.'' The host site for this $17 million, three-phase project is Richmond Power and Light's Whitewater Valley Unit No. 2 in Richmond, Indiana. The LIFAC technology uses upper-furnace limestone injection with patented humidification of the flue gas to remove 75--80% of the sulfur dioxide (SO{sub 2}) in the flue gas. In November 1990, after a ten (10) month negotiation period, LIFAC NA and the US DOE entered into a Cooperative Agreement for the design, construction, and demonstration of the LIFAC system. This report is the first Technical Progress Report covering the period from project execution through the end of December 1990. Due to the power plant's planned outage schedule, and the time needed for engineering, design and procurement of critical equipment, DOE and LIFAC NA agreed to execute the Design Phase of the project in August 1990, with DOE funding contingent upon final signing of the Cooperative Agreement.

Not Available

1991-01-01T23:59:59.000Z

33

Flue gas desulfurization: Physicochemical and biotechnological approaches  

SciTech Connect

Various flue gas desulfurization processes - physicochemical, biological, and chemobiological - for the reduction of emission of SO{sub 2} with recovery of an economic by-product have been reviewed. The physicochemical processes have been categorized as 'once-through' and 'regenerable.' The prominent once-through technologies include wet and dry scrubbing. The wet scrubbing technologies include wet limestone, lime-inhibited oxidation, limestone forced oxidation, and magnesium-enhanced lime and sodium scrubbing. The dry scrubbing constitutes lime spray drying, furnace sorbent injection, economizer sorbent injection, duct sorbent injection, HYPAS sorbent injection, and circulating fluidized bed treatment process. The regenerable wet and dry processes include the Wellman Lord's process, citrate process, sodium carbonate eutectic process, magnesium oxide process, amine process, aqueous ammonia process, Berglau Forchung's process, and Shell's process. Besides these, the recently developed technologies such as the COBRA process, the OSCAR process, and the emerging biotechnological and chemobiological processes are also discussed. A detailed outline of the chemistry, the advantages and disadvantages, and the future research and development needs for each of these commercially viable processes is also discussed.

Pandey, R.A.; Biswas, R.; Chakrabarti, T.; Devotta, S. [National Environmental Engineering Research Institute, Nagpur (India)

2005-07-01T23:59:59.000Z

34

STOCHASTIC COOLING  

E-Print Network (OSTI)

on Stochastic Cooling i n ICE, IEEE Transaction's in Nucl. SICE studies firmly establishing the stochastic cooling

Bisognano, J.

2010-01-01T23:59:59.000Z

35

Separation of the components of flue-gas scrubber sludge by froth flotation  

SciTech Connect

To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of. Currently, the major markets for scrubber sludge are for manufacture of gypsum products, such as wallboard and plaster, and for cement. However, the quality of the raw sludge is often not high enough or consistent enough to satisfy manufacturers, and so the material is difficult to sell. Other markets, such as paper manufacture and plastics fillers, have even more stringent quality requirements and will not accept raw sludge at all. In the work described in this paper, several reagents have been examined to determine their ability to selectively improve the flotation of the unreacted limestone contaminant away from the desirable products (calcium sulfite and gypsum). The most success has been achieved using a cationic collector, which shows a higher selectivity between calcium sulfite and calcium carbonate than do the anionic collectors that were studied.

Kawatra, S.K.; Eisele, T.C. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Metallurgical and Materials Engineering

1995-12-31T23:59:59.000Z

36

Analysis of Dibenzothiophene Desulfurization in a Recombinant Pseudomonas putida Strain  

Science Journals Connector (OSTI)

...two-step resting-cell process combining sequentially P...bottlenecks that limit the commercialization of BDS have been identified...our understanding of the BDS process at a molecular level, the...influence the desulfurization process rate (2). The activity...

Javier Calzada; María T. Zamarro; Almudena Alcón; Victoria E. Santos; Eduardo Díaz; José L. García; Felix Garcia-Ochoa

2008-12-01T23:59:59.000Z

37

ADSORPTIVE DESULFURIZATION OF LIQUID TRANSPORTATION FUELS VIA NICKEL-BASED ADSORBENTS FOR FUEL CELL APPLICATONS.  

E-Print Network (OSTI)

??The objectives of this work are to compare the adsorptive desulfurization capacity of several different types of nickel-based adsorbents and to identify ways for further… (more)

Clemons, Jennifer

2009-01-01T23:59:59.000Z

38

Analysis of a pilot-scale constructed wetland treatment system for flue gas desulfurization wastewater.  

E-Print Network (OSTI)

??Coal-fired generation accounts for 45% of the United States electricity and generates harmful emissions, such as sulfur dioxide. With the implementation of Flue Gas Desulfurization… (more)

Talley, Mary Katherine

2012-01-01T23:59:59.000Z

39

Oxidative desulfurization of dibenzothiophene with tert-butyl hydro peroxide in a photochemical micro-reactor.  

E-Print Network (OSTI)

??Sulfur content in fuels is an increasingly critical environmental issue. Hydrodesulfurization removes sulfur from hydrocarbons; however, further desulfurization is necessary in fuels. New methods are… (more)

Hebert, Eilleen M.

2007-01-01T23:59:59.000Z

40

Stochastic Cooling  

SciTech Connect

Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

Blaskiewicz, M.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Desulfurization of coke oven gas from the coking of coking coal blended with a sorbent and waste plastic  

Science Journals Connector (OSTI)

A new way to implement the simultaneous reutilization of solid waste, the desulfurization of coke oven gas (COG), and even the desulfurization of coke by the co-coking of coking coal (CC) and waste plastic (WP).....

Zhao Rongfang; Ye Shufeng; Xie Yusheng…

2007-03-01T23:59:59.000Z

42

Novel Adsorbent-Reactants for Treatment of Ash and Scrubber Pond Effluents  

SciTech Connect

The overall goal of this project was to evaluate the ability of novel adsorbent/reactants to remove specific toxic target chemicals from ash and scrubber pond effluents while producing stable residuals for ultimate disposal. The target chemicals studied were arsenic (As(III) and As(V)), mercury (Hg(II)) and selenium (Se(IV) and Se(VI)). The adsorbent/reactants that were evaluated are iron sulfide (FeS) and pyrite (FeS{sub 2}). Procedures for measuring concentrations of target compounds and characterizing the surfaces of adsorbent-reactants were developed. Effects of contact time, pH (7, 8, 9, 10) and sulfate concentration (0, 1, 10 mM) on removal of all target compounds on both adsorbent-reactants were determined. Stability tests were conducted to evaluate the extent to which target compounds were released from the adsorbent-reactants when pH changed. Surface characterization was conducted with x-ray photoelectron spectroscopy (XPS) to identify reactions occurring on the surface between the target compounds and surface iron and sulfur. Results indicated that target compounds could be removed by FeS{sub 2} and FeS and that removal was affected by time, pH and surface reactions. Stability of residuals was generally good and appeared to be affected by the extent of surface reactions. Synthesized pyrite and mackinawite appear to have the required characteristics for removing the target compounds from wastewaters from ash ponds and scrubber ponds and producing stable residuals.

Bill Batchelor; Dong Suk Han; Eun Jung Kim

2010-01-31T23:59:59.000Z

43

Electron CoolingElectron Cooling Sergei Nagaitsev  

E-Print Network (OSTI)

Electron CoolingElectron Cooling Sergei Nagaitsev FNAL - AD April 28, 2005 #12;Electron Cooling methods must "get around the theorem" e.g. by pushing phase-space around. #12;Electron Cooling - Nagaitsev 3 TodayToday''s Menus Menu What is cooling? Types of beam cooling Electron cooling Conclusions #12

Fermilab

44

Innovative Carbon Dioxide Sequestration from Flue Gas Using an In-Duct Scrubber Coupled with Alkaline Clay Mineralization  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Carbon Dioxide Sequestration Innovative Carbon Dioxide Sequestration from Flue Gas Using an In-Duct Scrubber Coupled with Alkaline Clay Mineralization Background The United States Department of Energy (DOE) is leading an effort to find novel approaches to reduce carbon dioxide (CO 2 ) emissions from industrial sources. The Industrial Carbon Capture and Sequestration (ICCS) program is funded by the American Recovery and Reinvestment Act (ARRA) to encourage development of processes that

45

Flue gas desulfurization : cost and functional analysis of large-scale and proven plants  

E-Print Network (OSTI)

Flue Gas Desulfurization is a method of controlling the emission of sulfurs, which causes the acid rain. The following study is based on 26 utilities which burn coal, have a generating capacity of at least 50 Megawatts ...

Tilly, Jean

1983-01-01T23:59:59.000Z

46

Microbial Desulfurization of Gasoline in a Mycobacterium goodii X7B Immobilized-Cell System  

Science Journals Connector (OSTI)

...oxides released from fossil fuel combustion contribute to acid rain and air pollution (11, 24). With the...the desulfurization of fossil fuels. MATERIALS AND METHODS...with a sodium chloride solution (0.85%), and resuspended...

Fuli Li; Ping Xu; Jinhui Feng; Ling Meng; Yuan Zheng; Lailong Luo; Cuiqing Ma

2005-01-01T23:59:59.000Z

47

THE USE OF FERRIC SULFATE - ACID MEDIA FOR THE DESULFURIZATION OF MODEL COMPOUNDS OF COAL  

E-Print Network (OSTI)

of Cleaning Processes to U.S. Coals • . 23 B. Purpose . C.Low Temp. Processes for Coal Desulfurization", M.S. Thesis,R.A. , "Chem. Desulf. of Coal", AIChE Sym:p. Series, Meyers,

Clary, Lloyd R.

2014-01-01T23:59:59.000Z

48

Enhanced durability of high-temperature desulfurization sorbents for moving-bed applications. Option 2 Program: Development and testing of zinc titanate sorbents  

SciTech Connect

One of the most advantageous configurations of the integrated gasification combined cycle (IGCC) power system is coupling it with a hot gas cleanup for the more efficient production of electric power in an environmentally acceptable manner. In conventional gasification cleanup systems, closely heat exchangers are necessary to cool down the fuel gases for cleaning, sometimes as low as 200--300{degree}F, and to reheat the gases prior to injection into the turbine. The result is significant losses in efficiency for the overall power cycle. High-temperature coal gas cleanup in the IGCC system can be operated near 1000{degree}F or higher, i.e., at conditions compatible with the gasifier and turbine components, resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for IGCC power systems in which mixed-metal oxides are currently being used as desulfurization sorbents. The objective of this contract is to identify and test fabrication methods and sorbent chemical compositions that enhance the long-term chemical reactivity and mechanical durability of zinc ferrite and other novel sorbents for moving-bed, high-temperature desulfurization of coal-derived gases. Zinc ferrite was studied under the base program of this contract. In the next phase of this program novel sorbents, particularly zinc titanate-based sorbents, are being studied under the remaining optional programs. This topical report summarizes only the work performed under the Option 2 program. In the course of carrying out the program, more than 25 zinc titanate formulations have been prepared and characterized to identify formulations exhibiting enhanced properties over the baseline zinc titanate formulation selected by the US Department of Energy.

Ayala, R.E.

1993-04-01T23:59:59.000Z

49

FOCUS COOLING  

NLE Websites -- All DOE Office Websites (Extended Search)

www.datacenterdynamics.com www.datacenterdynamics.com FOCUS COOLING Issue 28, March/April 2013 LBNL'S NOVEL APPROACH TO COOLING Lawrence Berkeley National Laboratory and APC by Schneider Electric test a unique double-exchanger cooling system LBNL program manager Henry Coles says can cut energy use by half A s part of a demonstration sponsored by the California Energy Commission in support of the Silicon Valley Leadership Group's data center summit, Lawrence Berkeley National Laboratory (LBNL) collaborated with APC by Schneider Electric to demonstrate a novel prototype data center cooling device. The device was installed at an LBNL data center in Berkeley, California. It included two air-to-water heat exchangers. Unlike common single-heat-exchanger configurations, one of these was supplied with

50

Dr. Cool  

Science Journals Connector (OSTI)

...replace fossil fuels, and analyses of hydrogen fuel, natural gas...quickly "cut the average rate of global...global cooling effect of large volcanic...dollars—"the price of a Hollywood blockbuster...away from fossil fuels, he concedes...

Eli Kintisch

2013-10-18T23:59:59.000Z

51

Ventilative cooling  

E-Print Network (OSTI)

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graça, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

52

LIFAC Sorbent Injection Desulfurization Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

41 41 LIFAC Sorbent Injection Desulfurization Demonstration Project: A DOE Assessment January 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov Disclaimer 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

53

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Advanced Flue Gas Desulfurization (AFGD) Demonstration Project A DOE Assessment August 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

54

Technical letter report: Submerged bed scrubber sediment resuspension testing for the Hanford Waste Vitrification Plant  

SciTech Connect

During-vitrification operations in the Hanford Waste Vitrification Plant (HWVP), some feed components will be vented from the melter to the melter offgas cleaning equipment. The current HWVP reference process for melter off.-gas treatment includes a submerged bed scrubber (SBS) to provide the first stage of off-gas scrubbing and quenching. During most melter/off-gas test runs at Pacific Northwest Laboratory (PNL) with the Pilot Scale Ceramic Melter (PSCM) and at the West Valley Demonstration Project (WVDP), no significant quantities of sedimentation were accumulated in the SBS scrub tank. However, during test run SF-12, conducted at West Valley, approximately 6 in. of sedimentation accumulated in the scrub tank. This raised concerns that a similar accumulation could occur with the HWVP SBS, If such an accumulation rate occurred during a sustained melter run, the SBS would soon cease to function. To alleviate the potential for sedimentation buildup, the HWVP SBS design includes a sparge ring at the bottom of the scrub tank. The sparge ring will be operated intermittently to prevent buildup of solids which could interfere with circulation with the SBS Scrub tank. This report presents the results of testing conducted to evaluate the effectiveness of the HWVP sparge ring design. Section 2 contains-the conclusions and recommendations; Section 3 summarizes the objectives; Section 4 describes the equipment and materials used; Section 5 gives the experimental approach; and Section 6 discusses the results. The appendices contain procedures for sediment resuspension testing and particle size distribution data for silica and sediment.

Schmidt, A.J.; Herrington, M.G.

1996-03-01T23:59:59.000Z

55

Apparatus and method for the desulfurization of petroleum by bacteria  

DOE Patents (OSTI)

A method is described for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the ``Sulfate Reducing Bacteria``. These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing. 5 figs.

Lizama, H.M.; Scott, T.C.; Scott, C.D.

1995-10-17T23:59:59.000Z

56

Desulfurization of Digester Gas on Industrial-Sludge-Derived Adsorbents  

Science Journals Connector (OSTI)

The performance of adsorbents in the breakthrough tests is summarized in Tables 1 and 2, where besides the capacity expressed in milligrams per unit mass of an adsorbent or in milligrams per unit bed volume, the amount of water adsorbed during prehumidification, bed density, and pH before and after exposure to DG are listed. ... Probably the most important negative effect can be linked to the engagement of magnesium and calcium oxides in the carbonate entities, which, besides lowering surface pH and thus the number of HS- ions formed, limits the extent of reactions 2 and 7. Nevertheless, the performance of our adsorbents in desulfurization of DG is better than that of catalytically activated carbons, such as Midas or DarcoH2S, for which 73 and 39 mg/g of H2S adsorbed, respectively, was reported. ... result in adsorbents whose capacity, although smaller than that for the single-component waste oil sludge-based adsorbent, is high compared to that of conventional activated carbons. ...

Mykola Seredych; Teresa J. Bandosz

2007-01-12T23:59:59.000Z

57

KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS  

SciTech Connect

Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. In this report, the reactivity of AHI-5 was examined. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 70 {micro}m particles are reacted with 9000-18000 ppm hydrogen sulfide at 350-500 C. The range of space time of reaction gas mixtures is 0.071-0.088 s. The range of reaction duration is 4-10800 s.

K.C. Kwon

2001-01-01T23:59:59.000Z

58

Manganese-based sorbents for coal gas desulfurization  

SciTech Connect

The intent of this study is to perform a preliminary screening on a particular Mn-based sorbent, CST-939 (from Chemetals), for hot gas desulfurization. The purpose of the preliminary screening is to determine which temperature and type of coal gas this sorbent demonstrates the greatest capacity and efficiency for sulfur removal. The following conclusions were made from the data collected on the CST-939 sorbent: The sorbent efficiency and capacity are much greater at 343{degrees}C (650{degrees}F) than at 871{degrees}C (1,600{degrees}F). The sorbent efficiency and capacity are much greater in the presence of the more highly-reducing Shell gas than with the less-reducing KRW gas. The sorbent showed tremendous capacity for sulfur pickup, with actual loadings as high as 21 weight percent. Oxidative regeneration at 871{degrees}C (1,600{degrees}F) appeared to decompose sulfate; however, unusually high SO{sub 2} release during the second sulfidations and/or reductive regenerations indicated incomplete regeneration. The average crush strength of the reacted sorbent did not indicate any loss of strength as compared to the fresh sorbent. Superior sorbent performance was obtained in the presence of simulated Shell gas at 538{degrees}C (1,000{degrees}F).

Gasper-Galvin, L.D.; Fisher, E.P. [USDOE Morgantown Energy Technology Center, WV (United States); Goyette, W.J. [Chemetals, Inc., Baltimore, MD (United States)

1996-12-31T23:59:59.000Z

59

Evaluation of sulfur-reducing microorganisms for organic desulfurization. [Pyrococcus furiosus  

SciTech Connect

Because of substantial portion of the sulfur in Illinois coal is organic, microbial desulfurization of sulfidic and thiophenic functionalities could hold great potential for completing pyritic sulfur removal. We are testing the hypothesis that organic sulfur can be reductively removed as H{sub 2}S through the activities of anaerobic microorganisms. Our objectives for this year include the following: (1) To obtain cultures that will reductively desulfurize thiophenic model compounds. In addition to crude oil enrichments begun last year, we sampled municipal sewage sludge. (2) To continue to work toward optimizing the activity of the DBDS-reducing cultures obtained during the previous year. (3) To expand coal desulfurization work to include other coals including Illinois Basin Coal 101 and a North Dakota lignite, which might be more susceptible to the dibenzyldisulfide reducing cultures due to its lower rank. (4) To address the problem of sulfide sorption, by investigating the sorption capacity of coals in addition to Illinois Basin Coal 108.

Miller, K.W.

1991-01-01T23:59:59.000Z

60

ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS  

SciTech Connect

The U.S. Department of Energy and EPRI co-funded this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project has investigated catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installations. Field tests were conducted to determine whether candidate catalyst materials remain active towards mercury oxidation after extended flue gas exposure. Catalyst life will have a large impact on the cost effectiveness of this potential process. A mobile catalyst test unit was used to test the activity of four different catalyst materials for a period of up to six months each at three utility sites. Catalyst testing was completed at the first site, which fires Texas lignite, in December 1998; at the second test site, which fires a Powder River Basin subbituminous coal, in November 1999; and at the third site, which fires a medium- to high-sulfur bituminous coal, in January 2001. Results of testing at each of the three sites were reported in previous technical notes. At Site 1, catalysts were tested only as powders dispersed in sand bed reactors. At Sites 2 and 3, catalysts were tested in two forms, including powders dispersed in sand and in commercially available forms such as extruded pellets and coated honeycomb structures. This final report summarizes and presents results from all three sites, for the various catalyst forms tested. Field testing was supported by laboratory tests to screen catalysts for activity at specific flue gas compositions, to investigate catalyst deactivation mechanisms and methods for regenerating spent catalysts. Laboratory results are also summarized and discussed in this report.

Unknown

2001-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

PRODUCTION OF CONSTRUCTION AGGREGATES FROM FLUE GAS DESULFURIZATION SLUDGE  

SciTech Connect

Through a cooperative agreement with DOE, the Research and Development Department of CONSOL Inc. (CONSOL R and D) is teaming with SynAggs, Inc. and Duquesne Light to design, construct, and operate a 500 lb/h continuous pilot plant to produce road construction aggregate from a mixture of wet flue gas desulfurization (FGD) sludge, fly ash, and other components. The proposed project is divided into six tasks: (1) Project Management; (2) Mix Design Evaluation; (3) Process Design; (4) Construction; (5) Start-Up and Operation; and (6) Reporting. In this quarter, Tasks 1 and 2 were completed. A project management plan (Task 1) was issued to DOE on October 22, 1998 . The mix design evaluation (Task 2) with Duquesne Light Elrama Station FGD sludge and Allegheny Power Hatfields Ferry Station fly ash was completed. Eight semi-continuous bench-scale tests were conducted to examine the effects of mix formulation on aggregate properties. A suitable mix formulation was identified to produce aggregates that meet specifications of the American Association of State High Transport Officials (AASHTO) as Class A aggregate for use in highway construction. The mix formulation was used in designing the flow sheet of the pilot plant. The process design (Task 3) is approximately 80% completed. Equipment was evaluated to comply with design requirements. The design for the curing vessel was completed by an outside engineering firm. All major equipment items for the pilot plant, except the curing vessel, were ordered. Pilot plant construction (Task 4) was begun in October. The Hazardous Substance Plan was issued to DOE. The Allegheny County (PA) Heat Department determined that an air emission permit is not required for operation of the pilot plant.

NONE

1998-12-01T23:59:59.000Z

62

Separation of flue-gas scrubber sludge into marketable products. Second year, second quarterly technical progress report, Quarter No. 6, December 1, 1994--February 28, 1995  

SciTech Connect

To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of. This sludge is a result of reacting limestone with sulfur dioxide to precipitate calcium sulfite and calcium sulfate. It consists of calcium sulfite (CaSO{sub 3}{sm_bullet}0.5H{sub 2}O), gypsum (CaSO{sub 4}{sm_bullet}2H{sub 2}O), and unreacted limestone (CaCO{sub 3}) or lime (Ca(OH){sub 2}), with miscellaneous objectionable impurities such as iron oxides, silica, and magnesium, sodium, and potassium oxides or salts. These impurities prevent many sludges from being utilized as a replacement for natural gypsum, and as a result they must be disposed of in landfills, which presents a serious disposal problem. This project is studying the characteristics of flue-gas scrubber sludges from several sources, which is necessary for the development of purification technologies which will make it possible to directly utilize scrubber sludges rather than landfilling them. This purification will consist of minimal-reagent froth flotation, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified calcium sulfite/gypsum product.

KAwatra, S.K.; Eisele, T.C.

1995-03-01T23:59:59.000Z

63

Ultrasound-promoted chemical desulfurization of Illinois coals. Final technical report, September 1, 1990--August 31, 1991  

SciTech Connect

The overall objectives of the program were to investigate the use of ultrasound to promote coal desulfurization reactions and to evaluate chemical coal desulfurization schemes under mild conditions through a fundamental understanding of their reaction mechanisms and kinetics. The ultimate goal was to develop an economically feasible mild chemical process to reduce the total sulfur content of Illinois Basin Coals, while retaining their original physical characteristics, such as calorific value and volatile matter content. During the program, potential chemical reactions with coal were surveyed under various ultrasonic irradiation conditions for desulfurization, to formulate preliminary reaction pathways, and to select a few of the more promising chemical processes for more extensive study.

Chao, S.S.

1991-12-31T23:59:59.000Z

64

A Reusable Calcium-Based Sorbent for Desulfurizing Hot Coal Gas  

SciTech Connect

The overall objective of this project has been to develop a superior, regenerable, calcium-based sorbent for desulfurizing hot coal gas. The sorbent should be strong, durable, inexpensive to manufacture, and capable of being reused many times. To achieve these objectives the project has focused on the development of the very promising core-in-shell sorbent.

Wheelock, T.D.; Hasler, D.J.L.

2002-09-19T23:59:59.000Z

65

Desulfurization of Liquid Fuel via Fractional Evaporation and Subsequent Hydrodesulfurization Upstream a Fuel Cell System  

Science Journals Connector (OSTI)

The polymer electrolyte membrane fuel cell (PEMFC) and the solid oxide fuel cell (SOFC) are favored for application in the foreseeable future. ... For fuel cells to be fuelled with liquid fuels as per Figure 1, an upstream desulfurization step is mandatory. ... fuel?recovered ...

Markus Brune; Rainer Reimert

2005-08-17T23:59:59.000Z

66

Novel Nanoscale Catalysts and Desulfurizers for Aviation Fuels Martin Duran* and Abdul-Majeed Azad  

E-Print Network (OSTI)

reforming catalysts for jet fuel", The Ohio Fuel Cell Symposium of the Ohio Fuel Cell Coalition, May 23Novel Nanoscale Catalysts and Desulfurizers for Aviation Fuels Martin Duran* and Abdul-Majeed Azad) to hydrogen through steam reforming poses a challenge since these fuels contain sulfur up to about 1000 ppm

Azad, Abdul-Majeed

67

Cooling Dry Cows  

E-Print Network (OSTI)

This publication discusses the effects of heat stress on dairy cows, methods of cooling cows, and research on the effects of cooling cows in the dry period....

Stokes, Sandra R.

2000-07-17T23:59:59.000Z

68

Zevenhoven & Kilpinen CROSS EFFECTS, TOTAL SYSTEM LAY-OUT 13.6.2001 10-1 Figure 10.1 Typical pulverised coal combustion and gas clean-up system: dry scrubber +  

E-Print Network (OSTI)

pulverised coal combustion and gas clean-up system: dry scrubber + baghouse filter for SO2 and particulate For a conventional pulverised coal-fired power plant a set-up is shown in Figure 10.1, with a gas clean-up system scrubber (pH ~ 6) 60 - 70 7 Re-heater 350 - 400 8 SCR DeNOx 300 - 400 9 Active coke bed 100 - 150 Figure 10

Zevenhoven, Ron

69

Passamaquoddy Technology Recovery Scrubber{trademark} at the Dragon Products, Inc. Cement Plant located in Thomaston, Maine. 1990 Annual technical report  

SciTech Connect

The background and process of the Passamaquoddy Technology Recovery Scrubber{trademark} are described. The Scrubber was developed for Dragon Cement Plant in Thomaston, Maine and facilitates a number of process improvements. The exhaust gas is scrubbed of SO{sub 2} with better than 90% efficiency. The kiln dust is cleaned of alkalines and so can be returned to kiln feed instead of dumped to landfill. Potassium sulfate in commercial quantity and purity can be recovered. Distilled water is recovered which also has commercial potential. Thus, various benefits are accrued and no waste streams remain for disposal. The process is applicable to both wet and dry process cement kilns and appears to have potential in any industry which generates acidic gaseous exhausts and/or basic solid or liquid wastes.

Not Available

1990-12-31T23:59:59.000Z

70

Desulfurization of coal: enhanced selectivity using phase transfer catalysts. Quarterly report, March 1 - May 31, 1996  

SciTech Connect

Due to environmental problems related to the combustion of high sulfur Illinois coal, there continues to be interest in the development in viable pre-combustion desulfurization processes. Recent studies by the authors have obtained very good sulfur removals but the reagents that are used are too expensive. Use of cheaper reagents leads to a loss of desired coal properties. This study investigated the application phase transfer catalysts to the selective oxidation of sulfur in coal using air and oxygen as oxidants. The phase transfer catalyst is expected to function as a selectivity moderator by permitting the use of milder reaction conditions that otherwise necessary. This would enhance the sulfur selectivity and help retain the heating value of the coal. The use of certain coal combustion wastes for desulfurization, and the application of cerium (IV) catalyzed air oxidation for selective sulfur oxidation are also being studied. If successful, this project could lead to the rapid development of a commercially viable desulfurization process. This would significantly improve the marketability of Illinois coal.

Palmer, S.R.; Hippo, E.J. [Southern Illinois Univ., Carbondale, IL (United States)

1996-12-31T23:59:59.000Z

71

Integrating desulfurization with CO{sub 2}-capture in chemical-looping combustion  

SciTech Connect

Chemical looping combustion (CLC) is an emerging technology for clean combustion. We have previously demonstrated that the embedding of metal nanoparticles into a nanostructured ceramic matrix can result in unusually active and sinter-resistant nanocomposite oxygen carrier materials for CLC which maintain high reactivity and high-temperature stability even when sulfur contaminated fuels are used in CLC. Here, we propose a novel process scheme for in situ desulfurization of syngas with simultaneous CO{sub 2}-capture in chemical looping combustion by using these robust nanocomposite oxygen carriers simultaneously as sulfur-capture materials. We found that a nanocomposite Cu-BHA carrier can indeed strongly reduce the H{sub 2}S concentration in the fuel reactor effluent. However, during the process the support matrix is also sulfidized and takes part in the redox process of CLC. This results in SO{sub 2} production during the reduction of the oxygen carrier and thus limits the degree of desulfurization attainable with this kind of carrier. Nevertheless, the results suggest that simultaneous desulfurization and CO{sub 2} capture in CLC is feasible with Cu as oxygen carrier as long as appropriate carrier support materials are chosen, and could result in a novel, strongly intensified process for low-emission, high efficiency combustion of sulfur contaminated fuel streams.

Solunke, Rahul; Veser, Goetz

2011-02-01T23:59:59.000Z

72

SteamScrubber & FlaskScrubber  

E-Print Network (OSTI)

44203 Series 44004 Series 44204 Series User's Manual LABCONCO CORPORATION 8811 PROSPECT AVENUE KANSAS www.labconco.com Labconco's Mascot, Labby the LABster Register your product online at www or CD. See Product Registration Card to order. #12;Copyright Information Copyright © 2002 Labconco

Kleinfeld, David

73

Recovery and utilization of gypsum and limestone from scrubber sludge. [Quarterly] technical report, March 1, 1993--May 31, 1993  

SciTech Connect

Wet flue-gas desulfurization units in coal-fired power plants produce a large amount of sludge which must be disposed of, and which is currently landfilled in most cases. Increasing landfill costs are gradually forcing utilities to find other alternatives. In principle, this sludge can be used to make gypsum (CaSO{sub 4}-2H{sub 2}O) for products such as plaster-of-Paris and wallboard, but only if impurities such as unreacted limestone and soluble salts are removed, and the calcium sulfite (CaSO{sub 3}) is oxidized to calcium sulfate (CaSO{sub 4}). This project is investigating methods for removing the impurities from the sludge so that high-quality, salable gypsum products can be made. Work done in the previous quarter concentrated on developing a low-cost froth flotation process that could remove limestone, unburned carbon, and related contaminants from the sludge while recovering the bulk of the calcium sulfite and gypsum. In the current quarter, experiments to remove impurities from the sludge using a water-only cyclone were conducted. The cyclone has been found to be effective for removing the coarser limestone impurities, as well as removing contaminants such as fine gravel and grinding-ball chips. These results show that the cyclone will be very complementary with froth flotation, which mainly removes the very fine impurities.

Kawatra, S.K.; Eisele, T.C. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Metallurgical and Materials Engineering

1993-09-01T23:59:59.000Z

74

Evaluation of sulfur-reducing microorganisms for organic desulfurization. Final technical report, September 1, 1990--August 31, 1991  

SciTech Connect

Because of substantial portion of the sulfur in Illinois coal is organic, microbial desulfurization of sulfidic and thiophenic functionalities could hold great potential for completing pyritic sulfur removal. We are testing the hypothesis that organic sulfur can be reductively removed as H{sub 2}S through the activities of anaerobic microorganisms. Our objectives for this year include the following: (1) To obtain cultures that will reductively desulfurize thiophenic model compounds. In addition to crude oil enrichments begun last year, we sampled municipal sewage sludge. (2) To continue to work toward optimizing the activity of the DBDS-reducing cultures obtained during the previous year. (3) To expand coal desulfurization work to include other coals including Illinois Basin Coal 101 and a North Dakota lignite, which might be more susceptible to the dibenzyldisulfide reducing cultures due to its lower rank. (4) To address the problem of sulfide sorption, by investigating the sorption capacity of coals in addition to Illinois Basin Coal 108.

Miller, K.W.

1991-12-31T23:59:59.000Z

75

Polycyclic aromatic hydrocarbon emission profiles and removal efficiency by electrostatic precipitator and wetfine scrubber in an iron ore sintering plant  

SciTech Connect

A monitoring campaign of polychlorinated dibenzo-p-dioxins and dibenzofurans, polyaromatic hydrocarbons (PAHs), and polychlorinated biphenyl was carried out in an Italian iron ore sintering plant by sampling the combustion gases at the electrostatic precipitator (ESP) outlet, at the Wetfine scrubber (WS) outlet, and by collecting the ESP dust. Few data are available on these micropollutants produced in iron ore sintering plants, particularly from Italian plants. This study investigates the PAH emission profiles and the removal efficiency of ESPs and WS. PAHs were determined at the stack, ESP outlet flue gases, and in ESP dust to characterize the emission profiles and the performance of the ESP and the WS for reducing PAH emission. The 11 PAHs monitored are listed in the Italian legislative decree 152/2006. The mean total PAH sum concentration in the stack flue gases is 3.96 {mu}g/N m{sup 3}, in ESP outlet flue gases is 9.73 {mu}g/N m{sup 3}, and in ESP dust is 0.53 {mu}g/g. Regarding the emission profiles, the most abundant compound is benzo(b)fluoranthene, which has a relative low BaP toxic equivalency factors (TEF) value, followed by dibenzo(a,l)pyrene, which has a very high BaP(TEF) value. The emission profiles in ESP dust and in the flue gases after the ESP show some changes, whereas the fingerprint in ESP and stack flue gases is very similar. The removal efficiency of the ESP and of WS on the total PAH concentration is 5.2 and 59.5%, respectively. 2 figs., 5 tabs.

