Powered by Deep Web Technologies
Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network (OSTI)

Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

Wrathall, J.

2013-01-01T23:59:59.000Z

2

Coal desulfurization with sodium hypochlorite.  

E-Print Network (OSTI)

??Wet desulfurization of Pittsburgh No. 8 coal and Illinois No. 6 coal were conducted with sodium hypochlorite in the laboratory. Pittsburgh No. 8 coal was… (more)

Li, Wei, M.S.

2004-01-01T23:59:59.000Z

3

Coal Liquefaction desulfurization process  

DOE Patents (OSTI)

In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

Givens, Edwin N. (Bethlehem, PA)

1983-01-01T23:59:59.000Z

4

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

5

Low temperature aqueous desulfurization of coal  

DOE Patents (OSTI)

This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

Slegeir, William A. (Hampton Bays, NY); Healy, Francis E. (Massapequa, NY); Sapienza, Richard S. (Shoreham, NY)

1985-01-01T23:59:59.000Z

6

Low temperature aqueous desulfurization of coal  

DOE Patents (OSTI)

This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

1985-04-18T23:59:59.000Z

7

Pyrite surface characterization and control for advanced fine coal desulfurization technologies  

SciTech Connect

The objective of this project is to conduct extensive studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The flotation characteristics of coal-pyrites under various conditions was studied and compared with ore-pyrite and coal to determine the causes of pyrite rejection difficulties in coal flotation. Both the native and induced floatabilities of pyrites were investigated. It was found that both coal- and ore-pyrites, ff prepared by dry-grinding, show little or no floatability in the absence of any chemical reagents. After ultrasonic pretreatment, ore-pyrite floats effectively in the acidic to neutral pH range. Kentucky No. 9 coal-pyrite (KYPY) shows significant flotation in the pH range 7--10. With ethyl xanthate as collector, ore-pyrite floats well up to pH = 10; while coal-pyrite reveals no flotation above pH = 6. For the first time, the effect of coal collector on the floatability of coal-pyrite has been studied. It was shown that in the presence of fuel oil--a widely used collector for promoting coal flotation, coal-pyrite, particularly for the fine sizes, shows good flotation below pH = 11, whereas ore-pyrite has no or little floatability. These studies demonstrate that one of the main causes of the coal-pyrite flotation in coal separation is the oil-induced floatability due to adsorption/attachment of oil droplets on the coal-pyrite surfaces, the native'' or self-induced'' floatability of pyrite is no as profound as the oil-induced flotation.

Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Jiang, Chengliang; Raichur, A.M.

1992-07-14T23:59:59.000Z

8

Pyrite surface characterization and control for advanced fine coal desulfurization technologies  

SciTech Connect

The objective of the project is to conduct extensive fundamental studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the influence of the impurity content, particularly coal/carbon content, on the electrochemical oxidation of pyrite surfaces was investigated. The studies demonstrate that the coal/carbon content in coal-pyrite has a determining effect on the surface reactivity of pyrite. The oxidation behavior of high carbon-content coal-pyrite is completely different from that of purer coal-pyrite and ore-pyrite. The effects of flotation gases on the flotation behavior of coal and the surface hydrophobicity of various coal-pyrite were investigated. It was found from the lab-scale column flotation studies that among the various gases studied (air, oxygen, argon, nitrogen and carbon dioxide), carbon dioxide produced the best results with a combustible recovery of 90% and ash-content of less than 9 percent. Finally, the surface energetic studies revealed that the surfaces of pyrites and coals produced by wet grinding is more heterogenous than that prepared by dry grinding.

Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, C.L.

1992-01-01T23:59:59.000Z

9

Method for desulfurization of coal  

DOE Patents (OSTI)

A process and apparatus are disclosed for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS[sub 2] to a troilite FeS form or a pyrrhotite form Fe[sub 1[minus]x]S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H[sub 2]S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents. 2 figs.

Kelland, D.R.

1987-07-07T23:59:59.000Z

10

Advanced Hot-Gas Desulfurization Sorbents  

Science Conference Proceedings (OSTI)

Integrated gasification combined cycle (IGCC) power systems are being advanced worldwide for generating electricity from coal due to their superior environmental performance, economics, and efficiency in comparison to conventional coal-based power plants. Hot gas cleanup offers the potential for higher plant thermal efficiencies and lower cost. A key subsystem of hot-gas cleanup is hot-gas desulfurization using regenerable sorbents. Sorbents based on zinc oxide are currently the leading candidates and are being developed for moving- and fluidized- bed reactor applications. Zinc oxide sorbents can effectively reduce the H{sub 2}S in coal gas to around 10 ppm levels and can be regenerated for multicycle operation. However, all current first-generation leading sorbents undergo significant loss of reactivity with cycling, as much as 50% or greater loss in only 25-50 cycles. Stability of the hot-gas desulfurization sorbent over 100`s of cycles is essential for improved IGCC economics over conventional power plants. This project aims to develop hot-gas cleanup sorbents for relatively lower temperature applications, 343 to 538{degrees}C with emphasis on the temperature range from 400 to 500{degrees}. Recent economic evaluations have indicated that the thermal efficiency of IGCC systems increases rapidly with the temperature of hot-gas cleanup up to 350{degrees}C and then very slowly as the temperature is increased further. This suggests that the temperature severity of the hot-gas cleanup devices can be reduced without significant loss of thermal efficiency. The objective of this study is to develop attrition-resistant advanced hot-gas desulfurization sorbents which show stable and high sulfidation reactivity at 343{degrees}C (650{degrees}F) to 538{degrees}C(1OOO{degrees}F) and regenerability at lower temperatures than leading first generation sorbents.

Jothimurugesan, K.; Gangwal, S.K.; Gupta, R.; Turk, B.S.

1997-07-01T23:59:59.000Z

11

Two-stage coal gasification and desulfurization  

DOE Patents (OSTI)

The present invention is directed to a system which effectively integrates a two-stage, fixed-bed coal gasification arrangement with hot fuel gas desulfurization of a first stream of fuel gas from a lower stage of the two-stage gasifier and the removal of sulfur from the sulfur sorbent regeneration gas utilized in the fuel-gas desulfurization process by burning a second stream of fuel gas from the upper stage of the gasifier in a combustion device in the presence of calcium-containing material. The second stream of fuel gas is taken from above the fixed bed in the coal gasifier and is laden with ammonia, tar and sulfur values. This second stream of fuel gas is burned in the presence of excess air to provide heat energy sufficient to effect a calcium-sulfur compound forming reaction between the calcium-containing material and sulfur values carried by the regeneration gas and the second stream of fuel gas. Any ammonia values present in the fuel gas are decomposed during the combustion of the fuel gas in the combustion chamber. The substantially sulfur-free products of combustion may then be combined with the desulfurized fuel gas for providing a combustible fluid utilized for driving a prime mover. 1 fig.

Bissett, L.A.; Strickland, L.D.

1990-08-03T23:59:59.000Z

12

Liquefaction and desulfurization of coal using synthesis gas  

DOE Patents (OSTI)

A process for desulfurizing and liquefying coal by heating said coal at a temperature of 375.degree.-475.degree. C in the presence of a slurry liquid, hydrogen, carbon monoxide, steam, and a catalyst comprising a desulfurization catalyst and an alkali metal salt.

Fu, Yuan C. (Bethel Park, PA)

1977-03-08T23:59:59.000Z

13

A NOVEL APPROACH TO CATALYTIC DESULFURIZATION OF COAL  

DOE Green Energy (OSTI)

Column chromatographic separation of the S=PBu{sub 3}/PBu{sub 3} product mixture followed by weighing the S=PBu{sub 3}, and by vacuum distillation of S=PBu{sub 3}/PBu{sub 3}mixture followed by gas chromatographic analysis are described. Effects of coal mesh size, pre-treatment with methanol Coal (S) + excess PR{sub 3} {yields} Coal + S=PR{sub 3}/PBu{sub 3} and sonication on sulfur removal by PBu{sub 3} revealed that particle size was not observed to affect desulfurization efficiency in a consistent manner. Coal pretreatment with methanol to induce swelling or the addition of a filter aid such as Celite reduced desulfurization efficiency of the PBu{sub 3} and sonication was no more effective than heating. A rationale is put forth for the lack of efficacy of methanol pretreatment of the coal in desulfurization runs with PBu{sub 3}. Coal desulfurization with PBu{sub 3} was not improved in the presence of miniscule beads of molten lithium or sodium as a desulfurizing reagent for SPBu{sub 3} in a strategy aimed at regenerating PBu{sub 3} inside coal pores. Although desulfurization of coals did occur in sodium solutions in liquid ammonia, substantial loss of coal mass was also observed. Of particular concern is the mass balance in the above reaction, a problem which is described in some detail. In an effort to solve this difficulty, a specially designed apparatus is described which we believe can solve this problem reasonably effectively. Elemental sodium was found to remove sulfur quantitatively from a variety of polycyclic organosulfur compounds including dibenzothiophene and benzothiophene under relatively mild conditions (150 C) in a hydrocarbon solvent without requiring the addition of a hydrogen donor. Lithium facilitates the same reaction at a higher temperature (254 C). Mechanistic pathways are proposed for these transformations. Curiously, dibenzothiophene and its corresponding sulfone was virtually quantitatively desulfurized in sodium solutions in liquid ammonia at -33 C, although the yield of biphenyl was only about 20 to 30%. On the other hand, benzothiophene gave a high yield of 2-ethylthiophenol under these conditions. Although our superbase P(MeNCH{sub 2}CH{sub 2}){sub 3}N, which is now commercially available, is a more effective desulfurizing agent for a variety of organophosphorus compounds than PPh{sub 3} or its acyclic analogue P(NMe){sub 3}, it does not desulfurize benzothiophene or dibenzothiophene.

John G. Verkade

2001-11-01T23:59:59.000Z

14

Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier  

DOE Patents (OSTI)

A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

Grindley, Thomas (Morgantown, WV)

1989-01-01T23:59:59.000Z

15

Two-stage coal gasification and desulfurization apparatus  

DOE Patents (OSTI)

The present invention is directed to a system which effectively integrates a two-stage, fixed-bed coal gasification arrangement with hot fuel gas desulfurization of a first stream of fuel gas from a lower stage of the two-stage gasifier and the removal of sulfur from the sulfur sorbent regeneration gas utilized in the fuel-gas desulfurization process by burning a second stream of fuel gas from the upper stage of the gasifier in a combustion device in the presence of calcium-containing material. The second stream of fuel gas is taken from above the fixed bed in the coal gasifier and is laden with ammonia, tar and sulfur values. This second stream of fuel gas is burned in the presence of excess air to provide heat energy sufficient to effect a calcium-sulfur compound forming reaction between the calcium-containing material and sulfur values carried by the regeneration gas and the second stream of fuel gas. Any ammonia values present in the fuel gas are decomposed during the combustion of the fuel gas in the combustion chamber. The substantially sulfur-free products of combustion may then be combined with the desulfurized fuel gas for providing a combustible fluid utilized for driving a prime mover.

Bissett, Larry A. (Morgantown, WV); Strickland, Larry D. (Morgantown, WV)

1991-01-01T23:59:59.000Z

16

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

commercial (point sources) Coal Oil Other Area sourcesSource Stationary fuel combugtion Electric utilities Coal Oil

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

17

Coal desulfurization in a rotary kiln combustor  

Science Conference Proceedings (OSTI)

The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

Cobb, J.T. Jr.

1992-09-11T23:59:59.000Z

18

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Credit Extra Fuel Oil Coal to gasifier Na cost· Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

19

Economic assessment of advanced flue gas desulfurization processes. Final report  

Science Conference Proceedings (OSTI)

This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

1981-09-01T23:59:59.000Z

20

Scale-Up of Advanced Hot-Gas desulfurization Sorbents.  

SciTech Connect

The overall objective of this project is to develop regenerable sorbents for hot gas desulfurization in IGCC systems. The specific objective of the project is to develop durable advanced sorbents that demonstrate a strong resistance to attrition and chemical deactivation, and high activity at temperatures as low as 343 {degrees}C (650{degrees}F). A number of formulations will be prepared and screened in a one-half inch fixed bed reactor at high pressure (1 to 20 atm) and high temperatures using simulated coal-derived fuel- gases. Screening criteria will include chemical reactivity, stability, and regenerability over the temperature range of 343{degrees}C to 650{degrees}C. After initial screening, at least 3 promising formulations will be tested for 25-30 cycles of absorption and regeneration. One of the superior formulations with the best cyclic performance will be selected for investigating scale up parameters. The scaled-up formulation will be tested for long term durability and chemical reactivity.

Jothimurugesan, K.; Gangwal, S.K.

1997-10-02T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Scale-Up of Advanced Hot-Gas Desulfurization Sorbents  

Science Conference Proceedings (OSTI)

The overall objective of this project is to develop regenerable sorbents for hot gas desulfurization in IGCC systems. The specific objective of the project is to develop durable advanced sorbents that demonstrate a strong resistance to attrition and chemical deactivation, and high activity at temperatures as low as 343{degrees}C (650{degrees}F). A number of formulations will be prepared and screened in a 1/2-inch fixed bed reactor at high pressure (1 to 20 atm) and high temperatures using simulated coal-derived fuel-gases. Screening criteria will include, chemical reactivity, stability, and regenerability over the temperature range of 343{degrees}C to 650{degrees}C. After initial screening, at least 3 promising formulations will be tested for 25-30 cycles of absorption and regeneration. One of the superior formulations with the best cyclic performance will be selected for investigating scale up parameters. The scaled-up formulation will be tested for long term durability and chemical reactivity.

Jothimurugesan, K.; Gangwal, S.K.

1997-04-21T23:59:59.000Z

22

DEVELOPMENT OF ADVANCED HOT-GAS DESULFURIZATION PROCESSES  

Science Conference Proceedings (OSTI)

The techniques employed in this project have successfully demonstrated the feasibility of preparing sorbents that achieve greater than 99% H{sub 2}S removal at temperatures 480 C and that retain their activity over 50 cycles. Fundamental understanding of phenomena leading to chemical deactivation and high regeneration light-off temperature has enabled us to successfully prepare and scale up a FHR-32 sorbent that showed no loss in reactivity and capacity over 50 cycles. This sorbent removed H{sub 2}S below 80 ppmv and lighted-off nicely at 480 C during regeneration. Overall the test is a success with potential for an optimized FHR-32 to be a candidate for Sierra-Pacific. An advanced attrition resistant hot-gas desulfurization sorbent that can eliminate the problematic SO{sub 2} tail gas and yield elemental sulfur directly has been developed. Attrition resistant Zn-Fe sorbent (AHI-2) formulations have been prepared that can remove H{sub 2}S to below 20 ppmv from coal gas and can be regenerated using SO{sub 2} to produce elemental sulfur.

K. Jothimurugesan; Santosh K. Gangwal

2000-12-01T23:59:59.000Z

23

Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Seventh quarterly technical progress report, March 1, 1992--May 31, 1992  

SciTech Connect

The objective of this project is to conduct extensive studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The flotation characteristics of coal-pyrites under various conditions was studied and compared with ore-pyrite and coal to determine the causes of pyrite rejection difficulties in coal flotation. Both the native and induced floatabilities of pyrites were investigated. It was found that both coal- and ore-pyrites, ff prepared by dry-grinding, show little or no floatability in the absence of any chemical reagents. After ultrasonic pretreatment, ore-pyrite floats effectively in the acidic to neutral pH range. Kentucky No. 9 coal-pyrite (KYPY) shows significant flotation in the pH range 7--10. With ethyl xanthate as collector, ore-pyrite floats well up to pH = 10; while coal-pyrite reveals no flotation above pH = 6. For the first time, the effect of coal collector on the floatability of coal-pyrite has been studied. It was shown that in the presence of fuel oil--a widely used collector for promoting coal flotation, coal-pyrite, particularly for the fine sizes, shows good flotation below pH = 11, whereas ore-pyrite has no or little floatability. These studies demonstrate that one of the main causes of the coal-pyrite flotation in coal separation is the oil-induced floatability due to adsorption/attachment of oil droplets on the coal-pyrite surfaces, the ``native`` or ``self-induced`` floatability of pyrite is no as profound as the oil-induced flotation.

Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Jiang, Chengliang; Raichur, A.M.

1992-07-14T23:59:59.000Z

24

Coal desulfurization in a rotary kiln combustor  

Science Conference Proceedings (OSTI)

BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

Cobb, J.T. Jr.

1990-08-15T23:59:59.000Z

25

Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Eighth quarterly technical progress report, June 1, 1992--August 31, 1992  

SciTech Connect

The objective of the project is to conduct extensive fundamental studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the influence of the impurity content, particularly coal/carbon content, on the electrochemical oxidation of pyrite surfaces was investigated. The studies demonstrate that the coal/carbon content in coal-pyrite has a determining effect on the surface reactivity of pyrite. The oxidation behavior of high carbon-content coal-pyrite is completely different from that of purer coal-pyrite and ore-pyrite. The effects of flotation gases on the flotation behavior of coal and the surface hydrophobicity of various coal-pyrite were investigated. It was found from the lab-scale column flotation studies that among the various gases studied (air, oxygen, argon, nitrogen and carbon dioxide), carbon dioxide produced the best results with a combustible recovery of 90% and ash-content of less than 9 percent. Finally, the surface energetic studies revealed that the surfaces of pyrites and coals produced by wet grinding is more heterogenous than that prepared by dry grinding.

Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, C.L.

1992-12-01T23:59:59.000Z

26

Desulfurization of Fisher-Tropsch synthesis gas in coal-to-gasoline pilot plant  

SciTech Connect

In 1989, a coal-to-gasoline pilot plant was installed and operated successfully in China, and a dry desulfurization process was used in this plant. This paper presents an overview of the dry desulfurization process. It includes design and operation of the process, and a description of ST801, T305 adsorbents and TGH COS hydrolysis catalyst. In addition, the desulfurization process used in a planned demonstration plant scheduled for completion in 1991 is presented.

Shishao, T.; Ju, S.; Shenzhao, L.; Maoqian, M.; Hanxian, G. (Dept. of Chemical Engineering, Taiyuan Univ. of Technology, Taiyuan, Shanxi (CN))

1990-01-01T23:59:59.000Z

27

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

of coal sulfur K-T gasification process SRC I process U. S.flow sheet of a K-T coal gasification complex for producingProduction via K-T Gasification" © CEP Aug. 78. Feed

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

28

Development of advanced hot-gas desulfurization processes  

SciTech Connect

Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3 % of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas. The effort during the reporting period has been devoted to testing the FHR-32 sorbent. FHR-32 sorbent was tested for 50 cycles of sulfidation in a laboratory scale reactor.

Jothimurugesan, K.

2000-04-17T23:59:59.000Z

29

Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier  

DOE Patents (OSTI)

A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

Grindley, T.

1988-04-05T23:59:59.000Z

30

Development of advanced hot-gas desulfurization sorbents. Final report  

Science Conference Proceedings (OSTI)

The objective of this project was to develop hot-gas desulfurization sorbent formulations for relatively lower temperature application, with emphasis on the temperature range from 343--538 C. The candidate sorbents include highly dispersed mixed metal oxides of zinc, iron, copper, cobalt, nickel and molybdenum. The specific objective was to develop suitable sorbents, that would have high and stable surface area and are sufficiently reactive and regenerable at the relatively lower temperatures of interest in this work. Stability of surface area during regeneration was achieved by adding stabilizers. To prevent sulfation, catalyst additives that promote the light-off of the regeneration reaction at lower temperature was considered. Another objective of this study was to develop attrition-resistant advanced hot-gas desulfurization sorbents which show stable and high sulfidation reactivity at 343 to 538 C and regenerability at lower temperatures than leading first generation sorbents.

Jothimurugesan, K.; Adeyiga, A.A.; Gangwal, S.K.

1997-10-01T23:59:59.000Z

31

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOENETL-20051217 U.S. Department of Energy Office of Fossil Energy National Energy...

32

Reactivity of target compounds for chemical coal desulfurization. Technical report, March 1, 1994--May 31, 1994  

SciTech Connect

This project seeks to identify representative organosulfur compounds which are removed by known coal desulfurization reactions. Demineralized coals are solvent extracted and the extracts fractionated to concentrate organosulfur compounds for analysis by Gas Chromatography/Mass Spectroscopy. After sulfur compounds are characterized, the parent extracts are subjected to reactions previously shown to reduce the organic sulfur content of Illinois coals, fractionated and again analyzed for organosulfur content to determine if the identified compounds reacted during the chemical treatment. The original coal also will be subjected to chemical desulfurization, extraction, fractionation and analysis in order to correlate changes in organic sulfur content of the coal with reactions of specific sulfur compounds. These compounds can thus be reliably considered as target molecules for the next generation of desulfurization processes. Work during this quarter has shown that fractionation and chromatography of pyridine extracts to isolate suitable samples for GC/MS analysis, although time-consuming, appears to be better than direct toluene extraction in terms of providing a representative set of compounds for analysis. The toluene soluble fractions prepared by this route contain aromatic sulfur compounds and O, N, S-containing hetrocycles. A set of these compounds has been identified and their fate following desulfurization of the parent coal extracts is under investigation. Previously studied desulfurization reactions using the single electron transfer reagent, K/THF/naphthalene, and the reactive nickel boride reagent have been repeated and analyzed by GC/MS. SET and nickel boride reactions of the THF soluble portions of pyridine coal are currently in progress.

Buchanan, D.H.; Amin, M.; Cunningham, R.; Galyen, J.; Ho, K.K.

1994-09-01T23:59:59.000Z

33

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Advanced Flue Gas Desulfurization (AFGD) Demonstration Project A DOE Assessment August 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

34

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

35

SCALE-UP OF ADVANCED HOT-GAS DESULFURIZATION SORBENTS  

Science Conference Proceedings (OSTI)

The objective of this study was to develop advanced regenerable sorbents for hot gas desulfurization in IGCC systems. The specific objective was to develop durable advanced sorbents that demonstrate a strong resistance to attrition and chemical deactivation, and high sulfidation activity at temperatures as low as 343 C (650 F). Twenty sorbents were synthesized in this work. Details of the preparation technique and the formulations are proprietary, pending a patent application, thus no details regarding the technique are divulged in this report. Sulfidations were conducted with a simulated gas containing (vol %) 10 H{sub 2}, 15 CO, 5 CO{sub 2}, 0.4-1 H{sub 2}S, 15 H{sub 2}O, and balance N{sub 2} in the temperature range of 343-538 C. Regenerations were conducted at temperatures in the range of 400-600 C with air-N{sub 2} mixtures. To prevent sulfation, catalyst additives were investigated that promote regeneration at lower temperatures. Characterization were performed for fresh, sulfided and regenerated sorbents.

K. JOTHIMURUGESAN; S.K. GANGWAL

1998-03-01T23:59:59.000Z

36

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

feasibility of combining wind farms with advanced coalfeasibility of combining wind farms with advanced coal

Phadke, Amol

2008-01-01T23:59:59.000Z

37

Reclamation of abandoned surface coal mined land using flue gas desulfurization products  

SciTech Connect

Details are given of a field-scale research project where the Fleming site, in Ohio, of highly degraded and acid-forming abandoned surface coal-mined land, was reclaimed using a dry flue gas desulfurization product from an atmospheric fluidized bed combustion burner at a General Motors plant Pontiac, MI, which burned eastern Ohio coal and used dolomitic limestone for desulfurization. Plots were seeded with a mixture of grasses, wheat and clover, in 1994 and soil and water samples were analysed in 1995 and in 2009. It was found that FGD-treated plots promoted good regenerative growth, similar to that in plots using more concentrated re-soil material. The FGD treatment also greatly improved overall water quality. 3 figs., 4 tabs.

Chen, L.; Kost, D.; Dick, W.A. [Ohio State University, OH (United States)

2009-07-01T23:59:59.000Z

38

Pore structure and reactivity changes in hot coal gas desulfurization sorbents  

Science Conference Proceedings (OSTI)

The primary objective of the project was the investigation of the pore structure and reactivity changes occurring in metal/metal oxide sorbents used for desulfurization of hot coal gas during sulfidation and regeneration, with particular emphasis placed on the effects of these changes on the sorptive capacity and efficiency of the sorbents. Commercially available zinc oxide sorbents were used as model solids in our experimental investigation of the sulfidation and regeneration processes.

Sotirchos, S.V.

1991-05-01T23:59:59.000Z

39

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic21 Figure 6. Comparison of ACWH and CCGT-Wind

Phadke, Amol

2008-01-01T23:59:59.000Z

40

Advanced Coal Wind Hybrid: Economic Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Coal Wind Hybrid: Economic Analysis Title Advanced Coal Wind Hybrid: Economic Analysis Publication Type Report Year of Publication 2008 Authors Phadke, Amol, Charles A....

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report  

SciTech Connect

The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

NONE

1996-04-30T23:59:59.000Z

42

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

LBNL-1248E Advanced Coal Wind Hybrid: Economic Analysis Principal Authors Amol Phadke1 , Charles;Advanced Coal Wind Hybrid: Economic Analysis ii LBNL-1248E Advanced Coal Wind Hybrid: Economic Analysis and Analysis of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. #12;#12;Advanced Coal

43

Status of METC investigations of coal gas desulfurization at high temperature. [Zinc ferrite  

DOE Green Energy (OSTI)

This report documents the continuing effort at the US Department of Energy/Morgantown Energy Technology Center (METC) to develop a hot-gas desulfurization process for coal-derived gas, primarily for application to molten carbonate fuel cells. Metal oxide sorbents were tested on lab-scale test equipment, and it was determined that scale-up of the process was warranted. A larger, skid-mounted test unit was therefore designed, constructed, and installed on a sidestream of the DOE/METC fixed-bed gasifier. A first series of tests was conducted during Gasifier Run 101. These tests served to shake down the test unit, and provide data on the performance of the test unit operating on coal-derived gas. Overall, the process operated well on fixed-bed, air-blown gasifier gas. Sulfur levels in exit dry gas were reduced to less than 10 ppM. Regeneration appears to restore the sulfur-removing capacity of the sorbent. Sorbent integrity was maintained during the test period, which incorporated three sulfidations. It is recommended that treatment of the regeneration offgas be investigated, and that testing and development of a system to reduce the sulfur in this gas to elemental sulfur be initiated. In addition, it is suggested that a multiple reactor system be planned for continuous operation, to allow for long-term tests of downstream users of desulfurized gas. 7 references, 18 figures, 9 tables.

Steinfeld, G.

1984-03-01T23:59:59.000Z

44

Method for the desulfurization of hot product gases from coal gasifier  

DOE Green Energy (OSTI)

The gasification of sulfur-bearing coal produces a synthesis gas which contains a considerable concentration of sulfur compounds especially hydrogen sulfide that renders the synthesis gas environmentally unacceptable unless the concentration of the sulfur compounds is significantly reduced. To provide for such a reduction in the sulfur compounds a calcium compound is added to the gasifier with the coal to provide some sulfur absorption. The synthesis gas from the gasifier contains sulfur compounds and is passed through an external bed of a regenerable solid absorbent, preferably zinc ferrite, for essentially completed desulfurizing the hot synthesis gas. This absorbent is, in turn, periodically or continuously regenerated by passing a mixture of steam and air or oxygen through the bed for converting absorbed hydrogen sulfide to sulfur dioxide. The resulting tail gas containing sulfur dioxide and steam is injected into the gasifier where the sulfur dioxide is converted by the calcium compound into a stable form of sulfur such as calcium sulfate.

Grindley, Thomas (Morgantown, WV)

1988-01-01T23:59:59.000Z

45

Method for the desulfurization of hot product gases from a coal gasifier  

DOE Patents (OSTI)

The gasification of sulfur-bearing coal produces a synthesis gas which contains a considerable concentration of sulfur compounds, especially hydrogen sulfide that renders the synthesis gas environmentally unacceptable unless the concentration of the sulfur compounds is significantly reduced. To provide for such a reduction in the sulfur compounds a calcium compound is added to the gasifier with the coal to provide some sulfur absorption. The synthesis gas from the gasifier contains sulfur compounds and is passed through an external bed of a regenerable solid absorbent, preferably zinc ferrite, for essentially completed desulfurizing the hot synthesis gas. This absorbent is, in turn, periodically or continuously regenerated by passing a mixture of steam and air or oxygen through the bed for converting absorbed hydrogen sulfide to sulfur dioxide. The resulting tail gas containing sulfur dioxide and steam is injected into the gasifier where the sulfur dioxide is converted by the calcium compound into a stable form of sulfur such as calcium sulfate. 2 figs.

Grindley, T.

1986-04-10T23:59:59.000Z

46

Advanced Coal Wind Hybrid: Economic Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Wind Hybrid: Economic Analysis Title Advanced Coal Wind Hybrid: Economic Analysis Publication Type Report LBNL Report Number LBNL-1248E Year of Publication 2008 Authors...

47

NETL: Turbine Projects - Advanced Coal Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Coal Power Systems Turbine Projects Advanced Coal Power Systems SOFC Hybrid System for Distributed Power Generation DataFact Sheets SOFC Hybrid System PDF In-House FCT...

48

Eight Advanced Coal Projects Chosen for Further Development by...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program Eight Advanced Coal Projects Chosen for Further Development by DOE's...

49

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOE/NETL-2005/1217 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory April 2005 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name,

50

Pore structure and reactivity changes in hot coal gas desulfurization sorbents. Final report, September 1987--January 1991  

SciTech Connect

The primary objective of the project was the investigation of the pore structure and reactivity changes occurring in metal/metal oxide sorbents used for desulfurization of hot coal gas during sulfidation and regeneration, with particular emphasis placed on the effects of these changes on the sorptive capacity and efficiency of the sorbents. Commercially available zinc oxide sorbents were used as model solids in our experimental investigation of the sulfidation and regeneration processes.

Sotirchos, S.V.

1991-05-01T23:59:59.000Z

51

CoalFleet Guideline for Advanced Pulverized Coal Power Plants  

Science Conference Proceedings (OSTI)

The CoalFleet Guideline for Advanced Pulverized Coal Power Plants provides an overview of state-of-the art and emerging technologies for pulverized coal-fired generating units along with lessons learned for current plants worldwide. The Guideline aims to facilitate the timely deployment of reliable, next-generation generating units that incorporate: Higher steam conditions for higher efficiency and reduced generation of pollutants Advanced environmental controls for reduced emissions and environmental im...

2007-03-30T23:59:59.000Z

52

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

IGCC PC advanced coal-wind hybrid combined cycle power plantnatural gas combined cycle gas turbine power plant carboncrude gasification combined cycle power plant with carbon

Phadke, Amol

2008-01-01T23:59:59.000Z

53

Advanced gasifier-desulfurizer process development for SNG (substitute natural gas) application. Final report, August 1987-December 1988  

Science Conference Proceedings (OSTI)

KRW conducted investigations of calcium-promoted coal pyrolysis and gasification by means of bench-scale studies and an oxygen-blown PDU test. Results were used in a design study of a commercial KRW gasifier-desulfurizer, operating on Pittsburgh No. 8 coal and limestone for production of SNG. Bench-scale fluid-bed reactor studies were conducted with various fluidizing gases at temperatures and pressures of 1650 to 1950 F and 40 to 450 psig, with and without limestone, to give methane-yield and tar-yield data. The gasification kinetics studies of chars produced gave data which showed that limestone increases char reactivity and exerts a catalytic effect. Methane yields correlated exponentially to pressure. The bench-scale test results lead to an expectation that feeding some of the coal to the upper portion of the gasifier will increase methane yield and decrease oxygen consumption. In two PDU test-set points, expected operability and performance of the oxygen-blown gasifier-desulfurizer were confirmed. In Set Point 2, in-bed desulfurization efficiency was 88% and the product-gas higher heating value was 302 Btu/scf. The test results provided inputs to the design study of a KRW gasifier-desulfurizer island for production of 125 MM Btu/day of SNG. Results included a 4 to 6% improvement in feedstock inputs when compared to an earlier GRI-sponsored study. Methane yield decreased but the number of operating gasifier-desulfurizers remained at five. Equipment costs are expected to remain well within the previous + or - 25% cost estimate.

Blinn, M.B.; Cover, A.E.; Haldipur, G.B.; Datta, S.C.; Holmgren, J.D.

1989-06-01T23:59:59.000Z

54

Economic assessment of advanced flue gas desulfurization processes. Final report. Volume 2. Appendices G, H, and I  

SciTech Connect

This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final report, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluation, was completed in October 1980. A slightly modified and condensed version of that report appears as Appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

1981-09-01T23:59:59.000Z

55

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

2008. “Annual Report on US Wind Power Installation, Cost,Feed Sequestration Site Wind Power Figure ES-1. AdvancedFeed Sequestration Site Wind Power Figure 1. Advanced-Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

56

Materials challenges in advanced coal conversion technologies  

SciTech Connect

Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO{sub 2}, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO{sub 2} capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.

Powem, C.A.; Morreale, B.D. [National Energy Technology Laboratory, Albany, OR (United States)

2008-04-15T23:59:59.000Z

57

GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS  

Science Conference Proceedings (OSTI)

Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require ultimate disposal when it is put to use. Each task three waste was evaluated for utilization potential based on its physical properties, bulk chemical composition, and mineral composition. Only one of the thirteen materials studied might be suitable for use as a pozzolanic concrete additive. However, many wastes appeared to be suitable for other high-volume uses such as blasting grit, fine aggregate for asphalt concrete, road deicer, structural fill material, soil stabilization additives, waste stabilization additives, landfill cover material, and pavement base course construction.

