Powered by Deep Web Technologies
Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Modelling of a 400m2 steam based Paraboloidal Dish Siangsukone & Lovegrove ANZSES 2003 Destination Renewables 79 copyright  

E-Print Network [OSTI]

cavity receiver, steam line and steam engine. These component models are based on transient model using dish "BigDish" with a 50 kWe steam engine completed on the ANU campus in 1994. Dish-based Solar ThermalModelling of a 400m2 steam based Paraboloidal Dish Siangsukone & Lovegrove ANZSES 2003 Destination

2

Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Destination  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 (Thousand Short Tons) " " Coal-Exporting State and Destination ",,"Metallurgical ","Steam ","Total "," " "Alabama ",,3977,"-",3977," " ," Argentina ",225,"-",225," " ," Belgium ",437,"-",437," " ," Brazil ",1468,"-",1468," " ," Bulgaria ",75,"-",75," " ," Egypt ",363,"-",363," " ," Germany ",71,"-",71," " ," Italy ",61,"-",61," " ," Netherlands ",219,"-",219," " ," Spain ",415,"-",415," " ," Turkey ",362,"-",362," "

3

Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Destination  

U.S. Energy Information Administration (EIA) Indexed Site

3" 3" "(Thousand Short Tons)" "Coal-Exporting State and Destination ",,"Metallurgical ","Steam ","Total " "Alabama ",,5156,"-",5156 ,"Argentina ",345,"-",345 ,"Belgium ",387,"-",387 ,"Brazil ",1825,"-",1825 ,"Bulgaria ",363,"-",363 ,"Egypt ",477,"-",477 ,"Germany ",167,"-",167 ,"Italy ",87,"-",87 ,"Netherlands ",399,"-",399 ,"Spain ",198,"-",198 ,"Turkey ",551,"-",551 ,"United Kingdom ",359,"-",359 "Kentucky ",,1449,"-",1449 ,"Canada ",566,"-",566

4

Energy conservation and efficiency in Giprokoks designs at Ukrainian ferrous-metallurgical enterprises  

SciTech Connect (OSTI)

Energy conditions at Ukrainian ferrous-metallurgical enterprises are analyzed. Measures to boost energy conservation and energy efficiency are proposed: specifically, the introduction of systems for dry slaking of coke; and steam-gas turbines that employ coke-oven gas or a mixture of gases produced at metallurgical enterprises. Such turbines may be built from Ukrainian components.

M.I. Fal'kov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

5

Nanomedicine: destination or  

Science Journals Connector (OSTI)

Nanomedicine in a broad sense is the application of nano-scale technologies to the practice of medicine. The creation of nanodevices such as nanobots capable of performing therapeutic functions in vivo is a destination within the emerging field of nanomedicine. On the journey to that destination, significant technological advances across multiple scientific disciplines continue to be proposed, validated and commercialized. Advances in delivering therapy, miniaturization of analytical tools, improved computational and memory capabilities and developments in remote communications will be integrated allowing for the development of such nanobots. Nanomedicine is both a destination and a journey. The journey will cross new frontiers, uncover new knowledge and bring new horizons to the understanding and practice of medicine.

C A Haberzettl

2002-01-01T23:59:59.000Z

6

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Colorado Railroad 575 - - - 575 Illinois River 99 - - - 99 Indiana River 241 - - - 241 Kentucky Railroad 827 - 12 - 839 Kentucky (East) Railroad 76 - - - 76 Kentucky (West) Railroad

7

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 839 11 83 - 933 Alabama River 1,347 - - - 1,347 Alabama Truck 118 216 236 - 571 Alabama Total 2,304 227 320 - 2,850 Colorado Railroad 514 - - - 514 Illinois River 99 - - - 99 Indiana River 172 - - - 172 Kentucky Railroad 635 - 11 - 647 Kentucky (East) Railroad 45 - - - 45 Kentucky (West)

8

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 944 16 77 - 1,037 Alabama River 781 - - - 781 Alabama Truck 77 224 220 - 521 Alabama Total 1,802 240 298 - 2,340 Colorado Railroad 385 - - - 385 Illinois River 15 - - - 15 Indiana Railroad 1 - - - 1 Indiana River 350 - - - 350 Indiana Total 351 - - - 351 Kentucky Railroad 682 - 2 - 685 Kentucky (East)

9

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 907 10 59 - 975 Alabama River 903 - - - 903 Alabama Truck 150 144 253 - 546 Alabama Total 1,960 153 311 - 2,424 Colorado Railroad 640 - - - 640 Illinois River 123 - - - 123 Indiana River 312 - - - 312 Kentucky Railroad 622 - 36 - 658 Kentucky (East) Railroad 96 - 36 - 132 Kentucky (West)

10

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Colorado Total 468 - - - 468 Colorado Railroad 468 - - - 468 Illinois Total 90 - 26 - 116 Illinois River 90 - 26 - 116 Indiana Total 181 - - - 181 Indiana River 181 -

11

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Colorado Total 82 - - - 82 Colorado Railroad 82 - - - 82 Illinois Total 149 - 14 - 163 Illinois Railroad 44 - - - 44 Illinois River 105 - 14 - 119 Indiana Total 99 - - - 99

12

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 1,040 18 80 - 1,138 Alabama River 668 - - - 668 Alabama Truck 52 164 223 - 438 Alabama Total 1,760 181 303 - 2,244 Colorado Railroad 600 - - - 600 Illinois River 203 - 13 - 217 Indiana River 180 - - - 180 Kentucky Railroad 465 - 10 - 475 Kentucky (West) Railroad 465 - 10 - 475 Utah Railroad 18 - - -

13

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,486 155 328 - 1,970 Alabama Railroad 1,020 - 75 - 1,095 Alabama River 417 - - - 417 Alabama Truck 49 155 253 - 458 Colorado Total 195 - - - 195 Colorado Railroad 195 - - - 195 Illinois Total 127 - 18 - 145 Illinois Railroad 20 - - - 20 Illinois River 107 - 18 - 125 Indiana Total

14

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,942 160 335 - 2,437 Alabama Railroad 1,149 - 57 - 1,206 Alabama River 741 - - - 741 Alabama Truck 52 160 278 - 490 Colorado Total 621 2 - - 623 Colorado Railroad 621 2 - - 623 Illinois Total 113 - 11 - 123 Illinois River 113 - 11 - 123 Indiana Total 265 - - - 265 Indiana Railroad

15

Table 11. U.S. Metallurgical Coal Exports  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Metallurgical Coal Exports U.S. Metallurgical Coal Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 11. U.S. Metallurgical Coal Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Destination April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 1,503,162 764,701 1,411,897 2,267,863 2,261,900 0.3 Canada* 975,783 343,309 1,260,473 1,319,092 1,895,263 -30.4 Dominican Republic 94 51,064 - 51,158 - - Mexico 527,285 370,328 151,424 897,613 366,637 144.8 South America Total 2,091,488 2,561,772 2,389,018 4,653,260 4,543,747 2.4 Argentina 104,745 155,806 203,569 260,551 253,841 2.6 Brazil 1,921,144 2,352,098 2,185,449 4,273,242

16

By Coal Destination State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Colorado Total 2,113 - - - 2,113 Colorado Railroad 2,113 - - - 2,113 Illinois Total 336 - - - 336 Illinois River 336 - - - 336 Indiana Total 1,076

17

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

6. Estimated rail transportation rates for coal, state to state, STB data 6. Estimated rail transportation rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W W W - W Colorado Alabama - W W W W W W W W - W Colorado Arizona W W W W W W W W W W W Colorado Arkansas - - - - W W W W - - -

18

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

5. Estimated barge transportation rates for coal, state to state, EIA data 5. Estimated barge transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama $4.31 $4.36 $5.01 7.9 15.0 Alabama Ohio W - - - - Colorado Alabama W - - - - Colorado Florida $11.08 $12.65 $13.27 9.4 4.9 Colorado Indiana $6.29 W - - - Colorado Iowa W - - - - Colorado Kentucky W - - - - Colorado Mississippi - - W - - Colorado Ohio - W - - - Colorado Tennessee W - - - - Illinois Alabama W $13.15 $14.28 W 8.6

19

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

8. Estimated truck transportation rates for coal, state to state, EIA data 8. Estimated truck transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama W W W W W Alabama Georgia - - W - - Alabama Indiana W W - - - Colorado Colorado W W W W W Colorado Michigan - - W - - Illinois Florida W - - - - Illinois Illinois $7.51 $4.74 $3.37 -33.0 -28.8 Illinois Indiana W W - - - Illinois Minnesota W W - - - Illinois Missouri $21.73 $20.23 $13.30 -21.8 -34.3 Indiana Alabama - W - - -

20

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

5. Estimated rail transportation rates for coal, state to state, STB data 5. Estimated rail transportation rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W W W - W Colorado Alabama - W W W W W W W W - W Colorado Arizona W W W W W W W W W W W Colorado Arkansas - - - - W W W W - - -

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, state to state, STB data 4. Estimated rail transportation rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W W W - W Colorado Alabama - W W W W W W W W - W Colorado Arizona W W W W W W W W W W W Colorado Arkansas - - - - W W W W - - -

22

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

6. Estimated barge transportation rates for coal, state to state, EIA data 6. Estimated barge transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama $3.97 $3.97 $4.52 6.7 13.7 Alabama Ohio W - - - - Colorado Alabama W - - - - Colorado Florida $10.21 $11.53 $11.95 8.2 3.7 Colorado Indiana $5.79 W - - - Colorado Iowa W - - - - Colorado Kentucky W - - - - Colorado Mississippi - - W - - Colorado Ohio - W - - - Colorado Tennessee W - - - - Illinois Alabama W $11.99 $12.87 W 7.3

23

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

7. Estimated truck transportation rates for coal, state to state, EIA data 7. Estimated truck transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama W W W W W Alabama Georgia - - W - - Alabama Indiana W W - - - Colorado Colorado W W W W W Colorado Michigan - - W - - Illinois Florida W - - - - Illinois Illinois $8.16 $5.20 $3.75 -32.2 -27.9 Illinois Indiana W W - - - Illinois Minnesota W W - - - Illinois Missouri $23.60 $22.20 $14.77 -20.9 -33.5 Indiana Alabama - W - - -

24

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

Basin Basin Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Northern Appalachian Basin Delaware W W $16.45 $14.29 W - W W - - - Northern Appalachian Basin Florida $21.45 W W W W $28.57 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $11.39 $10.39 $11.34 $12.43 $13.69 $14.25 $15.17 $18.16 $18.85 6.5 3.8

25

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

3. Estimated rail transportation rates for coal, basin to state, EIA data 3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $28.49 - W W - Northern Appalachian Basin Florida - $38.51 $39.67 - 3.0 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $20.35 $16.14 $16.64 -9.6 3.1 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $19.64 $19.60 $20.41 1.9 4.2 Northern Appalachian Basin Michigan $14.02 $16.13 $16.23 7.6 0.6 Northern Appalachian Basin New Hampshire $43.43 $40.18 $39.62 -4.5 -1.4

26

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

8. Estimated rail transportation rates for coal, state to state, EIA data 8. Estimated rail transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama $13.29 $12.39 $13.93 2.4 12.5 Alabama Georgia $17.62 $17.84 $20.09 6.8 12.6 Alabama Kentucky - W - - - Alabama New Jersey W - - - - Alabama Pennsylvania - W - - - Arizona Arizona W W W W W Colorado Alabama $31.79 $27.66 $24.93 -11.5 -9.9 Colorado Arizona $25.97 W - - - Colorado Arkansas W - - - - Colorado California - $34.20 $46.22 - 35.1 Colorado Colorado $13.04 $7.72 $8.13 -21.1 5.3

27

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, basin to state, EIA data 4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $26.24 - W W - Northern Appalachian Basin Florida - $35.10 $35.74 - 1.8 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $18.74 $14.70 $14.99 -10.6 1.9 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $18.09 $17.86 $18.39 0.8 3.0 Northern Appalachian Basin Michigan $12.91 $14.70 $14.63 6.4 -0.5 Northern Appalachian Basin New Hampshire $40.00 $36.62 $35.70 -5.5 -2.5

28

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated rail transportation rates for coal, state to state, EIA data Estimated rail transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama $14.43 $13.59 $15.46 3.5 13.8 Alabama Georgia $19.13 $19.58 $22.30 8.0 13.9 Alabama Kentucky - W - - - Alabama New Jersey W - - - - Alabama Pennsylvania - W - - - Arizona Arizona W W W W W Colorado Alabama $34.52 $30.35 $27.67 -10.5 -8.8 Colorado Arizona $28.20 W - - - Colorado Arkansas W - - - - Colorado California - $37.53 $51.30 - 36.7 Colorado Colorado $14.16 $8.47 $9.02 -20.2 6.6

29

Mid-South Metallurgical Makes Electrical and Natural Gas System...  

Broader source: Energy.gov (indexed) [DOE]

Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings Mid-South Metallurgical Makes Electrical and Natural Gas...

30

Dr. Norman Hilberry Metallurgical Laboratory  

Office of Legacy Management (LM)

December 23, 1942 December 23, 1942 217, i Dr. Norman Hilberry Metallurgical Laboratory University of Chicago Chicago, Illlnols Dear Dr. Hllbarry: In akcordance with the arrangments made with Dr. Compton, I am attachIng.heretb Copy No. 13 of Dr. Kraus' Progreee Report dated December 15, 1942. Thle report contains addltloral information on the preparation of metallic uranium by the, reduction of UC13 with sodium. Very truly goAre, RR:OT Attaohment CONFIFIMEOTOSE l,NCL&.$.,Fl&, DOEOFFICE OF OECMS.W,,3,~ HERSERTSCHMIOT A.D.D. i DUIE: . 9 pages: 0 figures., G&es 1 to 19. inci, SeriesA. . . Progress Report By Charles A. Kraus December 15, 1942 Contract No. OEMsr~290, Supplement 2 Contract No, OZMsr-688. A. PrepeZ+tion of UC& L-cm lJJa and Ccl,. The study of the va.?ious, i'actors which may influence the

31

From metallurgical coatings to surface engineering  

Science Journals Connector (OSTI)

The history of the Vacuum Metallurgy Division (VMD) which is now the Advanced Surface Engineering Division (ASED) of the American Vacuum Society is reviewed briefly. The focus of the VMD moved from vacuum melting of materials to metallurgical coatings. The division sponsored two conferences the Conference on Vacuum Metallurgy and the International Conference on Metallurgical Coatings. As the interest in vacuum metallurgy eventually subsided interest grew in the deposition of metallurgical coatings. However the emphasis at the Metallurgical Coatings conference has changed from just depositingcoatings to surface engineering of a component. Today the challenge is to use the tools of surface engineering with advances in deposition technology such as high-power pulsed sputtering. To align itself with the changing interests of the majority of its members the VMD changed its name to the ASED.

William D. Sproul

2003-01-01T23:59:59.000Z

32

The Effect of Destination Personality and Self-destination Congruity on Visitors' Intentions  

E-Print Network [OSTI]

on the personality of the destinations can be a viable tool for destination marketing (Ekinci & Hosany, 2006), since destination authorities can emphasize differential symbolic and psychological aspects of destinations through destination brands. Destination.... For instance, the Alamo, the River Walk, the Tower of the Americas, SeaWorld San Antonio, Six Flags Fiesta Texas, and the Gonzalez Convention Center are representative tourism attractions of San Antonio. Those attributes are understood to contribute...

Lim, Seonghwan

2013-03-28T23:59:59.000Z

33

Table 12. Average Price of U.S. Metallurgical Coal Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Metallurgical Coal Exports Average Price of U.S. Metallurgical Coal Exports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 12. Average Price of U.S. Metallurgical Coal Exports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Destination April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 92.50 99.40 146.56 94.82 140.70 -32.6 Canada* 99.83 125.20 142.46 106.43 138.19 -23.0 Dominican Republic 114.60 77.21 - 77.27 - - Mexico 78.93 78.54 180.76 78.77 153.65 -48.7 South America Total 119.26 117.51 167.05 118.30 168.12 -29.6 Argentina 146.70 131.08 182.47 137.36 196.37 -30.1 Brazil 119.21 117.38 165.61 118.20

34

AMG Advanced Metallurgical Group NV | Open Energy Information  

Open Energy Info (EERE)

AMG Advanced Metallurgical Group NV AMG Advanced Metallurgical Group NV Jump to: navigation, search Name AMG Advanced Metallurgical Group NV Place Wayne, Pennsylvania Zip 19087 Product US-based specialty metals company offering metallurgical products and vacuum furnace systems; manufactures high purity polysilicon. References AMG Advanced Metallurgical Group NV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AMG Advanced Metallurgical Group NV is a company located in Wayne, Pennsylvania . References ↑ "AMG Advanced Metallurgical Group NV" Retrieved from "http://en.openei.org/w/index.php?title=AMG_Advanced_Metallurgical_Group_NV&oldid=342143" Categories: Clean Energy Organizations

35

Superheated steam power plant with steam to steam reheater. [LMFBR  

SciTech Connect (OSTI)

A desuperheater is disposed in a steam supply line supplying superheated steam to a shell and tube reheater.

Silvestri, G.J.

1981-06-23T23:59:59.000Z

36

EIA - Distribution of U.S. Coal by Destination  

U.S. Energy Information Administration (EIA) Indexed Site

Destination Destination Glossary Home > Coal> Distribution of U.S. Coal by Destination Distribution of U.S. Coal by Destination Release Date: January 2006 Next Release Date: 2006 Distribution of U.S Coal by Destination Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2004 (Thousand Short Tons) DESTINATION: ALASKA State of Origin by Method of Transportation Electricity Generation Coke Plants Industrial Plants (Except Coke) Residential and Commercial Total Alaska 460 - - 497 957 Railroad 256 - - 497 753 Truck 204 - - * 204 State Total 460 - - 497 957 Railroad 256 - - 497 753 Truck 204 - - * 204 EIA - Distribution of U.S. Coal by Destination

37

Production of iron from metallurgical waste  

DOE Patents [OSTI]

A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

Hendrickson, David W; Iwasaki, Iwao

2013-09-17T23:59:59.000Z

38

DOE - Office of Legacy Management -- Ohio State University Metallurgic...  

Office of Legacy Management (LM)

METALLURGICAL ENGINEERING EXPERIMENT STATION OH.0-05-1 - Memorandum; Roth to Armstrong; Source Material License No. C-3622; March 1, 1957. Attachment: Source Material...

39

Steam turbines of the T-50/60-8.8, K-63-8.8, and Tp-100/110-8.8 types destined for modernization of thermal power plants with K-50-90 and K-100-90 turbines  

Science Journals Connector (OSTI)

This paper describes the design, schemes of regulation, and control and protection of steam turbines of the T-50/60-8.8, ... of K-50-90 and K-100-90 turbines that have very low efficiency and exhausted...

A. Ye. Valamin; A. Yu. Kultyshev; Yu. A. Sakhnin; M. V. Shekhter…

2012-12-01T23:59:59.000Z

40

Steam Turbine Cogeneration  

E-Print Network [OSTI]

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system...

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Achieve Steam System Excellence- Steam Overview  

Broader source: Energy.gov [DOE]

This fact sheet describes a steam systems approach to help companies operate and maintain their industrial steam plants and thermal manufacturing processes more efficiently.

42

HP Steam Trap Monitoring  

E-Print Network [OSTI]

Consumption Peak Demand Mgt Peak Demand Mgt Similar Weather Day Analysis Metering and Verafication Steam Meter Monitoring ? Peak Demand Management ? Steam Consumption Management ? Steam Bill Verification ? Measurement and Verification ... Consumption Peak Demand Mgt Peak Demand Mgt Similar Weather Day Analysis Metering and Verafication Steam Meter Monitoring ? Peak Demand Management ? Steam Consumption Management ? Steam Bill Verification ? Measurement and Verification ...

Pascone, S.

2011-01-01T23:59:59.000Z

43

Steam System Survey Guide  

Broader source: Energy.gov [DOE]

This guide provides technical information for steam system operational personnel and plant energy managers on some of the major opportunities available to improve the energy efficiency and productivity of industrial steam systems. The guide covers five main areas of investigation: (1) profiling a steam system, (2) identifying steam properties for the steam system, (3) improving boiler operations, (4) improving resource utilization in the steam system, and (5) investigating energy losses in the steam distribution system.

44

DOE - Office of Legacy Management -- Fansteel Metallurgical Corp - IL 16  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fansteel Metallurgical Corp - IL 16 Fansteel Metallurgical Corp - IL 16 FUSRAP Considered Sites Site: Fansteel Metallurgical Corp. (IL.16 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Chicago , Illinois IL.16-1 Evaluation Year: 1987 IL.16-3 Site Operations: Sole producer and supplier of tantalum and columbium metals to the MED. IL.16-1 IL.16-3 Site Disposition: Eliminated - No radioactive materials handled at this site IL.16-2 IL.16-3 Radioactive Materials Handled: No Primary Radioactive Materials Handled: None IL.16-2 Radiological Survey(s): No Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to Fansteel Metallurgical Corp. IL.16-1 - MED Memorandum; Greninger to the File; Subject: Visit to

45

Metallurgical Laboratory at the University of Chicago | Department of  

Broader source: Energy.gov (indexed) [DOE]

Operational Management » History » Manhattan Project » Signature Operational Management » History » Manhattan Project » Signature Facilities » Metallurgical Laboratory at the University of Chicago Metallurgical Laboratory at the University of Chicago Photo of the Met Lab and the Stagg Field Bleachers Photo of the Met Lab and the Stagg Field Bleachers One of the most important branches of the Manhattan Project was the Metallurgical Laboratory (Met Lab) in Chicago. Using the name "Metallurgical Laboratory" as cover at the University of Chicago, scientists from the east and west coasts were brought together to this central location to develop chain-reacting "piles" for plutonium production, to devise methods for extracting plutonium from the irradiated uranium, and to design a weapon. In all, four methods of plutonium

46

A survey of metallurgical research on several actinides  

SciTech Connect (OSTI)

A Los Alamos perspective on metallurgical research on neptunium, plutonium, americium, curium, and californium is presented. Alloying behaviors of these metals are discussed. Metal fabrication technologies, principally for plutonium, are emphasized.

Olivas, J.D.; Schonfeld, F.W.

1993-11-01T23:59:59.000Z

47

Graph Model for Carbon Dioxide Emissions from Metallurgical Plants  

Science Journals Connector (OSTI)

Mathematical models are presented for estimating carbon dioxide emissions from metallurgical processes. The article also presents ... in graph form to calculate transit and net emissions of carbon dioxide based o...

Yu. N. Chesnokov; V. G. Lisienko; A. V. Lapteva

2013-03-01T23:59:59.000Z

48

Steam Path Audits on Industrial Steam Turbines  

E-Print Network [OSTI]

steam Path Audits on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits... not extend the turbine outage. To assure that all of the turbine audit data are available, the audit engineer must be at the turbine site the day the steam path is first exposed. A report of the opening audit findings is generated to describe the as...

Mitchell, D. R.

49

Thomas Reddinger Director, Steam  

E-Print Network [OSTI]

Thomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Supervisor (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield Steam Plant Operator SU Steam Station/Chilled Water Plant Bohdan Sawa Steam Plant Operator Robert

McConnell, Terry

50

Visual Representations of Puerto Rico in Destination Marketing Materials  

E-Print Network [OSTI]

the perceptions that local residents have of their own countries as tourist destinations. Local residents can provide valuable information about their countries as tourism destinations and can help tourism marketers determine how to represent local culture in more...

Davila Rodriguez, Mary Ann

2012-10-19T23:59:59.000Z

51

Tourism destinations as digital business ecosystems  

E-Print Network [OSTI]

Tourism has been experiencing very relevant changes since when Information and Communication Technologies (ICTs), in all their forms, have started to pervade the industry and the market. In the last decade, a new concept gained the attention of both researchers and practitioners, that of Digital Business Ecosystem (DBE). It can be considered as a technological infrastructure aimed at creating a digital environment to support and enhance networking between enterprises and stakeholders operating within a sector. Aim of this paper is to assess the extent to which the technological connection has affected the structural configuration of the tourism system and, specifically, of tourism destinations. The present study argues that two components can be considered when assessing the relationships among stakeholders within a tourism destination: a real and a virtual one. Further it shows how these two components are structurally strongly coupled and co-evolve forming a single system.

Baggio, Rodolfo

2012-01-01T23:59:59.000Z

52

SteamMaster: Steam System Analysis Software  

E-Print Network [OSTI]

STEAMMASTER: STEAM SYSTEM ANALYSIS SOFTW ARE Greg Wheeler Associate Professor Oregon State University Corvallis, OR 9733 I ABSTRACT As director of Oregon's ]ndustrial Assessment Center, [ have encountered many industrial steam systems during... plant visits. We analyze steam systems and make recommendations to improve system efficiency. [n nearly 400 industrial assessments, we have recommended 210 steam system improvements, excluding heat recovery, that would save $1.5 million/year with a...

Wheeler, G.

53

Letter Report on Metallurgical Examination of the High Fluence RPV  

Broader source: Energy.gov (indexed) [DOE]

Report on Metallurgical Examination of the High Fluence RPV Report on Metallurgical Examination of the High Fluence RPV Specimens From the Ringhals Nuclear Reactors Letter Report on Metallurgical Examination of the High Fluence RPV Specimens From the Ringhals Nuclear Reactors Regulations which govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the irradiated condition, the fracture toughness of the RPV may be severely degraded, with the degree of toughness loss dependent on the radiation sensitivity of the materials. As stated in previous progress reports, the available embrittlement predictive models, e.g. [1], and our present understanding of radiation damage are not fully quantitative, and do not treat all potentially significant variables

54

DOE - Office of Legacy Management -- Ohio State University Metallurgical  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ohio State University Metallurgical Ohio State University Metallurgical Engineering Experiment Station -OH 0-05 FUSRAP Considered Sites Site: OHIO STATE UNIVERSITY, METALLURGICAL ENGINEERING EXPERIMENT STATION (OH.0-05 ) Eliminated from consideration under FUSRAP - Referred to NRC Designated Name: Not Designated Alternate Name: None Location: Columbus , Ohio OH.0-05-1 Evaluation Year: 1986 OH.0-05-2 Site Operations: Ohio State ordered 130 grams of uranium from the AEC. This commercial supply order was filled by Fernald. OH.0-05-1 OH.0-05-3 Site Disposition: Eliminated - AEC/NRC licensed operation OH.0-05-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium OH.0-05-1 OH.0-05-3 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP - Referred to NRC

55

Podolsky Chemical and Metallurgical Plant PCMP | Open Energy Information  

Open Energy Info (EERE)

Podolsky Chemical and Metallurgical Plant PCMP Podolsky Chemical and Metallurgical Plant PCMP Jump to: navigation, search Name Podolsky Chemical and Metallurgical Plant (PCMP) Place Moscow, Russian Federation Zip 142103 Sector Solar Product Russian manufacturer of monocrystalline silicon ingots, wafers, cells and quartz crucibles; serves both solar and semiconductor industries. Coordinates 55.75695°, 37.614975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.75695,"lon":37.614975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

Methane-steam reforming  

SciTech Connect (OSTI)

A discussion covers steam reforming developments to the 1950's; the kinetics of methane-steam reforming, of the water-gas shift during methane-steam reforming, and of the carbon formation during methane-steam reforming, as approached by Akers and Camp.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

57

Russian metallurgical coal supplies. A near-term perspective  

SciTech Connect (OSTI)

Calculations were made to estimate the changes in metallurgical coal supplies during the next 10 years. These calculations are based on three sets of data for the forecast period: (1) estimated changes in production at existing coal production and cleaning facilities in Kuznetsk, Pechora, and South Yakutsk basins; (2) production from new facilities as stipulated in licensing agreements for metallurgical coal production; and (3) Russian output of coke and washed coals. Estimates are given for two years: 2010 and 2015. A two-year base period of 2004 and 2005 was chosen because production was low in 2005 due to poor market conditions in the metal industry.

B.P. Kiselev; S.A. Liskovets [FGUP Eastern Coal Chemistry Research Institute (Russian Federation)

2007-01-15T23:59:59.000Z

58

Process for converting coal into liquid fuel and metallurgical coke  

DOE Patents [OSTI]

A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

1994-01-01T23:59:59.000Z

59

Characterization of Metallurgical Chars by Small Angle Neutron Scattering  

Science Journals Connector (OSTI)

Characterization of Metallurgical Chars by Small Angle Neutron Scattering ... Small angle scattering measures the intensity I(q) of scattered neutrons as a function of scattering angle ? from the input beam, or alternatively, as a function of the scattering vector q:? q = |q| = (4?/?) sin(?/2), where ? is the wavelength of the incident wave. ...

I. Snook; I. Yarovsky; H. J. M. Hanley; M. Y. Lin; D. Mainwaring; H. Rogers; P. Zulli

2002-08-06T23:59:59.000Z

60

Steam Systems | Department of Energy  

Office of Environmental Management (EM)

Reduction: Opportunities and Issues How to Calculate the True Cost of Steam Industrial Heat Pumps for Steam and Fuel Savings Industrial Steam System Heat-Transfer Solutions...