Ettore Guerriero; Antonina Lutri; Rosanna Mabilia; Maria Concetta Tomasi Sciano; Mauro Rotatori [Istituto sull'Inquinamento Atmosferico, Monterotondo Scalo (Italy). Consiglio Nazionale delle Ricerche

2008-11-15T23:59:59.000Z

76

Development and evaluation of two reactor designs for desulfurization of Texas lignites  

E-Print Network (OSTI)

Studies One of the earliest extensive studies of sulfur removal from coal was performed by R. D. Snow in 1932. The primary goal of this study was to produce a better metallurgical coke. The effects of various gases on sulfur removal were measured... of coke, most of the hydrogen rich parts of the coal are devolatilized. It is the hydrogen, however, that provides a large part of the energy when the product is used as a fuel. Clearly, any desulfurization technique for fuel should take place under...

Merritt, Stanley Duane

2012-06-07T23:59:59.000Z

77

CoolEarth formerly Cool Earth Solar | Open Energy Information  

Open Energy Info (EERE)

CoolEarth formerly Cool Earth Solar CoolEarth formerly Cool Earth Solar Jump to: navigation, search Name CoolEarth (formerly Cool Earth Solar) Place Livermore, California Zip 94550 Product CoolEarth is a concentrated PV developer using inflatable concentrators to focus light onto triple-junction cells. References CoolEarth (formerly Cool Earth Solar)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CoolEarth (formerly Cool Earth Solar) is a company located in Livermore, California . References ↑ "CoolEarth (formerly Cool Earth Solar)" Retrieved from "http://en.openei.org/w/index.php?title=CoolEarth_formerly_Cool_Earth_Solar&oldid=343892" Categories: Clean Energy Organizations

78

Separation of flue-gas scrubber sludge into marketable products. Second quarterly technical progress report, December 1, 1993--February 28, 1994 (Quarter No. 2)  

SciTech Connect

To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of This sludge is a result of reacting limestone with sulfur dioxide to precipitate calcium sulfite and calcium sulfate. It consists of calcium sulfite (CaSO{sub 3}{lg_bullet}0.5H{sub 2}0), gypsum (CaSO{sub 4}{lg_bullet}2H{sub 2}0), and unreacted limestone (CaCO{sub 3}) or lime (Ca(OH){sub 2}), with miscellaneous objectionable impurities such as iron oxides; silica; and magnesium, sodium, and potassium oxides or salts. Currently, the only market for scrubber sludge is for manufacture of gypsum products, such as wallboard and plaster, and for cement. However, the quality of the raw sludge is often not high enough or consistent enough to satisfy manufacturers, and so the material is difficult to sell. This project is developing a process that can produce a high-quality calcium sulfite or gypsum product while keeping process costs low enough that the material produced will be competitive with that from other, more conventional sources. This purification will consist of minimal-reagent froth flotation, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified gypsum or calcium sulfite product. The separated limestone will be a useful by-product, as it can be recycled to the scrubber, thus boosting the limestone utilization and improving process efficiency. Calcium sulfite will then be oxidized to gypsum, or separated as a salable product in its own right from sludges where it is present in sufficient quantity. The main product of the process will be either gypsum or calcium sulfite, depending on the characteristics of the sludge being processed. These products will be sufficiently pure to be easily marketed, rather that being landfilled.

Kawatra, S.K.; Eisele, T.C.

1994-03-01T23:59:59.000Z

79

Stochastic cooling in RHIC  

SciTech Connect

The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

Brennan J. M.; Blaskiewicz, M.; Mernick, K.

2012-05-20T23:59:59.000Z

80

Desulfurization of saturated C3S molecules on Mo(110): the effect of ring strain  

SciTech Connect

The reactions of trimethylene sulfide (c-C3H6S) and 1-propanethiol (C3H7SH) have been investigated on Mo(110) under ultrahigh vacuum using temperature-programmed reaction spectroscopy and Auger electron spectroscopy. Deuterium preadsorption experiments were conducted in conjunction with temperature-programmed reaction spectroscopy to deduce some mechanistic details of the reactions. Desulfurization reactions of both molecules to produce propane and propene were observed in the temperature range of 300-350 K, with propane production preceding propene production. In addition, trimethylene sulfide decomposed to form cyclopropane at 190 K. Both trimethylene sulfide and 1-propanethiol reacted on Mo(110) to produce gaseous dihydrogen in two peaks at approximately 350 and 540 K, as well as surface carbon and sulfur. Small amounts of reversibly adsorbed 1-propanethiol desorbed from Mo(110) between 175 and 200 K. Auger electron spectroscopy measurements suggest that approximately 50% of chemisorbed trimethylene sulfide decomposed to form hydrocarbons, while 70% of irreversibly chemisorbed 1-propanethiol decomposed to form hydrocarbons. The decomposition of trimethylene sulfide to cyclopropane is postulated to occur by one of three pathways. One of these pathways is entirely intramolecular, and the other two involve metallacycle transition states or intermediates. Trimethylene sulfide and 1-propanethiol are proposed to form propane and propene by way of a surface propyl thiolate intermediate, in a fashion similar to the reactions of tetrahydrothiophene and 1-butanethiol on Mo(110). The possible contributions of ring strain to the energetics and selectivity of the desulfurization reactions are discussed.

Roberts, J.T.; Friend, C.M.

1987-06-24T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994  

SciTech Connect

The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

Hepworth, M.T.; Slimane, R.B.

1994-11-01T23:59:59.000Z

82

Thermostabilization of desulfurization enzymes from Rhodococcos sp. IGTS8. Final technical report  

SciTech Connect

The objective of this project was to develop thermophilic cultures capable of expressing the desulfurization (dsz) operon of Rhodococcus sp. IGTS8. The approaches taken in this project included the development of plasmid and integrative expression vectors that function well in Thermus thermophilus, the cloning of Rhodococcus dsz genes in Thermus expression vectors, and the isolation of bacterial cultures that express the dsz operon at thermophilic temperatures. This project has resulted in the development of plasmid and integrative expression vectors for use in T. thermophilus. The dsz genes have been expressed at moderately thermophilic temperatures (52 C) in Mycobacterium phlei and at temperatures as high as 72 C in T. thermophilus. The tools and methods developed in this project will be generally useful for the expression of heterologous genes in Thermus. Key developments in the project have been the isolation of a Mycobacterium phlei culture capable of expressing the desulfurization operon at 52 C, development of plasmid and integrative expression vectors for Thermus thermophilus, and the development of a host-vector system based on the malate dehydrogenase gene that allows plasmids to be stably maintained in T. thermophilus and provides a convenient reporter gene for the accurate quantification of gene expression. Publications have been prepared regarding each of these topics; these preprints are included.

John J. Kilbane II

2000-12-15T23:59:59.000Z

83

Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in the Northern Great Plains  

SciTech Connect

Flue gas desulfurization gypsum (FGDG) is a byproduct from the combustion of coal for electrical energy production. Currently, FGDG is being produced by 15 electrical generating stations in Alabama, Florida, Indiana, Iowa, Kentucky, Ohio, North Carolina, South Carolina, Tennessee, Texas, and Wisconsin. Much of this byproduct is used in the manufacturing of wallboard. The National Network for Use of FGDG in Agriculture was initiated to explore alternative uses of this byproduct. In the northern Great Plains (North Dakota, South Dakota, and Montana), FGDG has the potential to be used as a Ca or S fertilizer, as an acid soil ameliorant, and for reclaiming or mitigating sodium-affected soils. Greater than 1.4 million Mg of FGDG could initially be used in these states for these purposes. Flue gas desulfurization gypsum can be an agriculturally important resource for helping to increase the usefulness of problem soils and to increase crop and rangeland production. Conducting beneficial use audits would increase the public awareness of this product and help identify to coal combustion electrical generating stations the agriculturally beneficial outlets for this byproduct.

DeSutter, T.M.; Cihacek, L.J. [North Dakota State University, Fargo, ND (United States). Department of Soil Science

2009-07-15T23:59:59.000Z

84

Gas turbine cooling system  

DOE Patents (OSTI)

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

85

District cooling gets hot  

SciTech Connect

Utilities across the country are adopting cool storage methods, such as ice-storage and chilled-water tanks, as an economical and environmentally safe way to provide cooling for cities and towns. The use of district cooling, in which cold water or steam is pumped to absorption chillers and then to buildings via a central community chiller plant, is growing strongly in the US. In Chicago, San Diego, Pittsburgh, Baltimore, and elsewhere, independent district-energy companies and utilities are refurbishing neglected district-heating systems and adding district cooling, a technology first developed approximately 35 years ago.

Seeley, R.S.

1996-07-01T23:59:59.000Z

86

Power electronics cooling apparatus  

DOE Patents (OSTI)

A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

2000-01-01T23:59:59.000Z

87

Logistics: Keeping cool  

Science Journals Connector (OSTI)

... Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 10.1038/507S8aLogistics: Keeping cool NeilSavageN

Neil Savage

2014-03-05T23:59:59.000Z

88

Cooling System Analysis.  

E-Print Network (OSTI)

??ABSTRACT This master thesis report describes the behavior of a cooling system based on the power consumption and power losses during the velocity range. The… (more)

Cruz, João Pedro Brás da

2012-01-01T23:59:59.000Z

89

Cool Earth Solar  

ScienceCinema (OSTI)

In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

2014-02-26T23:59:59.000Z

90

Very Cool Close Binaries  

E-Print Network (OSTI)

We present new observations of cool <6000K and low mass <1Msun binary systems that have been discovered by searching several modern stellar photometric databases. The search has led to a factor of 10 increase in the number of known cool close eclipsing binary systems.

J. Scott Shaw; Mercedes Lopez-Morales

2006-03-28T23:59:59.000Z

91

Secondary condenser Cooling water  

E-Print Network (OSTI)

Receiver Secondary condenser LC LC Reboiler TC PC Cooling water PC FCPC Condenser LC XC Throttling valve ¨ mx my l© ª y s § y m «¬ ly my wx l n® ® x np © ¯ Condenser Column Compressor Receiver Super-heater Decanter Secondary condenser Reboiler Throttling valve Expansion valve Cooling water

Skogestad, Sigurd

92

Home Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Cooling Home Cooling Ventilation Systems for Cooling Learn how to avoid heat buildup and keep your home cool with ventilation. Read more Cooling with a Whole House Fan A whole-house fan, in combination with other cooling systems, can meet all or most of your home cooling needs year round. Read more Although your first thought for cooling may be air conditioning, there are many alternatives that provide cooling with less energy use. You might also consider fans, evaporative coolers, or heat pumps as your primary means of cooling. In addition, a combination of proper insulation, energy-efficient windows and doors, daylighting, shading, and ventilation will usually keep homes cool with a low amount of energy use in all but the hottest climates. Although ventilation is not an effective cooling strategy in hot, humid

93

Cool Roof Colored Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roof Colored Materials Cool Roof Colored Materials Speaker(s): Hashem Akbari Date: May 29, 2003 - 12:00pm Location: Bldg. 90 Raising roof reflectivity from an existing 10-20% to about 60% can reduce cooling-energy use in buildings in excess of 20%. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning and retards smog formation. Reflective roofing products currently available in the market are typically used for low-sloped roofs. For the residential buildings with steep-sloped roofs, non-white (colored) cool roofing products are generally not available and most consumers prefer colors other than white. In this collaborative project LBNL and ORNL are working with the roofing industry to develop and produce reflective, colored roofing products and make yhrm a market reality within three to

94

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

95

Hydronic Radiant Cooling Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Hydronic Radiant Cooling Systems Cooling nonresidential buildings in the U.S. contributes significantly to electrical power consumption and peak power demand. Part of the electrical energy used to cool buildings is drawn by fans transporting cool air through the ducts. The typical thermal cooling peak load component for California office buildings can be divided as follows: 31% for lighting, 13% for people, 14% for air transport, and 6% for equipment (in the graph below, these account for 62.5% of the electrical peak load, labeled "chiller"). Approximately 37% of the electrical peak power is required for air transport, and the remainder is necessary to operate the compressor. DOE-2 simulations for different California climates using the California

96

Solar Desiccant Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Desiccant Cooling Solar Desiccant Cooling Speaker(s): Paul Bourdoukan Date: December 6, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil The development of HVAC systems is a real challenge regarding its environmental impact. An innovative technique operating only by means of water and solar energy, is desiccant cooling. The principle is evaporative cooling with the introduction of a dehumidification unit, the desiccant wheel to control the humidity levels. The regeneration of the desiccant wheel requires a preheated airstream. A solar installation is a very interesting option for providing the preheated airstream. In France, at the University of La Rochelle, and at the National Institute of Solar Energy (INES), the investigation of the solar desiccant cooling technique has been

97

Cooling of neutron stars  

Science Journals Connector (OSTI)

On the basis of current physical understanding, it is impossible to predict with confidence the interior constitution of neutron stars. Cooling of neutron stars provides a possible way of discriminating among possible states of matter within them. In the standard picture of cooling by neutrino emission developed over the past quarter of a century, neutron stars are expected to cool relatively slowly if their cores are made up of nucleons, and to cool faster if matter is in an exotic state, such as a pion condensate, a kaon condensate, or quark matter. This view has recently been called into question by the discovery of a number of other processes that could lead to copious neutrino emission and rapid cooling.

C. J. Pethick

1992-10-01T23:59:59.000Z

98

Simulation of radiant cooling performance with evaporative cooling sources  

E-Print Network (OSTI)

a trade-off between cooling power and faster reaction time,a trade-off between cooling power and faster reaction time,derived potential peak cooling power of 77 W/m 2 (24 Btu/hr-

Moore, Timothy

2008-01-01T23:59:59.000Z

99

Design/installation and structural integrity assessment of Bethel Valley low-level waste collection and transfer system upgrade for Building 3092 (Central Off-Gas Scrubber Facility) at Oak Ridge National Laboratory  

SciTech Connect

This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in responsible to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lines concrete vault, replacing and existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. New scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation.

NONE

1995-01-01T23:59:59.000Z

100

Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling Evaporative Cooling (Redirected from Hybrid Cooling) Jump to: navigation, search Dictionary.png Evaporative Cooling: An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate. Other definitions:Wikipedia Reegle Evaporative Cooling Evaporative Cooling Tower Diagram of Evaporative Cooling Tower Evaporative cooling technologies take advantage of both air and water to extract heat from a power plant. By utilizing both water and air one can

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Electronic Cooling in Graphene  

Science Journals Connector (OSTI)

Energy transfer to acoustic phonons is the dominant low-temperature cooling channel of electrons in a crystal. For cold neutral graphene we find that the weak cooling power of its acoustic modes relative to their heat capacity leads to a power-law decay of the electronic temperature when far from equilibrium. For heavily doped graphene a high electronic temperature is shown to initially decrease linearly with time at a rate proportional to n3/2 with n being the electronic density. The temperature at which cooling via optical phonon emission begins to dominate depends on graphene carrier density.

R. Bistritzer and A. H. MacDonald

2009-05-21T23:59:59.000Z

102

Multiphase cooling flows  

E-Print Network (OSTI)

I discuss the multiphase nature of the intracluster medium whose neglect can lead to overestimates of the baryon fraction of clusters by up to a factor of two. The multiphase form of the cooling flow equations are derived and reduced to a simple form for a wide class of self-similar density distributions. It is shown that steady-state cooling flows are \\emph{not} consistent with all possible emissivity profiles which can therefore be used as a test of the theory. In combination, they provide strong constraints on the mass distribution within the cooling radius.

Peter A. Thomas

1996-08-20T23:59:59.000Z

103

Natural Cooling Retrofit  

E-Print Network (OSTI)

of the most important design considerations for any method of Natural Cool ing is the chil led water temperature range selected for use during Natural Cool ing. Figure VI shows that for a hypo thetical Chicago plant, the hours of operation for a Natural..." system on the Natural Cool ing cycle. As the pressures and flow rates of the condenser and chil led water systems are seldom the same, the designer must pay careful attention to the cross over system design to ensure harmonious operations on both...

Fenster, L. C.; Grantier, A. J.

1981-01-01T23:59:59.000Z

104

Polyethylene glycol as a green solvent for effective extractive desulfurization of liquid fuel at ambient conditions  

Science Journals Connector (OSTI)

Abstract Today there are serious regulations to reduce sulfur content of fuels because the \\{SOx\\} produced during the combustion of fuels containing sulfur compounds make the air polluted and have dangerous environmental impacts. With the aim of replacement of the present volatile, flammable and toxic organic solvents or inefficient, corrosive and expensive ionic liquids (ILs), the polyethylene glycol (PEG) was introduced as a green, effective, non-toxic, non-corrosive and also recyclable molecular solvent for extractive desulfurization (EDS) of benzothiophenic compounds from liquid fuel in this work for the first time. PEG shows excellent EDS and it has the higher extraction efficiency for dibenzothiophene (DBT) (76% within 90 s) than those of ILs. Using this extractant, the BDT content was reduced from 512 to 10 ppmw (98%) only within three extraction stages, the minimum number of cycles within shortest time reported up to now, and the deep desulfurization was achieved. Effect of some important parameters including initial concentration of sulfur compound, PEG dosage, time and temperature of extraction on the EDS process was investigated. It was fond that extraction performance of PEG is independent to temperature and initial sulfur content, which is an excellent finding for industrialization. The feasibility of PEG for extraction of different thiophenic compounds was observed in the order of dibenzothiophene > benzothiophene > 4,6-dimethyldibenzothiopene. Finally, the PEG was reused in several cycles and then it was regenerated by adsorption method. The results of the present work hopefully provide useful information for future industrial application of PEG as an efficient green solvent for the EDS of liquid fuels.

Effat Kianpour; Saeid Azizian

2014-01-01T23:59:59.000Z

105

The desulfurization of flue gas at the Mae Moh Power Plant Units 12 and 13  

SciTech Connect

As pollution of air, water and ground increasingly raises worldwide concern, the responsible national and international authorities establish and issue stringent regulations in order to maintain an acceptable air quality in the environment. In Thailand, the Electricity Generating Authority of Thailand (EGAT) takes full responsibility in environmental protection matters as well as in generating the electricity needed to supply the country`s very rapid power demand growth. Due to the rapidly increasing electricity demand of the country, EGAT had decided to install two further lignite-fired units of 300 MW each (Units 12 and 13) at the Mae Moh power generation station and they are now under construction. The arrangement and the capacity of all the power plant units are as shown. In 1989, EGAT started the work on the flue gas desulfurization system of Mae Moh power plant units 12 and 13 as planned. A study has been conducted to select the most suitable and most economical process for flue gas desulfurization. The wet scrubbing limestone process was finally selected for the two new units. Local limestone will be utilized in the process, producing a by-product of gypsum. Unfortunately, natural gypsum is found in abundance in Thailand, so the produced gypsum will be treated as landfill by mixing it with ash from the boilers of the power plants and then carrying it to the ash dumping area. The water from the waste ash water lake is utilized in the process as much as possible to minimize the requirement of service water, which is a limited resource. The Mae Moh power generation station is situated in the northern region of Thailand, 600 km north of Bangkok and about 30 km east of the town of Lampang, close to the Mae Moh lignite mine. Three lignite-fired units (Units 1-3) of 75 MW each, four units (Units 4-7) of 150 MW each and four units (Units 8-11) of 300 MW each are in operation.

Haemapun, C.

1993-12-31T23:59:59.000Z

106

Radiant Cooling | Department of Energy  

Energy Savers (EERE)

hours, reducing the electrical demand on electric utilities. Learn More Home Cooling Systems References Final Report Compilation for Residential Hydronic Radiant Cooling and...

107

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

108

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

109

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

110

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

111

Sisyphus Cooling of Lithium  

E-Print Network (OSTI)

Laser cooling to sub-Doppler temperatures by optical molasses is thought to be inhibited in atoms with unresolved, near-degenerate hyperfine structure in the excited state. We demonstrate that such cooling is possible in one to three dimensions, not only near the standard D2 line for laser cooling, but over a range extending to the D1 line. Via a combination of Sisyphus cooling followed by adiabatic expansion, we reach temperatures as low as 40 \\mu K, which corresponds to atomic velocities a factor of 2.6 above the limit imposed by a single photon recoil. Our method requires modest laser power at a frequency within reach of standard frequency locking methods. It is largely insensitive to laser power, polarization and detuning, magnetic fields, and initial hyperfine populations. Our results suggest that optical molasses should be possible with all alkali species.

Paul Hamilton; Geena Kim; Trinity Joshi; Biswaroop Mukherjee; Daniel Tiarks; Holger Müller

2014-03-20T23:59:59.000Z

112

HomeCooling101  

Energy Savers (EERE)

openings to prevent warm air from leaking into your home. Insulate and seal ducts -- air loss through ducts accounts for about 30 percent of a cooling system's energy consumption....

113

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

114

Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

Yanochko, Ronald M [Washington River Protection Solutions, Richland, WA (United States); Corcoran, Connie [AEM Consulting, LLC, Richland, WA (United States)

2012-11-15T23:59:59.000Z

115

TI-59 programmable calculator programs for in-stack opacity, venturi scrubbers, and electrostatic precipitators. User manual Jul 78-Jul 79  

SciTech Connect

The report explains the basic concepts of in-stack opacity as measured by in-stack opacity monitors. Also included are calculator programs that model the performance of venturi scrubbers and electrostatic precipitators. The effect of particulate control devices on in-stack opacity can be predicted by using these programs. The size distribution data input can be either in lognormal or histogram format. The opacity is calculated using Deirmendjian's approximation to Mie series to obtain extinction efficiencies. An alternative opacity program employing the exact Mie series solution is also described. The running time for this program is about 8 hours; that for the approximation program is 30 minutes. The accuracy of these programs is as good as the measured data input.

Cowen, S.J.; Ensor, D.S.; Sparks, L.E.

1980-05-01T23:59:59.000Z

116

Laser cooling of solids  

SciTech Connect

We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

2008-01-01T23:59:59.000Z

117

Refrigerant directly cooled capacitors  

DOE Patents (OSTI)

The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

Hsu, John S. (Oak Ridge, TN); Seiber, Larry E. (Oak Ridge, TN); Marlino, Laura D. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN)

2007-09-11T23:59:59.000Z

118

Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, October 1 - December 31, 1994  

SciTech Connect

The U.S. Department of Energy (DOE), Morgantown Energy Technology Center (METC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents which can reduce the sulfur in coal gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. This report summarizes the highlights and accomplishments of the October slipstream test run of the Zinc Titanate Fluid Bed Desulfurization/Direct Sulfur Recovery Process (ZTFBD/DSRP) Mobile Laboratory at the Department of Energy`s Morgantown Energy Technology Center. Although the run had to be shortened due to mechanical problems with METC`s gasifier, there was sufficient on-stream time to demonstrate highly successful operation of both the zinc titanate fluid bed desulfurization and the DSRP with actual coal gas.

NONE

1994-12-31T23:59:59.000Z

119

Separation of Fine Particles from Gases in Wet Flue Gas Desulfurization System Using a Cascade of Double Towers  

Science Journals Connector (OSTI)

Separation of Fine Particles from Gases in Wet Flue Gas Desulfurization System Using a Cascade of Double Towers ... The authors thank the High-Tech Research and Development Program of China (No. 2008AA05Z306), the Natural Science Foundation of Jiangsu Province (No. BK2008283), and the Scientific Research Foundation of Graduate School of Southeast University for their financial support. ... with high performance by cascading packed columns. ...

Jingjing Bao; Linjun Yang; Shijuan Song; Guilong Xiong

2012-02-15T23:59:59.000Z

120

Numerical Simulation of Transpiration Cooling  

E-Print Network (OSTI)

University, Templergraben 55, 52056 Aachen SUMMARY Transpiration cooling using ceramic matrix composite (CMC

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling: Evaporative Cooling: An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate. Other definitions:Wikipedia Reegle Evaporative Cooling Evaporative Cooling Tower Diagram of Evaporative Cooling Tower Evaporative cooling technologies take advantage of both air and water to extract heat from a power plant. By utilizing both water and air one can reduce the amount of water required for a power plant as well as reduce the

122

Air Cooling | Open Energy Information  

Open Energy Info (EERE)

Cooling Cooling Jump to: navigation, search Dictionary.png Air Cooling: Air cooling is commonly defined as rejecting heat from an object by flowing air over the surface of the object, through means of convection. Air cooling requires that the air must be cooler than the object or surface from which it is expected to remove heat. This is due to the second law of thermodynamics, which states that heat will only move spontaneously from a hot reservoir (the heat sink) to a cold reservoir (the air). Other definitions:Wikipedia Reegle Air Cooling Air Cooling Diagram of Air Cooled Condenser designed by GEA Heat Exchangers Ltd. (http://www.gea-btt.com.cn/opencms/opencms/bttc/en/Products/Air_Cooled_Condenser.html) Air cooling is limited on ambient temperatures and typically require a

123

Water Cooling | Open Energy Information  

Open Energy Info (EERE)

Cooling: Cooling: Water cooling is commonly defined as a method of using water as a heat conduction to remove heat from an object, machine, or other substance by passing cold water over or through it. In energy generation, water cooling is typically used to cool steam back into water so it can be used again in the generation process. Other definitions:Wikipedia Reegle Water Cooling Typical water cooled condenser used for condensing steam Water or liquid cooling is the most efficient cooling method and requires the smallest footprint when cold water is readily available. When used in power generation the steam/vapor that exits the turbine is condensed back into water and reused by means of a heat exchanger. Water cooling requires a water resource that is cold enough to bring steam, typically

124

cooling | OpenEI  

Open Energy Info (EERE)

cooling cooling Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

125

Cooling Towers Make Money  

E-Print Network (OSTI)

was hired and wrote specifications for a four cell induced draft counterflow cooling tower to cool 10,000 GPM entering at 95 0 F leaving at 85 0 F during an 80 0 F ambient wet bulb temperature. The specifications required that the bidders project a... F during an ambient wet bulb temperature of 7] OF could not be met The SuperCellular film fill, style] 3] 62 Illustration 3 was selected by the consultant because of its previous highly satisfactory service in sewage treatment trickling filter...

Burger, R.

126

Combustor liner cooling system  

DOE Patents (OSTI)

A combustor liner is disclosed. The combustor liner includes an upstream portion, a downstream end portion extending from the upstream portion along a generally longitudinal axis, and a cover layer associated with an inner surface of the downstream end portion. The downstream end portion includes the inner surface and an outer surface, the inner surface defining a plurality of microchannels. The downstream end portion further defines a plurality of passages extending between the inner surface and the outer surface. The plurality of microchannels are fluidly connected to the plurality of passages, and are configured to flow a cooling medium therethrough, cooling the combustor liner.

Lacy, Benjamin Paul; Berkman, Mert Enis

2013-08-06T23:59:59.000Z

127

Quantum thermodynamic cooling cycle  

E-Print Network (OSTI)

The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

Palao, J P; Gordon, J M; Palao, Jose P.; Kosloff, Ronnie; Gordon, Jeffrey M.

2001-01-01T23:59:59.000Z

128

Quantum thermodynamic cooling cycle  

E-Print Network (OSTI)

The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

Jose P. Palao; Ronnie Kosloff; Jeffrey M. Gordon

2001-06-08T23:59:59.000Z

129

Turbomachine rotor with improved cooling  

DOE Patents (OSTI)

A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

1998-05-26T23:59:59.000Z

130

Turbomachine rotor with improved cooling  

DOE Patents (OSTI)

A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

Hultgren, Kent Goran (Winter Park, FL); McLaurin, Leroy Dixon (Winter Springs, FL); Bertsch, Oran Leroy (Titusville, FL); Lowe, Perry Eugene (Oviedo, FL)

1998-01-01T23:59:59.000Z

131

Cooling Towers- Energy Conservation Strategies Understanding Cooling Towers  

E-Print Network (OSTI)

Cooling towers are energy conservation devices that Management, more often than not, historically overlooks in the survey of strategies for plant operating efficiencies. The utilization of the colder water off the cooling tower is the money maker!...

Smith, M.

132

STOCHASTIC COOLING FOR BUNCHED BEAMS.  

SciTech Connect

Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

BLASKIEWICZ, M.

2005-05-16T23:59:59.000Z

133

Cooling Tower Inspection with Scuba  

E-Print Network (OSTI)

A serious problem of scale and other solid material settling in heat transfer equipment was threatening to shut down our ethylene plant. All evidence pointed to the cooling tower as the source of the contamination. Visual inspection of the cooling...

Brenner, W.

1982-01-01T23:59:59.000Z

134

Cooling power of quenching oils  

Science Journals Connector (OSTI)

Industrial oils 20 and 20V have the best cooling powers of all quenching oils (used in the USSR). They secure high cooling rates at low temperatures, have a satisfactory...

L. V. Petrash

1959-07-01T23:59:59.000Z

135

Direct Liquid Cooling for Electronic Equipment  

E-Print Network (OSTI)

by  the  power  distribution  and  cooling  systems.  The  the  power   distribution  and  cooling  infrastructure  IT  power  consumed  along  with   the  cooling  required  

Coles, Henry

2014-01-01T23:59:59.000Z

136

Evaluation of the cooling fan efficiency index.  

E-Print Network (OSTI)

for Figure 3. Fan power versus cooling fan the computer fanparameters (cooling effect, fan power and CFE) involved inthat the typical power consumption of cooling fans is lower

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

137

Cooling by heating  

E-Print Network (OSTI)

We introduce the idea of actually cooling quantum systems by means of incoherent thermal light, hence giving rise to a counter-intuitive mechanism of "cooling by heating". In this effect, the mere incoherent occupation of a quantum mechanical mode serves as a trigger to enhance the coupling between other modes. This notion of effectively rendering states more coherent by driving with incoherent thermal quantum noise is applied here to the opto-mechanical setting, where this effect occurs most naturally. We discuss two ways of describing this situation, one of them making use of stochastic sampling of Gaussian quantum states with respect to stationary classical stochastic processes. The potential of experimentally demonstrating this counter-intuitive effect in opto-mechanical systems with present technology is sketched.

A. Mari; J. Eisert

2011-04-01T23:59:59.000Z

138

Heating and cooling system  

SciTech Connect

Heating and cooling of dwelling houses and other confined spaces is facilitated by a system in which thermal energy is transported between an air heating and cooling system in the dwelling and a water heat storage sink or source, preferably in the form of a swimming pool or swimming pool and spa combination. Special reversing valve circuitry and the use of solar collectors and liquid-to-liquid heat exchangers on the liquid side of the system , and special air valves and air modules on the air side of the system, enhance the system's efficiency and make it practical in the sense that systems employing the invention can utilize existing craft skills and building financing arrangements and building codes, and the like, without major modification.

Krumhansl, M.U.

1982-10-12T23:59:59.000Z

139

Conduction cooled tube supports  

DOE Patents (OSTI)

In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

1984-01-01T23:59:59.000Z

140

Turbine cooling waxy oil  

SciTech Connect

A process for pipelining a waxy oil to essentially eliminate deposition of wax on the pipeline wall is described comprising: providing a pressurized mixture of the waxy oil and a gas; effecting a sudden pressure drop of the mixture of the oil and the gas through an expansion turbine, thereby expanding the gas and quickly cooling the oil to below its cloud point in the substantial absence of wax deposition and forming a slurry of wax particles and oil; and pipelining the slurry.

Geer, J.S.

1987-10-27T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cab Heating and Cooling  

SciTech Connect

Schneider National, Inc., SNI, has concluded the Cab Heating and Cooling evaluation of onboard, engine off idling solutions. During the evaluation period three technologies were tested, a Webasto Airtronic diesel fired heater for cold weather operation, and two different approaches to cab cooling in warm weather, a Webasto Parking Cooler, phase change storage system and a Bergstrom Nite System, a 12 volt electrical air conditioning approach to cooling. Diesel fired cab heaters were concluded to provide adequate heat in winter environments down to 10 F. With a targeted idle reduction of 17%, the payback period is under 2 years. The Webasto Parking Cooler demonstrated the viability of this type of technology, but required significant driver involvement to achieve maximum performance. Drivers rated the technology as ''acceptable'', however, in individual discussions it became apparent they were not satisfied with the system limitations in hot weather, (over 85 F). The Bergstrom Nite system was recognized as an improvement by drivers and required less direct driver input to operate. While slightly improved over the Parking Cooler, the hot temperature limitations were only slightly better. Neither the Parking Cooler or the Nite System showed any payback potential at the targeted 17% idle reduction. Fleets who are starting at a higher idle baseline may have a more favorable payback.

Damman, Dennis

2005-10-31T23:59:59.000Z

142

Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger Rack Cooling Device  

E-Print Network (OSTI)

of a Dual Heat Exchanger Rack Cooling Device H.C. Coles, S.prototype computer equipment rack-level cooling device withIT equipment cooling, server rack cooling, server cooling,

Greenberg, Steve

2014-01-01T23:59:59.000Z

143

Introduction of a Cooling Fan Efficiency Index  

E-Print Network (OSTI)

Cooling Effect, Fan Power, and Cooling-Fan Efficiency Index?t eq ) °C °F Fan Power, W (P f ) Cooling-Fan Efficiency (The measured cooling effect and fan power and the determined

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

144

Marketing Cool Storage Technology  

E-Print Network (OSTI)

storage has been substantiated. bv research conducted by Electric Power Research Institute, and by numerous installations, it has become acknowledged that cool stora~e can provide substantial benefits to utilities and end-users alike. A need was reco...~ned to improve utility load factors, reduce peak electric demands, and other-wise mana~e the demand-side use of electricity. As a result of these many pro~rams, it became apparent that the storage of coolin~, in the form of chilled water, ice, or other phase...