Edwin S. Olson; Charles J. Moretti

1999-11-01T23:59:59.000Z

58

Hot coal gas desulfurization with manganese-based sorbents. Quarterly report, October--December 1993  

SciTech Connect

The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Fifth Quarterly Report documents progress in pellet testing via thermogravimetric analysis of pellet formulation FORM4-A of a manganese ore/alumina combination. This formulation, described more fully in the Quarterly Technical Progress Report of October 15, 1993, consists of manganese carbonate combined with alundum. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration; however, a minor problem has arisen during the regeneration cycle in that sulfur tends to form and plug the exit tube during the early stage of regeneration. This problem is about to be overcome by increasing the flow rate of air during the regeneration cycle resulting in more oxidizing conditions and hence less tendency for sulfide sulfur (S{sup =}) to oxidize to the intermediate elemental form (S{sup o}) rather than to 4-valent (S{sup +4}).

Hepworth, M.T.; Slimane, R.B.

1994-01-01T23:59:59.000Z

59

Treasury, Energy Departments Release New Advanced Coal Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Departments Release New Advanced Coal Project Tax Credit Applications for 2007-2008 Treasury, Energy Departments Release New Advanced Coal Project Tax Credit Applications for...

60

Intermediates formed during supercritical desulfurization of coal: Sixteenth quarterly technical progress report, April 1, 1987 to June 30, 1987  

Science Conference Proceedings (OSTI)

Last month, data was presented on a series of eight runs performed in the two liter reactor system under different reaction conditions, utilizing an Illinois No. 6 coal. The coal and solvent charges were held constant at 200 g each for all runs, and reaction time was one hour at a reaction temperature of 350/sup 0/C. Four of the runs utilized coal that had been treated with nitric acid solution, employing the ASTM procedure for sulfur forms analysis to remove the pyritic sulfur prior to reaction with alcohol. Both methanol and ethanol were utilized, and the effect of potassium hydroxide addition in an amount equal to 5% of the coal charged was also evaluated. Table 2 from last quarter's report is included here as Table 1 for convenient reference; it summarizes the processing conditions employed, desulfurization attained, and material balance information for the series of eight runs. The main objective of this series of runs was to permit a comparison to be made of the fluid phase composition between the various treatments employed; maximum desulfurization was not possible due to the current lower pressure limitation of the two liter reactor. Chromatographic analyses of the sulfur compounds present in the fluid phase samples taken during the course of the reactions are presented in Figures 1 through 8. All samples were collected at temperatures above supercritical. Vertical lines indicate the time during which the reaction temperature of 350/sup 0/C was maintained. The left vertical line denotes the end of the preheating time period, whereas the right one indicates the last data point completed before the final venting was performed. Relatively little fluid was removed from the reactor by sampling during the main reaction period. 8 figs., 1 tab.

Muchmore, C.B.; Chen, Juh W.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Climate VISION: Events - Advanced Clean Coal Workshop  

Office of Scientific and Technical Information (OSTI)

Advanced Clean Coal Workshop Advanced Clean Coal Workshop Objective: Industry and government discussion of key issues and policy options related to deploying clean coal power plants in the marketplace. The following documents are available for download as Adobe PDF documents. Download Acrobat Reader AGENDA July 29, 2004 EEI Conference Center 701 Pennsylvania Avenue, N.W., Washington, DC 8:15 Welcome from Host Thomas Kuhn, President, EEI Opening (Context & Goals) & Introduction Larisa Dobriansky, DOE Kyle McSlarrow, Deputy Secretary, DOE James E. Rogers, Chairman, Cinergy 8:45 Framing the Risks and Challenges for Commercial Clean Coal Plants Results of Risk Framework Analysis, David Berg, DOE (PDF 267 KB) Cost Comparison of IGCC and Advanced Clean Coal Plants, Stu Dalton, EPRI (PDF 684 KB)

62

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

G+CC+CCS IGCC+CCS FT HVAC HVDC IGCC PC advanced coal-windthan the Base Case (HVDC Only Transmission) Sensitivity toused in the FEAST model. HVDC transmission lines have lower

Phadke, Amol

2008-01-01T23:59:59.000Z

63

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

Advanced Coal-Wind Non-Hybrid SNG IGCC+CCS PC CCGT Windor a synthetic natural gas (SNG) production facility) and anwithout Fuel With with SNG Production or Syncrude Production

Phadke, Amol

2008-01-01T23:59:59.000Z

64

Selenium Removal by Iron Cementation from a Coal-Fired Power Plant Flue Gas Desulfurization Wastewater in a Continuous Flow System-- a Pilot Study  

Science Conference Proceedings (OSTI)

This technical update describes work funded by the Electric Power Research Institute (EPRI) and performed by MSE Technology Applications, Inc. (MSE) at a coal-fired power plant burning Powder River Basin (PRB) coal (identified in this report as Plant E). This work was based on encouraging results obtained during previous EPRI-funded work on flue gas desulfurization (FGD) wastewater treatability testing by MSE, which focused on selenium removal from a variety of FGD wastewater sources. The results from th...

2009-07-29T23:59:59.000Z

65

Advanced Coal Conversion Process Demonstration (Project)  

DOE Green Energy (OSTI)

This report contains a description of technical progress made on the Advanced Coal Conversion Process Demonstration Project (ACCP). The project is a US Department of Energy Innovative Clean Coal Technology Project. The cooperative agreement defining the project is between DOE and the Rosebud SynCoal Partnership RSCP. The RSCP is a partnership between Western Energy Company (WECo), a subsidiary of Entech, Montana Power's non-utility group, and NRG, a subsidiary of Northern States Power. The ACCP is a method of upgrading low ranked coals by reducing the moisture and sulfur content and increasing the heating value. The facility is being constructed at WECo's Rosebud No. 6 coal mine, west of Colstrip, Montana. This report contains both a history of the process development and a report of technical progress made since the beginning of the Clean Coal 1 cooperative agreement.

Not Available

1991-07-01T23:59:59.000Z

66

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

67

NETL: News Release - Advanced Coal Dryer Boosts Power Plant Performanc...  

NLE Websites -- All DOE Office Websites (Extended Search)

Release Date: May 24, 2006 Advanced Coal Dryer Boosts Power Plant Performance Latest Project in President's Clean Coal Power Initiative Begins Operations in North Dakota...

68

NETL: Advanced Research - Coal Utilization Sciences/Sensors ...  

NLE Websites -- All DOE Office Websites (Extended Search)

of pulverized coal with laser diagnostics. NETL's Advanced Research Coal Utilization Science (CUS) Program is a crosscutting research and development effort whose goal is to...

69

Optimization on Seawater Desulfurization Efficiency Based on LSSVM-GA  

Science Conference Proceedings (OSTI)

Seawater flue gas Desulfurization (SFGD) was adopted in many coal-fired power plants of littoral for its low cost and high desulfurization efficiency. Operating Parameters would seriously affect SFGD efficiency, the desulfurization efficiency can be ... Keywords: SFGD, desulfurization efficiency, LSSVM, GA, optimization

Liu Ding-ping; Li Xiao-wei

2010-10-01T23:59:59.000Z

70

University Advanced Coal Generation Research  

Science Conference Proceedings (OSTI)

In 2012, the Electric Power Research Institute (EPRI) was a sponsor of projects conducted under the auspices of two consortia that support university research for coal-based power generation: the Biomass and Fossil Fuel Research Alliance (BF2RA) in the United Kingdom and the University Turbine System Research (UTSR) program of the United States Department of Energy (DOE). This technical update report describes the progress made in both of those ...

2012-12-12T23:59:59.000Z

71

Desulfurization and de-ashing of a mixture of subbituminous coal and gangue minerals by selective oil agglomeration  

SciTech Connect

The aim of this study was to investigate desulfurization and de-ashing of a mixture of subbituminous coal and gangue minerals by the agglomeration method. For this purpose, experimental studies were conducted on a mixture containing subbituminous coal, pyrite, quartz and calcite. The effects of some parameters that markedly influence the effectiveness of selective oil agglomeration, such as solid concentration, pH, bridging liquid type and concentration, and depressant type and amount, were investigated. Agglomeration results showed that the usage of various depressants (Na{sub 2}SiO{sub 3}, FeCl3, corn starch, wheat starch) in the agglomeration medium has a positive effect on the reduction of ash and total sulfur content of agglomerates. It was found that an agglomerate product containing 3.03% total sulfur and 25.01% ash with a total sulfur reduction of 56.71% was obtained from a feed that contained 7% total sulfur and 43.58% ash when FeCl{sub 3} was used in the agglomeration medium.

Ayhan, F.D. [Dicle University, Diyarbakir (Turkey). Dept. of Mining Engineering

2009-11-15T23:59:59.000Z

72

CoalFleet Guideline for Advanced Pulverized Coal Power Plants  

Science Conference Proceedings (OSTI)

This report provides an overview of state-of-the-art and emerging technologies for pulverized coal (PC) fired generating units along with lessons learned from current plants worldwide. The report also facilitates the timely deployment of reliable, next-generation units that incorporate: Higher steam conditions for improved efficiency and reduced pollutants and CO2 Advanced environmental controls for reduced emissions and environmental impacts Techniques for CO2 capture, or for future retrofit of CO2 capt...

2007-09-30T23:59:59.000Z

73

CoalFleet Guideline for Advanced Pulverized Coal Power Plants  

Science Conference Proceedings (OSTI)

This report provides an overview of state-of-the-art and emerging technologies for pulverized coal (PC) fired generating units along with lessons learned from current plants worldwide. The report is designed to facilitate the timely deployment of reliable, next-generation units that incorporate higher steam conditions that improve efficiency and thereby decrease fuel consumption, CO2 emissions, and other environmental impacts; advanced environmental controls that reduce emissions and discharges of solid ...

2008-03-31T23:59:59.000Z

74

CoalFleet Guideline for Advanced Pulverized Coal Power Plants  

Science Conference Proceedings (OSTI)

This report provides an overview of state-of-the-art and emerging technologies for pulverized coal (PC-) fired generating units along with lessons learned from current plants worldwide. The report is designed to facilitate the timely deployment of reliable, next-generation units that incorporate higher steam conditions that improve efficiency and thereby decrease fuel consumption, CO2 emissions, and other environmental impacts; advanced environmental controls that reduce emissions and discharges of solid...

2010-09-30T23:59:59.000Z

75

Eight Advanced Coal Projects Chosen for Further Development by DOE's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eight Advanced Coal Projects Chosen for Further Development by Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program July 5, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems. The selections will conduct investigations in three topic areas -- computational energy sciences, material science, and sensors and controls -- and will be funded at a maximum of $300,000 for 36 months. The Office of Fossil Energy's National Energy Technology Laboratory (NETL) will manage

76

Advances in pulverized coal combustion  

Science Conference Proceedings (OSTI)

A combustion system has been developed to operate cost effectively in the difficult regulatory and economic climate of the 1980's. The system is designed to reduce auxiliary fuel oil comsumption by at least 30% while meeting all relevant emissions limits. This is achieved with the fewest components consistent with practical reliable design criteria. The Controlled Flow Split/Flame low NO/sub x/ burner, MBF pulverizer and Two-Stage ignition system are integrated into a mutually supporting system which is applicable to both new steam generators and, on a retrofit basis, to existing units. In the future, a pulverized coal ignition system will be available to eliminate fuel oil use within the boiler.

Vatsky, J.

1981-01-01T23:59:59.000Z

77

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

Prices in 2007 real $ Coal Prices Coal prices have been farprices. Factors like coal prices and EOR revenues affect theCoal Prices..

Phadke, Amol

2008-01-01T23:59:59.000Z

78

Seven Projects Aimed at Advancing Coal Research Selected for DOE's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seven Projects Aimed at Advancing Coal Research Selected for DOE's Seven Projects Aimed at Advancing Coal Research Selected for DOE's University Coal Research Program Seven Projects Aimed at Advancing Coal Research Selected for DOE's University Coal Research Program May 13, 2010 - 1:00pm Addthis Washington, DC -- Seven projects aimed at advancing coal research and development while providing research exposure to a new generation of scientists and engineers have been selected to participate in the U.S. Department of Energy's (DOE) University Coal Research (UCR) program. The projects aim to improve the basic understanding of the chemical and physical processes that govern coal conversion and utilization, by-product utilization, and technological development for advanced energy systems. These advanced systems -- efficient, ultra-clean energy plants -- are

79

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Flue Gas Desulfurization Demonstration Project - Project Brief [PDF-250KB] Advanced Flue Gas Desulfurization Demonstration Project - Project Brief [PDF-250KB] Pure Air on the Lake L.P., Chesterton, IN PROGRAM PUBLICATIONS Final Reports Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, Final Technical Report, Volume II: Project Performance and Economics [PDF-25MB] (Apr 1996) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Advanced Flue Gas Desulfurization (AFGD) Demonstration Project: A DOE Assessment [PDF-235KB] (Aug 2001) Advanced Flue Gas Desulfurization Demonstration Project, Project Performance Summary [PDF-1.96MB] (June 1999) Advanced Technologies for the Control of Sulfur Dioxide Emissions from Coal-Fired Boilers, Topical Report No.12 [PDF-1.28MB] (June 1999) Design Reports

80

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project. Technical progress report No. 15, July 1, 1993--September 30, 1993  

Science Conference Proceedings (OSTI)

The goal of this project is to demonstrate that, by combining state-of-the-art technology, highly efficient plant operation and maintenance capabilities and by-product gypsum sales, significant reductions of SO{sub 2} emissions can be achieved at approximately one-half the life cycle cost of a conventional Flue Gas Desulfurization (FGD) system. Further, this emission reduction is achieved without generating solid waste and while minimizing liquid wastewater effluent. Basically, this project entails the design, construction and operation of a nominal 600 MWe AFGD facility to remove SO{sub 2} from coal-fired power plant flue gas at the Northern Indiana Public Service Company`s Bailly Generating Station.

Not Available

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Value Operating Flexibility in Advanced Coal Plants  

Science Conference Proceedings (OSTI)

This report describes a preliminary study of the potential value of the operating flexibility available from advanced coal plant designs and carbon capture and storage (CCS) systems. Assessing value requires new analytical approaches capable of examining plant outputs (e.g., syngas, air products, electricity, emissions) in the context of varying power market conditions and significant climate policy and fuel price uncertainties. Accounting for flexibility options in capacity planning may create opportuni...

2009-12-22T23:59:59.000Z

82

Advanced Coal Wind Hybrid: Economic Analysis  

SciTech Connect

Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW transmission line. In the G+CC+CCS plant, coal is gasified into syngas and CO{sub 2} (which is captured). The syngas is burned in the combined cycle plant to produce electricity. The ACWH facility is operated in such a way that the transmission line is always utilized at its full capacity by backing down the combined cycle (CC) power generation units to accommodate wind generation. Operating the ACWH facility in this manner results in a constant power delivery of 3,000 MW to the load centers, in effect firming-up the wind generation at the project site.

Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

2008-11-28T23:59:59.000Z

83

DOE Selects Nine New University Coal Research Projects to Advance Coal-Based Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Selects Nine New University Coal Research Projects to Advance Coal-Based Power Selects Nine New University Coal Research Projects to Advance Coal-Based Power Systems Nine new projects selected by the U.S. Department of Energy (DOE) under the University Coal Research program will seek long-term solutions for the clean and efficient use of our nation's abundant coal resources. The announcement today of the selections marks the 34 th round of the Department's longest-running coal program, which began in 1979. This research continues DOE efforts to improve the understanding of the chemical and physical processes governing coal conversion and utilization, and support the technological development of the advanced coal power systems of the future. These advanced systems include ultra-clean

84

Coal desulfurization in a rotary kiln combustor. Final report, March 15, 1990--July 31, 1991  

Science Conference Proceedings (OSTI)

The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

Cobb, J.T. Jr.

1992-09-11T23:59:59.000Z

85

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/this operational mode, the gasifiers and other parts of the

Phadke, Amol

2008-01-01T23:59:59.000Z

86

Advanced Turbine Systems Program and coal applications  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) is conducting a program to develop ultra high-efficiency, cost-effective, environmentally benign gas turbine systems for industrial and utility applications. The Advanced Turbine Systems (ATS) Program, jointly managed by the DOE's Office of Fossil Energy (DOE/FE) and Office of Conservation and Renewable Energy (DOE/CE), will lead to the commercial offering by industry of systems meeting full program goals by the years 2000--2002. It is expected that some advanced technology will already have been commercialized in intermediate systems before that time. Teams, led by US turbine manufacturers, will conduct most of the development work in the ATS Program. However, a substantial technology base element of the program see universities and others conduct significant research and development (R D) on generic technology issues relevant to the program. The program is primarily aimed at developing natural gas-fired turbine systems. Although the conversion of ATS to firing with coal or biomass fuels will be addressed in the analysis of ATS, tests will not be conducted in the program to verify conversion to alternate fuel firing. The program will however, include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

Webb, H.A. Jr.; Bajura, R.A.; Parsons, E.L. Jr.

1993-01-01T23:59:59.000Z

87

Advanced Turbine Systems Program and coal applications  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) is conducting a program to develop ultra high-efficiency, cost-effective, environmentally benign gas turbine systems for industrial and utility applications. The Advanced Turbine Systems (ATS) Program, jointly managed by the DOE`s Office of Fossil Energy (DOE/FE) and Office of Conservation and Renewable Energy (DOE/CE), will lead to the commercial offering by industry of systems meeting full program goals by the years 2000--2002. It is expected that some advanced technology will already have been commercialized in intermediate systems before that time. Teams, led by US turbine manufacturers, will conduct most of the development work in the ATS Program. However, a substantial technology base element of the program see universities and others conduct significant research and development (R&D) on generic technology issues relevant to the program. The program is primarily aimed at developing natural gas-fired turbine systems. Although the conversion of ATS to firing with coal or biomass fuels will be addressed in the analysis of ATS, tests will not be conducted in the program to verify conversion to alternate fuel firing. The program will however, include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

Webb, H.A. Jr.; Bajura, R.A.; Parsons, E.L. Jr.

1993-06-01T23:59:59.000Z

88

Barriers to the increased utilization of coal combustion/desulfurization by-products by government & commercial sectors - update 1998,7/99,3268845  

NLE Websites -- All DOE Office Websites (Extended Search)

BARRIERS TO THE INCREASED UTILIZATION BARRIERS TO THE INCREASED UTILIZATION OF COAL COMBUSTION/DESULFURIZATION BY-PRODUCTS BY GOVERNMENT AND COMMERCIAL SECTORS - UPDATE 1998 EERC Topical Report DE-FC21-93MC-30097--79 Submitted by: Debra F. Pflughoeft-Hassett Everett A. Sondreal Edward N. Steadman Kurt E. Eylands Bruce A. Dockter Energy & Environmental Research Center PO Box 9018 Grand Forks, ND 58202-9018 99-EERC-07-08 July 1999 i TABLE OF CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OF ACRONYMS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii TERMINOLOGY AND DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .

89

DOE's Advanced Coal Research, Development, and Demonstration Program to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Coal Research, Development, and Demonstration Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies March 11, 2009 - 3:18pm Addthis Statement of Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Subcommittee on Energy and Environment, Committee on Science and Technology, U.S. House of Representatives. Thank you, Mr. Chairman and Members of the Committee. I appreciate this opportunity to provide testimony on the U.S. Department of Energy's (DOE's) advanced coal research, development, and demonstration program to develop low-carbon emission coal technologies. Introduction Fossil fuel resources represent a tremendous national asset. An abundance

90

DOE's Advanced Coal Research, Development, and Demonstration Program to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Advanced Coal Research, Development, and Demonstration DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies March 11, 2009 - 3:18pm Addthis Statement of Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Subcommittee on Energy and Environment, Committee on Science and Technology, U.S. House of Representatives. Thank you, Mr. Chairman and Members of the Committee. I appreciate this opportunity to provide testimony on the U.S. Department of Energy's (DOE's) advanced coal research, development, and demonstration program to develop low-carbon emission coal technologies. Introduction Fossil fuel resources represent a tremendous national asset. An abundance

91

Friction Stir Welding and Processing of Advanced Materials for Coal ...  

Science Conference Proceedings (OSTI)

Presentation Title, Friction Stir Welding and Processing of Advanced Materials for Coal and Nuclear Power Applications. Author(s), Glenn J. Grant, Scott Weil, ...

92

Optical Gas Sensors for Advanced Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

Presentation Title, Optical Gas Sensors for Advanced Coal-Fired Power Plants. Author(s), Paul Ohodnicki, Congjun Wang, Douglas Kauffman, Kristi Kauffman, ...

93

Desulfurization of hot fuel gas produced from high-chlorine Illinois coals. Final technical report, September 1, 1991--August 31, 1992  

SciTech Connect

In this project, simulated gasifier-product streams were contacted with the zinc titanate desulfurization sorbent in a bench-scale atmospheric fluidized-bed reactor at temperatures ranging from 538 to 750 {degree}C (1000 to 1382 {degree}F). The first set of experiments involved treating a medium-Btu fuel gas (simulating that of a ``Texaco`` oxygen-blown, entrained-bed gasifier) containing 1.4 percent H{sub 2}S and HCl concentrations of 0, 200, and 1500 ppmv. The second experimental set evaluated hot-gas desulfurization of a low-Btu fuel gas (simulating the product of the ``U-Gas`` air-blown gasifier), with HCl concentrations of 0, 200, and 800 ppmv. These operating conditions were typical of the gas-treatment requirements of gasifiers fueled by Illinois basin coals containing up to 0.6 percent chlorine. The results of the experiments at 538 and 650 {degree}C at all the HCl concentrations revealed no deleterious effects on the capability of the sorbent to remove H{sub 2}S from the fuel gas mixtures. In most cases, the presence of the HCl significantly enhanced the desulfurization reaction rate. Some zinc loss, however, was encountered in certain situations at 750 {degree}C when low-steam operating conditions were present. Also of interest, a portion of the incoming HCl was removed from the gas stream and was retained permanently by the sorbent. This behavior was examined in more detail in a limited set of experiments aimed at identifying ways to modify the sorbents composition so that the sorbent could act as a simultaneous desulfurization and dechlorination agent in the hot-gas cleanup process.

O`Brien, W.S. [Southern Illinois Univ., Carbondale, IL (United States); Gupta, R.P. [Research Triangle Inst., Research Triangle Park, NC (United States)

1992-12-31T23:59:59.000Z

94

Advanced coal-fueled gas turbine systems  

DOE Green Energy (OSTI)

Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

Not Available

1992-09-01T23:59:59.000Z

95

NETL: News Release -Treasury, Energy Departments Release New Advanced Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2007 7, 2007 Treasury, Energy Departments Release New Advanced Coal Project Tax Credit Applications for 2007-2008 WASHINGTON, DC - The Treasury Department and the Department of Energy (DOE) released today new instructions for applying for the tax credits for advanced coal projects and gasification projects. The new instructions provide additional time to submit applications for the credits. For the 2007-2008 allocation round, applications for DOE certification are not due to the Energy Department until October 31, 2007. "To further advance our nation's energy security, this Administration had made sustained investments in research, development, and wider use of advanced coal technologies a priority," Deputy Secretary of Energy Clay Sell said. "Through new and innovative programs such as the Clean Coal Power Initiative and FutureGen demonstration, private sector partnerships, and use of tax credits and loan guarantees, the Department of Energy is advancing research to further develop and deploy advanced coal technologies to meet growing energy demand."

96

NETL: News Release -Eight Advanced Coal Projects Chosen for Further  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2011 5, 2011 Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program Washington, D.C. - The Department of Energy has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems. The selections will conduct investigations in three topic areas - computational energy sciences, material science, and sensors and controls - and will be funded at a maximum of $300,000 for 36 months. The Office of Fossil Energy's National Energy Technology Laboratory (NETL) will manage the projects, which include ultra-clean energy plants that could co-produce electric power, fuels, chemicals and other high-value products from coal with near-zero emissions and substantial increases in efficiency.

97

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

Coal prices have been far less volatile than natural gas prices.Coal Prices Figure 9 is similar to Figure 8 except the natural gas pricesCoal Wind Hybrid: Economic Analysis interested in natural gas prices

Phadke, Amol

2008-01-01T23:59:59.000Z

98

NETL: News Release - Seven Projects Aimed at Advancing Coal Research  

NLE Websites -- All DOE Office Websites (Extended Search)

May 13, 2010 May 13, 2010 Seven Projects Aimed at Advancing Coal Research Selected for DOE's University Coal Research Program Department's Longest Running Student-Teacher Initiative Provides Research Exposure for Future Scientists and Engineers Washington, D.C. - Seven projects aimed at advancing coal research and development while providing research exposure to a new generation of scientists and engineers have been selected to participate in the U.S. Department of Energy's (DOE) University Coal Research (UCR) program. The projects aim to improve the basic understanding of the chemical and physical processes that govern coal conversion and utilization, by-product utilization, and technological development for advanced energy systems. These advanced systems - efficient, ultra-clean energy plants - are envisioned to co-produce electric power, fuels, chemicals and other high-value products from coal with near-zero emissions, including greenhouse gases such as carbon dioxide.

99

Advanced Coal-Fueled Gas Turbine Program  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

100

Construction Begins on First-of-its-Kind Advanced Clean Coal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility...

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Treasury, Energy Departments Release New Advanced Coal Project Tax Credit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treasury, Energy Departments Release New Advanced Coal Project Tax Treasury, Energy Departments Release New Advanced Coal Project Tax Credit Applications for 2007-2008 Treasury, Energy Departments Release New Advanced Coal Project Tax Credit Applications for 2007-2008 June 7, 2007 - 1:40pm Addthis WASHINGTON, DC - The Treasury Department and the Department of Energy (DOE) released today new instructions for applying for the tax credits for advanced coal projects and gasification projects. The new instructions provide additional time to submit applications for the credits. For the 2007-2008 allocation round, applications for DOE certification are not due to the Energy Department until October 31, 2007. "To further advance our nation's energy security, this Administration had made sustained investments in research, development, and wider use of

102

Treasury, Energy Departments Release New Advanced Coal Project Tax Credit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treasury, Energy Departments Release New Advanced Coal Project Tax Treasury, Energy Departments Release New Advanced Coal Project Tax Credit Applications for 2007-2008 Treasury, Energy Departments Release New Advanced Coal Project Tax Credit Applications for 2007-2008 June 7, 2007 - 1:40pm Addthis WASHINGTON, DC - The Treasury Department and the Department of Energy (DOE) released today new instructions for applying for the tax credits for advanced coal projects and gasification projects. The new instructions provide additional time to submit applications for the credits. For the 2007-2008 allocation round, applications for DOE certification are not due to the Energy Department until October 31, 2007. "To further advance our nation's energy security, this Administration had made sustained investments in research, development, and wider use of

103

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

hybrid combined cycle power plant natural gas combined cyclePower Plants study, Volume 1: Bituminous Coal and Natural Gas

Phadke, Amol

2008-01-01T23:59:59.000Z

104

Portfolio evaluation of advanced coal technology : research, development, and demonstration  

E-Print Network (OSTI)

This paper evaluates the advanced coal technology research, development and demonstration programs at the U.S. Department of Energy since the 1970s. The evaluation is conducted from a portfolio point of view and derives ...

Naga-Jones, Ayaka

2005-01-01T23:59:59.000Z

105

Measurement and modeling of advanced coal conversion processes  

Science Conference Proceedings (OSTI)

The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. (Advanced Fuel Research, Inc., East Hartford, CT (United States) Brigham Young Univ., Provo, UT (United States))

1991-01-01T23:59:59.000Z

106

ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY  

SciTech Connect

This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a completion of a detailed comparative analysis of the suite of spectral editing techniques developed in our laboratory for this purpose. The appended report is a manuscript being submitted to the Journal of Magnetic Resonance on this subject.

1997-09-01T23:59:59.000Z

107

NETL: News Release - Tax Credit Program Promotes Advanced Coal Power  

NLE Websites -- All DOE Office Websites (Extended Search)

December 5, 2007 December 5, 2007 Tax Credit Program Promotes Advanced Coal Power Generation and Gasification Technologies DOE Will Assist Internal Revenue Service in Project Selection WASHINGTON, DC - The U.S. Department of Energy (DOE) is partnering with the Internal Revenue Service (IRS) to evaluate five projects that have recently applied for tax credits under the Energy Policy Act of 2005 (EPAct 2005). Accepted projects will help bring about rapid deployment of advanced coal-based power generation and gasification technologies and enable the clean and efficient use of coal, America's most abundant energy resource. In June 2007, the Treasury Department and DOE released revised guidance on the procedures for awarding the tax credits authorized under EPAct 2005 for qualifying advanced coal projects and qualifying gasification projects. Under the revised guidance, applications for DOE certification received before October 31, 2007, will be acted on in 2008.

108

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Supported Project Advances Clean Coal, Carbon Capture DOE-Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led by OSU Professor Liang-Shih Fan, represents the longest integrated operation of chemical looping technology anywhere in the world to date. The test was conducted at OSU's 25 kilowatt thermal (kWt) CDCL combustion sub-pilot unit under the auspices of DOE's Carbon Capture Program, which is developing innovative environmental control technologies to foster the

109

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Supported Project Advances Clean Coal, Carbon Capture DOE-Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led by OSU Professor Liang-Shih Fan, represents the longest integrated operation of chemical looping technology anywhere in the world to date. The test was conducted at OSU's 25 kilowatt thermal (kWt) CDCL combustion sub-pilot unit under the auspices of DOE's Carbon Capture Program, which is developing innovative environmental control technologies to foster the

110

Soviets welcome advanced coal mining technology  

SciTech Connect

The coal production target for the Soviet Union for 1985 is 770 - 800 million tonnes. In 1981, surface mining provided 38% of output, this should increase to 40% by 1985. Soviet coal reserves are quoted as 8.6 x 10/sup 12/ tons, of which 90% are in the east. Many of the deposits are in areas where climate and transportation pose major problems. The location of the principal coal deposits is shown and their reserves are indicated. The emphasis in future production will be on surface mining, in very large units.

Swiss, M.

1982-11-01T23:59:59.000Z

111

Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems  

SciTech Connect

A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2009-09-15T23:59:59.000Z

112

ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY  

DOE Green Energy (OSTI)

This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NMR methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methane groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of coals, and their suitability for possible correlations with the oil sourcing potential of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples. In this report period we have focused our work on 1 segment of the program. Our last report outlined progress in using our NMR editing methods with higher field operation where higher magic angle spinning rates are required. Significant difficulties were identified, and these have been the main subject of study during the most recent granting period.

NONE

1997-03-01T23:59:59.000Z

113

NETL: News Release - Clean Coal Technology Report Showcases Advanced Iron  

NLE Websites -- All DOE Office Websites (Extended Search)

April 6, 2000 April 6, 2000 Clean Coal Technology Report Showcases Advanced Iron Making Process, Benefits for the Environment Topical Report Profiles Blast Furnace Granular Coal Injection System; Now Available on DOE's Fossil Energy Web Site An advanced iron making technology demonstrated in the U.S. Department of Energy's Clean Coal Technology Program stands out for its potential to provide major environmental and financial benefits to the United States steel industry. Bethlehem Steel Topical Report The Energy Department has profiled the project in a topical report entitled Blast Furnace Granular Coal Injection System Demonstration Project. The report describes the federal government's partnership demonstration project with Bethlehem Steel Corporation, which tested a new method for reducing

114

A commitment to coal  

SciTech Connect

Quin Shea explores the need for power generated with coal and the advanced technologies that will generate that power more efficiently and cleanly in the future. The article considers the air and waste challenges of using coal, including progress toward reducing emissions of SO{sub 2}, NOx, and mercury; efforts to address CO{sub 2}, including voluntary programs like the Climate Challenge, Power Partners, and the Asia-Pacific Partnership on Clean Development and Climate; and the regulation and beneficial use of coal-combustion byproducts (e.g., fly ash, bottom ash, flue gas desulfurization materials, boiler slag). 17 refs.

Shea, Q. [Edison Electric Institute, Washington, DC (United States)

2006-07-15T23:59:59.000Z

115

Summary and assessment of METC zinc ferrite hot coal gas desulfurization test program, final report: Volume 2, Appendices  

Science Conference Proceedings (OSTI)

The Morgantown Energy Technology Center (METC) has conducted a test program to develop a zinc ferrite-based high temperature desulfurization process which could be applied to fuel gas entering downstream components such as molten carbonate fuel cells or gas turbines. As a result of prior METC work with iron oxide and zinc oxide sorbents, zinc ferrite evolved as a candidate with the potential for high capacity, low equilibrium levels of H/sub 2/S, and structural stability after multiple regenerations. The program consisted of laboratory-scale testing with a two-inch diameter reactor and simulated fixed-bed gasifier gas; bench-scale testing with a six-inch diameter reactor and actual gas from the METC 42-inch fixed bed gasifier; as well as laboratory-scale testing of zinc ferrite with simulated fluidized bed gasifier gas. Data from sidestream testing are presented. 18 refs.

Underkoffler, V.S.