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Steam Oxidation of Advanced Steam Turbine Alloys  

SciTech Connect (OSTI)

Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650°C to 800°C) to steam at 34.5 MPa (650°C to 760°C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

Holcomb, Gordon R.

2008-01-01T23:59:59.000Z

62

Steam atmosphere drying exhaust steam recompression system  

DOE Patents [OSTI]

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

1994-03-08T23:59:59.000Z

63

Quantitative description of steam channels after steam flooding  

Science Journals Connector (OSTI)

Steam channeling is one of the main barriers for EOR after steam flooding. In order to enhance the oil recovery in steam flooded reservoirs, steam channel volumes should be precisely known. In ... methods has bee...

Qiang Zheng; HuiQing Liu; Fang Li; Qing Wang…

2013-05-01T23:59:59.000Z

64

Use of resin-bearing wastes from coke and coal chemicals production at the Novokuznetsk Metallurgical Combine  

SciTech Connect (OSTI)

The coke and coal chemicals plant at the Novokuznetsk Metallurgical Combine is making trial use of a technology that recycles waste products in 'tar ponds.' Specialists from the Ekomash company have installed a recycling unit in one area of the plant's dump, the unit including an inclined conveyor with a steam heater and a receiving hopper The coal preparation shop receives the wastes in a heated bin, where a screw mixes the wastes with pail of the charge for the coking ovens. The mixture subsequently travels along a moving conveyor belt together with the rest of the charge materials. The addition of up to 2% resin-bearing waste materials to the coal charge has not had any significant effect on the strength properties of the coke.

Kul'kova, T.N.; Yablochkin, N.V.; Gal'chenko, A.I.; Karyakina, E.A.; Litvinova, V.A.; Gorbach, D.A.

2007-03-15T23:59:59.000Z

65

Waste Steam Recovery  

E-Print Network [OSTI]

An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally...

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

66

Downhole steam quality measurement  

DOE Patents [OSTI]

The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

1985-06-19T23:59:59.000Z

67

Steam Digest 2001  

SciTech Connect (OSTI)

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

Not Available

2002-01-01T23:59:59.000Z

68

Sequential steam; An engineered cyclic steaming method  

SciTech Connect (OSTI)

Cyclic steam injection has been the most widely used EOR method in areas of the Potter sand in the Midway-Sunset field, Kern County, CA. This paper discusses the field pilot and the statistical and theoretical studies leading to the design of a sequential steaming process,plus the implementation of this process on three leases.

Jones, J. (Santa Fe Energy Resources Inc., Bakersfield, CA (US)); Cawthon, J. (Groundwater Resources Inc. (US))

1990-07-01T23:59:59.000Z

69

Hydrocarbon steam reforming using series steam superheaters  

SciTech Connect (OSTI)

In a process for steam reforming of a hydrocarbon gas feedstream wherein: the hydrocarbon gas feedstream is partially reformed at elevated temperatures in indirect heat exchange with hot combustion gases in a direct fired primary reforming furnace provided with a convection section for recovery of excess heat from said combustion gases; and the partially reformed feedstream is then further reformed in the presence of an oxygen-containing gas and steam in a secondary reformer to form a secondary reformer gaseous effluent; the improvement which comprises recovering waste heat from said secondary reformer effluent gas and from said primary reforming combustion products by heating a high pressure saturated steam in a first steam superheating zone by indirect heat exchange with at least a portion of said secondary reformer effluent gas to form a first superheated steam stream; and further heating said first superheated steam in a second steam superheating zone by indirect heat exchange with at least a portion of said primary reformer hot combustion gases for form a second superheated steam stream.

Osman, R. M.

1985-10-08T23:59:59.000Z

70

PRELIMINARY SURVEY OF SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY  

Office of Legacy Management (LM)

SYLVANIA-CORNING NUCLEAR CORPORATION SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY BAYSIDE, NEW YORK Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1980 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Action Program SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY BAYSIDE, NEW YORK At the request of the Department of Energy (DOE), a preliminary survey was performed at the former Sylvania-Corning Nuclear Corporation in Bayside, New York (see Fig. l), on November 29, 1977, to assess the radiological status of those facilities uti 7 Commission (AEC) contract during the 1950s. _ _ ._. __

71

Table 15. Metallurgical Coal Exports by Customs District  

U.S. Energy Information Administration (EIA) Indexed Site

Metallurgical Coal Exports by Customs District Metallurgical Coal Exports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 15. Metallurgical Coal Exports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Customs District April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Eastern Total 11,716,074 14,136,513 15,167,377 25,852,587 27,578,514 -6.3 Baltimore, MD 2,736,470 4,225,450 5,123,600 6,961,920 9,037,970 -23.0 Boston, MA - - - - 28,873 - Buffalo, NY 247,714 121,347 524,040 369,061 725,698 -49.1 Norfolk, VA 8,730,257 9,784,866 9,519,119 18,515,123 17,784,479 4.1 Ogdensburg, NY 1,633 4,850 618 6,483 1,494 333.9 Southern Total 3,551,564 3,824,484

72

Purifying metallurgical silicon to solar grade silicon by metal-assisted chemical etching  

Science Journals Connector (OSTI)

Metal impurities have detrimental effects on the performance of Si solar cells. Through metal assisted chemical etching, we fabricate Si nanowires from metallurgical Si while purifying...

Li, Xiaopeng; Sprafke, Alexander N; Schweizer, Stefan L; Wehrspohn, Ralf

73

Geothermal steam quality testing  

SciTech Connect (OSTI)

Geothermal steam quality and purity have a significant effect on the operational efficiency and life of geothermal steam turbines and accessory equipment. Poor steam processing can result in scaled nozzles/blades, erosion, corrosion, reduced utilization efficiency, and early fatigue failures accelerated by stress corrosion cracking (SCC). Upsets formed by undetected slugs of liquid entering the turbine can cause catastrophic failure. The accurate monitoring and determination of geothermal steam quality/purity is intrinsically complex which often results in substantial errors. This paper will review steam quality and purity relationships, address some of the errors, complexities, calibration and focus on: thermodynamic techniques for evaluating and monitoring steam quality by use of the modified throttling calorimeters.

Jung, D.B. [Two-Phase Engineering & Research, Inc., Santa Rosa, CA (United States)

1995-12-31T23:59:59.000Z

74

Improving steam turbine efficiency  

SciTech Connect (OSTI)

This paper describes the condition of a significant number of fossil steam turbines operating in the United States and the maintenance practices used to improve their performance. Through the use of steam path audits conducted by the authors` company and by several utilities, a large data base of information on turbine heat rate, casing efficiency, and maintenance practices is available to help the power generation industry understand how different maintenance practices and steam path damage impact turbine performance. The data base reveals that turbine cycle heat rate is typically 5.23% poorer than design just prior to major outages. The degraded condition of steam turbines presents an opportunity for utilities to improve heat rate and reduce emissions without increasing fuel costs. The paper describes what losses typically contribute to the 5.23% heat rate degradation and how utilities can recover steam turbine performance through maintenance actions aimed at improving steam path efficiency.

Cioffi, D.H.; Mitchell, D.R.; Whitecar, S.C. [Encotech, Inc., Schenectady, NY (United States)

1995-06-01T23:59:59.000Z

75

Steam generator support system  

DOE Patents [OSTI]

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

Moldenhauer, James E. (Simi Valley, CA)

1987-01-01T23:59:59.000Z

76

Steam generator support system  

DOE Patents [OSTI]

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

Moldenhauer, J.E.

1987-08-25T23:59:59.000Z

77

Impacts of a popular motion picture on destination images  

E-Print Network [OSTI]

The influence of popular motion pictures upon the formation of destination perceptions has received some attention in the tourism literature. Previous empirical studies have examined the effects of movies on visitation to places they depict...

Kim, Hyounggon

2012-06-07T23:59:59.000Z

78

European Destination Management: Challenges for Product and Brand Management  

Science Journals Connector (OSTI)

There are many reasons why European destination management has become a central figure in the tourism sector. Just like in other industries, increased competition is provoking decreasing capacity utilization, ...

Harald Pechlaner; Petra Hedorfer…

2008-01-01T23:59:59.000Z

79

The Invisibility of Steam  

Science Journals Connector (OSTI)

Almost everyone “knows” that steam is visible. After all one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature falls below 100 °C (under standard conditions).

Thomas B. Greenslade Jr.

2014-01-01T23:59:59.000Z

80

Steam reforming analyzed  

SciTech Connect (OSTI)

This paper reports that maximum steam reformer operation without excessive coking reactions requires careful control of thermodynamic and kinetic conditions. Regardless of the syngas-based feedstock composition, carbon formation problems can be avoided while increasing reformer CO or H{sub 2} production. Steam reforming technology is best understood via: Primary steam reformer developments, Kinetics of methane steam reforming, Simulation of an industrial steam/CO{sub 2} reformer, Example conditions (steam/CO{sub 2} reforming), Thermodynamic approach (minimum to steam ratio). Hydrogen and carbon monoxide are two of the most important building blocks in the chemical industry. Hydrogen is mainly used in ammonia and methanol synthesis and petroleum refining. Carbon monoxide is used to produce pains, plastics, foams, pesticides and insecticides, to name a few. Production of H{sub 2} and CO is usually carried out by the following processes: Steam reforming (primary and secondary) of hydrocarbons, Partial oxidation of hydrocarbons, Coal gasification. Coal gasification and partial oxidation do not use catalysts and depend on partial combustion of the feedstock to internally supply reaction heat. Secondary (autothermal) reforming is a type of steam reforming that also uses the heat of partial combustion but afterwards uses a catalyst of promote the production of hydrogen and CO.

Wagner, E.S. (KTI Corp., San Dimas, CA (US)); Froment, G.F. (Ghent Rijksuniversiteit (Belgium))

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Catalytic steam gasification of coals  

Science Journals Connector (OSTI)

Catalytic steam gasification of coals ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ...

P. Pereira; G. A. Somorjai; H. Heinemann

1992-07-01T23:59:59.000Z

82

Options for Generating Steam Efficiently  

E-Print Network [OSTI]

This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment...

Ganapathy, V.

83

Solar Steam Nanobubbles  

Science Journals Connector (OSTI)

Solar Steam Nanobubbles ... The generated steam may also be used to drive a turbine directly for electricity generation. ... Furthermore, sputtering at gas–solid and gas–liquid interfaces may occur, and thermal desorption at the metal–water interface may affect the heat transfer as well. ...

Albert Polman

2013-01-02T23:59:59.000Z

84

Inspect and Repair Steam Traps  

Broader source: Energy.gov [DOE]

This tip sheet on inspecting and repairing steam traps provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

85

ROADMAP TO YOUR GRADUATION Metallurgical & Materials Engineering Curriculum BS MTE Degree Revised Jan. 2013 (2013-2014)  

E-Print Network [OSTI]

ROADMAP TO YOUR GRADUATION Metallurgical & Materials Engineering Curriculum JUNIOR YEAR SENIOR YEAR Fall Spring Fall Spring Fall Spring Fall Spring and math elec0ves is available in the metallurgical and materials engineering

Carver, Jeffrey C.

86

Streams of Steam The Steam Boiler Specification Case Study  

E-Print Network [OSTI]

Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

87

Refurbishing steam turbines  

SciTech Connect (OSTI)

Power-plant operators are reducing maintenance costs of their aging steam turbines by using wire-arc spray coating and shot peening to prolong the service life of components, and by replacing outmoded bearings and seals with newer designs. Steam-turbine operators are pressed with the challenge of keeping their aging machines functioning in the face of wear problems that are exacerbated by the demand for higher efficiencies. These problems include intense thermal cycling during both start-up and shutdown, water particles in steam and solid particles in the air that pit smooth surfaces, and load changes that cause metal fatigue.

Valenti, M.

1997-12-01T23:59:59.000Z

88

Evaluating Steam Trap Performance  

E-Print Network [OSTI]

~LmT " TRIf' 1 TRIf' 2 Figure 2 It has become common practice for engineers to oversize steam traps and place more emphasis on first cost than on maintenance cost and operating 766 3 4 ESL-IE-86-06-126 Proceedings from the Eighth Annual Industrial...EVALUATING STEAM TRAP PERFORMANCE Noel Y Fuller, P.E. Holston Defense Corporation Kingsport, Tennessee ABSTRACT Laboratory tests were conducted on several types of steam traps at Holston Defense Corporation in Kingsport, Tennessee. Data...

Fuller, N. Y.

89

METALLURGICAL EVALUATION OF CAST DUPLEX STAINLESS STEELS AND THEIR WELDMENTS  

Office of Scientific and Technical Information (OSTI)

FINAL REPORT FINAL REPORT VOLUME 1 METALLURGICAL EVALUATION OF CAST DUPLEX STAINLESS STEELS AND THEIR WELDMENTS SUBMITTED TO U. S. DEPARTMENT OF ENERGY Award Number - DE-FC36-00 ID13975 OCTOBER 1, 2000 - SEPTEMBER 30, 2005 SONGQING WEN CARL D. LUNDIN GREG BATTEN MATERIALS JOINING GROUP MATERIALS SCIENCE AND ENGINEERING THE UNIVERSITY OF TENNESSEE, KNOXVILLE CARL D. LUNDIN PROFESSOR OF METALLURGY MATERIALS JOINING GROUP MATERIALS SCIENCE AND ENGINEERING THE UNIVERSITY OF TENNESSEE KNOXVILLE 37996-2200 TELEPHONE (865) 974-5310 FAX (865) 974-0880 lundin@utk.edu This is Volume 1of 5 of the final report for The Department of Energy Grant # DE-FC36-00 ID13975 entitled "Behavior of Duplex Stainless Steel Castings." ii FOREWARD

90

Modification of sub-bituminous coal by steam treatment: Caking and coking properties  

Science Journals Connector (OSTI)

A Chinese sub-bituminous Shenfu (SF) coal was steam treated under atmospheric pressure and the caking and coking properties of the treated coals were evaluated by caking indexes (GRI) and crucible coking characterizations. The results show that steam treatment can obviously increase the GRI of SF coal. When the steam treated coals were used in the coal blends instead of SF raw coal, the micro-strength index (MSI) and particle coke strength after reaction (PSR) of the coke increased, and particle coke reactivity index (PRI) decreased, which are beneficial for metallurgical coke to increase the gas permeability in blast furnace. The quality of the coke obtained from 8% of 200 °C steam treated SF coal in coal blends gets to that of the coke obtained from the standard coal blends, in which there was no SF coal addition in the coal blends. The removal of oxygen groups, especially hydroxyl group thus favoring the breakage of the coal macromolecules and allowing the treated coal formation of much more amount of hydrocarbons, may be responsible for the modified results. The mechanism of the steam treatment was proposed based on the elemental analysis, thermo gravimetric (TG) and FTIR spectrometer characterizations of the steam treated coal.

Hengfu Shui; Haiping Li; Hongtao Chang; Zhicai Wang; Zhi Gao; Zhiping Lei; Shibiao Ren

2011-01-01T23:59:59.000Z

91

Steam Champions in Manufacturing  

E-Print Network [OSTI]

into equivalent corporate rewards, such as increased profitability, reliability, workplace safety, and other benefits. The prerequisites for becoming a true steam champion will include engineering, business, and management skills....

Russell, C.

92

Steam Trap Application  

E-Print Network [OSTI]

characteristics. 2. Understand advantages and limitations of various checking methods. 3. Use more than one checking method. 4. Understand flash condensate. 5. Condensate makes more noise than steam. 6. Trouble shoot the system. 7. Review trap... or failed steam and condensate flow~' H closed to be undetected -Not always insensitive to back ground or ambient noise -Noise in electrical system if volume too high -Head set quality important -Location of probe on trap, contact force, pressure drop...

Murphy, J. J.

1982-01-01T23:59:59.000Z

93

FUPWG Meeting Agenda - Destin, FL | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Destin, FL Destin, FL FUPWG Meeting Agenda - Destin, FL October 7, 2013 - 2:56pm Addthis Going coastal for energy efficiency. FUPWG. April 15-16, 2008, Destin, Florida Gulf Power: A Southern Company FEMP logo April 15-16, 2008 Hosted by Gulf Power Monday, April 14, 2008 6:30 pm Steering Committee Meeting & Networking Dinner Ocean Club 8955 US Highway 98 W Miramar Beach, FL 32550 Tuesday, April 15, 2008 7:45 - 8:30 am Registration and Continental Breakfast 8:30 - 8:45 am Gulf Power Welcome P. Bernard Jacob, Customer Operations Vice President 8:45 - 9:15 am FEMP Welcome David McAndrew, FEMP 9:15 - 10:00 am Washington Update David McAndrew, FEMP 10:00 - 10:30 am Technology Update Paul Kistler 10:30 - 11:00 am Networking Break & New Member Mentor Introductions 11:00 - 11:30 am Gulf Power Success Story - NAS Chiller Replacement

94

2012 Graduate Destination Report for ANU College of Engineering & Computer  

E-Print Network [OSTI]

-long professions and objectives. Please note that completion of the AGS is voluntary and the statistics do Higher degree research 22 Overall - Total 160 2012 Graduate Destination Report for CECS 1 #12;Employment employment, and whether they were working full time or seeking full-time employment at the time of the survey

95

ECO-GATEWAY! AUCKLAND'S EMERGING ROLE AS AN ECOTOURISM DESTINATION  

E-Print Network [OSTI]

1 ECO-GATEWAY! AUCKLAND'S EMERGING ROLE AS AN ECOTOURISM DESTINATION Chloe K. H. Lau* and Charles S.johnston@aut.ac.nz INTRODUCTION According to the World Tourism Organization (WTO), ecotourism is the fastest growing market within well documented is the growth of the supply of ecotourism resources and products. New Zealand

96

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network [OSTI]

DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution Losses Module 1 June 29, 2010 Steam EndUser Training Steam Distribution System Losses Module Slide 1 pressure. #12;DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution

Oak Ridge National Laboratory

97

Toughness of Cr-Mo-V steels for steam-turbine rotors  

SciTech Connect (OSTI)

Cr-Mo-V steels are used extensively as the rotor material in the High Pressure and Intermediate Pressure Sections of modern steam turbines. The toughness of these rotors has a major influence on the reliability and efficiency of the turbine and the overall economy of operation and maintenance of the plant. The metallurgical factors affecting the toughness of the rotors and the methods to improve the toughness are now understood better than ever before. This paper will present a broad overview of the materials and design aspects of the toughness of Cr-Mo-V rotors with emphasis on the salient results of recent research programs aimed at improving their toughness.

Viswanathan, R.; Jaffee, R.I.

1982-04-01T23:59:59.000Z

98

AEO2011: World Metallurgical Coal Flows By Importing Regions and Exporting  

Open Energy Info (EERE)

Metallurgical Coal Flows By Importing Regions and Exporting Metallurgical Coal Flows By Importing Regions and Exporting Countries Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 143, and contains only the reference case. The dataset uses million short tons. The data is broken down into Metallurgical coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal EIA Data application/vnd.ms-excel icon AEO2011: World Metallurgical Coal Flows By Importing Regions and Exporting Countries- Reference Case (xls, 103.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

99

Knowledge transfer in a tourism destination: the effects of a network structure  

E-Print Network [OSTI]

Tourism destinations have a necessity to innovate to remain competitive in an increasingly global environment. A pre-requisite for innovation is the understanding of how destinations source, share and use knowledge. This conceptual paper examines the nature of networks and how their analysis can shed light upon the processes of knowledge sharing in destinations as they strive to innovate. The paper conceptualizes destinations as networks of connected organizations, both public and private, each of which can be considered as a destination stakeholder. In network theory they represent the nodes within the system. The paper shows how epidemic diffusion models can act as an analogy for knowledge communication and transfer within a destination network. These models can be combined with other approaches to network analysis to shed light on how destination networks operate, and how they can be optimized with policy intervention to deliver innovative and competitive destinations. The paper closes with a practical tou...

Baggio, R

2009-01-01T23:59:59.000Z

100

Methane-steam reforming  

SciTech Connect (OSTI)

The literature relating to the kinetics of methane-steam reforming involving integral and differential reactor data, porous nickel catalysts and nickel foil, and data over large ranges of temperature (500 to 1700/sup 0/F), pressure (0.01 to 50 atm), and intrinsic catalyst activities (200,000-fold) was reviewed. A simple reversible first-order kinetic expression for the steam-methane reaction appears to be applicable throughout the operable region of steam-to-carbon ratios. Internal pore diffusion limitation on the conversion rate, due to catalyst size and/or intrinsic catalyst activity and total operating pressure was underlined. S-shaped Arrhenium plots (changing activation energy) are obtained when steam reforming is conducted over a temperature range sufficient to produce intrinsic kinetics (low temperature, inactive catalyst, or small catalyst size), pore diffusional limitations, and reaction on the outside surface. Homogeneous gas-phase kinetics appear to contribute only at relatively high temperature (1400/sup 0/F). In steam reforming, the water-gas shift reaction departs from its equilibrium position, especially at low methane conversion level. A general correlation of approach to water-gas shift equilibration as a function of conversion level only was indicated. (DP) 18 figures, 6 tables.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Steam Basics: Use Available Data to Lower Steam System Cost  

E-Print Network [OSTI]

Industrial steam users recognize the need to reduce system cost in order to remain internationally competitive. Steam systems are a key utility that influence cost significantly, and represent a high value opportunity target. However, the quality...

Risko, J. R.

2011-01-01T23:59:59.000Z

102

Steam System Improvements at a Manufacturing Plant  

E-Print Network [OSTI]

BWX Technologies, Naval Nuclear Fuel Division (NNFD) is a manufacturing company with a steam system consisting of two Babcock & Wilcox boilers and approximately 350 steam traps. The steam system is used to produce and distribute steam for space...

Compher, J.; Morcom, B.

103

Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships  

E-Print Network [OSTI]

to support the steam efficiency program. Today, the Steam Team includes, the North American Insulation Manufacturers Association (NAIMA), the American Gas Association (AGA), the Council of Industrial Boiler Owners (ClBO), Armstrong International... pinch technology, and high performance steam. ? Armstrong International - Three worldwide factory seminar facilities, 13 North American sales representative facilities, 4 international sales representative facilities, 8 co-sponsored facilities, 2...

Jones, T.

104

Technical evaluation: 300 Area steam line valve accident  

SciTech Connect (OSTI)

On June 7, 1993, a journeyman power operator (JPO) was severely burned and later died as a result of the failure of a 6-in. valve that occurred when he attempted to open main steam supply (MSS) valve MSS-25 in the U-3 valve pit. The pit is located northwest of Building 331 in the 300 Area of the Hanford Site. Figure 1-1 shows a layout of the 300 Area steam piping system including the U-3 steam valve pit. Figure 1-2 shows a cutaway view of the approximately 10- by 13- by 16-ft-high valve pit with its various steam valves and connecting piping. Valve MSS-25, an 8-in. valve, is located at the bottom of the pit. The failed 6-in. valve was located at the top of the pit where it branched from the upper portion of the 8-in. line at the 8- by 8- by 6-in. tee and was then ``blanked off`` with a blind flange. The purpose of this technical evaluation was to determine the cause of the accident that led to the failure of the 6-in. valve. The probable cause for the 6-in. valve failure was determined by visual, nondestructive, and destructive examination of the failed valve and by metallurgical analysis of the fractured region of the valve. The cause of the accident was ultimately identified by correlating the observed failure mode to the most probable physical phenomenon. Thermal-hydraulic analyses, component stress analyses, and tests were performed to verify that the probable physical phenomenon could be reasonably expected to produce the failure in the valve that was observed.

Not Available

1993-08-01T23:59:59.000Z

105

Mechanical and metallurgical properties of MMC friction welds  

SciTech Connect (OSTI)

The mechanical and metallurgical properties of similar and dissimilar welds involving aluminum-based metal matrix composite (MMC) base material were investigated using factorial experimentation. The test materials comprised aluminum-based alloy 6061/Al{sub 2}O{sub 3} (W6A.10A-T6), aluminum Alloy 6061-T6 and AISI 304 stainless steel. Notch tensile strength increased when high friction pressures were employed during MMC/MMC, MMC/Alloy 6061, MMC/AISI 304 stainless steel and Alloy 6061/Alloy 6061 friction welding. In MMC/Alloy 6061 welds, notch tensile strength also increased when high forging pressures were employed. Applied oxide films on both the MMC and AISI stainless steel substrates had a markedly detrimental effect on dissimilar weld mechanical properties. The optimum notch tensile strength properties were produced when high friction pressure values were applied during dissimilar MMC/AISI 304 stainless steel welding. High friction pressure had two beneficial effects, i.e., it decreased the thickness of the FeAl{sub 3} intermetallic film and it promoted disruption and dispersal of oxide films at the joint interface. In direct contrast, the presence of thick anodized oxide films on the MMC substrate surface prior to friction welding had no observable influence on MMC/MMC weld mechanical properties.

Li, Z.; Maldonado, C.; North, T.H. [Univ. of Toronto, Ontario (Canada). Dept. of Metallurgy and Materials Science; Altshuller, B. [Alcan R and D Labs., Kingston, Ontario (Canada)

1997-09-01T23:59:59.000Z

106

Reduction in Unit Steam Production  

E-Print Network [OSTI]

In 2001 the company's Arch-Brandenburg facility faced increased steam costs due to high natural gas prices and decreased production due to shutdown of a process. The facility was challenged to reduce unit steam consumption to minimize the effects...

Gombos, R.

2004-01-01T23:59:59.000Z

107

Belgrade Lot Steam Plant Lot  

E-Print Network [OSTI]

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N S Estabrooke Memorial Gym Stevens

Thomas, Andrew

108

Heat Recovery Steam Generator Simulation  

E-Print Network [OSTI]

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs...

Ganapathy, V.

109

Consider Steam Turbine Drives for Rotating Equipment  

Broader source: Energy.gov [DOE]

This tip sheet outlines the benefits of steam turbine drives for rotating equipment as part of optimized steam systems.

110

Domestic Coal Distribution 2009 Q1 by Destination State: Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) 1 / 64 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) Origin State Transportation Mode Electricity Generation Coke Plants Industrial Plants Excluding Coke Commercial & Institutional Total Alabama Railroad 950 4 84 - 1,038 Alabama River 1,110 - - - 1,110 Alabama Truck 37 170 249 - 456 Alabama Total 2,096 174 333 - 2,603 Arkansas Railroad - 6 - - 6 Colorado Railroad 279 - - - 279 Illinois Railroad 11 - - - 11 Illinois River 109 - - - 109 Illinois Total 119 - - - 119 Indiana River 197 - - - 197 Kentucky Railroad 442 - 28 - 471 Kentucky Truck - - 2 - 2 Kentucky Total 442 - 31 - 473 Kentucky (East) Railroad 357 - 28 - 385 Kentucky (East) Truck - - 2 - 2 Kentucky (East)

111

Domestic Coal Distribution 2009 Q2 by Destination State: Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

61 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) 1 / 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) Origin State Transportation Mode Electricity Generation Coke Plants Industrial Plants Excluding Coke Commercial & Institutional Total Alabama Railroad 875 12 33 - 920 Alabama River 855 - - - 855 Alabama Truck 155 84 230 - 469 Alabama Total 1,885 96 263 - 2,244 Colorado Railroad 123 - - - 123 Illinois River 145 - - - 145 Indiana River 246 - - - 246 Indiana Truck 37 - - - 37 Indiana Total 283 - - - 283 Kentucky Railroad 426 - 30 - 457 Kentucky (East) Railroad 172 - 30 - 202 Kentucky (West) Railroad 255 - - - 255 Oklahoma Railroad - 6 - - 6 Utah Railroad 30 - - - 30 Virginia Railroad - 14 - - 14 West Virginia Railroad - 75 - -

112

Watt steam governor  

Science Journals Connector (OSTI)

The physics of the fly-ball governor, introduced to regulate the speed of steam engines, is here analysed anew. The original analysis is generalized to arbitrary governor geometry. The well-known stability criterion for the linearized system breaks down for large excursions from equilibrium; we show approximately how this criterion changes.

Mark Denny

2002-01-01T23:59:59.000Z

113

Steamed dinosaur eggs  

Science Journals Connector (OSTI)

... a Cretaceous hatchery shows that some dinosaurs liked their nesting sites steam-heated — by geothermal vents. A paper in Nature Communications today says that certain dinosaurs regularly returned to ... vents. A paper in Nature Communications today says that certain dinosaurs regularly returned to geothermal fields to shape nests and deposit eggs more than 100 million years ago. ...

Rex Dalton

2010-06-29T23:59:59.000Z

114

Steam management in composite mature steam floods, Midway Sunset field  

SciTech Connect (OSTI)

Vogel noted that oil production rates in many steam floods are not predictable from steam injection rates and must be estimated on some other basis. He presented a conservative method, based on simple models assuming instantaneous steam overlay, to calculate heat requirements once the oil rate is known. By more accurately describing the reservoir being flooded and the steam flood process, Vogel`s method was refined resulting in significant steam savings for SWEPI`s leasehold in the northern part of the Midway Sunset field. Analytical expressions are presented for (1) the heat required to support a steam chest descending into an oil column, (2) the heating of a cap or base rock already partially heated by an adjacent steam flood and (3) the heating of a cap or base rock which is exposed to a uniformly growing steam zone. A method is also described to operate a mature steam flood at a constant oil steam ratio while scavenging some heat stored in the steam zone.