McCannon, L.

145

Effect of High-Pressure Impregnation on Structure Variation and Desulfurization Property of a Zn-Based Sorbent Prepared Using Lignite as a Support  

Science Journals Connector (OSTI)

Effect of High-Pressure Impregnation on Structure Variation and Desulfurization Property of a Zn-Based Sorbent Prepared Using Lignite as a Support ... Lignite reserves are relatively abundant in China; however, its utilization is significantly limited because of its high water content and low calorific value. ...

Xiurong Ren; Qiang He; Yurong Dong; Meijun Wang; Liping Chang; Weiren Bao

2014-06-10T23:59:59.000Z

146

High-temperature desulfurization of gasifier effluents with rare earth and rare earth/transition metal oxides  

SciTech Connect

We have improved the application of mixed rare-earth oxides (REOs) as hot gas desulfurization adsorbents by impregnating them on stable high surface area supports and by the inclusion of certain transition metal oxides. We report comparative desulfurization experiments at high temperature (900 K) using a synthetic biomass gasifier effluent containing 0.1 vol % H{sub 2}S, along with H{sub 2}, CO{sub 2}, and water. More complex REO sorbents outperform the simpler CeO{sub 2}/La{sub 2}O{sub 3} mixtures, in some cases significantly. Supporting REOs on Al{sub 2}O{sub 3} (?20 wt % REO) or ZrO{sub 2} actually increased the sulfur capacities found after several cycles on a total weight basis. Another major increase in sulfur capacity took place when MnO{sub x} or FeO{sub x} is incorporated. Apparently most of the Mn or Fe is dispersed on or near the surface of the mixed REOs because the capacities with REOs greatly exceeded those of Al{sub 2}O{sub 3}-supported MnO{sub x} or FeO{sub x} alone at these conditions. In contrast, incorporating Cu has little effect on sulfur adsorption capacities. Both the REO and transition metal/REO adsorbents could be regenerated completely using air for at least five repetitive cycles.

Dooley, Kerry M.; Kalakota, Vikram; Adusumilli, Sumana

2011-01-01T23:59:59.000Z

147

Indirect passive cooling system for liquid metal cooled nuclear reactors  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1990-01-01T23:59:59.000Z

148

Performance of two fluid bed sludge incinerators with air pollution control systems consisting of a venturi scrubber and wet electrostatic precipitator  

SciTech Connect

Performance tests were recently conducted on two new Hankin Fluid Bed Incineration Systems installed at publicly owned sewage treatment works in New Jersey. The purpose of the tests was to show that the systems met emission limits set by the New Jersey Department of Environmental Protection and Energy (NJDEPE), and that the systems met throughput and fuel consumption requirements. These systems, consisting of a fluid bed incinerator, heat exchanger, venturi scrubber, tray cooler, and wet electrostatic precipitator, were tested for emissions of heavy metals, sulfur oxides, nitrogen oxides, hydrogen chloride, carbon monoxide, volatile organic compounds, and opacity. Both yielded emissions that were well within the stringent limits set by the NJDEPE in the operating permits. The incinerators exhibited a high level of fuel efficiency with fuel oil consumption averaging 5.5 and 6.0 gallons per ton of wet sludge. In addition, combustion efficiency was high, with a maximum average CO of 7.39 ppmvd and VOCs of 1.39 ppmvd (both corrected to 7% O{sub 2}). The air pollution control equipment showed very high removal efficiencies. Except for Mercury, collection efficiencies for all heavy metals fell within 98.7% to 99.999%. Particulate collection efficiency averaged 99.97 and 99.99%. Collection efficiency for HCl averaged 99.2% and 99.92%, and for SO{sub 2} averages were 97.1% and 94.8%. Finally, the level of NO{sub x} in the stack was extremely low with averages of 17.33 ppmvd and 14.19 ppmvd (corrected to 7% O{sub 2}) for the two systems.

Zaman, R.U. [Hankin Environmental Systems Inc., Somerville, NJ (United States)

1995-12-31T23:59:59.000Z

149

Geothermal Heat Pumps- Cooling Mode  

Energy.gov (U.S. Department of Energy (DOE))

In summer, the fluid removes heat from the building and transfers it to the relatively cooler ground in order to cool the building.

150

Direct cooled power electronics substrate  

DOE Patents (OSTI)

The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W. (Kingston, TN) [Kingston, TN; Lowe, Kirk T. (Knoxville, TN) [Knoxville, TN

2010-09-14T23:59:59.000Z

151

Solvent-refined-coal (SRC) process: molecular sieve drier tests on PDU P-99. Interim report, April-August 1981. [High pressure recycle gas exiting the lean oil and amine scrubbers  

SciTech Connect

A molecular sieve (Type 3A) drier system was installed on PDU P-99 for confirmatory testing. During 70 h of continuous operation, three drying and two regeneration cycles were completed. The drier processed bleed off-gas at unit pressure and ambient temperature in tandem with the butane scrubber. High pressure hydrogen was used to regenerate the molecular sieve adsorbent at 500/sup 0/F. Although the tests should be considered preliminary because of uncertainties in the moisture and gas rate measurements, the results were in good agreement with the predicted performance, and the apparatus operated with minimum difficulty.

Gray, J.A.; Iantorno, J.G.; Gall, W.

1982-02-01T23:59:59.000Z

152

Cool, Dry, Quiet Dehumidification with  

E-Print Network (OSTI)

. Representative dehumidification increase using Trane CDQ dehumidification system Standard HVAC coil - 20% latent dehumidification system as the best new HVAC dehumidification product for 2006. #12;Trane CDQTM (Cool Dry Quiet, supply fan, cooling coil, optional reheat coil, optional final filters. A CDQ system in a Custom Climate

Oak Ridge National Laboratory

153

Temperature initiated passive cooling system  

DOE Patents (OSTI)

A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

Forsberg, C.W.

1994-11-01T23:59:59.000Z

154

Increase of unit efficiency by improved waste heat recovery  

SciTech Connect

For coal-fired power plants with flue gas desulfurization by wet scrubbing and desulfurized exhaust gas discharge via cooling tower, a further improvement of new power plant efficiency is possible by exhaust gas heat recovery. The waste heat of exhaust gas is extracted in a flue gas cooler before the wet scrubber and recovered for combustion air and/or feedwater heating by either direct or indirect coupling of heat transfer. Different process configurations for heat recovery system are described and evaluated with regard to net unit improvement. For unite firing bituminous coal an increase of net unit efficiency of 0.25 to 0.7 percentage points and for lignite 0.7 to 1.6 percentage points can be realized depending on the process configurations of the heat recovery systems.

Bauer, G.; Lankes, F.

1998-07-01T23:59:59.000Z

155

Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Cool Roofs July 26, 2013 - 10:36am Addthis White painted roofs have been popular since ancient times in places like Greece. Similar technology can be easy to adapt to modern homes and other buildings. | Credit: ©iStockphoto/PhotoTalk White painted roofs have been popular since ancient times in places like Greece. Similar technology can be easy to adapt to modern homes and other buildings. | Credit: ©iStockphoto/PhotoTalk If you live in a hot climate, a cool roof can: Save you money on air conditioning Make your home more comfortable in hot weather How does it work? By making your roof more reflective, you reduce heat gain into your home. Check out these resources for more information. A cool roof is one that has been designed to reflect more sunlight and

156

Laser cooling to quantum degeneracy  

E-Print Network (OSTI)

We report on Bose-Einstein condensation (BEC) in a gas of strontium atoms, using laser cooling as the only cooling mechanism. The condensate is formed within a sample that is continuously Doppler cooled to below 1\\muK on a narrow-linewidth transition. The critical phase-space density for BEC is reached in a central region of the sample, in which atoms are rendered transparent for laser cooling photons. The density in this region is enhanced by an additional dipole trap potential. Thermal equilibrium between the gas in this central region and the surrounding laser cooled part of the cloud is established by elastic collisions. Condensates of up to 10^5 atoms can be repeatedly formed on a timescale of 100ms, with prospects for the generation of a continuous atom laser.

Stellmer, Simon; Grimm, Rudolf; Schreck, Florian

2013-01-01T23:59:59.000Z

157

Summary and assessment of METC zinc ferrite hot coal gas desulfurization test program, final report: Volume 2, Appendices  

SciTech Connect

The Morgantown Energy Technology Center (METC) has conducted a test program to develop a zinc ferrite-based high temperature desulfurization process which could be applied to fuel gas entering downstream components such as molten carbonate fuel cells or gas turbines. As a result of prior METC work with iron oxide and zinc oxide sorbents, zinc ferrite evolved as a candidate with the potential for high capacity, low equilibrium levels of H/sub 2/S, and structural stability after multiple regenerations. The program consisted of laboratory-scale testing with a two-inch diameter reactor and simulated fixed-bed gasifier gas; bench-scale testing with a six-inch diameter reactor and actual gas from the METC 42-inch fixed bed gasifier; as well as laboratory-scale testing of zinc ferrite with simulated fluidized bed gasifier gas. Data from sidestream testing are presented. 18 refs.

Underkoffler, V.S.

1986-12-01T23:59:59.000Z

158

Task 4.7 - diesel fuel desulfurization. Semi-annual report, July 1, 1995--December 31, 1995  

SciTech Connect

Reductions in the maximum permissible sulfur content of diesel fuel to less than 0.05 wt% will require deep desulfurization to meet these standards. In some refineries, a new hydrogenation catalyst may be required for diesel fuel production. The work very briefly described in this document is on the use of hydrotalcite-supported molybdenum sulfide in the catalysis of ethanol. The catalyst reaction was highly selective for 1-butanol, providing a very clean reaction. Since the catalysis contains the MoS{sub 2} needed for the dehydrogenation and hydrogenation steps, the reaction can be performed at lower temperatures and higher selectivity. The catalyst was very stable and not destroyed by the water produced in the reaction.

Olson, E.S.

1998-12-31T23:59:59.000Z

159

New Cool Roof Coatings and Affordable Cool Color Asphalt  

NLE Websites -- All DOE Office Websites (Extended Search)

New Cool Roof Coatings and New Cool Roof Coatings and Affordable Cool Color Asphalt Shingles Meng-Dawn Cheng Oak Ridge National Laboratory chengmd@ornl.gov; 865-241-5918 April 4, 2013 PM: Andre Desjarlais PI: Meng-Dawn Cheng, Ph.D. David Graham, Ph.D. Sue Carroll Steve Allman Dawn Klingeman Susan Pfiffner, Ph.D. (FY12) Karen Cheng (FY12) Partner: Joe Rokowski (Dow) Roof Testing Facility at ORNL Building Technologies Research and Integration Center 2 | Building Technologies Office eere.energy.gov * Building accounted for 41% of the US energy consumption in 2010 greater than either transportation (28%) or industry (31%).

160

New Cool Roof Coatings and Affordable Cool Color Asphalt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Cool Roof Coatings and New Cool Roof Coatings and Affordable Cool Color Asphalt Shingles Meng-Dawn Cheng Oak Ridge National Laboratory chengmd@ornl.gov; 865-241-5918 April 4, 2013 PM: Andre Desjarlais PI: Meng-Dawn Cheng, Ph.D. David Graham, Ph.D. Sue Carroll Steve Allman Dawn Klingeman Susan Pfiffner, Ph.D. (FY12) Karen Cheng (FY12) Partner: Joe Rokowski (Dow) Roof Testing Facility at ORNL Building Technologies Research and Integration Center 2 | Building Technologies Office eere.energy.gov * Building accounted for 41% of the US energy consumption in 2010 greater than either transportation (28%) or industry (31%).

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NightCool: An Innovative Residential Nocturnal Radiation Cooling Concept  

E-Print Network (OSTI)

building’s roof to take advantage of long-wave radiation to the night sky has been long identified as a potentially productive means to reduce building space cooling. A typical roof at 75?F will radiate at about 55-60 W/m 2 to clear night sky... and about 25 W/m 2 to a cloudy sky. For a typical roof (250 square meters), this represents a cooling potential of 6,000 - 14,000 Watts or about 1.5 - 4.0 tons of cooling potential each summer night. However, various physical constraints (differential...

Parker, D. S.

2006-01-01T23:59:59.000Z

162

Acoustic cooling engine  

DOE Patents (OSTI)

An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

Hofler, Thomas J. (Los Alamos, NM); Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Santa Fe, NM); Migliori, Albert (Santa Fe, NM)

1988-01-01T23:59:59.000Z

163

Demonstration of Energy Savings of Cool Roofs  

E-Print Network (OSTI)

et al. 1997. Peak Power and Cooling Energy Savings of High-et al. 1997. Peak Power and Cooling Energy Savings of High-Hanford, J. 1997. "Peak Power and Cooling Energy Savings of

Konopacki, S.

2010-01-01T23:59:59.000Z

164

Cool Cities, Cool Planet (LBNL Science at the Theater)  

ScienceCinema (OSTI)

Science at the Theater: Berkeley Lab scientists discuss how cool roofs can cool your building, your city ... and our planet. Arthur Rosenfeld, Professor of Physics Emeritus at UC Berkeley, founded the Berkeley Lab Center for Building Science in 1974. He served on the California Energy Commission from 2000 to 2010 and is commonly referred to as California's godfather of energy efficiency. Melvin Pomerantz is a member of the Heat Island Group at Berkeley Lab. Trained as a physicist at UC Berkeley, he specializes in research on making cooler pavements and evaluating their effects. Ronnen Levinson is a staff scientist at Berkeley Lab and the acting leader of its Heat Island Group. He has developed cool roofing and paving materials and helped bring cool roof requirements into building energy efficiency standards.

Rosenfeld, Arthur; Pomerantz, Melvin; Levinson, Ronnen

2011-04-28T23:59:59.000Z

165

Evaporative Roof Cooling- A Simple Solution to Cut Cooling Costs  

E-Print Network (OSTI)

Since the “Energy Crisis” Evaporative Roof Cooling Systems have gained increased acceptance as a cost effective method to reduce the high cost of air conditioning. Documented case histories in retro-fit installations show direct energy savings...

Abernethy, D.

166

Simulation of radiant cooling performance with evaporative cooling sources  

E-Print Network (OSTI)

integrated control resets for supply air temperature and75.2°F) Cooling supply air temperature control Minimum AHUvary the VAV supply-air-temperature reset control mid-bands

Moore, Timothy

2008-01-01T23:59:59.000Z

167

Stochastic cooling of bunched beams  

SciTech Connect

Numerical simulation studies are presented for transverse and longitudinal stochastic cooling of bunched particle beams. Radio frequency buckets of various shapes (e.g. rectangular, parabolic well, single sinusoidal waveform) are used to investigate the enhancement of phase space cooling by nonlinearities of synchrotron motion. The connection between the notions of Landau damping for instabilities and mixing for stochastic cooling are discussed. In particular, the need for synchrotron frequency spread for both Landau damping and good mixing is seen to be comparable for bunched beams.

Bisognano, J.J.; Chattopadhyay, S.

1981-03-01T23:59:59.000Z

168

Best Management Practice #10: Cooling Tower Management  

Energy.gov (U.S. Department of Energy (DOE))

Cooling towers regulate temperature by dissipating heat from recirculating water used to cool chillers, air-conditioning equipment, or other process equipment. Heat is rejected from the tower...

169

Compressor bleed cooling fluid feed system  

DOE Patents (OSTI)

A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

Donahoo, Eric E; Ross, Christopher W

2014-11-25T23:59:59.000Z

170

Direct-Cooled Power Electronic Substrate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Energy 3 Barriers VTP Activities Related Challenges Conventional cooling methods for power electronics are typically based on conduction cooling through solids directly adjacent...

171

Cooling Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Power Plant Cooling Technologies Cooling Technologies Cooling tower at Steamboat Springs geothermal power plant in Steamboat Springs, NV. Power generation facilities that rely on thermal sources as their energy inputs such as Coal, Natural Gas, Geothermal, Concentrates Solar Power, and Nuclear require cooling technologies to reject the heat that is created. The second law of thermodynamics states: "No process can convert heat absorbed from a reservoir at one temperature directly into work without also rejecting heat to a cooler reservoir. That is, no heat engine is 100% efficient"[1] In the context of power generation from thermal energy, this means that any heat that is created must be rejected. Heat is most commonly rejected in

172

Advance in MEIC cooling studies  

SciTech Connect

Cooling of ion beams is essential for achieving a high luminosity for MEIC at Jefferson Lab. In this paper, we present the design concept of the electron cooling system for MEIC. In the design, two facilities are required for supporting a multi-staged cooling scheme; one is a 2 MeV DC cooler in the ion pre-booster; the other is a high electron energy (up to 55 MeV) ERL-circulator cooler in the collider ring. The simulation studies of beam dynamics in an ERL-circulator cooler are summarized and followed by a report on technology development for this cooler. We also discuss two proposed experiments for demonstrating high energy cooling with a bunched electron beam and the ERL-circulator cooler.

Zhang, Yuhong [JLAB, Newport News, VA (United States); Derbenev, Ya. [JLAB, Newport News, VA (United States); Douglas, D. [JLAB, Newport News, VA (United States); Hutton, A. [JLAB, Newport News, VA (United States); Kimber, A. [JLAB, Newport News, VA (United States); Li, R. [JLAB, Newport News, VA (United States); Nissen, E. [JLAB, Newport News, VA (United States); Tennant, [JLAB, Newport News, VA (United States); Zhang, H. [JLAB, Newport News, VA (United States)

2013-06-01T23:59:59.000Z

173

Cooling molecules in optical cavities  

SciTech Connect

We have studied theoretically and numerically the cooling of CN molecules in a high-finesse optical cavity and show that these molecules can be cooled from 100 mK temperatures to submillikelvin temperatures in less than 1 ms. We establish that the cooling time does not change significantly with molecular numbers and initial temperatures over a wide range. We have further studied the scaling of the system for extending the current results for hundreds of molecules to a very large molecular ensemble. The results indicate that a gas of 10{sup 9} molecules can be cooled in the cavity by use of a far-off-resonant and high-intensity pump source.

Lu Weiping; Zhao Yongkai; Barker, P. F. [Physics, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

2007-07-15T23:59:59.000Z

174

A Successful Cool Storage Rate  

E-Print Network (OSTI)

Houston Lighting & Power (HL&P) initiated design and development of its commercial cool storage program as part of an integrated resource planning process with a targeted 225 MW of demand reduction through DSM. Houston's extensive commercial air...

Ahrens, A. C.; Sobey, T. M.

1994-01-01T23:59:59.000Z

175

Desiccant Cooling Systems - A Review  

E-Print Network (OSTI)

Desiccant cooling systems have been investigated extensively during the past decade as alternatives to electrically driven vapor compression systems because regeneration temperatures of the desiccant - about 160°F, can be achieved using natural gas...

Kettleborough, C. F.; Ullah, M. R.; Waugaman, D. G.

1986-01-01T23:59:59.000Z

176

Electron cooling for positron sources  

Science Journals Connector (OSTI)

Electron cooling of positrons should make possible a large increase in the luminosity of future high-energy linear colliders, leading to greatly enhanced event rates at these machines. An evaluation of the electron-cooling-time requirement indicates that a positron-source repetition rate of 100 Hz is possible. Final positron-beam normalized emittances of 10-7 m rad should result, implying a tremendous increase in positron-beam density over that currently obtained.

D. J. Larson

1988-03-28T23:59:59.000Z

177

Energy Efficient Electronics Cooling Project  

SciTech Connect

Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

2012-02-17T23:59:59.000Z

178

Oil cooled, hermetic refrigerant compressor  

DOE Patents (OSTI)

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

1985-01-01T23:59:59.000Z

179

Oil cooled, hermetic refrigerant compressor  

DOE Patents (OSTI)

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

English, W.A.; Young, R.R.

1985-05-14T23:59:59.000Z

180

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cooling System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

182

Definition: Water Cooling | Open Energy Information  

Open Energy Info (EERE)

Water Cooling Water Cooling Water cooling is commonly defined as a method of using water as a heat conduction to remove heat from an object, machine, or other substance by passing cold water over or through it. In energy generation, water cooling is typically used to cool steam back into water so it can be used again in the generation process.[1] View on Wikipedia Wikipedia Definition Water cooling is a method of heat removal from components and industrial equipment. As opposed to air cooling, water is used as the heat conductor. Water cooling is commonly used for cooling automobile internal combustion engines and large industrial facilities such as steam electric power plants, hydroelectric generators, petroleum refineries and chemical plants. Other uses include cooling the barrels of machine guns, cooling of

183

Cooled snubber structure for turbine blades  

DOE Patents (OSTI)

A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

2014-04-01T23:59:59.000Z

184

Numerical Simulation of Cooling Gas Injection Using  

E-Print Network (OSTI)

Numerical Simulation of Cooling Gas Injection Using Adaptive Multiscale Techniques Wolfgang Dahmen: finite volume method, film cooling, cooling gas injection, multiscale techniques, grid adaptation AMS@igpm.rwth-aachen.de (Thomas Gotzen) #12;Numerical simulation of cooling gas injection using adaptive multiscale techniques

185

Management of dry flue gas desulfurization by-products in underground mines. Topical report, October 1, 1993--March 31, 1998  

SciTech Connect

The DESEVAL-TRANS program is developed for the purpose of helping the engineer to design and economically evaluate coal combustion byproduct transportation systems that will operate between the power plant and the disposal site. The objective of the research project was to explore the technical, environmental and economic feasibility of disposing coal combustion byproducts in underground mines in Illinois. The DESEVAL-TRANS (short for Design and Evaluation of Transportation Systems) was developed in the Materials Handling and Systems Economics branch of the overall project. Four types of coal combustion byproducts were targeted for transportation and handling: Conventional fly ash; Scrubber sludge; Fluidized Bed Combustion (FBC) fly ash; and Spent-bed ash. Several transportation and handling systems that could handle these byproducts were examined. These technologies were classified under three general categories: Truck; Rail; and Container. The purpose of design models is to determine the proper number of transport units, silo capacity, loading and unloading rates, underground placement capacity, number of shifts, etc., for a given case, defined by a distance-tonnage combination. The cost computation models were developed for the determination of the operating and capital costs. An economic evaluation model, which is common to all categories, was also developed to establish the cost-per-ton of byproduct transported.

NONE

1998-09-01T23:59:59.000Z

186

Bartholomew Heating and Cooling | Open Energy Information  

Open Energy Info (EERE)

Heating and Cooling Heating and Cooling Jump to: navigation, search Name Bartholomew Heating and Cooling Place Linwood, NJ Website http://bartholomewheatingandco References Bartholomew Heating and Cooling[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Bartholomew Heating and Cooling is a company located in Linwood, NJ. References ↑ "Bartholomew Heating and Cooling" Retrieved from "http://en.openei.org/w/index.php?title=Bartholomew_Heating_and_Cooling&oldid=381585" Categories: Clean Energy Organizations Companies Organizations

187

Integrated Modeling of Building Energy Requirements Incorporating Solar Assisted Cooling  

E-Print Network (OSTI)

Incorporating Solar Assisted Cooling Ryan Firestone, Chrisevaluates the operation of solar assisted cooling at a large

Firestone, Ryan; Marnay, Chris; Wang, Juan

2005-01-01T23:59:59.000Z

188

On-chip high speed localized cooling using superlattice microrefrigerators  

E-Print Network (OSTI)

Semenyuk, “Thermoelectric Micro Modules for Spot Cooling ofthermoelectric module is still too large for spot cooling.

Zhang, Y; Christofferson, J; Shakouri, A; Zeng, G H; Bowers, J E; Croke, E T

2006-01-01T23:59:59.000Z

189

Laser cooling with ultrafast pulse trains  

E-Print Network (OSTI)

We propose a new laser cooling method for atomic species whose level structure makes traditional laser cooling difficult. For instance, laser cooling of hydrogen requires vacuum-ultraviolet laser light, while multielectron atoms need laser light at many widely separated frequencies. These restrictions can be eased by laser cooling on two-photon transitions with ultrafast pulse trains. Laser cooling of hydrogen, antihydrogen, and carbon appears feasible, and extension of the technique to molecules may be possible.

David Kielpinski

2003-06-14T23:59:59.000Z

190

cooling | OpenEI Community  

Open Energy Info (EERE)

cooling cooling Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid).

191

Keeping Cool at Fermilab INSIDE  

NLE Websites -- All DOE Office Websites (Extended Search)

June 28, 1996 June 28, 1996 Number 13 Keeping Cool at Fermilab INSIDE 2 University Close-Up: The University of Minnesota 6 Summer at Fermilab by Eric Berger, Office of Public Affairs As debate heats up among lawmakers on the fate of the nation's helium reserve, Fermilab researchers prepare for a long, cold summer. How cold? Minus 450 degrees Fahrenheit-the temperature of the liquid helium that cools the Tevatron's supercon- ducting magnets. Proposed congressional changes to the 1960 Helium Act, however, could ultimately affect Fermilab's vital cooling operation, which uses 13 million cubic feet of gaseous helium annually. Electric current travels through a supercon- ductor friction-free, like skaters on smooth ice, allowing physicists to run accelerators at higher f energies, while using far less electricity than

192

Guidelines for Selecting Cool Roofs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BUILDING TECHNOLOGIES PROGRAM BUILDING TECHNOLOGIES PROGRAM Guidelines for Selecting Cool Roofs July 2010 V. 1.2 Prepared by the Fraunhofer Center for Sustainable Energy Systems for the U.S. Department of Energy Building Technologies Program and Oak Ridge National Laboratory under contract DE-AC05-00OR22725. Additional technical support provided by Lawrence Berkeley National Laboratory and the Federal Energy Management Program. Authors: Bryan Urban and Kurt Roth, Ph.D. ii Table of Contents Introduction ..................................................................................................................................... 3 Why Use Cool Roofs .............................................................................................................. 3

193

Improving Process Cooling Tower Eddiciency  

E-Print Network (OSTI)

of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 7 Improving Cooling Tower Efficiency ? Two Improvements in Capacity/Performance 1. Filtration for water quality control Side stream filtration Make up water quality...-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 2 Types of Cooling Towers Forced Draft Towers ESL-IE-13-05-08 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 3 Types...

Turpish, W.

2013-01-01T23:59:59.000Z

194

Lamination cooling system formation method  

DOE Patents (OSTI)

An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

Rippel, Wally E. (Altadena, CA); Kobayashi, Daryl M. (Monrovia, CA)

2012-06-19T23:59:59.000Z

195

Lamination cooling system formation method  

DOE Patents (OSTI)

An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

2009-05-12T23:59:59.000Z

196

Heating & Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Cooling Heating & Cooling Heating and cooling account for about 56% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. Learn more about the principles of heating and cooling. Heating and cooling account for about 56% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. Learn more about the principles of heating and cooling. Did you know that heating and cooling accounts for more than half of the energy use in a typical U.S. home, making it the largest energy expense for most homes? Energy Saver shares tips and advice on ways you can reduce your heating and cooling costs, putting more money in your wallet.

197

Global Cool Cities Alliance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Cool Cities Alliance Global Cool Cities Alliance Global Cool Cities Alliance The Department of Energy (DOE) is currently supporting the Global Cool Cities Alliance (GCCA), a non-profit organization that works with cities, regions, and national governments to speed the worldwide installation of cool roofs, pavements, and other surfaces. GCCA is dedicated to advancing policies and actions that increase the solar reflectance of our buildings and pavements as a cost-effective way to promote cool buildings, cool cities, and to mitigate the effects of climate change through global cooling. The alliance was launched in June of 2011. Cool reflective surfaces are an important near-term strategy for improving city sustainability by delivering significant benefits such as increased building efficiency and comfort, improved urban health, and heat

198

Impact of additives for enhanced sulfur dioxide removal on re-emissions of mercury in wet flue gas desulfurization  

Science Journals Connector (OSTI)

Abstract The wet flue gas desulfurization process (FGD) in fossil fired power plants offers the advantage of simultaneously removing SO2 and other water soluble pollutants, such as certain oxidized mercury compounds (Hg2+). In order to maximize SO2 removal efficiency of installed FGD units, organic additives can be utilized. In the context of multi-pollutant control by wet FGD, the effect of formic and adipic acid on redox reactions of dissolved mercury compounds is investigated with a continuously operated lab-scale test-rig. For sulfite ( SO 3 2 - ) concentrations above a certain critical value, their potential as reducing agent leads to rapidly increasing formation and re-emission of elemental mercury (Hg0). Increasing chloride concentration and decreasing pH and slurry temperature have been identified as key factors for depressing Hg0 re-emissions. Both organic additives have a negative impact on Hg-retention and cause increased Hg0 re-emissions in the wet FGD process, with formic acid being the significantly stronger reducing agent. Different pathways of Hg2+ reduction were identified by qualitative interpretation of the pH-dependence and by comparison of activation enthalpies and activation entropies. While the first mechanism proposed identifies SO 3 2 - as reducing agent and is therefore relevant for any FGD process, the second mechanism involves the formate anion, thus being exclusively relevant for \\{FGDs\\} utilizing formic acid as additive.

Barna Heidel; Melanie Hilber; Günter Scheffknecht

2014-01-01T23:59:59.000Z

199

Investigation of the effects of various water mediums on desulfurization and deashing of a coal sample by flotation  

SciTech Connect

The aim of this study was to investigate the effects of various water mediums on desulfurization and deashing of a coal sample using flotation. For this purpose, experimental studies were conducted on a coal sample containing high ash and sulfur contents. The effects of pH, solid concentration, collector amount and frother amount on the flotation were investigated separately in Mediterranean Sea water, Cermik thermal spring water, snow water and tap water. Flotation, results indicated that, when comparing the various water mediums, the following order for the ash content was obtained: snow water < Cermik thermal spring water < tap water < the Mediterranean Sea water. For the reduction of total sulfur, the following order was obtained: snow water > Cermik thermal spring water > Mediterranean Sea water > tap water. When snow water was used as a flotation medium, it was found that a concentrate containing 3.01% total sulfur and 27.64% ash with a total sulfur reduction of 57.06% was obtained from a feed containing 7.01% total sulfur and 4.1.17% ash.

Ayhan, F.D. [Dicle University, Diyarbakir (Turkey)

2009-08-15T23:59:59.000Z

200

Desulfurization and de-ashing of a mixture of subbituminous coal and gangue minerals by selective oil agglomeration  

SciTech Connect

The aim of this study was to investigate desulfurization and de-ashing of a mixture of subbituminous coal and gangue minerals by the agglomeration method. For this purpose, experimental studies were conducted on a mixture containing subbituminous coal, pyrite, quartz and calcite. The effects of some parameters that markedly influence the effectiveness of selective oil agglomeration, such as solid concentration, pH, bridging liquid type and concentration, and depressant type and amount, were investigated. Agglomeration results showed that the usage of various depressants (Na{sub 2}SiO{sub 3}, FeCl3, corn starch, wheat starch) in the agglomeration medium has a positive effect on the reduction of ash and total sulfur content of agglomerates. It was found that an agglomerate product containing 3.03% total sulfur and 25.01% ash with a total sulfur reduction of 56.71% was obtained from a feed that contained 7% total sulfur and 43.58% ash when FeCl{sub 3} was used in the agglomeration medium.

Ayhan, F.D. [Dicle University, Diyarbakir (Turkey). Dept. of Mining Engineering

2009-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, April 1--June 30, 1996  

SciTech Connect

On September 30, 1993, the US Department of Energy - Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate two technologies for the placement of coal combustion residues in abandoned underground coal mines, and will assess the environmental impact of these technologies for the management of coal combustion by-products. The two technologies for the underground placement that will be developed and demonstrated are: (1) pneumatic placement, using virtually dry materials, and (2) hydraulic placement, using a {open_quotes}paste{close_quotes} mixture of materials with about 70% solids. Phase II of the overall program began April 1, 1996. The principal objective of Phase II is to develop and fabricate the equipment for placing the coal combustion by-products underground, and to conduct a demonstration of the technologies on the surface. Therefore, this quarter has been largely devoted to developing specifications for equipment components, visiting fabrication plants throughout Southern Illinois to determine their capability for building the equipment components in compliance with the specifications, and delivering the components in a timely manner.

NONE

1997-05-01T23:59:59.000Z

202

Adsorptive desulfurization of low sulfur diesel fuel using palladium containing mesoporous silica synthesized via a novel in-situ approach  

Science Journals Connector (OSTI)

Abstract In this work, a novel in-situ synthesis route was applied for preparation of an adsorbent, i.e. palladium containing MCM-41. At first, a hydrophobic palladium precursor was added to the ethanolic micellar solution followed by vacuum distillation of ethanol which decreases the hydrophobic characteristic of the solution. Distillation caused diffusion of hydrophobic palladium precursor into the hydrophobic core of the micelles. Then, tetraethyl orthosilicate was added to the above solution and the silicate spices arranged around the palladium containing micelles. The XRD, N2 physisorption and TEM studies revealed that 4 wt.% palladium loading was achieved without considerable loss of pore ordering. H2-TPR showed that the palladium nanoparticles were accessible for hydrogen molecules. Adsorptive desulfurization of low sulfur diesel fuel was then investigated using synthesized samples. The effect of three valuable parameters, i.e., temperature (25, 75, 150 and 200 °C), concentration of palladium (2, 4 and 5 wt.%) and feed flow rate (0.3 and 1 mL/min) were tested using a fixed-bed flowing device. The highest sulfur break through adsorption capacity and total sulfur adsorption capacity obtained at 200 °C, 0.3 mL/min of feed flow rate and 4 wt.% of palladium concentration were 1.67 and 2.35 mg sulfur/g adsorbent, respectively.