1986-12-01T23:59:59.000Z

116

The use of gypsum and a coal desulfurization by-product to ameliorate subsoil acidity for alfalfa growth  

E-Print Network (OSTI)

Acid soils limit the growth of aluminum-(Al) sensitive crops such as alfalfa (Medicago sativa L.). Management of acid subsoils can be difficult due to physical and economic constraints. Field experiments were conducted at two locations to evaluate the effectiveness of surface-applied gypsum and a flue gas desulfurization by-product for reducing the toxic effects of acid subsoils on alfalfa. The materials were applied at rates of 0, 5, 10, and 15 Mg ha-1. In addition, a glasshouse experiment was conducted that used 0, 5, and 10 Mg ha-1 of gypsum only. Field studies were concluded 41 and 45 months after treatment application at the two locations. No effect of material on alfalfa yield or tissue mineral concentration was observed. Also, rate did not affect yield. However, there were differences in plant tissue mineral concentration in several harvests that were related to rate. Soil was sampled periodically to 120 cm and indicated movement of Ca and S into the soil profile to depths of 60 and 120 cm, respectively. Subsoil pHH2O and pHCaCl2 were not affected by treatment. Extractable and exchangeable Al were not reduced by movement of Ca and S into the soil. In the glasshouse study, alfalfa yields and root growth were not affected by gypsum rate. As gypsum rate increased, plant tissue S increased, but K and Mg decreased. Alfalfa roots did not grow below 60 cm, even though there was indication of material movement to 90 cm in the soil. Although sulfur moved to 75 cm, no effect on soil Al was observed. Leachate collected from the bottoms of columns indicated that soil cations were leached as a result of gypsum application. Gypsum and the flue gas desulfurization by-product did not significantly affect the acid soils used in these studies or improve alfalfa growth.

Chessman, Dennis John

2003-12-01T23:59:59.000Z

117

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect

Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1991-07-01T23:59:59.000Z

118

CoalFleet Advanced Combustion IGCC Permits Database  

Science Conference Proceedings (OSTI)

The CoalFleet Advanced Combustion IGCC Permits Database presents comprehensive information on permitting requirements and permit conditions for Integrated Gasification Combined Cycle (IGCC) power plants in an online database format. This Technical Update is a compilation of the Database contents as of March 31, 2008.

2008-04-11T23:59:59.000Z

119

MARKET-BASED ADVANCED COAL POWER SYSTEMS FINAL REPORT  

NLE Websites -- All DOE Office Websites (Extended Search)

MARKET-BASED ADVANCED MARKET-BASED ADVANCED COAL POWER SYSTEMS FINAL REPORT MAY 1999 DOE/FE-0400 U.S. Department of Energy Office of Fossil Energy Washington, DC 20585 Market-Based Advanced Coal Power Systems 1-1 December 1998 1. INTRODUCTION As deregulation unfolds and privatization of the utility market takes shape, priorities for power plant economics have shifted toward those of a "bottom-line" business and away from a regulated industry. Competition in utility generation and the exposure risks of large capital investments have led to a preference to minimize capital costs and fixed and variable operation and maintenance costs. With global competition from independent power producers (IPPs), non- utility generators, and utilities, the present trend of investments is with conventional pulverized

120

NETL: News Release - DOE Advances Production of Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

6 , 2006 6 , 2006 DOE Advances Production of Hydrogen from Coal Projects Selected to Address Technological Challenges of Hydrogen Production in Large-Scale Facilities WASHINGTON, DC - The Department of Energy today announced the selection of six research and development projects that will promote the production of hydrogen from coal at large-scale facilities. This central approach will combat climate change by allowing for the capture - and subsequent sequestration - of carbon dioxide generated during hydrogen production. The selections support President Bush's Hydrogen Fuel Initiative, which provides funding for research and technology development to realize a future hydrogen economy that minimizes America's dependence on foreign oil and reduces greenhouse gas emissions.

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Desulfurization with transition metal catalysts. Quarterly summary  

SciTech Connect

The overall objective of this research is to develop desulfurizing transition metal catalysts, which are active in homogeneous media at moderate temperatures and pressures for the purification of coal-derived fuels and chemicals. To this end, the mechanism of action is being examined whereby newly identified nickel(0) complexes desulfurize organosulfur compounds in solution at 65 to 70/sup 0/C. The sulfur compounds under investigation are typical of those commonly encountered in coal-derived liquids and solids, such as thiophenes, sulfides and mercaptans. The following studies on the homogeneous, stoichiometric desulfurizing agent, bis(1,5-cyclooctadiene) nickel(0) ((COD)/sub 2/Ni), were continued: (a) activation of the agent by means of added mono-, bi-/sup 2/ and tri-dentate amines, either of the tertiary or primary amine type; (b) labeling studies designed to reveal the source of the hydrogen that replaces the sulfur in the desulfurization of dibenzothiophene; (c) comparison of the desulfurizing activity of (COD)/sub 2/Ni, both in the presence and in the absence of lithium aluminum hydride; and (d) testing for the role of any biphenylene intermediate in these desulfurizations. Results are reported.

Eisch, J J

1980-04-10T23:59:59.000Z

122

The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations  

Science Conference Proceedings (OSTI)

The article introduces a predictive capability for mercury (Hg) retention in any Ca-based wet flue gas desulfurization (FGD) scrubber, given Hg speciation at the FGD inlet, the flue gas composition, and the sulphur dioxide (SO{sub 2}) capture efficiency. A preliminary statistical analysis of data from 17 full-scale wet FGDs connects flue gas compositions, the extents of Hg oxidation at FGD inlets, and Hg retention efficiencies. These connections show that solution chemistry within the FGD determines Hg retention. A more thorough analysis based on thermochemical equilibrium yields highly accurate predictions for total Hg retention with no parameter adjustments. For the most reliable data, the predictions were within measurement uncertainties for both limestone and Mg/lime systems operating in both forced and natural oxidation mode. With the U.S. Environmental Protection Agency's (EPA) Information Collection Request (ICR) database, the quantitative performance was almost as good for the most modern FGDs, which probably conform to the very high SO{sub 2} absorption efficiencies assumed in the calculations. The large discrepancies for older FGDs are tentatively attributed to the unspecified SO{sub 2} capture efficiencies and operating temperatures and to the possible elimination of HCl in prescrubbers. The equilibrium calculations suggest that Hg retention is most sensitive to inlet HCl and O{sub 2} levels and the FGD temperature; weakly dependent on SO{sub 2} capture efficiency; and insensitive to HgCl{sub 2}, NO, CA:S ratio, slurry dilution level in limestone FGDs, and MgSO{sub 3} levels in Mg/lime systems. Consequently, systems with prescrubbers to eliminate HCl probably retain less Hg than fully integrated FGDs. The analysis also predicts re-emission of Hg{sub 0} but only for inlet O{sub 2} levels that are much lower than those in full-scale FGDs. 12 refs., 5 figs., 3 tabs.

Stephen Niksa; Naoki Fujiwara [Niksa Energy Associates, Belmont, CA (US)

2005-07-01T23:59:59.000Z

123

Moving baseline for evaluation of advanced coal-extraction systems  

SciTech Connect

This document reports results from the initial effort to establish baseline economic performance comparators for a program whose intent is to define, develop, and demonstrate advanced systems suitable for coal resource extraction beyond the year 2000. Systems used in this study were selected from contemporary coal mining technology and from conservative conjectures of year 2000 technology. The analysis was also based on a seam thickness of 6 ft. Therefore, the results are specific to the study systems and the selected seam thickness. To be more beneficial to the program, the effort should be extended to other seam thicknesses. This document is one of a series which describe systems level requirements for advanced underground coal mining equipment. Five areas of performance are discussed: production cost, miner safety, miner health, environmental impact, and recovery efficiency. The projections for cost and production capability comprise a so-called moving baseline which will be used to assess compliance with the systems requirement for production cost. Separate projections were prepared for room and pillar, longwall, and shortwall technology all operating under comparable sets of mining conditions. This work is part of an effort to define and develop innovative coal extraction systems suitable for the significant resources remaining in the year 2000.

Bickerton, C.R.; Westerfield, M.D.

1981-04-15T23:59:59.000Z

124

Integration of carbonate fuel cells with advanced coal gasification systems  

DOE Green Energy (OSTI)

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation's carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. (Energy Research Corp., Danbury, CT (United States)); Meyers, S.J. (Fluor Daniel, Inc., Irvine, CA (United States)); Hauserman, W.B. (North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center)

1992-01-01T23:59:59.000Z

125

Integration of carbonate fuel cells with advanced coal gasification systems  

DOE Green Energy (OSTI)

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation`s carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. [Energy Research Corp., Danbury, CT (United States); Meyers, S.J. [Fluor Daniel, Inc., Irvine, CA (United States); Hauserman, W.B. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

1992-12-01T23:59:59.000Z

126

Advanced Coal Power Plant Model (ACCPM) Version 1.1  

Science Conference Proceedings (OSTI)

With the purchase of a license for the appropriate SimTech IPSEpro modules and library, users can quickly generate performance and capital cost estimates of new, advanced coal power plants. The application allows users to screen integrated gasification combined cycle (IGCC) technologies prior to engaging in more extensive studies of their preferred choice. Such screening activities generally require sophisticated software and qualified staff to run the models, which takes time and significant investment....

2011-03-08T23:59:59.000Z

127

Advanced coal-fueled gas turbine systems  

Science Conference Proceedings (OSTI)

Activity towards completing Advanced Turbine Systems (ATS) Phase I work was begun again in December. Effort to complete the Phase I work was temporarily suspended upon receipt of the ATS Phase II RFP the last week in August. The Westinghouse ATS team's efforts were directed at preparing the ATS Phase II proposal which was submitted November 18. It is planned to finish Phase I work and submit the topical report by the end of February 1993. The objective of the four slogging combustor tests conducted during this reporting period (i.e., tests SL3-1 through SL3-4) were to perform sulfur capture experiments using limestoneand iron oxide based sorbents and to collect exhaust vapor phase and solids bound alkali measurements using the Westinghouse and Ames Laboratory alkali probes/monitors. The most significant, if not outstanding result revealed by these tests is that the Ames alkali monitor indicates that the vapor phase sodium is approximately 23--30 ppbw and the vapor phase potassium is approximately 5--20 ppbw. For reference, alkalilevels of 20 ppbw are acceptable in Westinghouse gas turbines fueled with crude oil.

Not Available

1993-02-03T23:59:59.000Z

128

Coal desulfurization in a rotary kiln combustor. Quarterly report No. 1, April 16, 1990--July 15, 1990  

Science Conference Proceedings (OSTI)

BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

Cobb, J.T. Jr.

1990-08-15T23:59:59.000Z

129

Advanced Development Of The Coal Fired Oxyfuel Process With CO2...  

Open Energy Info (EERE)

Coal Fired Oxyfuel Process With CO2 Separation ADECOS Jump to: navigation, search Name Advanced Development Of The Coal-Fired Oxyfuel Process With CO2 Separation (ADECOS) Place...

130

Advanced Development Of The Coal Fired Oxyfuel Process With CO2 Separation  

Open Energy Info (EERE)

Coal Fired Oxyfuel Process With CO2 Separation Coal Fired Oxyfuel Process With CO2 Separation ADECOS Jump to: navigation, search Name Advanced Development Of The Coal-Fired Oxyfuel Process With CO2 Separation (ADECOS) Place Germany Product Dresden based initiative that has been formed to assess oxyfuel CCS technology. References Advanced Development Of The Coal-Fired Oxyfuel Process With CO2 Separation (ADECOS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Advanced Development Of The Coal-Fired Oxyfuel Process With CO2 Separation (ADECOS) is a company located in Germany . References ↑ "Advanced Development Of The Coal-Fired Oxyfuel Process With CO2 Separation (ADECOS)" Retrieved from "http://en.openei.org/w/index.php?title=Advanced_Development_Of_The_Coal_Fired_Oxyfuel_Process_With_CO2_Separation_ADECOS&oldid=341776

131

CoalFleet Guideline for Advanced Pulverized Coal Power Plants: Version 6  

Science Conference Proceedings (OSTI)

This report provides an overview of state-of-the-art and emerging technologies for pulverized coal (PC) fired generating units along with lessons learned from current plants worldwide. The report is designed to facilitate the timely deployment of reliable, next-generation units that incorporate higher steam conditions that improve efficiency and thereby decrease fuel consumption, CO2 emissions, and other environmental impacts; advanced environmental controls that reduce emissions and discharges of solid ...

2009-09-30T23:59:59.000Z

132

CoalFleet Guideline for Advanced Pulverized Coal Power Plants: Version 5  

Science Conference Proceedings (OSTI)

This report provides an overview of state-of-the-art and emerging technologies for pulverized coal (PC) fired generating units along with lessons learned from current plants worldwide. The report is designed to facilitate timely deployment of reliable, next-generation units that incorporate higher steam conditions that improve efficiency and, thereby, decrease fuel consumption, CO2 emissions, and other environmental impacts; advanced environmental controls that reduce emissions and discharges of solid an...

2009-03-25T23:59:59.000Z

133

CoalFleet Guideline for Advanced Pulverized Coal Power Plants: Verison 4  

Science Conference Proceedings (OSTI)

This report provides an overview of state-of-the-art and emerging technologies for pulverized coal (PC) fired generating units along with lessons learned from current plants worldwide. The report is designed to facilitate the timely deployment of reliable, next-generation units that incorporate higher steam conditions that improve efficiency and thereby decrease fuel consumption, CO2 emissions, and other environmental impacts; advanced environmental controls that reduce emissions and discharges of solid ...

2008-09-30T23:59:59.000Z

134

Development of an advanced high efficiency coal combustor for boiler retrofit. Summary report  

Science Conference Proceedings (OSTI)

The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

1990-04-01T23:59:59.000Z

135

Development of an advanced high efficiency coal combustor for boiler retrofit  

Science Conference Proceedings (OSTI)

The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

1990-04-01T23:59:59.000Z

136

Impact of supplemental firing of tire-derived fuel (TDF) on mercury species and mercury capture with the advanced hybrid filter in a western subbituminous coal flue gas  

Science Conference Proceedings (OSTI)

Pilot-scale experimental studies were carried out to evaluate the impacts of cofiring tire-derived fuel and a western subbituminous coal on mercury species in flue gas. Mercury samples were collected at the inlet and outlet of the Advanced Hybrid filter to determine mercury concentrations in the flue gas with and without TDF cofiring, respectively. Cofiring of TDF with a subbituminous coal had a significant effect on mercury speciation in the flue gas. With 100% coal firing, there was only 16.8% oxidized mercury in the flue gas compared to 47.7% when 5% TDF (mass basis) was fired and 84.8% when 10% TDF was cofired. The significantly enhanced mercury oxidation may be the result of additional homogeneous gas reactions between Hg{sup 0} and the reactive chlorine generated in the TDF-cofiring flue gas and the in situ improved reactivity of unburned carbon in ash by the reactive chlorine species. Although the cofiring of TDF demonstrated limited improvement on mercury-emission control with the Advanced Hybrid filter, it proved to be a very cost-effective mercury control approach for power plants equipped with wet or dry flue gas desulfurization (FGD) systems because of the enhanced mercury oxidation. 15 refs., 4 figs., 4 tabs.

Ye Zhuang; Stanley J. Miller [University of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center

2006-05-15T23:59:59.000Z

137

NETL: CCPI - Advanced Multi-Product Coal Utilization By-Product...  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Product Coal Utilization By-Product Processing Plant - Project Brief PDF-78KB University of Kentucky Research Foundation, Ghent, Kentucky PROJECT FACT SHEET Advanced...

138

Economic feasibility study: CFR advanced direct coal liquefaction process. Volume 4  

DOE Green Energy (OSTI)

Preliminary technical and economic data are presented on the CFR Advanced Coal Liquefaction Process. Operating cost estimates and material balances are given.

Not Available

1994-09-01T23:59:59.000Z

139

Barriers to the increased utilization of coal combustion/desulfurization by-products by government and commercial sectors - Update 1998  

SciTech Connect

The following conclusions are drawn from the information presented in this report: (1) Joint efforts by industry and government focused on meeting RTC recommendations for reduction/removal of barriers have met with some success. The most notable of these are the changes in regulations related to CCB utilization by individual states. Regionally or nationally consistent state regulation of CCB utilization would further reduce regulatory barriers. (2) Technology changes will continue to be driven by the CAAA, and emission control technologies are expected to continue to impact the type and properties of CCBs generated. As a result, continued RD and D will be needed to learn how to utilize new and changing CCBs in environmentally safe, technically sound, and economically advantageous ways. Clean coal technology CCBs offer a new challenge because of the high volumes expected to be generated and the different characteristics of these CCBs compared to those of conventional CCBs. (3) Industry and government have developed the RD and D infrastructure to address the technical aspects of developing and testing new CCB utilization applications, but this work as well as constant quality control/quality assurance testing needs to be continued to address both industry wide issues and issues related to specific materials, regions, or users. (4) Concerns raised by environmental groups and the public will continue to provide environmental and technical challenges to the CCB industry. It is anticipated that the use of CCBs in mining applications, agriculture, structural fills, and other land applications will continue to be controversial and will require case-by-case technical and environmental information to be developed. The best use of this information will be in the development of generic regulations specifically addressing the use of CCBs in these different types of CCB applications. (5) The development of federal procurement guidelines under Executive Order 12873 titled ''Federal Acquisition, Recycling and Waste Prevention,'' in October 1993 was a positive step toward getting CCBs accepted in the marketplace. Industry needs to continue to work with EPA to develop additional procurement guidelines for products containing CCBs--and to take advantage of existing guidelines to encourage the use of CCBs in high-profile projects. (6) Accelerated progress toward increased utilization of CCBs can be made only if there is an increased financial commitment and technical effort by industry and government. The framework for this has been set by the successful cooperation of industry and government under DOE leadership. Cooperation should continue, with DOE fulfilling its lead role established in the RTC. It is clear that the RTC recommendations continue to have validity with respect to increasing CCB utilization and continue to provide guidance to industry and government agencies.

Pflughoeft-Hassett, D.F.; Sondreal, E.A.; Steadman, E.N.; Eylands, K.E.; Dockter, B.A.

1999-07-01T23:59:59.000Z

140

Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992  

SciTech Connect

This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Markets for small-scale, advanced coal-combustion technologies  

SciTech Connect

This report examines the potential of using US-developed advanced coal technologies (ACTs) for small combustors in foreign markets; in particular, the market potentials of the member countries of the Organization of Economic Co-operation and Development (OECD) were determined. First, the United States and those OECD countries with very low energy demands were eliminated. The remaining 15 countries were characterized on the basis of eight factors that would influence their decision to use US ACTs: energy plan and situation, dependence on oil and gas imports, experience with coal, residential/commercial energy demand, industrial energy demand, trade relationship with the United States, level of domestic competition with US ACT manufacturers, and environmental pressure to use advanced technology. Each country was rated high, medium-high, low-medium, or low on each factor, based on statistical and other data. The ratings were then used to group the countries in terms of their relative market potential (good, good but with impediments, or limited). The best potential markets appear to be Spain, Italy, turkey, Greece, and Canada. 25 refs., 1 fig., 37 tabs.

Placet, M.; Kenkeremath, L.D.; Streets, D.G.; Dials, G.E.; Kern, D.M.; Nehring, J.L.; Szpunar, C.B.

1988-12-01T23:59:59.000Z

142

Engineering design and analysis of advanced physical fine coal cleaning technologies  

SciTech Connect

This project is sponsored by the United States Department of Energy (DOE) for the Engineering Design and Analysis of Advanced Physical Fine Coal Cleaning Technologies. The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cylconing, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level.

1992-01-20T23:59:59.000Z

143

Economical Desulfurization of Petroleum Coke  

Science Conference Proceedings (OSTI)

Presentation Title, Economical Desulfurization of Petroleum Coke ... " Desulfurization of Petroleum Coke Beyond 1600'C" by Christopher A. Paul of Great Lakes ...

144

Development of a hot-gas desulfurization system for IGCC applications  

SciTech Connect

Integrated gasification combined cycle (IGCC) power plants are being advanced worldwide to produce electricity from coal because of their superior environmental performance, economics, and efficiency in comparison to conventional coal-based power plants. One key component of an advanced IGCC power plant is a hot-gas desulfurization system employing regenerable sorbents. To carry out hot-gas desulfurization in a fluidized-bed reactor, it is necessary that the sorbents have high attrition resistance, while still maintaining high chemical reactivity and sulfur absorption capacity. Also, efficient processes are needed for the treatment of SO{sub 2}-containing regeneration off-gas to produce environmentally benign waste or useful byproducts. A series of durable zinc titanate sorbents were formulated and tested in a bench-scale fluidized-bed reactor system. Reactive sorbents were developed with addition resistance comparable to fluid-bed cracking (FCC) catalysts used in petroleum refineries. In addition, progress continues on the development of the Direct Sulfur Recovery Process (DSRP) for converting SO{sub 2} in the regeneration off-gas to elemental sulfur. Plans are under way to test these bench-scale systems at gasifier sites with coal gas. This paper describes the status and future plans for the demonstration of these technologies.

Gupta, R.; McMichael, W.J.; Gangwal, S.K. [Research Triangle Inst., Research Triangle Park, NC (United States); Jain, S.C.; Dorchak, T.P. [USDOE Morgantown Energy Technology Center, WV (United States)

1992-12-31T23:59:59.000Z

145

NETL: Gasification - Advanced Hydrogen Transport Membranes for Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Advanced Hydrogen Transport Membranes for Coal Gasification Praxair Inc. Project Number: FE0004908 Project Description Praxair is conducting research to develop hydrogen transport membrane (HTM) technology to separate carbon dioxide (CO2) and hydrogen (H2) in coal-derived syngas for IGCC applications. The project team has fabricated palladium based membranes and measured hydrogen fluxes as a function of pressure, temperature, and membrane preparation conditions. Membranes are a commercially-available technology in the chemical industry for CO2 removal and H2 purification. There is, however, no commercial application of membrane processes that aims at CO2 capture for IGCC syngas. Due to the modular nature of the membrane process, the design does not exhibit economy of scale-the cost of the system will increase linearly as the plant system scale increases making the use of commercially available membranes, for an IGCC power plant, cost prohibitive. For a membrane process to be a viable CO2 capture technology for IGCC applications, a better overall performance is required, including higher permeability, higher selectivity, and lower membrane cost.

146

Advanced Coal-Fueled Gas Turbine Program. Final report  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

147

Engineering development of advanced coal-fired low-emission boiler systems: Technical progress report No. 16, July-September 1996  

SciTech Connect

The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The Project is under budget and generally on schedule. The current status is shown in the Milestone Schedule Status Report included as Appendix A. Under Task 7--Component development and optimization, the CeraMem filter testing was completed. Due to an unacceptably high flue gas draft loss, which will not be resolved in the POCTF timeframe, a decision was made to change the design of the flue gas cleaning system from Hot SNO{sub x}{sup {trademark}} to an advanced dry scrubber called New Integrated Desulfurization (NID). However, it is recognized that the CeraMem filter still has the potential to be viable in pulverized coal systems. In Task 8-- Preliminary POCTF design, integrating and optimizing the performance and design of the boiler, turbine/generator and heat exchangers of the Kalina cycle as well as the balance of plant design were completed. Licensing activities continued. A NID system was substituted for the SNO{sub x} Hot Process.

Barcikowski, G.F.; Borio, R.W.; Bozzuto, C.R.; Burr, D.H.; Cellilli, L.; Fox, J.D.; Gibbons, T.B.; Hargrove, M.J.; Jukkola, G.D.; King, A.M.

1996-11-27T23:59:59.000Z

148

BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY  

SciTech Connect

The U.S. Department of Energy (DOE), Federal Energy Technology Center (FETC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2} TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. Overall chemical reactions with Zn{sub 2} TiO{sub 4} during the desulfurization (sulfidation)-regeneration cycle are shown below: Sulfidation: Zn{sub 2} TiO{sub 4} + 2H{sub 2}S {yields} 2ZnS + TiO{sub 2} + 2H{sub 2}O; Regeneration: 2ZnS + TiO{sub 2} + 3O{sub 2} {yields} Zn{sub 2} TiO{sub 4} + 2SO{sub 2} The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO{sub 2}.

Unknown

1999-10-01T23:59:59.000Z

149

Advanced coal-gasification technical analyses. Appendix 2: coal fines disposal. Final report, December 1982-September 1985  

Science Conference Proceedings (OSTI)

This report is a compilation of several studies conducted by KRSI under the Advanced Coal Gasification Technical Analyses contract with GRI. It addresses the issue of disposal and/or utilization of the coal fines that cannot be used as feedstock for fixed-bed (i.e. Lurgi) gasifiers. Specific items addressed are: (1) Technical, legal and economic aspects of fines burial, (2) Estimation of the premium for fines-free coal delivered to an SNG plant and resulting reduction in SNG production costs, (3) Comparison of the relative advantages and limitations of Winkler and GKT gasifiers to consuming fines, (4) Review of coal-size consist curves in the GRI Guidelines to assess the fines content of ROM coals, (5) a first-pass design and cost estimate using GKT gasifiers in tandem with Lurgi gasifiers in an North Dakota lignite-to-SNG plant to consume full range of coal-size consist, (6) Evaluation of the General Electric technology for extrusion of coal fines and testing of the extrudates in a fixed-bed gasifier, and (7) Investigation of equipment and variables involved in briquetting of coal fines, such that fines could be fed to the gasifiers along with the lump coal.

Cover, A.E.; Hubbard, D.A.; Jain, S.K.; Shah, K.V.

1986-01-01T23:59:59.000Z

150

Flue Gas Desulfurization Equipment Issues Guidelines  

Science Conference Proceedings (OSTI)

As electric utilities enter a more competitive environment, every aspect of electric power generation is under scrutiny to determine where costs can be reduced. Because flue gas desulfurization (FGD) systems represent significant capital, operating, and maintenance expenses for many coal-fired power plants, identification and implementation of cost reduction options are crucial. This report documents successful approaches for determining the cost-effectiveness of key FGD optimization strategies.

2001-10-15T23:59:59.000Z

151

Performance and risks of advanced pulverized-coal plants  

SciTech Connect

This article is based on an in-depth report of the same title published by the IEA Clean Coal Centre, CCC/135 (see Coal Abstracts entry Sep 2008 00535). It discusses the commercial, developmental and future status of pulverized fuel power plants including subcritical supercritical and ultra supercritical systems of pulverized coal combustion, the most widely used technology in coal-fired power generation. 1 fig., 1 tab.

Nalbandian, H. [IEA Clean Coal Centre, London (United Kingdom)

2009-07-01T23:59:59.000Z

152

New Projects Set to Target Efficiency, Environmental Gains at Advanced Coal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Set to Target Efficiency, Environmental Gains at Projects Set to Target Efficiency, Environmental Gains at Advanced Coal Gasification Facilities New Projects Set to Target Efficiency, Environmental Gains at Advanced Coal Gasification Facilities July 27, 2010 - 1:00pm Addthis Washington, D.C. -- Four projects that will demonstrate an innovative technology that could eventually enhance hydrogen fuel production, lower greenhouse gas (GHG) emissions, improve efficiencies and lower consumer electricity costs from advanced coal gasification power systems have been selected by the U.S. Department of Energy (DOE). The projects will test membrane technology to separate hydrogen and carbon dioxide (CO2) from coal or coal/biomass-derived synthesis gas (syngas), such as from Integrated Gasification Combined Cycle (IGCC) power systems.

153

Low-rank coal research: Volume 2, Advanced research and technology development: Final report  

SciTech Connect

Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

1987-04-01T23:59:59.000Z

154

Construction Begins on First-of-its-Kind Advanced Clean Coal Electric  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Begins on First-of-its-Kind Advanced Clean Coal Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility Construction Begins on First-of-its-Kind Advanced Clean Coal Electric Generating Facility September 10, 2007 - 3:16pm Addthis ORLANDO, Fla. - Officials representing the U.S. Department of Energy (DOE), Southern Company, KBR Inc. and the Orlando Utilities Commission (OUC) today broke ground to begin construction of an advanced 285-megawatt integrated gasification combined cycle (IGCC) facility near Orlando, Fla. The new generating station will be among the cleanest, most efficient coal-fueled power plants in the world. Southern Company will operate the facility through its Southern Power subsidiary, which builds, owns, and manages the company's competitive generation assets. It will be located at OUC's Stanton Energy Center in

155

Advanced turbine design for coal-fueled engines  

DOE Green Energy (OSTI)

The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500[degrees]F (815[degrees]C), relatively innocuous salts. In this study it is found that at 1650[degrees]F (900[degrees]C) and above, calcium sulfate becomes an aggressive corrodent.

Bornstein, N.S.

1992-07-17T23:59:59.000Z

156

ADVANCED HETEROGENEOUS REBURN FUEL FROM COAL AND HOG MANURE  

DOE Green Energy (OSTI)

This study was performed to investigate whether the nitrogen content inherent in hog manure and alkali used as a catalyst during processing could be combined with coal to produce a reburn fuel that would result in advanced reburning NO{sub x} control without the addition of either alkali or ammonia/urea. Fresh hog manure was processed in a cold-charge, 1-gal, batch autoclave system at 275 C under a reducing atmosphere in the presence of an alkali catalyst. Instead of the expected organic liquid, the resulting product was a waxy solid material. The waxy nature of the material made size reduction and feeding difficult as the material agglomerated and tended to melt, plugging the feeder. The material was eventually broken up and sized manually and a water-cooled feeder was designed and fabricated. Two reburn tests were performed in a pilot-scale combustor. The first test evaluated a reburn fuel mixture comprising lignite and air-dried, raw hog manure. The second test evaluated a reburn fuel mixture made of lignite and the processed hog manure. Neither reburn fuel reduced NO{sub x} levels in the combustor flue gas. Increased slagging and ash deposition were observed during both reburn tests. The material-handling and ash-fouling issues encountered during this study indicate that the use of waste-based reburn fuels could pose practical difficulties in implementation on a larger scale.

Melanie D. Jensen; Ronald C. Timpe; Jason D. Laumb

2003-09-01T23:59:59.000Z

157

Measurement and modeling of advanced coal conversion processes. Annual report, October 1990--September 1991  

Science Conference Proceedings (OSTI)

The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. [Advanced Fuel Research, Inc., East Hartford, CT (United States)]|[Brigham Young Univ., Provo, UT (United States)

1991-12-31T23:59:59.000Z

158

Flue gas desulfurization : cost and functional analysis of large-scale and proven plants  

E-Print Network (OSTI)

Flue Gas Desulfurization is a method of controlling the emission of sulfurs, which causes the acid rain. The following study is based on 26 utilities which burn coal, have a generating capacity of at least 50 Megawatts ...

Tilly, Jean

1983-01-01T23:59:59.000Z

159

Advanced Coal Power Systems with CO2 Capture: EPRI's CoalFleet for Tomorrow® Vision—2011 Upd ate  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has examined current and potential options for reducing greenhouse gas (GHG) emissions from the electric sector. EPRIs analysis shows that a significant contribution from advanced coal power systems with carbon capture and storage (CCS) will likely be required to achieve economical GHG reductions; however, CCS technology has not yet been deployed at commercial scale.

2011-08-30T23:59:59.000Z

160

NETL: CCPI/Clean Coal Demonstrations  

NLE Websites -- All DOE Office Websites (Extended Search)

Topical Reports Topical Reports CCPI/Clean Coal Demonstrations Topical Reports General Topical Report #18: Environmental Benefits of Clean Coal Technologies[PDF-2MB] (Apr 2001) This report describes a variety of processes that are capable of meeting existing and emerging environmental regulations and competing economically in a deregulated electric power marketplace. Topical Report #17: Software Systems in Clean Coal Demonstration Projects [PDF-650KB] (Dec 2001) This report describes computer software systems used to optimize coal utilization technologies. Environmental Control Technologies Sulfur Dioxide Control Technologies Topical Report #12: Advanced Technologies for the Control of Sulfur Dioxide Emissions from Coal-Fired Boilers [PDF-1.6MB] (June 1999) A discussion of three CCT projects that demonstrate innovative wet flue gas desulfurization technologies to remove greater than 90% SO2.

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Measurement and modeling of advanced coal conversion processes  

Science Conference Proceedings (OSTI)

The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

1991-01-01T23:59:59.000Z

162

Desulfurization mixture and process for desulfurizing pig iron  

SciTech Connect

Process and composition for desulfurizing pig iron in which the desulfurization agent consists essentially of calcium carbide, a gas-evolving component and fluorspar; the advantage of the process and composition is that it reduces dust pollution and danger of flaming in the handling of the slag after the desulfurization of pig iron.

Freissmuth, A.; Gmohling, W.; Rock, H.

1982-02-16T23:59:59.000Z

163

Measurement and modeling of advanced coal conversion processes, Volume II  

Science Conference Proceedings (OSTI)

A two dimensional, steady-state model for describing a variety of reactive and nonreactive flows, including pulverized coal combustion and gasification, is presented. The model, referred to as 93-PCGC-2 is applicable to cylindrical, axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using a discrete ordinates method. The particle phase is modeled in a lagrangian framework, such that mean paths of particle groups are followed. A new coal-general devolatilization submodel (FG-DVC) with coal swelling and char reactivity submodels has been added.

Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

1993-06-01T23:59:59.000Z

164

Advanced Multi-Product Coal Utilization By-Product Processing...  

NLE Websites -- All DOE Office Websites (Extended Search)

coAl utilizAtion By-Product Processing PlAnt (withdrAwn) Project Description The University of Kentucky Research Foundation (UKRF) of Lexington, Kentucky, in partnership...

165

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2. OSU reports that the CDCL plant's 200+ hours of operation, using metallurgical coke and subbituminous and lignite coals, shows the robustness of its novel moving-bed...

166

Engineering/Economic Evaluations of Advanced Coal Technologies  

Science Conference Proceedings (OSTI)

The continued escalation of power plant capital costs, legislative uncertainty with regard to CO2 emissions regulation, and widely fluctuating fuel prices make this an extremely challenging time for the power industry as they seek to make decisions on multi-billion dollar investments in needed new power plants. In this report the capital and operating costs, performance, and Costs of Electricity (COE) are estimated for various coals, locations, and coal technologies (PC, CFB and IGCC with and without CO2...