Dorp, J.J. van; Roach, R.H.

1995-12-31T23:59:59.000Z

115

Table 9. U.S. Steam Coal Exports  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Steam Coal Exports U.S. Steam Coal Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 9. U.S. Steam Coal Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Destination April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 1,619,502 1,246,181 2,153,814 2,865,683 3,065,683 -6.5 Canada* 797,861 599,752 841,061 1,397,613 1,280,803 9.1 Dominican Republic 51,698 160,672 124,720 212,370 312,741 -32.1 Honduras - 41,664 34,161 41,664 68,124 -38.8 Jamaica 25 36,311 - 36,336 33,585 8.2 Mexico 717,687 407,422 1,116,653 1,125,109 1,331,754 -15.5 Other** 52,231 360 37,219 52,591 38,676 36.0 South America Total 853,693 806,347

116

Steam System Balancing and Tuning  

Broader source: Energy.gov (indexed) [DOE]

Steam System Balancing and Steam System Balancing and Tuning Building America Stakeholder Meeting Austin, TX Jayne Choi, Energy Analyst, CNT Energy March 2, 2012 PARR Current collaboration with GTI as a part of the PARR Building America team - Steam Systems Balancing and Tuning Study - Heating season 2011-2012 Background In Chicago, heating is the focus of residential energy use Of the 470,000 multifamily units in the Chicago region, at least 70,000 of those are steam heated Old steam systems invariably suffer from imbalance - Tenants must use supplemental heat or open their windows to cool their apartments during the heating season Buildings are often overheated Problem Statement (CNT Energy) Steam Heating Steam heat was the best option for buildings constructed between 1900 and 1930

117

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

118

dist_steam.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

District Steam Usage Form District Steam Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

119

DOE - Office of Legacy Management -- Oregon Metallurgical Corp - OR 0-02  

Office of Legacy Management (LM)

Oregon Metallurgical Corp - OR 0-02 Oregon Metallurgical Corp - OR 0-02 FUSRAP Considered Sites Site: OREGON METALLURGICAL CORP. ( OR.0-02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Albany , Oregon OR.0-02-1 Evaluation Year: 1994 OR.0-02-2 OR.0-02-3 Site Operations: Research and development of uranium alloy processes in the 1940s and 1950s. OR.0-02-1 Site Disposition: Eliminated - AEC licensed - Potential for contamination remote based on limited quantity of materials handled OR.0-02-1 OR.0-02-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Enriched Uranium, Zirconium OR.0-02-1 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see

120

Air-cooled vacuum steam condenser  

SciTech Connect (OSTI)

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms.

Larinoff, M.W.

1990-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Prediction of metallurgical coke strength from the petrographic composition of coal blends  

SciTech Connect (OSTI)

Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

Sutcu, H.; Toroglu, I.; Piskin, S. [Zonguldak Karaelmas University, Zonguldak (Turkey)

2009-07-01T23:59:59.000Z

122

Steam Pressure Reduction: Opportunities and Issues; A BestPractices Steam Technical Brief  

SciTech Connect (OSTI)

A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

Not Available

2005-11-01T23:59:59.000Z

123

Steam Cracker Furnace Energy Improvements  

E-Print Network [OSTI]

Channel, ~ 25 mi. east of Houston ? Includes 4 manufacturing sites, 2 technology/engineering offices ?Significant community involvement Baytown Refinery Page 4 Steam Cracking to Olefins ? Process 60+ years old; ExxonMobil one of pioneers... Steam Cracker Furnace Energy Improvements Tim Gandler Energy Coordinator Baytown Olefins Plant, Baytown Tx 2010 Industrial Energy Technology Conference May, 2010 Page 2 ? Baytown Complex ? Steam Cracking to Olefins ? Furnace overview...

Gandler, T.

124

Steam System Forecasting and Management  

E-Print Network [OSTI]

by manipulation of operating schedules to avoid steam balances that result in steam venting, off gas-flaring, excessive condensing on extraction/condensing turbines, and ineffective use of extraction turbines. For example, during the fourth quarter of 1981... minimum turndown levels. Several boilers would have oeen shut down; by-product fuel gas would have been flared; and surplus low level steam would have been vented to the atmosphere. Several scenarios were studied with SFC and evaluated based...

Mongrue, D. M.; Wittke, D. O.

1982-01-01T23:59:59.000Z

125

Deaerators in Industrial Steam Systems  

Broader source: Energy.gov [DOE]

This tip sheet on deaerators provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

126

Why destination areas rise and fall in popularity: an update of a Cornell Quarterly classic  

Science Journals Connector (OSTI)

Travel is more popular than ever, so why should destination managers worry? Because their location's attractiveness may be spinning away even as they watch.

Stanley Plog

2001-01-01T23:59:59.000Z

127

Tarifs Tlphonique (26/12/2013) -Page 1/5 Destination Tarifs Fixe Tarifs mobile Exception  

E-Print Network [OSTI]

/5 Destination Tarifs Fixe Tarifs mobile Exception Comores 0,49/mn 0,49/mn Congo 0,49/mn 0,49/mn Congo RDC 0

Rossi, Vivien

128

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

129

Steam System Improvement: A Case Study  

E-Print Network [OSTI]

. For industries, this will result in the reduction of production cost. In industry where steam is utilized, the steam production and distribution system consumes a significant portion of energy. Therefore, optimization of steam system is among the biggest energy...

Venkatesan, V. V.; Leigh, N.

130

RELATION BETWEEN TEXTURE AND REACTIVITY IN METALLURGICAL COKES OBTAINED FROM COAL USING PETROLEUM COKE AS ADDITIVE  

E-Print Network [OSTI]

Reactivity to C O2 is, perhaps, the most importam quality parameter used to evaluate the performance of a metallurgical coke in the blast furnace [ 1]. A lot of effort has been made to study how it is influenced by the

J. J. Pis; J. A. Men~ndez; R. Alvarez; M. A. Diez; J. B. Parra

131

ROADMAP TO YOUR GRADUATION Metallurgical & Materials Engineering Curriculum BS MTE Degree Revised April 2014  

E-Print Network [OSTI]

ROADMAP TO YOUR GRADUATION Metallurgical & Materials Engineering Curriculum � BS MTE Degree / 29 Fall Spring Fall Spring Fall Spring Fall Spring 12 hrs 17 hrs 17 hrs 17 hrs 16 hrs 15 hrs 14 hrs engineering department office. 2. MTE students may take any MTE 400-level or higher courses

Carver, Jeffrey C.

132

Training: Steam Systems | Department of Energy  

Office of Environmental Management (EM)

required to register. Steam End User - 1 day workshop Availability: Onsite instructor-led and online self-paced workshop This course covers the operation of typical steam...

133

Benchmark the Fuel Cost of Steam Generation  

Broader source: Energy.gov [DOE]

This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

134

Steam System Modeler | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency (%) Isentropic Efficiency (%) Blowdown Rate (%) Deaerator Vent Rate (%) Heat Loss (%) Condensate Return (%) Steam Mass Flow Feedwater Mass Flow Initial HP Steam...

135

Domestic Distribution of U.S. Coal by Destination State,  

U.S. Energy Information Administration (EIA) Indexed Site

2008 2008 Final May 2010 2008 Changes in Coal Distribution Table Format and Data Sources Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin State, destination State, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-exporting State. This Final 2008 Coal Distribution Report - Annual, supersedes the Preliminary 2008 Coal Distribution Report - Annual. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report contains actual annual data instead of imputed data for smaller electric generation plants that are excluded from the

136

Origin State Destination State STB EIA STB EIA Alabama  

U.S. Energy Information Administration (EIA) Indexed Site

State State Destination State STB EIA STB EIA Alabama Alabama W $13.59 W $63.63 21.4% 3,612 W 100.0% Alabama Georgia W $19.58 W $82.89 23.6% 538 W 99.9% Alabama Illinois W - - - - - - - Alabama Kentucky - W - W W W - W Alabama Pennsylvania - W - W W W - W Arizona Arizona - W - W W W - W Colorado Alabama W $30.35 W $70.84 42.8% 905 W 95.3% Colorado Arizona W W W W W W W W Colorado California W $37.53 W $83.78 44.8% 64 W 100.0%

137

ULTRA-SUPERCRITICAL STEAM CORROSION  

SciTech Connect (OSTI)

Efficiency increases in fossil energy boilers and steam turbines are being achieved by increasing the temperature and pressure at the turbine inlets well beyond the critical point of water. To allow these increases, advanced materials are needed that are able to withstand the higher temperatures and pressures in terms of strength, creep, and oxidation resistance. As part of a larger collaborative effort, the Albany Research Center (ARC) is examining the steam-side oxidation behavior for ultrasupercritical (USC) steam turbine applications. Initial tests are being done on six alloys identified as candidates for USC steam boiler applications: ferritic alloy SAVE12, austenitic alloy Super 304H, the high Cr-high Ni alloy HR6W, and the nickel-base superalloys Inconel 617, Haynes 230, and Inconel 740. Each of these alloys has very high strength for its alloy type. Three types of experiments are planned: cyclic oxidation in air plus steam at atmospheric pressure, thermogravimetric ana lysis (TGA) in steam at atmospheric pressure, and exposure tests in supercritical steam up to 650 C (1202 F) and 34.5 MPa (5000 psi). The atmospheric pressure tests, combined with supercritical exposures at 13.8, 20.7, 24.6, and 34.5 MPa (2000, 3000, 4000, and 5000 psi) should allow the determination of the effect of pressure on the oxidation process.

Holcomb, G.R.; Alman, D.E.; Bullard, S.B.; Covino, B.S., Jr.; Cramer, S.D.; Ziomek-Moroz, M.

2003-04-22T23:59:59.000Z

138

GCFR steam generator conceptual design  

SciTech Connect (OSTI)

The gas-cooled fast reactor (GCFR) steam generators are large once-through heat exchangers with helically coiled tube bundles. In the GCFR demonstration plant, hot helium from the reactor core is passed through these units to produce superheated steam, which is used by the turbine generators to produce electrical power. The paper describes the conceptual design of the steam generator. The major components and functions of the design are addressed. The topics discussed are the configuration, operating conditions, design criteria, and the design verification and support programs.

Holm, R.A.; Elliott, J.P.

1980-01-01T23:59:59.000Z

139

Combined Heat and Power Plant Steam Turbine  

E-Print Network [OSTI]

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

140

Steam System Tool Suite Introduction Guide  

E-Print Network [OSTI]

)........................................................................................8 Steam System Assessment Tool (SSAT Tool, the Steam System Assessment Tool, and the 3E Plus Insulation Tool. Each one of these trainings.S.DOE Steam Tools are designed to aid in assessing steam systems by identifying areas to investigate

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Wet-steam erosion of steam turbine disks and shafts  

SciTech Connect (OSTI)

A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

Averkina, N. V. [JSC 'NPO TsKTI' (Russian Federation); Zheleznyak, I. V. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation); Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G., E-mail: orlikvg@mail.ru [JSC 'NPO TsKTI' (Russian Federation); Shishkin, V. I. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation)

2011-01-15T23:59:59.000Z

142

The relationship of travel agents and consumer travel magazines concerning the travel destinations of tourists using travel agencies  

E-Print Network [OSTI]

important. Also important are travel agents, those professionals who may play a large role in helping tourists determine their travel destinations. Another potentially important factor in determining travel destinations is consumer travel magazines...

Tomlinson, Beverly

2013-02-22T23:59:59.000Z

143

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network [OSTI]

DOE's BestPractices Steam End User Training Steam End User Training Welcome Module - 1 8/27/2010 Steam End User Training Welcome Module Slide 1 ­ Steam End User Training Welcome to the Department of Energy's Industrial Technologies Program BestPractices Steam End-User Training. The Department of Energy

Oak Ridge National Laboratory

144

The Steam System Scoping Tool: Benchmarking Your Steam Operations Through Best Practices  

E-Print Network [OSTI]

system efficiency. The BestPractices Steam effort, a part of the DOE-OIT effort, has developed a new tool that steam energy managers and operations personnel can use to assess their steam operations and improve their steam energy usage -the Steam System...

Wright, A.; Hahn, G.

145

Steam Field | Open Energy Information  

Open Energy Info (EERE)

Field Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Steam Field Dictionary.png Steam Field: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Steam field reservoirs are special cases where the fluid is predominantly found in a gas phase between 230°C to 240°C. "This special class of resource needs to be recognized, its uniqueness being the remarkably consistent initial temperature and pressure

146

Steam in the Ring Discharge  

Science Journals Connector (OSTI)

The behaviour of steam and its decomposition products in the ring discharge has been examined. Dry hydrogen is not dissociated. The production of atomic hydrogen is dependent upon the presence of steam which dissociates into hydroxyl and atomic hydrogen. A secondary source of atomic hydrogen is then afforded by the interaction of hydroxyl with molecular hydrogen. The escape from the discharge of atomic hydrogen, a long-lived species, favours the dissociation of steam. Mercury vapour, on the other hand, inhibits the formation of atomic hydrogen and thus leads to a high equilibrium steam concentration. Unlike dry hydrogen, dry oxygen is dissociated into atoms, but these have a short life as such and recombine in the discharge to form molecular oxygen and ozone. The reaction mechanisms occurring in the discharge are discussed in the light of spectrographic results.

G I Finch

1949-01-01T23:59:59.000Z

147

Managing the Steam Trap Population  

E-Print Network [OSTI]

hundred steam traps installed only 58 were working effectively -- 42% needed attention! These programs had associated cost benefits of at least 100% return on investment, a maximum six month breakeven on cash flow, and an energy cost reduction amounting...

Atlas, R. D.

1983-01-01T23:59:59.000Z

148

Foam Cleaning of Steam Turbines  

E-Print Network [OSTI]

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

Foster, C.; Curtis, G.; Horvath, J. W.

149

The steam engine and industrialization  

E-Print Network [OSTI]

Simon Schaffer in York Rail Museum talks to the camera about the relationship between the steam engine and industrialization and whatsteam meant; a regular supply of moving power for workshops and factories....

Dugan, David

2004-08-17T23:59:59.000Z

150

Capturing Energy Savings with Steam Traps  

E-Print Network [OSTI]

Capturing Energy Savings with Steam Traps Richard C; Bockwinkel General Manager Armstrong Service? A Division of Armstrong International, Inc. Orlando, Florida ABSTRACT This paper will discuss the energy savings potential of steam... Engineer Steam Traps Armstrong International, Inc. Three Rivers, Michigan basis. Finally, it's important to recognize that a steam trap program will reduce steam waste> which will reduce the amount of fuel burned> which will reduce pollutants...

Bockwinkel, R. G.; French, S. A.

151

Review of Orifice Plate Steam Traps  

Broader source: Energy.gov [DOE]

This guide was prepared to serve as a foundation for making informed decisions about when orifice plate steam traps should be considered for use in new or existing steam systems. It presents background information about different types of steam traps and defines their unique functional and operational characteristics. The advantages and disadvantages associated with using orifice plate steam traps are provided to highlight their capabilities and limitations. Finally, recommendations for using orifice plate steam traps are presented, and possible applications are identified.

152

The Elimination of Steam Traps  

E-Print Network [OSTI]

claims and misinformation gener ated by over thirty-six steam trap manufacturers in the United States alone. A PARTIAL LIST OF STEAM TRAP MANUFACTURERS AAF GESTRA ANDERSON HIROSS ARMSTRONG HOFFMAN BARNES &JONES HONEYWELL BRAUKMANN BESTOBELL... removal had been devised and these same methods, with minor variations, are employed today. The inverted bucket trap was in vented in 1910 by Otto Arner, a friend of Adam Armstrong. Armstrong began his business career by making bicycle spokes...

Dickman, F.

153

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network [OSTI]

to make additional steam for the steam turbine cycle. Thein multi-pressure-level steam turbines to produce additionalthe superheated steam to the steam turbine cycle. The most

Lu, Xiaoming

2012-01-01T23:59:59.000Z

154

A Review of Some Degradation Mechanisms in CANDU Steam Generator Tubing  

SciTech Connect (OSTI)

The first CANDU (Canadian Deuterium Uranium) pressurized heavy water reactor (PHWR) went into operation in July 1971. Today, there are several units in operation at the Pickering, Bruce, and Darlington sites in Ontario, Canada. The steam generator tubing materials were manufactured from Monel 400, Inconel 600, and Incoloy 800 for the Pickering, Bruce, and Darlington respectively and are subjected to different operating conditions. This paper presents a review of some of the various types of degradation mechanisms that have been observed on these tubing materials over the operating period of the respective plants. The results presented are based on the metallurgical examination of removed tubes. The mechanisms that have been observed include pitting, stress corrosion cracking, intergranular attack, fretting, and erosion corrosion. The nature of the flaws and causative factors (if known) are discussed. (authors)

Ogundele, G.; Clark, M.; Goszczynski, G.; Lloyd, A. [Kinectrics, Inc., 800 Kipling Avenue Toronto, Ontario M8Z 6C4 (Canada); Pagan, S. [Ontario Power Generation, 700 University Avenue Toronto, Ontario, M5G 1X6 (Canada); Sedman, K. [Bruce Power, P.O. Box 3000 177 Tie Rd., R.R. 2, Tiverton, Ontario N0G 2T0 (Canada); King, P. [Babcock and Wilcox (Canada)

2006-07-01T23:59:59.000Z

155

Best Management Practice #8: Boiler and Steam Systems | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

implement a routine inspection and maintenance program to check steam traps and steam lines for leaks. Repair leaks and replace faulty steam traps as soon as possible. Develop...

156

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

Broader source: Energy.gov [DOE]

This tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

157

Systematic Errors in Measuring the Energy of Wet Steam with Dry-Steam Meters  

Science Journals Connector (OSTI)

Systematic errors are considered in measuring mass flow rate, specific enthalpy, thermal power, and energy for wet steam by means of meters intended for dry saturated steam.

E. G. Abarinov; K. S. Sarelo

2002-03-01T23:59:59.000Z

158

Some Comments on James Watt's Published Account of His Work on Steam and Steam Engines  

Science Journals Connector (OSTI)

1 June 1971 research-article Some Comments on James Watt's Published Account of His Work on Steam and Steam Engines W. A. Smeaton

1971-01-01T23:59:59.000Z

159

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect (OSTI)

Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

Not Available

2005-09-01T23:59:59.000Z

160

Steam Pressure Reduction, Opportunities, and Issues  

SciTech Connect (OSTI)

Steam pressure reduction has the potential to reduce fuel consumption for a minimum capital investment. When the pressure at the boiler is reduced, fuel and steam are saved as a result of changes in the high-pressure side of the steam system from the boiler through the condensate return system. In the boiler plant, losses from combustion, boiler blowdown, radiation, and steam venting from condensate receivers would be reduced by reducing steam pressure. Similarly, in the steam distribution system, losses from radiation, flash steam vented from condensate receivers, and component and steam trap leakage would also be reduced. There are potential problems associated with steam pressure reduction, however. These may include increased boiler carryover, boiler water circulation problems in watertube boilers, increased steam velocity in piping, loss of power in steam turbines, and issues with pressure reducing valves. This paper is based a Steam Technical Brief sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and Enbridge Gas Distribution, Inc. (5). An example illustrates the use of DOE BestPractices Steam System Assessment Tool to model changes in steam, fuel, electricity generation, and makeup water and to estimate resulting economic benefits.

Berry, Jan [ORNL; Griffin, Mr. Bob [Enbridge Gas Distribution, Inc.; Wright, Anthony L [ORNL

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Catalytic steam reforming of hydrocarbons  

SciTech Connect (OSTI)

The hot effluent from the catalytic steam reforming of a major portion of a fluid hydrocarbon feed stream in the reformer tubes of a primary reformer, or said effluent after secondary reforming thereof, is mixed with the hot effluent from the catalytic steam reforming of the remaining portion of the feed discharged from the reformer tubes of a primary reformer-exchanger. The combined gas steam is passed on the shell side of the reformer-exchanger countercurrently to the passage of feed in the reformer tubes thereof, thus supplying the heat for the reforming of the portion of the feed passed through the reformer tubes of the reformerexchanger. At least about 2/3 of the hydrocarbon feed stream is passed to the reformer tubes of said primary reformer, heated by radiant heat transfer and/or by contact with combustion gases, at a steam/hydrocarbon mole ratio of about 2-4/1. The remainder of said feed stream is passed to the reformer tubes of said reformer -exchanger at a steam/hydrocarbon mole ratio of about 3-6/1. The reformer shell of the reformer-exchanger is internally insulated by a refractory lining or by use of a double shell with passage of water or a portion of the feed material between the inner and outer shells. There is no significant difference between the pressure inside and outside of the reformer tubes of said primary reformer-exchanger.

Fuderer, A.

1982-06-29T23:59:59.000Z

162

Evaluation of steam path audits  

SciTech Connect (OSTI)

Tri-State Generation and Transmission association is the operating agent for the 1350 megawatt Craig Generating Station, located in northwestern Colorado. Tri-State has recently incorporated turbine steam path audits into their aggressive performance improvement program. The intent of the audits are to quantify and attain the most cost effective increase in turbine performance as a result of a major outage. Valuable information about performance losses in the turbine has been obtained from steam path audits conducted on the three Craig Units. However, accurate audit results often depend on the quality of measurements and the experience of the auditor. Without a second method to verify the results of a steam path audit, repairs might be performed on a non-cost effective basis, or significant performance degradations might be overlooked. In addition, an inaccurate audit may lead to erroneous expectations for performance improvements resulting from the maintenance performed during the outage.

Caudill, M.B. [Tri-State Generation and Transmission Association, Inc., Montrose, CO (United States); Griebenow, R.D. [SAIC, Huntersville, NC (United States)

1995-06-01T23:59:59.000Z

163

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network [OSTI]

ABSTRACT Steam is the most transferring heat from But most steam systems LOWEST PRESSURE STEAM SAVES MORE BTU'S THAN YOU THINK Stafford J. Vallery Armstrong Machine Works Three Rivers, Michigan steam to do the process heating rather than...

Vallery, S. J.

164

The steam engine and what it needs  

E-Print Network [OSTI]

Simon Schaffer explains that to produce an effective steam engine you do not just need specific inventions, such as the separate condenser of James Watt, but also skills from clockworking, distillation, metal working and so on. Then the steam power...

Dugan, David

2004-08-18T23:59:59.000Z

165

Insulate Steam Distribution and Condensate Return Lines  

Broader source: Energy.gov [DOE]

This tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

166

The Future of Steam: A Preliminary Discussion  

E-Print Network [OSTI]

Steam production represents a significant proportion of today's industrial energy demand. But the evolution of process technologies, as well as turbulence in energy markets, suggests that steam's role may be subject to change in the next decade...

Russell, C.; Harrell, G.; Moore, J.; French, S.

167

Benchmark the Fuel Cost of Steam Generation  

SciTech Connect (OSTI)

This revised ITP tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

168

Insulate Steam Distribution and Condensate Return Lines  

SciTech Connect (OSTI)

This revised ITP tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

169

Steam System Assessment Tool (CD-ROM)  

SciTech Connect (OSTI)

The tool will help users determine the potential energy cost and emission savings of key steam-system improvements. The tool is designed for energy operations, production, project managers, and engineers who are responsible for steam systems.

Not Available

2002-12-01T23:59:59.000Z

170

FEMP-FTA--Steam Trap Performance Assessment  

Broader source: Energy.gov (indexed) [DOE]

Steam Trap Function Steam Trap Function Steam traps are automatic valves used in every steam system to remove conden- sate, air, and other non-condensable gases while preventing or minimizing the passing of steam. If condensate is allowed to collect, it reduces the flow capacity of steam lines and the thermal capacity of heat transfer equipment. In addition, excess condensate can lead to "water hammer," with potentially destructive and dangerous results. Air that remains after system startup reduces steam pressure and temperature and may also reduce the thermal capacity of heat transfer equipment. Non-condensable gases, such as oxygen and carbon dioxide, cause corrosion. Steam that passes through the trap provides no heating ser- vice. This effectively reduces the heating capacity

171

Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

Warm or Steaming Ground Warm or Steaming Ground Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Warm or Steaming Ground Dictionary.png Warm or Steaming Ground: An area where geothermal heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Steam rising from the ground at Eldvorp, a 10 km row of craters, in Southwestern Iceland. http://www.visiticeland.com/SearchResults/Attraction/eldvorp Warm or steaming ground is often an indicator of a geothermal system beneath the surface. In some cases a geothermal system may not show any

172

Improving Steam System Performance: A Sourcebook for Industry...  

Energy Savers [EERE]

in Industrial Steam Systems Insulate Steam Distribution and Condensate Return Lines Advanced Manufacturing Home Key Activities Research & Development Projects Facilities...

173

"Greening" Industrial Steam Generation via On-demand Steam Systems  

E-Print Network [OSTI]

boiler technology currently in service in the U.S., it is critical to raise awareness and examine the role of emerging new technologies to address the energy and environmental challenges inherent with steam generation. In the same way that tank...

Smith, J. P.

2010-01-01T23:59:59.000Z

174

The Increased Expansion of Steam Attainable in Steam Trubines1  

Science Journals Connector (OSTI)

... of steam discovered by James Watt, and to endeavour to trace their application in the engines constructed by him and by the firm of Bolton and Watt, then in the ... and Watt, then in the more highly developed forms of compound, triple, and quadruple reciprocating ...

1909-02-25T23:59:59.000Z

175

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network [OSTI]

DOE's BestPractices Steam End User Training Steam End User Training Navigational Tutorial - 1 8/27/2010 Steam End User Training Navigational Tutorial Module Slide 1 ­ Introduction Hello, and welcome to the Steam End User Training. I would like to take a few minutes to show you how to navigate through

Oak Ridge National Laboratory

176

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network [OSTI]

DOE's BestPractices Steam End User Training Steam End User Training Introduction Module - 1 8/27/2010 Steam End User Training Introduction Module Slide 1 - Introduction Title Page Hello, and welcome to the Steam System End User training. In this training, we will investigate how to assess, evaluate

Oak Ridge National Laboratory

177

Low pressure combustor for generating steam downhole  

SciTech Connect (OSTI)

A compact catalytic combustor for generating steam downhole in an oil reservoir has steam generating tubes that are attached to a metal catalyst support. The metal support comprises sheets of metal that are spaced apart and transverse to the tubes. Heat from combustion is generated on the metal sheets and is conducted to the steam generating tubes. The steam is injected into the oil reservoir. The combustion gas is vented to ground level.

Retallick, W.B.

1983-03-22T23:59:59.000Z

178

Save Energy Now in Your Steam Systems  

Broader source: Energy.gov [DOE]

This brief outlines typical ways to increase steam system efficiency through changes in distribution, generation, and recovery.

179

Plant View On Reducing Steam Trap Energy Loss  

E-Print Network [OSTI]

of the steam traps are passing excess steam. This is caused by neglect of aged steam traps which have worn out and misapplication of steam traps by oversizing or using the 'wrong' type trap. Elimination of steam wastes by an effective well engineered steam trap...

Vallery, S. J.

1982-01-01T23:59:59.000Z

180

Steam reformer study proposed by Battelle  

Science Journals Connector (OSTI)

Steam reformer study proposed by Battelle ... At a meeting held at Battelle's Columbus, Ohio, laboratories, D. B. Roach told representatives of 24 firms involved in various aspects of steam reforming that, though production of hydrogen through steam reforming has been a highly successful process, "increased plant size and more severe operating conditions have given rise to serious problems." ...

1969-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Steam System Improvement: A Case Study  

E-Print Network [OSTI]

usage) where steam generation accounts for 85% of the total energy used. Therefore, optimization of the steam system has the biggest energy saving potential. This paper mill produces 40,000 pounds of steam at 600 psig and distributes it to the paper...

Leigh, N.; Venkatesan, V. V.

182

Materials Performance in USC Steam  

SciTech Connect (OSTI)

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

2010-05-01T23:59:59.000Z

183

Recover heat from steam reforming  

SciTech Connect (OSTI)

Steam reforming is one of the most important chemical processes--it is used in the manufacture of ammonia, hydrogen, methanol, and many chemicals made from hydrogen and carbon monoxide. Furthermore, many current trends will increase its importance. For example, methanol for addition to gasoline is likely to be produced by steam reforming. Because steam reforming occurs at high temperatures--typically 750 C--900 C--it generates a large amount of waste heat. Clearly, heat recovery is crucial to process economics. A typical 50,000 Nm[sup 3]/h hydrogen plant using natural gas feed has a radiant heat duty of about 50 MW. At a radiant efficiency of 50% and fuel cost of $3/GJ, this means that the reformer fires $9 million worth of fuel per year. Obviously, this amount of fuel justifies a close loot at ways to reduce costs. This article first provides a brief overview of steam reforming. It then outlines the available heat-recovery options and explains how to select the best method.