Mohammad Teymouri; Abdolraouf Samadi-Maybodi; Amir Vahid; Aliakbar Miranbeigi

2013-01-01T23:59:59.000Z

203

Flywheel Cooling: A Cooling Solution for Non Air-Conditioned Buildings  

E-Print Network (OSTI)

"Flywheel Cooling" utillzes the natural cooling processes of evaporation, ventilation and air circulation. These systems are providing low-cost cooling for distribution centers, warehouses, and other non air-conditioned industrial assembly plants...

Abernethy, D.

204

CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Load Reduction Project: CoolCalc HVAC Tool Development CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development 2010 DOE Vehicle Technologies and Hydrogen...

205

Solar Roof Cooling by Evaporation  

E-Print Network (OSTI)

It is generally recognized that as much as 60% of the air conditioning load in a building is generated by solar heat from the roof. This paper on SOLAR ROOF COOLING BY EVAPORATION is presented in slide form, tracing the history of 'nature's way...

Patterson, G. V.

1981-01-01T23:59:59.000Z

206

Solar-powered cooling system  

DOE Patents (OSTI)

A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

Farmer, Joseph C

2013-12-24T23:59:59.000Z

207

Heat exchanger with auxiliary cooling system  

DOE Patents (OSTI)

A heat exchanger with an auxiliary cooling system capable of cooling a nuclear reactor should the normal cooling mechanism become inoperable. A cooling coil is disposed around vertical heat transfer tubes that carry secondary coolant therethrough and is located in a downward flow of primary coolant that passes in heat transfer relationship with both the cooling coil and the vertical heat transfer tubes. A third coolant is pumped through the cooling coil which absorbs heat from the primary coolant which increases the downward flow of the primary coolant thereby increasing the natural circulation of the primary coolant through the nuclear reactor.

Coleman, John H. (Salem Township, Westmoreland County, PA)

1980-01-01T23:59:59.000Z

208

Cleaning residual NaK in the fast flux test facility fuel storage cooling system  

SciTech Connect

The Fast Flux Test Facility (FFTF), located on the U.S. Department of Energy's Hanford Reservation, is a liquid metal-cooled test reactor. The FFTF was constructed to support the U.S. Liquid Metal Fast Breeder Reactor Program. The bulk of the alkali metal (sodium and NaK) has been drained and will be stored onsite prior to final disposition. Residual NaK needed to be removed from the pipes, pumps, heat exchangers, tanks, and vessels in the Fuel Storage Facility (FSF) cooling system. The cooling system was drained in 2004 leaving residual NaK in the pipes and equipment. The estimated residual NaK volume was 76 liters in the storage tank, 1.9 liters in the expansion tank, and 19-39 liters in the heat transfer loop. The residual NaK volume in the remainder of the system was expected to be very small, consisting of films, droplets, and very small pools. The NaK in the FSF Cooling System was not radiologically contaminated. The portions of the cooling system to be cleaned were divided into four groups: 1. The storage tank, filter, pump, and associated piping; 2. The heat exchanger, expansion tank, and associated piping; 3. Argon supply piping; 4. In-vessel heat transfer loop. The cleaning was contracted to Creative Engineers, Inc. (CEI) and they used their superheated steam process to clean the cooling system. It has been concluded that during the modification activities (prior to CEI coming onsite) to prepare the NaK Cooling System for cleaning, tank T-914 was pressurized relative to the In-Vessel NaK Cooler and NaK was pushed from the tank back into the Cooler and that on November 6, 2005, when the gas purge through the In-Vessel NaK Cooler was increased from 141.6 slm to 283.2 slm, NaK was forced from the In-Vessel NaK Cooler and it contacted water in the vent line and/or scrubber. The gases from the reaction then traveled back through the vent line coating the internal surface of the vent line with NaK and NaK reaction products. The hot gases also exited the scrubber through the stack and due to the temperature of the gas, the hydrogen auto ignited when it mixed with the oxygen in the air. There was no damage to equipment, no injuries, and no significant release of hazardous material. Even though the FSF Cooling System is the only system at FFTF that contains residual NaK, there are lessons to be learned from this event that can be applied to future residual sodium removal activities. The lessons learned are: - Before cleaning equipment containing residual alkali metal the volume of alkali metal in the equipment should be minimized to the extent practical. As much as possible, reconfirm the amount and location of the alkali metal immediately prior to cleaning, especially if additional evolutions have been performed or significant time has passed. This is especially true for small diameter pipe (<20.3 centimeters diameter) that is being cleaned in place since gas flow is more likely to move the alkali metal. Potential confirmation methods could include visual inspection (difficult in all-metal systems), nondestructive examination (e.g., ultrasonic measurements) and repeating previous evolutions used to drain the system. Also, expect to find alkali metal in places it would not reasonably be expected to be. - Staff with an intimate knowledge of the plant equipment and the bulk alkali metal draining activities is critical to being able to confirm the amount and locations of the alkali metal residuals and to safely clean the residuals. - Minimize the potential for movement of alkali metal during cleaning or limit the distance and locations into which alkali metal can move. - Recognize that when working with alkali metal reactions, occasional pops and bangs are to be anticipated. - Pre-plan emergency responses to unplanned events to assure responses planned for an operating reactor are appropriate for the deactivation phase.

Burke, T.M.; Church, W.R. [Fluor Hanford, PO Box 1000, Richland, Washington, 99352 (United States); Hodgson, K.M. [Fluor Government Group, PO Box 1050, Richland, Washington, 99352 (United States)

2008-01-15T23:59:59.000Z

209

Evaporative Roof Cooling - A Simple Solution to Cut Cooling Costs  

E-Print Network (OSTI)

basis. Since that humble beginning, literally millions of square feet of roof cooling systems have been installed in industrial and commercial buildings. A "mini-boom" for roof sprays existed following World War 11, when air conditioning was new.... All supply piping and spray laterals are supported at 5 ft. inter- vals by cementing redwood blocks to the surface. No roof penetrations are necessary with the excep- tion of very large roof areas, and this is done by a competent roofing...

Abernethy, D.

1985-01-01T23:59:59.000Z

210

Cool Roofs: An Introduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs: An Introduction Cool Roofs: An Introduction Cool Roofs: An Introduction August 9, 2010 - 4:43pm Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Lately, I've been hearing a lot about cool roof technologies, so I welcomed the chance to learn more at a recent seminar. Cool roofs, also referred to as white roofs, have special coatings that reflect sunlight and emit heat more efficiently than traditional roofs, keeping them cooler in the sun. Cool roofing technologies can be implemented quickly and at a relatively low cost, making it the fastest growing sector of the building industry. U.S. Department of Energy Secretary Steven Chu is among the many cool roof enthusiasts. The Secretary recently announced plans to install cool roofs

211

Absorption Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Basics Cooling Basics Absorption Cooling Basics August 16, 2013 - 2:26pm Addthis Absorption coolers use heat rather than electricity as their energy source. Because natural gas is the most common heat source for absorption cooling, it is also referred to as gas-fired cooling. Other potential heat sources include propane, solar-heated water, or geothermal-heated water. Although mainly used in industrial or commercial settings, absorption coolers are commercially available for large residential homes. How Absorption Cooling Works An absorption cooling cycle relies on three basic principles: When a liquid is heated it boils (vaporizes) and when a gas is cooled it condenses Lowering the pressure above a liquid reduces its boiling point Heat flows from warmer to cooler surfaces.

212

Conductive Thermal Interaction in Evaporative Cooling Process  

E-Print Network (OSTI)

It has long been recognized that evaporative cooling is an effective and logical substitute for mechanical cooling in hot-arid climates. This paper explores the application of evaporative coolers to the hot-humid climates using a controlled...

Kim, B. S.; Degelman, L. O.

1990-01-01T23:59:59.000Z

213

Cooling Towers--Energy Conservation Strategies  

E-Print Network (OSTI)

A cooling water system can be optimized by operating the cooling tower at the highest possible cycles of concentration without risking sealing and fouling of heat exchanger surfaces, tube bundles, refrigeration equipment, overhead condensers...

Matson, J.

214

Global cooling updates: Reflective roofs and pavements  

Science Journals Connector (OSTI)

With increasing the solar reflectance of urban surfaces, the outflow of short-wave solar radiation increases, less solar heat energy is absorbed leading to lower surface temperatures and reduced outflow of thermal radiation into the atmosphere. This process of “negative radiative forcing” effectively counters global warming. Cool roofs also reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win–win–win activity that can be undertaken immediately, outside of international negotiations to cap CO2 emissions. We review the status of cool roof and cool pavements technologies, policies, and programs in the U.S., Europe, and Asia. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

Hashem Akbari; H. Damon Matthews

2012-01-01T23:59:59.000Z

215

Introduction of a Cooling Fan Efficiency Index  

E-Print Network (OSTI)

F Fan Power, W (P f ) Cooling-Fan Efficiency (CFE) °C/W °F/WSun et al. 2007). Thus, the CFE is defined by Equation 1.?t eq CFE = Cooling effect = ( – 1 ) --------- P f Fan power

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

216

Evaluation of the cooling fan efficiency index.  

E-Print Network (OSTI)

named Cooling Fan Efficiency (CFE) that is the ratio betweenthe Cooling Fan Efficiency (CFE) is defined by Equation 1. ?t CFE ? ( ? 1 ) eq P f where P f is fan power, i.e the input

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

217

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Energy 101: Cool Roofs Addthis Description This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment. Duration 2:17 Topic Tax Credits, Rebates, Savings Heating & Cooling Commercial Heating & Cooling Credit Energy Department Video MR. : Maybe you've never given much thought about what color your roof is or what it's made of, but your roof could be costing you more money than you know to cool your home or office building, especially if you live in a warmer climate. Think about it this way: In the summertime, we wear light-colored clothes because they keep us cooler. Lighter clothes reflect rather than absorb the heat of the sun. It's the same with your roof. A cool roof is

218

Barriers to the increased utilization of coal combustion/desulfurization by-products by government & commercial sectors - update 1998,7/99,3268845  

NLE Websites -- All DOE Office Websites (Extended Search)

BARRIERS TO THE INCREASED UTILIZATION BARRIERS TO THE INCREASED UTILIZATION OF COAL COMBUSTION/DESULFURIZATION BY-PRODUCTS BY GOVERNMENT AND COMMERCIAL SECTORS - UPDATE 1998 EERC Topical Report DE-FC21-93MC-30097--79 Submitted by: Debra F. Pflughoeft-Hassett Everett A. Sondreal Edward N. Steadman Kurt E. Eylands Bruce A. Dockter Energy & Environmental Research Center PO Box 9018 Grand Forks, ND 58202-9018 99-EERC-07-08 July 1999 i TABLE OF CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OF ACRONYMS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii TERMINOLOGY AND DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .

219

Guide to Minimizing Compress-based Cooling  

Energy.gov (U.S. Department of Energy (DOE))

Guide describes best practices for reducing energy use and total-cost-of-ownership for data center cooling systems.

220

Cooling load design tool for UFAD systems.  

E-Print Network (OSTI)

ratio of time between Fan Coil Units Perimeter Zone Linearand underfloor fan coil units. cooling contribution of

Bauman, Fred; Schiavon, Stefano; Webster, Tom; Lee, Kwang Ho

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

BSU GHP District Heating and Cooling System (Phase I) | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BSU GHP District Heating and Cooling System (Phase I) BSU GHP District Heating and Cooling System (Phase I) Project objectives: Create a campus geothermal heating and cooling...

222

Performance Analysis of XCPC Powered Solar Cooling Demonstration Project  

E-Print Network (OSTI)

available Efficiency solar power Cooling power per capturedavailable Efficiency solar power Cooling power per capturedEq. (3) by integrating the cooling power and dividing by the

Widyolar, Bennett

2013-01-01T23:59:59.000Z

223

Demonstration of Rack-Mounted Computer Equipment Cooling Solutions  

E-Print Network (OSTI)

F. Calculations of room power balance and cooling providedrequired for all other cooling power related componentscooling provided is the cooling power remaining after the

Coles, Henry

2014-01-01T23:59:59.000Z

224

Hybrid and Advanced Air Cooling | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hybrid and Advanced Air Cooling Hybrid and Advanced Air Cooling Hybrid and Advanced Air Cooling presentation at the April 2013 peer review meeting held in Denver, Colorado....

225

What's so cool about Curiosity  

NLE Websites -- All DOE Office Websites (Extended Search)

What's so cool about Curiosity? What's so cool about Curiosity? Curiosity, the Mars Science Laboratory, is the largest and most complicated device we have ever landed on a planet other than Earth. ï‚· About the size of a small SUV -- ten feet long (not including the arm), nine feet wide and seven feet tall ï‚· 900 kilograms (2,000 pounds) (Spirit and Opportunity, earlier research vehicles sent to Mars were 384 pounds) ï‚· Uses aerobraking, parachute, retro rockets and skycrane concepts to land gently (Spirit and Opportunity used aerobraking, parachutes and airbags that bounced them to the surface) Curiosity carries three instruments from Los Alamos National Laboratory. ï‚· The Radioisotope Thermoelectric Generator supplies electricity and heat to the rover

226

Optomechanical laser cooling with mechanical modulations  

E-Print Network (OSTI)

We theoretically study the laser cooling of cavity optomechanics when the mechanical resonance frequency and damping depend on time. In the regime of weak optomechanical coupling we extend the theory of laser cooling using an adiabatic approximation. We discuss the modifications of the cooling dynamics and compare it with numerical simulations in a wide range of modulation frequencies.

Marc Bienert; Pablo Barberis-Blostein

2014-12-15T23:59:59.000Z

227

Berkeley Lab's Cool Your School Program  

SciTech Connect

Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

Ivan Berry

2012-07-30T23:59:59.000Z

228

Muon Cooling via Ionization Andrea Kay Forget  

E-Print Network (OSTI)

1 Muon Cooling via Ionization Andrea Kay Forget Department of Physics, Wayne State University, Detroit, Michigan 48202 Dated: August 7, 2006 Muons only live a few microseconds before they ultimately, and laser cooling) cannot be used to properly cool muons that are being used in proposed accelerators

Cinabro, David

229

CALIFORNIA ENERGY COMMISSION STAFF COOLING WATER MANAGEMENT  

E-Print Network (OSTI)

1 CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY COMMISSION STAFF COOLING WATER MANAGEMENT PROGRAM WATER MANAGEMENT PROGRAM GUIDELINES for Wet and Hybrid Cooling Towers at Power Plants May 17, 2004 A and needs, and may vary from the examples cited here. Staff recommend that such a cooling water management

230

Gas cooled traction drive inverter  

SciTech Connect

The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

Chinthavali, Madhu Sudhan

2013-10-08T23:59:59.000Z

231

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

232

Gas-cooled nuclear reactor  

DOE Patents (OSTI)

A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.

Peinado, Charles O. (La Jolla, CA); Koutz, Stanley L. (San Diego, CA)

1985-01-01T23:59:59.000Z

233

RHIC stochastic cooling motion control  

SciTech Connect

Relativistic Heavy Ion Collider (RHIC) beams are subject to Intra-Beam Scattering (IBS) that causes an emittance growth in all three-phase space planes. The only way to increase integrated luminosity is to counteract IBS with cooling during RHIC stores. A stochastic cooling system for this purpose has been developed, it includes moveable pick-ups and kickers in the collider that require precise motion control mechanics, drives and controllers. Since these moving parts can limit the beam path aperture, accuracy and reliability is important. Servo, stepper, and DC motors are used to provide actuation solutions for position control. The choice of motion stage, drive motor type, and controls are based on needs defined by the variety of mechanical specifications, the unique performance requirements, and the special needs required for remote operations in an accelerator environment. In this report we will describe the remote motion control related beam line hardware, position transducers, rack electronics, and software developed for the RHIC stochastic cooling pick-ups and kickers.

Gassner, D.; DeSanto, L.; Olsen, R.H.; Fu, W.; Brennan, J.M.; Liaw, CJ; Bellavia, S.; Brodowski, J.

2011-03-28T23:59:59.000Z

234

Cooling system for superconducting magnet  

DOE Patents (OSTI)

A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.

Gamble, B.B.; Sidi-Yekhlef, A.

1998-12-15T23:59:59.000Z

235

Air and water cooled modulator  

DOE Patents (OSTI)

A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

Birx, Daniel L. (Oakley, CA); Arnold, Phillip A. (Livermore, CA); Ball, Don G. (Livermore, CA); Cook, Edward G. (Livermore, CA)

1995-01-01T23:59:59.000Z

236

SPL RF Coupler Cooling Efficiency  

E-Print Network (OSTI)

Energy saving is an important challenge in accelerator design. In this framework, reduction of heat loads in a cryomodule is of fundamental importance due to the small thermodynamic efficiency of cooling at low temperatures. In particular, care must be taken during the design of its critical components (e.g. RF couplers, coldwarm transitions). In this framework, the main RF coupler of the Superconducting Proton Linac (SPL) cryomodule at CERN will not only be used for RF powering but also as the main mechanical support of the superconducting cavities. These two functions have to be accomplished while ensuring the lowest heat in-leak to the helium bath at 2 K. In the SPL design, the RF coupler outer conductor is composed of two walls and cooled by forced convection with helium gas at 4.5 K. Analytical, semi-analytical and numerical analyses are presented in order to defend the choice of gas cooling. Temperature profiles and thermal performance have been evaluated for different operating conditions; a sensitivit...

Bonomi, R; Montesinos, E; Parma, V; Vande Craen, A

2014-01-01T23:59:59.000Z

237

Air and water cooled modulator  

DOE Patents (OSTI)

A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

1995-09-05T23:59:59.000Z

238

Recycling of Flue Gas Desulfurization residues in gneiss based hot mix asphalt: Materials characterization and performances evaluation  

Science Journals Connector (OSTI)

Abstract On the one hand, huge amount of Flue Gas Desulfurization (FGD) residues, produced during scrubbing flue gas, is discarded as solid waste. Such solid waste would cause serious environmental problems. One the other hand, high quality aggregates, such as limestone and basalt, are running out due to the rapid development of highway construction. Ungraded aggregates such as gneiss are therefore considered in China to replace the high quality aggregates. The application of FGD residues as a filler in gneiss based asphalt mixture has benefits both in environmental and economic sides. The main objective of this research was to visualize the raw materials characterization and evaluate the effect of FGD residues on the performance of gneiss based asphalt mixture. X-ray diffraction (XRD), X-ray fluorescence (XRF), Scanning Electron Microscope (SEM), Differential Scanning Calorimetric & Thermal gravimetric (DSC–TG) were used to investigate the features of raw materials. The performance of gneiss based asphalt mixture including high-temperature deformation resistance, low-temperature crack resistance and moisture-induced damage resistance were evaluated. Dynamic creep test, three-point bending test, Retained Marshall Stability (RMS), Tensile Strength Ratio (TSR), Indirect Tensile (IDT) strength and Resilient Modulus (MR) test were conducted and analyzed. Dissipated Creep Strain Energy to fracture (DCSEf) ratio, fracture energy and model analysis were also used to evaluate moisture resistance, crack resistance and deformation resistance of asphalt mixture respectively. Research results indicate that FGD residues can partly improve the moisture resistance and crack resistance of gneiss asphalt mixture, while it might worse the high-temperature deformation resistance.

Zongwu Chen; Shaopeng Wu; Fuzhou Li; Juyong Chen; Zhehuan Qin; Ling Pang

2014-01-01T23:59:59.000Z

239

Advances of flue gas desulfurization technology for coal-fired boilers and strategies for sulfur dioxide pollution prevention in China  

SciTech Connect

Coal is one of the most important kinds of energy resources at the present time and in the immediate future in China. Sulfur dioxide resulting from combustion of coal is one of the principle pollutants in the air. Control of SO{sub 2} discharge is still a major challenge for environmental protection in developing China. In this paper, research, development and application of technology of flue gas desulfurization (FGD) for coal-fired boilers in China will be reviewed with emphasis on cost-effective technology, and the development trends of FGD technology, as well as the strategy for SO{sub 2} discharge control in China, will be analyzed. A practical technology for middle-small-sized boilers developed by the primary author and the field investigation results will also be presented. At present, there are four major kinds of FGD technologies that are practical to be applied in China for their cost-effectiveness and efficiency to middle-small-sized boilers. An important development trend of the FGD technology for middle-small-sized boilers for the next decade is improvement of the existing cost-effective wet-type FGD technology, and in the future it will be the development of dry-type FGD technology. For middle-sized generating boilers, the development direction of the FGD technology is the spraying and drying process. For large-sized generating boilers, the wet-type limestone-plaster process will still be applied in the immediate future, and dry-type FGD technologies, such as ammonia with electron beam irradiation, will be developed in the future. State strategies for the control of SO{sub 2} discharge will involve the development and popularization of efficient coal-fired devices, extension of gas coal and liquefied coal, spreading coal washing, and centralized heating systems.

Yang, C.; Zeng, G.; Li, G.; Qiu, J.

1999-07-01T23:59:59.000Z

240

Permitting and solid waste management issues for the Bailly Station wet limestone Advanced Flue Gas Desulfurization (AFGD) system  

SciTech Connect

Pure Air (a general partnership between Air Products and Chemicals, Inc., and Mitsubishi Heavy Industries America, Inc.). is constructing a wet limestone co-current advanced flue gas desulfurization (AFGD) system that has technological and commercial advantages over conventional FGD systems in the United States. The AFGD system is being installed at the Northern Indiana Public Service Company's Bailly Generating Station near Gary, Indiana. The AFGD system is scheduled to be operational by the Summer, 1992. The AFGD system will remove at least 90 percent of the sulfur dioxide (SO{sub 2}) in the flue gas from Boilers 7 and 8 at the Station while burning 3.2 percent sulfur coal. Also as part of testing the AFGD system, 95 percent removal of SO{sub 2} will be demonstrated on coals containing up to 4.5 percent sulfur. At the same time that SO{sub 2} is removed from the flue gas, a gypsum by-product will be produced which will be used for wallboard manufacturing. Since the AFGD system is a pollution control device, one would expect its installation to be received favorably by the public and regulatory agencies. Although the project was well received by regulatory agencies, on public group (Save the Dunes Council) was initially concerned since the project is located adjacent to the Indiana Dunes National Lakeshore. The purpose of this paper is to describe the project team's experiences in obtaining permits/approvals from regulatory agencies and in dealing with the public. 1 ref., 1 fig., 2 tabs.

Bolinsky, F.T. (Pure Air, Allentown, PA (United States)); Ross, J. (Northern Indiana Public Service Co., Hammond, IN (United States)); Dennis, D.S. (United Engineers and Constructors, Inc., Denver, CO (United States). Stearns-Roger Div.); Huston, J.S. (Environmental Alternatives, Inc., Warren NJ (USA))

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Western Cooling Efficiency Center | Open Energy Information  

Open Energy Info (EERE)

Efficiency Center Efficiency Center Jump to: navigation, search Name Western Cooling Efficiency Center Place Davis, CA Website http://http://wcec.ucdavis.edu References Western Cooling Efficiency Center [1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections Western Cooling Efficiency Center is a research institution located in Davis, CA, at the University of California at Davis (UC Davis). References ↑ "Western Cooling Efficiency Center" Retrieved from "http://en.openei.org/w/index.php?title=Western_Cooling_Efficiency_Center&oldid=382319" Categories: Clean Energy Organizations

242

Algorithmic Cooling in Liquid State NMR  

E-Print Network (OSTI)

Algorithmic cooling is a method that employs thermalization to increase the qubits' purification level, namely it reduces the qubit-system's entropy. We utilized gradient ascent pulse engineering (GRAPE), an optimal control algorithm, to implement algorithmic cooling in liquid state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of 13C2-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. For example, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic resonance spectroscopy.

Yosi Atia; Yuval Elias; Tal Mor; Yossi Weinstein

2014-11-17T23:59:59.000Z

243

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Energy 101: Cool Roofs Addthis Below is the text version for the Energy 101: Cool Roofs video. The video opens with "Energy 101: Cool Roofs." This is followed by images of residential rooftops. Maybe you've never given much thought about what color your roof is, or what it's made of. But your roof could be costing you more money than you know to cool your home or office building, especially if you live in a warmer climate. The video shows pedestrians walking on a city street. Think about it this way... in the summertime we wear light-colored clothes because they keep us cooler. Lighter colors reflect - rather than absorb - the heat of the sun. The video shows images of a white roof. It's the same with your roof. A cool roof is often light in color and made

244

Why Cool Roofs? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Why Cool Roofs? Why Cool Roofs? Why Cool Roofs? Addthis Description By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills. Speakers Secretary Steven Chu Duration 1:46 Topic Tax Credits, Rebates, Savings Commercial Weatherization Commercial Heating & Cooling Fossil Oil Credit Energy Department Video SECRETARY OF ENERGY STEVEN CHU: The reason we wanted the Department of Energy to take the lead in cool roofs is to demonstrate that this really saves money. If you have a roof and it's black, it's absorbing energy from the sun

245

Fans for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fans for Cooling Fans for Cooling Fans for Cooling May 30, 2012 - 7:46pm Addthis Ceiling fans circulate air in a room to help keep occupants cool. | Photo courtesy of ©iStockphoto/jimkruger Ceiling fans circulate air in a room to help keep occupants cool. | Photo courtesy of ©iStockphoto/jimkruger What does this mean for me? You may be able to keep your home cool with energy-efficient and well-placed fans. Fans are less expensive to operate than air conditioners. Circulating fans include ceiling fans, table fans, floor fans, and fans mounted to poles or walls. These fans create a wind chill effect that will make you more comfortable in your home, even if it's also cooled by natural ventilation or air conditioning. Ceiling Fans Ceiling fans are considered the most effective of these types of fans,

246

A new cylinder cooling system using oil  

SciTech Connect

The design of engine cylinders must satisfy two conflicting requirements, good cooling performance and ease of manufacture. A cooling system was designed to permit the circulation of engine lubricating oil as a coolant at high speed through grooves provided on the external periphery of the cylinder liner. Testing in an actual operating engine confirmed that this cooling system design not only provides better heat transfer and higher cooling performance but also simplifies the manufacturing of the cylinder since external cooling fins are not required. In this paper, the authors will discuss the cylinder cooling effect of the new cylinder cooling system, referring mainly to the test results of a single-cylinder motorcycle engine with lubricating oil from the crankcase used as the coolant.

Harashina, Kenichi; Murata, Katsuhiro; Satoh, Hiroshi; Shimizu, Yasuo; Hamamura, Masahiro

1995-12-31T23:59:59.000Z

247

Photometric Identification of Cool White Dwarfs  

E-Print Network (OSTI)

We investigate the use of a narrow-band DDO51 filter for photometric identification of cool white dwarfs. We report photometric observations of 30 known cool white dwarfs with temperatures ranging from 10,000 K down to very cool temperatures (<3500 K). Follow-up spectroscopic observations of a sample of objects selected using this filter and our photometric observations show that DDO51 filter photometry can help select cool white dwarf candidates for follow-up multi--object spectroscopy by rejecting 65% of main sequence stars with the same broad--band colors as the cool white dwarfs. This technique is not selective enough to efficiently feed single--object spectrographs. We present the white dwarf cooling sequence using this filter. Our observations show that very cool white dwarfs form a sequence in the r-DDO vs. r-z color--color diagram and demonstrate that significant improvements are needed in white dwarf model atmospheres.

M. Kilic; D. E. Winget; Ted von Hippel; C. F. Claver

2004-06-18T23:59:59.000Z

248

On-chip high speed localized cooling using superlattice microrefrigerators  

E-Print Network (OSTI)

and J. E. Bowers, “High cooling power density SiGe/Si microDevice area, m . Maximum cooling power density, W/cm . I. Ibest cooling performance. C. Cooling Power Measurements For

Zhang, Y; Christofferson, J; Shakouri, A; Zeng, G H; Bowers, J E; Croke, E T

2006-01-01T23:59:59.000Z

249

Simultaneous removal of H2S and COS using Zn-based solid sorbents in the bench-scale continuous hot gas desulfurization system integrated with a coal gasifier  

Science Journals Connector (OSTI)

A bench-scale continuous hot gas desulfurization system using Zn-based solid sorbents was developed to remove H2S and COS simultaneously in a 110 Nm3.../h of real coal-gasified syngas. The bench-scale unit, which...

Young Cheol Park; Sung-Ho Jo; Ho-Jung Ryu…

2012-12-01T23:59:59.000Z

250

Adsorption and desorption of sulfur dioxide on novel adsorbents for flue gas desulfurization. Final report, September 1, 1994--February 29, 1996  

SciTech Connect

A sol-gel granulation method was developed to prepare spherical {gamma}-alumina granular supports and supported CuO granular sorbents for flue gas desulfurization. The prepared {gamma}-alumina supported CuO sorbents exhibit desirable pore structure and excellent mechanical properties. The sorbents contain higher loading (30-40 wt. %) of CuO dispersed in the monolayer or sub-monolayer form, giving rise to a larger SO{sub 2} sorption capacity ({gt}20 wt.%) and a faster sorption rate as compared to similar sorbents reported in the literature. With these excellent sulfation and mechanical properties, the sol-gel derived {gamma}-alumina supported CuO granular sorbents offer great potential for use in the dry, regenerative flue gas desulfurization process. Research efforts were also made to prepare DAY zeolite supported sorbents with various CuO contents by the microwave and conventional thermal dispersion methods at different conditions. Monolayer or sub-monolayer coating of Cu(NO{sub 3})sub 2 or CuO was achieved on several DAY supported sorbents by the microwave heating method but not by the conventional thermal dispersion method. The DAY zeolite supported CuO sorbents prepared by the microwave heating method can adsorb up to 15 wt.% of SO{sub 2}. The results obtained have demonstrated the feasibility of effective preparation of zeolite supported CuO sorbents by the microwave heating method.

Lin, Y.S.; Deng, S.G.

1996-08-05T23:59:59.000Z

251

Two-Phase Spray Cooling of Hybrid Vehicle Electronics: Preprint  

SciTech Connect

Spray cooling is a feasible cooling technology for hybrid vehicle electronics; HFE 7100 is a promising coolant.

Mudawar, I.; Bharathan, D.; Kelly, K.; Narumanchi, S.

2008-07-01T23:59:59.000Z

252

Cooling Fusion in a Flash | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Fusion in a Flash American Fusion News Category: U.S. Universities Link: Cooling Fusion in a Flash...

253

Information technology equipment cooling system  

SciTech Connect

According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

Schultz, Mark D.

2014-06-10T23:59:59.000Z

254

Cooling Towers, Energy Conservation Strategies  

E-Print Network (OSTI)

undersized due to the low bidder syndrome (1). 4. New plant expansion needs colder temperatures off the tower. State of the Art Upgrading Users of cooling towers are not par ticularly concerned with the thermal analysis involving calculus, or delving... HISTORY I Anhydrous Ammonia Plant The Hawkeye Chemical Corporation, a subsidiary of the Getty Oil Company, pro jected a 50% expansion of their anhydroug ammonia output from 120,000 tons (1.09 Kg) per year to ~ production level of 225,000 tons (2...

Burger, R.

1983-01-01T23:59:59.000Z

255

DOE Science Showcase - Cool roofs, cool research, at DOE | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

Cool roofs, cool research, at DOE Cool roofs, cool research, at DOE Science Accelerator returns cool roof documents from 6 DOE Databases Executive Order on Sustainability Secretary Chu Announces Steps to Implement One Cool Roof Cool Roofs Lead to Cooler Cities Guidelines for Selecting Cool Roofs DOE Cool Roof Calculator Visit the Science Showcase homepage. OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services OSTI Facebook OSTI Twitter OSTI Google+ Bookmark and Share (Link will open in a new window) Go to Videos Loading... Stop news scroll Most Visited Adopt-A-Doc DOE Data Explorer DOE Green Energy DOepatents DOE R&D Accomplishments .EDUconnections Energy Science and Technology Software Center E-print Network National Library of Energy OSTIblog Science.gov Science Accelerator

256

Cavity cooling of an atomic array  

E-Print Network (OSTI)

While cavity cooling of a single trapped emitter was demonstrated, cooling of many particles in an array of harmonic traps needs investigation and poses a question of scalability. This work investigates the cooling of a one dimensional atomic array to the ground state of motion via the interaction with the single mode field of a high-finesse cavity. The key factor ensuring the cooling is found to be the mechanical inhomogeneity of the traps. Furthermore it is shown that the pumped cavity mode does not only mediate the cooling but also provides the necessary inhomogeneity if its periodicity differs from the one of the array. This configuration results in the ground state cooling of several tens of atoms within a few milliseconds, a timescale compatible with current experimental conditions. Moreover, the cooling rate scaling with the atom number reveals a drastic change of the dynamics with the size of the array: atoms are either cooled independently, or via collective modes. In the latter case the cavity mediated atom interaction destructively slows down the cooling as well as increases the mean occupation number, quadratically with the atom number. Finally, an order of magnitude speed up of the cooling is predicted as an outcome the optimization scheme based on the adjustment of the array versus the cavity mode periodicity.