2008-09-25T23:59:59.000Z

167

Advanced coal-fueled industrial cogeneration gas turbine system  

DOE Green Energy (OSTI)

The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. This quarter, work was centered on design, fabrication, and testing of the combustor, cleanup, fuel specifications, and hot end simulation rig. 2 refs., 59 figs., 29 tabs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1990-07-01T23:59:59.000Z

168

Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Technical progress report, Run 243 with Illinois 6 coal  

DOE Green Energy (OSTI)

This report presents the operating results for Run 243 at the Advanced Coal Liquefaction R and D Facility in Wilsonville, Alabama. This run was made in an Integrated Two-Stage Liquefaction (ITSL) mode using Illinois 6 coal from the Burning Star mine. The primary objective was to demonstrate the effect of a dissolver on the ITSL product slate, especially on the net C/sub 1/-C/sub 5/ gas production and hydrogen consumption. Run 243 began on 3 February 1983 and continued through 28 June 1983. During this period, 349.8 tons of coal was fed in 2947 hours of operation. Thirteen special product workup material balances were defined, and the results are presented herein. 29 figures, 19 tables.

Not Available

1984-02-01T23:59:59.000Z

169

Advanced coal-fueled gas turbine systems reference system definition update  

Science Conference Proceedings (OSTI)

The objective of the the Direct Coal-Fueled 80 MW Combustion Turbine Program is to establish the technology required for private sector use of an advanced coal-fueled combustion turbine power system. Under this program the technology for a direct coal-fueled 80 MW combustion turbine is to be developed. This unit would be an element in a 207 MW direct coal-fueled combustion turbine combined cycle which includes two combustion turbines, two heat recovery steam generators and a steam turbine. Key to meeting the program objectives is the development of a successful high pressure slagging combustor that burns coal, while removing sulfur, particulates, and corrosive alkali matter from the combustion products. Westinghouse and Textron (formerly AVCO Research Laboratory/Textron) have designed and fabricated a subscale slagging combustor. This slagging combustor, under test since September 1988, has been yielding important experimental data, while having undergone several design iterations.

Not Available

1991-09-01T23:59:59.000Z

170

Evaluation of Selenium Species in Flue Gas Desulfurization Waters  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) is a process used in the electrical power industry to remove sulfur dioxide from flue gas produced by coal-fired power plants. The trace element selenium is found in coal and can become concentrated in the wastewater from the FGD process. Some chemical forms, or species, of selenium are more resistant to removal by water treatment processes than others; thus, understanding the speciation of selenium is important to designing effective wastewater treatment systems. In additi...

2009-03-23T23:59:59.000Z

171

Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

7 JUNE 2012 7 JUNE 2012 Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions and Improve Efficiency 2 Cover Photos: * Top left: Great River Energy's Coal Creek Station * Top right: We Energy's Presque Isle Power Plant * Bottom: Dynegy's Baldwin Energy Complex A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * NeuCo. , Inc. * WeEnergies 3 Executive Summary 4 Clean Coal Technology Demonstration Program 5 CCPI Program 6 Demonstration of Integrated Optimization Software at

172

Measurement and modeling of advanced coal conversion processes, Volume III  

SciTech Connect

A generalized one-dimensional, heterogeneous, steady-state, fixed-bed model for coal gasification and combustion is presented. The model, FBED-1, is a design and analysis tool that can be used to simulate a variety of gasification, devolatilization, and combustion processes. The model considers separate gas and solid temperatures, axially variable solid and gas flow rates, variable bed void fraction, coal drying, devolatilization based on chemical functional group composition, depolymerization, vaporization and crosslinking, oxidation, and gasification of char, and partial equilibrium in the gas phase.

Ghani, M.U.; Hobbs, M.L.; Hamblen, D.G. [and others

1993-08-01T23:59:59.000Z

173

Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research  

SciTech Connect

Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

1992-01-01T23:59:59.000Z

174

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated April 28, 2004) Spot coal prices in the East rose steadily since Labor Day 2003, with rapid escalations ...

175

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated September 26) The average spot prices for reported coal purchases rose once again ...

176

Enhanced durability and reactivity for zinc ferrite desulfurization sorbent  

Science Conference Proceedings (OSTI)

AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

Jha, M.C.; Berggren, M.H.

1989-05-02T23:59:59.000Z

177

Flue Gas Desulfurization Systems  

Science Conference Proceedings (OSTI)

In many of the operating flue gas desulfurization (FGD) systems throughout the world, materials corrosion leads to considerable costs and downtime. Utilities are often required to maintain, repair, replace, and/or upgrade existing materials to combat corrosion issues. This document provides the results of a recent EPRI survey that examined the various types of corrosion and materials damage in FGD systems.

2005-12-23T23:59:59.000Z

178

Sorbent for use in hot gas desulfurization  

DOE Patents (OSTI)

A multiple metal oxide sorbent supported on a zeolite of substantially silicon oxide is used for the desulfurization of process gas streams, such as from a coal gasifier, at temperatures in the range of about 1200.degree. to about 1600.degree. F. The sorbent is provided by a mixture of copper oxide and manganese oxide and preferably such a mixture with molybdenum oxide. The manganese oxide and the molybdenum are believed to function as promoters for the reaction of hydrogen sulfide with copper oxide. Also, the manganese oxide inhibits the volatilization of the molybdenum oxide at the higher temperatures.

Gasper-Galvin, Lee D. (Washington, PA); Atimtay, Aysel T. (Cankaya, TR)

1993-01-01T23:59:59.000Z

179

Hot gas desulfurization sorbent and method  

DOE Patents (OSTI)

A multiple metal oxide sorbent supported on a zeolite of substantially silicon oxide is used for the desulfurization of process gas streams, such as from a coal gasifier, at temperatures in the range of about 1200{degrees} to about 1600{degrees}F. The sorbent is provided by a mixture of copper oxide and manganese oxide and preferably such a mixture with molybdenum oxide. The manganese oxide and the molybdenum are believed to function as promoters for the reaction of hydrogen sulfide with copper oxide. Also, the manganese oxide inhibits the volatilization of the molybdenum oxide at the higher temperatures.

Gasper-Galvin, L.D.; Atimtay, A.T.

1991-03-13T23:59:59.000Z

180

Hot gas desulfurization sorbent and method  

DOE Patents (OSTI)

A multiple metal oxide sorbent supported on a zeolite of substantially silicon oxide is used for the desulfurization of process gas streams, such as from a coal gasifier, at temperatures in the range of about 1200[degrees] to about 1600[degrees]F. The sorbent is provided by a mixture of copper oxide and manganese oxide and preferably such a mixture with molybdenum oxide. The manganese oxide and the molybdenum are believed to function as promoters for the reaction of hydrogen sulfide with copper oxide. Also, the manganese oxide inhibits the volatilization of the molybdenum oxide at the higher temperatures.

Gasper-Galvin, L.D.; Atimtay, A.T.

1991-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Coal....  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated August 12) According to Platts Coal Outlook’s Weekly Price Survey (August 11), the ...

182

Coal....  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated September 2) The average spot prices for coal traded last week were relatively ...

183

Advanced coal-fueled industrial cogeneration gas turbine system  

DOE Green Energy (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

184

Projects Aimed at Advancing State-of-the-Art Carbon Capture from Coal Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Aimed at Advancing State-of-the-Art Carbon Capture from Projects Aimed at Advancing State-of-the-Art Carbon Capture from Coal Power Plants Selected for Further Development Projects Aimed at Advancing State-of-the-Art Carbon Capture from Coal Power Plants Selected for Further Development August 15, 2011 - 1:00pm Addthis Washington, DC - Four projects aimed at reducing the energy and cost penalties of advanced carbon capture systems applied to power plants have been selected for further development by the U.S. Department of Energy's Office of Fossil Energy (FE). Valued at approximately $67 million (including $15 million in non-federal cost sharing) over four years, the overall goal of the research is to develop carbon dioxide (CO2) capture and separation technologies that can achieve at least 90 percent CO2 removal at no more than a 35 percent

185

Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems  

SciTech Connect

The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

1990-12-01T23:59:59.000Z

186

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991  

SciTech Connect

Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1991-07-01T23:59:59.000Z

187

Engineering development of advanced coal-fired low-emission boiler system  

Science Conference Proceedings (OSTI)

The Pittsburgh Energy Technology Center of the US Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems'' Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NO[sub x] emissions not greater than one-third NSPS; SO[sub x] emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: Improved ash disposability and reduced waste generation; reduced air toxics emissions; increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

Not Available

1993-02-26T23:59:59.000Z

188

The Coal-Seq Consortium: Advancing the Science of Carbon Dioxide...  

NLE Websites -- All DOE Office Websites (Extended Search)

Suite 520 Houston, TX 77077-6841 281-558-9200 (extension 1) sreeves@adv-res-hou.com The Coal-Seq ConSorTium: advanCing The SCienCe of Carbon dioxide SequeSTraTion in deep,...

189

Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research  

SciTech Connect

Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

Speight, J.G.

1992-01-01T23:59:59.000Z

190

ENGINEERING DEVELOPMENT OF ADVANCED PHYSICAL FINE COAL CLEANING FOR PREMIUM FUEL APPLICATIONS  

SciTech Connect

Bechtel, together with Amax Research and Development Center (Amax R&D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program ?Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications,? (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at Amax R&D, Golden, Colorado by Entech Global for process evaluation tests. The tests successfully demonstrated the capability of advanced column flotation as well as selective agglomeration to produce ultra-clean coal at specified levels of purity and recovery efficiency. Test results and the experience gained during the operation of the PDU have provided valuable insights into the processes studied. Based on the design data obtained from the test work and a set of project design criteria, two sets of conceptual designs for commercial CWF production plants have been developed, one using column flotation and the other using selective agglomeration process. Using these designs, Capital as well as Operating and Maintenance (O&M) cost estimates for the plants have been compiled. These estimates have then been used to derive the annualized cost of production of premium CWF on a commercial scale. Further, a series of sensitivity analysis have been completed to evaluate the effects of variations in selected cost components and process parameters on the overall economics of premium fuel production

NONE

1997-06-01T23:59:59.000Z

191

The fate of alkali species in advanced coal conversion systems  

SciTech Connect

The fate of species during coal combustion and gasification was determined experimentally in a fluidized bed reactor. A molecular-beam sampling mags spectrometer was used to identify and measure the concentration of vapor phase sodium species in the high temperature environment. Concurrent collection and analysis of the ash established the distribution of sodium species between gas-entrained and residual ash fractions. Two coals, Beulah Zap lignite and Illinois No. 6 bituminous, were used under combustion and gasification conditions at atmospheric pressure. Steady-state bed temperatures were in the range 800--950[degree]C. An extensive calibration procedure ensured that the mass spectrometer was capable of detecting sodium-containing vapor species at concentrations as low as 50 ppb. In the temperature range 800[degree] to 950[degree]C, the concentrations of vapor phase sodium species (Na, Na[sub 2]O, NaCl, and Na[sub 2]SO[sub 4]) are less than 0.05 ppm under combustion conditions with excess air. However, under gasification conditions with Beulah Zap lignite, sodium vapor species are present at about 14 ppm at a temperature of 820[degree]. Of this amount, NaCl vapor constitutes about 5 ppm and the rest is very likely NAOH. Sodium in the form of NaCl in coal enhances the vaporization of sodium species during combustion. Vapor phase concentration of both NaCl and Na[sub 2]SO[sub 4] increased when NaCl was added to the Beulah Zap lignite. Ash particles account for nearly 100% of the sodium in the coal during combustion in the investigated temperature range. The fine fly-ash particles (<10 [mu]m) are enriched in sodium, mainly in the form of sodium sulfate. The amount of sodium species in this ash fraction may be as high as 30 wt % of the total sodium. Sodium in the coarse ash particle phase retained in the bed is mainly in amorphous forms.

Krishnan, G.N.; Wood, B.J.

1991-11-01T23:59:59.000Z

192

Flue Gas Desulfurization Gypsum Agricultural Network: Indiana Kingman Research Station (Corn and Soybeans)  

Science Conference Proceedings (OSTI)

Flue gas desulfurization gypsum (FGDG) is an excellent source of gypsum (CaSO4•2H2O) that is created when sulfur dioxide is removed from the exhaust gases during the combustion of coal for energy production. Research on FGDG has been conducted as part of the Flue Gas Desulfurization Gypsum Agricultural Network program sponsored by the Electric Power Research Institute in collaboration with individual utilities, the U.S. EPA, the United States Department of Agriculture’s Agricultural ...

2013-10-07T23:59:59.000Z

193

Development and design of an advanced pulverized coal-fired system  

SciTech Connect

Under the US Department of Energy (DOE) project `Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems` (LEBS) the ABB team developed the design of a 400 MWe advanced pulverized coal fired electric generating system. The work and the results are described in the paper. Early work included concept development and evaluation of several subsystems for controlling the emission of SO{sub 2}, NO{sub x}, particulates and for reducing wastes. Candidate technologies were then evaluated in various combinations as part of complete advanced supercritical power generation systems. One system was selected for the design of the advanced generating system. Pilot scale testing is now being conducted to support the design of subsystems. The design meets the overall objective of the LEBS Project by dramatically improving environmental performance of pulverized coal fired power plants without adversely impacting efficiency or the cost of electricity. Advanced technologies will be used to reduce NO{sub x}, SO{sub 2}, and particulate emissions to one-fifth to one-tenth of current NSPS limits. Air toxics will be in compliance, and wastes will be reduced and made more disposable. Net station (HHV) efficiency can be increased to 45 percent without increasing the cost of electricity.

Regan, J.W.; Borio, R.W.; Palkes, M. [ABB Power Plant Laboratories (United States); Mirolli, M.D. [ABB Combustion Engineering, Inc., Windsor, CT (United States); Wesnor, J.D. [ABB Environmental Systems, Birmingham, AL (United States); Bender, D.J. [Raytheon Engineers & Constructors, Inc. (United States)

1995-12-31T23:59:59.000Z

194

The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama  

SciTech Connect

The investigation of various Two-Stage Liquefaction (TSL) process configurations was conducted at the Wilsonville Advanced Coal Liquefaction R D Facility between July 1982 and September 1986. The facility combines three process units. There are the liquefaction unit, either thermal (TLU) or catalytic, for the dissolution of coal, the Critical Solvent Deashing unit (CSD) for the separation of ash and undissolved coal, and a catalytic hydrogenation unit (HTR) for product upgrading and recycle process solvent replenishment. The various TSL process configurations were created by changing the process sequence of these three units and by recycling hydrotreated solvents between the units. This report presents a description of the TSL configurations investigated and an analysis of the operating and performance data from the period of study. Illinois No. 6 Burning Star Mine coal Wyodak Clovis Point Mine coal were processed. Cobalt-molybdenum and disposable iron-oxide catalysts were used to improve coal liquefaction reactions and nickel-molybdenum catalysts were used in the hydrotreater. 28 refs., 31 figs., 13 tabs.

1990-05-01T23:59:59.000Z

195

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research  

SciTech Connect

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-01-01T23:59:59.000Z

196

Design manual for management of solid by-products from advanced coal technologies  

SciTech Connect

Developing coal conversion technologies face major obstacles in byproduct management. This project has developed several management strategies based on field trials of small-scale landfills in an earlier phase of the project, as well as on published/unpublished sources detailing regulatory issues, current industry practice, and reuse opportunities. Field testing, which forms the basis for several of the disposal alternatives presented in this design manual, was limited to byproducts from Ca-based dry SO{sub 2} control technologies, circulating fluidized bed combustion ash, and bubbling bed fluidized bed combustion ash. Data on byproducts from other advanced coal technologies and on reuse opportunities are drawn from other sources (citations following Chapter 3). Field results from the 5 test cases examined under this project, together with results from other ongoing research, provide a basis for predictive modeling of long-term performance of some advanced coal byproducts on exposure to ambient environment. This manual is intended to provide a reference database and development plan for designing, permitting, and operating facilities where advanced coal technology byproducts are managed.

1994-10-01T23:59:59.000Z

197

Advanced Coal-Based Power and Environmental Systems ‘97 Conference  

E-Print Network (OSTI)

Conference Sponsor: Federal Energy Technology Center- Morgantown and PittsburghDisclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. UPGRADING LOW RANK COAL USING THE KOPPELMAN SERIES C PROCESS

N. W. Merriam

1997-01-01T23:59:59.000Z

198

Advanced coal gasifier designs using large-scale simulations  

Science Conference Proceedings (OSTI)

Porting of the legacy code MFIX to a high performance computer (HPC) and the use of high resolution simulations for the design of a coal gasifier are described here. MFIX is based on a continuum multiphase flow model that considers gas and solids to form interpenetrating continua. Low resolution simulations of a commercial scale gasifier with a validated MFIX model revealed interesting physical phenomena with implications on the gasifier design, which prompted the study reported here. To be predictive, the simulations need to model the spatiotemporal variations in gas and solids volume fractions, velocities, temperatures with any associated phase change and chemical reactions. These processes occur at various time- and length-scales requiring very high spatial resolution and large number of iterations with small time-steps. We were able to perform perhaps the largest known simulations of gas-solids reacting flows, providing detailed information about the gas-solids flow structure and the pressure, temperature and species distribution in the gasifier. One key finding is the new features of the coal jet trajectory revealed with the high spatial resolution, which provides information on the accuracy of the lower resolution simulations. Methodologies for effectively combining high and low resolution simulations for design studies must be developed. From a computational science perspective, we found that global communication has to be reduced to achieve scalability to 1000s of cores, hybrid parallelization is required to effectively utilize the multicore chips, and the wait time in the batch queue significantly increases the actual time-to-solution. From our experience, development is required in the following areas: efficient solvers for heterogeneous, massively parallel systems; data analysis tools to extract information from large data sets; and programming environments for easily porting legacy codes to HPC.

Syamlal, M [National Energy Technology Laboratory (NETL); Guenther, Chris [National Energy Technology Laboratory (NETL); Gel, Aytekin [Aeolus Research Inc.; Pannala, Sreekanth [ORNL

2009-01-01T23:59:59.000Z

199

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated July 7, 2004) In the trading week ended July 2, the average spot coal prices tracked by EIA were mixed.

200

Puerto Rico Refinery Desulfurization, Gasoline Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Desulfurization, Gasoline Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-12-01T23:59:59.000Z

202

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-01-01T23:59:59.000Z

203

Advanced coal fueled industrial cogeneration gas turbine system. Final report, June 1986--April 1994  

SciTech Connect

Demonstration of a direct coal-fueled gas turbine system that is environmentally, technically, and economically viable depends on the satisfactory resolution of several key issues. Solar Turbines, Incorporates technical approach to these issues was to advance a complete direct coal-fueled gas turbine system that incorporated near-term technology solutions to both historically demonstrated problem areas such as deposition, erosion, and hot end corrosion, and to the emergent environmental constraints based on NO{sub x}, SO{sub x}, and particulates. Solar`s program approach was keyed to the full commercialization of the coal-fueled cogeneration gas turbine which would occur after extended field verification demonstrations conducted by the private sector. The program was structured in three phases plus an optional fourth phase: Phase 1 -- system description; Phase 2 -- component development; Phase 3 -- prototype system verification; and Phase 4 -- field evaluation.

LeCren, R.T.

1994-05-01T23:59:59.000Z

204

Advanced turbine design for coal-fueled engines  

SciTech Connect

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

205

Development of an Integrated Multicontaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

an Integrated an Integrated Multicontaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems Background The U.S. has more coal than any other country, and it can be converted through gasification into electricity, liquid fuels, chemicals, or hydrogen. However, for coal gasification to become sufficiently competitive to benefit the U.S. economy and help reduce our dependence on foreign fuels, gasification costs must be reduced

206

Sixth annual coal preparation, utilization, and environmental control contractors conference  

SciTech Connect

A conference was held on coal preparation, utilization and environmental control. Topics included: combustion of fuel slurries; combustor performance; desulfurization chemically and by biodegradation; coal cleaning; pollution control of sulfur oxides and nitrogen oxides; particulate control; and flue gas desulfurization. Individual projects are processed separately for the databases. (CBS).

Not Available

1990-01-01T23:59:59.000Z

207

Advanced coal-fueled industrial cogeneration gas turbine system: Hot End Simulation Rig  

DOE Green Energy (OSTI)

This Hot End Simulation Rig (HESR) was an integral part of the overall Solar/METC program chartered to prove the technical, economic, an environmental feasibility of a coal-fueled gas turbine, for cogeneration applications. The program was to culminate in a test of a Solar Centaur Type H engine system operated on coal slurry fuel throughput the engine design operating range. This particular activity was designed to verify the performance of the Centaur Type H engine hot section materials in a coal-fired environment varying the amounts of alkali, ash, and sulfur in the coal to assess the material corrosion. Success in the program was dependent upon the satisfactory resolution of several key issues. Included was the control of hot end corrosion and erosion, necessary to ensure adequate operating life. The Hot End Simulation Rig addressed this important issue by exposing currently used hot section turbine alloys, alternate alloys, and commercially available advanced protective coating systems to a representative coal-fueled environment at turbine inlet temperatures typical of Solar`s Centaur Type H. Turbine hot end components which would experience material degradation include the transition duct from the combustor outlet to the turbine inlet, the shroud, nozzles, and blades. A ceramic candle filter vessel was included in the system as the particulate removal device for the HESR. In addition to turbine material testing, the candle material was exposed and evaluated. Long-term testing was intended to sufficiently characterize the performance of these materials for the turbine.

Galica, M.A.

1994-02-01T23:59:59.000Z

208

Carbon formation and metal dusting in advanced coal gasification processes  

SciTech Connect

The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

1997-02-01T23:59:59.000Z

209

Repowering flexibility of coal-based advanced power systems  

Science Conference Proceedings (OSTI)

The Department of Energy`s (DOE`s) Morgantown Energy Technology Center (METC) helps enhance the economic competitiveness, environmental quality, and national well-being of the U.S. by developing advanced power-generation systems. The potential market for advanced power-generation systems is large. In the U.S., electric demand is estimated to grow at about 1 percent per year through the year 2010. The total power generation market also includes new-capacity as well as replacement of existing power plants as they age. Thus, the market for power systems over the next 15 years is estimated to be about 279,000 megawatts (MW), but could range from as much as 484,000 MW to as little as 153,000 MW. These predictions are summarized. Over the next 15 years, the replacement market is potentially much larger than the expansion market because of the large base of aging power plants in the U.S.

Bajura, R.A.; Bechtel, T.F.; Schmidt, D.K.; Wimer, J.G.

1995-03-01T23:59:59.000Z

210

Guidelines for Flue Gas Desulfurization (FGD) Water Sampling and Analysis  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) scrubbers are being installed on coal-fired power plants in response to federal and state air pollution regulations limiting sulfur dioxide emissions. FGD scrubbers produce an aqueous waste stream that contains metals adsorbed from flue gas. At the same time, the U.S. Environmental Protection Agency (EPA) is reviewing, and may tighten, water discharge limits on trace metals. Collection of accurate data on the trace metal composition of FGD water discharges is therefore esse...

2009-03-27T23:59:59.000Z

211

Trace Metals Determination in Flue Gas Desulfurization Water  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) scrubbers are used on coal-fired power plants to reduce sulfur dioxide emissions to air. While effective for this purpose, wet FGD scrubbers produce an aqueous blowdown stream that contains trace levels of metals adsorbed from flue gas. Power plant owners need to measure concentrations of these metals for purposes of process control, discharge monitoring, or design and operation of wastewater treatment systems. FGD water has proven to be a very difficult matrix to analyze a...

2009-12-28T23:59:59.000Z

212

Trace component analysis of process hydrogen streams at the Wilsonville Advanced Coal Liquefaction Facility  

DOE Green Energy (OSTI)

This report summarizes subcontracted work done by the Radian Corporation to analyze trace components in process hydrogen streams at the Advanced Coal Liquefaction Facility in Wilsonville, Alabama. The data will be used to help define whether the gas streams to be treated in the hydrogen processing unit in the SRC-I Demonstration Plant will require further treatment to remove trace contaminants that could be explosive under certain conditions. 2 references.

Bronfenbrenner, J.C.

1983-09-01T23:59:59.000Z

213

Evaluation of ADAM/1 model for advanced coal-extraction concepts  

SciTech Connect

The Advanced Coal Extraction Project is sponsored by the Department of Energy at the Jet Propulsion Laboratory to define and develop advanced underground coal extraction systems which: (1) are suitable for significant remaining resources after the year 2000, and (2) promise a significant improvement in production cost and miner safety, with no degradation in miner health, environmental quality and resource recovery. System requirements in the five performance areas have been defined by Goldsmith and Lavin (1980). Several existing computer programs for estimating life-cycle cost of mining systems have been evaluated. A commercially available program ADAM/1 was found to be satisfactory in relation to the needs of the Advanced Coal Extraction Project. Two test cases were run to confirm the ability of the program to handle non-conventional mining equipment and procedures. The results were satisfactory. The model, therefore, is recommended to the project team for evaluation of their conceptual designs. Since the model is commercially available, data preparation instructions are not reproduced in this document; instead the reader is referred to the original documents for this information.

Deshpande, G. K.; Gangal, M. D.

1982-01-15T23:59:59.000Z

214

Impact of Advanced Turbine Systems on coal-based power plants  

DOE Green Energy (OSTI)

The advanced power-generation products currently under development in our program show great promise for ultimate commercial use. Four of these products are referred to in this paper: Integrated Gasification Combined Cycle (IGCC), Pressurized Fluidized Bed Combustion (PFBC), Externally Fired Combined Cycle (EFCC), and Integrated Gasification Fuel Cell (IGFC). Three of these products, IGCC, PFBC, and EFCC, rely on advanced gas turbines as a key enabling technology and the foundation for efficiencies in the range of 52 to 55 percent. DOE is funding the development of advanced gas turbines in the newly instituted Advanced Turbine Systems (ATS) Program, one of DOE`s highest priority natural gas initiatives. The turbines, which will have natural gas efficiencies of 60 percent, are being evaluated for coal gas compatibility as part of that program.

Bechtel, T.F.

1993-12-31T23:59:59.000Z

215

The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal  

SciTech Connect

This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

Zauderer, B.; Fleming, E.S.

1991-08-30T23:59:59.000Z

216

The Biocatalytic Desulfurization Project  

DOE Green Energy (OSTI)

The material in this report summarizes the Diversa technical effort in development of a biocatalyst for the biodesulfurization of Petro Star diesel as well as an economic report of standalone and combined desulfurization options, prepared by Pelorus and Anvil, to support and inform the development of a commercially viable process. We will discuss goals of the projected as originally stated and their modification as guided by parallel efforts to evaluate commercialization economics and process parameters. We describe efforts to identify novel genes and hosts for the generation of an optimal biocatalyst, analysis of diesel fuels (untreated, chemically oxidized and hydrotreated) for organosulfur compound composition and directed evolution of enzymes central to the biodesulfurization pathway to optimize properties important for their use in a biocatalyst. Finally we will summarize the challenges and issues that are central to successful development of a viable biodesulfurization process.

David Nunn; James Boltz; Philip M. DiGrazia; Larry Nace

2006-03-03T23:59:59.000Z

217

Advanced solids NMR studies of coal structure and chemistry. Progress report, September 1, 1995--February 28, 1996  

SciTech Connect

This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NMR methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methine groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. We will also develop NMR methods for probing coal macropore structure using hyperpolarized {sup 129}Xe as a probe, and study the molecular dynamics of what appear to be mobile, CH{sub 2} rich, long chain hydrocarbons. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples.

Zilm, K.W.

1996-09-01T23:59:59.000Z

218

Monolithic solid oxide fuel cell technology advancement for coal-based power generation  

DOE Green Energy (OSTI)

The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

Not Available

1992-04-14T23:59:59.000Z

219

Demonstration Development Project: Readiness of Advanced Ultra-Supercritical Pulverized Coal Technology for Demonstration  

Science Conference Proceedings (OSTI)

Advanced ultra-supercritical (A-USC) pulverized coal technology operates with main steam temperatures in the range of 700°C to 760°C (1290°F to 1400°F) and has the potential to raise net generating efficiency by up to 50% (HHV). Economic analysis indicates that, by lowering CO2/MWh, A-USC technology lowers the cost of CO2 capture and storage when it is integrated with the power plant. To achieve these higher operating temperatures, nickel alloys and associated fabrication procedures are b...

2011-08-26T23:59:59.000Z

220

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

Science Conference Proceedings (OSTI)

This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products  

SciTech Connect

This eleventh quarterly report describes work done during the eleventh three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to two outside contacts.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini; Wiles Elder

1999-04-05T23:59:59.000Z

222

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

Science Conference Proceedings (OSTI)

This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

1999-01-01T23:59:59.000Z

223

Desulfurization of phosphogypsum  

SciTech Connect

Phosphogypsum is mixed with fine coal, balled, and charged to a travelling grate where the charge is heated under reducing conditions to evolve sulfur and/or sulfur dioxide for conversion into sulfuric acid.

Gardner, S.A.; Ban, Th.E.

1985-03-05T23:59:59.000Z

224

Coal desulfurization in a rotary kiln combustor  

Science Conference Proceedings (OSTI)

Several issues that could have an impact on the capability to burn anthracite culm in a rotary bed boiler were identified; specifically, questions were raised concerning the specifications of the anthracite culm itself and some relating to the equipment. The anthracite culm delivered was wet, (with more than 10 percent moisture), and coarser than feed material for fluidized boilers. It was felt that using finer fuel, ensuring that it is largely dry, would aid the combustion of anthracite culm. It also appeared that if provisions were made for more efficient internal and external recycle of ash, this would also enhance the combustion of this fuel. Accordingly, the decision was made to conduct an additional campaign of tests that would incorporate these changes. The tests, conducted on July 15 and 16, 1991, involved an anthracite culm that was, in fact, obtained from a fluidized bed a heating value of 3,000 Btu/lb and came with a top size of 1/4-inch. Despite these changes, sustained combustion could not be achieved without the use of large quantities of supplemental fuel. Based on these tests, we tend to conclude that the rotary kiln is ill suited for the combustion of hard-to-burn, low-grade solid fuels like anthracite culm.

Cobb, J.T. Jr.

1991-08-29T23:59:59.000Z

225

High-sulfur Coal Desulfurization for Oxyfuels  

NLE Websites -- All DOE Office Websites (Extended Search)

reclaim waste heat while delivering chilling Ammonia bottoming cycle with air-cooled condenser, could use a mixture organic working fluids to maximize conversion from waste heat...

226

Task 4 -- Conversion to a coal-fueled advanced turbine system (CFATS)  

SciTech Connect

Solar is developing the technologies for a highly efficient, recuperated, Advanced Turbine System (ATS) that is aimed at the dispersed power generation market. With ultra-low-emissions in mind the primary fuel selected for this engine system is natural gas. Although this gas fired ATS (GFATS) will primarily employ natural gas the use of other fuels particular those derived from coal and renewable resources cannot be overlooked. The enabling technologies necessary to direct fire coal in gas turbines were developed during the 1980`s. This Solar development co-sponsored by the US Department of Energy (DOE) resulted in the testing of a full size coal-water-slurry fired combustion system. In parallel with this program the DOE funded the development of integrated gasification combined cycle systems (IGCC). This report describes the limitations of the Solar ATs (recuperated engine) and how these lead to a recommended series of modifications that will allow the use of these alternate fuels. Three approaches have been considered: direct-fired combustion using either a slagging combustor, or a pressurized fluidized bed (PFBC), externally or indirectly fired approaches using pulverized fuel, and external gasification of the fuel with subsequent direct combustion of the secondary fuel. Each of these approaches requires substantial hardware and system modifications for efficient fuel utilization. The integration issues are discussed in the sections below and a recommended approach for gasification is presented.

1996-04-15T23:59:59.000Z

227

Advanced coal-fueled gas turbine systems. Annual report, July 1991--June 1992  

DOE Green Energy (OSTI)

Westinghouse`s Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO{sub x} emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO{sub x} levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

Not Available

1992-09-01T23:59:59.000Z

228

Measurement and modeling of advanced coal conversion processes, Volume I, Part 1. Final report, September 1986--September 1993  

Science Conference Proceedings (OSTI)

The objective of this program was the development of a predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. The foundation to describe coal specific conversion behavior was AFR`s Functional Group and Devolatilization, Vaporization and Crosslinking (DVC) models, which had been previously developed. The combined FG-DVC model was integrated with BYU`s comprehensive two-dimensional reactor model for combustion and coal gasification, PCGC-2, and a one-dimensional model for fixed-bed gasifiers, FBED-1. Progress utilizing these models is described.

Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

1995-09-01T23:59:59.000Z

229

Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, April--June 1992  

Science Conference Proceedings (OSTI)

The Department of Energy/Morgantown Energy Technology Center (DOE/METC) has initiated research on the disposal of solid wastes from advanced coal processes. The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Environmental Research Center (EERC) to design, construct, and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. There has been considerable research on the characteristics and laboratory leaching behavior of coal wastes -- a lesser amount on wastes from advanced coal processes. However, very little information exists on the field disposal behavior of these wastes. Information on field disposal behavior is needed (a) as input to predictive models being developed, (b) as input to the development of rule of thumb design guidelines for the disposal of these wastes, and (c) as evidence of the behavior of these wastes in the natural environment.

Not Available

1992-12-31T23:59:59.000Z

230

Enhanced Control of Mercury by Wet Flue Gas Desulfurization Systems - Site 3 Topical Report  

Science Conference Proceedings (OSTI)

Researchers conducted field tests to evaluate the ability of a variety of materials to oxidize vapor-phase elemental mercury at a coal-fired power plant equipped with a wet flue gas desulfurization (FGD) system. Results, while confounded by measurement difficulties, showed that under bituminous coal flue gas conditions, two catalysts, Pd #1 and Carbon #6, continued to oxidize at least 85 percent of the inlet elemental mercury after three months.