Fleshman, J.D. (Foster Wheeler USA Corp., Livingston, NJ (United States))

1993-10-01T23:59:59.000Z

184

Generating Steam by Waste Incineration  

E-Print Network [OSTI]

Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full...

Williams, D. R.; Darrow, L. A.

1981-01-01T23:59:59.000Z

185

Table 10. Average Price of U.S. Steam Coal Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Steam Coal Exports Average Price of U.S. Steam Coal Exports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 10. Average Price of U.S. Steam Coal Exports (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Destination April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 65.10 63.67 73.81 64.48 78.90 -18.3 Canada* 59.34 55.22 63.02 57.57 73.63 -21.8 Dominican Republic 78.47 74.41 73.89 75.40 76.61 -1.6 Honduras - 54.58 54.43 54.58 54.43 0.3 Jamaica 480.00 54.43 - 54.72 55.42 -1.3 Mexico 69.42 73.33 82.64 70.83 86.44 -18.1 Other** 80.33 389.30 70.37 82.45 76.10 8.3 South America Total 79.44 77.85 70.55

186

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant (Redirected from Flash Steam Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility

187

Air-cooled vacuum steam condenser  

SciTech Connect (OSTI)

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms. The condensing mechanisms including: a plurality of finned tubes through which the expanded exhaust steam flows and is condensed; a plurality of bundle from headers at the lower ends of the condensing tubes for receiving exhaust steam from the turbine; a plurality of bundle divided rear headers, one for each tube row in the bundle, at the higher ends of the condensing tubes for receiving non-condensible gases; and means in the rear and last headers to remove non-condensible gasses from the rear headers along their full length.

Larinoff, M.W.

1990-03-06T23:59:59.000Z

188

Enhanced near net-shape ceramic refractory composite high temperature cartridge by VPS metallurgical alloying techniques  

SciTech Connect (OSTI)

High performance cartridges are being developed by vacuum plasma spray (VPS) forming to near net-shape for use in high temperature space furnaces. A VPS metallurgical alloying technique utilizing alloying elements (rhenium, nickel, etc.) has been developed that produces robust physical properties without jeopardizing the unique chemical properties of the VPS formed tungsten structure. Thin walled cartridges, 0.069 mm (0.027 in.) thick, are produced in continuous lengths of 58.4 cm (23 in.). A refractory metal (i.e. tungsten) is VPS formed as the cartridge wall structure, with a protective ceramic (i.e., alumina) coating inside and out. The ceramic-refractory-ceramic composite provides environmental protection to the refractory metal structure from both chemical attack inside and oxidation outside. The VPS metallurgical alloying process interjected during the spraying operation greatly reduces porosity of the microstructure while enhancing the ductility of the cartridge. Thin walled cartridges have been shown to hermetically seal demonstrating no through porosity. Microstructures have been characterized and material properties will be presented.

Krotz, P.D.; Liaw, Y.; McKechnie, T.N. [Rocketdyne, Huntsville, AL (United States); Holmes, R.; Zimmerman, F. [National Aeronautics and Space Administration, Huntsville, AL (United States). Marshall Space Flight Center

1995-12-31T23:59:59.000Z

189

Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system  

SciTech Connect (OSTI)

As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

Marshall, B.W.

1983-05-01T23:59:59.000Z

190

Steam Turbine Materials and Corrosion  

SciTech Connect (OSTI)

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

Holcomb, G.H.; Hsu, D.H.

2008-07-01T23:59:59.000Z

191

Explosion bonding of dissimilar materials for fabricating APS front end components: Analysis of metallurgical and mechanical properties and UHV applications  

SciTech Connect (OSTI)

The front end beamline section contains photon shutters and fixed masks. These components are made of OFHC copper and GlidCOP AL-15. Stainless steels (304 or 316) are also used for connecting photon shutters and fixed masks to other components that operate in the ultrahigh vacuum system. All these dissimilar materials need to be joined together. However, bonding these dissimilar materials is very difficult because of their different mechanical and thermal properties and incompatible metallurgical properties. Explosion bonding is a bonding method in which the controlled energy of a detonating explosive is used to create a metallurgical bond between two or more similar or dissimilar materials. No intermediate filler metal, for example, a brazing compound or soldering alloy, is needed to promote bonding, and no external heat need be applied. A study of the metallurgical and mechanical properties and YGV applications of GlidCop AL-15, OFHC copper, and 304 stainless steel explosion-bonded joints has been done. This report contains five parts: an ultrasonic examination of explosion-bonded joints and a standard setup; mechanical-property and thermal-cycle tests of GlidCop AL-15/304 stainless steel explosion-bonded joints; leak tests of a GlidCop AL-15/304 stainless steel explosion-bonded interfaces for UHV application; metallurgical examination of explosion-bonded interfaces and failure analysis, and discussion and conclusion.

Li, Yuheng; Shu, Deming; Kuzay, T.M.

1994-06-15T23:59:59.000Z

192

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility Type Commercial Online Date Geothermal Area

193

Proceedings of design, repair, and refurbishment of steam turbines  

SciTech Connect (OSTI)

This book reports on the proceedings of design, repair and refurbishment of steam engines. Topics covered include: Advisor/Expert Systems for Steam Turbines; Moisture Effects on the Operating and Performance of Steam Turbines; Turbine Steam Path Development; Repair and Refurbishment of the Electric Generator Components; and Advanced Steam Turbine Designs.

Warnock, A.S. (Lehigh Univ., PA (United States))

1991-01-01T23:59:59.000Z

194

The Steam System Assessment Tool (SSAT): Estimating Steam System Energy, Cost, and Emission Savings  

E-Print Network [OSTI]

The U. S. Department of Energy's (DOE) Industrial Technology Program BestPractices Steam effort is developing a number of software tools to assist industrial energy users to improve the efficiency of their steam system. A major new Best...

Wright, A.; Bealing, C.; Eastwood, A.; Tainsh, R.; Hahn, G.; Harrell, G.

195

Numerical study of primary steam superheating effects on steam ejector flow and its pumping performance  

Science Journals Connector (OSTI)

Abstract The effects of primary steam superheating on steam condensation in nozzle and the performance of steam ejector were investigated using CFD (computational fluid dynamics) method. Using a wet steam model being proposed in our previous study, simulations based on the primary steam with five superheated levels were performed, and the results demonstrate the superheating operation of the primary steam weakens the spontaneous condensation intensity and postpones its occurrence within the nozzle vicinity. Due to the droplets nucleation refinement for the condensation of superheated steam, the mixing process between the primary and the secondary fluids is improved. Consequently, a higher entrainment ratio is achieved. However, the superheating operation may not exceed 20 K, as its contribution on entrainment ratio improvement is not as significant as 0 K–20 K superheating, and too much superheating will requires more energy as input, which is not a practical solution to further improve the steam ejector pumping performance.

Xiaodong Wang; Jingliang Dong; Ao Li; Hongjian Lei; Jiyuan Tu

2014-01-01T23:59:59.000Z

196

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect (OSTI)

This revised ITP tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

197

Energy Savings Through Steam Trap Management  

E-Print Network [OSTI]

Energy Savings through Steam Trap Management Chris Gibbs, Account Manager, Armstrong International, Inc., Three Rivers, MI ESL-IE-08-05-08 Proceedings from theThirtieth Industrial Energy Technology Conference...-based steam trap management application developed by Armstrong International. The application calculates steam loss, fuel loss, dollar loss and CO 2 emission generation. The database allows for trend analysis, automatic energy report generation...

Gibbs, C.

2008-01-01T23:59:59.000Z

198

Steam reforming utilizing high activity catalyst  

SciTech Connect (OSTI)

High activity, sulfur tolerant steam reforming catalysts are described comprising rhodium or nickel supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. The catalysts have improved activity over conventionally used catalysts in the presence of sulfur containing hydrocarbon fuel (such as No. 2 fuel oil) in a steam reforming environment. The material has particular utility in autothermal, tubular, cyclic and adiabatic steam reforming processes.

Setzer, H. J.

1985-03-05T23:59:59.000Z

199

Electrical Cost Reduction Via Steam Turbine Cogeneration  

E-Print Network [OSTI]

ELECTRICAL COST REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used... mature technology. Steam turbines and engines have been used by industry to cogen erate power since before there were electric utilities. While the technology for turbines, generators and controls has continued to develop there is very little about...

Ewing, T. S.; Di Tullio, L. B.

200

Reduce Steam Trap Failures at Chambers Works  

E-Print Network [OSTI]

Ultrasonic Inspection At least 2 times per year Steam Trap Surveyor Submit reports to area management, energy team, and reliability engineers for each area every month Steam Trap Team Leader Control Plan ? Process Owner agrees...Reduce Steam Trap Failures at Chambers Works GB/BB Name: Cyndi Kouba Mentor/MBB: Andrew Degraff Team Members Michael Crowley(Site Energy Lead), (Charlie) Flanigan (Aramids-maintenance), Ben Snyder (Aramids-ATO), Michael Scruggs (Central...

Kouba, C.

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Steam Conservation and Boiler Plant Efficiency Advancements  

E-Print Network [OSTI]

leakage is controlled by daily monitoring of make-up water volume. All recent heating water distribution projects have utilized above-ground, fiberglass insulated piping on elevated pipe support structures in order to avoid the potential corrosion...-insulated piping on elevated pipe support structures in order to avoid the potential corrosion and leakage issues associated with underground steam distribution. STEAM COST The remaining challenge was to minimize annual steam costs in order to enhance...

Fiorino, D. P.

202

Coated graphite articles useful in metallurgical processes and method for making same  

DOE Patents [OSTI]

Graphite articles including crucibles and molds used in metallurgical processes involving the melting and the handling of molten metals and alloys that are reactive with carbon when in a molten state and at process temperatures up to about 2000.degree. C. are provided with a multiple-layer coating for inhibiting carbon diffusion from the graphite into the molten metal or alloys. The coating is provided by a first coating increment of a carbide-forming metal on selected surfaces of the graphite, a second coating increment of a carbide forming metal and a refractory metal oxide, and a third coating increment of a refractory metal oxide. The second coating increment provides thermal shock absorbing characteristics to prevent delamination of the coating during temperature cycling. A wash coat of unstabilized zirconia or titanium nitride can be applied onto the third coating increment to facilitate release of melts from the coating.

Holcombe, Cressie E. (Knoxville, TN); Bird, Eugene L. (Knoxville, TN)

1995-01-01T23:59:59.000Z

203

Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995  

SciTech Connect (OSTI)

During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters.

NONE

1995-06-01T23:59:59.000Z

204

Solar-Grade Silicon from Metallurgical-Grade Silicon Via Iodine Chemical Vapor Transport Purification: Preprint  

SciTech Connect (OSTI)

This conference paper describes the atmospheric-pressure in an ''open'' reactor, SiI2 transfers from a hot (>1100C) Si source to a cooler (>750C) Si substrate and decomposes easily via 2SiI2 Si+ SiI4 with up to 5?m/min deposition rate. SiI4 returns to cyclically transport more Si. When the source is metallurgical-grade Si, impurities can be effectively removed by three mechanisms: (1) differing free energies of formation in forming silicon and impurity iodides; (2) distillation; and (3) differing standard free energies of formation during deposition. Distillation has been previously reported. Here, we focused on mechanisms (1) and (3). We made feedstock, analyzed the impurity levels, grew Czochralski single crystals, and evaluated crystal and photovoltaic properties. Cell efficiencies of 9.5% were obtained. Incorporating distillation (step 2) should increase this to a viable level.

Ciszek, T. F.; Wang, T. H.; Page, M. R.; Bauer, R. E.; Landry, M. D.

2002-05-01T23:59:59.000Z

205

Final Environmental Assessment for the Y-12 Steam Plant Life Extenstion Project - Steam Plant Replacement Subproject  

Broader source: Energy.gov (indexed) [DOE]

93 93 Final Environmental Assessment for the Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject U.S. Department of Energy National Nuclear Security Administration August 2007 Final Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject - August 2007 i TABLE OF CONTENTS List of Acronyms and Abbreviations............................................................................................. vi Chemicals and Units of Measure ................................................................................................. ix Conversion Chart ......................................................................................................................... xi Metric Prefixes .............................................................................................................................xii

206

Minimizing Pathogen Transmission at Primate Ecotourism Destinations: The Need for Input from Travel Medicine  

E-Print Network [OSTI]

I SM T 229 EDITORIAL Minimizing Pathogen Transmission at Primate Ecotourism Destinations: The Need. Ecotourism is a sustainable version of nature tourism with the following components: · Contributes for rural people (p. 10).3 Ecotourism accounts for a significant proportion of all international tourism

Muehlenbein, Michael

207

Search thousands of travel therapy destinations at: http://www.advanced-medical.net  

E-Print Network [OSTI]

Search thousands of travel therapy destinations at: http://www.advanced-medical.net Why do new grads travel with Advanced Medical? Mentorship: With accomplished mentors, new grad friendly facilities, and robust clinical support, trust Advanced Medical to take your professional growth seriously. Advanced

Weber, David J.

208

Efficiently generate steam from cogeneration plants  

SciTech Connect (OSTI)

As cogeneration gets more popular, some plants have two choices of equipment for generating steam. Plant engineers need to have a decision chart to split the duty efficiently between (oil-fired or gas-fired) steam generators (SGs) and heat recovery steam generators (HRSGs) using the exhaust from gas turbines. Underlying the dilemma is that the load-versus-efficiency characteristics of both types of equipment are different. When the limitations of each type of equipment and its capability are considered, analysis can come up with several selection possibilities. It is almost always more efficient to generate steam in an HRSG (designed for firing) as compared with conventional steam generators. However, other aspects, such as maintenance, availability of personnel, equipment limitations and operating costs, should also be considered before making a final decision. Loading each type of equipment differently also affects the overall efficiency or the fuel consumption. This article describes the performance aspects of representative steam generators and gas turbine HRSGs and suggests how plant engineers can generate steam efficiently. It also illustrates how to construct a decision chart for a typical installation. The equipment was picked arbitrarily to show the method. The natural gas fired steam generator has a maximum capacity of 100,000 lb/h, 400-psig saturated steam, and the gas-turbine-exhaust HRSG has the same capacity. It is designed for supplementary firing with natural gas.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1997-05-01T23:59:59.000Z

209

The Bending of Wood With Steam.  

E-Print Network [OSTI]

??Based on experimentation with the steam bending of wood to curved shapes, this thesis describes my involvement with three basic aspects of the process. First… (more)

Cottey Jr., James H.

2008-01-01T23:59:59.000Z

210

Coreflood experimental study of steam displacement.  

E-Print Network [OSTI]

??The main objective of this study was to verify experimentally whether or not a Buckley-Leverett shock front exists when steam displaces oil in a porous… (more)

Cerutti, Andres Enrique

2012-01-01T23:59:59.000Z

211

Covered Product Category: Commercial Steam Cookers | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy cost with an average commercial electric steam cooker life of 12 years. Future electricity price trends and a 3% discount rate are based on Federal guidelines (NISTIR...

212

Covered Product Category: Commercial Steam Cookers  

Broader source: Energy.gov [DOE]

The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial steam cookers, which are covered by the ENERGY STAR program.

213

Industrial Steam System Heat-Transfer Solutions  

Broader source: Energy.gov [DOE]

This brief provides an overview of considerations for selecting the best heat-transfer equipment for various steam systems and applications.

214

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network [OSTI]

DOE's BestPractices Steam End User Training Steam End User Training Conclusion Module 1 June 28, 2010 Steam EndUser Training Conclusion Module Slide 1 Conclusions Let's briefly examine the major items we have covered in this training. [Slide Visual ­ Contents of Module Sections

Oak Ridge National Laboratory

215

Designing an ultrasupercritical steam turbine  

SciTech Connect (OSTI)

Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

Klotz, H.; Davis, K.; Pickering, E. [Alstom (Germany)

2009-07-15T23:59:59.000Z

216

Geismar TDI Plant Steam Optimization  

E-Print Network [OSTI]

BASF North America 7 ESL-IE-13-05-19 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 BASF?s strategic principles A conscientious commitment to our investors, customers, employees...Geismar TDI Plant Steam Optimization May 23rd, 2013 IET Conference Meredith Bailey, PDP Engineer BASF Corporation (734) 324-5047 meredith.bailey@basf.com ESL-IE-13-05-19 Proceedings of the Thrity-Fifth Industrial Energy Technology...

Baily, M.

2013-01-01T23:59:59.000Z

217

Steam Plant Replaces Outdated Coal-Fired System | Department...  

Office of Environmental Management (EM)

Steam Plant Replaces Outdated Coal-Fired System September 1, 2012 - 12:00pm Addthis A new natural gas-fired steam plant will replace an older coal-fired steam plant shown here. The...

218

Effective Steam Trap Selection/Maintenance - Its Payback  

E-Print Network [OSTI]

In oil refineries and petrochemical plants large number of steam traps are used to discharge condensate from steam mains, tracers and process equipment. Early efforts on steam traps focused almost exclusively on their selection and sizing...

Garcia, E.

1984-01-01T23:59:59.000Z

219

Steam turbine materials and corrosion  

SciTech Connect (OSTI)

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. The list of alloys being examined is discussed, including the addition of new alloys to the study. These include alloy 625, selected because of its use as one of the two alloys used for turbine rotors, valves, casings, blading and bolts in the European AD700 full-scale demonstration plant (Scholven Unit F). The other alloy, alloy 617, is already one of the alloys currently being examined by this project. Other new alloys to the study are the three round robin alloys in the UK-US collaboration: alloys 740, TP347HFG, and T92. Progress on the project is presented on cyclic oxidation in 50% air – 50% water vapor, furnace exposures in moist air, and thermogravimetric analysis in argon with oxygen saturated steam. An update on the progress towards obtaining an apparatus for high pressure exposures is given.

Holcomb, G.R.; Ziomek-Moroz, M.

2007-01-01T23:59:59.000Z

220

Steam Turbine Control Valve Noise  

Science Journals Connector (OSTI)

Although noise problems with steam turbine control valves have existed before they have become more prominent with nuclear turbines whose valves range to 20 in. in diameter. Our first?generation nuclear control valves were unacceptably noisy when operating under chocked conditions. These noise levels have been ameliorated by incorporation of a valve cage with numerous small holes. Rational design rules for this “dispersive muffler” have been developed from published multiple?jet noise data and improved through our own tests. However we are also evaluating other low?noise valve configurations which are consistent with turbine requirements. The approach we are developing is to investigate the internal aerodynamic noisegeneration in small air model tests and to combine this with measurements of pipe?wall transmission characteristics (being reported separately) to predict externally radiated noise. These predictions will be checked in a new steam test facility for complete scale?model valves. The small air tests show that acoustic efficiencies of throttling valve flows tend to vary with third power of Mach number when exhausting into space and with a lesser power when enclosed in a downstream pipe. At some pressure ratios narrow?band spikes appear in the spectrum and for some configurations step changes in sound power are associated with transitions in flow regimes.

Frank J. Heymann; Michael A. Staiano

1973-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Steam engines on a microscopic scale  

SciTech Connect (OSTI)

This article describes the operation of a miniature steam engine that can develop 100 times more power than existing microsystems actuated by electrostatic forces. The topics of the article include current uses for electrostatic actuators and possible applications of the miniature steam engine, the design and operation of the engine, and problems associated with increasing the operating frequency of the engine.

O'Connor, L.

1994-01-01T23:59:59.000Z

222

Steam Plant Conversion Eliminating Campus Coal Use  

E-Print Network [OSTI]

high-efficiency NG/fuel oil boilers · Slight reduction in steam production capacity · Requires: Building heating Domestic hot water Lab sterilization UT's Steam Plant #12;· Powered by 5 boilers: 2 emissions standard (Boiler MACT): · For existing boilers w/ heat input capacity of 10 MMBtu/hr or greater

Dai, Pengcheng

223

Steam reforming utilizing sulfur tolerant catalyst  

SciTech Connect (OSTI)

This patent describes a steam reforming process for converting hydrocarbon material to hydrogen gas in the presence of sulfur which consists of: adding steam to the hydrocarbon material and passing the steam and hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity, sulfur tolerant catalyst of platinum supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. It also describes a steam process for converting hydrocarbon material to hydrogen gas in the presence of sulfur which consists of steam to the hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity, sulfur tolerant catalysts consisting essentially of iridium supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina. In addition a steam reforming process is described for converting hydrocarbon material to hydrogen gas in the presence of sulfur comprising adding steam to the hydrocarbon material and passing the steam and hydrocarbon material over catalyst material at elevated temperatures. The improvement comprises utilizing as a catalyst material high activity sulfur tolerant catalysts consisting essentially of palladium supported on lanthanum stabilized alumina or magnesium promoted lanthanum stabilized alumina.

Setzer, H.J.; Karavolis, S.; Bett, J.A.S.

1987-09-15T23:59:59.000Z

224

Steam System Optimization: A Case Study  

E-Print Network [OSTI]

This paper highlights the study findings in a steam system in a plant from a multinational Petrochemical giant in an European country. The steam system operates with an annual budget of $8.9 million (local currency was converted to US Dollars...

Iordanova, N.; Venkatesan, V. V.

225

The Progress of the Steam Turbine  

Science Journals Connector (OSTI)

... in pressure, and the steam expands gradually by small increments. In a moderate-sized turbo-motor there may be from thirty to eighty successive rings, and when the steam ... and relieve end pressure on the thrust bearing. Fig. 3 shows a 350 kilowatt turbo-alternator, thirteen of which size are now at work in the London stations.

1897-09-30T23:59:59.000Z

226

Program assists steam drive design project  

SciTech Connect (OSTI)

A new program for the HP-41CV programmable calculator will compute all parameters required for a steam drive project design. The Marx and Langenheim model assumptions are used to solve a more advanced version of the Myhill and Stegemeier model. Also, the Mandl and Volek model assuptions are used to compute the size of the steam zone.

Mendez, A.A.

1984-08-27T23:59:59.000Z

227

Use Vapor Recompression to Recover Low-Pressure Waste Steam  

Broader source: Energy.gov [DOE]

This tip sheet on recovering low-pressure waste steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

228

An in-line microwave steam quality sensor.  

E-Print Network [OSTI]

??Saturated steam is a widely used industrial medium for the efficient transfer of energy. The proportion of saturated vapor steam to saturated condensate of the… (more)

Faulkner, Christopher D.

2014-01-01T23:59:59.000Z

229

Savannah River's Biomass Steam Plant Success with Clean and Renewable...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy In order to meet the...

230

Use Low-Grade Waste Steam to Power Absorption Chillers  

Broader source: Energy.gov [DOE]

This tip sheet on waste steam to power absorption chillers provides how-to advice for improving steam systems using low-cost, proven practices and technologies.

231

Industrial Steam System Process-Control Schemes | Department...  

Broader source: Energy.gov (indexed) [DOE]

Steam System Process-Control Schemes (July 2003) More Documents & Publications Compressed Air Storage Strategies Save Energy Now in Your Steam Systems CIBO Energy Efficiency...

232

Experimental study on steam plume and temperature distribution for sonic steam jet  

Science Journals Connector (OSTI)

The sonic steam jet in subcooled water was investigated experimentally over a wide range of steam mass flux and water temperature conditions. Four different steam plume shapes were observed in present test conditions, and the condensation form was mainly controlled by the steam mass flux and water temperature. Moreover, the unstable jet was observed on the condition of low steam mass flux and high water temperature. The transition criterion of unstable-stable jet was also given. The temperature fields in the steam plume and in the surrounding water were measured. Axial temperature distributions represented the four typical steam plumes, and the fluctuation of axial temperature confirmed the existence of expansion and compression waves. Additionally, the radial temperature distributions were independent of water temperature for small radial distance at nozzle exit, and further the axial location was apart from the nozzle exit, longer the radial distance affected by the momentum diffusion.

Xinzhuang Wu; Junjie Yan; Wenjun Li; Dongdong Pan; Ying Li

2009-01-01T23:59:59.000Z

233

Effect of steam injection location on syngas obtained from an air–steam gasifier  

Science Journals Connector (OSTI)

Abstract For a fluidized-bed gasifier, reaction conditions vary along the height of the reactor. Hence, the steam injection location may have a considerable effect on the syngas quality. The objective of this study was to investigate the effects of steam injection location and steam-to-biomass ratio (SBR) on the syngas quality generated from an air–steam gasification of switchgrass in a 2–5 kg/h autothermal fluidized-bed gasifier. Steam injection locations of 51, 152, and 254 mm above the distributor plate and \\{SBRs\\} of 0.1, 0.2, and 0.3 were selected. Results showed that the syngas H2 and CO yields were significantly influenced by the steam injection location (p gasifier efficiencies (cold gas efficiency of 67%, hot gas efficiency of 72%, and carbon conversion efficiency of 96%) were at the steam injection location of 254 mm and SBR of 0.2.

Ashokkumar M. Sharma; Ajay Kumar; Raymond L. Huhnke

2014-01-01T23:59:59.000Z

234

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

NONE

1997-03-01T23:59:59.000Z

235

Metallurgical Transactions B, Vol. 27B, No. 4 (August), 1996, pp. 617-632. Intermixing Model of Continuous Casting during a Grade Transition  

E-Print Network [OSTI]

1 Metallurgical Transactions B, Vol. 27B, No. 4 (August), 1996, pp. 617-632. Intermixing Model conditions should be chosen to minimize the amount of intermixed steel, and / or a secondary market must

Thomas, Brian G.

236

Steam Coal Import Costs - EIA  

Gasoline and Diesel Fuel Update (EIA)

Steam Coal Import Costs for Selected Countries Steam Coal Import Costs for Selected Countries U.S. Dollars per Metric Ton1 (Average Unit Value, CIF2) Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Belgium 46.96 39.34 39.76 66.29 70.83 70.95 82.81 150.58 NA Denmark 40.78 31.65 50.27 56.29 61.84 59.15 75.20 113.34 NA Finland 40.83 37.08 39.99 58.45 62.80 67.65 72.64 134.21 NA France 45.36 42.59 42.63 64.08 75.23 72.92 84.49 135.53 NA Germany 41.46 36.80 39.00 61.22 72.48 70.12 81.49 138.84 NA Ireland3 45.25 47.88 50.08 80.90 74.91 101.78 125.15 143.08 NA Italy 44.83 41.25 42.45 63.54 73.20 69.16 86.00 143.68 NA Japan 37.95 36.95 34.93 51.48 62.73 63.33 70.92 125.42 NA Netherlands 40.09 35.81 37.27 55.09 68.86 68.57 79.12 133.50 NA

237

Steam turbine upgrades: A utility based approach  

SciTech Connect (OSTI)

In the increasingly competitive power generation markets utilities must strive towards lower electricity generation costs, whilst relying on an aging steam turbine fleet. By the year 2000 more than 25% of the global steam turbine capacity will be older than 30 years. The heat rate of such units is generally considerably higher than that of equivalent new plant, and such equipment can be further disadvantaged by increased maintenance costs and forced outage rates. Over the past decade steam turbine conversion, modification, and upgrade packages have become an increasingly important part of the European steam turbine market. Furthermore, many utilities now realize that enhanced cost-effectiveness can often be obtained by moving away from the original equipment manufacturer (OEM), and the upgrading of other manufacturers' plant is now routine within the steam turbine industry. By working closely with customers, GE has developed a comprehensive range of steam turbine upgrade packages, including advanced design steampaths which can increase the performance of existing turbine installations to levels comparable with new plant. Such packages are tailor-made to the requirements of each customer, to ensure that the most cost-effective engineering solution is identified. This paper presents an overview of GE's state-of-the-art steam turbine technology, and continues to describe typical economic models for turbine upgrades.

Wakeley, G.R.

1998-07-01T23:59:59.000Z

238

Metallurgical failure analysis of a propane tank boiling liquid expanding vapor explosion (BLEVE).  

SciTech Connect (OSTI)

A severe fire and explosion occurred at a propane storage yard in Truth or Consequences, N.M., when a truck ran into the pumping and plumbing system beneath a large propane tank. The storage tank emptied when the liquid-phase excess flow valve tore out of the tank. The ensuing fire engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of a 9800 L (2600 gal) truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly along the length of the tank and around both end caps, along the girth welds connecting the end caps to the center portion of the tank. The remaining contents of the tank were suddenly released, aerosolized, and combusted, creating a powerful boiling liquid expanding vapor explosion (BLEVE). Based on metallography of the tank pieces, the approximate tank temperature at the onset of the BLEVE was determined. Metallurgical analysis of the ruptured tank also permitted several hypotheses regarding BLEVE mechanisms to be evaluated. Suggestions are made for additional work that could provide improved predictive capabilities regarding BLEVEs and for methods to decrease the susceptibility of propane tanks to BLEVEs.