Oxana Mishina

2014-04-16T23:59:59.000Z

257

Activation of Noble Metals on Metal-Carbide Surfaces: Novel Catalysts for CO Oxidation, Desulfurization and Hydrogenation Reactions  

SciTech Connect

This perspective article focuses on the physical and chemical properties of highly active catalysts for CO oxidation, desulfurization and hydrogenation reactions generated by depositing noble metals on metal-carbide surfaces. To rationalize structure-reactivity relationships for these novel catalysts, well-defined systems are required. High-resolution photoemission, scanning tunneling microscopy (STM) and first-principles periodic density-functional (DF) calculations have been used to study the interaction of metals of Groups 9, 10 and 11 with MC(001) (M = Ti, Zr, V, Mo) surfaces. DF calculations give adsorption energies that range from 2 eV (Cu, Ag, Au) to 6 eV (Co, Rh, Ir). STM images show that Au, Cu, Ni and Pt grow on the carbide substrates forming two-dimensional islands at very low coverage, and three-dimensional islands at medium and large coverages. In many systems, the results of DF calculations point to the preferential formation of admetal-C bonds with significant electronic perturbations in the admetal. TiC(001) and ZrC(001) transfer some electron density to the admetals facilitating bonding of the adatom with electron-acceptor molecules (CO, O{sub 2}, C{sub 2}H{sub 4}, SO{sub 2}, thiophene, etc.). For example, the Cu/TiC(001) and Au/TiC(001) systems are able to cleave both S-O bonds of SO{sub 2} at a temperature as low as 150 K, displaying a reactivity much larger than that of TiC(001) or extended surfaces of bulk copper and gold. At temperatures below 200 K, Au/TiC is able to dissociate O{sub 2} and perform the 2CO + O{sub 2} {yields} 2CO{sub 2} reaction. Furthermore, in spite of the very poor hydrodesulfurization performance of TiC(001) or Au(111), a Au/TiC(001) surface displays an activity for the hydrodesulfurization of thiophene higher than that of conventional Ni/MoS{sub x} catalysts. In general, the Au/TiC system is more chemically active than systems generated by depositing Au nanoparticles on oxide surfaces. Thus, metal carbides are excellent supports for enhancing the chemical reactivity of noble metals.

Rodriguez J. A.; Illas, F.

2012-01-01T23:59:59.000Z

258

Cool Farm Tool | Open Energy Information  

Open Energy Info (EERE)

Cool Farm Tool Cool Farm Tool Jump to: navigation, search Tool Summary Name: Cool Farm Tool Agency/Company /Organization: Unilever Sector: Land Focus Area: Agriculture Topics: Co-benefits assessment, Resource assessment Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.unilever.com/aboutus/supplier/sustainablesourcing/tools/?WT.LHNAV= Cost: Free Language: English Cool Farm Tool Screenshot References: Cool Farm Tool [1] Overview "The Cool Farm Tool is a new greenhouse gas calculator for farming. It's easy to use and gives instant results that invite users to try out alternatives and ask 'what if' questions. The tool was commissioned by Unilever from the University of Aberdeen The tool is ideal for farmers, supply chain managers and companies interested in quantifying their

259

Evaporative Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Cooling Basics Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work There are two types of evaporative coolers: direct and indirect. Direct evaporative coolers, also called swamp coolers, work by cooling outdoor air by passing it over water-saturated pads, causing the water to evaporate into it. The 15°-40°F-cooler air is then directed into the home

260

Microsoft PowerPoint - Cool Roofs_090804  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for: for: Quarterly Facilities and Infrastructure Meeting Presented by: The Office of Engineering and Construction Management Content Excerpted From Presentation of: Bob Schmidt - NNSA Kansas City Plant Cool Roofs - An Overview August 4, 2009 2 *The terms "white roof" and "cool roof" are often mistakenly used interchangeably. A white roof is not necessarily a cool roof and a cool roof is not necessarily white. *"Cool Roofs" come in many style as defined by industry standard and can include: Metal Single ply Modified bitumen Acrylic coated White Roof vs. Cool Roof 3 Solar reflectance alone can significantly influence surface temperature, with the white stripe on the brick wall about 5 to 10° F (3-5° C) cooler than the surrounding, darker

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Cool Roofs Energy 101: Cool Roofs Energy 101: Cool Roofs February 1, 2011 - 10:50am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Editor's Note: This entry has been cross-posted from DOE's Energy Blog. In this edition of Energy 101 we take a look at one of Secretary Chu's favorite energy efficiency techniques, cool roofs. Traditional dark-colored roofing materials absorb a great deal of sunlight, which in turn transfers heat to a building. Cool roofs use light-colored, highly reflective materials to regulate building temperatures without increasing electricity demand, which can result in energy savings of up to 10 to 15 percent. Cool roofs can also reduce the "heat island" effect in cities and suburbs, a phenomenon that produces higher temperatures in densely populated areas

262

Evaporative Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Cooling Basics Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work There are two types of evaporative coolers: direct and indirect. Direct evaporative coolers, also called swamp coolers, work by cooling outdoor air by passing it over water-saturated pads, causing the water to evaporate into it. The 15°-40°F-cooler air is then directed into the home

263

Cooling and Clusters: When Is Heating Needed?  

E-Print Network (OSTI)

There are (at least) two unsolved problems concerning the current state of the thermal gas in clusters of galaxies. The first is identifying the source of the heating which offsets cooling in the centers of clusters with short cooling times (the ``cooling flow'' problem). The second is understanding the mechanism which boosts the entropy in cluster and group gas. Since both of these problems involve an unknown source of heating it is tempting to identify them with the same process, particular since AGN heating is observed to be operating at some level in a sample of well-observed ``cooling flow'' clusters. Here we show, using numerical simulations of cluster formation, that much of the gas ending up in clusters cools at high redshift and so the heating is also needed at high-redshift, well before the cluster forms. This indicates that the same process operating to solve the cooling flow problem may not also resolve the cluster entropy problem.

Greg L. Bryan; G. Mark Voit

2005-02-22T23:59:59.000Z

264

Hot gas path component cooling system  

DOE Patents (OSTI)

A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

2014-02-18T23:59:59.000Z

265

Definition: Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate.[1] References ↑ http://en.wikipedia.org/wiki/Evaporative_cooler Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Evaporative_Cooling&oldid=601323" Category: Definitions What links here Related changes

266

Cool Roofs: An Introduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roofs: An Introduction Roofs: An Introduction Cool Roofs: An Introduction August 9, 2010 - 4:43pm Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Lately, I've been hearing a lot about cool roof technologies, so I welcomed the chance to learn more at a recent seminar. Cool roofs, also referred to as white roofs, have special coatings that reflect sunlight and emit heat more efficiently than traditional roofs, keeping them cooler in the sun. Cool roofing technologies can be implemented quickly and at a relatively low cost, making it the fastest growing sector of the building industry. U.S. Department of Energy Secretary Steven Chu is among the many cool roof enthusiasts. The Secretary recently announced plans to install cool roofs

267

Liquid metal cooled nuclear reactor plant system  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01T23:59:59.000Z

268

Peltier Junction heats and cools car seat  

SciTech Connect

Electrically heated seats may soon become heated and cooled seats. The design called the CCS module exploits the heat-pump capability of a class of semiconductor thermoelectric devices (TEDs) known as Peltier Junction. Every CCS module contain two TEDs. Heating and cooling occurs through convection and conduction. The heart of the system is the thermoelectric heat pump. This is originally conceived as the sole heating/cooling options for a prototype electric vehicle.

Gottschalk, M.A.

1994-10-10T23:59:59.000Z

269

Complete Muon Cooling Channel Design and Simulations  

SciTech Connect

Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

C. Y. Yoshikawa, C.M. Ankenbrandt, R.P. Johnson, Y.S. Derbenev, V.S. Morozov, D.V. Neuffer, K. Yonehara

2012-07-01T23:59:59.000Z

270

Complete Muon Cooling Channel Design and Simulations  

SciTech Connect

Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

Neuffer, D.V.; /Fermilab; Ankenbrandt, C.M.; Johnson, R.P.; Yoshikawa, C.Y.; /MUONS Inc., Batavia; Derbenev, Y.S.; Morozov, V.S.; /Jefferson Lab

2012-05-01T23:59:59.000Z

271

Bee Cool Inc | Open Energy Information  

Open Energy Info (EERE)

North Ferrisburg, Vermont Zip: Vt 05473 Sector: Solar Product: Producer of polysilicon solar panels and solar trackers, and solar battery chargers. References: Bee Cool Inc1...

272

Direct Liquid Cooling for Electronic Equipment  

SciTech Connect

This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used with data center energy use modeling software to estimate overall site energy use. These estimates show that an overall data center energy savings of approximately 20 percent can be expected if a center is retrofitted as specified in the models used. Increasing the portion of heat captured by this technology is an area suggested for further development.

Coles, Henry; Greenberg, Steve

2014-03-01T23:59:59.000Z

273

Therapeutic Hypothermia: Protective Cooling Using Medical Ice...  

NLE Websites -- All DOE Office Websites (Extended Search)

Therapeutic Hypothermia: Protective Cooling Using Medical Ice Slurry Technology available for licensing: Proprietary method and equipment for making an ice slurry coolant to induce...

274

X-ray Spectroscopy of Cooling Cluster  

SciTech Connect

We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

Peterson, J.R.; /SLAC; Fabian, A.C.; /Cambridge U., Inst. of Astron.

2006-01-17T23:59:59.000Z

275

Cooling load design tool for UFAD systems.  

E-Print Network (OSTI)

Underfloor Air Distribution (UFAD) Design Guide. Atlanta:Load Design Tool for Underfloor Air Distribution Systems. ”for design cooling loads in underfloor air distribution (

Bauman, Fred; Schiavon, Stefano; Webster, Tom; Lee, Kwang Ho

2010-01-01T23:59:59.000Z

276

Depolarisation cooling of an atomic cloud  

E-Print Network (OSTI)

We propose a cooling scheme based on depolarisation of a polarised cloud of trapped atoms. Similar to adiabatic demagnetisation, we suggest to use the coupling between the internal spin reservoir of the cloud and the external kinetic reservoir via dipolar relaxation to reduce the temperature of the cloud. By optical pumping one can cool the spin reservoir and force the cooling process. In case of a trapped gas of dipolar chromium atoms, we show that this cooling technique can be performed continuously and used to approach the critical phase space density for BEC

S. Hensler; A. Greiner; J. Stuhler; T. Pfau

2005-05-13T23:59:59.000Z

277

Cavity cooling of an optically trapped nanoparticle  

Science Journals Connector (OSTI)

We study the cooling of a dielectric nanoscale particle trapped in an optical cavity. We derive the frictional force for motion in the cavity field and show that the cooling rate is proportional to the square of oscillation amplitude and frequency. Both the radial and axial components of the center-of-mass motion of the trapped particle, which are coupled by the cavity field, are cooled. This motion is analogous to two coupled but damped pendulums. Our simulations show that the nanosphere can be cooled to e-1 of its initial momentum over time scales of hundredths of milliseconds.

P. F. Barker and M. N. Shneider

2010-02-23T23:59:59.000Z

278

Laser cooling by collisional redistribution of radiation  

Science Journals Connector (OSTI)

... in aqueous solutions. Nature 406, 611–614 (2000) Adams, C. S. &Riis, E. Laser cooling and trapping of neutral atoms. Prog. Quantum Electron. 21, ...

Ulrich Vogl; Martin Weitz

2009-09-03T23:59:59.000Z

279

X-ray Spectroscopy of Cooling Clusters  

E-Print Network (OSTI)

We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

J. R. Peterson; A. C. Fabian

2005-12-21T23:59:59.000Z

280

Green Cooling: Improving Chiller Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Green Cooling: Improving Chiller Efficiency This new chiller simulation module being developed by Building Performance Assurance Project members will help building managers compare optimal and actual chiller efficiency. Chillers are the single largest energy consumers in commercial buildings. These machines create peaks in electric power consumption, typically during summer afternoons. In fact, 23% of electricity generation is associated with powering chillers that use CFCs and HCFCs, ozone-depleting refrigerants. Satisfying the peak demand caused by chillers forces utilities to build new power plants. However, because chiller plants run the most when the weather is hot and very little at other times, their load factors - and hence the utilities' load factors (the percentage of time the

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Cooled turbine vane with endcaps  

DOE Patents (OSTI)

A turbine vane assembly which includes an outer endcap having a plurality of generally straight passages and passage segments therethrough, an inner endcap having a plurality of passages and passage segments therethrough, and a vane assembly having an outer shroud, an airfoil body, and an inner shroud. The outer shroud, airfoil body and inner shroud each have a plurality of generally straight passages and passage segments therethrough as well. The outer endcap is coupled to the outer shroud so that outer endcap passages and said outer shroud passages form a fluid circuit. The inner endcap is coupled to the inner shroud so that the inner end cap passages and the inner shroud passages from a fluid circuit. Passages in the vane casting are in fluid communication with both the outer shroud passages and the inner shroud passages. Passages in the outer endcap may be coupled to a cooling system that supplies a coolant and takes away the heated exhaust.

Cunha, Frank J. (Avon, CT); Schiavo, Jr., Anthony L. (Ovideo, FL); Nordlund, Raymond Scott (Orlando, FL); Malow, Thomas (Oviedo, FL); McKinley, Barry L. (Chuluota, FL)

2002-01-01T23:59:59.000Z

282

Integrating district cooling with cogeneration  

SciTech Connect

Chillers can be driven with cogenerated thermal energy, thereby offering the potential to increase utilization of cogeneration throughout the year. However, cogeneration decreases electric output compared to condensing power generation in power plants using a steam cycle (steam turbine or gas turbine combined cycle plants). The foregone electric production increases with increasing temperature of heat recovery. Given a range of conditions for key variables (such as cogeneration utilization, chiller utilization, cost of fuel, value of electricity, value of heat and temperature of heat recovered), how do technology alternatives for combining district cooling with cogeneration compare? This paper summarizes key findings from a report recently published by the International Energy Agency which examines the energy efficiency and economics of alternatives for combining cogeneration technology options (gas turbine simple cycle, diesel engine, steam turbine, gas turbine combined cycle) with chiller options (electric centrifugal, steam turbine centrifugal one-stage steam absorption, two-stage steam absorption, hot water absorption).

Spurr, M.

1996-11-01T23:59:59.000Z

283

Cool CAVEs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CAVEs CAVEs Cool CAVEs January 5, 2011 - 6:18pm Addthis Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts? The Idaho National Laboratory's "CAVE" -- 3-D Computer-Assisted Virtual Environment -- allows scientists to literally walk into their data and look at it from multiple perspectives. Projectors, mounted behind the walls and on the ceiling, are manipulated by researchers using 3-D goggles and a handheld controller -- and allow them to study everything from terrain to applied nuclear research, to active sites of proteins. To escape the holiday chaos, many folks found refuge in caves - dark places with sticky floors, lumpy seating and Jeff Bridges playing scenes against a computer-enhanced younger version of himself . . . at least if

284

GAS COOLED ELECTRICAL LEADS FOR USE ON FORCED COOLED SUPERCONDUCTING MAGNETS  

E-Print Network (OSTI)

11-14, 1981 GAS COOLED ELECTRICAL LEADS FOR USE ON FORCEDim mumii P mm GAS COOLED ELECTRICAL LEADS FOR USE ON FORCEDD. Henning, "Cryogenic Electrical Leads," Proceedings of the

Smits, R.G.

2010-01-01T23:59:59.000Z

285

Emergency cooling system and method  

DOE Patents (OSTI)

An improved emergency cooling system and method are disclosed that may be adapted for incorporation into or use with a nuclear BWR wherein a reactor pressure vessel (RPV) containing a nuclear core and a heat transfer fluid for circulation in a heat transfer relationship with the core is housed within an annular sealed drywell and is fluid communicable therewith for passage thereto in an emergency situation the heat transfer fluid in a gaseous phase and any noncondensibles present in the RPV, an annular sealed wetwell houses the drywell, and a pressure suppression pool of liquid is disposed in the wetwell and is connected to the drywell by submerged vents. The improved emergency cooling system and method has a containment condenser for receiving condensible heat transfer fluid in a gaseous phase and noncondensibles for condensing at least a portion of the heat transfer fluid. The containment condenser has an inlet in fluid communication with the drywell for receiving heat transfer fluid and noncondensibles, a first outlet in fluid communication with the RPV for the return to the RPV of the condensed portion of the heat transfer fluid and a second outlet in fluid communication with the drywell for passage of the noncondensed balance of the heat transfer fluid and the noncondensibles. The noncondensed balance of the heat transfer fluid and the noncondensibles passed to the drywell from the containment condenser are mixed with the heat transfer fluid and the noncondensibles from the RPV for passage into the containment condenser. A water pool is provided in heat transfer relationship with the containment condenser and is thermally communicable in an emergency situation with an environment outside of the drywell and the wetwell for conducting heat transferred from the containment condenser away from the wetwell and the drywell. 5 figs.

Oosterkamp, W.J.; Cheung, Y.K.

1994-01-04T23:59:59.000Z

286

HEATING AND COOLING PROTOSTELLAR DISKS  

SciTech Connect

We examine heating and cooling in protostellar disks using three-dimensional radiation-MHD calculations of a patch of the Solar nebula at 1 AU, employing the shearing-box and flux-limited radiation diffusion approximations. The disk atmosphere is ionized by stellar X-rays, well coupled to magnetic fields, and sustains a turbulent accretion flow driven by magnetorotational instability, while the interior is resistive and magnetically dead. The turbulent layers are heated by absorbing the light from the central star and by dissipating the magnetic fields. They are optically thin to their own radiation and cool inefficiently. The optically thick interior in contrast is heated only weakly, by re-emission from the atmosphere. The interior is colder than a classical viscous model and isothermal. The magnetic fields support an extended atmosphere that absorbs the starlight 1.5 times higher than the hydrostatic viscous model. The disk thickness thus measures not the internal temperature, but the magnetic field strength. Fluctuations in the fields move the starlight-absorbing surface up and down. The height ranges between 13% and 24% of the radius over timescales of several orbits, with implications for infrared variability. The fields are buoyant, so the accretion heating occurs higher in the atmosphere than the stresses. The heating is localized around current sheets, caused by magnetorotational instability at lower elevations and by Parker instability at higher elevations. Gas in the sheets is heated above the stellar irradiation temperature, even though accretion is much less than irradiation power when volume averaged. The hot optically thin current sheets might be detectable through their line emission.

Hirose, S. [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Turner, N. J., E-mail: shirose@jamstec.go.jp, E-mail: neal.turner@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

2011-05-10T23:59:59.000Z

287

Laser cooling and sympathetic cooling in a linear quadrupole rf trap  

E-Print Network (OSTI)

LASER COOLING AND SYMPATHETIC COOLING IN A LINEAR QUADRUPOLE RF TRAP A Dissertation by VLADIMIR LEONIDOVICH RYJKOV Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of DOCTOR OF PHILOSOPHY December 2003 Major Subject: Physics LASER COOLING AND SYMPATHETIC COOLING IN A LINEAR QUADRUPOLE RF TRAP A Dissertation by VLADIMIR LEONIDOVICH RYJKOV Submitted to Texas A&M University in partial fulfillment of the requirements...

Ryjkov, Vladimir Leonidovich

2005-02-17T23:59:59.000Z

288

Method for passive cooling liquid metal cooled nuclear reactors, and system thereof  

DOE Patents (OSTI)

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

Hunsbedt, Anstein (Los Gatos, CA); Busboom, Herbert J. (San Jose, CA)

1991-01-01T23:59:59.000Z

289

Cooling and Trapping Atoms Atoms are slowed and cooled by radiation pressure from laser light  

E-Print Network (OSTI)

Cooling and Trapping Atoms Atoms are slowed and cooled by radiation pressure from laser light and then trapped in a bottle whose "walls" are magnetic fields. Cooled atoms are ideal for exploring basic. research has traditionally been the study of the intrinsic prop erties of isolated atoms. In the early part

Johannesson, Henrik

290

The Cool Flame Combustion of Ethanol  

Science Journals Connector (OSTI)

...research-article The Cool Flame Combustion of Ethanol J. Brown C. F. H. Tipper The kinetics...products of the cool flame combustion of ethanol between about 280 and 330 C have been...much less for a 1 : 2 than for a 1 : 1 ethanol/oxygen mixture at constant T and varied...

1969-01-01T23:59:59.000Z

291

PROJECT REPORT WESTERN COOLING CHALLENGE LABORATORY  

E-Print Network (OSTI)

that reduce energy, water consumption and peak electricity demand associated with cooling in the Western-cool- er to reduce the refrigerant condensing temperature of a vapor compression system, then cycles Davis Energy Efficiency Center in 2007 through a grant from the California Clean Energy Fund

California at Davis, University of

292

Water Management for Evaporatively Cooled Condensers  

E-Print Network (OSTI)

Water Management for Evaporatively Cooled Condensers Theresa Pistochini May 23rd, 2012 ResearchAirCapacity,tons Gallons of Water Continuous Test - Outdoor Air 110-115 Deg F Cyclic Test - Outdoor Air 110-115 Deg F #12 AverageWaterHardness(ppm) Cooling Degree Days (60°F Reference) 20% Population 70% Population 10

California at Davis, University of

293

Energy 101: Cool Roofs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs Cool Roofs Energy 101: Cool Roofs January 31, 2011 - 12:38pm Addthis This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs How does it work? Dark-colored roofing materials absorb a great deal of sunlight, which transfers heat into a building. This can also cause the "heat island" effect in cities and suburbs, a phenomenon that produces higher temperatures in densely populated areas due to extensive changes in the landscape. Cool roofs use light-colored, highly reflective materials to regulate building temperatures without increasing electricity demand, which can result in energy savings of up to 10 to 15 percent.

294

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

295

Ventilation Systems for Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

296

One Cool Roof | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One Cool Roof One Cool Roof One Cool Roof November 9, 2010 - 10:28am Addthis Deputy Director Salmon Deputy Director, Resource Management The Office of Science occupies many buildings around the country, but it owns only two of them. One of them is making some news. The 134,629 sq. ft. (about 3 acres) roof of the Office of Scientific and Technical Information (OSTI) building in Oak Ridge, Tennessee is now officially a "Cool Roof" -- making it energy efficient in ways that darker roofs are not. Cool roofs are light in color, and therefore, reflect rather than absorb sunlight. The previous roof was black, but worse, it was leaky and those leaks, controlled for years in some very innovative ways by the OSTI staff, were going to cause significant problems if not addressed. OSTI needed to invest

297

Solar space cooling | Open Energy Information  

Open Energy Info (EERE)

cooling cooling Jump to: navigation, search Solarcooling.jpg Contents 1 Introduction 2 Solar Absorption Technology 3 Solar Desiccant Technology 4 Passive Solar Cooling 5 References Introduction There are many benefits to Solar Cooling systems. For one the sun is a clean energy resource that we should be using more often. It also produces no emissions and is replenished naturally, it reduces greenhouse gases, it saves the release of 1.6 lbs. of carbon dioxide (CO2) for each kilowatt-hour (kWh) produced, it saves the use of one-half gallon of water for each kWh of solar energy produced, it saves the release of other emissions that result from the burning of fossil fuels such as nitrogen oxides, sulfur dioxide or mercury and it provides customers with options to reduce their electric bills. But up to this point Solar Cooling systems are

298

Sisyphus Cooling of Electrically Trapped Polyatomic Molecules  

E-Print Network (OSTI)

The rich internal structure and long-range dipole-dipole interactions establish polar molecules as unique instruments for quantum-controlled applications and fundamental investigations. Their potential fully unfolds at ultracold temperatures, where a plethora of effects is predicted in many-body physics, quantum information science, ultracold chemistry, and physics beyond the standard model. These objectives have inspired the development of a wide range of methods to produce cold molecular ensembles. However, cooling polyatomic molecules to ultracold temperatures has until now seemed intractable. Here we report on the experimental realization of opto-electrical cooling, a paradigm-changing cooling and accumulation method for polar molecules. Its key attribute is the removal of a large fraction of a molecule's kinetic energy in each step of the cooling cycle via a Sisyphus effect, allowing cooling with only few dissipative decay processes. We demonstrate its potential by reducing the temperature of about 10^6 ...

Zeppenfeld, M; Glöckner, R; Prehn, A; Mielenz, M; Sommer, C; van Buuren, L D; Motsch, M; Rempe, G

2012-01-01T23:59:59.000Z

299

Cooling system for a nuclear reactor  

DOE Patents (OSTI)

A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

Amtmann, Hans H. (Rancho Santa Fe, CA)

1982-01-01T23:59:59.000Z

300

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

PGE. 2007. Pacific Gas & Electric cool-roof rebate program.at http://www.pge.com/res/rebates/cool_roof/ . ROH. 2001.California Edison cool-roof rebate program. Online at

Akbari, Hashem

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Application of Cooling Concepts to European Office Buildings  

Science Journals Connector (OSTI)

Plant Model and Cooling Concepts.... Five different cooling concepts are applied in order to cool the office building (Fig. 7.3). All of them allow for free ventilation by opening windows. Four con...

Doreen E. Kalz; Jens Pfafferott

2014-01-01T23:59:59.000Z

302

The integration of cryogenic cooling systems with superconducting electronic systems  

E-Print Network (OSTI)

SCMAG-SIO The Integration of Cryogenic Cooling Systems With76SF0009S. The Integration of Cryogenic Cooling Systems WithAbstract- The need for cryogenic cooling has been critical

Green, Michael A.

2011-01-01T23:59:59.000Z

303

Improving the Efficiency of Your Process Cooling System  

E-Print Network (OSTI)

Many industries require process cooling to achieve desired outcomes of specific processes. This cooling may come from cooling towers, once-through water, mechanical refrigeration, or cryogenic sources such as liquid nitrogen or dry ice. This paper...

Baker, R.

2005-01-01T23:59:59.000Z

304

High-power-density spot cooling using bulk thermoelectrics  

E-Print Network (OSTI)

3D electrothermal model, the cooling power densities of themax , and increasing the cooling power densities 2–24 times.the advantages of high cooling power densities and is less

Zhang, Y; Shakouri, A; Zeng, G H

2004-01-01T23:59:59.000Z

305

Cool Colored Roofs to Save Energy and Improve Air Quality  

E-Print Network (OSTI)

J. Hanford. 1997. “Peak Power and Cooling Energy Savings ofJ. Hanford. 1997. "Peak Power and Cooling Energy Savings of1997) monitored peak-power and cooling-energy savings from

Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

2005-01-01T23:59:59.000Z

306

Desulfurization Fuel Filter  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

307

Desulfurization sorbent regeneration  

DOE Patents (OSTI)

A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

Jalan, V.M.; Frost, D.G.

1982-07-07T23:59:59.000Z

308

Evaporative Cooling of Antiprotons to Cryogenic Temperatures  

E-Print Network (OSTI)

We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9~K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise \\emph{CPT} test on trapped antihydrogen is a long-standing goal.

ALPHA Collaboration; G. B. Andresen; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; P. D. Bowe; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; J. S. Hangst; W. N. Hardy; R. S. Hayano; M. E. Hayden; A. Humphries; R. Hydomako; S. Jonsell; L. Kurchaninov; R. Lambo; N. Madsen; S. Menary; P. Nolan; K. Olchanski; A. Olin; A. Povilus; P. Pusa; F. Robicheaux; E. Sarid; D. M. Silveira; C. So; J. W. Storey; R. I. Thompson; D. P. van der Werf; D. Wilding; J. S. Wurtele; Y. Yamazaki

2010-09-23T23:59:59.000Z

309

Sequential cooling insert for turbine stator vane  

DOE Patents (OSTI)

A sequential impingement cooling insert for a turbine stator vane that forms a double impingement for the pressure and suction sides of the vane or a triple impingement. The insert is formed from a sheet metal formed in a zigzag shape that forms a series of alternating impingement cooling channels with return air channels, where pressure side and suction side impingement cooling plates are secured over the zigzag shaped main piece. Another embodiment includes the insert formed from one or two blocks of material in which the impingement channels and return air channels are machined into each block.

Jones, Russel B; Krueger, Judson J; Plank, William L

2014-11-04T23:59:59.000Z

310

Performance Evaluation for Modular, Scalable Cooling Systems with Hot Aisle Containment in Data Centers  

E-Print Network (OSTI)

MSE): ratio of total cooling power to cooling provided, inGenerally, total modular cooling power demand was somewhathigher server loads. The cooling power demand decreased when

Adams, Barbara J

2009-01-01T23:59:59.000Z

311

Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers  

E-Print Network (OSTI)

MSE): ratio of total cooling power to cooling transported,Generally, total modular cooling power demand stabilized atrack) in this study. The cooling power demand decreased when

Xu, TengFang

2009-01-01T23:59:59.000Z

312

Performance Evaluation for a Modular, Scalable Passive Cooling System in Data Centers  

E-Print Network (OSTI)

of total hydraulic power for cooling to cooling delivered,temperatures, and cooling output power. 6 Test proceduresefficiency defined as power demand per cooling transferred.

Xu, TengFang

2009-01-01T23:59:59.000Z

313

Federal Energy Management Program: Best Management Practice: Cooling Tower  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Tower Management to someone by E-mail Cooling Tower Management to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Facebook Tweet about Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Twitter Bookmark Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Google Bookmark Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Delicious Rank Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Digg Find More places to share Federal Energy Management Program: Best Management Practice: Cooling Tower Management on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance

314

Direct Cooled Power Electronics Substrate | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cooled Power Electronics Substrate Direct Cooled Power Electronics Substrate 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

315

Two-Phase Cooling Technology for Power Electronics with Novel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Two-Phase Cooling Technology for Power Electronics with Novel Coolants Two-Phase Cooling Technology for Power Electronics with Novel Coolants 2011 DOE Hydrogen and Fuel Cells...

316

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network (OSTI)

of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

Akbari, H.

2010-01-01T23:59:59.000Z

317

Case Study: Evaluating Liquid versus Air Cooling in the Maui...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Case Study: Evaluating Liquid versus Air Cooling in the Maui High Performance Computing Center Case Study: Evaluating Liquid versus Air Cooling in the Maui High Performance...

318

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network (OSTI)

For the ice storage system, during direct cooling, thethe building cooling load. In dynamic systems, ice is formedcooling/demand-limited storage / electric load management / full storage / ice

Akbari, H.

2010-01-01T23:59:59.000Z

319

High-Temperature, Air-Cooled Traction Drive Inverter Packaging...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Temperature, Air-Cooled Traction Drive Inverter Packaging High-Temperature, Air-Cooled Traction Drive Inverter Packaging 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

320

Cooling Tower Report, October 2008 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2008 Electricity Reliability Impacts of a Mandatory Cooling Tower Rule for Existing Steam Generation Units Cooling Tower Report, October 2008 More Documents & Publications...

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Air Cooling Technology for Advanced Power Electronics and Electric...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Cooling Technology for Advanced Power Electronics and Electric Machines Air Cooling Technology for Advanced Power Electronics and Electric Machines 2009 DOE Hydrogen Program...

322

Guidelines for Selecting Cool Roofs | Department of Energy  

Office of Environmental Management (EM)

and implement cool roof technologies. coolroofguide.pdf More Documents & Publications Green Roofs - Federal Technology Alert Microsoft PowerPoint - Cool Roofs090804 Accelerated...

323

Direct Water-Cooled Power Electronics Substrate Packaging | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Direct Water-Cooled Power Electronics Substrate Packaging Direct Water-Cooled Power Electronics Substrate Packaging 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

324

Tips: Heating and Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Heating and Cooling Tips: Heating and Cooling Tips: Heating and Cooling May 30, 2012 - 7:38pm Addthis Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Heating and cooling your home uses more energy and costs more money than any other system in your home -- typically making up about 54% of your

325

MUCOOL: Ionization Cooling R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Laboratory MUCOOL Muon Ionization Cooling R&D Welcome to the muon ionization cooling experimental R&D page. The MuCool collaboration has been formed to pursue the development of a muon ionization cooling channel for a high luminosity muon collider. For more information please contact Alan Bross (Spokesperson: bross@fnal.gov), Rick Fernow (BNL Contact person: fernow1@bnl.gov), or Mike Zisman (LBNL Contact person: mszisman@lbl.gov). General MUCOOL Telephone Book MUCOOL Notes MUCOOL Collaborating Institutes and Interests Useful Links Link to IIT MUCOOL page Meetings Muon Collaboration Friday Meetings Fermilab Muon Group Monday Meetings MTA RF Workshop (August 22, 2007 - Fermilab) Low Emittance Muon Collider Workshop (February 12-16, 2007, Fermilab) Low Emittance Muon Collider Workshop (February 6-10, 2006, Fermilab)

326

Elastic Metal Alloy Refrigerants: Thermoelastic Cooling  

SciTech Connect

BEETIT Project: UMD is developing an energy-efficient cooling system that eliminates the need for synthetic refrigerants that harm the environment. More than 90% of the cooling and refrigeration systems in the U.S. today use vapor compression systems which rely on liquid to vapor phase transformation of synthetic refrigerants to absorb or release heat. Thermoelastic cooling systems, however, use a solid-state material—an elastic shape memory metal alloy—as a refrigerant and a solid to solid phase transformation to absorb or release heat. UMD is developing and testing shape memory alloys and a cooling device that alternately absorbs or creates heat in much the same way as a vapor compression system, but with significantly less energy and a smaller operational footprint.