2002-02-06T23:59:59.000Z

231

DOE/EA-1498: Advanced Coal Utilization Byproduct Beneficiation Processing Plant Ghent Power Station, Carroll County, Kentucky (01/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1498 EA-1498 Advanced Coal Utilization Byproduct Beneficiation Processing Plant Ghent Power Station, Carroll County, Kentucky Final Environmental Assessment January 2005 Note: No comments were received during the public comment period from September 25 to October 25, 2004. Therefore, no changes to the Draft Environmental Assessment were necessary. National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The proposed Federal action is to provide funding, through a cooperative agreement with the University of Kentucky Research Foundation (UKRF), Center for Applied Energy Research (CAER), for the design, construction, and operation of an advanced coal ash beneficiation processing plant at Kentucky Utilities (KU) Ghent Power Station in Carroll County, Kentucky.

232

Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 2  

Science Conference Proceedings (OSTI)

The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume II contains papers presented at the following sessions: filter technology issues; hazardous air pollutants; sorbents and solid wastes; and membranes. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.

1994-06-01T23:59:59.000Z

233

RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS  

Science Conference Proceedings (OSTI)

Prior to the initiation of this study, understanding of the long-term behavior of environmentally-exposed Coal Combustion By-Products (CCBs) was lacking in (among others) two primary areas addressed in this work. First, no method had been successfully applied to achieve full quantitative analysis of the partitioning of chemical constituents into reactive or passive crystalline or noncrystalline compounds. Rather, only semi-quantitative methods were available, with large associated errors. Second, our understanding of the long-term behavior of various CCBs in contact with the natural environment was based on a relatively limited set of study materials. This study addressed these areas with two objectives, producing (1) a set of protocols for fully quantitative phase analysis using the Rietveld Quantitative X-ray Diffraction (RQXRD) method and (2) greater understanding of the hydrologic and geochemical nature of the long-term behavior of disposed and utilized CCBs. The RQXRD technique was initially tested using (1) mixtures of National Institute of Standards and Technology (NIST) crystalline standards, and (2) mixtures of synthetic reagents simulating various CCBs, to determine accuracy and precision of the method, and to determine the most favorable protocols to follow in order to efficiently quantify multi-phase mixtures. Four sets of borehole samples of disposed or utilized CCBs were retrieved and analyzed by RQXRD according to the protocols developed under the first objective. The first set of samples, from a Class F ash settling pond in Kentucky disposed for up to 20 years, showed little mineralogical alteration, as expected. The second set of samples, from an embankment in Indiana containing a mixture of chain-grate (stoker) furnace ash and fluidized bed combustion (FBC) residues, showed formation of the mineral thaumasite, as observed in previously studied exposed FBC materials. Two high-calcium CCBs studied, including a dry-process flue gas desulfurization (FGD) by-product disposed in the Midwest, and a mixture of Class C fly ash and wet process FGD by-product codisposed in North Dakota, appeared relatively unchanged mineralogically over the up to 5 and 17 years of emplacement, respectively. Each of these two materials contained mineralogies consistent with short-term hydration products of their respective starting (dry) materials. The hydration product ettringite persisted throughout the duration of emplacement at each site, and the diagenetic ash alteration product thaumasite did not form at either site. Explanations for the absence of thaumasite in these two sites include a lack of significant carbonate, sulfate, and alkalinity sources in the case of the North Dakota site, and a lack of sulfate, alkalinity, and sufficient moisture in the Midwest site. Potential for future thaumasite formation in these materials may exist if placed in contact with cold, wet materials containing the missing components listed above. In the presence of the sulfite scrubber mineral hannebachite, the ettringites formed had crystallographic unit cell dimensions smaller than those of pure sulfate ettringite, suggesting either incorporation of sulfite ions into the ettringite structure, or incorporation of silicon and carbonate ions, forming a solid solution towards thaumasite.

Gregory J. McCarthy; Dean G. Grier

2001-01-01T23:59:59.000Z

234

Coal liquefaction process  

DOE Patents (OSTI)

An improved coal liquefaction process is provided which enables conversion of a coal-oil slurry to a synthetic crude refinable to produce larger yields of gasoline and diesel oil. The process is characterized by a two-step operation applied to the slurry prior to catalytic desulfurization and hydrogenation in which the slurry undergoes partial hydrogenation to crack and hydrogenate asphaltenes and the partially hydrogenated slurry is filtered to remove minerals prior to subsequent catalytic hydrogenation.

Karr, Jr., Clarence (Morgantown, WV)

1977-04-19T23:59:59.000Z

235

Identification of Unknown Selenium Species in Flue Gas Desulfurization Water  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) is a process used in the electrical power industry to remove sulfur dioxide (SO2) from flue gas produced by coal-fired power plants. In a wet FGD system, circulating water must be periodically blown down and treated to remove solids and dissolved chemicals. Along with SO2, other substances in flue gas may dissolve in water, including selenium (Se). In addition to the common selenium species selenite and selenate, past research has identified selenium-containing species that...

2008-03-25T23:59:59.000Z

236

THE BIOCATALYTIC DESULFURIZATION PROJECT  

DOE Green Energy (OSTI)

The analysis of Petro Star diesel sulfur species is complete and a report is attached. Further analytical efforts will concentrate on characterization of diesel fuel, hydrodesulfurized to varying degrees, in order to determine sulfur species that may be problematic to hydrogen treatment and represent potential target substrates for biodesulfurization in a combined HDS-BDS process. Quotes have been received and are being considered for the partial treatment of Petro Star Inc. marine diesel fuel. Direction of research is changing slightly; economic analysis of the hyphenated--BDSHDS, BDS-CED--has shown the highest probability of success to be with a BDS-HDS process where the biodesulfurization precedes hydrodesulfurization. Thus, the microorganisms will be tailored to focus on those compounds that tend to be recalcitrant to hydrodesulfurization and decrease the severity of the hydrodesulfurization step. A separate, detailed justification for this change is being prepared. Research activities have continued in the characterization of the desulfurization enzymes from multiple sources. Genes for all DszA, -B, -C and -D enzymes (and homologs) have been cloned and expressed. Activity determinations, on a variety of substituted benzothiophene and dibenzothiophene substrates, have been carried out and continue. In addition, chemical synthesis efforts have been carried out to generate additional substrates for analytical standards and activity determinations. The generation of a GSSM mutant library of the ''Rhodococcus IGTS8 dszA'' gene has been completed and development of protocols for a high throughput screen to expand substrate specificity are nearing completion. In an effort to obtain improved hosts as biocatalyst, one hundred-thirty ''Rhodococcus'' and related strains are being evaluated for growth characteristics and other criteria deemed important for an optimal biocatalyst strain. We have also begun an effort to generate derivatives of the entire IGTS8 BDS plasmid that will allow for its easy transfer and manipulation into a variety of hosts. To support this activity and to gain an understanding of additional genes that may potentially affect BDS activity, the nucleotide sequence of the entire complement of plasmids in IGTS8 is being determined. Lastly, we continue to develop genetic screens and selections for the discovery and improvement of the biodesulfurization genes and strains.

Scott Collins; David Nunn

2003-10-01T23:59:59.000Z

237

Upgraded Coal Interest Group. Technical progress report, January 1, 1995--March 31, 1995  

SciTech Connect

This report presents information from the coal interest group. Topics of discussion at the meeting included the current political views concerning the Department of Energy and programs contained therein. The group met on January 10 and 11, in Nashville, TN. The status of various coal upgrading technologies was also reviewed. Four new technology opportunities were given reviews, Coal/Waste pellets, Custom Coals advanced technology, CSRC sulfur removing bacteria and a Mag-Mill which is a magnetic separation done within the pulverizer. Coal Waste pellets is a technology for making pellets of coal and fiber waste from recycling plants. The incentives are low cost and low sulfur and nitrogen. Lebowitz made a field trip to the pilot unit in Canton Ohio. The Mag Mill takes advantage of the natural concentration of pyrite in the pulverizer recycle stream (due to its hardness). Special magnets are installed in the mill to remove pyrite from this stream. Custom Coals reported on an advanced two step process for removal of organic sulfur from coal. Consolidated Sulfur Reduction Co. reported on a two step microbial desulfurization process.

Weber, W. [Electric Power Research Institute, Chattanooga, TN (United States); Lebowitz, H.E. [Fossil Fuel Sciences, Palo Alto, CA (United States)

1995-08-01T23:59:59.000Z

238

Integration of Advanced Emissions Controls to Produce Next-Generation Circulating Fluid Bed Coal Generating Unit (withdrawn prior to award)  

NLE Websites -- All DOE Office Websites (Extended Search)

contacts contacts Brad tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov PaRtIcIPant Colorado Springs Utilities Colorado Springs, CO aDDItIonaL tEaM MEMBERs Foster Wheeler Power Group, Inc. Clinton, NJ IntegratIon of advanced emIssIons controls to Produce next-generatIon cIrculatIng fluId Bed coal generatIng unIt (wIthdrawn PrIor to award) Project Description Colorado Springs Utilities (Springs Utilities) and Foster Wheeler are planning a joint demonstration of an advanced coal-fired electric power plant using advanced, low-cost emission control systems to produce exceedingly low emissions. Multi- layered emission controls will be

239

Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993  

SciTech Connect

Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

Smith, V.E.

1994-05-01T23:59:59.000Z

240

Enhanced durability of high-temperature desulfurization sorbents for moving-bed applications  

SciTech Connect

Sulfur removal will be mandatory for all power generation coal gas applications in order to comply with future environmental standards. Two promising technologies that are currently being optimized for coal-based power generation are the integrated gasification combined cycle (IGCC) and the gasifier/molten carbonate fuel cell (MCFC) systems. Zinc ferrite is currently the leading candidate to serve as a sulfur removal agent in the IGCC systems. GE has developed a patented moving-bed coal gas desulfurization system that has been shown to achieve a reduction in complexity and cost in a simplified IGCC system relative to conventional IGCC configurations (Cook et al, 1988).

Ayala, R.E. (GE Corporate Research and Development, Schenectady, NY (USA)); Gal, E. (GE Environmental Systems, Lebanon, PA (USA)); Gangwal, S.K. (Research Triangle Institute, NC (USA)); Jain, S. (Dept. of Energy, Morgantown, WV (USA))

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the WES, which involves injection into the flue gas duct upstream of the existing electrostatic 11 precipitator (ESP). The hot flue gas evaporates the water and the...

242

Engineering development of advanced physical fine coal cleaning technologies - froth flotation. Quarterly technical progress report No. 24, July 1, 1994--September 30, 1994  

SciTech Connect

A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

NONE

1995-04-01T23:59:59.000Z

243

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, 2 June 1992--1 June 1993  

SciTech Connect

This program was initiated in June of 1986 because advances in coal-fueled gas turbine technology over the previous few years, together with DOE-METC sponsored studies, served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine could ultimately be the preferred system in appropriate market application sectors. In early 1991 it became evident that a combination of low natural gas prices, stringent emission limits of the Clean Air Act and concerns for CO{sub 2} emissions made the direct coal-fueled gas turbine less attractive. In late 1991 it was decided not to complete this program as planned. The objective of the Solar/METC program was to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. Component development of the coal-fueled combustor island and cleanup system while not complete indicated that the planned engine test was feasible. Preliminary designs of the engine hardware and installation were partially completed. A successful conclusion to the program would have initiated a continuation of the commercialization plan through extended field demonstration runs. After notification of the intent not to complete the program a replan was carried out to finish the program in an orderly fashion within the framework of the contract. A contract modification added the first phase of the Advanced Turbine Study whose objective is to develop high efficiency, natural gas fueled gas turbine technology.

LeCren, L.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1993-06-01T23:59:59.000Z

244

Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control. Topical report for Subtask 3.1, In-bed sulfur capture tests; Subtask 3.2, Electrostatic desulfurization; Subtask 3.3, Microbial desulfurization and denitrification  

SciTech Connect

This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. [Institute of Gas Technology, Chicago, IL (United States); Gidaspow, D.; Gupta, R.; Wasan, D.T. [Illinois Inst. of Tech., Chicago, IL (United States); Pfister, R.M.: Krieger, E.J. [Ohio State Univ., Columbus, OH (United States)

1992-05-01T23:59:59.000Z

245

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

Science Conference Proceedings (OSTI)

Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

James T. Cobb, Jr.

2003-09-12T23:59:59.000Z

246

Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems  

Science Conference Proceedings (OSTI)

This report summarizes technical progress on the program â??Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systemsâ?ť funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed jointly by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering and the Department of Materials Science and Engineering at Virginia Tech. This three-year project started on October 1, 2008. In the project, a fiber optical sensing system based on intrinsic Fabry-Perot Interferometer (IFPI) was developed for strain and temperature measurements for Ultra Supercritical boiler condition assessment. Investigations were focused on sensor design, fabrication, attachment techniques and novel materials for high temperature and strain measurements. At the start of the project, the technical requirements for the sensing technology were determined together with our industrial partner Alstom Power. As is demonstrated in Chapter 4, all the technical requirements are successfully met. The success of the technology extended beyond laboratory test; its capability was further validated through the field test at DOE NETL, in which the sensors yielded distributed temperature mapping of a testing coupon installed in the turbine test rig. The measurement results agreed well with prior results generated with thermocouples. In this project, significant improvements were made to the IFPI sensor technology by splicing condition optimization, transmission loss reduction, sensor signal demodulation and sensor system design.

Anbo Wang; Gary Pickrell

2011-12-31T23:59:59.000Z

247

Advanced CO2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems Background Gasification of coal or other solid feedstocks (wood waste, petroleum coke, etc.) is a clean way to produce electricity and produce or co-produce a variety of commercial products. The major challenge is cost reduction; current integrated gasification combined cycle (IGCC) technology is estimated to produce power at a cost higher than that of pulverized coal combustion. However, the Gasification

248

Development of an advanced process for drying fine coal in an inclined fluidized bed  

SciTech Connect

The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

1990-02-01T23:59:59.000Z

249

Program on Technology Innovation: Advanced Concepts in Slurry-Fed Low-Rank Coal Gasification  

Science Conference Proceedings (OSTI)

This report documents the results of a Technology Innovation screening study of concepts for improving the performance of slurry-fed gasification combined cycle power plants on low rank coals by using two innovative coal preparation technologies: coal slurries with liquid CO2 as the fluid, and hot water drying. Slurry-fed gasification technologies have a cost advantage over dry-fed systems, but they suffer a large performance penalty when used on low rank coals because of the large fraction of water and ...

2006-12-01T23:59:59.000Z

250

Land Application Uses for Dry Flue Gas Desulfurization By-Products  

Science Conference Proceedings (OSTI)

New sulfur dioxide removal technologies produce a dry, solid by-product material consisting of excess sorbent, reaction products that contain sulfates and sulfites, and coal fly ash. The scarcity of landfill disposal sites for such flue gas desulfurization (FGD) by-products has led to a long-term study on possible large-volume beneficial applications. To date, FGD by-products have been successfully used in agriculture, construction, and strip mine reclamation.

1995-09-26T23:59:59.000Z

251

Advanced characterization of physical properties of coals with different coal structures by nuclear magnetic resonance and X-ray computed tomography  

Science Conference Proceedings (OSTI)

In order to understand the correlation between coal structure and physical property of coal, samples with different coal structures were collected from the Late Permian period coal seams in the Laochang area, Yunnan Province, China. A set of experiments ... Keywords: Adsorption capacities, Coal structure, Nuclear magnetic resonance (NMR), Seepage capacities, X-ray computed tomography (X-CT)

Song Li; Dazhen Tang; Hao Xu; Zi Yang

2012-11-01T23:59:59.000Z

252

Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization  

Science Conference Proceedings (OSTI)

The semidry flue gas desulfurization (FGD) process has many advantages over the wet FGD process for moving sulfur dioxide emissions from pulverized coal-fired power plants. Semidry FGD with a rapidly hydrated sorbent was studied in a pilot-scale circulating fluidized bed (CFB) experimental facility. The sorbent was made from lumps of lime and coal fly ash. The desulfurization efficiency was measured for various operating parameters, including the sorbent recirculation rate and the water spray method. The experimental results show that the desulfurization efficiencies of the rapidly hydrated sorbent were 1.5-3.0 times higher than a commonly used industrial sorbent for calcium to sulfur molar ratios from 1.2 to 3.0, mainly due to the higher specific surface area and pore volume. The Ca(OH){sub 2} content in the cyclone separator ash was about 2.9% for the rapidly hydrated sorbent and was about 0.1% for the commonly used industrial sorbent, due to the different adhesion between the fine Ca(OH){sub 2} particles and the fly ash particles, and the low cyclone separation efficiency for the fine Ca(OH){sub 2} particles that fell off the sorbent particles. Therefore the actual recirculation rates of the active sorbent with Ca(OH){sub 2} particles were higher for the rapidly hydrated sorbent, which also contributed to the higher desulfurization efficiency. The high fly ash content in the rapidly hydrated sorbent resulted in good operating stability. The desulfurization efficiency with upstream water spray was 10-15% higher than that with downstream water spray. 20 refs., 7 figs., 1 tab.

Jie Zhang; Changfu You; Suwei Zhao; Changhe Chen; Haiying Qi [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering

2008-03-01T23:59:59.000Z

253

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Coal Conversion Process Demonstration - Project Brief PDF-192KB Rosebud SynCoal Partnership, Colstrip, MT PROGRAM PUBLICATIONS Final Reports Advanced Coal Conversion...

254

Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Volume 1, Bench-scale testing and analysis  

Science Conference Proceedings (OSTI)

AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

Jha, M.C.; Berggren, M.H.

1989-05-02T23:59:59.000Z

255

Development of a Coal Quality Expert  

SciTech Connect

ABB Power Plant Laboratories Combustion Engineering, Inc., (ABB CE) and CQ Inc. completed a broad, comprehensive program to demonstrate the economic and environmental benefits of using higher quality U.S. coals for electrical power generation and developed state-of-the-art user-friendly software--Coal Quality Expert (CQE)-to reliably predict/estimate these benefits in a consistent manner. The program was an essential extension and integration of R and D projects performed in the past under U.S. DOE and EPRI sponsorship and it expanded the available database of coal quality and power plant performance information. This software will permit utilities to purchase the lowest cost clean coals tailored to their specific requirements. Based on common interest and mutual benefit, the subject program was cosponsored by the U.S. DOE, EPRI, and eight U.S. coal-burning utilities. In addition to cosponsoring this program, EPN contributed its background research, data, and computer models, and managed some other supporting contracts under the terms of a project agreement established between CQ Inc. and EPRI. The essential work of the proposed project was performed under separate contracts to CQ Inc. by Electric Power Technologies (El?'T), Black and Veatch (B and V), ABB Combustion Engineering, Babcock and Wilcox (B and W), and Decision Focus, Inc. Although a significant quantity of the coals tied in the United States are now cleaned to some degree before firing, for many of these coals the residual sulfur content requires users to install expensive sulfur removal systems and the residual ash causes boilers to operate inefficiently and to require frequent maintenance. Disposal of the large quantities of slag and ash at utility plant sites can also be problematic and expensive. Improved and advanced coal cleaning processes can reduce the sulfur content of many coals to levels conforming to environmental standards without requiring post-combustion desulfurization systems. Also, some coals may be beneficiated or blended to a quality level where significantly less costly desulfurization systems are needed. Coal cleaning processes may also be used to remove the precursors of other troublesome emissions that can be identified now or in the future. An added benefit of coal cleaning and blending is the reduction in concentrations of mineral impurities in the fuel leading to improved performance and operation of the'' boiler in which it is fired. The ash removed during the pre-combustion cleaning process can be more easily and safely disposed of at the mine than at the utility plant after combustion. EPRI's Coal Quality Impact Model (CQIM) has shown that improved fuel quality can result in savings in unit capital and operating costs. This project produced new and improved software to select coal types and specifications resulting in the best quality and lowest cost fuel to meet specific environmental requirements.

None

1998-06-20T23:59:59.000Z

256

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

of deploying advanced coal power in the Chinese context,”12 2.6. International coal prices and12 III. Chinese Coal

Aden, Nathaniel

2010-01-01T23:59:59.000Z

257

Program on Technology Innovation: Advanced Concepts in Slurry Fed Low Rank Coal Gasification  

Science Conference Proceedings (OSTI)

This document reports on experimental and theoretical analyses of low rank coal/liquid CO2 slurries (LRC/CO2(l)). The results showed that viscosities of LRC/CO2(l) were much lower than for LRC/water slurries of similar coal concentrations and higher coal concentrations could be obtained for liquid CO2 slurries than for water-based slurries at flow conditions typical of industrial scale gasification systems. ASPENplus analyses of a typical integrated gasification combined cycle (IGCC) system showed no del...

2009-04-17T23:59:59.000Z

258

Leaching Assessment of Fly Ash, Flue Gas Desulfurization Filter Cake, and Fixated Scrubber Solids  

Science Conference Proceedings (OSTI)

The by-products of coal combustion (for example, fly ash and flue gas desulfurization filter cake) are an important environmental concern due to potential leaching of trace constituents and the large volume of residues produced. About 40% of these by-products may be utilized as raw materials outside of the energy sector; the remaining 60% of the coal combustion products (CCPs) are disposed of as waste. At Plant 14090, the subject of this report, fly ash and scrubber sludge are blended with quicklime ...

2012-12-03T23:59:59.000Z

259

Mechanical and Transport Characteristics of Coal-Biomass Mixtures for Advanced IGCC Systems.  

E-Print Network (OSTI)

??Co-firing of coal-biomass is one effective means of reducing CO2 emissions as biomass is a carbon neutral supplementary fuel. Co-feeding of biomass is technically challenging… (more)

Chandra, Divya

2012-01-01T23:59:59.000Z

260

Operation of the Wilsonville Advanced Coal Liquefaction R&D Facility, 1981  

Science Conference Proceedings (OSTI)

The addition of a hydrotreater launched the development of two-stage liquefaction at the Wilsonville test facility. This and other research undertaken during 1981 accelerated progress toward the production of high-quality, economical coal-derived liquid fuels.

1984-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Methodology for technology evaluation under uncertainty and its application in advanced coal gasification processes  

E-Print Network (OSTI)

Integrated gasification combined cycle (IGCC) technology has attracted interest as a cleaner alternative to conventional coal-fired power generation processes. While a number of pilot projects have been launched to ...

Gong, Bo, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

262

Flue Gas Desulfurization Gypsum Agricultural Network  

Science Conference Proceedings (OSTI)

Research on flue gas desulfurization gypsum (FGDG) has been conducted under the auspices of the Flue Gas Desulfurization Gypsum Agricultural Network program sponsored by the Electric Power Research Institute (EPRI) in collaboration with individual utilities, the U.S. Environmental Protection Agency, U.S. Department of Agriculture-Agricultural Research Service, and universities. This report describes work conducted in northwestern New Mexico in 2008–2012 as part of that effort. Two separate ...

2012-10-15T23:59:59.000Z

263

Technology status and project development risks of advanced coal power generation technologies in APEC developing economies  

SciTech Connect

The report reviews the current status of IGCC and supercritical/ultrasupercritical pulverized-coal power plants and summarizes risks associated with project development, construction and operation. The report includes an economic analysis using three case studies of Chinese projects; a supercritical PC, an ultrasupercritical PC, and an IGCC plant. The analysis discusses barriers to clean coal technologies and ways to encourage their adoption for new power plants. 25 figs., 25 tabs.

Lusica, N.; Xie, T.; Lu, T.

2008-10-15T23:59:59.000Z

264

Advanced Concepts in Slurry-Fed Low-Rank Coal Gasification  

Science Conference Proceedings (OSTI)

After an initial scouting study (described in Electric Power Research Institute [EPRI] Technical Update 1014432) revealed that using liquid CO2 in place of water in coal slurries could have several beneficial effects on integrated-gasificationcombined-cycles (IGCCs) employing CO2 capture, EPRI's Program on Technology Innovation funded additional work on this subject. This report summarizes the results of rheological testing performed with slurries made from liquid CO2 and two types of subbituminous coal ...

2008-09-14T23:59:59.000Z

265

Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes  

DOE Green Energy (OSTI)

This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

1982-01-01T23:59:59.000Z

266

Toxic emissions from a cyclone burner boiler with an ESP and with the SNOX demonstration and from a pulverized coal burner boiler with an ESP/wet flue gas desulfurization system  

SciTech Connect

Emission factors for VOC and aldehydes, dioxins/furans, and PAH/SVOC are presented in Tables 6--8, respectively. Each table includes results for Coal Creek, Niles Boiler, and the SNOX process. As shown in Table 6, benzene and toluene were measured in the Coal Creek, Niles Boiler, and SNOX stack emissions in highly variable concentrations. Over 90 percent of the VOC analyzed were not detected in the stack gases, and the emission factor for these VOC ranges from 1.1 to 1.4 {mu}g/MJ for the three systems. Emission factors for the four aldehydes that were measured range from 0.47 to 31 {mu}g/MJ for Coal Creek, 1.7 to 38 {mu}g/MJ for the Niles Boiler, and 3.6 to 167 {mu}g/MJ for the SNOX process. Acetaldehyde is at the highest concentration of the four aldehydes in all three units, a finding which is consistent with previous work. Dioxin/furan emission factors are provided in Table 7. Emission, factors for these compounds range from 0.40 to 6.51 pg/MJ for Coal Creek and 0.45 to 8.14 pg/MJ for the Niles Boiler. Dioxins/furans were not determined in the SNOX process. The compounds 1,2,3,4,6,7,8heptachlorodibenzo-p-dioxin, octachlorodibenzo-p-dioxin, and 2,3,7,8-tetrachlorodibenzofuran were detected in both units. The predominance of these species in high SO{sub 2} environments has been previously observed. All other 2,3,7,8 substituted dioxin/furan isomers listed in Table 8 were not detected in either unit. Table 8 lists the emission factors for PAH/SVOC. Emission factors range from 0.3 to 233 ng/MJ for Coal Creek, 0.5 to 273 ng/MJ for the Niles Boiler, and 0.3 to 130 ng/MJ for the SNOX process. Acetophenone is at the highest concentration of the PAH/SVOC in all three units. Naphthalene, dibenzofuran, phenanthrene, and fluoranthene are also present at relatively high concentrations in comparison to the other PAH/SVOC.

Sverdrup, G.M.; Riggs, K.B.; Kelly, T.J.; Barrett, R.E. [Battelle, Columbus, OH (United States); Peltier, R.G.; Cooper, J.A. [Chester Environmental, Monroeville, PA (United States)

1994-05-01T23:59:59.000Z

267

Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Annual report, October 1991--September 1992  

DOE Green Energy (OSTI)

The program is being conducted by a team consisting of AlliedSignal Aerospace Systems & Equipment (ASE) (formerly AiResearch Los Angeles Division) and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

Not Available

1993-05-01T23:59:59.000Z

268

Bench-scale Development of an Advanced Solid sorbent-based CO2 Capture Process for Coal-fired Power Plalnts  

NLE Websites -- All DOE Office Websites (Extended Search)

scale Development of an scale Development of an Advanced Solid Sorbent-based CO 2 Capture Process for Coal-fired Power Plants Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions, & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current

269

Advanced direct coal liquefaction concepts. Quarterly report, October 1, 1993--December 31, 1993  

DOE Green Energy (OSTI)

Six runs on the bench unit were successfully completed this quarter. The runs covered twenty five different operating conditions and yield periods, and involved 336 hours of operation. In the bench unit, increased temperature of first stage operation (410{degree}C) and direct addition of the powdered solid sodium aluminate to the feed as first stage catalyst improved both coal and carbon monoxide conversion. To achieve 90%+ overall coal conversion, temperatures of 430{degree}C+ were required in the second stage. Oil yields (pentane soluble liquid product) in excess of 65 wt % based on MAF Black Thunder coal, were achieved both with iron oxide/dimethyl disulfide and ammonium molybdate/carbon disulfide second stage catalysts. C{sub l}-C{sub 3} hydrogen gas yields were modest, generally 7-8 wt % on MAF coal, and overall hydrogen consumption (including first stage shift hydrogen) was in the order of 7-8 wt % on MAF coal. The ammonium molybdate catalyst system appeared to give slightly higher oil yields and hydrogen consumption, as was expected, but the differences may not be significant.

Berger, D.J.; Parker, R.J.; Simpson, P.L. [Canadian Energy Development, Inc., Edmonton, AB (Canada)

1993-12-31T23:59:59.000Z

270

Advanced coal-gasification technical analyses. Project summary. Final report, December 1982-September 1985  

SciTech Connect

This report summarizes the work performed by KRSI to support the GRI Fossil Fuels Gasification Program in identification and development of the most economical and technically feasible process(es) for production of SNG from coal. The work was performed under several tasks that fall under three topical categories: (1) Technology Review and Evaluations, (2) Coal Fines Disposal and (3) Technical/Economic Evaluations. The final task reports appear in the three appendices of the report. The Technology Review studies provide an overview of the coal gasification, shift/methanation, acid-gas removal, and sulfur-recovery technologies for use in coal-to-SNG plant design; Side-by-side comparisons of selected processes in each category provide background for process selection. The studies relating to Coal Fines Disposal allow comparison and guidance with regard to feedstock-management options when fixed-bed gasifiers are to be used. The first-pass designs and cost estimates prepared under Technical/Economic Evaluations compare and assess North Dakota lignite-to-SNG plants based on Lurgi, Westinghouse (now KRW) and Direct Methanation processes. A plant size vs. cost study provides an insight to selection of an economical plant size.

Cover, A.E.; Hubbard, D.A.; Jain, S.K.; Shah, K.V.

1986-01-01T23:59:59.000Z

271

A BP neural network predictor model for desulfurizing molten iron  

Science Conference Proceedings (OSTI)

Desulfurization of molten iron is one of the stages of steel production process. A back-propagation (BP) artificial neural network (ANN) model is developed to predict the operation parameters for desulfurization process in this paper. The primary objective ...

Zhijun Rong; Binbin Dan; Jiangang Yi

2005-07-01T23:59:59.000Z

272

Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development  

SciTech Connect

Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

Stephenson, M.

1994-03-01T23:59:59.000Z

273

Operating Experience, Risk, and Market Assessment of Advanced Coal Technologies: 2006  

Science Conference Proceedings (OSTI)

Plans to build almost 15 GW of supercritical pulverized coal (PC) plants in the US were made during 2006. Conventional supercritical plants accounted for 76 percent of this capacity, and the others are ultra supercritical plants with main steam temperatures at, or just above, 590C (1100F). A driving force for the move from sub-critical designs is as a hedge against increasing fuel prices by increasing efficiency to lower coal consumption. At the same time this also lowers emission rates. Over 73 percent ...

2006-12-13T23:59:59.000Z

274

Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992  

SciTech Connect

Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

1992-12-01T23:59:59.000Z

275

Development and testing of a high efficiency advanced coal combustor: Phase 3, industrial boiler retrofit. Quarterly technical progress report number 12, July 1, 1994--September 30, 1994  

SciTech Connect

The objective of this project is to retrofit the previously developed High Efficiency Advanced Coal Combustor (HEACC) to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. During this reporting period, data reduction/evaluation and interpretation from the long term four hundred hours Proof-of-Concept System Test under Task 3 were completed. Cumulatively, a total of approximately 563 hours of coal testing was performed with 160 hrs on 100% coal and over 400 hours with co-firing coal and gas. The primary objectives of this testing were to: (1) obtain steady state operation consistently on 100% coal; (2) increase carbon conversion efficiency from 95% to the project goal of 98%; and (3) maintain NOx emissions at or below 0.6 lbs/MBtu. The following specific conclusions are based on results of coal-fired testing at Penn State and the initial economic evaluation of the HEACC system: a coal handling/preparation system can be designed to meet the technical requirements for retrofitting microfine coal combustion to a gas/oil-designed boiler; the boiler thermal performance requirements were met; the NOx emission target of was met; combustion efficiencies of 95% could be met on a daily average basis, somewhat below the target of 98%; the economic playback is very sensitive to fuel differential cost, unit size, and annual operating hours; continuous long term demonstration is needed to quantify ash effects and how to best handle ashes. The following modifications are recommended prior to the 1,000 hour demonstration phase testing: (1) coal feeding improvements--improved raw coal/storage and transport, installation of gravimetric feeder, and redesign/installation of surge bin bottom; (2) burner modification--minor modification to the tip of the existing HEACC burner to prevent change of flame shapes for no apparent reason.

Patel, R.L.; Borio, R. [ABB/Combustion Engineering, Windsor, CT (United States). Power Plant Labs.; Scaroni, A.W.; Miller, B.G. [Pennsylvania State Univ., University Park, PA (United States); McGowan, J.G. [Univ. of Massachusetts, Amherst, MA (United States)

1994-11-18T23:59:59.000Z

276

Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications: Task 9 - Selective agglomeration Module Testing and Evaluation.  