Kilgo, Alice C.; Eckelmeyer, Kenneth Hall; Susan, Donald Francis

2005-01-01T23:59:59.000Z

239

Effect of laser tempering of high alloy powder metallurgical tool steels after laser cladding  

Science Journals Connector (OSTI)

Abstract The effect of tempering after laser cladding of a high alloyed powder metallurgical tool steel was studied for die repairing purposes. In particular, a high power diode laser with scanning optics was employed for tempering. The laser tempering temperature was proven to be a critical factor in improving the mechanical properties of the coatings. In order to measure and evaluate the effect of different processing parameters (mainly laser power and linear speed) on the achieved temperature, an infrared camera and a two-color pyrometer were used. The tempering effect was mainly evaluated through cross-section microhardness profiles. The microstructure of the coatings was also studied using optical and scanning electron microscope, and the volumetric fraction of retained austenite was determined by X-ray diffraction. Experimental results demonstrated that laser tempering is a useful and appealing technique to improve the hardness of laser deposited coatings of high alloyed tool steels, which is a clear advantage when large parts have to be repaired or reinforced by laser cladding.

Josu Leunda; Virginia García Navas; Carlos Soriano; Carmen Sanz

2014-01-01T23:59:59.000Z

240

Steam reforming utilizing iron oxide catalyst  

SciTech Connect (OSTI)

High activity steam reforming iron oxide catalysts are described. Such catalysts can be unsupported utilizing at least 90% by weight iron oxide and various modifiers (Ai/sub 2/O/sub 3/, K/sub 2/O, CaO, SiO/sub 2/) or unmodified and supported on such things as alumina, CaO impregnated alumina, and lanthanum stabilized alumina. When used in steam reformers such as autothermal and tubular steam reformers, these catalysts demonstrate much improved resistance to carbon plugging.

Setzer, H. T.; Bett, J. A. S.

1985-06-11T23:59:59.000Z

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Baton Rouge Complex Steam Real Time Optimization  

E-Print Network [OSTI]

Baton Rouge Complex Steam Real Time Optimization IETC 2014 New Orleans, Louisiana Tope Iyun ExxonMobil Chemical Company May 22, 2014 ESL-IE-14-05-32 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20...-23, 2014 Proprietary 2 Agenda • Baton Rouge Complex • Steam System Overview • Energy Efficiency Improvement Strategy • Site-Wide Steam System Optimization • Results • Benefits/Wrap-Up ESL-IE-14-05-32 Proceedings of the Thrity-Sixth Industrial Energy...

Iyun, T.

2014-01-01T23:59:59.000Z

242

Economic Analysis of "Steam-Shock" and "Pasteurization"  

E-Print Network [OSTI]

Economic Analysis of "Steam-Shock" and "Pasteurization" Processes for Oyster Shucking JOHN W. BROWN Introduction "Steam-shock" is an oyster shucking process that uses steam to relax the oyster's adductor muscle of the shucking process as in integral part of the operation of an existing oyster-shucking house. The term "steam

243

Salt tectonism and seismic stratigraphy of the Upper Jurassic in the Destin Dome Region, northeastern Gulf of Mexico  

E-Print Network [OSTI]

SALT TECI'ONISM AND SEISMIC STRATIGRAPHY OF THE UPPER JURASSIC IN THE DESTIN DOME REGION, NORTHEASTERN GULF OF MEXICO A Thesis by GRANT MACRAE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1990 Major Subject: Oceanography SALT TECI'ONISM AND SEISMIC STRATIGRAPHY OF THE UPPER JURASSIC IN THE DESTIN DOME REGION, NORTHEASTERN GULF OF MEXICO A Thesis by GRANT MACRAE Approved...

MacRae, Grant

2012-06-07T23:59:59.000Z

244

Synthesis and Optimization of Steam System Networks. 2. Multiple Steam Levels  

Science Journals Connector (OSTI)

Tim Price † and Thokozani Majozi *†‡ ... (6) In its simplest form, it represents the ratio of the energy content of the steam to the energy content of the fuel. ...

Tim Price; Thokozani Majozi

2010-08-20T23:59:59.000Z

245

destination office  

Science Journals Connector (OSTI)

This one-of-a-kind reference is unmatched in the breadth and scope of its coverage and serves as the primary reference for students and professionals in computer science and communications. The Dictionary feat...

2001-01-01T23:59:59.000Z

246

Standard Steam Trust LLC | Open Energy Information  

Open Energy Info (EERE)

Steam Trust LLC Steam Trust LLC (Redirected from Standard Steam Trust) Jump to: navigation, search Name Standard Steam Trust LLC Place Denver, Colorado Sector Geothermal energy Product Subsidiary of Denver-based geothermal project developer, Terra Caliente. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

LNG Vaporizer Utilizing Vacuum Steam Condensing  

Science Journals Connector (OSTI)

This report concerns the field test results of a new type of peak-shaving LNG vaporizer (VSV) whose heat source is ... heat of vacuum steam to vaporize and superheat LNG within heat transfer tubes. Prior to the.....

Y. Miyata; M. Hanamure; H. Kujirai; Y. Sato…

1991-01-01T23:59:59.000Z

248

Cash Flow Impacts of Industrial Steam Efficiency  

E-Print Network [OSTI]

Steam efficiency is a major opportunity for manufacturers to boost financial performance in an increasingly competitive environment. An immediate policy challenge is to raise manufacturers' awareness of these opportunities. A major barrier...

Russell, C.

249

Energy & Environmental Benefits from Steam & Electricity Cogeneration  

E-Print Network [OSTI]

the electricity required by TEX and sells excess power to wholesale customers in the region. It provides a large portion of TEX steam requirements, with sufficient reliability such that TEX decommissioned its coal-fired powerhouse and reduced operations...

Ratheal, R.

2004-01-01T23:59:59.000Z

250

Extraction Steam Controls at EPLA-W  

E-Print Network [OSTI]

ExxonMobil's Baton Rouge site encompasses a world-scale refinery, chemical plant and third party power station. Historically, inflexible and unreliable control systems on two high-pressure, extracting/condensing steam turbines prevented the site...

Brinker, J. L.

2004-01-01T23:59:59.000Z

251

A Multistage Steam Reformer Utilizing Solar Heat  

Science Journals Connector (OSTI)

Today a large amount of the required hydrogen or synthesis gas (mixture of hydrogen and carbonmonoxide) is won by steam reforming of low hydrocarbons, especially methane. Hereby the mixture of hydrocarbons and...

W. Jäger; U. Leuchs; W. Siebert

1987-01-01T23:59:59.000Z

252

The revolutionary impact of the steam engine  

E-Print Network [OSTI]

Sitting with a model of Stephenson’s Rocket, Simon Schaffer reflects on the steam revolution and how it changed the world in the nineteenth century in so many different ways....

Dugan, David

2004-08-18T23:59:59.000Z

253

How did the Rocket steam engine work?  

E-Print Network [OSTI]

Simon Schaffer talks to a museum curator at the York railway museum about the way in which steam engines worked and the imagination and technical ability of George Stephenson....

Dugan, David

2004-08-17T23:59:59.000Z

254

Optimizing Steam & Condensate System: A Case Study  

E-Print Network [OSTI]

Optimization of Steam & Condensate systems in any process plant results in substantial reduction of purchased energy cost. During periods of natural gas price hikes, this would benefit the plant in controlling their fuel budget significantly...

Venkatesan, V. V.; Norris, C.

2011-01-01T23:59:59.000Z

255

Steam System Optimization : A Case Study  

E-Print Network [OSTI]

The steam system optimization (generation, distribution, use and condensate return) offers a large opportunity for action to comply with the new levels of energy efficiency standards. Superior design and improved maintenance practices are the two...

Iordanova, N.; Venkatesan, V. V.; Calogero, M.

256

Steam turbine upgrading: low-hanging fruit  

SciTech Connect (OSTI)

The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

Peltier, R.

2006-04-15T23:59:59.000Z

257

Greenville Steam Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Greenville Steam Biomass Facility Greenville Steam Biomass Facility Jump to: navigation, search Name Greenville Steam Biomass Facility Facility Greenville Steam Sector Biomass Location Piscataquis County, Maine Coordinates 45.7049857°, -69.3375071° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.7049857,"lon":-69.3375071,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents [OSTI]

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

259

Desulfurization of lignite using steam and air  

E-Print Network [OSTI]

OF CONTENTS PAGE INTRODUCTION LITERATURE REVIEW Sulfur Removal Using a Fixed Bed Reactor Sulfur Removal Using a Batch Fluidized Bed Reactor . . 9 Continuous Fluidized Bed Reactor Systems for Desulfurization of Coal Clean Coke Process IGT Process... . This study was aimed primarily at producing better metallurgical coke. The ef+ects of various gases on +he sulfur remova1 wo re measured 0 for coal samples at varying t mperatures up to 1273 K The sample was h ated. at a constant ra+ e until the t. st...

Carter, Glenn Allen

2012-06-07T23:59:59.000Z

260

Oxidation of advanced steam turbine alloys  

SciTech Connect (OSTI)

Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Savings in Steam Systems (A Case Study)  

E-Print Network [OSTI]

Savings in Steam Systems (A Case Study) Rich DeBat Steam Systems Engineer Armstrong Service, Inc. Three Rivers, MI ABSTRACT Armstrong Service Inc. (ASI) conducted an engineered evaluation at an Ammonium Nitrate Manufacturing facility during... existing burner system after refractory repair and continue with normal operation of the existing boiler. Annstrong Service cannot guarantee any aspect of this option. Option 2. Armstrong Service, Inc. proposes to evaluate, select and install a...

DeBat, R.

262

World Class Boilers and Steam Distribution System  

E-Print Network [OSTI]

WORLD CLASS BOILERS AND STEAM DISTRIBUTION SYSTEM Vernon P. Portell, Ph.D. Manager Armstrong Service, Inc. ABSTRACT categorizing, measuring, and comparing subjects which are of interest to us is the way we identify the "World class" is a... of information can also be obtained through an independent firm that provides third-party assessment of steam systems. One of these third parties, Armstrong Energy Certification, Inc., has used data gleaned from decades of industrial experience...

Portell, V. P.

263

Cheng Cycle Brings Flexibility to Steam Plant  

E-Print Network [OSTI]

. Based upon an estimated steam load between 5,000 and 50,000 Ibjhr and an electrical load of approximately 1500 KW, the Engineering Department examined several energy optimization systems for this site. It was determined that a modified gas turbine... within the borders allows exact tracking of desired electrical and thermal outputs. The Allison engine used in the Cheng Cycle system was selected for its proved performance and its ample surge margin which permits stable steam injection...

Keller, D. C.; Bynum, D.; Kosla, L.

264

Control system for fluid heated steam generator  

DOE Patents [OSTI]

A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

Boland, J.F.; Koenig, J.F.

1984-05-29T23:59:59.000Z

265

Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Second quarter 1995  

SciTech Connect (OSTI)

During second quarter 1995, samples from seven new AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for a comprehensive list of constituents. Two parameters exceeded standards during the quarter. Lead and nickel appear to exceed final Primary Drinking Water Standards (PDWS) in AMB-18A. These data were suspect and a rerun of the samples showed levels below flagging criteria. This data will be monitored in 3Q95. Aluminum, iron, manganese, boron, silver and total organic halogens exceeded Flag 2 criteria in at least one well each during second quarter 1995. This data, as well, will be confirmed by 3Q95 testing. Groundwater flow directions in the M-Area Aquifer Zone were similar to previous quarters; the flow rate estimate, however, differs because of an error noted in the scales of measurements used for previous estimates. The estimate was 470 ft/year during second quarter 1995. Reliable estimates of flow directions and rates in the Upper Lost Lake Aquifer Zone could not be determined in previous quarters because data were insufficient. The first estimate from second quarter 1995 shows a 530 ft/year rate. Reliable estimates of flow directions and rates in the Lower Lost Lake Aquifer Zone and in the Middle Sand Aquifer Zone of the CBCU could not be calculated because of the low horizontal gradient and the near-linear distribution of the monitoring wells. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and was completed in March of this year. Analytical data from these wells are presented in this report for the first time.

Chase, J.A.

1995-09-01T23:59:59.000Z

266

Characterization of the origin and distribution of the minerals and phases in metallurgical cokes  

SciTech Connect (OSTI)

Three industrial metallurgical cokes were examined using X-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive X-ray analysis (SEM/EDS). The study highlighted the difficulties and implications of identifying the inherent crystalline mineral phases in cokes using XRD such that increasing the ashing temperature led to the formation of anhydrite and destruction of metallic iron: microwave plasma ashing resulted in minimal alteration of the original coke mineralogy apart from the formation of bassanite and possibly jarosite. A preliminary scheme to characterize coke minerals is presented such that, physically, minerals can be classified as fine ({lt}50 {mu}m), coarse (50-100 {mu}m), and agglomerate ({gt}1000 {mu}m); chemically, minerals can be grouped as refractory, semirefractory, and reactive, while on the basis of distribution they can be described as discrete, disseminated, or pore inclusions. Quartz, cristobalite, mullite, and high melting point Al-silicates were found to be the predominant refractory phases while low melting point Al-silicates, e.g., containing high fluxing elements such as K, and Fe were the main semirefractory phases present in all cokes. A variety of iron containing phases including pyrrhotite, troilite, iron oxides, metallic iron, and iron silicates were also invariably present in all cokes while calcium phases were found to occur as sulfide, silicates, and phosphates. In general, iron and calcium phases can be categorized as reactive phases with few exceptions such as oldhamite (CaS). The study highlighted that most of the cokes possess a similar mineralogy, with the main distinction being in their relative abundance, particle size, and nature of distribution in the coke matrix. The study provides a basis to develop a mechanistic understanding of the influence of minerals on coke reactivity and strength at high temperatures. 41 refs., 13 figs., 4 tabs.

Sushil Gupta; Maria Dubikova; David French; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

2007-01-15T23:59:59.000Z

267

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network [OSTI]

+ H 2 -41 MJ/kmol Steam methane reforming reaction CH 4 + Htechnologies such as steam methane reforming, gas shiftingand preparation, steam methane reforming and FT synthesis,

Lu, Xiaoming

2012-01-01T23:59:59.000Z

268

Development of Steam Turbine Inlet Control Valve for Supercritical Pressure at Siemens Industrial Turbomachinery AB.  

E-Print Network [OSTI]

?? The development in the steam turbine business is heading for applications with much higher steam parameters since this enables a raised efficiency. Steam parameters… (more)

Sors, Felix

2010-01-01T23:59:59.000Z

269

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

A Better Steam Engine: Designing a Distributed Concentrating2011 Abstract A Better Steam Engine: Designing a Distributedprovided for a steam Rankine cycle heat engine achieving 50%

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

270

E-Print Network 3.0 - acoustical steam silencers Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

seasonal steam demand loads... convective steam gen erating tubes, then through an economizer, and finally through a two field electrostatic... psi, 520F. superheated steam at...

271

Boiler Efficiency vs. Steam Quality- The Challenge of Creating Quality Steam Using Existing Boiler Efficiencies  

E-Print Network [OSTI]

A boiler works under pressure and it is not possible to see what is happening inside of it. The terms "wet steam" and "carry over" are every day idioms in the steam industry, yet very few people have ever seen these phenomena and the actual water...

Hahn, G.

272

Developing marketing strategies for a travel destination in the USA using the nominal group technique  

Science Journals Connector (OSTI)

This paper demonstrates the application of nominal grouping as a cost-effective qualitative alternative for developing marketing strategies. The nominal group technique was used to generate strategic directions for the Blue Ridge Parkway Association, a popular travel destination in the USA. Using a nominal group composed of industry experts, a SWOT analysis produced a list of strengths, weaknesses, opportunities and threats associated with the Blue Ridge Parkway. Next, potential market segments were identified and prioritised. Five marketing strategies emerged to reach the specified market segments. The study illustrates that the nominal group technique offers a cost and time-efficient qualitative alternative in making strategic decisions.

J. Dana Clark; Michael J. Dotson; Dinesh S. Dave

2010-01-01T23:59:59.000Z

273

Best Management Practice: Boiler/Steam Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems Best Management Practice: Boiler/Steam Systems October 7, 2013 - 3:17pm Addthis Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned. Operation and Maintenance Options To maintain water efficiency in operations and maintenance, Federal agencies should: Develop and implement a routine inspection and maintenance program to check steam traps and steam lines for leaks. Repair leaks and replace faulty steam traps as soon as possible. Develop and implement a boiler tuning program to be completed a minimum of

274

US DOE Industrial Steam BestPractices Software Tools  

Broader source: Energy.gov (indexed) [DOE]

DOW RESTRICTED For internal DOW RESTRICTED For internal use only US DOE Industrial Steam BestPractices Software Tools Riyaz Papar, PE, CEM Hudson Technologies Company Phone: (281) 298 0975 Email: rpapar@hudsontech.com - Agenda * Introduction * Steam System BP Tools Suite - SSST - SSAT - 3EPlus * Q & A 1 Steam System Management Objective: Minimize Steam Use, Energy Losses And Most Importantly STEAM COST!! Steam Market Assessment Takeaways * Fuel savings estimates - individual projects - ranged from 0.6 percent to 5.2 percent * Estimated payback periods generally very attractive - Ranged from 2 to 34 months - Most less than 2 years * Potential steam savings in target industries - over 12 percent of fuel use 2 Promising Areas To Achieve Steam Energy and Cost Savings? Use Steam System Scoping Tool (SSST) For

275

Solving chemical and mechanical problems of PWR steam generators  

SciTech Connect (OSTI)

Steam generators in power plants, based on pressurized water reactors (PWRs), transfer heat from a primary coolant system (pressurized water) to a secondary coolant system. Primary coolant water is heated in the core and passes through the steam generator that transfers heat to the secondary coolant water to make steam. The steam then drives a turbine that turns an electric generator. Steam is condensed and returned to the steam generator as feedwater. Two types of PWR steam generators are in use: recirculating steam generators (RSGs) and once-through steam generators (OTSGs). Since most of the units are vertical, only vertical units are discussed in this article. Some vertical units have operated with a minimum of problems, while others have experienced a variety of corrosion and mechanically-induced problems that have caused unscheduled outages and expensive repairs.

Green, S.J.

1987-07-01T23:59:59.000Z

276

Energy Savings with Computerized Steam Trap Maintenance Program  

E-Print Network [OSTI]

by Armstrong International, Inc. Five other manufacturers each have about a 5% share of the tmp population, and about 5 more account for the remaining steam traps. 6,430 STEAM TRAPS COLl3Il~) FIGURE 3 - Steam trap population by application. 8,430 STEAM... standardized using the inverted bucket steam trap made by Armstrong International, Inc. "or equal", with approval, wherever applicable and sensible. I believe the inverted bucket steam trap is the best one for this. The selection of a good manufacturer...

Klidzejs, A. M.

277

Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings  

Broader source: Energy.gov [DOE]

This case study describes how Mid-South Metallurgical implemented several recommendations resulting from a plant-wide energy assessment from DOE's Industrial Assessment Center (IAC) at Tennessee Technological University. This included installing new furnace insulation, implementing an electrical demand system, installing energy efficient equipment on its natural gas furnace burner tubes, and upgrading its lighting. Through these upgrades, the commercial heat treating business cut its overall energy use by 22%, reduced its peak demand by 21%, and decreased its total energy costs by 18%.

278

Simulation of Steam Reformers for Methane  

Science Journals Connector (OSTI)

Abstract A model is developed for industrial steam reformers for both top fired and side fired furnaces. The catalyst tube model is a one-dimensional heterogeneous model with intra-particle diffusional resistances. The two point boundary value differential equations of the catalyst pellets are solved using a modified novel orthogonal collocation technique to obtain the effectiveness factor variation along the length of the reactor. The side fired furnace equations are algebraic equations, the top fired furnace equations are two-point boundary value differential equations which are solved using the orthogonal collocation technique. A recently developed more general rate expression is used. The model performance is checked against industrial steam reformers. The model is used to investigate the effect of various parameters on the behaviour of the catalyst tubes and the furnace. The effectiveness factor variation along the length of the catalyst tube is also analysed. Keywords: Steam Reforming, Reactor modeling, Digital Simulation, effectiveness factor

M.A. Soliman; S.S.E.H. El-Nashaie; A.S. Al-Ubaid; A. Adris

1988-01-01T23:59:59.000Z

279

Ultra supercritical turbines--steam oxidation  

SciTech Connect (OSTI)

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

2004-01-01T23:59:59.000Z

280

Feasibility of Steam Hydrogasification of Microalgae for Production of Synthetic Fuels  

E-Print Network [OSTI]

and is followed by steam methane reforming ( SMR). The finalReaction: Steam Methane Reforming: Fischer–Tropsch Reaction:methane and steam in steam methane reforming generates the

Suemanotham, Amornrat

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

E-Print Network 3.0 - advanced steam generators Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

THEORY AND IN PRACTICE. BY R... OF A HISTORY OF THE STEAM-EN- GINE, A MANUAL OF THE STEAM-ENGINE, A MANUAL OF STEAM-BOILERS, ETC., ETC., ETC... treatise on Steam-Boiler Explosions...

282

On water, steam, and string theory  

Science Journals Connector (OSTI)

At a pressure of 220 atm and a temperature of 374?°C there is a second-order phase transition between water and steam. Understanding it requires a key concept of both condensed matter and elementary particle physics: the renormalization group. Its basic ideas are explained with images from computer simulations of the lattice gas model. Then I briefly review how the renormalization group is used to compute critical coefficients for the water–steam phase transition. The results of this calculation are in good agreement with experiment. Finally some applications in particle physics and string theory are mentioned.

Christof Schmidhuber

1997-01-01T23:59:59.000Z

283

Steam Trap Maintenance as a Profit Center  

E-Print Network [OSTI]

the Eighteenth Industrial Energy Technology Conference, Houston, TX, April 17-18, 1996 EXCUSES Everybody thinks his or her steam trap maintenance is good. Surveysl have shown the following are the most popular excuses encountered when managers are confronted... for steam traps. 192 ESL-IE-96-04-28 Proceedings from the Eighteenth Industrial Energy Technology Conference, Houston, TX, April 17-18, 1996 5. Set up a trap maintenance program C. Prepare and present a report to that will: management on the results...

Bouchillon, J. L.

284

Improved plant performance through evaporative steam condensing  

SciTech Connect (OSTI)

Combining an open cooling tower and a steam condenser into one common unit is a proven technology with many advantages in power generation application, including reduced first cost of equipment, reduced parasitic energy consumption, simplified design, reduced maintenance, and simplified water treatment, Performance of the steam turbine benefits from the direct approach to wet bulb temperature, and operating flexibility and reliability improve compared to a system with a cooling tower and surface condenser. System comparisons and case histories will be presented to substantiate improved systems economies.

Hutton, D.

1998-07-01T23:59:59.000Z

285

23rd steam-station cost survey  

SciTech Connect (OSTI)

The results of the 23rd Steam Station Cost Survey covering the year 1982 are summarized. The major categories of the survey are as follows: general data; output data, 1982; fuel consumption, 1982; operation 1982 (mills/net kWh); investment ($/net kWh); energy cost, 1982 (mills/net kWh); and station performance, 1982. Thirty-one fossil-fuel steam plants and four nuclear stations were included in the survey. Fuel and operating cost increases are felt to be responsible for the moderate rise in total busbar-enery costs. 11 figures, 1 table.

Friedlander, G.D.; Going, M.C.

1983-11-01T23:59:59.000Z

286

Finding Benefits by Modeling and Optimizing Steam and Power Systems  

E-Print Network [OSTI]

A site-wide steam modeling and optimization program (Visual MESA) was implemented at the INEOS Chocolate Bayou site. This program optimizes steam production, compressor turbine extraction, pump operation (turbine/motor) operation, as well...

Jones, B.; Nelson, D.

2007-01-01T23:59:59.000Z

287

CIBO's Energy Efficiency Handbook for Steam Power Systems  

E-Print Network [OSTI]

The Council of Industrial Boiler Owners (CIBO) has developed a handbook to help boiler operators get the best performance from their industrial steam systems. This energy efficiency handbook takes a comprehensive look at the boiler and steam system...

Bessette, R. D.

288

Case Study- Steam System Improvements at Dupont Automotive Marshall Laboratory  

E-Print Network [OSTI]

and implement small scale cogeneration. These recommendations included reducing the medium pressure steam distribution to low pressure, eliminating the medium pressure to low pressure reducing stations, installing a back pressure steam turbine generator...

Larkin, A.

289

Energy Conservation Thru Steam Trap Surveys and Preventive Maintenance Programs  

E-Print Network [OSTI]

ENERGY CONSERVATION THRU STEAM TRAP SURVEYS AND PREVENTIVE MAINTENANCE PROGRAMS Terry Boynton, Armstrong, Three Rivers, Mich. Bob Dewhirst, Armstrong, New Braunfels, Texas. This paper will deal with steam trap surveys and preventive maintenance...

Boynton, T.; Dewhirst, B.

1980-01-01T23:59:59.000Z

290

Use a Vent Condenser to Recover Flash Steam Energy  

Broader source: Energy.gov [DOE]

This tip sheet on using vent condensers to recover flash steam energy provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

291

Pafnuty Chebyshev, Steam Engines, and Polynomials by John Albert  

E-Print Network [OSTI]

Pafnuty Chebyshev, Steam Engines, and Polynomials by John Albert OU Mathfest, January 2009 1 professorship at age 61, but continued to work on mathematics right up to his death at age 73. 2. Steam Engines

Albert, John

292

Following Where the Steam Goes: Industry's Business Opportunity  

E-Print Network [OSTI]

Many associated benefits accrue from plant projects which comprehensively address steam systems. The DOE-Alliance to Save Energy Steam Challenge program was initiated shortly after last year's IETC on April 30, 1998 to promote awareness...

Jaber, D.; Jones, T.

293

Optimization of Steam Network in Tehran Oil Refinery  

E-Print Network [OSTI]

case study and its steam network is analyzed. At the first step, using STAR software, the steam network is simulated and then optimized, which determines the optimum conditions. In this regard, energy saving potential was identified and total operating...

Khodaie, H.; Nasr, M. R. J.

2008-01-01T23:59:59.000Z

294

The Analysis and Development of Large Industrial Steam Systems  

E-Print Network [OSTI]

Chemicals, petroleum, pulp and paper, and many other industries depend heavily on extensive complex steam systems for thermal and mechanical energy delivery. Steam's versatility and desirable characteristics as both a heat transfer medium and a...

Waterland, A. F.

1980-01-01T23:59:59.000Z

295

Use a Vent Condenser to Recover Flash Steam Energy (Revised)  

SciTech Connect (OSTI)

This revised ITP tip sheet on vent condenser to recover flash steam energy provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-05-01T23:59:59.000Z

296

Materials for Ultra-Supercritical Steam Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Advanced Ultra-Supercritical for Advanced Ultra-Supercritical Steam Power Plants Background The first ultra-supercritical (USC) steam plants in the U.S. were designed, constructed, and operated in the late 1950s. The higher operating temperatures and pressures in USC plants were designed to increase the efficiency of steam plants. However, materials performance problems forced the reduction of steam temperatures in these plants, and discouraged further developmental efforts on low heat-rate units.

297

An Object-Oriented Algebraic Steam-Boiler Control Specification  

E-Print Network [OSTI]

An Object-Oriented Algebraic Steam-Boiler Control Specification Peter Csaba ()lveczky, Poland Abstract. In this paper an object-oriented algebraic solution of the steam-boiler specification Introduction The steam-boiler control specification problem has been proposed as a challenge for different

Ã?lveczky, Peter Csaba

298

Steam boiler control speci cation problem: A TLA solution  

E-Print Network [OSTI]

Steam boiler control speci cation problem: A TLA solution Frank Le ke and Stephan Merz Institut fur of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi- cal state of the steam boiler and the model maintained by the controller and discuss

299

Steam boiler control specification problem: A TLA solution  

E-Print Network [OSTI]

Steam boiler control specification problem: A TLA solution Frank Le�ke and Stephan Merz Institut f of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed between the physi­ cal state of the steam boiler and the model maintained by the controller and discuss

Merz, Stephan

300

An Object-Oriented Algebraic Steam-Boiler Control Specification  

E-Print Network [OSTI]

An Object-Oriented Algebraic Steam-Boiler Control Specification.In this paper an object-oriented algebraic solution of the steam-boiler specification problem is presented computations cannot happen. 1 Introduction The steam-boiler control specification problem has been

Ã?lveczky, Peter Csaba

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Supported metal catalysts for alcohol/sugar alcohol steam reforming  

SciTech Connect (OSTI)

Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

2014-08-21T23:59:59.000Z

302

Numerical Simulation of a Natural Circulation Steam Generator  

E-Print Network [OSTI]

Numerical Simulation of a Natural Circulation Steam Generator W. Linzer \\Lambda , K. Ponweiser circulation steam generator. We focus on a model with a simple geometry consisting of two vertical pipes properties of water and steam. We present a numerical algorithm based on an explicit upwind discretization

Weinmüller, Ewa B.

303

The Catalysis of the Carbon Monoxide-Steam Reaction  

Science Journals Connector (OSTI)

...The Catalysis of the Carbon Monoxide-Steam Reaction F. J. Long K. W. Sykes The kinetics of the carbon monoxide-steam reaction occurring heterogeneously at...nearly unity, while that with respect to steam is correspondingly lowered; a slight...