None

2010-10-01T23:59:59.000Z

327

Hydraulic Cooling Tower Driver- The Innovation  

E-Print Network (OSTI)

One of the weaknesses of present day cooling tower drives are fan wrecks caused by shaft couplings breaking, gear box malfunctions due to inadequate lubrication, gear tooth wear, and inaccessibility for inspection and routine maintenance. The hydro...

Dickerson, J. A.

328

On thermal performance of seawater cooling towers  

E-Print Network (OSTI)

Seawater cooling towers have been used since the 1970s in power generation and other industries, so as to reduce the consumption of freshwater. The salts in seawater are known to create a number of operational problems, ...

Sharqawy, Mostafa H.

329

Alternate Cooling Methods for Industrial Plants  

E-Print Network (OSTI)

Cooling in industrial facilities has traditionally been performed by mechanical vapor compression units. While it remains the standard, recent concerns with the rising cost of electricity and environmental legislation restricting or outlawing CFC...

Brown, M.; Moore, D.

330

An analysis of electrothermodynamic heating and cooling  

E-Print Network (OSTI)

(Bhattacharyya, et al. 1995; Rowe 1995; Goodfellow 1994). First, the results for a positive J when heat is absorbed at the interface, i. e. , when the interface cools (initially), is reported. An examination of various product catalogs (for example, Melcor...

Honea, Mark Stephen

1998-01-01T23:59:59.000Z

331

Advanced Open-Cycle Desiccant Cooling System  

E-Print Network (OSTI)

The concept of staged regeneration as means of improving the desiccant cooling system performance is the subject of investigation in this study. In the staged regeneration, the regeneration section of desiccant dehumidifier is divided into two parts...

Ko, Y. J.; Charoensupaya, D.; Lavan, Z.

1989-01-01T23:59:59.000Z

332

Analysis of oscillating flow cooled SMA actuator  

E-Print Network (OSTI)

literature, most of the cooling mechanisms involve unidirectional forced convection. This may not be the most effective method. Oscillating flow in a channel can sometimes enhance heat transfer over a unidirectional flow. One possible explanation...

Pachalla Seshadri, Rajagopal

2005-11-01T23:59:59.000Z

333

Polymer-based electrocaloric cooling devices  

DOE Patents (OSTI)

Cooling devices (i.e., refrigerators or heat pumps) based on polymers which exhibit a temperature change upon application or removal of an electrical field or voltage, (e.g., fluoropolymers or crosslinked fluoropolymers that exhibit electrocaloric effect).

Zhang, Qiming; Lu, Sheng-Guo; Li, Xinyu; Gorny, Lee; Cheng, Jiping; Neese, Bret P; Chu, Baojin

2014-10-28T23:59:59.000Z

334

Cooling Towers, The Neglected Energy Resource  

E-Print Network (OSTI)

Loving care is paid to the compressors, condensers, and computer programs of refrigeration systems. When problems arise, operator: run around in circles with expensive "fixes", but historically ignore the poor orphan, the cooling tower perched...

Burger, R.

1985-01-01T23:59:59.000Z

335

Advanced wet-dry cooling tower concept  

E-Print Network (OSTI)

The purpose of this years' work has been to test and analyze the new dry cooling tower surface previously developed. The model heat transfer test apparatus built last year has been instrumented for temperature, humidity ...

Snyder, Troxell Kimmel

336

Side Stream Filtration for Cooling Towers  

Energy.gov (U.S. Department of Energy (DOE))

Report assesses side stream filtration options for cooling towers with an objective to assess key attributes that optimize energy and water savings and provide information about specific technology and implementation options.

337

Active Solar Heating and Cooling Systems Exemption  

Energy.gov (U.S. Department of Energy (DOE))

Active solar heating and cooling systems may not be assessed at more than the value of a conventional system for property tax purposes. This law applies only to active solar systems and does not...

338

cooling degree days | OpenEI  

Open Energy Info (EERE)

cooling degree days cooling degree days Dataset Summary Description The National Oceanic and Atmospheric Administration's (NOAA) National Environmental Satellite, Data, and Information Services (NESDIS), in conjunction with the National Climatic Data Center (NCDC) publish monthly and annual climate data by state for the U.S., including, cooling degree days (total number of days per month and per year). The average values for each state are weighted by population, using 2000 Census data. The base temperature for this dataset is 65 degrees F. Source NOAA Date Released Unknown Date Updated June 24th, 2005 (9 years ago) Keywords climate cooling degree days NOAA Data application/vnd.ms-excel icon hcs_51_avg_cdd.xls (xls, 215.6 KiB) Quality Metrics Level of Review Some Review

339

Vortex-augmented cooling tower - windmill combination  

DOE Patents (OSTI)

A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passage to provide power as a by-product.

McAllister, J.E. Jr.

1982-09-02T23:59:59.000Z

340

Cooling Towers, The Neglected Energy Resource  

E-Print Network (OSTI)

COOLING TOWERS, THE NEGLECTED ENERGY RESOURCE ROBERT BURGER President, Burger Associates, Inc. Dallas, Texas (USA) Loving care is paid to the compress ors, condensers, and computer programs of refrigeration and air conditioning systems... is too hot, high temperature cut-outs occur and more energy must be provided to the motors to maintain the refrigeration cycle. COOLING TOWERS: 1) are just as important a link in the chain as the other equipment, 2) are an important source...

Burger, R.

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Experimental Heat-Bath Cooling of Spins  

E-Print Network (OSTI)

Algorithmic cooling (AC) is a method to purify quantum systems, such as ensembles of nuclear spins, or cold atoms in an optical lattice. When applied to spins, AC produces ensembles of highly polarized spins, which enhance the signal strength in nuclear magnetic resonance (NMR). According to this cooling approach, spin-half nuclei in a constant magnetic field are considered as bits, or more precisely, quantum bits, in a known probability distribution. Algorithmic steps on these bits are then translated into specially designed NMR pulse sequences using common NMR quantum computation tools. The $algorithmic$ cooling of spins is achieved by alternately combining reversible, entropy-preserving manipulations (borrowed from data compression algorithms) with $selective$ $reset$, the transfer of entropy from selected spins to the environment. In theory, applying algorithmic cooling to sufficiently large spin systems may produce polarizations far beyond the limits due to conservation of Shannon entropy. Here, only selective reset steps are performed, hence we prefer to call this process "heat-bath" cooling, rather than algorithmic cooling. We experimentally implement here two consecutive steps of selective reset that transfer entropy from two selected spins to the environment. We performed such cooling experiments with commercially-available labeled molecules, on standard liquid-state NMR spectrometers. Our experiments yielded polarizations that $bypass$ $Shannon's$ $entropy$-$conservation$ $bound$, so that the entire spin-system was cooled. This paper was initially submitted in 2005, first to Science and then to PNAS, and includes additional results from subsequent years (e.g. for resubmission in 2007). The Postscriptum includes more details.

Gilles Brassard; Yuval Elias; José M. Fernandez; Haggai Gilboa; Jonathan A. Jones; Tal Mor; Yossi Weinstein; Li Xiao

2014-04-28T23:59:59.000Z

342

Cooling Energy and Cost Savings with Daylighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Energy and Cost Savings with Daylighting Cooling Energy and Cost Savings with Daylighting Title Cooling Energy and Cost Savings with Daylighting Publication Type Conference Paper LBNL Report Number LBL-19734 Year of Publication 1985 Authors Arasteh, Dariush K., Russell Johnson, Stephen E. Selkowitz, and Deborah J. Connell Conference Name 2nd Annual Symposium on Improving Building Energy Efficiency in Hot and Humid Climates Date Published 09/1985 Conference Location Texas A&M University Call Number LBL-19734 Abstract Fenestration performance in nonresidentialsbuildings in hot climates is often a large coolingsload liability. Proper fenestration design andsthe use of daylight-responsive dimming controls onselectric lights can, in addition to drasticallysreducing lighting energy, lower cooling loads,speak electrical demand, operating costs, chillerssizes, and first costs. Using the building energyssimulation programs DOE-2.1B and DOE-2.1C , wesfirst discuss lighting energy savings from daylighting.sThe effects of fenestration parametersson cooling loads, total energy use, peak demand,schiller sizes, and initial and operating costs aresalso discussed. The impact of daylighting, asscompared to electric lighting, on cooling requirementssis discussed as a function of glazingscharacteristics, location, and shading systems.

343

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

Pendergrass, J.C.

1997-05-13T23:59:59.000Z

344

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

Pendergrass, Joseph C. (Gainesville, GA)

1997-01-01T23:59:59.000Z

345

Prospects and Limitations of Algorithmic Cooling  

E-Print Network (OSTI)

Heat-bath algorithmic cooling (AC) of spins is a theoretically powerful effective cooling approach, that (ideally) cools spins with low polarization exponentially better than cooling by reversible entropy manipulations alone. Here, we investigate the limitations and prospects of AC. For non-ideal and semioptimal AC, we study the impact of finite relaxation times of reset and computation spins on the achievable effective cooling. We derive, via simulations, the attainable cooling levels for given ratios of relaxation times using two semioptimal practicable algorithms. We expect this analysis to be valuable for the planning of future experiments. For ideal and optimal AC, we make use of lower bounds on the number of required reset steps, based on entropy considerations, to present important consequences of using AC as a tool for improving signal-to-noise ratio in liquid-state magnetic resonance spectroscopy. We discuss the potential use of AC for noninvasive clinical diagnosis and drug monitoring, where it may have significantly lower specific absorption rate (SAR) with respect to currently used methods.

Gilles Brassard; Yuval Elias; Tal Mor; Yossi Weinstein

2014-04-27T23:59:59.000Z

346

Methods and apparatus for cooling electronics  

DOE Patents (OSTI)

Methods and apparatus are provided for choosing an energy-efficient coolant temperature for electronics by considering the temperature dependence of the electronics' power dissipation. This dependence is explicitly considered in selecting the coolant temperature T.sub.0 that is sent to the equipment. To minimize power consumption P.sub.Total for the entire system, where P.sub.Total=P.sub.0+P.sub.Cool is the sum of the electronic equipment's power consumption P.sub.0 plus the cooling equipment's power consumption P.sub.Cool, P.sub.Total is obtained experimentally, by measuring P.sub.0 and P.sub.Cool, as a function of three parameters: coolant temperature T.sub.0; weather-related temperature T.sub.3 that affects the performance of free-cooling equipment; and computational state C of the electronic equipment, which affects the temperature dependence of its power consumption. This experiment provides, for each possible combination of T.sub.3 and C, the value T.sub.0* of T.sub.0 that minimizes P.sub.Total. During operation, for any combination of T.sub.3 and C that occurs, the corresponding optimal coolant temperature T.sub.0* is selected, and the cooling equipment is commanded to produce it.

Hall, Shawn Anthony; Kopcsay, Gerard Vincent

2014-12-02T23:59:59.000Z

347

Cool Roofs Are Ready to Save Energy, Cool Urban Heat Islands, and Help Slow Global Warming  

NLE Websites -- All DOE Office Websites (Extended Search)

roofing is the fastest growing sector roofing is the fastest growing sector of the building industry, as building owners and facility managers realize the immediate and long-term benefits of roofs that stay cool in the sun. Studies exploring the energy efficiency, cost-effectiveness, and sustainability of cool roofs show that in warm or hot climates, substituting a cool roof for a conventional roof can: * Reduce by up to 15% the annual air-

348

Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger Rack Cooling Device  

E-Print Network (OSTI)

model estimated the electrical energy required to generatethat estimated the electrical energy required to produceor not including the electrical energy required for cooling

Greenberg, Steve

2014-01-01T23:59:59.000Z

349

Convective Cooling and Passive Stack Improvements in Motors (Presentation)  

SciTech Connect

This presentation discusses current research at NREL in convective cooling and passive stack improvements in motors.

Bennion, K.

2014-06-01T23:59:59.000Z

350

A Possible Hybrid Cooling Channel for a Neutrino Factory  

E-Print Network (OSTI)

notably the question of hydrogen embrittlement of structuralare resistant to hydrogen embrittlement, but other cooling

Zisman, Michael S

2010-01-01T23:59:59.000Z

351

Data Center Economizer Cooling with Tower Water; Demonstration of a  

E-Print Network (OSTI)

exchanger was configured to use higher temperature water produced by a cooling tower alone. The other coilLBNL-6660E Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger-temperature cooling water, so that it can support many more hours of free cooling compared to traditional systems

352

On-chip high speed localized cooling using superlattice microrefrigerators  

E-Print Network (OSTI)

cooling, microrefrigerators, optoelectronics, superlattice,in high power, high-speed optoelectronics devices, and

Zhang, Y; Christofferson, J; Shakouri, A; Zeng, G H; Bowers, J E; Croke, E T

2006-01-01T23:59:59.000Z

353

Cooling for a rotating anode X-ray tube  

DOE Patents (OSTI)

A method and apparatus for cooling a rotating anode X-ray tube. An electromagnetic motor is provided to rotate an X-ray anode with cooling passages in the anode. These cooling passages are coupled to a cooling structure located adjacent the electromagnetic motor. A liquid metal fills the passages of the cooling structure and electrical power is provided to the motor to rotate the anode and generate a rotating magnetic field which moves the liquid metal through the cooling passages and cooling structure.

Smither, Robert K. (Hinsdale, IL)

1998-01-01T23:59:59.000Z

354

New and Underutilized Technology: Evaporative Pre-Cooling Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaporative Pre-Cooling Systems Evaporative Pre-Cooling Systems New and Underutilized Technology: Evaporative Pre-Cooling Systems October 4, 2013 - 4:43pm Addthis The following information outlines key deployment considerations for evaporated pre-cooling systems within the Federal sector. Benefits Evaporative pre-cooling systems install ahead of the condenser to lower the condenser pressure. These systems can also work with an economizer. Evaporative pre-cooling reduces the requirement for energy intensive DX cooling. Application Evaporative pre-cooling systems are applicable in most building categories. Climate and Regional Considerations Evaporative pre-cooling systems are well suited in dry climates. Key Factors for Deployment Water usage needs to be taken into account in evaporative pre-cooling

355

Best Management Practice: Cooling Tower Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Management Practice: Cooling Tower Management Best Management Practice: Cooling Tower Management Best Management Practice: Cooling Tower Management October 8, 2013 - 9:39am Addthis Cooling towers regulate temperature by dissipating heat from recirculating water used to cool chillers, air-conditioning equipment, or other process equipment. Heat is rejected from the tower primarily through evaporation. Therefore, by design, cooling towers consume significant amounts of water. Overview The thermal efficiency and longevity of the cooling tower and equipment used to cool depend on the proper management of water recirculated through the tower. Water leaves a cooling tower system in any one of four ways: Evaporation: This is the primary function of the tower and is the method that transfers heat from the cooling tower system to the

356

Low pressure cooling seal system for a gas turbine engine  

DOE Patents (OSTI)

A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

Marra, John J

2014-04-01T23:59:59.000Z

357

New and Underutilized Technology: Evaporative Pre-Cooling Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology: Evaporative Pre-Cooling Systems Technology: Evaporative Pre-Cooling Systems New and Underutilized Technology: Evaporative Pre-Cooling Systems October 4, 2013 - 4:43pm Addthis The following information outlines key deployment considerations for evaporated pre-cooling systems within the Federal sector. Benefits Evaporative pre-cooling systems install ahead of the condenser to lower the condenser pressure. These systems can also work with an economizer. Evaporative pre-cooling reduces the requirement for energy intensive DX cooling. Application Evaporative pre-cooling systems are applicable in most building categories. Climate and Regional Considerations Evaporative pre-cooling systems are well suited in dry climates. Key Factors for Deployment Water usage needs to be taken into account in evaporative pre-cooling

358

Cooling system for internal combustion engines  

SciTech Connect

A cooling system for an internal combustion engine is described comprising: a head-side water jacket and a block-side water jacket made independent of each other; and a radiator and a cooling fan shared between the two water jackets. The improvement comprises: a first cooling water conduit for connecting the outlet of the head-side water jacket and the inlet of the radiator; a mixing valve having two water inlets and one water outlet; a second cooling water conduit for connecting one of the water inlets of the mixing valve and the outlet of the radiator; a third conduit for connecting the water outlet of the block-side water jacket and the remaining one of the water inlets of the mixing valve; a water pump, a fourth conduit branched midway from the second conduit and connected with the water inlet of the head-side water jacket; an auxiliary water pump; a fifth conduit branched midway from the third conduit and connected with the first conduit; one-way valve; and a control unit for controlling the mixing ratio of the mixing valve, the displacement of the auxiliary water pump and the operation of the cooling fan.

Itakura, M.

1988-07-26T23:59:59.000Z

359

Muon Beam Helical Cooling Channel Design  

SciTech Connect

The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G.; Kazakevich, G.M.; Marhauser, Frank; Neubauer, Michael; Roberts, T.; Yoshikawa, C.; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V.S.; Lopes, Mattlock; Tollestrup, A.; Yonehara, Katsuya; Zloblin, A.

2013-06-01T23:59:59.000Z

360

Magnets for Muon 6D Cooling Channels  

SciTech Connect

The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

2014-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Performance Evaluation for Modular, Scalable Overhead Cooling Systems In Data Centers  

E-Print Network (OSTI)

Total Power for Server Power Cooling Module Power (kW) (Cooling is the amount of cooling power removed from the dataratio of total cooling power to the cooling transported by

Xu, TengFang T.

2009-01-01T23:59:59.000Z

362

Cool Roofs | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roofs Cool Roofs Cool Roofs Posted: July 18, 2012 - 1:59pm | Y-12 Report | Volume 9, Issue 1 | 2012 Hot, sunny days call for light-colored clothing to reflect the heat. As it turns out, the same principle works for roofs. Consider the results from a Lawrence Berkeley National Laboratory study in Austin, Texas, which measured a dark roof to average a whopping 43 degrees hotter than a light roof. The hotter the roof, the hotter the building becomes, and the more air-conditioning is needed - 11 percent, in that particular study. That in turn puts more carbon dioxide into the atmosphere. Higher atmospheric temperatures also affect atmospheric chemistry, causing higher ozone levels and more smog. Turning down the heat can be both inexpensive and simple, however: replace

363

Method of fabricating a cooled electronic system  

DOE Patents (OSTI)

A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

2014-02-11T23:59:59.000Z

364

Passive Cooling System for a Vehicle  

DOE Patents (OSTI)

A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).

Hendricks, T. J.; Thoensen, T.

2005-11-15T23:59:59.000Z

365

Large Diameter Lasing Tube Cooling Arrangement  

DOE Patents (OSTI)

A cooling structure (16) for use inside a ceramic cylindrical tube (11) of a metal vapor laser (10) to cool the plasma in the tube (11), the cooling structure (16) comprising a plurality of circular metal members (17,31) and mounting members (18, 34) that position the metal members (17,31) coaxially in the tube (11) to form an annular lasing volume, with the metal members (17, 31) being axially spaced from each other along the length of the tube (11) to prevent the metal members from shorting out the current flow through the plasma in the tube (11) and to provide spaces through which the heat from localized hot spots in the plasma may radiate to the other side of the tube (11).

Hall, Jerome P.; Alger, Terry W.; Anderson, Andrew T.; Arnold, Philip A.

2004-05-18T23:59:59.000Z

366

Monolithically Peltier-cooled laser diodes  

SciTech Connect

A new method of cooling a GaAs/GaAlAs laser in an optical integrated circuit or on a discrete chip, by adding an integral thermoelectric (Peltier) cooling and heat spreading device to the laser, is presented. This cooling both reduces and stabilizes the laser junction temperature to minimize such deleterious effects as wavelength drift due to heating. A unified description of the electrical and thermal properties of a monolithic semiconductor mesa structure is given. Here it is shown that an improvement in thermal characteristics is obtained by depositing a relatively thick metallic layer, and by using this layer as a part of an active Peltier structure. Experimental results reveal a 14-percent increase in emitted power (external quantum efficiency) due to passive heat spreading and a further 8-percent if its Peltier cooler is operated. Fabrication techniques used to obtain devices exhibiting the above performance characteristics are given. 21 references.

Hava, S.; Hunsperger, R.G.; Sequeira, H.B.

1984-04-01T23:59:59.000Z

367

Opto-Electrical Cooling of Polar Molecules  

E-Print Network (OSTI)

We present an opto-electrical cooling scheme for polar molecules based on a Sisyphus-type cooling cycle in suitably tailored electric trapping fields. Dissipation is provided by spontaneous vibrational decay in a closed level scheme found in symmetric-top rotors comprising six low-field-seeking rovibrational states. A generic trap design is presented. Suitable molecules are identified with vibrational decay rates on the order of 100Hz. A simulation of the cooling process shows that the molecular temperature can be reduced from 1K to 1mK in approximately 10s. The molecules remain electrically trapped during this time, indicating that the ultracold regime can be reached in an experimentally feasible scheme.

M. Zeppenfeld; M. Motsch; P. W. H. Pinkse; G. Rempe

2009-10-07T23:59:59.000Z

368

Single Pass Electron Cooling Simulations for MEIC  

SciTech Connect

Cooling of medium energy protons is critical for the proposed Jefferson Lab Medium Energy Ion Collider (MEIC). We present simulations of electron cooling of protons up to 60 GeV. In the beam frame in which the proton and electrons are co-propagating, their motion is non-relativistic. We use a binary collision model which treats the cooling process as the sum of a large number of two-body collisions which are calculated exactly. This model can treat even very close collisions between an electron and ion with high accuracy. We also calculate dynamical friction using a delta-f PIC model. The code VSim (formerly Vorpal) is used to perform the simulations. We compare the friction rates with that obtained by a 3D integral over electron velocities which is used by BETACOOL.

Bell, G. I. [Tech-X Corp.; Pogorelov, I. V. [Tech-X Corp.; Schwartz, B. T. [Tech-X Corp.; Zhang, Yuhong [JLAB; Zhang, He [JLAB

2013-12-01T23:59:59.000Z

369

Direct-Cooled Power Electronics Substrate  

SciTech Connect

The goal of the Direct-Cooled Power Electronics Substrate project is to reduce the size and weight of the heat sink for power electronics used in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs). The concept proposed in this project was to develop an innovative power electronics mounting structure, model it, and perform both thermal and mechanical finite-element analysis (FEA). This concept involved integrating cooling channels within the direct-bonded copper (DBC) substrate and strategically locating these channels underneath the power electronic devices. This arrangement would then be directly cooled by water-ethylene glycol (WEG), essentially eliminating the conventional heat sink and associated heat flow path. The concept was evaluated to determine its manufacturability, its compatibility with WEG, and the potential to reduce size and weight while directly cooling the DBC and associated electronics with a coolant temperature of 105 C. This concept does not provide direct cooling to the electronics, only direct cooling inside the DBC substrate itself. These designs will take into account issues such as containment of the fluid (separation from the electronics) and synergy with the whole power inverter design architecture. In FY 2008, mechanical modeling of substrate and inverter core designs as well as thermal and mechanical stress FEA modeling of the substrate designs was performed, along with research into manufacturing capabilities and methods that will support the substrate designs. In FY 2009, a preferred design(s) will be fabricated and laboratory validation testing will be completed. In FY 2010, based on the previous years laboratory testing, the mechanical design will be modified and the next generation will be built and tested in an operating inverter prototype.

Wiles, R.; Ayers, C.; Wereszczak, A.

2008-12-23T23:59:59.000Z

370

FASTCHEM/trademark/ (Fly Ash and Flue Gas Desulfurization Sludge Transport and Geochemistry) package: Volume 2, User's guide to the EFLOW groundwater flow code  

SciTech Connect

This report documents a two-dimensional finite element code, EFLOW, developed to simulate water flow in fully or variably saturated porous media. This code is one component in the FASTCHEM/trademark/ (Fly Ash and Flue Gas Desulfurization Sludge Transport and Geochemistry) package. The formulation of the governing equations and the numerical procedures used in the code are presented. The flow equation is approximated using the Galerkin finite element method. For variably saturated flow problems, nonlinearities caused by unsaturated soil properties, atmospheric boundary conditions (e.g., infiltration, evaporation and seepage faces), and water uptake by plant roots are treated using Picard or Newton-Raphson methods. For fully saturated unconfined flow problems, the governing equations are formulated in an areal plane, and nonlinear water-table boundary conditions are treated using the Picard method. Several test problems are presented to verify the code and demonstrate its utility. These problems range from simple one-dimensional to complex two-dimensional and axisymmetric problems. 24 refs., 39 figs., 27 tabs.

Not Available

1988-09-01T23:59:59.000Z

371

Cooling of hot electrons in amorphous silicon  

SciTech Connect

Measurements of the cooling rate of hot carriers in amorphous silicon are made with a two-pump, one-probe technique. The experiment is simulated with a rate-equation model describing the energy transfer between a population of hot carriers and the lattice. An energy transfer rate proportional to the temperature difference is found to be consistent with the experimental data while an energy transfer independent of the temperature difference is not. This contrasts with the situation in crystalline silicon. The measured cooling rates are sufficient to explain the difficulty in observing avalanche effects in amorphous silicon.

Vanderhaghen, R.; Hulin, D.; Cuzeau, S.; White, J.O.

1997-07-01T23:59:59.000Z

372

Conductor for a fluid-cooled winding  

DOE Patents (OSTI)

A conductor and method of making the conductor are provided for use in winding electrical coils which are cooled by a fluid communicating with the conductor. The conductor is cold worked through twisting and reshaping steps to form a generally rectangular cross section conductor having a plurality of helical cooling grooves extending axially of the conductor. The conductor configuration makes it suitable for a wide variety of winding applications and permits the use of simple strip insulation between turns and perforated sheet insulation between layers of the winding.

Kenney, Walter J. (Clinton, TN)

1983-01-01T23:59:59.000Z

373

Compressor ported shroud for foil bearing cooling  

SciTech Connect

A compressor ported shroud takes compressed air from the shroud of the compressor before it is completely compressed and delivers it to foil bearings. The compressed air has a lower pressure and temperature than compressed outlet air. The lower temperature of the air means that less air needs to be bled off from the compressor to cool the foil bearings. This increases the overall system efficiency due to the reduced mass flow requirements of the lower temperature air. By taking the air at a lower pressure, less work is lost compressing the bearing cooling air.

Elpern, David G. (Los Angeles, CA); McCabe, Niall (Torrance, CA); Gee, Mark (South Pasadena, CA)

2011-08-02T23:59:59.000Z

374

Two-Beam Instability in Electron Cooling  

SciTech Connect

The drift motion of cooling electrons makes them able to respond to transverse perturbations of a cooled ion beam. This response may lead to dipole or quadrupole transverse instabilities at specific longitudinal wave numbers. While the dipole instabilities can be suppressed by a combination of the Landau damping, machine impedance, and the active damper, the quadrupole and higher order modes can lead to either emittance growth, or a lifetime degradation, or both. The growth rates of these instabilities are strongly determined by the machine x-y coupling. Thus, tuning out of the coupling resonance and/or reduction of the machine coupling can be an efficient remedy for these instabilities.

Burov, Alexey V.; /Fermilab

2006-04-01T23:59:59.000Z

375

Cool Earth Solar | Open Energy Information  

Open Energy Info (EERE)

Cool Earth Solar Cool Earth Solar Jump to: navigation, search Logo: Cool Earth Solar Name Cool Earth Solar Address 4659 Las Positas Rd, Bldg C Place Livermore, California Zip 94551 Sector Solar Product Electricty from High Concentrating PV Year founded 2007 Number of employees 11-50 Phone number 925.454.8506 Website http://www.coolearthsolar.com/ Coordinates 37.6971629°, -121.7339673° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6971629,"lon":-121.7339673,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Covered Product Category: Cool Roof Products  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance across a variety of product categories, including cool roof products, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

377

Thermostatically controlled solar heating and cooling system  

SciTech Connect

This patent describes a solar heating and cooling system for simultaneously heating or cooling an ambient air system within a building, heating a hot water supply for domestic use within the building and heating or cooling a swimming pool adjacent the building comprising a building. This comprises a swimming pool as a primary water source, a solar connector connected to the swimming pool, a heat pump for controlling ambient air temperature within the building, an energy conservation unit connected to the heat pump and to the hot water supply for utilizing hot gases from the heat pump to heat water in the hot water supply and an air heat exchanger connected to the air system and to the heat pump for selectively heating or cooling air in the building. Also a water heat exchanger is connected to a water source for selectively transferring heat between the heat pump and the water source, a well as a secondary water source connected to the water heat exchanger.

Yovanofski, T.

1986-12-16T23:59:59.000Z

378

Leafy Green Preparation and Cooling Study  

E-Print Network (OSTI)

Leafy Green Preparation and Cooling Study Dominique N. Bibbins #12;Background : Leafy Greens z In the past, leafy greens have been the source of food borne-illnesses and outbreaks. z It is important Lasting knowledge of survey practices, procedures, and protocol. #12;Acknowledgements z Laura Green, Ph

379

Blowing Ratio Effects on Film Cooling Effectiveness  

E-Print Network (OSTI)

The research focuses on testing the film cooling effectiveness on a gas turbine blade suction side surface. The test is performed on a five bladed cascade with a blow down facility. Four different blowing ratios are used in this study, which are 0...

Liu, Kuo-Chun

2010-01-14T23:59:59.000Z

380

Power Plant Cooling Systems: Policy Alternatives  

Science Journals Connector (OSTI)

...contrast, provide convenient field laboratories for examining...barrels per day of additional oil equivalent would be required...num-ber of citations is the cumulative total and does not include...of a Cooling Lake Fishery, Illinois Natural History Survey, project...

John Z. Reynolds

1980-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Piles in Cooling Dominated Climates  

E-Print Network (OSTI)

this be true in hot, cooling dominated climates? To achieve the ultimate goal and answer the above question, this study considered the different elements of a full SGES, namely: soil, climate, energy pile, and ground source heat pump. First, The need for a new...

Akrouch, Ghassan

2014-04-10T23:59:59.000Z

382

District Cooling Using Central Tower Power Plant  

Science Journals Connector (OSTI)

Abstract During the operation of solar power towers there are occasions, commonly in the summer season, where some of the heliostats have to stop focusing at the central receiver, located at the top of the tower, because the maximum temperature that the receiver can withstand has been reached. The highest demands of cooling for air conditioning take place at these same occasions. In the present paper, we have analyzed the possibility of focusing the exceeding heliostats to the receiver increasing the mass flow rate of the heat transfer fluid over the nominal value and using the extra heat as a source of an absorption chiller. The chilled water would be used to cool buildings and offices, using a district cooling network. Using the extra heat of the solar power tower plant would greatly reduce the electricity usage. In this work we have analyzed the case of a circular field of heliostats focusing at a circular receiver, such as the case of Gemasolar plant. We have quantified the thermal power that can be obtained from the unused heliostats, the cooling capacity of the absorption system as well as the heat losses through the insulated pipes that distribute the chilled water to the buildings of the network.

C. Marugán-Cruz; S. Sánchez-Delgado; M.R. Rodríguez-Sánchez; M. Venegas

2014-01-01T23:59:59.000Z

383

Power electronics substrate for direct substrate cooling  

DOE Patents (OSTI)

Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

Le, Khiet (Mission Viejo, CA); Ward, Terence G. (Redondo Beach, CA); Mann, Brooks S. (Redondo Beach, CA); Yankoski, Edward P. (Corona, CA); Smith, Gregory S. (Woodland Hills, CA)

2012-05-01T23:59:59.000Z

384

Cool Roof Calculator | Open Energy Information  

Open Energy Info (EERE)

Cool Roof Calculator Cool Roof Calculator Jump to: navigation, search Tool Summary Name: Cool Roof Calculator Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Buildings, Energy Efficiency Resource Type: Online calculator, Software/modeling tools User Interface: Website Website: www.ornl.gov/sci/roofs+walls/facts/CoolCalcEnergy.htm Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM  

E-Print Network (OSTI)

ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California, Center for Ocean Health, Long Marine Lab GREGOR CAILLIET, Moss Landing Marine Laboratories DAVID MAYER be obvious that large studies like these require the coordinated work of many people. We would first like

386

Industrial stator vane with sequential impingement cooling inserts  

DOE Patents (OSTI)

A turbine stator vane for an industrial engine, the vane having two impingement cooling inserts that produce a series of impingement cooling from the pressure side to the suction side of the vane walls. Each insert includes a spar with a row of alternating impingement cooling channels and return air channels extending in a radial direction. Impingement cooling plates cover the two sides of the insert and having rows of impingement cooling holes aligned with the impingement cooling channels and return air openings aligned with the return air channel.

Jones, Russell B; Fedock, John A; Goebel, Gloria E; Krueger, Judson J; Rawlings, Christopher K; Memmen, Robert L

2013-08-06T23:59:59.000Z

387

Turbine component cooling channel mesh with intersection chambers  

DOE Patents (OSTI)

A mesh (35) of cooling channels (35A, 35B) with an array of cooling channel intersections (42) in a wall (21, 22) of a turbine component. A mixing chamber (42A-C) at each intersection is wider (W1, W2)) than a width (W) of each of the cooling channels connected to the mixing chamber. The mixing chamber promotes swirl, and slows the coolant for more efficient and uniform cooling. A series of cooling meshes (M1, M2) may be separated by mixing manifolds (44), which may have film cooling holes (46) and/or coolant refresher holes (48).