SciTech Connect

The primary goal of this project was the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing of both processes on six coals to optimize the processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report summarizes the findings of all the selective agglomeration (SA) test work performed with emphasis on the results of the PDU SA Module testing. Two light hydrocarbons, heptane and pentane, were tested as agglomerants in the laboratory research program which investigated two reactor design concepts: a conventional two-stage agglomeration circuit and a unitized reactor that combined the high- and low-shear operations in one vessel. The results were used to design and build a 25 lb/hr bench-scale unit with two-stage agglomeration. The unit also included a steam stripping and condensation circuit for recovery and recycle of heptane. It was tested on six coals to determine the optimum grind and other process conditions that resulted in the recovery of about 99% of the energy while producing low ash (1-2 lb/MBtu) products. The fineness of the grind was the most important variable with the D80 (80% passing size) varying in the 12 to 68 micron range. All the clean coals could be formulated into coal-water-slurry-fuels with acceptable properties. The bench-scale results were used for the conceptual and detailed design of the PDU SA Module which was integrated with the existing grinding and dewatering circuits. The PDU was operated for about 9 months. During the first three months, the shakedown testing was performed to fine tune the operation and control of various equipment. This was followed by parametric testing, optimization/confirmatory testing, and finally a 72-hour round the clock production run for each of the three project coals (Hiawatha, Taggart, and Indiana VII). The parametric testing results confirmed that the Taggart coal ground to a D80 of 30 microns could be cleaned to 1 lb ash/MBtu, whereas the Hiawatha and Indiana Vil coals had to be ground to D80s of 40 and 20 microns, respectively, to be cleaned to 2 lb ash/MBtu. The percent solids, residence time, shear intensity (impeller tip speed and energy input per unit volume), and heptane dosage were the main variables that affected successful operation (phase inversion or microagglomerate formation in the high-shear reactor and their growth to 2-3 mm in size during low shear). Downward inclination of the vibrating screen and adequate spray water helped produce the low ash products. Btu recoveries were consistently greater than 98%. Two-stage steam stripping achieved about 99% heptane recovery for recycle to the process. Residual hydrocarbon concentrations were in the 3000 to 5000 ppm range on a dry solids basis.

Moro, N.` Jha, M.C.

1997-09-29T23:59:59.000Z

277

NETL: News Release - DOE Announces Further Field Testing of Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Announces Further Field Testing of Advanced Mercury Control Technologies DOE Announces Further Field Testing of Advanced Mercury Control Technologies Six Projects Selected in Round 2 to Address Future Power Plant Mercury Reduction Initiatives PITTSBURGH, PA - With an eye on future federal regulations aimed at reducing mercury emissions, the U.S. Department of Energy has selected six additional projects as part of a DOE research program to advance the technical readiness of mercury control options for the Nation's fleet of coal-fired power plants. The six projects in this second round of awards build on last year's selection of eight projects, and will verify technology performance, evaluate costs, and assess balance-of-plant impacts. The projects will field test advanced, post-combustion technologies involving all coal types at utilities using pulverized coal or cyclone-boiler configurations, and focus on technologies capable of removing mercury from flue gas containing higher concentrations of elemental mercury. The technologies include sorbent injection, wet flue gas desulfurization systems enhancement, and combustion optimization.

278

Engineering-Economic Evaluations of Advanced Coal Technologies with Carbon Capture and Storage  

Science Conference Proceedings (OSTI)

This is the current update in a continuing report series that distills the results of engineering and economic studies, by the Electric Power Research Institute (EPRI) and others, to furnish an overview of the expected costs and performance for fossil-fuel-based power plants with carbon dioxide capture and sequestration, including pulverized coal, fluidized-bed combustion, integrated gasification combined cycle, and natural gas combined cycle. The report surveys publicly reported cost estimates and statu...

2010-09-30T23:59:59.000Z

279

Engineering/Economic Evaluations of Advanced Coal Technologies with Carbon Capture and Storage - 2012  

Science Conference Proceedings (OSTI)

This is the 2012 update in an annual report series that distills the results of engineering and economic studies by the Electric Power Research Institute (EPRI) and others to provide an overview of the expected costs and performance for fossil-fuel-based power plants with carbon capture and storage (CCS). Power plant types covered in the report include pulverized coal, fluidized-bed combustion, integrated-gasification combined-cycle, and natural-gas combined-cycle. The report surveys publicly ...

2012-08-31T23:59:59.000Z

280

Engineering-Economic Evaluations of Advanced Coal Technologies with Carbon Capture and Storage -- 2011  

Science Conference Proceedings (OSTI)

This is the 2011 update in a continuing report series that distills the results of engineering and economic studies by the Electric Power Research Institute (EPRI) and others to furnish an overview of the expected costs and performance for fossil-fuel-based power plants with carbon dioxide (CO2) capture and sequestration, including pulverized coal, fluidized-bed combustion, integrated-gasification combined-cycle, and natural-gas combined-cycle plants. The report surveys publicly reported cost estimates a...

2011-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992  

DOE Green Energy (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

282

Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals  

SciTech Connect

Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

Kloosterman, Jeff

2012-12-31T23:59:59.000Z

283

Advanced Research Materials Program  

NLE Websites -- All DOE Office Websites (Extended Search)

materials requirements for all fossil energy systems, including materials for advanced power generation and coal fuels technologies. Examples of these technologies include coal...

284

Engineering development of advanced coal-fired low-emission boiler system. Technical progress report No. 1, August--December 1992  

Science Conference Proceedings (OSTI)

The Pittsburgh Energy Technology Center of the US Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the ``Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems`` Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NO{sub x} emissions not greater than one-third NSPS; SO{sub x} emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: Improved ash disposability and reduced waste generation; reduced air toxics emissions; increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

Not Available

1993-02-26T23:59:59.000Z

285

Corrosion in Wet Flue Gas Desulfurization (FGD) Systems: Technical Root Cause Analysis of Internal Corrosion on Wet FGD Alloy Absorbers  

Science Conference Proceedings (OSTI)

State-of-the-art flue gas desulfurization (FGD) technologies have been or are being installed on most large coal-fired electric generating units in response to new regulatory emission requirements. Aggressive corrosion has been noted in some of these systems, presumably from the low pH, high chloride environments created in the FGD process. There exists a plethora of material systems (metallic, organic, plastics, coating, and so forth) available to construct these systems, but, because of cost, fabricabi...

2012-04-30T23:59:59.000Z

286

Inductively Coupled Plasma-Mass Spectrometry with Collision/Reaction Cell Technology for Analysis of Flue Gas Desulfurization Wastew aters  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) wastewater is produced by pollution control equipment used on coal-fired power plants to reduce sulfur dioxide emissions to air. Wet FGD scrubbers produce an aqueous blowdown stream that contains trace levels of metals that have been adsorbed from flue gas. Power plant owners need to measure concentrations of these metals for purposes of process control, discharge monitoring, or design and operation of wastewater treatment systems. FGD water is a very difficult matrix ...

2012-09-20T23:59:59.000Z

287

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993  

SciTech Connect

Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

1993-09-01T23:59:59.000Z

288

Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992  

SciTech Connect

Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

Speight, J.G.

1992-12-31T23:59:59.000Z

289

Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference  

SciTech Connect

The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

Geiling, D.W. [ed.

1993-08-01T23:59:59.000Z

290

[Engineering development of advanced coal-fired low-emission boiler systems]. Technical progress report, October--December 1995  

Science Conference Proceedings (OSTI)

The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emisssion boiler systems. The primary objectives are: NO{sub x} emissions, lb/million Btu; SO{sub 2} emissions, lb/million Btu; particulate emissions, lb/million Btu; and net plant efficiency, not less than 42%. The secondary objectives are: improved ash disposability; reduced waste generation; and reduced air toxics emissions. Accomplishments to date are summarized for the following tasks: task 1, project planning and management; task 7, component development and optimization; task 8, preliminary POC test facility design; task 9, subsystem test design and plan; task 10, subsystem test unit construction; and task 11, subsystem test operation and evaluation.

Wesnor, J.D.; Bakke, E. [ABB Environmental Systems, Birmingham, AL (United States); Bender, D.J.; Kaminski, R.S. [Raytheon Engineers and Constructors, Inc., Philadelphia, PA (United States)

1995-12-31T23:59:59.000Z

291

Enhanced durability and reactivity for zinc ferrite desulfurization sorbent  

Science Conference Proceedings (OSTI)

AMAX Research Development Center (AMAX R D) investigated methods for enhancing the reactivity and durability of zinc ferrite desulfurization sorbents. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For this program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation. Two base case sorbents, a spherical pellet and a cylindrical extrude used in related METC-sponsored projects, were used to provide a basis for the aimed enhancement in durability and reactivity. Sorbent performance was judged on the basis of physical properties, single particle kinetic studies based on thermogravimetric (TGA) techniques, and multicycle bench-scale testing of sorbents. A sorbent grading system was utilized to quantify the characteristics of the new sorbents prepared during the program. Significant enhancements in both reactivity and durability were achieved for the spherical pellet shape over the base case formulation. Overall improvements to reactivity and durability were also made to the cylindrical extrude shape. The primary variables which were investigated during the program included iron oxide type, zinc oxide:iron oxide ratio, inorganic binder concentration, organic binder concentration, and induration conditions. The effects of some variables were small or inconclusive. Based on TGA studies and bench-scale tests, induration conditions were found to be very significant.

Berggren, M.H.; Jha, M.C.

1989-10-01T23:59:59.000Z

292

The fate of alkali species in advanced coal conversion systems. Final report  

Science Conference Proceedings (OSTI)

The fate of species during coal combustion and gasification was determined experimentally in a fluidized bed reactor. A molecular-beam sampling mags spectrometer was used to identify and measure the concentration of vapor phase sodium species in the high temperature environment. Concurrent collection and analysis of the ash established the distribution of sodium species between gas-entrained and residual ash fractions. Two coals, Beulah Zap lignite and Illinois No. 6 bituminous, were used under combustion and gasification conditions at atmospheric pressure. Steady-state bed temperatures were in the range 800--950{degree}C. An extensive calibration procedure ensured that the mass spectrometer was capable of detecting sodium-containing vapor species at concentrations as low as 50 ppb. In the temperature range 800{degree} to 950{degree}C, the concentrations of vapor phase sodium species (Na, Na{sub 2}O, NaCl, and Na{sub 2}SO{sub 4}) are less than 0.05 ppm under combustion conditions with excess air. However, under gasification conditions with Beulah Zap lignite, sodium vapor species are present at about 14 ppm at a temperature of 820{degree}. Of this amount, NaCl vapor constitutes about 5 ppm and the rest is very likely NAOH. Sodium in the form of NaCl in coal enhances the vaporization of sodium species during combustion. Vapor phase concentration of both NaCl and Na{sub 2}SO{sub 4} increased when NaCl was added to the Beulah Zap lignite. Ash particles account for nearly 100% of the sodium in the coal during combustion in the investigated temperature range. The fine fly-ash particles (<10 {mu}m) are enriched in sodium, mainly in the form of sodium sulfate. The amount of sodium species in this ash fraction may be as high as 30 wt % of the total sodium. Sodium in the coarse ash particle phase retained in the bed is mainly in amorphous forms.

Krishnan, G.N.; Wood, B.J.

1991-11-01T23:59:59.000Z

293

A pilot-scale Process Development Unit for transport and fluid-bed hot-gas desulfurization  

SciTech Connect

The Morgantown Energy Technology Center (METC) has designed and is currently constructing an on-site, hot gas desulfurization (HGD) Process Development Unit (PDU). The PDU is designed to use regenerable solid metal oxide sorbents that absorb hydrogen sulfide from high-temperature, high-pressure simulated coal-gasification fuel gas that is generated by a METC designed syngas generator. The simulated coal gas is a mixture of partially combusted natural gas, water, carbon dioxide, and hydrogen sulfide. PDU process conditions will be representative of anticipated commercial applications in terms of temperatures, pressures, compositions, velocities, and sorbent cycling. The PDU supports the Integrated Gasification Combined Cycle (IGCC) mission at METC by providing a test bed for development of IGCC cleanup systems that offer low capital cost, operating costs, and costs of electricity. METC intends to develop additional industrial involvement opportunities as the project progresses towards operations. The primary objectives of the PDU are to (1) fill the gap between small-scale testing and large-scale demonstration projects by providing a cost effective test site for transport and fluid-bed desulfurization reactor and sorbent development, (2) demonstrate sorbent suitability over a wide range of parameters, and (3) generate significant information on process control for transport and fluidized bed based desulfurization. PDU data is expected to be used to optimize process performance by expanding the experience for larger scale demonstration projects such as Sierra Pacific Power Company`s Clean Coal Technology project.

McMillian, M.H.; Bissett, L.A.

1996-09-01T23:59:59.000Z

294

Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants  

SciTech Connect

This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant.

1992-06-01T23:59:59.000Z

295

Recombinant DNA encoding a desulfurization biocatalyst  

DOE Patents (OSTI)

This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous.

Rambosek, John (Seattle, WA); Piddington, Chris S. (Seattle, WA); Kovacevich, Brian R. (Seattle, WA); Young, Kevin D. (Grand Forks, ND); Denome, Sylvia A. (Thompson, ND)

1994-01-01T23:59:59.000Z

296

Recombinant DNA encoding a desulfurization biocatalyst  

DOE Patents (OSTI)

This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous. 13 figs.

Rambosek, J.; Piddington, C.S.; Kovacevich, B.R.; Young, K.D.; Denome, S.A.

1994-10-18T23:59:59.000Z

297

THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL-FIRED POWER PROCESSES  

SciTech Connect

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of the their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, A combined-cycle High Performance Power System (HIPPS) capable of overall cycle efficiencies approaching 50% has been proposed and designed by Foster Wheeler Development Corporation (FWDC). A pyrolyzer in the first stage of the HIPPS process converts a coal feedstock into fuel gas and char at an elevated pressure of 1.4 Map. (206 psia) and elevated temperature of 930 C (1700 F). The generated char serves as the feedstock for a Pulverized Coal (PC) boiler operating at atmospheric pressure, and the fuel gas is directly fired in a gas turbine. The hydrodynamic behavior of the pyrolyzer strongly influences the quality of both the fuel gas and the generated char, the energy split between the gas turbine and the steam turbine, and hence the overall efficiency of the system. By utilizing a simplified set of scaling parameters (Glicksman et al.,1993), a 4/7th labscale cold model of the pyrolyzer operating at ambient temperature and pressure was constructed and tested. The scaling parameters matched include solid to gas density ratio, Froude number, length to diameter ratio; dimensionless superficial gas velocity and solid recycle rate, particle sphericity and particle size distribution (PSD).

Leon R. Glicksman; Michael Louge; Hesham F. Younis; Richard Tan; Mathew Hyre; Mark Torpey

2003-11-24T23:59:59.000Z

298

Characterizing toxic emissions from a coal-fired power plant demonstrating the AFGD ICCT Project and a plant utilizing a dry scrubber/baghouse system: Bailly Station Units 7 and 8 and AFGD ICCT Project. Final report. Final report  

SciTech Connect

This report describes results of assessment of the risk of emissions of hazardous air pollutants at one of the electric power stations, Bailly Station, which is also the site of a Clean Coal Technology project demonstrating the Pure Air Advanced Flue Gas Desulfurization process (wet limestone). This station represents the configuration of no NO{sub x} reduction, particulate control with electrostatic precipitators, and SO{sub 2} control with a wet scrubber. The test was conducted September 3--6, 1993. Sixteen trace metals were determined along with 5 major metals. Other inorganic substances and organic compounds were also determined.

Dismukes, E.B.

1994-10-20T23:59:59.000Z

299

The Fate of Mercury Absorbed in Flue Gas Desulfurization (FGD) Systems  

Science Conference Proceedings (OSTI)

Wet flue gas desulfurization (FGD) systems are known to remove a percentage of the mercury in coal flue gases. This raises several questions about the fate of mercury removed by wet FGD systems: Does the absorbed mercury stay in the FGD liquor or does it leave with the byproduct solids? What happens to mercury in the FGD liquor and solid byproducts when they leave the FGD system? To address such questions, this report describes results from an EPRI project that involves field sample collection and labora...

2005-03-24T23:59:59.000Z

300

Enhanced Control of Mercury by Wet Flue Gas Desulfurization Systems - Site 2 Results  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy and EPRI are co-funding this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project is investigating catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installation...

2000-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Flue Gas Desulfurization Gypsum Agricultural Network: North Dakota Sites 3, 4, and 5 (Canola)  

Science Conference Proceedings (OSTI)

Flue gas desulfurization gypsum (FGDG) is a very pure form of gypsum that is a by-product from the combustion of coal for energy production. This report describes 2008-2009 work to evaluate potential beneficial agricultural uses of FGDG at three sites near Langdon, North Dakota. This work was part of a national research network evaluating beneficial uses of FGDG in agriculture, in this case, fertilization of dryland canola by FGDG. The objectives of this research were to 1) determine the influence of FGD...

2011-11-28T23:59:59.000Z

302

Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Final report, September 1989--March 1994  

DOE Green Energy (OSTI)

This project has successfully advanced the technology for MSOFCs for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-cm{sup 2} per cell); however, larger stacks had stress-induced structural defects causing poor performance.

Not Available

1994-05-01T23:59:59.000Z

303

Bench-Scale Demonstration of Hot-Gas Desulfurization Technology  

SciTech Connect

The U.S. Department of Energy (DOE), Federal Energy Technology Center (FETC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs.

Jeffrey W. Portzer; Santosh K. Gangwal

1998-12-01T23:59:59.000Z

304

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992  

SciTech Connect

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-12-31T23:59:59.000Z

305

Comparison of intergrated coal gasification combined cycle power plants with current and advanced gas turbines  

Science Conference Proceedings (OSTI)

Two recent conceptual design studies examined ''grass roots'' integrated gasification-combined cycle (IGCC) plants for the Albany Station site of Niagara Mohawk Power Corporation. One of these studies was based on the Texaco Gasifier and the other was developed around the British Gas Co.-Lurgi slagging gasifier. Both gasifiers were operated in the ''oxygen-blown'' mode, producing medium Btu fuel gas. The studies also evaluated plant performance with both current and advanced gas turbines. Coalto-busbar efficiencies of approximately 35 percent were calculated for Texaco IGCC plants using current technology gas turbines. Efficiencies of approximately 39 percent were obtained for the same plant when using advanced technology gas turbines.

Banda, B.M.; Evans, T.F.; McCone, A.I.; Westisik, J.H.

1984-08-01T23:59:59.000Z

306

Protocols for the selective cleavage of carbon-sulfur bonds in coal. Technical report, December 1, 1992--February 28, 1993  

SciTech Connect

Chemical reactions that result in carbon-sulfur bond cleavage are an essential aspect of any protocol designed to remove organic sulfur from coal. Planned in the second year of our project Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal are investigations of reactions in which organic sulfur-containing coal model compounds are subjected to different conditions of temperature, solvent mixtures and radiation. Other investigations that will result in analyses of the likelihood of C-S bond cleavages resulting from various oxidative processes will also be undertaken. Summarized in this quarterly report are results of our investigations of the following topics: (a) desulfurization of coal model sulfones; (b) desulfurization of coal model sulfides; (c) photooxidation of organic sulfides; and (d) photolytic desulfurization of coal.

Bausch, M. [Southern Illinois Univ., Carbondale, IL (United States); Ho, K.K. [Illinois Clean Coal Inst., Carterville, IL (United States)

1993-05-01T23:59:59.000Z

307

RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS  

SciTech Connect

The goals of the project are two-fold: (1) to upgrade semi-quantitative X-ray diffraction (QXRD) methods presently used in analyzing complex coal combustion by-product (CCB) systems, with the quantitative Rietveld method, and (2) to apply this method to a set of by-product materials that have been disposed or utilized for a long period (5 years or more) in contact with the natural environment, to further study the nature of CCB diagenesis. The project is organized into three tasks to accomplish these two goals: (1) thorough characterization of a set of previously analyzed disposed by-product materials, (2) development of a set of CCB-specific protocols for Rietveld QXRD, and (3) characterization of an additional set of disposed CCB materials, including application of the protocols for Rietveld QXRD developed in Task 2.

Gregory J. McCarthy; Dean G. Grier

1998-09-01T23:59:59.000Z

308

Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 4, July--September 1993  

Science Conference Proceedings (OSTI)

The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NOx emissions not greater than one-third NSPS; SOx emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: improved ash disposability and reduced waste generation; reduced air toxics emissions; and increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

Not Available

1993-12-29T23:59:59.000Z

309

Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report No. 7, April 1993--June 1993  

Science Conference Proceedings (OSTI)

The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases. This effect is also demonstrated by improved catalyst precursor impregnation with increased contact temperature. Laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent.

Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States); Gutterman, C.

1994-09-01T23:59:59.000Z

310

ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT  

SciTech Connect

The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

Robert Jewell; Thomas Robl; John Groppo

2005-03-01T23:59:59.000Z

311

Assessment of instrumentation needs for advanced coal power plant applications: Final report  

DOE Green Energy (OSTI)

The purpose of this study was to identify contaminants, identify instrumentation needs, assess available instrumentation and identify instruments that should be developed for controlling and monitoring gas streams encountered in the following power plants: Integrated Gasification Combined Cycle, Pressurized Fluidized Bed Combustion, and Gasification Molten Carbonate Fuel Cell. Emphasis was placed on hot gas cleanup system gas stream analysis, and included process control, research and environmental monitoring needs. Commercial process analyzers, typical of those currently used for process control purposes, were reviewed for the purpose of indicating commercial status. No instrument selection guidelines were found which were capable of replacing user interaction with the process analyzer vendors. This study leads to the following conclusions: available process analyzers for coal-derived gas cleanup applications satisfy current power system process control and regulatory requirements, but they are troublesome to maintain; commercial gas conditioning systems and in situ analyzers continue to be unavailable for hot gas cleanup applications; many research-oriented gas stream characterization and toxicity assessment needs can not be met by commercially available process analyzers; and greater emphasis should be placed on instrumentation and control system planning for future power plant applications. Analyzers for specific compounds are not recommended other than those needed for current process control purposes. Instead, some generally useful on-line laser-based and inductively coupled plasma methods are recommended for further development because of their potential for use in present hot gas cleanup research and future optimization, component protection and regulation compliance activities. 48 refs., 21 figs., 26 tabs.

Nelson, E.T.; Fischer, W.H.; Lipka, J.V.; Rutkowski, M.D.; Zaharchuk, R.

1987-10-01T23:59:59.000Z

312

The Effect of Water on Natural Gas Desulfurization by Adsorption  

Science Conference Proceedings (OSTI)

Oct 15, 2006 ... The Effect of Water on Natural Gas Desulfurization by Adsorption by Ambalavanan Jayaraman, Gokhan Alptekin, Margarita Dubovik, Robert ...

313

Electricity from coal and utilization of coal combustion by-products  

Science Conference Proceedings (OSTI)

Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

Demirbas, A. [Sila Science, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

314

Intelligent Control via Wireless Sensor Networks for Advanced Coal Combustion Systems  

SciTech Connect

Numerical Modeling of Solid Gas Flow, System Identification for purposes of modeling and control, and Wireless Sensor and Actor Network design were pursued as part of this project. Time series input-output data was obtained from NETL's Morgantown CFB facility courtesy of Dr. Lawrence Shadle. It was run through a nonlinear kernel estimator and nonparametric models were obtained for the system. Linear and first-order nonlinear kernels were then utilized to obtain a state-space description of the system. Neural networks were trained that performed better at capturing the plant dynamics. It is possible to use these networks to find a plant model and the inversion of this model can be used to control the system. These models allow one to compare with physics based models whose parameters can then be determined by comparing them against the available data based model. On a parallel track, Dr. Kumar designed an energy-efficient and reliable transport protocol for wireless sensor and actor networks, where the sensors could be different types of wireless sensors used in CFB based coal combustion systems and actors are more powerful wireless nodes to set up a communication network while avoiding the data congestion. Dr. Ahmadi's group studied gas solid flow in a duct. It was seen that particle concentration clearly shows a preferential distribution. The particles strongly interact with the turbulence eddies and are concentrated in narrow bands that are evolving with time. It is believed that observed preferential concentration is due to the fact that these particles are flung out of eddies by centrifugal force.

Aman Behal; Sunil Kumar; Goodarz Ahmadi

2007-08-05T23:59:59.000Z

315

ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS  

SciTech Connect

The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration temperatures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent development at General Electric's Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

2000-03-31T23:59:59.000Z

316

ADVANCED SORBENT DEVELOPMENT PROGRAM; DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS  

SciTech Connect

The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 °C (900-1000 °F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.?s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 °C (650 °F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 °C (650-1000 °F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 °C (700 °F) to 538 °C (1000 °F) and regeneration tempera-tures up to 760 °C (1400 °F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent develop-ment at General Electric?s Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

R.E. AYALA; V.S. VENKATARAMANI

1998-09-30T23:59:59.000Z

317

Flue Gas Desulfurization Gypsum Agricultural Network  

Science Conference Proceedings (OSTI)

Flue gas desulfurization (FGD) gypsum is a solid produced by wet FGD systems with forced air oxidation and is chemically similar to mined gypsum. These gypsums, used as beneficial agricultural amendments, were evaluated for their effects on earthworm populations and trace element concentrations in soils and earthworms at four field sites (Ohio, Indiana, Alabama, and Wisconsin). These sites are part of a network study on agricultural uses of FGD gypsum conducted at sites across the United States. ...

2012-09-19T23:59:59.000Z

318

Flue Gas Desulfurization Gypsum Agricultural Network  

Science Conference Proceedings (OSTI)

Increasing volumes of flue gas desulfurization (FGD) gypsum will become available for agricultural use as more utilities install forced oxidation scrubbers and the wallboard market for the resulting gypsum becomes saturated. This interim report describes work performed in 2007 and 2008 to develop a national research network to gain data and experience to support the beneficial uses of FGD products, especially FGD gypsum, in agriculture and other land applications.

2008-12-12T23:59:59.000Z

319

Engineering development of advanced coal-fired low-emission boiler systems. Quarterly technical progress report No. 17, October 1, 1996--December 31, 1996  

SciTech Connect

This report describes the work performed between October 1 and December 31, 1996 by the ABB team on U.S. Department of Energy project ``Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems`` (LEBS), which is part of the DOE`s Combustion 2000 Program. The overall objective of the LEBS Project is to dramatically improve environmental performance of future coal-fired power plants without adversely impacting efficiency or the cost of electricity. Near-term technologies, i.e., advanced technologies that are partially developed, will be used to reduce NO{sub x} and SO{sub 2} emission to one-sixth current NSPS limits and particulates to one- third current NSPS limits.

Regan, J.W.; Bender, D.J.; Clark, J.P.; Wesnor, J.D.

1997-01-01T23:59:59.000Z

320

Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 15, April 15 1996--June 1996  

SciTech Connect

The Pittsburgh Energy Technology center of the US Department of Energy (DOE) has contracted with Combustion Engineering; Inc. (ABB CE) to perform work on the {open_quotes}Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems{close_quote} Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis and Phases II and III on a cost-share basis.

1996-08-19T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

An analysis of markets for small-scale, advanced coal-combustion technology in Spain, Italy, and Turkey  

Science Conference Proceedings (OSTI)

This report discusses the examination of potential overseas markets for using small-scale, US-developed, advanced coal-combustion technologies (ACTs). In previous work, member countries of the Organization for Economic Cooperation and Development (OECD) were rated on their potential for using ACTs through a comprehensive screening methodology. The three most promising OECD markets were found to be Spain, Italy, and Turkey. This report provides in-depth analyses of these three selected countries. First, it addresses changes in the European Community with particular reference to the 1992 restructuring and its potential effect on the energy situation in Europe, specifically in the three subject countries. It presents individual country studies that examine demographics, economics, building infrastructures, and energy-related factors. Potential niches for ACTs are explored for each country through regional analyses. Marketing channels, strategies, and the trading environments in each country are also discussed. The information gathered indicates that Turkey is a most promising market, Spain is a fairly promising market, and Italy appears to be a somewhat limited market for US ACTs. 76 refs., 16 figs., 14 tabs.

Placet, M.; Gerry, P.A.; Kenski, D.M.; Kern, D.M.; Nehring, J.L.; Szpunar, C.B.

1989-09-01T23:59:59.000Z

322

Advanced coal-gasification technical analyses. Appendix 3: technical/economic evaluations. Final report, December 1982-September 1985  

Science Conference Proceedings (OSTI)

This document contains the final report on four tasks performed by KRSI as part of the Advanced Coal Gasification Technical Analysis contract with GRI. It provides extensive, consistent technical and economic information regarding application of (1) Lurgi gasification, (2) Westinghouse (now KRW) gasification, and (3) Direct Methanation (with Lurgi gasifiers) processes to produce SNG from North Dakota lignite. The results of Lurgi and Westinghouse studies were used to develop a plant size vs. cost-of-SNG relationship. The report on each task consists of a block flow diagram, component material balance, process flow sheets showing operating conditions and principal equipment in each major process area, a narrative process description, utility balances, plant efficiency calculations, documentation of design and cost-estimation basis and an economic analysis performed in accordance with the GRI Guidelines. Economic analysis consisted of capital-cost breakdown according to plant areas, variable operating and maintenance costs, and calculation of levelized, constant-dollar cost-of-gas with and without process development allowances (PDA). The sensitivities of the gas cost to major variables are presented in graphical form. For the plant size vs. cost-of-SNG task, similar information is provided at eight different plant capacities based on both Lurgi or Westinghouse gasifiers.

Cover, A.E.; Hubbard, D.A.; Jain, S.K.; Shah, K.V.

1986-01-01T23:59:59.000Z

323

Optical fiber evanescent wave adsorption sensors for high-temperature gas sensing in advanced coal-fired power plants  

Science Conference Proceedings (OSTI)

Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

Buric, M.; Ohodnicky, P.; Duy, J.

2012-01-01T23:59:59.000Z

324

Advanced turbine design for coal-fueled engines. Topical report, Task 1.6, Task 1.7  

DOE Green Energy (OSTI)

The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500{degrees}F (815{degrees}C), relatively innocuous salts. In this study it is found that at 1650{degrees}F (900{degrees}C) and above, calcium sulfate becomes an aggressive corrodent.

Bornstein, N.S.

1992-07-17T23:59:59.000Z

325

Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993  

DOE Green Energy (OSTI)

Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

Smith, V.E.

1994-09-01T23:59:59.000Z

326

Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, July--September 1992  

Science Conference Proceedings (OSTI)

The experimental study of coal swelling ratios have been determined with a wide variety of solvents. Only marginal levels of coal swelling were observed for the hydrocarbon solvents, but high levels were found with solvents having heteroatom functionality. Blends were superior to pure solvents. The activity of various catalyst precursors for pyrene hydrogenation and coal conversion was measured. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively. Bottoms processing consists of a combination of the ASCOT process coupling solvent deasphalting with delayed coking. Initial results indicate that a blend of butane and pentane used near the critical temperature of butane is the best solvent blend for producing a yield/temperature relationship of proper sensitivity and yet retaining an asphalt phase of reasonable viscosity. The literature concerning coal swelling, both alone and in combination with coal liquefaction, and the use of dispersed or unsupported catalysts in coal liquefaction has been updated.

Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

1992-12-31T23:59:59.000Z

327

Moist caustic leaching of coal  

DOE Patents (OSTI)

A process for reducing the sulfur and ash content of coal. Particulate coal is introduced into a closed heated reaction chamber having an inert atmosphere to which is added 50 mole percent NaOH and 50 mole percent KOH moist caustic having a water content in the range of from about 15% by weight to about 35% by weight and in a caustic to coal weight ratio of about 5 to 1. The coal and moist caustic are kept at a temperature of about 300.degree. C. Then, water is added to the coal and caustic mixture to form an aqueous slurry, which is washed with water to remove caustic from the coal and to produce an aqueous caustic solution. Water is evaporated from the aqueous caustic solution until the water is in the range of from about 15% by weight to about 35% by weight and is reintroduced to the closed reaction chamber. Sufficient acid is added to the washed coal slurry to neutralize any remaining caustic present on the coal, which is thereafter dried to produce desulfurized coal having not less than about 90% by weight of the sulfur present in the coal feed removed and having an ash content of less than about 2% by weight.

Nowak, Michael A. (Elizabeth, PA)

1994-01-01T23:59:59.000Z

328

Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in the Northern Great Plains  

Science Conference Proceedings (OSTI)

Flue gas desulfurization gypsum (FGDG) is a byproduct from the combustion of coal for electrical energy production. Currently, FGDG is being produced by 15 electrical generating stations in Alabama, Florida, Indiana, Iowa, Kentucky, Ohio, North Carolina, South Carolina, Tennessee, Texas, and Wisconsin. Much of this byproduct is used in the manufacturing of wallboard. The National Network for Use of FGDG in Agriculture was initiated to explore alternative uses of this byproduct. In the northern Great Plains (North Dakota, South Dakota, and Montana), FGDG has the potential to be used as a Ca or S fertilizer, as an acid soil ameliorant, and for reclaiming or mitigating sodium-affected soils. Greater than 1.4 million Mg of FGDG could initially be used in these states for these purposes. Flue gas desulfurization gypsum can be an agriculturally important resource for helping to increase the usefulness of problem soils and to increase crop and rangeland production. Conducting beneficial use audits would increase the public awareness of this product and help identify to coal combustion electrical generating stations the agriculturally beneficial outlets for this byproduct.

DeSutter, T.M.; Cihacek, L.J. [North Dakota State University, Fargo, ND (United States). Department of Soil Science

2009-07-15T23:59:59.000Z

329

Advanced Multi-Product Coal Utilization By-Product Processing Plant  

Science Conference Proceedings (OSTI)

The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (ash market is currently oversupplied by more than 500,000 tpy and distant markets (i.e. Florida) are oversupplied as well. While the total US demand for ultrafine pozzolan is currently equal to demand, there is no reason to expect a significant increase in demand. Despite the technical merits identified in the pilot plant work with regard to beneficiating the entire pond ash stream, market developments in the Ohio River Valley area during 2006-2007 were not conducive to demonstrating the project at the scale proposed in the Cooperative Agreement. As a result, Cemex withdrew from the project in 2006 citing unfavorable local market conditions in the foreseeable future at the demonstration site. During the Budget Period 1 extensions provided by the DOE, CAER has contacted several other companies, including cement producers and ash marketing concerns for private cost share. Based on the prevailing demand-supply situation, these companies had expressed interest only in limited product lines, rather than the entire ash beneficiation product stream. Although CAER had generated interest in the technology, a financial commitment to proceed to Budget Period 2 could not be obtained from private companies. Furthermore, the prospects of any decisions being reached within a reasonable time frame were dim. Thus, CAER concurred with the DOE to conclude the project at the end of Budget Period 1, March 31, 2007. The activities presented in this report were carried out during the Cooperative Agreement period 08 November 2004 through 31 March 2007.