1952-01-01T23:59:59.000Z

304

COMPUTATION OF TWO-PHASE FLOW IN STEAM GENERATOR  

E-Print Network [OSTI]

COMPUTATION OF TWO-PHASE FLOW IN STEAM GENERATOR USING DOMAIN DECOMPOSITION AND LOCAL ZOOM METHODS Abstract We present ow simulations in the Steam Generator of a pressurized water nuclear reactor using coherence between the zoom and the full domain. Key words: Steam Generator, Zoom, Domain Decomposition

Paris-Sud XI, Université de

305

GLC Analysis of Organic Chelating Agents in Steam Propulsion Systems  

Science Journals Connector (OSTI)

......Chelating Agents in Steam Propulsion Systems by Paul J. Sniegoski...iminodi- acetic acid) in steam propulsion systems. For chromatogra...as an addi- tive to steam propulsion systems to prevent build-up...Fourth Internaval Conference on Marine Cor- rosion, Naval Research......

Paul J. Sniegoski; David L. Venezky

1974-06-01T23:59:59.000Z

306

Best Management Practice #8: Boiler and Steam Systems  

Broader source: Energy.gov [DOE]

Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

307

Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator  

E-Print Network [OSTI]

Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

Demirel, Melik C.

308

Improving Steam System Performance: A Sourcebook for Industry, Second Edition  

Broader source: Energy.gov [DOE]

This sourcebook is designed to provide steam system users with a reference that describes the basic steam system components, outlines opportunities for energy and performance improvements, and discusses the benefits of a systems approach in identifying and implementing these improvement opportunities. The sourcebook is divided into three main sections: steam system basics, performance improvement opportunities, and where to find help.

309

Experience, Engagement and Social Interaction at a Steam Locomotive  

E-Print Network [OSTI]

of two interactive stations (figure 2) where visitors can add coal and water to the steam engine at station 1 and regulate the steam pressure in the engine at station 2, as well as a number of visualExperience, Engagement and Social Interaction at a Steam Locomotive Multimodal Interactive Museum

Hornecker, Eva

310

Steam Traps-The Oft Forgotten Energy Conservation Treasure  

E-Print Network [OSTI]

In these days of high technology, the steam trap is often treated as a commodity item, forgotten by many and respected by a relative few. Yet, in many facilities, widespread undetected failure of steam traps has wasted 5-15% of a plant's total steam...

Pychewicz, F. S.

311

Industrial Steam Power Cycles Final End-Use Classification  

E-Print Network [OSTI]

Final end uses of steam include two major classifications: those uses that condense the steam against heat transfer surfaces to provide heat to an item of process or service equipment; and those that require a mass flow of steam for stripping...

Waterland, A. F.

1983-01-01T23:59:59.000Z

312

Optimization of industrial steam supply and steam-and-condensate farming of machine building enterprise  

Science Journals Connector (OSTI)

The article studies efficient control methods of steam condensing economy of the machine building enterprise. There are recommendations about development of complex decisions based on indicators of energy, technical and economic efficiency.

I A Konahina; N F Kashapov; I R Gil'manshin; R R Ganiev

2014-01-01T23:59:59.000Z

313

Steam Challenge: Developing A New DOE Program to Help Industry be Steam Smart  

E-Print Network [OSTI]

Last year, the Alliance to Save Energy, the Department of Energy's Office of Industrial Technologies, and a cadre of private companies and associations formed an innovative "Steam Partnership" with the goal of developing a new, DOE technical...

Jones, T.; Hart, F.

314

The Utilisation of Volcanic Steam in Italy  

Science Journals Connector (OSTI)

... exploitation of natural resources; and the welkin is still ringing with cries of “increase production,”“back to the land,” and “keep the home-fires burning.” Examples ... definite and successful effort been made in this direction, namely, by utilising the natural steam which emerges from the earth in volcanic districts. The jets of ...

1924-01-12T23:59:59.000Z

315

Task 1—Steam Oxidation (NETL-US)  

SciTech Connect (OSTI)

The proposed steam in let temperature in the Advanced Ultra Supercritical (A·USC) steam turbine is high enough (760°C) Ihat traditional turbine casing and valve body materials such as ferr;tic/manensitic steels will not suffice due to temperature lim itations of this class of materials. Cast versions of three traditionally wrought Ni-based superalloys (Haynes 263. Haynes 282, and Nimonic 105) were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantia l: 2-5,000 kg each half and on the order of 100 nun thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equi valem microslruclUre •. A multi_step homogenization heat treatment was d~ve loped to better disperse the al loy constituents. These castings were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (al 760 and 800 "C).

G. R. Holcomb

2010-05-01T23:59:59.000Z

316

Reducing emissions by addressing steam turbine inefficiencies  

SciTech Connect (OSTI)

This paper reports that inefficient steam turbines increase fossil plant emissions because additional fuel must be burned to meet the power output requirements. During a turbine outage, plant performance and maintenance staff make and prioritize repair decisions within tight time and budget constraints. This paper describes how Georgia Power identifies performance losses of degraded components in the steam path and determines their impact on heat rate. Turbine performance is assessed by a steam path audit program that Encotech has developed and make available to utilities. Georgia Power has conducted several operating tests that give good correlation with audit results. Georgia Power uses the audit information to make the most cost-effective repairs to maintain a low heat rate and to reduce emissions. The Clean Air Act presents electric utilities with the challenge of reducing emissions from fossil plants in the most cost-effective way possible. Meeting the stack emissions limitations often translates to large capital expenditures and increased cycle heat rate. One resource the electric utilities have to reduce the costly impact of compliance with the Clean Air Act is control over the efficiency of their steam turbines.

Harris, J.C. (Georgia Power Co., Atlanta, GA (United States)); Cioffi, D.H. (Encotech, Inc., Schenectady, NY (United States))

1992-01-01T23:59:59.000Z

317

Natural Steam Power Developments at Larderello  

Science Journals Connector (OSTI)

... utilised since 1818 for the extraction of boric acid, the presence FIG. 2.-The turbine room at Larderello; three turbo-alternators of 2500 kw. each. The ... room at Larderello; three turbo-alternators of 2500 kw. each. The turbines are fed with volcanic steam which has been stripped of about 90 per cent, ...

1928-01-14T23:59:59.000Z

318

Carbon deposition in steam reforming and methanation  

SciTech Connect (OSTI)

The purpose of this review is to survey recent studies of carbon deposition on metals used as catalysts in steam reforming and methanation, emphasizing research where significant progress has been made. Where possible, an attempt is made to treat the fundamental nature of carbon formation and deactivation by carbon and the relationships between these two phenomena. Steam reforming and methanation are emphasized in this review because (1) deactivation of catalysts by carbon deposits is a serious concern in both processes, (2) much of the previous research with carbon formation on metals involved one or the other of these two reactions, and (3) there are interesting differences and similarities between these two reactions; for example, methanation is typically carried out at moderate reaction temperatures (200-450/sup 0/C) while steam reforming is typically carried out at significantly higher reaction temperatures (600-900/sup 0/C). Yet the two reactions are very closely related, since methane steam reforming is the reverse of methanation of CO. Moreover, there is evidence that some of the carbons formed in these two different processes are similar in their morphology.

Bartholomew, C.H.

1982-01-01T23:59:59.000Z

319

Fuel cell integrated with steam reformer  

SciTech Connect (OSTI)

A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

Beshty, Bahjat S. (Lower Makefield, PA); Whelan, James A. (Bricktown, NJ)

1987-01-01T23:59:59.000Z

320

Natural gas-assisted steam electrolyzer  

DOE Patents [OSTI]

An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

Pham, Ai-Quoc (San Jose, CA); Wallman, P. Henrik (Berkeley, CA); Glass, Robert S. (Livermore, CA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Consider Steam Turbine Drives for Rotating Equipment: Office of Industrial Technologies (OIT) Steam Tip Fact Sheet No.21  

SciTech Connect (OSTI)

Steam turbines are well suited as prime movers for driving boiler feedwater pumps, forced or induced-draft fans, blowers, air compressors, and other rotating equipment. This service generally calls for a backpressure non-condensing steam turbine. The low-pressure steam turbine exhaust is available for feedwater heating, preheating of deaerator makeup water, and/or process requirements.

Not Available

2002-01-01T23:59:59.000Z

322

A parametric study of steam injected gas turbine with steam injector  

SciTech Connect (OSTI)

The interest in the STIG concept has arisen from the fact that the application shows high flexibility in power output, and therefore can serve well as a peak load unit. A new addition to the STIG-cycle is proposed and investigated in this paper. The introduction of steam injectors at the injection point of the steam is proposed to lightly raise the pressure of the gas flow entering the expander. The injector reduces the thermodynamic irreversibilities associated with the throttling nature of injecting a high pressure steam into a lower pressure region. A thermodynamic study has been conducted on the STIG with steam injectors for power generation. Steam pressure and superheating temperature are the main parameters for the system. The impact and usefulness of supplementary firing before the HRSG has also been investigated. The results are compared with a STIG with throttling valves instead of injectors. The efficiency and power output proves to increase somewhat upon introducing the steam injectors. This modification can be of commercial interest since the injectors are of low installation cost and need virtually no maintenance.

Aagren, N.D.; Svedberg, G. [Royal Inst. of Technology, Stockholm (Sweden); Frutschi, H.U. [ABB Power Generation Ltd., Baden (Switzerland)

1994-12-31T23:59:59.000Z

323

Measurement of steam quality in two-phase critical flow  

E-Print Network [OSTI]

through a venturi for subczitical flow of steam-water 45 13 Steam quality as a function of vapor-phase Reynolds number for subczitical flow of steam-water 46 14 Steam quality as a function of Collins and Gacesa parameter for subcritical flow of steam... high degree of accuracy. He suggested that the following correlation may be used to calculate two-phase flow rates through orifices to within an error of 1. 5 percent 339 K 3 9 9' J 9 v v a v w f + [ 1. 26 (1-f ) K Y /K ] ~p p where V and L...

Sinclair, John William

2012-06-07T23:59:59.000Z

324

Superfund explanation of significant difference for the Record of Decision (EPA Region 10): Bunker Hill Mining and Metallurgical Complex, Smelterville, Shoshone County, ID, April 18, 1998  

SciTech Connect (OSTI)

During the remedial design phase of cleanup, both EPA and DEQ identified revisions appropriate for the remedy identified in the Bunker Hill Mining and Metallurgical Complex Record of Decision (ROD). These revisions are necessary for several reasons. They will ensure that the remedy is cost-effective, maximizes the benefit to the environment, and is responsive to community concerns.

NONE

1998-09-01T23:59:59.000Z

325

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents [OSTI]

A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

1995-01-01T23:59:59.000Z

326

Thermochemically recuperated and steam cooled gas turbine system  

DOE Patents [OSTI]

A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

Viscovich, P.W.; Bannister, R.L.

1995-07-11T23:59:59.000Z

327

A three-dimensional laboratory steam injection model allowing in situ saturation measurements. [Comparing steam injection and steam foam injection with nitrogen and without nitrogen  

SciTech Connect (OSTI)

The CT imaging technique together with temperature and pressure measurements were used to follow the steam propagation during steam and steam foam injection experiments in a three dimensional laboratory steam injection model. The advantages and disadvantages of different geometries were examined to find out which could best represent radial and gravity override flows and also fit the dimensions of the scanning field of the CT scanner. During experiments, steam was injected continuously at a constant rate into the water saturated model and CT scans were taken at six different cross sections of the model. Pressure and temperature data were collected with time at three different levels in the model. During steam injection experiments, the saturations obtained by CT matched well with the temperature data. That is, the steam override as observed by temperature data was also clearly seen on the CT pictures. During the runs where foam was present, the saturation distributions obtained from CT pictures showed a piston like displacement. However, the temperature distributions were different depending on the type of steam foam process used. The results clearly show that the pressure/temperature data alone are not sufficient to study steam foam in the presence of non-condensible gas.

Demiral, B.M.R.; Pettit, P.A.; Castanier, L.M.; Brigham, W.E.

1992-08-01T23:59:59.000Z

328

Study on the effect of heat treatment and gasification on the carbon structure of coal chars and metallurgical cokes using fourier transform Raman spectroscopy  

SciTech Connect (OSTI)

Differences in the development of carbon structures between coal chars and metallurgical cokes during high-temperature reactions have been investigated using Raman spectroscopy. These are important to differentiate between different types of carbons in dust recovered from the top gas of the blast furnace. Coal chars have been prepared from a typical injectant coal under different heat-treatment conditions. These chars reflected the effect of peak temperature, residence time at peak temperature, heating rate and pressure on the evolution of their carbon structures. The independent effect of gasification on the development of the carbon structure of a representative coal char has also been studied. A similar investigation has also been carried out to study the effect of heat-treatment temperature (from 1300 to 2000{sup o}C) and gasification on the carbon structure of a typical metallurgical coke. Two Raman spectral parameters, the intensity ratio of the D band to the G band (I{sub D}/I{sub G}) and the intensity ratio of the valley between D and G bands to the G band (I{sub V}/I{sub G}), have been found useful in assessing changes in carbon structure. An increase in I{sub D}/I{sub G} indicates the growth of basic graphene structural units across the temperature range studied. A decrease in I{sub V}/I{sub G} appears to suggest the elimination of amorphous carbonaceous materials and ordering of the overall carbon structure. The Raman spectral differences observed between coal chars and metallurgical cokes are considered to result from the difference in the time-temperature history between the raw injectant coal and the metallurgical coke and may lay the basis for differentiation between metallurgical coke fines and coal char residues present in the dust carried over the top of the blast furnace. 41 refs., 17 figs., 3 tabs.

S. Dong; P. Alvarez; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2009-03-15T23:59:59.000Z

329

Large steam turbine repair: A survey  

SciTech Connect (OSTI)

This report covers a survey taken to document the current state-of-the-art in repairs to large steam turbines. One objective was to provide information to assist utilities in making repair or replacement decisions. The survey revealed that a large number of repairs have been successfully repaired involving both mechanical and welding repair techniques. Repair techniques have been improving in recent years and are being used more frequently. No guidelines or codes exist for the repair of steam turbine components so each repair is primarily controlled by agreement between the utility, contractor and insurer. Types of repairs are reviewed in this report and in addition, the capabilities of various contractors who are currently active in providing repair service. 40 refs., 10 figs., 4 tabs.

Findlan, S.J.; Lube, B. (EPRI Nondestructive Evaluation Center, Charlotte, NC (United States))

1991-07-01T23:59:59.000Z

330

Steam turbine/generator NDE workshop  

SciTech Connect (OSTI)

On September 12--15, 1989, EPRI sponsored a workshop in Charlotte, North Carolina on steam turbine/generator rotating components. The approximate 185 attendees represented a broad spectrum of utilities, equipment manufactures, forging suppliers, service organizations, universities, insurance carriers, and consultants from the United States and abroad. Canada, England, Finland, France, Germany, Japan, Korea, Italy, Spain, and Sweden were represented at the workshop, and 81 of the attendees represented 44 domestic utilities. Nondestructive examination equipment demonstrations by 16 vendors and 2 utilities at the EPRI NDE Center complemented the technical presentation. In addition to 23 formal, technical presentations of prepared papers of specific topics, 8 tutorial presentations, plus various opening and closing remarks and addresses, were given at the workshop. Presentations were organized under the following general topics: bucket blades and/or attachment regions; retaining rings; wheels/disks; steam turbine/generator testing and evaluation; and tutorials. Each individual paper has been cataloged separately.

Nottingham, L.D.; Sabourin, P.F. (Jones (J.A.) Applied Research Co., Charlotte, NC (USA))

1990-11-01T23:59:59.000Z

331

Simulation of steam reformers for methane  

Science Journals Connector (OSTI)

A model is developed for industrial steam reformers for both top fired and side fired furnaces. The catalyst tube model is a one-dimensional heterogeneous model with intra-particle diffusional resistances. The two point boundary value differential equations of the catalyst pellets are solved using a modified novel orthogonal collocation technique to obtain the effectiveness factor variation along the length of the reactor. The side fired furnace equations are algebraic equations, the top fired furnace equations are two-point boundary value differential equations which are solved using the orthogonal collocation technique. A recently developed more general rate expression is used. The model performance is checked against industrial steam reformers. The model is used to investigate the effect of various parameters on the behaviour of the catalyst tubes and the furnace. The effectiveness factor variation along the length of the catalyst tube is also analysed.

M.A. Soliman; S.S.E.H. El-Nashaie; A.S. Al-Ubaid; A. Adris

1988-01-01T23:59:59.000Z

332

Effect of steam on supported metal catalysts  

SciTech Connect (OSTI)

In order to examine the effect of steam on supported metal catalysts, model supported metal catalysts of Ni, Co, or Fe on alumina have been heated in steam at 700/sup 0/C. The transmission electron micrographs show that for all these metals, patches of film extend from the crystallites. Prolonged heating results in the disappearance of the patches which probably spread as a contiguous film over the entire surface of the substrate. The degree of spreading is in the order: C0 > Ni > Fe. On subsequent heating in H/sub 2/, small crystallites were generated, probably via the rupture of the contiguous film. The contraction of the patches of film bridging two or several particles caused the coalescence of the latter. This subsequent heating in H/sub 2/ favors redispersion only when the heating time is sufficiently short. Prolonged heating in H/sub 2/ leads to the disappearance of the small particles.

Ruckenstein, E.; Hu, X.D.

1986-07-01T23:59:59.000Z

333

Laser removal of sludge from steam generators  

DOE Patents [OSTI]

A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

Nachbar, Henry D. (Ballston Lake, NY)

1990-01-01T23:59:59.000Z

334

Materials Performance in USC Steam Portland  

SciTech Connect (OSTI)

Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interest include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.

G.R. Holcomb; J. Tylczak; R. Hu

2011-04-26T23:59:59.000Z

335

The Economics of Steam Electric Generation  

E-Print Network [OSTI]

by manufacturers, data available from past installations and recent installations. 7) Labor costs were based on labor rates in ~he Lansing, Michigan area. 8) Power plant labor and supervision costs were based on manning data supplied by the Board of Water...-service. No other figures, including labor, fuel cost, outside services and other costs have been escalated. 12) Operating costs were established, based on steam generation. Credit has been allotted to any program for the electric power generated during...

Ophaug, R. A.; Birget, C. D.

1980-01-01T23:59:59.000Z

336

Underground coal gasification using oxygen and steam  

SciTech Connect (OSTI)

In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

2009-07-01T23:59:59.000Z

337

Measuring non-condensable gases in steam  

SciTech Connect (OSTI)

In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1 %) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M{sup TM} Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

Doornmalen, J. P. C. M. van; Kopinga, K., E-mail: k.kopinga@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

2013-11-15T23:59:59.000Z

338

Energy Tips: Benchmark the Fuel Cost of Steam Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Type (sales unit) Type (sales unit) Energy Content Combustion (Btu/sales unit) Efficiency (%) Natural Gas (therm) 100,000 81.7 Natural Gas (cubic foot) 1,030 81.7 Distillate/No. 2 Oil (gallon) 138,700 84.6 Residual/No. 6 Oil (gallon) 149,700 86.1 Coal (ton) 27,000,000 87.6 Benchmark the Fuel Cost of Steam Generation Benchmarking the fuel cost of steam generation ($/1000 lbs of steam) is an effective way to assess the efficiency of your steam system. This cost is dependent upon fuel type, unit fuel cost, boiler efficiency, feedwater temperature, and steam pressure. This calculation provides a good first approximation for the cost of generating steam and serves as a tracking device to allow for boiler performance monitoring. Table 1 shows the heat input required to produce one pound of saturated

339

Review of High Temperature Water and Steam Cooled Reactor Concepts  

SciTech Connect (OSTI)

This review summarizes design concepts of supercritical-pressure water cooled reactors (SCR), nuclear superheaters and steam cooled fast reactors from 1950's to the present time. It includes water moderated supercritical steam cooled reactor, SCOTT-R and SC-PWR of Westinghouse, heavy water moderated light water cooled SCR of GE, SCLWR and SCFR of the University of Tokyo, B-500SKDI of Kurchatov Institute, CANDU -X of AECL, nuclear superheaters of GE, subcritical-pressure steam cooled FBR of KFK and B and W, Supercritical-pressure steam cooled FBR of B and W, subcritical-pressure steam cooled high converter by Edlund and Schultz and subcritical-pressure water-steam cooled FBR by Alekseev. This paper is prepared based on the previous review of SCR2000 symposium, and some author's comments are added. (author)

Oka, Yoshiaki [Nuclear Engineering Research Laboratory, The University of Tokyo, 3-1, Hongo 7-Chome, Bunkyo-ku (Japan)

2002-07-01T23:59:59.000Z

340

Comments on US LMFBR steam generator base technology  

SciTech Connect (OSTI)

The development of steam generators for the LMFBR was recognized from the onset by the AEC, now DOE, as a difficult, challenging, and high-priority task. The highly reactive nature of sodium with water/steam requires that the sodium-water/steam boundaries of LMFBR steam generators possess a degree of leak-tightness reliability not normally attempted on a commercial scale. In addition, the LMFBR steam generator is subjected to high fluid temperatures and severe thermal transients. These requirements place great demand on materials, fabrication processes, and inspection methods; and even greater demands on the designer to provide steam generators that can meet these demanding requirements, be fabricated without unreasonable shop requirements, and tolerate off-normal effects.

Simmons, W.R.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Why Condensing Steam Turbines are More Efficient than Gas Turbines  

E-Print Network [OSTI]

.80 is used. POWER PRODUCED: :13.000 KW STEAM PRODUCED: 250,000 Ib/hr 250 psig steam :100,000 Ib/hr 30 psig steam :33,000 KW U.0) = 33,000 KW 41 '70 250.000 Ib/hr 10.1325 KWH/lbHO.80) = 26,500 KW :33'70 I 300.000 Ib/hr 10.0888 KWH/lbHO.80) = 21,300 KW....80 is used. POWER PRODUCED: :13.000 KW STEAM PRODUCED: 250,000 Ib/hr 250 psig steam :100,000 Ib/hr 30 psig steam :33,000 KW U.0) = 33,000 KW 41 '70 250.000 Ib/hr 10.1325 KWH/lbHO.80) = 26,500 KW :33'70 I 300.000 Ib/hr 10.0888 KWH/lbHO.80) = 21,300 KW...

Nelson, K. E.

342

The Development of Warm Gas Cleanup Technologies for the Removal of Sulfur Containing Species from Steam Hydrogasification  

E-Print Network [OSTI]

steam methane reforming .H 2 O ? CO 2 + H 2 Steam methane reforming reaction: CH 4 +by the SMR (Steam Methane Reforming) step and a final step

Luo, Qian

2012-01-01T23:59:59.000Z

343

Table A44. Average Prices of Purchased Electricity and Steam  

U.S. Energy Information Administration (EIA) Indexed Site

4. Average Prices of Purchased Electricity and Steam" 4. Average Prices of Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam" ," (kWh)",," (million Btu)" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors"

344

Table A39. Total Expenditures for Purchased Electricity and Steam  

U.S. Energy Information Administration (EIA) Indexed Site

9. Total Expenditures for Purchased Electricity and Steam" 9. Total Expenditures for Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" ," Electricity",," Steam" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,"Total United States" "RSE Column Factors:",0.3,2,1.6,1.2

345

The Engineered Approach to Energy and Maintenance Effective Steam Trapping  

E-Print Network [OSTI]

., Chemical Engineering 9/1/75. 4. Maintenance Engineering, May 1976. 5. "How Much Does Lost Steam Cost",Armstrong Machine works, Hydrocarbon Processing, p.129, Jan. 1976. 6. "Setter Steam Trapping Cuts Energy Waste", wesley Yates, Yarway Corp..., Georgia Tech Industrial Energy Extension Service, Chemical Engineering, 2/11/80. 10. ''Basic Facts & Enerqv Saving Tips" ,Lawrence R. O'Dell, Armstrong Machine Works, Heating/Piping/ Air Conditioning, May 1977. 11. Steam Trap Report - Energy Loss...

Krueger, R. G.; Wilt, G. W.

1980-01-01T23:59:59.000Z

346

Steam generator for liquid metal fast breeder reactor  

DOE Patents [OSTI]

Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

Gillett, James E. (Greensburg, PA); Garner, Daniel C. (Murrysville, PA); Wineman, Arthur L. (Greensburg, PA); Robey, Robert M. (North Huntingdon, PA)

1985-01-01T23:59:59.000Z

347

Steam System Opportunity Assessment for the Pulp and Paper, Chemical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper,...

348

Computational Modeling of Combined Steam Pyrolysis and Hydrogasification of Ethanol  

E-Print Network [OSTI]

JL, Kinetics of Coal Gasification, New York, John Wiley &applications to technical gasification processes- A review.kinetics of steam gasification for a transport gasifier.

Singh, S; Park, C S; Norbeck, J N

2005-01-01T23:59:59.000Z

349

Computational Modeling of Combined Steam Pyrolysis and Hydrogasification of Ethanol  

E-Print Network [OSTI]

Model for High Temperature Ethanol Oxidation" Int. J. Chem.and Hydro- gasification of Ethanol Surinder P. Singh*, Chanand steam) steps to convert ethanol to methane. Ethanol was

Singh, S; Park, C S; Norbeck, J N

2005-01-01T23:59:59.000Z

350

Solar Steam Reforming of Methane (SSRM) Program Proposals  

Science Journals Connector (OSTI)

Within the intended development work to supply solar HT process heat to industrial processes, especially chemical processes, the steam reforming process is considered suitable in particular.

A. Kalt

1987-01-01T23:59:59.000Z

351

Droplet Characterization in the Wake of Steam Turbine Cascades.  

E-Print Network [OSTI]

?? In low-pressure steam turbines, water droplet formation on the surfaces of stationary stator blades can lead to erosion on downstream turbine blades and other… (more)

Plondke, Adam Charles

2012-01-01T23:59:59.000Z

352

Energy Savings By Recovery of Condensate From Steam Heating System  

E-Print Network [OSTI]

and reduces steam supply, saving 4061 tons of industrial water per year. The total saved steam amounts to 25.~ of the total amount of steM supply. The total saved cost is 39616 yuan per year; the total saved amount of coal is 329.9 tons per year... and reduces steam supply, saving 4061 tons of industrial water per year. The total saved steam amounts to 25.~ of the total amount of steM supply. The total saved cost is 39616 yuan per year; the total saved amount of coal is 329.9 tons per year...

Cheng, W. S.; Zhi, C. S.

353

Solid oxide steam electrolysis for high temperature hydrogen production .  

E-Print Network [OSTI]

??This study has focused on solid oxide electrolyser cells for high temperature steam electrolysis. Solid oxide electrolysis is the reverse operation of solid oxide fuel… (more)

Eccleston, Kelcey L.

2007-01-01T23:59:59.000Z

354

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network [OSTI]

generation efficiency and the primary factors that affect it. . The general concepts of boiler efficiency. As a result, water-tube boilers were developed. These boilers contain hundreds of tubes that hold the high the exhaust gases. The pressure vessel holds all of the stress of the high-pressure steam. Water-tube boilers

Oak Ridge National Laboratory

355

Influence of steam on the flammability limits of premixed natural gas/oxygen/steam mixtures  

Science Journals Connector (OSTI)

Synthesis gas (Syngas) is an intermediate in a variety of industrial processes. Its production is energy and capital intensive and any improvement of existing technologies allowing simpler and economic production is of great interest. Recently, a new method known as short contact time-catalytic partial oxidation (SCT-CPO) has been developed into a commercial technology [1–4]. SCT-CPO is an entirely heterogeneous catalytic process converting premixed flammable feedstocks inside a very small reactor. In order to ensure safety and a high selectivity towards CO and H2 it has been important to determine and understand flammability properties of the gaseous reactant mixtures. Here we report on the results obtained within a windowed tube reactor equipped with multiple photodetectors and pressure transducers that has allowed the study of ignition, flame propagation, and explosion characteristics of gas mixtures similar to those used as reactants in the SCT-CPO reactor. The tests were conducted at various pressures with different amounts of steam and two different compositions of natural gas (NG). A flammability boundary for each mixture, based on normalized pressure and mole fraction of steam, was determined. The results conclude that these mixtures’ flammability could be suppressed in two very different ways. Depending on the adiabatic flame temperature of the mixture, suppression could be caused by steam's chemical influence increasing chain-termination or by a large amount of steam decreasing the reaction zone temperature.

Matthew J. Degges; J. Eric Boyer; Kenneth K. Kuo; Luca Basini

2010-01-01T23:59:59.000Z

356

Steam Oxidation of Fossil Power Plant Materials: Collaborative Research to Enable Advanced Steam Power Cycles  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Research into improved materials systems and associated manufacturing and reliability issues is a major part of initiatives to produce cleaner and cheaper energy systems in the UK and the USA. Under the auspices of a Memorandum of Understanding on Energy R&D, a work programme concerned with steam oxidation has been conducted. The focus was on the generation of definitive information regarding the oxidation behaviour in steam of current and developmental ferritic steels, austenitic steels, and nickelbased alloys required to enable advanced steam power cycles. The results were intended to provide a basis for quantifying the rate of metal loss expected under advanced steam cycle conditions, as well as understanding of the evolution of oxide scale morphologies with time and temperature to identify features that could influence scale exfoliation characteristics. This understanding and acquired data were used to develop and validate models of oxide growth and loss by exfoliation. This paper provides an overview of the activity and highlights a selection of the results coming from the programme.