Lee, Ching-Pang; Marra, John J

2014-05-06T23:59:59.000Z

388

Auxiliary Cooling Loads in Passively Cooled Buildings: An Experimental Research Study  

E-Print Network (OSTI)

Solar Energy Center (FSEC) is examining the auxiliary cooling requirements of residences in warm, humid climates. The study addresses both the thermal and moisture response of buildings. A total of eight wall systems, three frame wall types and five...

Fairey, P.; Vieira, R.; Chandra, S.; Kerestecioglu, A.; Kalaghchy, S.

1984-01-01T23:59:59.000Z

389

Surface cooling of scramjet engine inlets using heat pipe, transpiration, and film cooling  

SciTech Connect

This article reports the results of applying a finite-difference-based computational technique to the problem of predicting the transient thermal behavior of a scramjet engine inlet exposed to a typical hypersonic flight aerodynamic surface heating environment, including type IV shock interference heating. The leading-edge cooling model utilized incorporates liquid metal heat pipe cooling with surface transpiration and film cooling. Results include transient structural temperature distributions, aerodynamic heat inputs, and surface coolant distributions. It seems that these cooling techniques may be used to hold maximum skin temperatures to near acceptable values during the severe aerodynamic and type IV shock interference heating effects expected on the leading edge of a hypersonic aerospace vehicle scramjet engine. 15 refs.

Modlin, J.M.; Colwell, G.T. (U.S. Army, Strategic Defense Command, Huntsville, AL (United States) Georgia Institute of Technology, Atlanta (United States))

1992-09-01T23:59:59.000Z

390

Cooling Towers--Energy Conservation Strategies Preservative Spray Treatment Maintains Cooling Tower  

E-Print Network (OSTI)

Several problems common to most industrial wood framed cooling towers can be easily controlled with annual preservative spray treatment applications to the plenum area framework and drift eliminators. It eliminates the expensive periodic repairs due...

Reidenback, R.

391

Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger Rack Cooling Device  

E-Print Network (OSTI)

LBNL-XXXXX Data Center Economizer Cooling with Tower Water;included a water- side economizer. This model estimated theand without a water-side economizer and including or not

Greenberg, Steve

2014-01-01T23:59:59.000Z

392

Federal Energy Management Program: Covered Product Category: Air-Cooled  

NLE Websites -- All DOE Office Websites (Extended Search)

Air-Cooled Electric Chillers to someone by E-mail Air-Cooled Electric Chillers to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Air-Cooled Electric Chillers on Facebook Tweet about Federal Energy Management Program: Covered Product Category: Air-Cooled Electric Chillers on Twitter Bookmark Federal Energy Management Program: Covered Product Category: Air-Cooled Electric Chillers on Google Bookmark Federal Energy Management Program: Covered Product Category: Air-Cooled Electric Chillers on Delicious Rank Federal Energy Management Program: Covered Product Category: Air-Cooled Electric Chillers on Digg Find More places to share Federal Energy Management Program: Covered Product Category: Air-Cooled Electric Chillers on AddThis.com... Energy-Efficient Products Federal Requirements

393

NREL: Advanced Power Electronics - Modeling of Cooling Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling of Cooling Technologies Improves Performance Modeling of Cooling Technologies Improves Performance Thermal modeling image of spray cooling of inverter chip surface shows the liquid breaking up into fine droplets that impinge on the liquid wall, which enhances the spacial uniformity of heat removal. Modeling Cooling Technologies-Spray Cooling The NREL advanced power electronics team is modeling cooling technologies that would enhance performance of the inverters and motors in hybrid-electric and fuel cell vehicles. The team is modeling two-phase spray cooling, jet impingement, and mini- and micro-channel cooling, and has successfully used Fluent software to show a good comparison between numerical models and published experimental data. Currently, the team is conducting modeling to simulate real life conditions such as those that

394

Energy Department Completes Cool Roof Installation on DC Headquarters  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Cool Roof Installation on DC Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy Energy Department Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy December 14, 2010 - 12:00am Addthis Washington - Secretary Steven Chu today announced the completion of a new cool roof installation on the Department of Energy's Headquarters West Building. There was no incremental cost to adding the cool roof as part of the roof replacement project and it will save taxpayers $2,000 every year in building energy costs. Cool roofs use lighter-colored roofing surfaces or special coatings to reflect more of the sun's heat, helping improve building efficiency, reduce cooling costs and offset carbon emissions. The cool roof and increased insulation at the facility were

395

Cool Roofs and Heat Islands | Open Energy Information  

Open Energy Info (EERE)

Cool Roofs and Heat Islands Cool Roofs and Heat Islands Jump to: navigation, search Tool Summary Name: Cool Roofs Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Energy Efficiency Topics: Resource assessment Website: eetd.lbl.gov/r-bldgsee-crhi.html References: [1] Logo: Cool Roofs "On warm summer days, a city can be 6 to 8°F warmer than its surrounding areas. This effect is called the urban heat island. Cool roof materials, pavements, and vegetation can reduce the heat island effect, save energy and reduce smog formation. The goal of this research is to develop cool materials to save energy and money." [1] The Cool Roof Calculator developed at the Oak Ridge National Laboratory is a useful tool for exploring the benefits of cool materials.

396

Demonstration of Rack-Mounted Computer Equipment Cooling Solutions  

E-Print Network (OSTI)

LBNL-6659E Demonstration of Rack-Mounted Computer Equipment Cooling Solutions H. C. Coles-Off energy efficiency evaluation metric. #12;iii ABSTRACT Eleven cooling systems for rack mounted computer

397

Review of High Temperature Water and Steam Cooled Reactor Concepts  

SciTech Connect

This review summarizes design concepts of supercritical-pressure water cooled reactors (SCR), nuclear superheaters and steam cooled fast reactors from 1950's to the present time. It includes water moderated supercritical steam cooled reactor, SCOTT-R and SC-PWR of Westinghouse, heavy water moderated light water cooled SCR of GE, SCLWR and SCFR of the University of Tokyo, B-500SKDI of Kurchatov Institute, CANDU -X of AECL, nuclear superheaters of GE, subcritical-pressure steam cooled FBR of KFK and B and W, Supercritical-pressure steam cooled FBR of B and W, subcritical-pressure steam cooled high converter by Edlund and Schultz and subcritical-pressure water-steam cooled FBR by Alekseev. This paper is prepared based on the previous review of SCR2000 symposium, and some author's comments are added. (author)

Oka, Yoshiaki [Nuclear Engineering Research Laboratory, The University of Tokyo, 3-1, Hongo 7-Chome, Bunkyo-ku (Japan)

2002-07-01T23:59:59.000Z

398

Coolerado 5 Ton RTU Performance: Western Cooling Challenge Results (Revised)  

SciTech Connect

The Western Cooling Efficiency Center (WCEC) developed a set of criteria for test conditions, minimum energy, and water use performance for prototype cooling equipment and identified these conditions as indicative of western state climates.

Kozubal, E.; Slayzak, S.

2010-11-01T23:59:59.000Z

399

Rain on the Roof-Evaporative Spray Roof Cooling  

E-Print Network (OSTI)

This paper describes evaporative spray roof cooling systems, their components, performance and applications in various climates and building types. The evolution of this indirect evaporative cooling technique is discussed. Psychrometric and sol...

Bachman, L. R.

1985-01-01T23:59:59.000Z

400

CCHP System with Interconnecting Cooling and Heating Network  

E-Print Network (OSTI)

The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity...

Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The Thermodynamic and Cost Benefits of Floating Cooling Systems  

E-Print Network (OSTI)

. The application of a floating cooling concept to evaporative heat rejection systems can have significant impact on improving plant performance. The floating cooling concept refers to the optimization of yearly plant output and energy consumption by taking...

Svoboda, K. J.; Klooster, H. J.; Johnnie, D. H., Jr.

1983-01-01T23:59:59.000Z

402

Space Heating and Cooling Basics | Department of Energy  

Energy Savers (EERE)

- 1:04pm Addthis A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain...

403

Improving the Water Efficiency of Cooling Production System  

E-Print Network (OSTI)

For most of the time, cooling towers (CTs) of cooling systems operate under partial load conditions and by regulating the air circulation with a variable frequency drive (VFD), significant reduction in the fan power can be achieved. In Kuwait...

Maheshwari, G.; Al-Hadban, Y.; Al-Taqi, H. H.; Alasseri, R.

2010-01-01T23:59:59.000Z

404

A Microcomputer Model of Crossflow Cooling Tower Performance  

E-Print Network (OSTI)

The energy use characteristics of evaporative cooling towers are of interest because, although such towers are widely used in industry, they do require a substantial amount of energy. Evaporative cooling towers are basically large heat exchangers...

Reichelt, G. E; Jones, J. W.

1984-01-01T23:59:59.000Z

405

Sandia National Laboratories: Cool Earth Solar and Sandia Team...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECEnergyRenewable EnergySolarConcentrating Solar PowerCool Earth Solar and Sandia Team Up in First-Ever Public-Private Partnership on Livermore Valley Open Campus Cool Earth...

406

Rapid Cooling Using Ice Slurries for Industrial and Medical Applicatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

to replace chilled-water cooling systems in building complexes. Because of the high energy content of ice slurry, its cooling capacity is many times greater than that of...

407

Droplet Impingement Cooling Experiments on Nano-structured Surfaces  

E-Print Network (OSTI)

Spray cooling has proven to be efficient in managing thermal load in high power applications. Reliability of electronic products relies on the thermal management and understanding of heat transfer mechanisms including those related to spray cooling...

Lin, Yen-Po

2011-10-21T23:59:59.000Z

408

Energy Saving "Cool Roofs" Installed at Y-12 | National Nuclear...  

National Nuclear Security Administration (NNSA)

Home Field Offices Welcome to the NNSA Production Office NPO News Releases Energy Saving "Cool Roofs" Installed at Y-12 Energy Saving "Cool Roofs" Installed at Y-12 The...

409

Energy Saving 'Cool Roofs' Installed at Y-12 | National Nuclear...  

National Nuclear Security Administration (NNSA)

Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog Energy Saving 'Cool Roofs' Installed at Y-12 Energy Saving 'Cool Roofs' Installed at Y-12...

410

Principles of Heating and Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Principles of Heating and Cooling Principles of Heating and Cooling Principles of Heating and Cooling May 30, 2012 - 6:04pm Addthis To heat and cool your house efficiently, it is important to know how heat transfers to and from objects. | Photo courtesy of ©iStockphoto/kryzanek. To heat and cool your house efficiently, it is important to know how heat transfers to and from objects. | Photo courtesy of ©iStockphoto/kryzanek. Understanding how heat is transferred from the outdoors into your home and from your home to your body is important for understanding the challenge of keeping your house cool. Understanding the processes that help keep your body cool is important in understanding cooling strategies for your home. Principles of Heat Transfer Heat is transferred to and from objects -- such as you and your home -- via

411

NASA's Marshall Space Flight Center Improves Cooling System Performance  

Energy.gov (U.S. Department of Energy (DOE))

Case study details Marshall Space Flight Center's innovative technologies to improve water efficiency and cooling performance for one of its problematic cooling systems. The program saved the facility more than 800,000 gallons of water in eight months.

412

Desulfurization behavior of iron-based sorbent with MgO and TiO{sub 2} additive in hot coal gas  

SciTech Connect

The sulfidation behaviors of iron-based sorbent with MgO and MgO-TiO{sub 2} are studied under different isothermal conditions from 623 to 873 K in a fixed bed reactor. The results of sorbents sulfidation experiments indicate that the sorbents with MgO and TiO{sub 2} additives are more attractive than those without additives for desulfurization of hot coal gas. The sulfur capacity (16.17, 18.45, and 19.68 g S/100 g sorbent) of M1F, M3F, and M5F sorbent containing 1, 3, and 5% MgO, respectively, is obviously bigger than that (15.02 g S/100 g sorbent) of M0F without additive. The feasible sulfidation temperature range for M3F sorbent is 773-873 K. The M3F sorbent is optimally regenerated at the temperature of 873 K, under the gas containing 2% oxygen, 15% steam and N{sub 2}, in the space velocity of 2500 h{sup -1}. The sorbent regenerated is also well performed in the second sulfidation (the effective sulfur capacities of 17.98 g S/100 g sorbents and the efficiency of removal sulfur of 99%). The capacity to remove sulfur decreases with steam content increasing in feeding gas from 0 to 10%, but it can restrain the formation of carbon and iron carbide. The addition of TiO{sub 2} in sorbent can shift the optimal sulfidation temperature lower. The iron-based sorbent with 3% MgO and 10% TiO{sub 2} (MFT) is active to the deep removal of H{sub 2}S and COS, especially in the temperature range of 673-723 K. The sulfur removal capacity of MFT sorbent is 21.60 g S/100 g sorbent. 16 refs., 12 figs., 8 tabs.

Weiren Bao; Zong-you Zhang; Xiu-rong Ren; Fan Li; Li-ping Chang [Taiyuan University of Technology, Taiyuan (China). Key Laboratory of Coal Science and Technology

2009-07-15T23:59:59.000Z

413

Use of ferric sulfate: acid media for the desulfurization of model compounds of coal. [Dibenzothiophene, diphenyl sulfide, di-n-butyl sulfide  

SciTech Connect

The objective of this work has been to investigate the ability of ferric sulfate-acid leach systems to oxidize the sulfur in model compounds of coal. Ferric iron-acid leach systems have been shown to be quite effective at removal of inorganic sulfur in coal. In this study, the oxidative effect of ferric iron in acid-leach systems was studied using dibenzothiophene, diphenyl sulfide, and di-n-butyl sulfide as models of organic sulfur groups in coal. Nitrogen and oxygen, as well as various transition metal catalysts and oxidants, were utilized in this investigation. Dibenzothiophene was found to be quite refractory to oxidation, except in the case where metavanadate was added, where it appears that 40% oxidation to sulfone could have occurred per hour at 150/sup 0/C and mild oxygen pressure. Diphenyl sulfide was selectively oxidized to sulfoxide and sulfone in an iron and oxygen system. Approximately 15% conversion to sulfone occurred per hour under these conditions. Some of the di-n-butyl sulfide was cracked to 1-butene and 1-butanethiol under similar conditions. Zinc chloride and ferric iron were used at 200/sup 0/C in an attempt to desulfonate dibenzothiophene sulfone, diphenyl sulfone, and di-n-butyl sulfone. Di-n-butyl sulfone was completely desulfurized on one hour and fragmented to oxidized parafins, while dibenzothiophene sulfone and diphenyl sulfone were unaffected. These results suggest that an iron-acid leach process could only selectively oxidize aryl sulfides under mild conditions, representing only 20% of the organic sulfur in coal (8% of the total sulfur). Removal through desulfonation once selective sulfur oxidation had occurred was only demonstrated for alkyl sulfones, with severe oxidation of the fragmented paraffins also occurring in one hour.

Clary, L.R.; Vermeulen, T.; Lynn, S.

1980-12-01T23:59:59.000Z

414

Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems  

SciTech Connect

A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2009-09-15T23:59:59.000Z

415

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

Design (LEED) Green Building Rating System assigns one rating point for the use of a cool roof in its Sustainable

Akbari, Hashem

2008-01-01T23:59:59.000Z

416

Nanofluid Development for Engine Cooling | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Nanofluid Development for Engine Cooling Systems Nanofluids for Thermal Control Applications Erosion of Radiator Materials by...

417

Thermal Performance of Phase Change Wallboard for Residential Cooling Application  

E-Print Network (OSTI)

the discharge of thermal energy storage without releasingto low-energy cooling sources. Large thermal storage devices

Feustel, H.E.

2011-01-01T23:59:59.000Z

418

Covered Product Category: Water-Cooled Ice Machines  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Management Program (FEMP) provides acquisition guidance and federal efficiency requirements for water-cooled ice machines.

419

Cooling, Heating, and Power for Industry: A Market Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sector. chpindustrymarketassessment0803.pdf More Documents & Publications Integrated Energy Systems (IES) for Buildings: A Market Assessment, September 2002 Cooling, Heating,...

420

Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers  

E-Print Network (OSTI)

for Modular, Scalable Liquid-Rack Cooling Systems in DataFOR A MODULAR, SCALABLE LIQUID-RACK COOLING SYSTEM IN DATA3 M ODULAR LIQUID - RACK COOLING

Xu, TengFang

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

On stochastic cooling of bunched beams from fluctuation and kinetic theory  

E-Print Network (OSTI)

Experimenta on Stochastic Cooling in ICE, Nucl. Sci. , NS-F. (1980), Initial Cooling Experiments (ICE) at CERN, Proc.experiments on the ICE (Initial Cooling Experiment), a

Chattopadhyay, Swapan

2010-01-01T23:59:59.000Z

422

E-Print Network 3.0 - acute whole-body cooling Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

effective than cooling... , whole-body cooling induction will miss the 3-h therapeu- tic window in the majority of stroke patients... . Selective brain cooling (SBC) may be...

423

RHIC Superconducting Accelerator and Electron Cooling Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization Chart (PDF) Organization Chart (PDF) Accelerator R&D Division eRHIC R&D Energy Recovery Linac Photocathode R&D Superconducting RF Electron Cooling LARP Center for Accelerator Science and Education C-AD Accelerator R&D Division Superconducting RF Group Group Headed By: Sergey Belomestnykh This web site presents information on the Superconducting Accelerator and RHIC Electron Cooling Group, which is in the Accelerator R&D Division of the Collider-Accelerator Department of Brookhaven National Laboratory. Work is supported mainly by the Division of Nuclear Physics of the US Department of Energy. Upcoming Events: TBD Most recent events: 56 MHz 2nd External Review, March 8-9, 2011 External Review of the Energy Recovery Linac, February 17-18, 2010. Report of the Review Committee

424

Cool, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cool, Texas: Energy Resources Cool, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.8001288°, -98.001153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.8001288,"lon":-98.001153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Side Stream Filtration for Cooling Towers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Side Stream Filtration Side Stream Filtration for Cooling Towers Prepared for the U.S. Department of Energy Federal Energy Management Program By Pacific Northwest National Laboratory X. Duan, J.L. Williamson, K.L McMordie Stoughton and B.K. Boyd October 2012 FEDERAL ENERGY MANAGEMENT PROGRAM i Contact Will Lintner, PE Federal Energy Management Program U.S. Department of Energy 1000 Independence Ave. SW Washington, DC 20585-0121 Phone: (202) 586-3120 E-mail: william.lintner@ee.doe.gov Cover photo: Cooling Towers. Photo from Pacific Northwest National Laboratory ii Acknowledgements The authors of the report would like to thank the following individuals that provided support to

426

Liquid metal cooled divertor for ARIES  

SciTech Connect

A liquid metal, Ga-cooled divertor design was completed for the double null ARIES-II divertor design. The design analysis indicated a surface heat flux removal capability of up to 15 MW/m{sup 2}, and its relative easy maintenance. Design issues of configuration, thermal hydraulics, thermal stresses, liquid metal loop and safety effects were evaluated. For coolant flow control, it was found that it is necessary to use some part of the blanket cooling ducts for the draining of liquid metal from the top divertor. In order to minimize the inventory of Ga, it was recommended that the liquid metal loop equipment should be located as close to the torus as possible. More detailed analysis of transient conditions especially under accident conditions was identified as an issue that will need to be addressed.

Muraviev, E. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Atomnoj Ehnergii

1995-01-01T23:59:59.000Z

427

Hybrid optomechanical cooling by atomic $?$ systems  

E-Print Network (OSTI)

We investigate a hybrid quantum system consisting of a cavity optomechanical device optically coupled to an ultracold quantum gas. We show that the dispersive properties of the ultracold gas can be used to dramatically modify the optomechanical response of the mechanical resonator. We examine hybrid schemes wherein the mechanical resonator is coupled either to the motional or the spin degrees of freedom of the ultracold gas. In either case, we find an enhancement of more than two orders of magnitude in optomechanical cooling due to this hybrid interaction. Significantly, based on demonstrated parameters for the cavity optomechanical device, we identify regimes that enable the ground state cooling of the resonator from room temperature. In addition, the hybrid system considered here represents a powerful interface for the use of an ultracold quantum gas for state preparation, sensing and quantum manipulation of a mesoscopic mechanical resonator.

F. Bariani; S. Singh; L. F. Buchmann; M. Vengalattore; P. Meystre

2014-07-03T23:59:59.000Z

428

Cooling and squeezing via quadratic optomechanical coupling  

E-Print Network (OSTI)

We explore the physics of optomechanical systems in which an optical cavity mode is coupled parametrically to the square of the position of a mechanical oscillator. We derive an effective master equation describing two-phonon cooling of the mechanical oscillator. We show that for high temperatures and weak coupling, the steady-state phonon number distribution is non-thermal (Gaussian) and that even for strong cooling the mean phonon number remains finite. Moreover, we demonstrate how to achieve mechanical squeezing by driving the cavity with two beams. Finally, we calculate the optical output and squeezing spectra. Implications for optomechanics experiments with the membrane-in-the-middle geometry or ultracold atoms in optical resonators are discussed.

A. Nunnenkamp; K. Borkje; J. G. E. Harris; S. M. Girvin

2010-04-14T23:59:59.000Z

429

Conservation laws and laser cooling of atoms  

E-Print Network (OSTI)

The straightforward application of energy and linear momentum conservation to the absorption/emission of photons by atoms--first outlined by Schr\\"odinger in 1922--allows to establish the essential features of laser cooling of two levels atoms at low laser intensities. The minimum attainable average kinetic energy of the atoms depends on the ratio $\\Gamma/E_R$ between the natural linewidth and the recoil energy and tends to $E_R$ as $\\Gamma/E_R$ tends to zero. This treatment is valid for any value of the ratio $\\Gamma/E_R$ and contains the semiclassical theory of laser cooling as the limiting case in which $E_R\\ll \\Gamma$.

Giuliani, Giuseppe

2015-01-01T23:59:59.000Z

430

Cooling system for three hook ring segment  

DOE Patents (OSTI)

A triple hook ring segment including forward, midsection and aft mounting hooks for engagement with respective hangers formed on a ring segment carrier for supporting a ring segment panel, and defining a forward high pressure chamber and an aft low pressure chamber on opposing sides of the midsection mounting hook. An isolation plate is provided on the aft side of the midsection mounting hook to form an isolation chamber between the aft low pressure chamber and the ring segment panel. High pressure air is supplied to the forward chamber and flows to the isolation chamber through crossover passages in the midsection hook. The isolation chamber provides convection cooling air to an aft portion of the ring segment panel and enables a reduction of air pressure in the aft low pressure chamber to reduce leakage flow of cooling air from the ring segment.

Campbell, Christian X.; Eng, Darryl; Lee, Ching-Pang; Patat, Harry

2014-08-26T23:59:59.000Z

431

Compound cooling flow turbulator for turbine component  

DOE Patents (OSTI)

Multi-scale turbulation features, including first turbulators (46, 48) on a cooling surface (44), and smaller turbulators (52, 54, 58, 62) on the first turbulators. The first turbulators may be formed between larger turbulators (50). The first turbulators may be alternating ridges (46) and valleys (48). The smaller turbulators may be concave surface features such as dimples (62) and grooves (54), and/or convex surface features such as bumps (58) and smaller ridges (52). An embodiment with convex turbulators (52, 58) in the valleys (48) and concave turbulators (54, 62) on the ridges (46) increases the cooling surface area, reduces boundary layer separation, avoids coolant shadowing and stagnation, and reduces component mass.

Lee, Ching-Pang; Jiang, Nan; Marra, John J; Rudolph, Ronald J

2014-11-25T23:59:59.000Z

432

Laser Cooled High-Power Fiber Amplifier  

E-Print Network (OSTI)

A theoretical model for laser cooled continuous-wave fiber amplifier is presented. The amplification process takes place in the Tm3+-doped core of the fluoride ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass fiber. The cooling process takes place in the Yb3+:ZBLAN fiber cladding. It is shown that for each value of the pump power and the amplified signal there is a distribution of the concentration of the Tm3+ along the length of the fiber amplifier, which provides its athermal operation. The influence of a small deviation in the value of the amplified signal on the temperature of the fiber with the fixed distribution of the Tm3+ions in the fiber cladding is investigated.

Nemova, Galina

2009-01-01T23:59:59.000Z

433

Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1  

E-Print Network (OSTI)

condensation in winter, reduced life and reliability of ventilation equipment, and high repair bills cooling and heating systems. VENTILATION SYSTEMS The operating efficiency of a ventilation fan can be pockets of stagnant air, inadequate cooling from evaporative cooling pads, high heating expenses, heavy

Watson, Craig A.

434

Antarctic and Southern Ocean influences on Late Pliocene global cooling  

E-Print Network (OSTI)

, followed by a coastal sea surface temperature cooling of 2.5 °C, a stepwise expansion of sea ice as a 4 °C cooling in deep ocean temperature (3) with 80 m of sea level equivalent ice volumeAntarctic and Southern Ocean influences on Late Pliocene global cooling Robert McKaya,1 , Tim

435

THERMOFLUID OPTIMIZATION OF A HEATED HELICOPTER ENGINE COOLING BAY SURFACE  

E-Print Network (OSTI)

effectiveness of an aircraft de-icing strategy by re-designing the cooling bay surface shape. The design of a helicopter cooling bay can be ice prone under certain atmospheric conditions. Its effective shape design1 THERMOFLUID OPTIMIZATION OF A HEATED HELICOPTER ENGINE COOLING BAY SURFACE D. Wang 1 , G. F

Wang, Gaofeng Gary

436

Dennis, Eberhart, Dulikravich & Radons FINITE ELEMENT SIMULATION OF COOLING  

E-Print Network (OSTI)

). The simulations performed in this study consider ice packs applied to head and neck as well as using a head-cooling1 Dennis, Eberhart, Dulikravich & Radons FINITE ELEMENT SIMULATION OF COOLING OF REALISTIC 3-D Rapid cooling of the brain in the first minutes following the onset of cerebral ischemia

Dennis, Brian

437

Solvent Selection Use dry ice/isopropanol for cooling baths  

E-Print Network (OSTI)

Solvent Selection Use dry ice/isopropanol for cooling baths Reaches essentially the same temperature as dry ice/acetone (-77°C vs. -78°C), but the lower volatility of isopropanol minimizes vapor a closed-loop cooling system for condensers Closed-loop cooling systems eliminate wastewater and accidental

Chan, Hue Sun

438

Stresses generated in cooling viscoelastic ice shells: Application to Europa  

E-Print Network (OSTI)

Stresses generated in cooling viscoelastic ice shells: Application to Europa F. Nimmo Department to cooling and the expansion of the shell due to the ice-water volume change. The former effect generates Citation: Nimmo, F. (2004), Stresses generated in cooling viscoelastic ice shells: Application to Europa, J

Nimmo, Francis

439

Enhanced cooling of atoms within an optical cavity  

SciTech Connect

We study enhanced cooling of atoms within an optical cavity using feedback and a time-dependent pump source. The two approaches operate on the same principle by increasing the modulation of the optical potential induced by atomic motion in the cavity. We show that cooling time can be reduced by up to two orders of magnitude over conventional cavity cooling.

Lu, W.; Barker, P.F. [Physics, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland, EH14 4AS (United Kingdom)

2005-08-15T23:59:59.000Z

440

Chapter 7 - Test Cell Cooling Water and Exhaust Gas Systems  

Science Journals Connector (OSTI)

Part 1 considers the thermodynamics of water cooling systems, water quality, typical cooling water circuits, and engine coolant control units. Also covered are the commissioning cooling circuits, thermal shock, and chilled water systems. Part 2 covers the design of test cell exhaust systems, exhaust silencers, exhaust gas volume flow, exhaust silencers, and exhaust cowls. Part 3 briefly covers the testing of turbochargers.

A.J. Martyr; M.A. Plint

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Numerical simulation of cooling gas injection using adaptive multiscale techniques  

E-Print Network (OSTI)

focus on reducing this effects. Only very recently, active cooling strategies have been developed alsoNumerical simulation of cooling gas injection using adaptive multiscale techniques Wolfgang Dahmen Mathematik, RWTH Aachen, Templergraben 55, 52056 Aachen Abstract The interaction of a jet of cooling gas

442

MODELING THE MUON COOLING CHANNEL USING MOMENTS B. A. Shadwick  

E-Print Network (OSTI)

to reach the luminosity goals demanded by high- energy physics applications [3]. Furthermore, this cooling Using a moment formalism [1, 2] we model beam trans- port in the muon collider cooling channel. This model con- tains much of the physics we believe to be relevant to muon cooling such as ionization energy

Wurtele, Jonathan

443

Sympathetic cooling of trapped ions with resonant laser radiation  

SciTech Connect

We propose a novel model to describe dynamic properties of ions that are cooled by collisions with other laser-cooled ions in a quadrupole rf trap. The limit temperature of the sympathetic Cooling is estimated as functions of the trap and laser parameters, and the mass of the ions.

Shimizu, T.; Oshima, Y.; Moriwaki, Y.; Tachikawa, M. [Univ. of Tokyo (Japan)

1994-12-31T23:59:59.000Z

444

Method for cooling nanostructures to microkelvin temperatures  

SciTech Connect

We propose a new scheme aimed at cooling nanostructures to microkelvin temperature based on the well established technique of adiabatic nuclear demagnetization: we attach each device measurement lead to an individual nuclear refrigerator, allowing efficient thermal contact to a microkelvin bath. On a prototype consisting of a parallel network of nuclear refrigerators, temperatures of {approx}1 mK simultaneously on ten measurement leads have been reached upon demagnetization, thus completing the first steps toward ultracold nanostructures.

Clark, A. C.; Schwarzwaelder, K. K.; Bandi, T.; Maradan, D.; Zumbuehl, D. M. [Department of Physics, University of Basel, Klingelbergstrasse 82, Basel CH-4056 (Switzerland)

2010-10-15T23:59:59.000Z

445

Cooling of the Wairakei Reservoir During Production  

SciTech Connect

After nearly 30 years of power generation, parts of the present production area at Wairakei are near the end of their economic life due to local cooling. To the west of the present production area there remains a large volume of high temperature resource whose deep liquid temperatures have not changed from those measured during the 1960's. Power generation can be maintained for many more years by producing from this high temperature resource.

Bixley, Paul F.

1986-01-21T23:59:59.000Z

446

Cooling and transport of equine semen  

E-Print Network (OSTI)

OF AGRICULTURE August 1991 Animal Science Equine Reproduction COOLING AND TRANSPORT OF EQUINE SEMEN A Professional Paper by KAREN LYN VIEIRA Approved as to style and content by: Chair, Advisory Committee Committee Member Committee Member August 1991... dry skim milk with glucose extenders available commercially. The differences in these commercial extenders is the antibiotic added. "Kenney" is available as a powder that is added to sterile water and contains no antibiotics. E-Z Mixin is the same...

Vieira, Karen Lyn

2012-06-07T23:59:59.000Z

447

Solar absorption cooling in South China  

SciTech Connect

This paper summarizes a major energy research project carried out in China and Hong Kong over the last ten years. It covers medium temperature solar collectors, cooling and hot water supply systems and describes the design and manufacture of a novel two-stage absorption Li-Br chiller. One of the primary objectives of this project was to encourage technology transfer to China of the manufacturing processes relating to medium temperature solar collectors.

Ward, H.S.; Chu, C.Y. [Lingnan College/Hong Kong Polytechnic, Hong Kong (Hong Kong); Huang, Z.C.; Xia, W. [Guangzhou Inst. of Energy Conversion (China)

1995-11-01T23:59:59.000Z

448

Passively cooled direct drive wind turbine  

DOE Patents (OSTI)

A wind turbine is provided that passively cools an electrical generator. The wind turbine includes a plurality of fins arranged peripherally around a generator house. Each of the fins being oriented at an angle greater than zero degrees to allow parallel flow of air over the fin. The fin is further tapered to allow a constant portion of the fin to extend beyond the air stream boundary layer. Turbulence initiators on the nose cone further enhance heat transfer at the fins.

Costin, Daniel P. (Chelsea, VT)

2008-03-18T23:59:59.000Z

449

Water cooling of HVDC thyristor valves  

SciTech Connect

It is generally accepted that water is a very effective medium to remove heat losses from any type of equipment. When used for HVDC thyristor valves, the fundamentals of electrolyte conduction and water chemistry need to be considered in the design of the cooling circuit. The characteristics of the materials used, in conjunction with high voltage stresses and circuit configuration, play an important role to assure longevity and corrosion-free performance.

Lips, H.P. (Siemens AG, Erlangen (Germany))

1994-10-01T23:59:59.000Z

450

Desiccant cooling using unglazed transpired solar collectors  

SciTech Connect

The use of unglazed solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are lower in cost than conventional glazed flat-plate collectors. Using computer models, the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors was obtained. We found that the thermal performance of the unglazed system was lower than the thermal performance of the glazed system because the unglazed system could not take advantage of the heat of adsorption released during the dehumidification process. For a 3-ton cooling system, although the area required for the unglazed collector was 69% more than that required for the glazed collector, the cost of the unglazed collector array was 44% less than the cost of the glazed collector array. The simple payback period of the unglazed system was half of the payback period of the glazed collector when compared to an equivalent gas-fired system. Although the use of unglazed transpired collectors makes economic sense, some practical considerations may limit their use in desiccant regeneration. 8 refs.