Thomas Robl; John Groppo

2009-06-30T23:59:59.000Z

330

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993  

SciTech Connect

Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

1993-09-01T23:59:59.000Z

331

Technology Manager, Carbon Capture/Advanced Combustion Strategic Center for Coal  

E-Print Network (OSTI)

report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. DOE/NETL Advanced Carbon Dioxide Capture R&D Program Accomplishments

Capture R& d Program; Shailesh D. Vora; Jared P. Ciferno; Office Of Coal; Power R

2012-01-01T23:59:59.000Z

332

Durable zinc oxide-containing sorbents for coal gas desulfurization  

DOE Patents (OSTI)

Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel as a matrix material, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

Siriwardane, R.V.

1994-12-31T23:59:59.000Z

333

The utilization of flue gas desulfurization waste by-products in construction brick  

E-Print Network (OSTI)

Millions of tons of waste by-products from Texas coal burning plants are produced each year. Two common byproducts are the fuel ashes and calcium sulfate (gypsum). Fuel ashes result from the burning of coal. Gypsum is a byproduct of the air purification system, called Flue Gas Desulfurization (FGD). Abatement of these waste products is a growing concern, not only for the industry, but the environment as well. It is possible to produce a gypsum brick unit that can meet the engineering properties required by the Americans Society of Testing Materials (ASTM) standards by using these by-products. This can be accomplished at a cost less than the least expensive common fired clay brick that is used in construction operations. The gypsum brick can be manufactured using established methods that are currently in operation.

Berryman, Charles Wayne

1992-01-01T23:59:59.000Z

334

An Update of the U.S. Clean Coal Technology Demonstration Program Office of Fossil Energy, U.S. Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

SCR Holds Promise for Effective NO, Control SCR Holds Promise for Effective NO, Control CCT Projects Address Higher Costs, Limited U.S. Experience Clean Coal Briefs This quarter saw several major projects in the Clelm Coal Technology Program complete construction activi- ties and move into initial opcretions, bringing to 17 the total number of operatingf~cilitiesin theprogram Data generated from these projects will help utilities form their stratcgics for corn- pliance with the IYYO Clean Air Act Amendmxlts. Pure Air began running its first advanced flue gas desulfurization unit on June 2. The scrubber is running well, capturing more than YO percent of the SO, emissions from two units at Northern Indiana Public Service k's Bailly Station Construction of the 528 MW scrubber was completed

335

NETL: Major Demonstrations Clean Coal Related Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Shelf Clean Coal Related Information Advanced Power Systems General Low-Emission Boiler System High-Performance Coal-Fired Power Systems Alternative Fuels and Chemicals from...

336

Process for the production and recovery of fuel values from coal  

SciTech Connect

A method of pyrolyzing and desulfurizing coal in a transport reactor to recover volatile fuel values and hydrogen by heating particulate coal entrained in a carrier gas substantially free of oxygen to a pyrolysis temperature in a zone within three seconds.

Sass, Allan (Los Angeles, CA); McCarthy, Harry E. (Golden, CO); Kaufman, Paul R. (North Canton, OH); Finney, Clement S. (Claremont, CA)

1982-01-01T23:59:59.000Z

337

The effect of moderate coal cleaning on microbial removal of organic sulfur. [Rhodococcus rhodochrous  

SciTech Connect

The objective of this research is to provide data relevant to the development of an integrated physical, chemical, and microbiological process for the desulfurization of coal, utilizing existing technologies insofar as is possible. Specifically, the effect of increased surface area and porosity achieved by physical, chemical, and microbial treatments of coal on the subsequent microbiological removal of organic sulfur will be evaluated.

Srivastava, V.J.

1991-01-01T23:59:59.000Z

338

Advanced Multi-Product Coal Utilization By-Product Processing Plant  

SciTech Connect

The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. These potential products are primarily concentrated in the lower end of the pond adjacent to the outlet. A representative bulk sample was excavated for conducting laboratory-scale process testing while a composite 150 ton sample was also excavated for demonstration-scale testing at the Ghent site. A mobile demonstration plant with a design feed rate of 2.5 tph was constructed and hauled to the Ghent site to evaluate unit processes (i.e. primary classification, froth flotation, spiral concentration, secondary classification, etc.) on a continuous basis to determine appropriate scale-up data. Unit processes were configured into four different flowsheets and operated at a feed rate of 2.5 tph to verify continuous operating performance and generate bulk (1 to 2 tons) products for product testing. Cementitious products were evaluated for performance in mortar and concrete as well as cement manufacture process addition. All relevant data from the four flowsheets was compiled to compare product yields and quality while preliminary flowsheet designs were generated to determine throughputs, equipment size specifications and capital cost summaries. A detailed market study was completed to evaluate the potential markets for cementitious products. Results of the study revealed that the Ghent local fly ash market is currently oversupplied by more than 500,000 tpy and distant markets (i.e. Florida) are oversupplied as well. While the total US demand for ultrafine pozzolan is currently equal to demand, there is no reason to expect a significant increase in demand. Despite the technical merits identified in the pilot plant work with regard to beneficiating the entire pond ash stream, market developments in the Ohio River Valley area during 2006-2007 were not conducive to demonstrating the project at the scale proposed in the Cooperative Agreement. As a result, Cemex withdrew from the project in 2006 citing unfavorable local market conditions in the foreseeable future at the demonstration site. During the Budget Period 1 extensions provided by the DOE, CAER has contacted several other companies, including cement producers and ash marketing concerns for private cost share. Based on the prevailing demand-supply situation, these companies had expressed interest only in limited product lines, rather than the entire ash beneficiation product stream. Although CAER had generated interest in the technology, a financial commitment to proceed to Budget Period 2 could not be obtained from private companies. Furthermore, the prospects of any decisions being reached within a reasonable time frame were dim. Thus, CAER concurred with the DOE to conclude the project at the end of Budget Period 1, March 31, 2007. The activities presented in this report were carried out during the Cooperative Agreement period 08 November 2004 through 31 March 2007.

Thomas Robl; John Groppo

2009-06-30T23:59:59.000Z

339

Development of a Desulfurization Strategy for a NOx Adsorber Catalyst  

DOE Green Energy (OSTI)

Improve NOx regeneration calibration developed in DECSE Phase I project to understand full potential of NOx adsorber catalyst over a range of operating temperatures. Develop and demonstrate a desulfurization process to restore NOx conversion efficiency lost to sulfur contamination. Investigate effect of desulfurization process on long-term performance of the NOx adsorber catalyst.

Tomazic, Dean

2000-08-20T23:59:59.000Z

340

Advanced coal-fueled gas turbine systems. Quarterly report, January--March 1993  

SciTech Connect

All scheduled tests for the slagging combustor program were completed prior to this reporting period. The draft topical report for the slagging combustor testing was begun in January and the draft submitted to DOE/METC for review in March. Work was completed on the (Advanced Turbine Systems) Phase 1 program and the draft topical begun in January. The ATS Phase 1 draft topical report was submitted to DOE/METC in March. Comments to the report were received back from METC prior to the end of March allowing for the preparation of the final version of the report to begin. Conceptual design of a combustion turbine system that can be integrated in a pressurized fluidized bed combustor (PFBC) application was completed at the end of March. An intermediate design review was held in February with METC and a draft of the topical report was begun during the reporting period. Details of the individual subtask work for the first generation PFBC combustion turbine system conceptual design are discussed in the ``Generic Turbine Design Study Final Report`` which was issued June 1993 to DOE/METC.

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advanced coal-fueled gas turbine systems. Technical progress report, October--December 1992  

Science Conference Proceedings (OSTI)

Activity towards completing Advanced Turbine Systems (ATS) Phase I work was begun again in December. Effort to complete the Phase I work was temporarily suspended upon receipt of the ATS Phase II RFP the last week in August. The Westinghouse ATS team`s efforts were directed at preparing the ATS Phase II proposal which was submitted November 18. It is planned to finish Phase I work and submit the topical report by the end of February 1993. The objective of the four slogging combustor tests conducted during this reporting period (i.e., tests SL3-1 through SL3-4) were to perform sulfur capture experiments using limestoneand iron oxide based sorbents and to collect exhaust vapor phase and solids bound alkali measurements using the Westinghouse and Ames Laboratory alkali probes/monitors. The most significant, if not outstanding result revealed by these tests is that the Ames alkali monitor indicates that the vapor phase sodium is approximately 23--30 ppbw and the vapor phase potassium is approximately 5--20 ppbw. For reference, alkalilevels of 20 ppbw are acceptable in Westinghouse gas turbines fueled with crude oil.

Not Available

1993-02-03T23:59:59.000Z

342

Measurement and modeling of advanced coal conversion processes. Twenty-first quarterly report, October 1, 1991--December 31, 1991  

SciTech Connect

The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [Advanced Fuel Research, Inc., East Hartford, CT (United States); Smoot, L.D.; Brewster, B.S. [Brigham Young Univ., Provo, UT (United States)

1991-12-31T23:59:59.000Z

343

Moist caustic leaching of coal  

DOE Patents (OSTI)

A process is claimed for reducing the sulfur and ash content of coal. Particulate coal is introduced into a closed heated reaction chamber having an inert atmosphere to which is added moist caustic having a water content in the range of from about 15% by weight to about 35% by weight. The coal and moist caustic are kept at a temperature of about 300{degrees}C. Then, water is added to the coal and caustic mixture to form an aqueous slurry, which is washed with water to remove caustic from the coal and to produce an aqueous caustic solution. Water is evaporated from the aqueous caustic solution until the water is in the range of from about 15% by weight to about 35% by weight and is reintroduced to the closed reaction chamber. Sufficient acid is added to the washed coal slurry to neutralize any remaining caustic present on the coal, which is thereafter dried to produce desulfurized coal having not less than about 90% by weight of the sulfur present in the coal feed removed and having an ash content of less than about 2% by weight.

Nowak, M.A.

1991-12-31T23:59:59.000Z

344

US Department of Energy`s high-temperature and high-pressure particulate cleanup for advanced coal-based power systems  

Science Conference Proceedings (OSTI)

The availability of reliable, low-cost electricity is a cornerstone for the United States` ability to compete in the world market. The Department of Energy (DOE) projects the total consumption of electricity in the US to rise from 2.7 trillion kilowatt-hours in 1990 to 3.5 trillion in 2010. Although energy sources are diversifying, fossil fuel still produces 90 percent of the nation`s energy. Coal is our most abundant fossil fuel resource and the source of 56 percent of our electricity. It has been the fuel of choice because of its availability and low cost. A new generation of high-efficiency power systems has made it possible to continue the use of coal while still protecting the environment. Such power systems greatly reduce the pollutants associated with cola-fired plants built before the 1970s. To realize this high efficiency and superior environmental performance, advanced coal-based power systems will require gas stream cleanup under high-temperature and high-pressure (HTHP) process conditions. Presented in this paper are the HTHP particulate capture requirements for the Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized-Bed Combustion (PFBC) power systems, the HTHP particulate cleanup systems being implemented in the PFBC and IGCC Clean Coal Technology (CCT) Projects, and the currently available particulate capture performance results.

Dennis, R.A.

1997-05-01T23:59:59.000Z

345

Upgraded Coal Interest Group  

Science Conference Proceedings (OSTI)

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

346

Flue gas desulfurization wastewater treatment primer  

SciTech Connect

Purge water from a typical wet flue gas desulfurization system contains myriad chemical constituents and heavy metals whose mixture is determined by the fuel source and combustion products as well as the stack gas treatment process. A well-designed water treatment system can tolerate upstream fuel and sorbent arranged in just the right order to produce wastewater acceptable for discharge. This article presents state-of-the-art technologies for treating the waste water that is generated by wet FGD systems. 11 figs., 3 tabs.

Higgins, T.E.; Sandy, A.T.; Givens, S.W.

2009-03-15T23:59:59.000Z

347

INTERACTION OF ORGANIC SOLVENTS WITH A SUBBITUMINOUS COAL BELOW PYROLYSIS TEMPERATURE  

E-Print Network (OSTI)

and P. Fugassi, Phenanthrene Extraction of Bituminous Coal,Coal Science, Advances in Chemistry Series No. 55, 448 C.Mechanism of High Volatile Coal, Coal Science, Advances in

Dorighi, G.P.

2010-01-01T23:59:59.000Z

348

Coal combustion products 2007 production and use report  

Science Conference Proceedings (OSTI)

The American Coal Ash Association's 2007 Annual Coal Combustion Products (CCP) are derived from data from more than 170 power plants. The amount of CCPs used was 40.55%, a decrease of 2.88% from 2006, attributed to reduced fuel burn and a decrease in demand in the building industry. Figures are given for the production of fly ash, flue gas desulfurization gypsum, bottom ash, FBC ash and boiler slag. The article summarises results of the survey. 1 ref., 1 tab.

NONE

2009-07-01T23:59:59.000Z

349

Clean coal technologies market potential  

SciTech Connect

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

350

Engineering development of advanced physical fine coal cleaning for premium fuel applications: Subtask 3.3 - dewatering studies  

SciTech Connect

If successful, the novel Hydrophobic Dewatering (HD) process being developed in this project will be capable of efficiently removing moisture from fine coal without the expense and other related drawbacks associated with mechanical dewatering or thermal drying. In the HD process, a hydrophobic substance is added to a coal-water slurry to displace water from the surface of coal, while the spent hydrophobic substance is recovered for recycling. For this process to have commercialization potential, the amount of butane lost during the process must be small. Earlier testing revealed the ability of the hydrophobic dewatering process to reduce the moisture content of fine coal to a very low amount as well as the determination of potential butane losses by the adsorption of butane onto the coal surface. Work performed in this quarter showed that the state of oxidation affects the amount of butane adsorbed onto the surface of the coal and also affects the final moisture content. the remaining work will involve a preliminary flowsheet of a continuous bench-scale unit and a review of the economics of the system. 1 tab.

Yoon, R.H., Phillips, D.I., Sohn, S.M., Luttrell, G.H. [Virginia Polytechnic Inst. and State Univ., Center for Coal and Mineral Processing, Blacksburg, VA (United States)

1996-10-01T23:59:59.000Z

351

Advanced Fuels Synthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuels Synthesis Advanced Fuels Synthesis Coal and Coal/Biomass to Liquids Advanced Fuels Synthesis The Advanced Fuels Synthesis Key Technology is focused on catalyst and reactor optimization for producing liquid hydrocarbon fuels from coal/biomass mixtures, supports the development and demonstration of advanced separation technologies, and sponsors research on novel technologies to convert coal/biomass to liquid fuels. Active projects within the program portfolio include the following: Fischer-Tropsch fuels synthesis Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Small Scale Pilot Plant for the Gasification of Coal and Coal/Biomass Blends and Conversion of Derived Syngas to Liquid Fuels Via Fischer-Tropsch Synthesis Coal Fuels Alliance: Design and Construction of Early Lead Mini Fischer-Tropsch Refinery

352

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

Electric Generation Technology Conventional Coal-Fired PowerPlants Advanced Coal-Electric Plants OperatingCharacteristics for Conventional Coal- Fired Power

Ferrell, G.C.

2010-01-01T23:59:59.000Z

353

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network (OSTI)

for Liquefaction and Gasification of Western Coals", in5272 (1976). COal Processing - Gasification, Liguefaction,or gaseous fuels, coal gasification has advanced furthest

Holten, R.R.

2010-01-01T23:59:59.000Z

354

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

application (coal gasification, coal combustion followed byversions of advanced gasification processes show promise ofFixed-Bed Low-Btu Coal Gasification Systems for Retrofitting

Ferrell, G.C.

2010-01-01T23:59:59.000Z

355

Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Quarterly technical status report, January--March 1992  

DOE Green Energy (OSTI)

The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

Not Available

1992-04-14T23:59:59.000Z

356

Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, September 1995--December 1995  

SciTech Connect

This fifth quarterly report describes work done during the fifth three-month period of the University of Pittsburgh`s project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with the university on this project is Mill Service, Inc. This report describes the activities of the project team during the reporting period. The principal work has focussed upon completing laboratory evaluation of samples produced during Phase 1, preparing reports and presentations, and seeking environmental approvals and variances to permits that will allow the field work to proceed. The compressive strength of prepared concretes is described.

1996-03-01T23:59:59.000Z

357

Effects of Air Emissions Controls on Coal Combustion Products: Interim Data Report  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is collecting information describing the effects of air emissions controls on coal combustion products (CCPs) as they pertain to disposal and use. Specifically, data are being collected to assess the impacts of calcium bromide (CaBr2) addition to coal, refined coal, halogen injection in the boiler, brominated activated carbon injection (BrACI) in the flue gas, dry sorbent injection (DSI) in the flue gas, and flue gas desulfurization (FGD) ...

2013-12-18T23:59:59.000Z

358

Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide  

DOE Patents (OSTI)

Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

Poston, James A. (Star City, WV)

1997-01-01T23:59:59.000Z

359

Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide  

DOE Patents (OSTI)

Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixtures derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

Poston, J.A.

1996-12-31T23:59:59.000Z

360

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

A "Bed" for Burning Coal A "Bed" for Burning Coal Clean Coal 101 Lesson 4: A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with government and college officials on the campus of Georgetown University to celebrate the completion of one of the world's most advanced coal combustors. It was a small coal burner by today's standards, but large enough to provide heat and steam for much of the university campus. But the new boiler built beside the campus tennis courts was unlike most other boilers in the world. A Fluidized Bed Boiler A Fluidized Bed Boiler In a fluidized bed boiler, upward blowing jets of air suspend burning coal, allowing it to mix with limestone that absorbs sulfur pollutants.

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Communications to the Editor Room-Temperature Desulfurization of  

E-Print Network (OSTI)

difficult to remove in the hydroprocessing of crude oil.3 In homogeneous models, orga- nometallic nickel of polynuclear complexes in the desulfurization of various thiophenes,6 led us to prepare a dinuclear nickel

Jones, William D.

362

Dry Flue Gas Desulfurization State of the Art Survey  

Science Conference Proceedings (OSTI)

The intent of this report is to provide a summary of state-of-the-art dry flue gas desulfurization (FGD) technologies, including circulating dry scrubbers (CDS), spray dryer absorbers (SDA), and the Alstom Novel Integrated Desulfurization (NID) technology. These can all be considered “semi-dry” technologies, as the flue gas is cooled and humidified as part of each of these processes. This report also discusses a completely dry FGD technology, dry sorbent injection (DSI), which is ...

2012-12-14T23:59:59.000Z

363

Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B  

SciTech Connect

This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

NONE

1998-01-01T23:59:59.000Z

364

Effect of Coal Blending By  

E-Print Network (OSTI)

Coal-fired power plants are a major source of mercury (Hg) released into the environment and the utility industry is currently investigating options to reduce Hg emissions. One control option is to utilize existing pollution control equipment such as wet flue gas desulfurization (FGD) scrubbers. The split (speciation) between chemical forms of mercury (Hg) species has a strong influence on the control and environmental fate of Hg emissions from coal combustion. The high-temperature coal combustion process releases Hg in elemental form (Hg 0). A significant fraction of the Hg 0 can be subsequently oxidized in the low-temperature, post-combustion environment of a coal-fired boiler. Relative to Hg 0, oxidized Hg (Hg 2+) is more effectively removed by air pollution control systems (APCS). For example, the water-soluble Hg 2+ is much more easily captured than insoluble Hg 0 in FGD units. Selective catalytic reduction (SCR) technology widely applied for reducing NOX emissions from power plants also affects the speciation of Hg in the coal combustion flue gases. Recent full-scale field tests conducted in the U.S. showed increases in Hg oxidation across the SCR catalysts for plants firing bituminous coals with sulfur (S) content ranging from 1.0 to 3.9%. However, plants firing subbituminous Powder River Basin (PRB) coals which contains significantly lower chlorine (Cl) and sulfur (S)

Pilot-scale Coal Combustor The; Shannon D. Serre; Chun Wai Lee

2009-01-01T23:59:59.000Z

365

Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 11, April 1995--June 1995  

Science Conference Proceedings (OSTI)

The Pittsburgh Energy Technology Center of the U.S. Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the {open_quotes}Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems{close_quotes} Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis and Phases II and III on a cost-share basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: (1) NO{sub x} emissions not greater than one-third NSPS. (2) SO{sub x} emissions not greater than one-third NSPS. (3) Particulate emissions not greater than one-half NSPS. The specific secondary objectives are: (1) Improved ash disposability and reduced waste generation. (2) Reduced air toxics emissions. (3) Increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a Commercial Generation Unit. The work in Phase I covered a 24-month period and included system analysis, RD&T Plan formulation, component definition, and preliminary Commercial Generating Unit (CGU) design. Phase II will cover a 15-month period and will include preliminary Proof-of-Concept Test Facility (POCTF) design and subsystem testing. Phase III will cover a 9-month period and will produce a revised CGU design and a revised POCTF design, cost estimate and a test plan. Phase IV, the final Phase, will cover a 36-month period and will include POCTF detailed design, construction, testing, and evaluation.

NONE

1995-08-30T23:59:59.000Z

366

Method for reducing sulfate formation during regeneration of hot-gas desulfurization sorbents  

DOE Patents (OSTI)

The regeneration of sulfur sorbents having sulfate forming tendencies and used for desulfurizing hot product gas streams such as provided by coal gasification is provided by employing a two-stage regeneration method. Air containing a sub-stoichiometric quantity of oxygen is used in the first stage for substantially fully regenerating the sorbent without sulfate formation and then regeneration of the resulting partially regenerated sorbent is completed in the second stage with air containing a quantity of oxygen slightly greater than the stoichiometric amount adequate to essentially fully regenerate the sorbent. Sulfate formation occurs in only the second stage with the extent of sulfate formation being limited only to the portion of the sulfur species contained by the sorbent after substantially all of the sulfur species have been removed therefrom in the first stage.

Bissett, Larry A. (Morgantown, WV); Strickland, Larry D. (Morgantown, WV); Rockey, John M. (Westover, WV)

1994-01-01T23:59:59.000Z

367

Coal Combustion Science  

SciTech Connect

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

368

Measurement and modeling of advanced coal conversion processes, Volume I, Part 2. Final report, September 1986--September 1993  

Science Conference Proceedings (OSTI)

This report describes work pertaining to the development of models for coal gasification and combustion processes. This volume, volume 1, part 2, contains research progress in the areas of large particle oxidation at high temperatures, large particle, thick-bed submodels, sulfur oxide/nitrogen oxides submodels, and comprehensive model development and evaluation.

Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

1995-09-01T23:59:59.000Z

369

Development and testing of a high efficiency advanced coal combustor: Phase 3 industrial boiler retrofit. Final report  

SciTech Connect

Economics and/or political intervention may one day dictate the conversion from oil or natural gas to coal in boilers that were originally designed to burn oil or gas. In recognition of this future possibility the US Department of Energy, Federal Energy Technical Center (DOE-FETC) supported a program led by ABB Power Plant Laboratories with support from the Energy and Fuels Research Center of Penn State University with the goal of demonstrating the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronized coal. In support of the overall goal the following specific objectives were targeted: develop a coal handling/preparation system that can meet the technical and operational requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; maintain boiler thermal performance in accordance with specifications when burning oil or natural gas; maintain NOx emissions at or below 0.6 lb NO{sub 2} per million Btu; achieve combustion efficiencies of 98% or higher; and determine economic payback periods as a function of key variables.

Patel, R.L.; Thornock, D.E.; Miller, B.G.; Scaroni, A.W.; McGowan, J.G.

1998-03-01T23:59:59.000Z

370

Advanced Research Robert R. Romanosky  

E-Print Network (OSTI)

in advanced ultra supercritical (USC) coal-fired power plants. The advanced materials developed in this project are essential for construction of coal-fired boilers with advanced steam cycles involving much higher temperatures and pressures than those presently used in conventional pulverized coal (PC) power

371

NETL: Advanced NOx Emissions Control  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > Advanced NOx Emissions Control Innovations for Existing Plants Advanced NOx Emissions Control Adv....

372

Proceedings, twenty-fourth annual international Pittsburgh coal conference  

SciTech Connect

Topics covered include: gasification technologies; coal production and preparation; combustion technologies; environmental control technologies; synthesis of liquid fuels, chemicals, materials and other non-fuel uses of coal; hydrogen from coal; advanced synthesis gas cleanup; coal chemistry, geosciences and resources; Fischer-Tropsch technology; coal and sustainability; global climate change; gasification (including underground gasification); materials, instrumentation and controls; and coal utilisation byproducts.

NONE

2007-07-01T23:59:59.000Z

373

Development of an Advanced Deshaling Technology to Improve the Energy Efficiency of Coal Handling, Processing, and Utilization Operations  

Science Conference Proceedings (OSTI)

The concept of using a dry, density-based separator to achieve efficient, near-face rock removal, commonly referred to as deshaling, was evaluated in several applications across the U.S.. Varying amounts of high-density rock exist in most run-of-mine feed. In the central Appalachian coalfields, a rock content exceeding 50% in the feed to a preparation plant is commonplace due to high amounts of out-of-seam dilution made necessary by extracting coal from thin seams. In the western U.S, an increase in out-of-seam dilution and environmental regulations associated with combustion emissions have resulted in a need to clean low rank coals and dry cleaning may be the only option. A 5 ton/hr mobile deshaling unit incorporating a density-based, air-table technology commercially known as the FGX Separator has been evaluated at mine sites located within the states of Utah, Wyoming, Texas, West Virginia, Virginia, Pennsylvania and Kentucky. The FGX technology utilizes table riffling principles with air as the medium. Air enters through the table and creates a fluidized bed of particles comprised of mostly fine, high density particles. The high density particle bed lifts the low-density coal particles to the top of the bed. The low-density coal moves toward the front of the table due to mass action and the downward slope of the table. The high-density particles settle through the fluidized particle bed and, upon making contact with the table, moves toward the back of the table with the assistance of table vibration. As a result, the low-density coal particles exit the front of the table closest to the feed whereas the high-density, high-ash content particles leave on the side and front of the table located at the farthest from the feed entry. At each test site, the run-of-mine feed was either directly fed to the FGX unit or pre-screened to remove the majority of the -6mm material. The surface moisture of the feed must be maintained below 9%. Pre-screening is required when the surface moisture of the feed coal exceeds the maximum limit. However, the content of -6mm in the feed to the FGX separator should be maintained between 10% and 20% to ensure an adequate fluidized bed. A parametric evaluation was conducted using a 3-level experimental design at each test site to identify the optimum separation performance and parameter values. The test data was used to develop empirical expressions that describe the response variables (i.e., mass yield and product ash content) as a function of the operating parameter values. From this process, it was established that table frequency and longitudinal slope are the most critical factors in controlling both mass yield and clean coal ash while the cross table slope was the least significant. Fan blower frequency is a critical parameter that controls mass yield. Although the splitter positions between product and middling streams and the middling and tailing streams were held constant during the tests, a separate evaluation indicated that performance is sensitive to splitter position within certain lengths of the table and insensitive in others. For a Utah bituminous coal, the FGX separator provided clean coal ash contents that ranged from a low of 8.57% to a high of 12.48% from a feed coal containing around 17% ash. From the 29 tests involved in the statistically designed test program, the average clean coal ash content was 10.76% while the tailings ash content averaged around 72%. One of the best separation performances achieved an ash reduction from 17.36% to 10.67% while recovering 85.9% of the total feed mass, which equated to an ash rejection value of around 47%. The total sulfur content was typically decreased from 1.61% to 1.49%. These performances were quantified by blending the middlings stream with the clean coal product. At a second Utah site, coal sources from three different bituminous coal seams were treated by the FGX deshaling unit. Three parameter values were varied based on the results obtained from Site No. 1 to obtain the optimum results shown in Table E-1. Approximately 9 tests w

Rick Honaker; Gerald Luttrell

2007-09-30T23:59:59.000Z

374

Environmental data energy technology characterizations: coal  

SciTech Connect

This document describes the activities leading to the conversion of coal to electricity. Specifically, the activities consist of coal mining and beneficiation, coal transport, electric power generation, and power transmission. To enhance the usefulness of the material presented, resource requirements, energy products, and residuals for each activity area are normalized in terms of 10/sup 12/ Btus of energy produced. Thus, the total effect of producing electricity from coal can be determined by combining the residuals associated with the appropriate activity areas. Emissions from the coal cycle are highly dependent upon the type of coal consumed as well as the control technology assigned to the activity area. Each area is assumed to be equipped with currently available control technologies that meet environmental regulations. The conventional boiler, for example, has an electrostatic precipitator and a flue gas desulfurization scrubber. While this results in the removal of most of the particulate matter and sulfur dioxide in the flue gas stream, it creates other new environmental residuals -- solid waste, sludge, and ash. There are many different types of mined coal. For informational purposes, two types from two major producing regions, the East and the West, are characterized here. The eastern coal is typical of the Northern Appalachian coal district with a high sulfur and heat content. The western coal, from the Powder River Basin, has much less sulfur, but also has a substantially lower heating value.

Not Available

1980-04-01T23:59:59.000Z

375

New Computer Codes Unlock the Secrets of Cleaner Burning Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes Unlock the Secrets of Cleaner Burning Coal New Computer Codes Unlock the Secrets of Cleaner Burning Coal March 29, 2012 | Tags: Advanced Scientific Computing Research (ASCR),...

376

Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1994--September 1995  

SciTech Connect

On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues (CCBs) in abandoned coal mines, and will assess the environmental impact of such underground CCB placement. This report describes progress in the following areas: environmental characterization, mix development and geotechnical characterization, material handling and system economics, underground placement, and field demonstration.

Chugh, Y.P.; Dutta, D.; Esling, S. [and others

1995-10-01T23:59:59.000Z

377

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 4  

SciTech Connect

This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effective replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 48-month program which started on September 30, 1992. This report discusses the technical progress made during the 4th quarter of the project from July 1 to September 30, 1993.

Smit, F.J.; Hogsett, R.F.; Jha, M.C.

1993-11-04T23:59:59.000Z

378

CONVERSION EXTRACTION DESULFURIZATION (CED) PHASE III  

DOE Green Energy (OSTI)

This project was undertaken to refine the Conversion Extraction Desulfurization (CED) technology to efficiently and economically remove sulfur from diesel fuel to levels below 15-ppm. CED is considered a generic term covering all desulfurization processes that involve oxidation and extraction. The CED process first extracts a fraction of the sulfur from the diesel, then selectively oxidizes the remaining sulfur compounds, and finally extracts these oxidized materials. The Department of Energy (DOE) awarded Petro Star Inc. a contract to fund Phase III of the CED process development. Phase III consisted of testing a continuous-flow process, optimization of the process steps, design of a pilot plant, and completion of a market study for licensing the process. Petro Star and the Degussa Corporation in coordination with Koch Modular Process Systems (KMPS) tested six key process steps in a 7.6-centimeter (cm) (3.0-inch) inside diameter (ID) column at gas oil feed rates of 7.8 to 93.3 liters per hour (l/h) (2.1 to 24.6 gallons per hour). The team verified the technical feasibility with respect to hydraulics for each unit operation tested and successfully demonstrated pre-extraction and solvent recovery distillation. Test operations conducted at KMPS demonstrated that the oxidation reaction converted a maximum of 97% of the thiophenes. The CED Process Development Team demonstrated that CED technology is capable of reducing the sulfur content of light atmospheric gas oil from 5,000-ppm to less than 15-ppm within the laboratory scale. In continuous flow trials, the CED process consistently produced fuel with approximately 20-ppm of sulfur. The process economics study calculated an estimated process cost of $5.70 per product barrel. The Kline Company performed a marketing study to evaluate the possibility of licensing the CED technology. Kline concluded that only 13 refineries harbored opportunity for the CED process. The Kline study and the research team's discussions with prospective refineries led to the conclusion that there were not likely prospects for the licensing of the CED process.

James Boltz

2005-03-01T23:59:59.000Z

379

Coal combined cycle system study. Volume I. Summary  

Science Conference Proceedings (OSTI)

The potential advantages for proceeding with demonstration of coal-fueled combined cycle power plants through retrofit of a few existing utility steam plants have been evaluated. Two combined cycle concepts were considered: Pressurized Fluidized Bed (PFB) combined cycle and gasification combined cycle. These concepts were compared with AFB steam plants, conventional steam plants with Flue Gas Desulfurization (FGD), and refueling such as with coal-oil mixtures. The ultimate targets are both new plants and conversion of existing plants. Combined cycle plants were found to be most competitive with conventional coal plants and offered lower air emissions and less adverse environmental impact. A demonstration is a necessary step toward commercialization.

Not Available

1980-04-01T23:59:59.000Z

380

Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 12, July--September 1995  

SciTech Connect

The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The goals for emissions and plant efficiency are: NO{sub x} emissions not greater than 0.1 lb/million Btu; SO{sub x} emissions not greater than 0.1 lb/million Btu; particulate emissions not greater than 0.01 lb/million Btu; and net plant efficiency (HHV basis) not less than 42%. Other goals include: improved ash disposability and reduced waste generation; and reduced air toxics emissions. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives, and a preliminary design of a Commercial Generation Unit. The work in Phase I covered a 24- month period and included system analysis, RD&T Plan formulation, component definition, and preliminary Commercial Generating Unit (CGU) design. Phase II will cover a 15-month period and will include preliminary Proof-of-Concept Test Facility (POCTF) design and subsystem testing. Phase III will cover a 9-month period and will produce a revised CGU design and a revised POCTF design, cost estimate and a test plan. Phase IV, the final Phase, will cover a 36- month period and will include POCTF detailed design, construction, testing, and evaluation.