A. T. Fry; I. G Wright; N. J Simms; B. McGhee; G. R. Holcomb

2013-11-19T23:59:59.000Z

357

The value of steam turbine upgrades  

SciTech Connect (OSTI)

Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

Potter, K.; Olear, D.; [General Physics Corp. (United States)

2005-11-01T23:59:59.000Z

358

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network [OSTI]

IOUT *MEBP *STC(QAAN. R )-STEAM TURBINE CALC. ~ETFQMIN~5 ST~KJ/S) 1JC. /(GROSS STEAM TURBINE POWER PRODUCTION) STEA~ GENprogram then prints the steam turbine results. All flows in

Dayan, J.

2011-01-01T23:59:59.000Z

359

Effect of Steam Sterilization and Gamma Irradiation of Peat on Quality of Rhizobium Inoculants  

Science Journals Connector (OSTI)

...and Industrial Microbiology Effect of Steam Sterilization and Gamma Irradiation of...Inoculants for M. sativa manufactured with steam-sterilized peat were similar in quality...higher gamma irradiation dosage. Effect of steam sterilization and gamma irradiation of...

Barend W. Strijdom; Henri Jansen van Rensburg

1981-06-01T23:59:59.000Z

360

COAGULATION AND STERILIZATION OF LOEFFLER'S BLOOD SERUM MEDIA UNDER STEAM PRESSURE  

Science Journals Connector (OSTI)

...OF LOEFFLER'S BLOOD SERUM MEDIA UNDER STEAM PRESSURE A. J. Hinkleman Oklahoma City...of Loeffler's Blood Serum Media under Steam Pressure. | Journal Article COAGULATION...OF LOEFFLER'S BLOOD SERUM MEDIA UNDER STEAM PRESSURE A. J. HINKLENIAN Oklahoma City...

A. J. Hinkleman

1923-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Table N11.4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 19  

U.S. Energy Information Administration (EIA) Indexed Site

4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" 4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

362

Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" 7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

363

Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" 0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

364

Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 20  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002;" 3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: U.S. Dollars per Physical Units." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

365

Neutron and x-ray scattering studies of the metallurgical condition and residual stresses in Weldalite welds  

SciTech Connect (OSTI)

Weldalite is a lithium-containing aluminum alloy which is being considered for aerospace applications because its favorable strength-to-weight ratio. Successful welding of this alloy depends on the control of the metallurgical condition and residual stresses in the heat affected zone. Neutron and x-ray scattering methods of residual stress measurement were applied to plasma arc welds made in aluminum-lithium alloy test panels as part of an evaluation of materials for use in welded structures. In the course of these studies discrepancies between x-ray and neutron results from the heat affected zone (HAZ) of the weld were found. Texture changes and recovery from the cold work, indicated in peak widths, were found in the HAZ as well. The consideration of x-ray and neutron results leads to the conclusion that there is a change in solute composition which modifies the d-spacings in the HAZ which affects the neutron diffraction determination of residual stresses. The composition changes give the appearance of significant compressive strains in the HAZ. This effect and sharp gradients in the texture give severe anomalies in the neutron measurement of residual stress. The use of combined x-ray and neutron techniques and the solution to the minimizing of the neutron diffraction anomalies are discussed.

Spooner, S. [Oak Ridge National Lab., TN (United States); Pardue, E.B.S. [Technology for Energy Corp., Knoxville, TN (United States)

1995-12-31T23:59:59.000Z

366

Thermo-mechanical-metallurgical modeling for hot-press forming in consideration of the prior austenite deformation effect  

Science Journals Connector (OSTI)

Abstract In this study, a prior austenite grain refinement model was incorporated into semi-empirical diffusive transformation kinetics for application to hot-press forming. In particular, the kinetics equations were modified to include the effects of boron addition and austenite deformation on transformation behaviors during forming. To simulate the hot-press forming process, a thermo-mechanical-metallurgical model was formulated implicitly and implemented into the finite element program ABAQUS using the user subroutines UMAT and UMATHT. This nonconventional finite element modeling is appropriate to consider thermal- and transformation-associated strains. The proposed model was validated through simple finite element simulation examples, i.e., dilatometry simulation with and without external loading, and hot torsion and quenching of a rod. Finally, the hot-press forming of a U-channel-type part was simulated to study the effect of austenite deformation on the phase kinetics, hardness and residual stress. The simulation results showed that the austenite deformation had considerable influence on the final strength and residual stress distribution in the hot-press formed sheet, which resulted from an increase in ferritic phases due to the modified kinetics. In particular, the austenite deformation effect was more noticeable in the side-wall region of the U-channel where plastic deformation was the most severe.

Hyun-Ho Bok; JongWon Choi; Frédéric Barlat; Dong Woo Suh; Myoung-Gyu Lee

2014-01-01T23:59:59.000Z

367

Alternative technologies to steam-methane reforming  

SciTech Connect (OSTI)

Steam-methane reforming (SMR) has been the conventional route for hydrogen and carbon monoxide production from natural gas feedstocks. However, several alternative technologies are currently finding favor for an increasing number of applications. The competing technologies include: steam-methane reforming combined with oxygen secondary reforming (SMR/O2R); autothermal reforming (ATR); thermal partial oxidation (POX). Each of these alternative technologies uses oxygen as a feedstock. Accordingly, if low-cost oxygen is available, they can be an attractive alternate to SMR with natural gas feedstocks. These technologies are composed technically and economically. The following conclusions can be drawn: (1) the SMR/O2R, ATR and POX technologies can be attractive if low-cost oxygen is available; (2) for competing technologies, the H{sub 2}/CO product ratio is typically the most important process parameter; (3) for low methane slip, the SMR/O2R, ATR and POX technologies are favored; (4) for full CO{sub 2} recycle, POX is usually better than ATR; (5) relative to POX, the ATR is a nonlicensed technology that avoids third-party involvement; (6) economics of each technology are dependent on the conditions and requirements for each project and must be evaluated on a case-by-case basis.

Tindall, B.M.; Crews, M.A. [Howe-Baker Engineers, Inc., Tyler, TX (United States)

1995-11-01T23:59:59.000Z

368

Low severity hydrocarbon steam reforming process  

SciTech Connect (OSTI)

A process is described for producing ammonia which comprises: (a) primary catalytically reforming at super atmospheric pressure in a direct-fired primary reforming zone, a hydrocarbon feedstock with steam to produce a gas containing carbon oxides, hydrogen and methane; (b) secondary catalytically reforming the gas from step (a) by introducing air and bringing the mixture towards equilibrium thereby producing a secondary reformer effluent gas containing nitrogen, carbon oxides, hydrogen and a decreased quantity of methane; (c) converting carbon monoxide catalytically with steam to carbon dioxide and hydrogen; (d) removing carbon oxides to give an ammonia synthesis gas comprising nitrogen and hydrogen and compressing the gas to ammonia synthesis pressure; (e) reacting the synthesis gas in an ammonia synthesis zone to produce ammonia and recovering ammonia from the reacted gas to produce an ammonia-depleted gas stream; (f) recycling at least a portion of the ammonia-depleted gas stream to the ammonia synthesis zone; and (g) treating a sidestream of the ammonia-depleted gas to separate a stream enriched in hydrogen and an inerts-enriched gas stream, and returning the enriched hydrogen stream to the ammonia synthesis zone.

Osman, R.M.; Byington, R.G.

1986-06-03T23:59:59.000Z

369

Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;??  

E-Print Network [OSTI]

Using HYTECH to Synthesize Control Parameters for a Steam Boiler ?;?? Thomas A. Henzinger 1 Howard model a steam­boiler control system using hybrid au­ tomata. We provide two abstracted linear models of the nonlinear be­ havior of the boiler. For each model, we define and verify a controller that maintains

Henzinger, Thomas A.

370

Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ??  

E-Print Network [OSTI]

Using HYTECH to Synthesize Control Parameters for a Steam Boiler? ?? Thomas A. Henzinger1 Howard model a steam-boiler control system using hybrid au- tomata. We provide two abstracted linear models of the nonlinear be- havior of the boiler. For each model, we de ne and verify a controller that maintains the safe

Henzinger, Thomas A.

371

Finding Benefits by Modeling and Optimizing Steam and Power Systems  

E-Print Network [OSTI]

A site-wide steam modeling and optimization program (Visual Mesa) was implemented at the Bayou Cogen plant in Bayport, Texas in 1997 and has been in use continuously since that time. This program optimizes steam production among four cogen units...

Harper, C.; Nelson, D. A.

2008-01-01T23:59:59.000Z

372

ExxonMobile Beaumont Chemical Plant Steam Integration Project  

E-Print Network [OSTI]

and petrochemical manufacturing facility. ? Energy optimization across the Complex requires flexibility to accommodate variations in operations, seasonality, maintenance outages, etc. ? The steam system spans the Complex and is generated from various sources... and petrochemical manufacturing facility. ? Energy optimization across the Complex requires flexibility to accommodate variations in operations, seasonality, maintenance outages, etc. ? The steam system spans the Complex and is generated from various sources...

Long, T.

373

How to Calculate the True Cost of Steam  

Broader source: Energy.gov [DOE]

This brief details how to calculate the true cost of steam, which is important for monitoring and managing energy use in a plant, evaluating proposed design changes to the generation or distribution infrastructure and the process itself, and for continuing to identify competitive advantages through steam system and plant efficiency improvements.

374

STeam Injected Piston Engine Troels Hrding Pedersen Bjrn Kjellstrm  

E-Print Network [OSTI]

STIPE STeam Injected Piston Engine Troels Hørding Pedersen Björn Kjellström Thomas Koch Erik Balck stempelmotor med dampindsprøjtning". English title: "Steam injected piston engine, a feasibility study ......................................................................................12 Stationary engines for decentralised CHP or industrial CHP

375

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network [OSTI]

HHV) Capital Costs Feed Handling & Preparation Gasification Warm Gas Cleanup Steam MethaneHHV) Capital Costs Feed Handling & Preperation Gasification Warm Gas Cleanup Steam Methane

Lu, Xiaoming

2012-01-01T23:59:59.000Z

376

Flash High-Pressure Condensate to Regenerate Low-Pressure Steam  

Broader source: Energy.gov [DOE]

This tip sheet outlines optimal conditions for flashing high-pressure condensate to regenerate low-pressure steam in steam systems.

377

Bullet trains and steam engines: Exogenous attention zips but endogenous attention chugs along  

E-Print Network [OSTI]

Bullet trains and steam engines: Exogenous attention zips but endogenous attention chugs along: Chakravarthi, R., & VanRullen, R. (2011). Bullet trains and steam engines: Exogenous attention zips

VanRullen, Rufin

378

Feasibility of Steam Hydrogasification of Microalgae for Production of Synthetic Fuels  

E-Print Network [OSTI]

Figure 2.2. Biomass Air Steam Oxygen Hydrogen Gasifier typeAir GasifierSteam Gasifier Oxygen Gasifier Hydrogen Gasifier

Suemanotham, Amornrat

2014-01-01T23:59:59.000Z

379

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR)  

Broader source: Energy.gov (indexed) [DOE]

Maturation Plan (TMP) Fluidized Bed Steam Reforming Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) More Documents & Publications Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

380

Issues in the selection of the LMFBR steam cycle  

SciTech Connect (OSTI)

Unlike the light-water reactor, the liquid-metal fast breeder reactor (LMFBR) allows the designer considerable latitude in the selection of the steam cycle. This latitude in selection has been exercised by both foreign and domestic designers, and thus, despite the fact that over 25 LMFBR's have been built or are under construction, a consensus steam cycle has not yet evolved. This paper discusses the LMFBR steam cycles of interest to the LMFBR designer, reviews which of these cycles have been employed to date, discusses steam-cycle selection factors, discusses why a consensus has not evolved, and finally, concludes that the LMFBR steam-cycle selection is primarily one of technical philosophy with several options available.

Buschman, H.W.; McConnell, R.J.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Issues in the selection of the LMFBR steam cycle  

SciTech Connect (OSTI)

Unlike the light water reactor, the liquid metal fast breeder reactor (LMFBR) allows the designer considerable latitude in the selection of the steam cycle. This latitude in selection has been exercised by both foreign and domestic designers, and thus, despite the fact that over 25 LMFBR's have been built or are under construction, a consensus steam cycle has not yet evolved. This paper discusses the LMFBR steam cycles of interest to the LMFBR designer, reviews which of these cycles have been employed to date, discusses steam-cycle selection factors, discusses why a consensus has not evolved, and finally, concludes that the LMFBR steam-cycle selection is primarily one of technical philosophy with several options available.

Buschchman, H.W.; McConnell, R.J.

1983-08-01T23:59:59.000Z

382

Experience in the repair of steam generator auxiliary feedwater nozzle  

SciTech Connect (OSTI)

The auxiliary feedwater nozzle is quite often subjected to more thermal stress cycles and other loading mechanisms during their service life than the material was designed and fabricated for at the nozzle of the earlier steam generators in many nuclear plants. During plant operation, the auxiliary feedwater nozzle outlet is exposed to the hot steam from the generator side, while the auxiliary feedwater piping which contains subcooled water from the inlet often induces water hammer as a result of the steam-water mixing phenomena. The thermal cycles and the steam bubble collapse at the nozzle may cause cracking in the nozzle liner and interior surface of the nozzle, and subsequently results in structural damage to the steam generator. This presentation is intended to share the lessons learned from the evaluation of the nozzle condition and the subsequent modification and repair made to the auxiliary feedwater nozzle at the Palisades Nuclear Plant. Other nuclear plant owners may benefit from this experience.

Chao, K.K.N. [Consumers Power Co., Jackson, MI (United States)

1996-12-01T23:59:59.000Z

383

Flammability Limits of Binary Mixtures of 1,2-Ethanediol + Steam and 1,2-Propanediol + Steam  

Science Journals Connector (OSTI)

Flammability Limits of Binary Mixtures of 1,2-Ethanediol + Steam and 1,2-Propanediol + Steam ... In addition, the experimental results were compared with the estimated values based on the adiabatic flame temperature method. ... Shortly before ignition, the stirrer was turned off, and the mixture was left for 1 min to eliminate turbulence. ...

Ke Zhang; Xianyang Meng; Jiangtao Wu

2013-08-13T23:59:59.000Z

384

Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines  

SciTech Connect (OSTI)

U.S. Department of Energy’s goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

Gordon H. Holcomb

2009-01-01T23:59:59.000Z

385

Steam oxidation and chromia evaporation in ultrasupercritical steam boilers and turbines  

SciTech Connect (OSTI)

The U.S. Department of Energy's goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 {sup o}C and 340 atm, so-called ultrasupercritical conditions. Evaporation of protective chromia scales is a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

Holcomb, G.R. [US DOE, Albany, OR (United States)

2009-07-01T23:59:59.000Z

386

Standard Steam Trust LLC | Open Energy Information  

Open Energy Info (EERE)

Trust LLC Trust LLC Jump to: navigation, search Name Standard Steam Trust LLC Place Denver, Colorado Sector Geothermal energy Product Subsidiary of Denver-based geothermal project developer, Terra Caliente. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Microsoft Word - Steam System Energy.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LBNL---6288E LBNL---6288E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Implementation a nd Rejection o f I ndustrial Steam S ystem E nergy Efficiency M easures Peter T herkelsen a nd A imee M cKane Environmental E nergy T echnologies D ivision Lawrence B erkeley N ational L aboratory Reprint version of journal article published in " Energy P olicy", p lease c ite a s: Peter T herkelsen, A imee M cKane, Implementation a nd r ejection o f i ndustrial s team system e nergy e fficiency m easures, E nergy Policy, V olume 5 7, J une 2 013, P ages 3 18---328 May 2 013 2 Disclaimer This d ocument w as p repared a s a n a ccount o f w ork s ponsored b y t he U nited States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof,

388

SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT  

SciTech Connect (OSTI)

Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

2005-07-01T23:59:59.000Z

389

Catalyst for steam reforming of hydrocarbons  

SciTech Connect (OSTI)

A catalyst's resistance to deactivation by polymer formation is vital to the successful gasification of heavy feedstocks such as kerosene and gas oil. The improved polymer-resistance performance of this steam-reforming catalyst is directly relate to the distribution of the pore sizes in its calcined (but unreduced) precursor form and to a certain pore-size ratio: 1) At least 55% of the pore volume of pores having a radius of between 12 and 120 A(2000A) is in the range of 12-30 A(2000A) and 2) the ratio of the pore volume contained in pores of 10-50 A(2000A) to the volume contained in pores of 50-300 A(2000A) is at least 5:1. The catalyst-preparation method involves coprecipitation with a minimum of heat treatment (at temperatures not greater than 140/sup 0/F or 60/sup 0/C).

Banks, R.G.S.; Williams, A.

1980-08-05T23:59:59.000Z

390

Performance tests for steam methane reformers  

SciTech Connect (OSTI)

Most of the synthesis gas plants in operation in the United States for production of hydrogen, carbon monoxide, methanol, and ammonia use steam methane reforming (SMR). Economic projections indicate that the SMR plant may continue to be the most favorable process choice through the 1980s or until partial oxidation or coal gasification processes are technically proven. The complexity of an efficiently designed SMR plant for production of these chemicals requires a thorough understanding of many unit operations to correctly evaluate the performance of an operating plant. Air Products and Chemicals, Inc. (APCI) owns and operates various types of SMR plants for production of hydrogen and carbon monoxide gases for pipe line sales, liquid hydrogen for merchant sale, methanol and ammonia. Over the past few years, APCI has developed guidelines and procedures for plant performance tests done at its major SMR plants. This article documents the plant test procedure used in conducting onsite SMR plant performance tests.

Wang, S.I.; DiMartino, S.P.; Patel, N.M.; Smith, D.D.

1982-08-01T23:59:59.000Z

391

Process for steam reforming of hydrocarbons  

SciTech Connect (OSTI)

A process is provided for the steam reforming of normally liquid hydrocarbons to produce carbon monoxide and hydrogen, which does not promote the deposition of carbonacious materials upon catalytic surfaces. The catalyst consists of nickel promoted with the oxides of iron and manganese within a specific manganese to iron ratio, said metal and metal oxides being supported upon a refractory support. The support is preferably aluminum oxide in its alpha phase having a surface area of more than 0.5 m2/gm but no more than 10 m2/gm. The metallic constituents are impregnated onto said refractory low surface area support as salts and are calcined at sufficiently high temperature to convert the salts to the oxide but at a sufficiently low temperature that they do not chemically react with the support.

Broughton, D.R.; Russ, K.J.

1980-11-11T23:59:59.000Z

392

Steam turbine path evaluation during maintenance  

SciTech Connect (OSTI)

The deterioration of a turbine (Steam & Gas) flow path affects the efficiency of the turbine. The most critical factors which affect the efficiency of turbines are: wearing out of the trailing edges of the blades by solid particle erosion, deposits, material loss due to corrosion (also sand blast) which increases the flow area, increases in blade surface roughness, etc. Wearing out of the seals caused by shaft vibrations or rapid start-up leads to significant leakage losses. Some of these effects can be estimated with some precision during operation of the turbine, but an exact evaluation can be carried out during a maintenance applying a special fluid flow analysis program. Such a program has been developed and then adapted to achieve this goal. During maintenance the complete geometry of the steam path is measured (blades lengths, widths, angles, clearances, etc.) in the condition encountered before any corrections. Then the similar measurement is undertaken after, for example, clearance corrections, blade replacements, cleaning of the blades, etc. Using the program first of all the design data is calculated. Then the actual data is fed into the program and compared to the design data. Thus the effect of the blade surface roughness, increased seal clearances, flow area increase, solid particle damage to the trailing edge and so on for each particular stage is calculated. The effect is expressed in [kW] as a deviation from the design points. This data can be helpful during online evaluation of the turbine performance. This evaluation helps the management of the plant in undertaking the correct decision concerning the date of the next major maintenance and replacement part procurement. Many turbines in the Mexican utility have been evaluated in such a manner. Some examples are presented.

Kubiak, J.; Angel, F. del; Carnero, A.; Campos, A. [Instituto de Investigaciones Electricas, Temixo, Morelos (Mexico)] [and others

1996-07-01T23:59:59.000Z

393

FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION  

SciTech Connect (OSTI)

Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

Jantzen, C

2006-12-22T23:59:59.000Z

394

Field measurement of solid particle erosion in utility steam turbines  

SciTech Connect (OSTI)

For the first time, extensive field testing has characterized solid particle erosion (SPE) in terms of size and frequency. This is particularly important because SPE damage to large steam turbine components can degrade plant efficiency, increasing operating costs by up to $3 million/yr per unit for a total of $150 million nationwide. The objective was to characterize under various operating conditions the level and distribution of magnetite particles in turbine steam and the resulting SPE. The project team developed a field test program to characterize the solid particles in turbine steam and measure the erosion resistance of various coatings. At Dayton Power Light, a 600-MW turbine generator unit with a coal-fired once-through supercritical boiler was fitted with two steam sampling systems, the first for isokinetic sampling and the second for erosion evaluation. The team took roughly 300 isokinetic steam samples from the main steam line during both startup and full-load operation. They condensed and filtered each steam sample, then determined the level and distribution of magnetite particles.

Duncan, D.; Vohr, J.H.; Shalvoy, R.S. (General Electric Co., Schenectady, NY (United States). Turbine Technology Dept.)

1992-01-01T23:59:59.000Z

395

NOx formation by steam injection using detailed chemical kinetics  

Science Journals Connector (OSTI)

In order to improve thermal efficiency of gas turbine system and better control NOx emission, the injection of steam into a gas turbine combustor has been employed. This study has used both chemical equilibrium calculations and the counterflow diffusion flame calculations of methane-air flame aiming at the elucidation of the NOx reduction mechanism due to the steam injection. The influence of the equivalence ratios, the amount of steam and method of injection, the influence of the temperature of the preheated air and fuel has been also investigated. In this study, the GRI-Mech was employed for modelling the chemical reactions.

H. Yamashita; D. Zhao; S.N. Danov; T. Furuhata; N. Arai

2001-01-01T23:59:59.000Z

396

Extending the useful life of industrial steam turbines  

SciTech Connect (OSTI)

This paper reports that technology, uprating, and steam-path degradation reversal can extend the life and boost the efficiency of aging turbines. With the advent of modern machine tool technology, plus extensive R and D efforts, designers could apply improved bucket designs like the laminar flow design. Today's technology is represented by the Schlict design, which minimizes flow separations and boundary layer losses. Schlict buckets can be retrofitted in most designs as long as the diaphragm is also replaced. Adoption of steam-path design advance developed for new units and degradation reversal are the two areas of greatest opportunity in efficiency improvement of aging steam turbine-generators.

O'Connor, M.F.; Timmerman, D.C. (GE Power Generation, Schenectady, NY (US))

1990-05-01T23:59:59.000Z

397

Production and mitigation of acid chlorides in geothermal steam  

SciTech Connect (OSTI)

Measurements of the equilibrium distribution of relatively nonvolatile solutes between aqueous liquid and vapor phases have been made at temperatures to 350{degrees}C for HCl(aq) and chloride salts. These data are directly applicable to problems of corrosive-steam production in geothermal steam systems. Compositions of high-temperature brines which could produce steam having given concentrations of chlorides may be estimated at various boiling temperatures. Effects of mitigation methods (e.g., desuperheating) can be calculated based on liquid-vapor equilibrium constants and solute mass balances under vapor-saturation conditions.

Simonson, J.M.; Palmer, D.A.

1995-06-01T23:59:59.000Z

398

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network [OSTI]

H 2 Equation (1.8) Steam methane reforming CH 4 + H 2 O ? 3HH 2 +CO) by the Steam Methane Reforming (SMR). The steam2 Equation (1.10) Steam Methane Reforming: CH 4 + H 2 O ? 3H

FAN, XIN

2012-01-01T23:59:59.000Z

399

The economics of the use of cermet seals in steam turbines  

Science Journals Connector (OSTI)

The use of cermet sealing materials in steam turbines improves their reliability and produces considerable savings...

Z. P. Dorf; É. T. Denisenko

1965-04-01T23:59:59.000Z

400

Graphical Procedure for Comparing Thermal Death of Bacillus stearothermophilus Spores in Saturated and Superheated Steam  

Science Journals Connector (OSTI)

...stearothermophilus Spores in Saturated and Superheated Steam James J. Shull 1 Robert R. Ernst Wilmot...Bacillus stearothermophilus in saturated steam was characterized by three phases: (i...death curve of the spores in saturated steam. A jacketed steam sterilizer, equipped...

James J. Shull; Robert R. Ernst

1962-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

1 6/11/2003 Progress in Microchannel SteamProgress in  

E-Print Network [OSTI]

1 6/11/2003 Progress in Microchannel SteamProgress in Reformation of Hydrocarbon Fuels Progress in MicrochannelMicrochannel SteamSteam Reformation of HydrocarbonReformation of Hydrocarbon FuelsFuels 2003 steam reformer at higher temperature. Productivity for benchmark fuel increased 3X between 650°C and 850

402

Enviro-Friendly Hydrogen Generation From Steel Mill-Scale via Metal-Steam Reforming  

E-Print Network [OSTI]

Enviro-Friendly Hydrogen Generation From Steel Mill-Scale via Metal-Steam Reforming Abdul of certain metals with steam, called metal- steam reforming (MSR). This technique does not gen- erate any: hydrogen generation; metal-steam reform- ing; mill-scale; nanoscale iron; electron microscopy Hydrogen

Azad, Abdul-Majeed

403

DYNAMIC SIMULATION OF MONO-TUBE CAVITY RECEIVERS FOR DIRECT STEAM GENERATION  

E-Print Network [OSTI]

that includes a 4 cylinder steam engine coupled with a 3 phase generator. This paper describes ongoing research cavity receiver [2] mounted to the 500 m2 dish receiver supports, a modified steam engine coupled transports superheated steam via rotary joints to the ground and then to a 4 cylinder steam engine

404

SSST Module Slide 1: Hello, and welcome to this introduction on the Steam System Tool Suite.  

E-Print Network [OSTI]

the Steam System Scoping Tool, the Steam System Assessment Tool, and the 3E Plus Insulation Tool: When assessing the condition of your steam system the first tool you should use is the scoping toolSSST Module 9/30/2009 Slide 1: Hello, and welcome to this introduction on the Steam System Tool

Oak Ridge National Laboratory

405

The 700°C steam turbine power plant â?? status of development and outlook  

Science Journals Connector (OSTI)

This paper appraises the current development status of the 700°C steam power plant under consideration of process optimisation as well as design aspects of the steam turbine and steam generator. The results for a compact arrangement of the steam turbine and steam generator are also presented. Based on a cycle analysis, a net efficiency between 49.3% and 51.4% can be achieved with the 700°C steam power plant â?? depending on the implementation and based on an inland plant site. No competing development activities for the 700°C steam power plant are known from the USA or Japan.

Heiner Edelmann; Martin Effert; Kai Wieghardt; Holger Kirchner

2007-01-01T23:59:59.000Z

406

Coyote Canyon Steam Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Steam Plant Biomass Facility Steam Plant Biomass Facility Jump to: navigation, search Name Coyote Canyon Steam Plant Biomass Facility Facility Coyote Canyon Steam Plant Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

Steam Generator Tube Integrity Program [Corrosion and Mechanics of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Steam Generator Tube Steam Generator Tube Integrity Program Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fatigue Testing of Carbon Steels and Low-Alloy Steels Environmentally Assisted Cracking of Ni-Base Alloys Irradiation-Induced Stress Corrosion Cracking of Austenitic Stainless Steels Steam Generator Tube Integrity Program Air Oxidation Kinetics for Zr-based Alloys Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Light Water Reactors Bookmark and Share

408

A Compact and Efficient Steam Methane Reformer for Hydrogen Production.  

E-Print Network [OSTI]

??A small-scale steam-methane reforming system for localized, distributed production of hydrogen offers improved performance and lower cost by integrating the following technologies developed at the… (more)

Quon, Willard

2012-01-01T23:59:59.000Z

409

Selectivity of the steam reforming of methane over metallic catalysts  

Science Journals Connector (OSTI)

The activity and selectivity of the methane-steam reaction has been studied in a gradientless reactor at atmospheric pressure and 700–850 °C. Differences were found in the course of the reaction on Pd relative...

T. Borowiecki; J. Barcicki

1979-01-01T23:59:59.000Z

410

Halophilic Archaea determined from geothermal steam vent aerosols  

E-Print Network [OSTI]

the leaching of salts and minerals through the highly porous volcanic rock, creating a chemically complex differentials to condense steam into gamma-irradiated polypropylene centrifuge tubes (Fig. 1B), collected up

Kelley, Scott

411

Motive Power. Steam Turbines. High Speed Navigation1  

Science Journals Connector (OSTI)

... ancient Egyptian civilisation that we find the first records of the early history of the steam-engine. In Alexandria, the home of Euclid, and possibly contemporary with Archimedes, Hero ... contrivances.