Pesaran, A.A. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Wipke, K. [Stanford Univ., CA (United States)] [Stanford Univ., CA (United States)

1992-05-01T23:59:59.000Z

451

Two-Phase Cooling Method Using R134a Refrigerant to Cool Power Electronic Devices  

SciTech Connect

This paper presents a two-phase cooling method using R134a refrigerant to dissipate the heat energy (loss) generated by power electronics (PE) such as those associated with rectifiers, converters, and inverters for a specific application in hybrid-electric vehicles (HEVs). The cooling method involves submerging PE devices in an R134a bath, which limits the junction temperature of PE devices while conserving weight and volume of the heat sink without sacrificing equipment reliability. First, experimental tests that included an extended soak for more than 300 days were performed on a submerged IGBT and gate-controller card to study dielectric characteristics, deterioration effects, and heat flux capability of R134a. Results from these tests illustrate that R134a has high dielectric characteristics, no deterioration on electrical components, and a heat flux of 114 W/cm 2 for the experimental configuration. Second, experimental tests that included simultaneous operation with a mock automotive air-conditioner (A/C) system were performed on the same IGBT and gate controller card. Data extrapolation from these tests determined that a typical automotive A/C system has more than sufficient cooling capacity to cool a typical 30 kW traction inverter. Last, a discussion and simulation of active cooling of the IGBT junction layer with R134a refrigerant is given. This technique will drastically increase the forward current ratings and reliability of the PE device

Lowe, Kirk T [ORNL; Tolbert, Leon M [ORNL; Ayers, Curtis William [ORNL; Ozpineci, Burak [ORNL; Campbell, Jeremy B [ORNL

2007-01-01T23:59:59.000Z

452

Spray Cooling Modeling: Droplet Sub-Cooling Effect on Heat Transfer  

SciTech Connect

Spray cooling has become increasingly popular as a thermal management solution for high-heat flux (>100 W/cm{sup 2}) applications such as laser diodes and radars. Research has shown that using sub-cooled liquid can increase the heat flux from the hot surface. The objective of this study was to use a multi-phase numerical model to simulate the effect of a sub-cooled droplet impacting a growing vapor bubble in a thin (<100 {mu}m) liquid film. The two-phase model captured the liquid-vapor interface using the level set method. The effects of surface tension, viscosity, gravity and phase change were accounted for by using a modification to the incompressible Navier-Stokes equations, which were solved using the finite difference method. The computed liquid-vapor interface and temperature distributions were visualized for better understanding of the heat removal process. To understand the heat transfer mechanisms of sub-cooled droplet impact on a growing vapor bubble, various initial droplet temperatures were modeled (from 20 deg. C below saturation temperature to saturation temperature). This may provide insights into how to improve the heat transfer in future spray cooling systems.

Johnston, Joseph E.; Selvam, R. P. [Power Electronics Leveling Solutions LLC, 700 Research Boulevard, Fayetteville, AR 72701 (United States); Bell 4190 University of Arkansas, Fayetteville, AR 72701 (United States); Silk, Eric A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2008-01-21T23:59:59.000Z

453

An air-cooled pulse tube cryocooler with 50 W cooling capacity at 77 K  

Science Journals Connector (OSTI)

A pulse tube cryocooler with 50 W cooling capacity at 77 K is developed to cool superconducting devices mounted on automobiles. The envisioned cryocooler weight is less than 40 kg and the input electric power is less than 1 kW. To achieve these requirements the working frequency is increased to 75 Hz and the dual-opposed pistons use gas bearings to reduce compressor weight and volume. The heat from the main heat exchanger is rejected by forced convective air instead of water. The compressor and the cold finger are carefully matched to improve the efficiency. The details of these will be presented in this paper. After some adjustment a no load temperature for the pulse tube cryocooler of 40 K was achieved with 1 kW input electric power in surroundings at 298 K. At 77 K the cooling capacity is 50 W. If the main heat exchanger is cooled by water at 293 K the cooling capacity increases to 64 W corresponding to a relative Carnot efficiency of 18%.

2014-01-01T23:59:59.000Z

454

Improving Data Center Efficiency with Rack or Row Cooling Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenging conventional Challenging conventional cooling systems Rack/row-mounted cooling devices can replace or supplement conventional cooling systems and result in energy savings. Conventional data center cool- ing is achieved with computer room air conditioners (CRACs) or computer room air handlers (CRAHs). These CRAC and CRAH units are typically installed in data centers on top of raised-floors that are used for cooling air distribution. Such under-floor air distribution is not required by the new rack/row-mounted devices. Consequently, the vagaries of under-floor airflow pathways for room conditioning are avoided. Importantly, close-coupled devices may be better

455

Improving Data Center Efficiency with Rack or Row Cooling Devices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenging conventional Challenging conventional cooling systems Rack/row-mounted cooling devices can replace or supplement conventional cooling systems and result in energy savings. Conventional data center cool- ing is achieved with computer room air conditioners (CRACs) or computer room air handlers (CRAHs). These CRAC and CRAH units are typically installed in data centers on top of raised-floors that are used for cooling air distribution. Such under-floor air distribution is not required by the new rack/row-mounted devices. Consequently, the vagaries of under-floor airflow pathways for room conditioning are avoided. Importantly, close-coupled devices may be better

456

Apparatus and method for cooling a combustor cap  

DOE Patents (OSTI)

A combustor includes an end cap having a perforated downstream plate and a combustion chamber downstream of the downstream plate. A plenum is in fluid communication with the downstream plate and supplies a cooling medium to the combustion chamber through the perforations in the downstream plate. A method for cooling a combustor includes flowing a cooling medium into a combustor end cap and impinging the cooling medium on a downstream plate in the combustor end cap. The method further includes flowing the cooling medium into a combustion chamber through perforations in the downstream plate.

Zuo, Baifang; Washam, Roy Marshall; Wu, Chunyang

2014-04-29T23:59:59.000Z

457

PROGRESS IN DESIGNING A MUON COOLING RING WITH LITHIUM LENSES.  

SciTech Connect

We discuss particle tracking simulations in a storage ring with lithium lens inserts designed for the six-dimensional phase space cooling of muons by the ionization cooling. The ring design contains one or more lithium lens absorbers for transverse cooling that transmit the beam with very small beta-function values, in addition to liquid-hydrogen wedge-shaped absorbers in dispersive locations for longitudinal cooling. Such a ring could comprise the final component of a cooling system for use in a muon collider. The beam matching between dipole-quadrupole lattices and the lithium lenses is of particular interest.

FUKUI,Y.CLINE,D.B.GARREN,A.A.KIRK,H.G.

2004-03-03T23:59:59.000Z

458

IEP - Water-Energy Interface: Advanced Cooling Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Technology Cooling Technology This component of the program is focused on research to develop technologies that improve performance and reduce costs associated with wet cooling, dry cooling, and hybrid cooling technologies. In addition, the research area covers innovative methods to control bio-fouling of cooling water intake structures as well as advances in intake structure systems. Read More! It is technically possible to cool power plants with minimal water use. However, at this time such cooling methods are not as economically feasible as traditional cooling systems. Additional research and development is necessary to develop cooling systems that use as little water as possible, but at a reasonable cost. Water intake structures are also an area of concern, especially considering the Clean Water Act 316(b) regulation which requires that the location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact. With plant intake structures, the particular concern is impingement and entrainment of aquatic organisms.

459

Tips: Passive Solar Heating and Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling April 24, 2012 - 4:18pm Addthis Tips: Passive Solar Heating and Cooling Using passive solar design to heat and cool your home can be both environmentally friendly and cost effective. In many cases, your heating costs can be reduced to less than half the cost of heating a typical home. Passive solar design can also help lower your cooling costs. Passive solar cooling techniques include carefully designed overhangs and using reflective coatings on windows, exterior walls, and roofs. Newer techniques include placing large, insulated windows on south-facing walls and putting thermal mass, such as a concrete slab floor or a heat-absorbing wall, close to the windows. A passive solar house requires careful design and siting, which vary by

460

Property:Distributed Generation System Heating-Cooling Application | Open  

Open Energy Info (EERE)

Heating-Cooling Application Heating-Cooling Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Domestic Hot Water +, Space Heat and/or Cooling + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Domestic Hot Water + Distributed Generation Study/Arrow Linen + Domestic Hot Water + Distributed Generation Study/Dakota Station (Minnegasco) + Space Heat and/or Cooling +, Other + Distributed Generation Study/Elgin Community College + Space Heat and/or Cooling +, Domestic Hot Water + Distributed Generation Study/Emerling Farm + Domestic Hot Water +, Process Heat and/or Cooling +

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Building Energy Software Tools Directory: CBE UFAD Cooling Design Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

CBE UFAD Cooling Design Tool CBE UFAD Cooling Design Tool CBE UFAD Cooling Design Tool logo The Center for the Built Environment's research team has developed a simplified, practical design procedure and associated software tool to determine cooling load requirements of underfloor air distribution (UFAD) systems. These are provided to improve the accuracy of airflow, thermal decay data, thermal comfort calculations, system design, and the operation of UFAD buildings. Screen Shots Keywords UFAD, underfloor, Cooling load calculator, cooling, stratification, thermal comfort Validation/Testing N/A Expertise Required Knowledge about cooling load calculation and UFAD. Users N/A Audience Practicing architects and engineers involved in the design, specification, and analysis of UFADs. Instructional tool in colleges and universities.

462

Jones-Onslow EMC - Residential Heating and Cooling Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jones-Onslow EMC - Residential Heating and Cooling Rebate Program Jones-Onslow EMC - Residential Heating and Cooling Rebate Program Jones-Onslow EMC - Residential Heating and Cooling Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Central AC (15 SEER or greater): $35 Central AC (16 SEER or greater): $50 Heat Pump (15 SEER or greater): $250 Geothermal Heat Pump (19 EER or greater): $350 Provider Jones-Onslow EMC Jones-Onslow Electric Membership Corporation offers rebates to residential members who install energy efficient heating and cooling equipment. Members can replace an existing central AC or heat pump, which does not have a SEER rating greater than 13, with a central AC, heat pump, or geothermal heat

463

Federal Energy Management Program: FEMP Designated Product: Water-Cooled  

NLE Websites -- All DOE Office Websites (Extended Search)

FEMP Designated FEMP Designated Product: Water-Cooled Ice Machines to someone by E-mail Share Federal Energy Management Program: FEMP Designated Product: Water-Cooled Ice Machines on Facebook Tweet about Federal Energy Management Program: FEMP Designated Product: Water-Cooled Ice Machines on Twitter Bookmark Federal Energy Management Program: FEMP Designated Product: Water-Cooled Ice Machines on Google Bookmark Federal Energy Management Program: FEMP Designated Product: Water-Cooled Ice Machines on Delicious Rank Federal Energy Management Program: FEMP Designated Product: Water-Cooled Ice Machines on Digg Find More places to share Federal Energy Management Program: FEMP Designated Product: Water-Cooled Ice Machines on AddThis.com... Energy-Efficient Products Federal Requirements

464

Tips: Passive Solar Heating and Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Passive Solar Heating and Cooling Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling April 24, 2012 - 4:18pm Addthis Tips: Passive Solar Heating and Cooling Using passive solar design to heat and cool your home can be both environmentally friendly and cost effective. In many cases, your heating costs can be reduced to less than half the cost of heating a typical home. Passive solar design can also help lower your cooling costs. Passive solar cooling techniques include carefully designed overhangs and using reflective coatings on windows, exterior walls, and roofs. Newer techniques include placing large, insulated windows on south-facing walls and putting thermal mass, such as a concrete slab floor or a heat-absorbing wall, close to the windows. A passive solar house requires careful design and siting, which vary by

465

Thermal Performance of Phase-Change Wallboard for Residential Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Thermal Performance of Phase-Change Wallboard for Residential Cooling Cooling residential buildings in milder climates contributes significantly to peak demand mainly because of poor load factors. Peak cooling load determines the size of equipment and the cooling source. Several measures reduce cooling-system size and allow the use of lower-energy cooling sources; they include incorporating exterior walls or other elements that effectively shelter interiors from outside heat and cold, and providing thermal mass, to cool interior spaces during the day by absorbing heat and warm them at night as the mass discharges its heat. Thermal mass features may be used for storage only or serve as structural elements. Concrete, steel, adobe, stone, and brick all satisfy requirements

466

Best Management Practice: Single-Pass Cooling Equipment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Single-Pass Cooling Equipment Single-Pass Cooling Equipment Best Management Practice: Single-Pass Cooling Equipment October 8, 2013 - 9:37am Addthis Single-pass or once-through cooling systems provide an opportunity for significant water savings. In these systems, water is circulated once through a piece of equipment and is then disposed down the drain. Types of equipment that typically use single-pass cooling include CAT scanners, degreasers, hydraulic equipment, condensers, air compressors, welding machines, vacuum pumps, ice machines, x-ray equipment, and air conditioners. To remove the same heat load, single-pass systems use 40 times more water than a cooling tower operated at five cycles of concentration. To maximize water savings, single-pass cooling equipment should be either modified to

467

Frictional Cooling Scheme for Use in a Muon Collider  

SciTech Connect

The Muon Group at the MPI for Physics, Munich is investigating frictional cooling as a fast muon-beam emittance reduction scheme for a muon collider. A new simulation package, CoolSim, based on Geant4 has been developed for the simulation of low-energy beam cooling. New physics processes for low energy muons and protons have been implemented in the Geant4 framework. The group's Frictional Cooling Demonstration experiment aims to verify the principle of the cooling scheme. For this purpose, a 10-cm-long cooling cell has been constructed to test simulation of the energy loss and scattering mechanisms at low energy. This paper contains an introduction to a muon-collider frictional cooling scheme and the status of the demonstration experiment.

Greenwald, Daniel; Caldwell, Allen [Max-Planck-Insitut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany); Bao, Yu [Max-Planck-Insitut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China)

2010-03-30T23:59:59.000Z

468

Psychrometric Bin Analysis for Alternative Cooling Strategies in Data Centers  

SciTech Connect

Data centers are significant energy users and require continuous cooling to maintain high levels of computing performance. The majority of data centers have direct-expansion cooling which typically accounts for approximately 50% of the energy usage of data centers. However, using typical meteorological year 3 (TMY3) weather data and a simple psychometric bin analysis, alternative cooling strategies using a combination of economizer, evaporative, and supplemental DX cooling have been shown to be applicable in all climate zones in the United States. Average data center cooling energy savings across the U.S. was approximately 80%. Analysis of cooling energy savings is presented for various ASHRAE climate zones. The psychometric bin analysis is conducted for the ASHRAE recommended and allowable operating environment zones, as well as, a modified allowable operating environment. Control strategies are discussed. Finally, examples of energy efficient data centers using alternative cooling strategies are presented.

Metzger, I.; VanGeet, O.; Rockenbaugh, C.; Dean, J.; Kurnik, C.

2011-01-01T23:59:59.000Z

469

Building Technologies Office: Pollution Impact on Cool Roof Efficacy  

NLE Websites -- All DOE Office Websites (Extended Search)

Pollution Impact on Pollution Impact on Cool Roof Efficacy Research Project to someone by E-mail Share Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Facebook Tweet about Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Twitter Bookmark Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Google Bookmark Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Delicious Rank Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Digg Find More places to share Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

470

Federal Energy Management Program: Covered Product Category: Water-Cooled  

NLE Websites -- All DOE Office Websites (Extended Search)

Covered Product Covered Product Category: Water-Cooled Electric Chillers to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Water-Cooled Electric Chillers on Facebook Tweet about Federal Energy Management Program: Covered Product Category: Water-Cooled Electric Chillers on Twitter Bookmark Federal Energy Management Program: Covered Product Category: Water-Cooled Electric Chillers on Google Bookmark Federal Energy Management Program: Covered Product Category: Water-Cooled Electric Chillers on Delicious Rank Federal Energy Management Program: Covered Product Category: Water-Cooled Electric Chillers on Digg Find More places to share Federal Energy Management Program: Covered Product Category: Water-Cooled Electric Chillers on AddThis.com...

471

Evaluation of models for predicting evaporative water loss in cooling impoundments  

E-Print Network (OSTI)

Cooling impoundments can offer a number of advantages over cooling towers for condenser water cooling at steam electric power plants. However, a major disadvantage of cooling ponds is a lack of confidence in the ability ...

Helfrich, Karl Richard

1982-01-01T23:59:59.000Z

472

Dehumidification and cooling loads from ventilation air  

SciTech Connect

The importance of controlling humidity in buildings is cause for concern, in part, because of indoor air quality problems associated with excess moisture in air-conditioning systems. But more universally, the need for ventilation air has forced HVAC equipment (originally optimized for high efficiency in removing sensible heat loads) to remove high moisture loads. To assist cooling equipment and meet the challenge of larger ventilation loads, several technologies have succeeded in commercial buildings. Newer technologies such as subcool/reheat and heat pipe reheat show promise. These increase latent capacity of cooling-based systems by reducing their sensible capacity. Also, desiccant wheels have traditionally provided deeper-drying capacity by using thermal energy in place of electrical power to remove the latent load. Regardless of what mix of technologies is best for a particular application, there is a need for a more effective way of thinking about the cooling loads created by ventilation air. It is clear from the literature that all-too-frequently, HVAC systems do not perform well unless the ventilation air loads have been effectively addressed at the original design stage. This article proposes an engineering shorthand, an annual load index for ventilation air. This index will aid in the complex process of improving the ability of HVAC systems to deal efficiently with the amount of fresh air the industry has deemed useful for maintaining comfort in buildings. Examination of typical behavior of weather shows that latent loads usually exceed sensible loads in ventilation air by at least 3:1 and often as much as 8:1. A designer can use the engineering shorthand indexes presented to quickly assess the importance of this fact for a given system design. To size those components after they are selected, the designer can refer to Chapter 24 of the 1997 ASHRAE Handbook--Fundamentals, which includes separate values for peak moisture and peak temperature.

Harriman, L.G. III [Mason-Grant, Portsmouth, NH (United States); Plager, D. [Quantitative Decision Support, Portsmouth, NH (United States); Kosar, D. [Gas Research Inst., Chicago, IL (United States)

1997-11-01T23:59:59.000Z

473

Cooling Performance Assessment of Building America Homes  

E-Print Network (OSTI)

durability, comfort and reduced energy use. The ultimate program goal is to achieve a 70% reduction in energy while making up the other 30% with on-site power to provide homes that can cost-effectively produce as much energy as they consume. As of 2004.... Data from this home was collected over three summers from 2002 to 2004. Each of these residences is cooled by the originally installed, minimum efficiency equipment, SEER 10 in Lakeland and SEER 9 in Cocoa. Figure 1 shows the data points used...

Chasar, D.; Chandra, S.; Parker, D.; Sherwin, J.; Beal, D.; Hoak, D.; Moyer, N.; McIlvaine, J.

2006-01-01T23:59:59.000Z

474

The Integration of Cogeneration and Space Cooling  

E-Print Network (OSTI)

associated space cool- ing is essentially cost free. FIGURE B In hot and humid climates, both air conditioning and humidity control are required. The thermal out- put of a cogeneration unit provides the heat neces- sary to power an absorption chiller... absorption chiller/heaters are in operation within the U.S.; 10,000 tons are oper- ating in the Gulf Coast, a hot and humid climate area. Cogeneration saw a resurgence in the early 1980s, but its growth was limited mostly to in- dustrial plants...

Phillips, J.

1987-01-01T23:59:59.000Z

475

Corrosion in HVDC valve cooling systems  

SciTech Connect

Stainless steel couplings in the main cooling water pipes of HVDC thyristor valves have been in use since 1983, with an overall satisfactory behavior. However, some water leakage due to corrosion below the sealing O-rings of the couplings was observed during 1992. An extensive investigation and follow-up worldwide showed a direct correlation between water quality and the corrosion rate of the stainless steel couplings. Recommendations are given about actions to be taken in order to maintain a long lifetime for the fine water systems.

Jackson, P.O.; Abrahamsson, B.; Gustavsson, D.; Igetoft, L.

1997-04-01T23:59:59.000Z

476

Cooling air duct and screen arrangement for an air cooled engine  

SciTech Connect

This patent describes a cooling air duct and screen arrangement for an air cooled engine which includes an improved cooling air system for ensuring a supply of relatively clean air for ingestion by the cooling shroud, which consists of: a vertical transverse baffle mounted to the frame and fitting closely against a forward top portion of the shroud and having an edge shaped complementary to and disposed at least closely adjacent the hood. An air duct is mounted to the frame and has an upright rear wall seated against the front of the shroud in an area surrounding the inlet. The air duct further has an upright front wall and a connecting wall joining respective side and bottom edges of the front and rear walls and cooperating therewith to define an upwardly facing opening. A screen is located forwardly of the baffle and has a top and front joined by opposite sides with the top and opposite sides having rear edges mounted against the baffle and with the opposite sides and front having bottom edges engaged with the air duct about the upwardly facing opening wherein the screen is mounted solely to the baffle by connection means including a vertical guide means provided on the forward side of the baffle and flange means formed on the screen and being vertically slidably received in the guide means.

Hoch, J.J.; Stricker, D.K.

1986-03-04T23:59:59.000Z

477

Kansas City Power and Light - Cool Homes Residential Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kansas City Power and Light - Cool Homes Residential Rebate Program Kansas City Power and Light - Cool Homes Residential Rebate Program Kansas City Power and Light - Cool Homes Residential Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State Missouri Program Type Utility Rebate Program Rebate Amount SEER 14/15: $650 SEER 16/Greater: $850 Provider Kansas City Power and Light Kansas City Power and Light (KCP&L) offers rebates to residential customers to help offset the cost of replacing inefficient central AC and heat pump systems with newer, more efficient models. In order to qualify for a rebate, the system being replaced must have an EER of 8.0 or less, as tested by a CheckMe!-trained HVAC contractor. The replacement of "dead"

478

Energy Star Building Upgrade Manual Heating and Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

9. Heating and 9. Heating and Cooling Revised January 2008 9.1 Overview 2 9.2 Central Cooling Systems 3 Chiller Plant Operations and Maintenance 4 Chiller Plant Retrofits 6 9.3 Central Heating Systems 10 Boiler System Operations and Maintenance 11 Boiler System Retrofits 11 Improving Furnace Efficiency 13 9.4 Unitary Systems 14 Packaged Rooftop Units 16 Split-System Packaged Units 18 Air-Source Heat Pumps 18 Ground-Source, Closed-Loop Heat Pumps 19 9.5 Additional Strategies 20 Air-Side Economizer 20 Energy Recovery 20 Desiccant Dehumidification 20 Night Precooling 21 Cool Storage 22 Evaporative Cooling 22 9.6 Summary 22 Bibliography 23 Glossary G-1 1 ENERGY STAR ® Building Manual ENERGY STAR ® Building Manual 9. Heating and Cooling 9.1 Overview Although heating and cooling systems provide a useful service by keeping occupants comfort-

479

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

480

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

Note: This page contains sample records for the topic "desulfurization scrubbers cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

482

Pollution Impact on Cool Roof Efficacy Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » Pollution Impact on Cool Roof Efficacy Emerging Technologies » Pollution Impact on Cool Roof Efficacy Research Project Pollution Impact on Cool Roof Efficacy Research Project The Department of Energy (DOE) is currently determining how pollution impacts the efficacy of cool roofs. The project specifically is focusing on the efficacy of white roofs in Northern India. The first phase of the project will take physical measurements to characterize the cooling and climate effects of white roofs. Results from this project will provide important guidance to policymakers and planners as they decide where cool roofs would have the greatest benefits. Project Description The project involves the development of advanced surfaces and next-generation materials to improve solar reflectance of roofs; the ability to reflect the visible, infrared and ultraviolet wavelengths of the

483

Special Property Assessment for Renewable Heating and Cooling Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Property Assessment for Renewable Heating and Cooling Special Property Assessment for Renewable Heating and Cooling Systems Special Property Assessment for Renewable Heating and Cooling Systems < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Program Info State Maryland Program Type Property Tax Incentive Rebate Amount Eligible property is assessed at no more than the value of a conventional system Provider Department of Assessments and Taxation Title 8 of Maryland's property tax code includes a state-wide special assessment for solar and geothermal heating and cooling systems. Under this provision, such systems are to be assessed at not more than the value of a conventional system for property tax purposes if no conventional system

484

Would You Consider Installing a Cool Roof? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Would You Consider Installing a Cool Roof? Would You Consider Installing a Cool Roof? Would You Consider Installing a Cool Roof? August 12, 2010 - 7:30am Addthis On Monday, Erin discussed cool roof technologies and how they can improve the comfort of buildings while reducing energy costs. Would you consider installing a cool roof? Why or why not? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Would You Consider Driving a Vehicle that Can Run on Biodiesel? Would You Consider Installing a Cool Roof? Tips: Energy-Efficient Roofs How Do You Save Water When Caring for Your Lawn?

485

Cooling with a Whole House Fan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling with a Whole House Fan Cooling with a Whole House Fan Cooling with a Whole House Fan May 30, 2012 - 6:54pm Addthis Whole house fan installed as part of a home retrofit project in California. | Photo courtesy of Lieko Earle, NREL. Whole house fan installed as part of a home retrofit project in California. | Photo courtesy of Lieko Earle, NREL. What does this mean for me? A whole-house fan may be sufficient to cool your house, at least for part of the year. In many climates, a whole-house fan can save you money and maintain comfort during the cooling season. How does it work? A whole-house fan works by pulling air in through windows and exhausting it through the attic and roof. Whole house cooling using a whole house fan can substitute for an air conditioner most of the year in most climates. Whole house fans combined

486

Laser cooling of a trapped particle with increased Rabi frequencies  

E-Print Network (OSTI)

This paper analyses the cooling of a single particle in a harmonic trap with red-detuned laser light with fewer approximations than previously done in the literature. We avoid the adiabatic elimination of the excited atomic state but are still interested in Lamb-Dicke parameters $\\eta \\ll 1$. Our results show that the Rabi frequency of the cooling laser can be chosen higher than previously assumed, thereby increasing the effective cooling rate but {\\em not} affecting the final outcome of the cooling process. Since laser cooling is already a well established experimental technique, the main aim of this paper is to present a model which can be extended to more complex scenarios, like cavity-mediated laser cooling.

Tony Blake; Andreas Kurcz; Norah S. Saleem; Almut Beige

2011-10-14T23:59:59.000Z

487

Cooling system for a bearing of a turbine rotor  

DOE Patents (OSTI)

In a gas turbine, a bore tube assembly radially inwardly of an aft bearing conveys cooling steam to the buckets of the turbine and returns the cooling steam to a return. To cool the bearing and thermally insulate the bearing from the cooling steam paths, a radiation shield is spaced from the bore tube assembly by a dead air gap. Additionally, an air passageway is provided between the radiation shield and the inner surface of an aft shaft forming part of the rotor. Air is supplied from an inlet for flow along the passage and radially outwardly through bores in the aft shaft disk to cool the bearing and insulate it from transfer of heat from the cooling steam.

Schmidt, Mark Christopher (Niskayuna, NY)

2002-01-01T23:59:59.000Z

488

Optoelectronic cooling of mechanical modes in a semiconductor nanomembrane  

E-Print Network (OSTI)

Optical cavity cooling of mechanical resonators has recently become a research frontier. The cooling has been realized with a metal-coated silicon microlever via photo-thermal force and subsequently with dielectric objects via radiation pressure. Here we report cavity cooling with a crystalline semiconductor membrane via a new mechanism, in which the cooling force arises from the interaction between the photo-induced electron-hole pairs and the mechanical modes through the deformation potential coupling. The optoelectronic mechanism is so efficient as to cool a mode down to 4 K from room temperature with just 50 uW of light and a cavity with a finesse of 10 consisting of a standard mirror and the sub-wavelength-thick semiconductor membrane itself. The laser-cooled narrow-band phonon bath realized with semiconductor mechanical resonators may open up a new avenue for photonics and spintronics devices.

K. Usami; A. Naesby; T. Bagci; B. Melholt Nielsen; J. Liu; S. Stobbe; P. Lodahl; E. S. Polzik

2010-11-22T23:59:59.000Z

489

Two stage serial impingement cooling for isogrid structures  

DOE Patents (OSTI)

A system for cooling a wall (24) of a component having an outer surface with raised ribs (12) defining a structural pocket (10), including: an inner wall (26) within the structural pocket and separating the wall outer surface within the pocket into a first region (28) outside of the inner wall and a second region (40) enclosed by the inner wall; a plate (14) disposed atop the raised ribs and enclosing the structural pocket, the plate having a plate impingement hole (16) to direct cooling air onto an impingement cooled area (38) of the first region; a cap having a skirt (50) in contact with the inner wall, the cap having a cap impingement hole (20) configured to direct the cooling air onto an impingement cooled area (44) of the second region, and; a film cooling hole (22) formed through the wall in the second region.

Lee, Ching-Pang; Morrison, Jay A.

2014-09-09T23:59:59.000Z

490

Radially Cooled Toroidal Field Centerpost --- Inventor Robert D. Woolley |  

NLE Websites -- All DOE Office Websites (Extended Search)

Radially Cooled Toroidal Field Centerpost --- Inventor Robert D. Woolley Radially Cooled Toroidal Field Centerpost --- Inventor Robert D. Woolley This invention describes an improvement to Toroidal Field Centerpost cooling in Spherical Torus (ST) devices by changing direction of coolant flow from axial to radial, and flowing between internal inner and outer supply and return manifolds, both fed separately at top and bottom. Thus, the upper half of the centerpost is cooled from the top while the lower half is cooled from the bottom, both with U-shaped flow paths involving manifolds. The performance advantage results because less conductor material needs to be removed for the same coolant flow and because shorter average flow paths provide more heat removal cooling power. The fabrication advantage results because the invention eliminates the need to

491

Cooling of superconducting devices by liquid storage and refrigeration unit  

DOE Patents (OSTI)

A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.

Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene

2013-08-20T23:59:59.000Z

492

Personal Computer-Based Model for Cool Storage Performance Simulation  

E-Print Network (OSTI)

PERSONAL COMPUTER-BASED MODEL FOR COOL STORAGE PERFORMANCE SIMULATION Leszek M. Kasprowicz, Jerold W. Jones, and James Hitzfelder The University of Texas at Austin ust tin, ABSTRACT A personal computer based hourly simulation model... can be achieved by applying cool storage systems which use stored energy for air-conditioning purposes during peak periods. Customers benefit from cool storage in two ways. First, demand charges are reduced since customers with sufficient thermal...

Kasprowicz, L. M.; Jones, J. W.; Hitzfelder, J.

1990-01-01T23:59:59.000Z

493

Air-cooled Condensers in Next-generation Conversion Systems  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to reduce the costs associated with the generation of electrical power from air-cooled binary plants.

494

Development of a Solar-Powered Adsorption Cooling Tube  

Science Journals Connector (OSTI)

Solar energy shows much attraction for these scientists because it is clean, renewable, and environmentally protected. ... The disadvantages of the second generation solar-powered adsorption cooling tube are that (1) the heat loss from the solar collector is considerable, (2) because the condenser and evaporator are the same part of the solar cooling tube, the condensing heat significantly affects the refrigeration capacity in the condensing/chilled-water tank, and (3) the cooling water pipe cannot be maintained easily. ... A solar-powered adsorption refrigeration system consisting of solar cooling tubes has the advantages of a simple structure, low cost, and high efficiency. ...

Xiaodong Ma; Zhenyan Liu; Huizhong Zhao

2006-11-10T23:59:59.000Z

495

BSU GHP District Heating and Cooling System (Phase I)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BSU GHP District Heating and Cooling System (Phase I) James Lowe Ball State University May 03, 2010 This presentation does not contain any proprietary confidential, or otherwise...

496

Cedarville School District Retrofit of Heating and Cooling Systems...  

Open Energy Info (EERE)

Last modified on July 22, 2011. Project Title Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Project...

497

Geothermal Heating and Cooling Systems Featured on NBC Nightly...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

cooling systems that are providing 30%-70% energy and cost savings for homeowners in Jordan, New York. Demand for these systems is growing; nationally, shipments of geothermal...

498

NASA's Marshall Space Flight Center Improves Cooling System Performanc...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10: Cooling Towers (Revised) (Fact Sheet), Federal Energy Management Program (FEMP) nasa-msfcwatercs2.pdf More Documents & Publications NASA's Marshall Space Flight Center...

499

Heat-activated cooling devices: A guidebook for general audiences  

SciTech Connect

Heat-activated cooling is refrigeration or air conditioning driven by heat instead of electricity. A mill or processing facility can us its waste fuel to air condition its offices or plant; using waste fuel in this way can save money. The four basic types of heat-activated cooling systems available today are absorption cycle, desiccant system, steam jet ejector, and steam turbine drive. Each is discussed, along with cool storage and biomass boilers. Steps in determining the feasibility of heat-activated cooling are discussed, as are biomass conversion, system cost and integration, permits, and contractor selection. Case studies are given.

Wiltsee, G.

1994-02-01T23:59:59.000Z

500

Installation of Cool Roofs on Department of Energy Buildings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Guidelines for Selecting Cool Roofs CX-002735: Categorical Exclusion Determination 2010 Annual Planning Summary for Savannah River Operations Office (SRS)...