NONE

1995-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994  

Science Conference Proceedings (OSTI)

Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than did relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.

Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., College Park, PA (United States); Gutterman, C.

1995-04-01T23:59:59.000Z

382

The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NOx) Emissions From Coal-Fired Boilers Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NO ) Emissions From Coal-Fired Boilers X Demonstration Project: A DOE Assessment March 2000 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

383

Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, October--December 1994  

SciTech Connect

On September 30, 1993, the US Department of Energy, Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative agreement entitled ``Management of Dry Flue Gas Desulfurization By-Products in Underground Mines`` (DE-FC21-93MC30252). Under the agreement, Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. The major event during the quarter was the demonstration of the SEEC, Inc. technology for loading and transporting coal combustion residues in the SEEC developed Collapsible Intermodal Containers (CIC). The demonstration was held on November 17, 1994, at the Illinois Power Company Baldwin power plant, and was attended by about eighty (80) invited guest. Also during the quarter meetings were held with Peabody Coal Company officials to finalize the area in the Peabody No. 10 mine to be used for the placement of coal combustion residues. Work under the Materials Handling and Systems Economics area continued, particularly in refining the costs and systems configuration and in economic evaluation of various systems using equipment leasing rather than equipment purchases. Likewise, work progressed on residues characterization, with some preparations being made for long-term testing.

Chugh, Y.; Dutta, D.; Esling, S.; Ghafoori, N.; Paul, B.; Sevim, H.; Thomasson, E.

1995-01-01T23:59:59.000Z

384

Flue gas desulfurization: Physicochemical and biotechnological approaches  

Science Conference Proceedings (OSTI)

Various flue gas desulfurization processes - physicochemical, biological, and chemobiological - for the reduction of emission of SO{sub 2} with recovery of an economic by-product have been reviewed. The physicochemical processes have been categorized as 'once-through' and 'regenerable.' The prominent once-through technologies include wet and dry scrubbing. The wet scrubbing technologies include wet limestone, lime-inhibited oxidation, limestone forced oxidation, and magnesium-enhanced lime and sodium scrubbing. The dry scrubbing constitutes lime spray drying, furnace sorbent injection, economizer sorbent injection, duct sorbent injection, HYPAS sorbent injection, and circulating fluidized bed treatment process. The regenerable wet and dry processes include the Wellman Lord's process, citrate process, sodium carbonate eutectic process, magnesium oxide process, amine process, aqueous ammonia process, Berglau Forchung's process, and Shell's process. Besides these, the recently developed technologies such as the COBRA process, the OSCAR process, and the emerging biotechnological and chemobiological processes are also discussed. A detailed outline of the chemistry, the advantages and disadvantages, and the future research and development needs for each of these commercially viable processes is also discussed.

Pandey, R.A.; Biswas, R.; Chakrabarti, T.; Devotta, S. [National Environmental Engineering Research Institute, Nagpur (India)

2005-07-01T23:59:59.000Z

385

Laboratory study for removal of organic sulfur from coal. Quarterly technical progress report  

SciTech Connect

Substantial progress has been made in the development of the Gravimelt Process for removal of organic sulfur from coal. Three reactors have been fabricated for both material balance studies of the desulfurization of coal with caustic and examination of the behavior of model organic and inorganic sulfur-containing compounds with the same mixture. Model organic sulfur conpounds have been procured and samples of Kentucky No. 9 coal enriched in mineral matter and samples enriched in organic matter have been prepared by float sink techniques for use in determining mechanism and products of the desulfurization reactions. Initial experimentation has been aimed at determining the fate of sulfur removed from coal and obtaining semi-quantitative information for future material balance studies. These studies show near 90% of the sulfur content of the Kentucky No. 9 coal was removed and approximately 3/4 of this removed sulfur was found by chemical analysis to be in the caustic phase. It was further determined that approximately 1% of the coal organic matter dissolves into the caustic phase. These results indicate rough material flows and show that material balance measurements are feasible. A preliminary conceptual engineering design for a full scale Gravimelt coal desulfurization plant was prepared in order to guide future laboratory efforts toward obtaining key engineering data. The engineering study indicates that the Gravimelt Process can be designed utilizing state of the art equipment and that likely energy recovery is approximately 90%. It is estimated that coal desulfurization costs will be in the range of $20 per ton of coal produced, or $.70/10/sup 6/ Btu, in 1980 dollars.

1980-07-01T23:59:59.000Z

386

Engineering development of advanced coal-fired low emission boil systems. Quarterly technical progress report, October 1993--December 1993  

Science Conference Proceedings (OSTI)

The first test run of the Toroidal Vortex Combustor (TVC) was completed on December 6. Riley was unable to witness or set up independent sampling equipment for NO{sub x} and precursor measurement for this run. A second run which we witnessed, but did not sample, was completed December 17. This was conducted almost entirely near SR = 1.0 while Textron investigated temperature-load relationships to address concerns from Run 1. A third run was completed over the December holiday break on Dorchester coal to address concerns Textron had about the Illinois test coal. All subsequent tests will use the Illinois coal. Boiler, firing system design. Elevation drawings were developed for dry wall-fired, conventional U-fired slagging, and TVC fired slagging units. We are investigating the feasibility of modifying a conventional U-fired design for low-NOx operation as an alternative to the TVC. The approach taken to I date for NOx reduction in existing U-fired units is to retrofit with delayed-mixing burners with staging air at various places, similar to the approach with dry fired units. The concept of staged fuel addition or reburning for the U-fired system is being examined as a potential combustion NOx control approach. This concept has high potential due to the high temperature and long residence time available in the stagger. Some field trials with coke oven gas reburn produced very low NOx results. Modeling of this concept was identified as a priority task. The model development will include matching field data for air staging on slagging units to the predictions. Emissions control. Selection of an SO2 control process continues to be a high priority task. Sargent & Lundy completed a cost comparison of several regenerable processes, most of which have NOx control potential as well: Active coke, NOXSO, copper oxide, SNOX, ammonia (for SO only, ammonium sulfate byproduct), and a limestone scrubber for comparison.

Not Available

1993-12-31T23:59:59.000Z

387

Low-rank coal research  

DOE Green Energy (OSTI)

This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

Not Available

1989-01-01T23:59:59.000Z

388

Catalytic seawater flue gas desulfurization process: an experimental pilot plant study  

SciTech Connect

In previous articles by the authors on seawater S(IV) oxidation kinetics, a significant catalytic effect was demonstrated by means of a commercially available activated carbon. The aims of this study carried out at pilot plant scale were to assess the use of high-efficiency structured packing and to validate the positive results obtained previously in laboratory studies. A comparison between a packed tower and a spray column was made by maintaining the same desulfurization efficiency. A 47% reduction in seawater flow can be obtained with a packed tower. This option seems to be more economical, with a reduction in operation costs of least of 33%. With the appropriate activated carbon, it is possible to reach a greater oxidation rate at a low pH level than by operating conventionally at a high pH level without a catalyst. A preliminary technical and financial comparison between the advanced seawater desulfurization process (equipped with a packed tower and a catalytic oxidation plant) and the conventional process (spray tower and noncatalytic oxidation) was carried out. 18 refs., 4 figs., 4 tabs.

F. Vidal B.; P. Ollero; F.J. Gutierrez Ortiz; A. Villanueva [University of Seville, Seville (Spain). Department of Chemical and Environmental Engineering

2007-10-15T23:59:59.000Z

389

Cooling Requirements and Water Use Impacts of Advanced Coal-fired Power Plants with CO2 Capture and Storage  

Science Conference Proceedings (OSTI)

In addition to the large cost impact that comes with including CO2 capture in coal power plants, the consumption of water also increases. The increase in water consumption could represent a significant barrier to the implementation of CO2 capture. Although it is assumed that technology improvements might reduce the cost and power consumption of future CO2 capture systems, it might not be feasible to implement CO2 capture if additional water is not available at a site. In addition, because many regions of...

2011-12-20T23:59:59.000Z

390

Refining and upgrading of synfuels from coal and oil shales by advanced catalytic processes. Monthly report, May 1977  

DOE Green Energy (OSTI)

Activities are reported of a program to determine the feasibility and to estimate the economics of hydroprocessing synthetic crude feedstocks to distillate fuels using presently available technology. The first feedstock is shale oil. The oil used in this evaluation is Paraho crude shale oil, produced in the indirectly heated mode. Pilot plant studies evaluating hydroprocessing of the whole shale oil have been in progress for about seven months. The second feedstock is solvent refined coal (SRC). In SRC processing, hydrofining feedstock analyses were conducted and results of pilot plant hydrofining test runs are reported. (JRD)

Sullivan, R.F.; Rudy, C.E.; Chen, H.C.

1977-06-01T23:59:59.000Z

391

Studies involving high temperature desulfurization/regeneration reactions of metal oxides for fuel cell development. Final report  

DOE Green Energy (OSTI)

Research conducted at Giner, Inc. during 1981 to 1983 under the present contract has been a continuation of the investigation of a high temperature regenerable desulfurization process capable of reducing the sulfur content in coal gases from 200 ppM to 1 ppM. The overall objective has been the integration of a coal gasifier with a molten carbonate fuel cell, which requires that the sulfur content be below 1 ppM. Commercially available low temperature processes incur an excessive energy penalty. Results obtained with packed-bed and fluidized bed reactors have demonstrated that a CuO/ZnO mixed oxide sorbent is regenerable and capable of lowering the sulfur content (as H/sub 2/S and COS) from 200 ppM in simulated hot coal-derived gases to below 1 ppM level at 600 to 650/sup 0/C. Four potential sorbents (copper, tungsten oxide, vanadium oxide and zinc oxide) were initially selected for experimental use in hot regenerable desulfurization in the temperature range 500 to 650/sup 0/C. Based on engineering considerations, such as desulfurization capacity in per weight or volume of sorbents, a coprecipitated CuO/ZnO was selected for further study. A structural reorganization mechanism, unique to mixed oxides, was identified: the creation of relatively fine crystallites of the sulfided components (Cu/sub 2/S and ZnS) to counteract the loss of surface area due to sintering during regeneration. Studies with 9 to 26% water vapor in simulated coal gases show that sulfur levels below 1 ppM can be achieved in the temperature range of 500/sup 0/ to 650/sup 0/C. The ability of CuO/ZnO to remove COS, CS/sub 2/ and CH/sub 3/SH at these conditions has been demonstrated in this study. Also a previously proposed pore-plugging model was further developed with good success for data treatment of both packed bed and fluidized-bed reactors. 96 references, 42 figures, 21 tables.

Jalan, V.

1983-10-01T23:59:59.000Z

392

Performance and economics of co-firing a coal/waste slurry in advanced fluidized-bed combustion  

DOE Green Energy (OSTI)

This study`s objective was to investigate co-firing a pressurized fluidized-bed combustor with coal and refuse-derived fuel for the production of electricity and the efficient disposal of waste. Performance evaluation of the pressurized fluidized-bed combustor (PFBC) power plant co-fired with refuse-derived fuel showed only slightly lower overall thermal efficiency than similar sized plants without waste co-firing. Capital costs and costs of electricity are within 4.2 percent and 3.2 percent, respectively, of waste-free operation. The results also indicate that there are no technology barriers to the co-firing of waste materials with coal in a PFBC power plant. The potential to produce cost-competitive electrical power and support environmentally acceptable waste disposal exists with this approach. However, as part of technology development, there remain several design and operational areas requiring data and verification before this concept can realize commercial acceptance. 3 refs., 3 figs., 4 tabs.

DeLallo, M.R.; Zaharchuk, R. [Parsons Power Group, Inc., Reading, PA (United States); Reuther, R.B.; Bonk, D.L. [USDOE Morgantown Energy Technology Center, WV (United States)

1996-09-01T23:59:59.000Z

393

Advanced turbine design for coal-fueled engines. Quarterly technical report, [July 1, 1989--September 30, 1989  

SciTech Connect

Coal-fueled gas turbines require the development of a number of new technologies which are being identified by METC and its Heat Engines Contractors. Three significant problems, that were Identified early in the development of coal-fueled engines, are the rapid wear of the turbine airfoils due to particulate erosion, the accumulation of deposits on portions of the airfoil surfaces due to slag deposition and the rapid corrosion of airfoils after the breakdown of surface coatings. The technology development study contained in this program is focused on improving the durability of the turbine through the development of erosion and deposition resistant airfoils and turbine operating conditions. The baseline turbine meanline design vas modified to prevent a local shock on the suction side of the rotor airfoil. New particle dimensionless parameters to be varied were determined. Three first-stage turbine meanline designs have been completed. The design of nev turbine airfoil shapes has been initiated. The calculation of particle trajectories has been completed for the baseline turbine vane and blade airfoils. The erosion model described in the previous technical report vas incorporated in the Post Processing Trajectory Analysis Code.

1989-12-31T23:59:59.000Z

394

PINON PINE: An advanced IGCC demonstration  

SciTech Connect

The Pinon Pine Power Project is a second generation integrated gasification combined cycle (IGCC) power plant, located at Sierra Pacific Power Company`s (SPPC) Tracy Station, 17 miles east of Reno, Nevada. The project is being partially funded under the Department of Energy`s (DOE`s) Clean Coal Technology Program (CCT). SPPC intends to operate the plant in base-load mode to supply approximately 100 megawatts electric (MWe) to the transmission grid. This plant will be the first full-scale integration of several advanced technologies: an air-blown KRW gasifier; full-stream hot gas desulfurization using a transport reactor system with a zinc-based sorbent; full-stream, high-temperature ceramic filters for particulate removal; the General Electric Model MS6001FA (617A) Gas Turbine Engine/generator, and a 950 pound per square inch absolute (psia), 950{degrees}F steam turbine generator. This paper reviews the overall configuration and integration of the gasification and power islands components, which yield the plant`s high efficiency. Current status of the project is addressed.

Freier, M.D.; Jewell, D.M. [Morgantown Energy Technology Center, WV (United States); Motter, J.W. [Sierra Pacific Power Co., Reno, NV (United States)

1996-04-01T23:59:59.000Z

395

Summary of Demonstration Projects Using Coal Combustion Residuals as Engineered Structural Fill  

Science Conference Proceedings (OSTI)

This report summarizes six demonstration projects in which coal combustion residuals (CCRs) were used as engineered structural fill to construct embankments for highways, a bridge approach, and an airport runway extension. The CCRs studied included coal fly ash, bottom ash, and stabilized flue gas desulfurization (FGD) material. Significant aspects of the design, construction, and performance of these structural fills are described. CCRs are often cost-effective substitutes for natural soils in structura...

2010-11-09T23:59:59.000Z

396

Operating Experience, Risk and Market Assessment of Clean Coal Technologies: 2005  

Science Conference Proceedings (OSTI)

In response to the trend towards near-zero emissions for coal-based power plants, emission performance of pulverized coal (PC) plants continue to improve. The US-DOE is funding extensive test programs to improve the performance of the existing fleet and these results should contribute to new plants achieving the following environmental performance: Improved wet, flue-gas desulfurization (FGD) designs are available that can achieve greater than 99-percent SO2 capture with lower capital and operating costs...

2005-12-06T23:59:59.000Z

397

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions have begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During the second reporting quarter for this project, design and development is continuing on an electrostatic tensiometer to measure cohesion of flyash layers. A dedicated test fixture to automate flyash electrical resistivity testing is also underway. Ancillary instrumentation to control gas humidification within these test fixtures is also under construction.

Kenneth E. Baldrey

2000-09-01T23:59:59.000Z

398

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, progress was made in obtaining an industry partner for a long-term demonstration and in technology transfer activities. Engineering and equipment procurement activities related to the long-term demonstration were also completed.

Kenneth E. Baldrey

2001-10-01T23:59:59.000Z

399

Refining and upgrading of synfuels from coal and oil shales by advanced catalytic processes. Quarterly report, July--September 1976  

DOE Green Energy (OSTI)

The objective of this program is to determine the feasibility and estimate the economics of hydroprocessing four synthetic fuels to distillate fuels, including high octane gasoline, using presently available technology. The feedstocks include three coal-derived synthetic crudes and shale oil. The first feedstock is Paraho crude shale oil, produced in the indirect-heated mode. The feed was received less than three weeks before the end of the quarter. The work to date consists of analyses of the shale oil. Results are incomplete. However, there is no reason to believe that this shale oil is atypical of Paraho shale oil prepared by the indirect-heated mode of retorting. Currently available technology is being studied to determine the appropriate methods for removal of fines and water to prepare the whole shale oil feed for hydrofining.

Sullivan, R.F.

1976-10-01T23:59:59.000Z

400

Refining and upgrading of synfuels from coal and oil shales by advanced catalytic processes. Monthly report, April 1977  

DOE Green Energy (OSTI)

Activities are reported in a program to determine the feasibility and to estimate the economics of hydroprocessing synthetic crude feedstocks to distillate fuels using presented available technology. The first feedstock is shale oil. The oil used in this evaluation is Paraho crude shale oil, produced in the indirectly heated mode. Pilot plant studies evaluating hydroprocessing of the whole shale oil have been in progress for about six months. Shale oil makes an excellent catalytic cracking feedstock provided its nitrogen content is reduced to at least 0.1 percent by appropriate hydrofining. Gasolines and cycle oils derived from the cracking of hydrofined shale oils are similar to those obtained from the cracking of hydrofined petroleum gas oils. The second feedstock is solvent refined coal (SRC). In SRC processing, an analysis of hydrofining feedstock was conducted and hydrofining tests were planned. (JRD)

Sullivan, R.F.; Rudy, C.E.; Chen, H.C.

1977-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Refining and upgrading of synfuels from coal and oil shales by advanced catalytic processes. Quarterly report, July--September 1977  

DOE Green Energy (OSTI)

The objective of this program is to determine the feasibility and estimate the economics of hydropreocessing four synthetic fuels to distillate fuels, including high octane gasoline, using presently available technology. The feedstocks include shale oil and three coal-derived synthetic crudes. The first feedstock is Paraho crude shale oil, produced in the indirectly heated mode. Pilot plant studies of hydrofining of whole shale oil with ICR 106 catalyst have been completed. The product resembles the fraction of a waxy petroleum crude boiling below 1000/sup 0/F. There is no 1100/sup 0/F+ residuum. A 3500-hour pilot plant run showed that the catalyst fouling rate is low and demonstrated that a commercial length run is feasible. However, a guard bed is necessary ahead of the catalyst bed to remove arsenic and iron which can cause plugging. Hydrofined shale oil is an excellent feed for a catalytic cracker. Pilot plant studies show that the 650/sup 0/F+ fraction of hydrofined shale oil is very similar to hydrofined Middle Eastern vacuum gas oils in its performance in a catalytic cracker. Process design studies based on pilot plant results indicate that it is desirable to hydrofine the whole shale oil to a nitrogen content of about 500 ppM and then to fractionate the product before conventional downstream processing to produce transportation fuels. An alternate scheme for shale oil processing is the coking of the shale oil followed by hydrofinishing of the coker distillate. Preliminary results appear promising. The second feedstock is solvent refined coal. Studies of the hydrofining of a 50/50 blend of SRC and creosote were continued. A run of 1100 hours was achieved with ICR 106 catalyst without the plugging problem that had plagued an earlier test. The catalyst deactivated at a relatively rapid rate.

Sullivan, R.F.; Rudy, C.E.; Green, D.C.; Chen, H.C.

1977-10-01T23:59:59.000Z

402

Heteronuclear probes of coal structure and reactivity. Final quarterly report  

SciTech Connect

Highlights of the previous report were experiments on coal desulfurization to ascertain reproducibility of results obtained earlier. Activity since the last report was related to the room temperature desulfurization of dibenzothiophene. This startling result is probably the authors most important to date. Because this invention has not yet received a DOE docket number and the disclosure to the university is in progress, results will be related to DOE/PETC in due course. A patent disclosure on the invention is in progress, but more experiments are needed before a Continuation in Part to the pending patent is made. The university has elicited interest in their developing technology from three coal companies and a paper company. Negotiations aimed at establishing confidentiality agreements are underway.

Verkade, J.G.

1995-02-01T23:59:59.000Z

403

Protocols for the selective cleavage of carbon-sulfur bonds in coal. [Quarterly] technical report, March 1, 1993--May 31, 1993  

SciTech Connect

Chemical reactions that result in carbon-sulfur bond cleavage are an essential aspect of any protocol designed to remove organic sulfur from coal. Planned in the second year of our project ``Protocols for the Selective Cleavage of Carbon-Sulfur Bonds in Coal`` are investigations of reactions in which organic sulfur-containing coal model compounds are subjected to different conditions of temperature, solvent mixtures and radiation. other investigations that will result in analyses of the likelihood of C-S bond cleavages resulting from various oxidative processes will also be undertaken. Summarized in this quarterly report are results of our investigations of the following topics: (a) desulfurization of coal model sulfones and sulfides; (b) photolytic desulfurization of coal; (c) differential scanning calorimetric experiments on photooxidized coal; and (d) discussions on C-S bond strengths in radical cations.

Bausch, M. [Southern Illinois Univ., Carbondale, IL (United States)

1993-09-01T23:59:59.000Z

404

Management of dry flue gas desulfurization by-products in underground mines. Quarterly technical progress report, April 1995--June 1995  

SciTech Connect

On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, and a discussion of these is not repeated here. Rather, this report discusses the technical progress made during the period April 1 - June 30, 1995. A final topical report on the SEEC, Inc. demonstration of its technology for the transporting of coal combustion residues was completed during the quarter, although final printing of the report was accomplished early in July, 1995. The SEEC technology involves the use of Collapsible Intermodal Containers (CIC`s) developed by SEEC, and the transportation of such containers - filled with fly ash or other coal combustion residues - on rail coal cars or other transportation means. Copies of the final topical report, entitled {open_quotes}The Development and Testing of Collapsible Intermodal Containers for the Handling and Transport of Coal Combustion Residues{close_quotes} were furnished to the Morgantown Energy Technology Center. The Rapid Aging Test colums were placed in operation during the quarter. This test is to determine the long-term reaction of both the pneumatic and hydraulic mixtures to brine as a leaching material, and simulates the conditions that will be encountered in the actual underground placement of the coal combustion residues mixtures. The tests will continue for about one year.

Chugh, Y.P.; Dutta, D.; Esling, S. [and others

1995-07-01T23:59:59.000Z

405

NETL: Coal/Biomass Feed and Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

406

NETL: Coal and Coal/Biomass to Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

C&CBTL C&CBTL Coal and Power Systems Coal and Coal/Biomass to Liquids The Coal and Coal/Biomass to Liquids program effort is focused on technologies to foster the commercial adoption of coal and coal/biomass gasification and the production of affordable liquid fuels and hydrogen with excellent environmental performance. U.S. Economic Competitiveness U.S. Economic Competitiveness U.S. Economic Competitiveness U.S. Economic Competitiveness Advanced Fuels Synthesis U.S. Economic Competitiveness U.S. Economic Competitiveness U.S. Economic Competitiveness U.S. Economic Competitiveness Advanced Fuels Synthesis Systems Analyses Global Environmental Benefits Global Environmental Benefits Global Environmental Benefits Global Environmental Benefits Global Environmental Benefits Global Environmental Benefits

407

Carbon Dioxide Sequestration with Flue Gas Desulfurization (FGD) Gypsum  

Science Conference Proceedings (OSTI)

Carbonation of industrial alkaline residues can be used as a CO2 sequestration technology to reduce carbon dioxide emissions. In this study, alkaline Ca-rich flue gas desulfurization (FGD) gypsum samples were carbonated to a varying extent. These materials ... Keywords: FGD gypsum, carbonation, carbon dioxide

Hongqi Wang; Ningning Sun; Rona J. Donahoe

2009-07-01T23:59:59.000Z

408

Flue Gas Desulfurization Scrubber Maintenance Guide: Gypsum Dewatering Area  

Science Conference Proceedings (OSTI)

Flue Gas Desulfurization Scrubber Maintenance Guide: Gypsum Dewatering Area provides fossil plant maintenance personnel with current maintenance information on this system. This report will assist the plant maintenance personnel in improving the reliability and reducing the maintenance costs for this area of their scrubber system.

2009-12-08T23:59:59.000Z

409

Flue Gas Desulfurization Scrubber Maintenance Guide: Absorber Area  

Science Conference Proceedings (OSTI)

The Flue Gas Desulfurization Scrubber Maintenance Guide: Absorber Area provides fossil plant maintenance personnel with current maintenance information on this system and will help to improve the reliability of and reduce the maintenance costs for this area of their scrubber system.

2008-12-18T23:59:59.000Z

410

Flue Gas Desulfurization Scrubber Maintenance Guide: Reagent Preparation Area  

Science Conference Proceedings (OSTI)

The Flue Gas Desulfurization Scrubber Maintenance Guide: Reagent Preparation Area provides the fossil plant maintenance personnel with current maintenance information on this system and will help improve the reliability and reduce the maintenance costs for this area of their scrubber system.

2008-12-15T23:59:59.000Z

411

Investigation of Flue Gas Desulfurization Chemical Process Problems  

Science Conference Proceedings (OSTI)

An understanding of flue gas desulfurization process chemistry is crucial in troubleshooting problems in operating FGD systems. This report discusses a variety of problems and solutions associated with process chemistry for 25 different wet FGD systems, including lime/limestone and double alkali processes. Among the problems addressed are SO2 removal, mist eliminator scaling, poor solids dewatering, and water management.

1990-09-10T23:59:59.000Z

412

FE Clean Coal News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program DOE has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems. January 4, 2011 DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration A novel technology that could help release some of the currently unusable energy in an estimated 2 billion tons of U.S. coal waste has been successfully demonstrated by a Department of Energy supported project. December 16, 2010 Prestigious Coal-Fired Project of the Year Award Goes to Plant Demonstrating Innovative DOE-Funded Technology

413

Health Effects of Inhalation of Coal Combustion Products  

Science Conference Proceedings (OSTI)

This report assesses the potential human health effects of inhaled coal combustion products (CCPs), which consist of fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) products. The focus is on as-managed CCPs, with evaluation of the potential effects of exposure through fugitive emissions from storage facilities. Because the literature pertaining to bottom ash, boiler slag, and FGD solids is scarce, this review draws almost entirely from studies of fly ash as a surrogate particulate ma...

2011-12-30T23:59:59.000Z

414

Comparison of Coal Combustion Products to Other Common Materials  

Science Conference Proceedings (OSTI)

The chemical characteristics of coal combustion products (CCPs) are often discussed with reference to geologic materials and other industrial by-products; however, there are no systematic comparisons of these materials in the literature. This report compares the ranges in chemical characteristics of fly ash, bottom ash, and flue gas desulfurization (FGD) gypsum to the ranges observed for soil and rock, as well as other common products and by-products.

2010-09-30T23:59:59.000Z

415

Longer-term Characterization of Mercury Partitioning and Re-emissions in a Full-scale Wet Flue Gas Desulfurization System, Site 2  

Science Conference Proceedings (OSTI)

This document presents and discusses results from an EPRI project focused on understanding and enhancing how mercury is captured by a wet flue gas desulfurization (FGD) system and how it partitions among the FGD liquor, fine solids, and bulk FGD solid byproduct. A second objective was to close a mercury balance around the host unit by determining what portion of the coal mercury exits the stack with the scrubbed flue gas and how much ends up in the fly ash, byproduct gypsum, and FGD wastewater. During t...

2010-12-23T23:59:59.000Z

416

Advanced turbine design for coal-fueled engines. Phase 1, Erosion of turbine hot gas path blading: Final report  

SciTech Connect

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

417

Refining and upgrading of synfuels from coal and oil shales by advanced catalytic processes. Quarterly report, January--March 1977  

DOE Green Energy (OSTI)

The objective of this program is to determine the feasibility and estimate the economics of hydroprocessing four synthetic fuels to distillate fuels, including high octane gasoline, using presently available technology. The feedstocks include three coal-derived synthetic crudes and shale oil. The first feedstock is Paraho crude shale oil, produced in the indirectly heated mode. Whole shale oil was hydrofined in a 2000-hour pilot plant test using ICR 106 catalyst. The results show that shale oil containing 2.2 percent nitrogen can be hydrofined to residuum-free product containing 1 to 2 ppM nitrogen in a single stage. Process design studies indicate that it is preferable to hydrofine the whole shale oil to about 500 ppM nitrogen and then to fractionate the product before conventional downstream processing to produce transportation fuels. The product resembles the fraction of a waxy petroleum crude boiling below 1000/sup 0/F. This report includes yields and product properties determined from the small-scale pilot plant test. A larger-scale pilot plant demonstration run is now in progress.

Sullivan, R.F.

1977-10-01T23:59:59.000Z

418

DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH  

DOE Green Energy (OSTI)

The overall objective of this project is to explore a new desulfurization system concept, which consists of efficient separation of the refractory sulfur compounds from diesel fuel by selective adsorption, and effective hydrodesulfurization of the concentrated fraction of the refractory sulfur compounds in diesel fuels. Our approaches focused on (1) selecting and developing new adsorbents for selective adsorption of sulfur or sulfur compounds in commercial diesel fuel; (2) conducting the adsorption desulfurization of model fuels and real diesel fuels by the selective-adsorption-for-removing-sulfur (PSUSARS) process over various developed adsorbents, and examining the adsorptive desulfurization performance of various adsorbents; (3) developing and evaluating the regeneration methods for various spent adsorbent; (4) developing new catalysts for hydrodesulfurization of the refractory sulfur existing in the commercial diesel fuel; (5) on the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, further confirming and improving the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel Three types of adsorbents, the metal-chloride-based adsorbents, the activated nickel-based adsorbents and the metal-sulfide-based adsorbents, have been developed for selective adsorption desulfurization of liquid hydrocarbons. All of three types of the adsorbents exhibit the significant selectivity for sulfur compounds, including alkyl dibenzothiophenes (DBTs), in diesel fuel. Adsorption desulfurization of real diesel fuels (regular diesel fuel (DF), S: 325 ppmw; low sulfur diesel fuel (LSD-I), S: 47 ppmw) over the nickel-based adsorbents (A-2 and A-5) has been conducted at different conditions by using a flowing system. The adsorption capacity of DF over A-2 corresponding to an outlet sulfur level of 30 ppmw is 2.8 mg-S/g-A. The adsorption capacity of LSD-I over A-5 corresponding to the break-through point at 5.0 ppmw sulfur level is 0.35 mg-S/g-A. The spent A-5 can be regenerated by using H2 gas at a flowing rate of 40-50 ml/min, 500 C, and ambient pressure. Adsorption desulfurization of model diesel fuels over metal-sulfide-based adsorbents (A-6-1 and A-6-2) has been conducted at different temperatures to examine the capacity and selectivity of the adsorbents. A regeneration method for the spent metal-sulfide-based adsorbents has been developed. The spent A-6-1 can be easily regenerated by washing the spent adsorbent with a polar solvent followed by heating the adsorbent bed to remove the remainder solvent. Almost all adsorption capacity of the fresh A-6-1 can be recovered after the regeneration. On the other hand, a MCM-41-supported HDS catalyst was developed for deep desulfurization of the refractory sulfur compounds. The results show that the developed MCM-41-supported catalyst demonstrates consistently higher activity for the HDS of the refractory dibenzothiophenic sulfur compounds than the commercial catalyst. On the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel is confirmed and improved further.

Xiaoliang Ma; Uday Turaga; Shingo Watanabe; Subramani Velu; Chunshan Song

2004-05-01T23:59:59.000Z

419

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Advanced Electric Power Generation - Advanced Combustion Systems Healy Clean Coal Project - Project Brief PDF-226KB Alaska Industrial Development and Export Authority, Healy,...

420

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Advanced Electric Power Generation - Advanced Combustion Systems Clean Coal Diesel Demonstration Project - Project Brief PDF-57KB Arthur D. Little, Inc., Fairbanks, AK PROGRAM...

Note: This page contains sample records for the topic "desulfurization advanced coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Advanced low-temperature sorbents  

SciTech Connect

A number of promising technologies are currently being optimized for coal-based power generation, including the Integrated-Gasification Combined Cycle (IGCC) system. If IGCC is to be used successfully for power generation, an economic and efficient way must be found to remove the contaminants, particularly sulfur species, found in coal gas. Except for the hot gas desulfurization system, all major components of IGCC are commercially available or have been shown to meet system requirements. Over the last two decades, the U.S. Department of Energy/Morgantown Energy Technology Center (DOE/METC) has sponsored development of various configurations of high-temperature desulfurization systems including fixed-bed, moving-bed, transport-bed, and fluidized-bed systems. Because of their mode of operation and requirements for sorbent manufacturing, the fixed-bed systems can generally use the same materials as moving-bed configurations, i.e., pelletized or extruded sorbents, while fluidized-bed (circulating or bubbling configurations) and transport reactor configurations use materials generally described as agglomerated or granulated.The objective of this program is to remove hydrogen sulfides from coal gas using sorbent materials.

Ayala, R.E.; Venkataramani, V.S.; Abbasian, J.; Hill, A.H.

1995-12-01T23:59:59.000Z

422

Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System  

DOE Green Energy (OSTI)

Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

2006-05-01T23:59:59.000Z

423

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-09-17T23:59:59.000Z

424

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-04-23T23:59:59.000Z

425

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

SciTech Connect

This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2005-05-18T23:59:59.000Z

426

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2005-11-17T23:59:59.000Z

427