1900-03-01T23:59:59.000Z

412

Steam turbine restart temperature maintenance system and method  

SciTech Connect (OSTI)

A restart temperature maintenance system is described for a steam turbine system; the steam turbine system comprising a steam turbine, the turbine including a rotation shaft, an outer metal shell means. The restart temperature maintenance system consists of: (a) fastener means affixed to the outer surface of the shell means at predetermined positions; (b) air gap spacer means affixed to the outer surface of the shell means, the air gap spacer means substantially covering the shell means; (c) a plurality of electric heating blanket means of predetermined size and shape positioned in insulative relationship over the air gap spacer means and the heating blanket means maintained in predetermined position by the fastener means; (d) heat sensor means affixed to the outer metal shell means of the steam turbine in predetermined position; (e) power supply means for supplying power to the heating blanket means; (f) heat sensor monitor and controller means connected in circuit between the power supply means and the heat sensor means.

McClelland, T.R.

1986-04-29T23:59:59.000Z

413

Efficient steam turbines produced by the “Ural Turbine Plant” company  

Science Journals Connector (OSTI)

Design features and efficiency of some steam turbines produced at present by a plant formed as a result of division of the “Turbine Motor Plant” Company into several enterprises are...

G. D. Barinberg; A. E. Valamin

414

Calculation of the Limiting CESSAR Steam Line Break Transients  

Science Journals Connector (OSTI)

Argonne National Laboratory (ANL), under contract to the Nuclear Regulatory Commission, performed audit calculations of the limiting and Steam Line Break (SLB) [1] transient presented in the CESSAR FSAR. The r...

G. B. Peeler; D. L. Caraher; J. Guttmann

1984-01-01T23:59:59.000Z

415

Thermohydraulic analysis of U-tube steam generators  

E-Print Network [OSTI]

Recent trends in plant safety analysis reveal a need for benchmark analytical representations of the steam generators to aid in the improvement of system codes and of fast codes for operator assistance. A model for such ...

da Silva, Hugo Cardoso

1984-01-01T23:59:59.000Z

416

Suez SNC-Lavalin Nuclear to replace US steam generator  

Science Journals Connector (OSTI)

SNC-Lavalin Nuclear (USA) has signed a contract with Xcel Energy to replace the Unit #2 steam generators at the Prairie Island Nuclear Generating Plant (PINGP) in Welch, Minnesota.

2010-01-01T23:59:59.000Z

417

Modelling, simulation and sensitivity analysis of steam-methane reformers  

Science Journals Connector (OSTI)

A mathematical model to calculate temperature, conversion and pressure profiles for static operations in steam-methane reformers was simulated. A rigorous kinetic model describing steam-methane reactions was compared to a first order one and an empirical heat distribution model was fitted to describe heat absorbed along the reactor length. A control interface was simulated to allow sensitivity analysis with different control schemes. The kinetic models were tested with data from industrial steam-gas reformers. Simulation results agreed with actual plant data for conversion, temperature and pressure. Nevertheless, the first order kinetic model gave unrealistic sensitivity results to pressure and steam-to-carbon ratio variations. The rigorous model could confidently be used for design analysis, control, and economic evaluation purposes.

I.M. Alatiqi; A.M. Meziou; G.A. Gasmelseed

1989-01-01T23:59:59.000Z

418

Experiences of niobium-containing alloys for steam reformers  

SciTech Connect (OSTI)

Destructive testing of niobium alloys was made in steam reformer as well as the study of the effects of the chemical compositions on the creep rupture and tensile properties.

Shibasaki, T.; Takemura, K.; Kawai, T.; Mohri, T.

1987-01-01T23:59:59.000Z

419

Process for generating steam in a fuel cell powerplant  

SciTech Connect (OSTI)

The steam for a steam reforming reactor of a fuel cell powerplant is generated by humidifying the reactor feed gas in a saturator by evaporating a small portion of a mass of liquid water which circulates in a loop passing through the saturator. The water is reheated in each pass through the loop by waste heat from the fuel cell, but is not boiled. In the saturator the relatively dry feed gas passes in direct contact with the liquid water over and through a bed a high surface area material to cause evaporation of some of the water in the loop. All the steam requirements for the reactor can be generated in this manner without the need for a boiler; and steam can be raised at a higher total pressure than in a boiler heated by the same source.

Sederquist, R. A.

1985-09-03T23:59:59.000Z

420

Steam Turbines for Critical Applications and Emergency or Standby Drives  

E-Print Network [OSTI]

Steam turbines are frequently preferred over electric motors where operational continuity is important. This often imposes extreme premiums in operating cost. The parameters affecting relative economics are explored and a range of alternatives...

Waterland, A. F.

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Industrial Heat Pumps for Steam and Fuel Savings  

Broader source: Energy.gov [DOE]

This brief introduces heat-pump technology and its application in industrial processes as part of steam systems. The focus is on the most common applications, with guidelines for initial identification and evaluation of the opportunities being provided.

422

Clock mechanisms and their effects, leads into steam engine  

E-Print Network [OSTI]

In a clock-maker’s shop, Simon Schaffer explains the great precision needed to make clocks, and the development of standardized parts. The feed-back mechanisms or governors are absolutely essential in the first stationary steam engines....

Dugan, David

2004-08-17T23:59:59.000Z

423

An Analysis of Steam Process Heater Condensate Drainage Options  

E-Print Network [OSTI]

The production and reliability performance of Steam Process Heaters can be significantly affected by the condensate drainage design that is employed. There are currently a variety of drainage options which can be confusing to a system designer who...

Risko, J. R.

424

Optimizing Steam and Condensate System: A Case Study  

E-Print Network [OSTI]

Optimization of Steam & Condensate systems in any process plant results in substantial reduction in purchased energy cost. During periods of natural gas price hikes, this would benefit the plant in controlling their fuel budget significantly...

Venkatesan, V. V.; Merritt, B.; Tully, R. C.

425

Steam Efficiency: Impacts from Boilers to the Boardroom  

E-Print Network [OSTI]

to the corporate bottom-line. The challenge is to present efficiency investments in the financial "language" that permits comparison to other corporate investment opportunities. This paper presents a framework for linking steam efficiency to financial goals. A...

Russell, C.

426

Highly Active Steam Reforming Catalyst for Hydrogen and Syngas Production  

Science Journals Connector (OSTI)

Toyo Engineering Corporation developed a steam reforming catalyst, which is four times as active as conventional catalysts, for hydrogen and syngas production from light natural gas. The catalyst has...3 plant. B...

Toru Numaguchi

2001-11-01T23:59:59.000Z

427

C++ Implementation of IAPWS Water/Steam Properties  

SciTech Connect (OSTI)

For the calculations of water-involved systems, such as safety analysis of light water reactors, it is essential to provide accurate water properties. The International Association for the Properties of Water and Steam is an international non-profit association of national organizations concerned with the properties of water and steam. It provides internationally accepted formulations of water/steam properties for scientific and industrial applications. The purpose of this work is to provide a stand-alone software package in C++ programming language to provide accurate and efficient water/steam properties evaluation, based on the latest IAPWS releases. The discussion on related IAPWS releases, code implementations and verifications are provided in details.

Ling Zou; Haihua Zhao; Hongbin Zhang; Qiyue Lu

2014-02-01T23:59:59.000Z

428

The Global Steam Coal Market and Supply Curve  

Science Journals Connector (OSTI)

The modern steam coal trade is only about three decades old. ... market difficulties. In order to understand the coal market one needs to understand the global ... . In the chapter the author considers the economic

Dr. Lars Schernikau

2010-01-01T23:59:59.000Z

429

Steam System Management Program Yields Fuel Savings for Refinery  

E-Print Network [OSTI]

The Phillips refinery at Borger, Texas, determined the need to develop a utility monitoring system. Shortly after this commitment was made, the refinery was introduced to a flowsheet modeling program that could be used to model and optimize steam...

Gaines, L. D.; Hagan, K. J.

1983-01-01T23:59:59.000Z

430

Dongfang Steam Turbine Works DFSTW | Open Energy Information  

Open Energy Info (EERE)

Dongfang Steam Turbine Works DFSTW Dongfang Steam Turbine Works DFSTW Jump to: navigation, search Name Dongfang Steam Turbine Works (DFSTW) Place Deyang, Sichuan Province, China Zip 618000 Sector Wind energy Product Manufacturer of several kinds of steam turbines and accessory equipment. Manufactures wind turbines under licence from REpower. Coordinates 31.147209°, 104.375023° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.147209,"lon":104.375023,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Covered Product Category: Commercial Steam Cookers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Steam Cookers Steam Cookers Covered Product Category: Commercial Steam Cookers October 7, 2013 - 11:15am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including commercial steam cookers, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the Energy Efficiency Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for the ENERGY STAR label or visit the ENERGY STAR Product Specifications

432

The Use of Electrochemical Techniques to Characterize Wet Steam Environments  

SciTech Connect (OSTI)

The composition of a steam phase in equilibrium with a water phase at high temperature is remarkably affected by the varying capabilities of the water phase constituents to partition into the steam. Ionic impurities (sodium, chloride, sulfate, etc.) tend to remain in the water phase, while weakly ionic or gaseous species (oxygen) partition into the steam. Analysis of the water phase can provide misleading results concerning the steam phase composition or environment. This paper describes efforts that were made to use novel electrochemical probes and sampling techniques to directly characterize a wet steam phase environment in equilibrium with high temperature water. Probes were designed to make electrochemical measurements in the thin film of water existing on exposed surfaces in steam over a water phase. Some of these probes were referenced against a conventional high temperature electrode located in the water phase. Others used two different materials (typically tungsten and platinum) to make measurements without a true reference electrode. The novel probes were also deployed in a steam space removed from the water phase. It was necessary to construct a reservoir and an external, air-cooled condenser to automatically keep the reservoir full of condensed steam. Conventional reference and working electrodes were placed in the water phase of the reservoir and the novel probes protruded into the vapor space above it. Finally, water phase probes (both reference and working electrodes) were added to the hot condensed steam in the external condenser. Since the condensing action collapsed the volatiles back into the water phase, these electrodes proved to be extremely sensitive at detecting oxygen, which is one of the species of highest concern in high temperature power systems. Although the novel steam phase probes provided encouraging initial results, the tendency for tungsten to completely corrode away in the steam phase limited their usefulness. However, the conventional water phase electrodes, installed both in the reservoir and in the external condensing coil, provided useful data showing the adverse impact of oxygen and carbon dioxide on the REDOX potential and high temperature pH, respectively.

Bruce W. Bussert; John A. Crowley; Kenneth J. Kimball; Brian J. Lashway

2003-04-30T23:59:59.000Z

433

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwate Monitoring and Corrective-Action Report, First and Second Quarters 1998, Volumes I, II, & III  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah river Site (SRS) during first and second quarters 1998. This program is required by South Carolina Hazardous Waste Permit SC1-890-008-989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. Report requirements are described in the 1995 RCRA Renewal Permit, effective October 5, 1995, Section IIIB.H.11.b for the M-Area HWMF and Section IIIG.H.11.b for the Met Lab HWMF.

Chase, J.

1998-10-30T23:59:59.000Z

434

New Metallization Technique Suitable for 6-MW Pilot Production of Efficient Multicrystalline Solar Cells Using Upgraded Metallurgical Silicon: Final Technical Progress Report, December 17, 2007-- June 16, 2009  

Broader source: Energy.gov [DOE]

This report describes CaliSolar's work as a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's Solar Energy Technologies Program. The term of this subcontract with the National Renewable Energy Laboratory was two years. During this time, CaliSolar evolved from a handful of employees to over 100 scientists, engineers, technicians, and operators. On the technical side, the company transitioned from a proof-of-concept through pilot-scale to large-scale industrial production. A fully automated 60-megawatt manufacturing line was commissioned in Sunnyvale, California. The facility converts upgraded metallurgical-grade silicon feedstock to ingots, wafers, and high-efficiency multicrystalline solar cells.

435

Implementation and Rejection of Industrial Steam System Energy Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Implementation and Rejection of Industrial Steam System Energy Efficiency Implementation and Rejection of Industrial Steam System Energy Efficiency Measures Title Implementation and Rejection of Industrial Steam System Energy Efficiency Measures Publication Type Journal Article Refereed Designation Unknown LBNL Report Number LBNL-6288E Year of Publication 2013 Authors Therkelsen, Peter L., and Aimee T. McKane Journal Energy Policy Volume 57 Start Page 318 Date Published 06/2013 Publisher Lawrence Berkeley National Laboratory Keywords industrial energy efficiency, industrial energy efficiency barriers, steam system efficiency Abstract Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

436

Method for increasing steam decomposition in a coal gasification process  

DOE Patents [OSTI]

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, Marvin W. (Fairview, WV)

1988-01-01T23:59:59.000Z

437

Estimate steam-turbine losses to justify maintenance funds  

SciTech Connect (OSTI)

A procedure to estimate steam-turbine losses is described. The estimates are based on analytical calculations and field inspections of turbines with known performance deterioration resulting from their environment, not their construction. They are, therefore, applicable to many types of steam turbines. Common causes of deterioration are the following: solid particle erosion, deposits, increased clearances, and peening or damage from foreign material. Performance losses due to these factors are analyzed. An example of application is given.

Not Available

1982-05-01T23:59:59.000Z

438

Steam Partnerships: Case Study of Improved Energy Efficiency  

E-Print Network [OSTI]

Steam Partnerships: Case Study of Improved Energy Efficiency Michael V. Calogero, P.E., CEM Robert E. Hess Novi Leigh Director, Northeast Operations Sr. Energy Systems Engineer Energy Systems Engineer Armstrong Service, Inc ABSTRACT Effective.... 1998-2001 operating data from client's laundry processing facility. 3. Turner, Wayne C., Energy Management Handbook, 2 nd edition, 1993. 4. Armstrong International, Inc., Steam Conservation Guidelines for Condensate Drainage, Handbook N-1 01, 1997...

Calogero, M. V.; Hess, R. E.; Leigh, N.

439

Method for increasing steam decomposition in a coal gasification process  

DOE Patents [OSTI]

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, M.W.

1987-03-23T23:59:59.000Z

440

Influences of energy economy on steam turbine design  

SciTech Connect (OSTI)

The pulp and paper industry uses condensing, backpressure, and automatic extraction types of steam turbines. Small drive turbines have better efficiency with multiple stages. The author presents a summary of some alternate steam turbine designs and shows the impact on operating energy costs. There is a summary of operating parameters for various cogeneration design options with illustration of the relative energy cost of each of the various designs.

Garner, J.W. (BE and K Engineering, Morrisville, NC (United States))

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Bakerian Lecture: Experimental Researches to Determine the Density of Steam at Different Temperatures, and to Determine the Law of Expansion of Superheated Steam  

Science Journals Connector (OSTI)

...research-article The Bakerian Lecture: Experimental Researches to Determine the Density of Steam at Different Temperatures, and to Determine the Law of Expansion of Superheated Steam William Fairbairn Thomas Tate The Royal Society is collaborating with JSTOR...

1860-01-01T23:59:59.000Z

442

An Experimental Investigation of the Thermodynamical Properties of Super-Heated Steam. On the Cooling of Saturated Steam by Free Expansion  

Science Journals Connector (OSTI)

...research-article An Experimental Investigation of the Thermodynamical Properties of Super-Heated Steam. On the Cooling of Saturated Steam by Free Expansion John H. Grindley The Royal Society is collaborating with JSTOR to digitize, preserve...

1900-01-01T23:59:59.000Z

443

NPO Turboatom steam turbine design features and modifications  

SciTech Connect (OSTI)

Since its foundation in 1934, the Kharkov Turbine Works, parent of Turboatom has developed, manufactured, adjusted and operated steam turbine plants for thermal and nuclear power stations. More than 300 steam turbines for thermal power stations with a total capacity over 100,000 MW have been manufactured. Steam turbines rated 25 to 500 MW for pressures of 2.9 to 23.5 MPa for stations operating on fossil fuel and turbines rated 30 to 1100 MW for nuclear power stations (NPS) have been produced. unique experience was gained during building and operation of the SKR-100 turbine rated 100 MW for initial steam conditions of 29.4 MPa, 650{sup o}C with steam cooling and minimum use of high-temperature materials. In addition to the turbine plants made for the power stations of the former USSR, Turboatom has manufactured 95 steam turbines for export. These are installed at 7 nuclear and 16 thermal power stations throughout the world, including Bulgaria, China, Cuba, Finland, Germany, Hungary, Korea and Rumania. Turboatom produces turbines operating at 25; 50 or 60 l/s speed of rotation.

Levchenko, E.V. [NPO Turboatom, Kharkov (Ukraine)

1995-06-01T23:59:59.000Z

444

Single pressure steam bottoming cycle for gas turbines combined cycle  

SciTech Connect (OSTI)

This patent describes a process for recapturing waste heat from the exhaust of a gas turbine to drive a high pressure-high temperature steam turbine and a low pressure steam turbine. It comprises: delivering the exhaust of the gas turbine to the hot side of an economizer-reheater apparatus; delivering a heated stream of feedwater and recycled condensate through the cold side of the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus to elevate the temperature below the pinch point of the boiler; delivering the discharge from the high pressure-high temperature steam turbine through the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus; driving the high pressure-high temperature steam turbine with the discharge stream of feedwater and recycled condensate which is heated to a temperature below the pinch point of the boiler by the economizer-reheater apparatus; and driving the low pressure steam turbine with the discharged stream of the high pressure-high temperature steam turbine reheated below the pinch point of the boiler by the economizer-reheater apparatus.

Zervos, N.

1990-01-30T23:59:59.000Z

445

A theoretical and numerical investigation of turbulent steam jets in BWR steam blowdown.  

SciTech Connect (OSTI)

The preliminary results of PHOENICS and RELAP5 show that the current numerical models are adequate in predicting steam flow and stratification patterns in the upper Drywell of a BWR containment subsequent to a blow-down event. However, additional modeling is required in order to study detailed local phenomena such as condensation with non-condensables, natural convection, and stratification effects. Analytically, the intermittence modified similarity solutions show great promise. Once {gamma} is accounted for, the jet's turbulent shear stress can be determined with excellent accuracy.

NguyenLe, Q.

1998-06-26T23:59:59.000Z

446

The Ringhals 2 steam generator replacement  

SciTech Connect (OSTI)

Righals 2, located on the west coast of Sweden and operated by Vattenfall (Swedish State Power), is a Westinghouse 800-MW three-loop pressurized water reactor that started commercial operation in 1975. In 1983, a task force was assigned to make a study of the steam generator (SG) tube corrosion problems, mainly stress corrosion cracking in the tubesheet area, which caused between two and three unscheduled outages each year. The task force study concluded that replacement was clearly the best of the three alternatives considered. Late in 1984, a decision was made to replace the SG in the summer of 1989. It was also decided to take advantage of existing margins in the plant by increasing the heat transfer area of the new SG. A power increase of 9% would then be possible by fairly moderate modifications of the turbine plant. The SG replacement project was on time, below budget, and much below dose budget. As a consequence of the 9% uprating, the cost of the SG replacement will be recovered after 3 to 4 yr.

Looft, H.

1990-06-01T23:59:59.000Z

447

Numerical analysis of nanoaluminum combustion in steam  

Science Journals Connector (OSTI)

Abstract The comprehensive analysis of chain mechanism development in the Al–H2O system is performed on the base of novel reaction mechanism taking into account quantum chemistry studies of potential energy surfaces of the elementary reactions with Al-containing species and estimations of rate constants of corresponding reaction channels. As well the physical properties of Al-containing species involved in the reaction mechanism and needed for the calculation of their transport coefficients are reported. The developed reaction mechanism makes it possible to describe with reasonable accuracy the experimental data on ignition temperature in Al–O2–Ar and Al–H2O systems and obtain the qualitative agreement with measured value of laminar flame speed. The two-stage regime of ignition in the Al–H2O reacting system was revealed both when the aluminum is in the liquid phase and when it comes into steam environment in the gas phase. It was shown that decreasing the ignition temperature one can increase the hydrogen yield in the combustion exhaust.

Alexander M. Starik; Pavel S. Kuleshov; Alexander S. Sharipov; Nataliya S. Titova; Chuen-Jinn Tsai

2014-01-01T23:59:59.000Z

448

Sizing sliding gate valves for steam service  

SciTech Connect (OSTI)

Sliding gate valves have been used in thousands of applications during the past 40 yr. While steam control is a common application for these valves, thy are also used to control other gases and liquids. The sliding gate design provides straight-through flow, which minimizes turbulence, vibration, and noise. Seats are self-cleaning and self-lapping to provide a tight, long-lasting shutoff. A correctly sized valve is essential for accurate control. Valve size should be determined by service and system requirements, not by the size of the existing pipeline. Sizing a valve on the basis of pipeline size usually results in an oversized valve and poor control. Generally, regulator size is smaller than pipe size. Whenever complete information is known (inlet pressure, outlet pressure, or pressure drop, and required flow), determine the valve flow coefficient (C{sub v}) using the equations in ANSI/ISA S75.01 or a flow sizing chart. Tables of values for various types of valves are available from manufacturers. However, when complete system requirements are not known, valve oversizing is prevented by determining the design capacity of piping downstream from the valve. The valve should not be sized to pass more flow than the maximum amount the pipe can handle at a reasonable velocity. An example calculation is given.

Bollinger, R. [Jordan Value, Cincinnati, OH (United States)

1995-11-06T23:59:59.000Z

449

Finding of No Significant Impact and Final Environmental Assessment for the Y-12 Steam Plant Life Extenstion Project - Steam Plant Replacement Subproject  

Broader source: Energy.gov (indexed) [DOE]

93 93 Finding of No Significant Impact and Final Environmental Assessment for the Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject U.S. Department of Energy Oak Ridge Y-12 Site Office National Nuclear Security Administration August 2007 DOE/EA-1593 Finding of No Significant Impact and Final Environmental Assessment for the Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject U.S. Department of Energy National Nuclear Security Administration

450

Year","Quarter","Destination State","Origin State","Consumer Type","Transportati  

U.S. Energy Information Administration (EIA) Indexed Site

Destination State","Origin State","Consumer Type","Transportation Mode","Coal Volume (short tons)" Destination State","Origin State","Consumer Type","Transportation Mode","Coal Volume (short tons)" 2012,3,"Alabama","Alabama","Coke Plant","Railroad",25445 2012,3,"Alabama","Alabama","Coke Plant","Truck",141202 2012,3,"Alabama","Alabama","Electric Power Sector","Railroad",1051202 2012,3,"Alabama","Alabama","Electric Power Sector","River",729969 2012,3,"Alabama","Alabama","Electric Power Sector","Truck",56130 2012,3,"Alabama","Alabama","Industrial Plants Excluding Coke","Railroad",10029

451

Hydrogen From MillHydrogen From Mill--Scale Waste Via MetalScale Waste Via Metal--Steam ReformingSteam Reforming INTRODUCTIONINTRODUCTION  

E-Print Network [OSTI]

1 Hydrogen From MillHydrogen From Mill--Scale Waste Via MetalScale Waste Via Metal--Steam ReformingSteam Reforming INTRODUCTIONINTRODUCTION Hydrogen is considered to be the ideal energy carrying medium for fuel and supplying hydrogen to the end user in more reversible, much simpler and far safer ways. Metal-steam

Azad, Abdul-Majeed

452

Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)  

SciTech Connect (OSTI)

A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

Not Available

2012-04-01T23:59:59.000Z

453

Reliable steam: To cogenerate or not to cogenerate?  

SciTech Connect (OSTI)

Leading industrial companies and institutions are forever seeking new and better ways to reduce their expenses, reduce waste, meet environmental standards, and, in general, improve their bottom-line. One approach to achieving all of these goals is a 100 year-old concept, cogeneration. Many industrial and institutional plants need thermal energy, generally as steam, for manufacturing processes and heating. They also need electric power for motors, lighting, compressed air and air conditioning. Traditionally, these fundamental needs are met separately. Steam is produced with industrial boilers and electricity is purchased from a local utility company. However, these needs can be met at the same time with cogeneration, using the same heat source. Cogeneration is the concurrent production of electrical power and thermal energy from the same heat source. Large steam users commonly take advantage of cogeneration by using high pressure steam with a back pressure turbine to generate electricity, and extract lower pressure steam from the turbine exhaust for their process needs. This approach reduces their electric utility bills while still providing thermal energy for industrial processes. The result is also a more efficient process that uses less total heat and discharges less smoke up the stack. Newer technologies are making cogeneration opportunities available to smaller-sized thermal plants, and electric utility deregulation opportunities are causing many CEOs to seriously consider cogeneration in their manufacturing plants. Whether steam is created through cogeneration or separate generation, many opportunities exist to improve productivity in the distribution system, operation, and maintenance. These opportunities are captured by taking a systems approach, which is promoted by programs such as the Department of Energy's Steam Challenge.

Jaber, D.; Jones, T.; D'Anna, L.; Vetterick, R.

1999-07-01T23:59:59.000Z

454

Optimization of steam explosion pretreatment. Final report  

SciTech Connect (OSTI)

Different operating conditions are required to optimize the yield from each of the various fractions in the substrate. Xylose recovery is maximized at short cooking times whereas maximum lignin recovery requires much longer cooking times. Peak glucose yield and rumen digestibility occur at intermediate times. If process conditions are set for maximum glucose yield we have achieved a yield of 68% of the theoretical, based on an average of a dozen substrates tested. Individual results ranged from 46 to 87%. If the process is optimized for maximum total sugars (i.e. glucose plus xylose) we have obtained an average yield of 60%, with a range of 31 to 75%. With rumen microflora, the average value of the in-vitro cellulose digestibility was 82%, with a range of 41 to 90%. The optimum operating conditions for total sugars are a pressure of 500 to 550 psig with a cooking time of 40 to 50 seconds and 35% starting moisture content. Particle size is not a significant factor, nor is pre-steaming or use of a constricting die in the gun nozzle. High quality lignin can be extracted with 80% yield. The Iotech lignin is very soluble, has a low molecular weight and is reactive. The unique properties of the lignin derive from the explosion at the end of the pretreatment. A lignin formaldehyde resin has been successfully formulated and tested. It represents a high value utilization of the lignin byproduct with immediate market potential. A detailed engineering design of the process gives an estimated operating cost of $7.50/OD ton of biomass. At this low cost, the Iotech process achieves many important pretreatment goals in a single step. The substrate has been sterilized; it has been pulverized into a powder; the cellulose has been accessible; and a highly reactive lignin fraction can be recovered and utilized.

Foody, P.

1980-04-01T23:59:59.000Z

455

Advanced steam parameters for pulverized coal fired boilers  

SciTech Connect (OSTI)

After the enormous efforts made in the eighties towards minimization of pollutant concentration in flue gases from power stations, public attention today has turned increasingly toward CO{sub 2} emissions from fossil fuel fired plants. This interest has, in turn, renewed interest in increasing the efficiency of thermal power plants, as this approach is by far the most practical means of reducing the specific CO{sub 2} emission rate. The Rankine steam cycle is the workhorse of the power industry. However, the steam power cycle is often regarded as having reached a maximum practical efficiency, and development effort has shifted to indirect fired cycles. In reality, Rankine cycle efficiencies equivalent to the combined Brayton/Rankine cycles are possible, and may be economically practical. The development work which would allow such steam cycle efficiencies to be realized has been limited in recent years, due to low growth rates, falling energy prices, and tying up of investment funds in environmental control equipment. This paper presents a short survey of the application for advanced steam parameters in power generation and discusses critical areas in more detail. A program undertaken by a consortium of European manufacturers and EC governments for the advancement of steam cycle efficiency is described.

Heiermann, G.; Husemann, R.U.; Kather, A.; Knizia, M.; Hougaard, P.

1996-12-31T23:59:59.000Z

456

Advanced method for turbine steam path deterioration and performance analysis  

SciTech Connect (OSTI)

The deterioration of a Steam Path affects the efficiency of a turbine. The most critical factors which affect the efficiency of steam and gas turbines are: seals wearing out, deposits, corrosion which causes material losses, solid particle erosion which leads to severe blade trailing edge material losses and others. Computer programs for design analysis of steam and gas turbines were developed. The input data are the steam or gas parameters before and after the turbine, mass flow and the blade path geometry (length, width, diameter, metal angles and clearances). The program calculates steam and gas parameters and their deviation from the design data. The blade path deterioration changes the dimensions such as blade throat, and in extreme cases also the angles. Putting the actual geometry into the program, the deviations from the design points are calculated exactly. The deviations expressed in kW as losses per stage are determined and listed. The paper briefly describes the program algorithm, sensitivity to geometry measurement errors and overall exactitude. Also, examples from field evaluations of some turbines are presented and illustrated. These tools are very helpful to the management the power plants in undertaking a correct decision concerning the date of the next major maintenance and replacement part procurement. The data gathered can be utilized for a more precise performance diagnostic during operation of the turbine.

Kubiak, J.; Angel, F. del; Carnero, A.; Campos, A.; Urquiza, G.; Marino, C.; Villegas, M. [Inst. de Investigaciones Electricas, Temixco, Morelos (Mexico). Div. Sistemas Mecanicos

1996-12-31T23:59:59.000Z

457

Downhole steam generator with improved preheating, combustion and protection features  

DOE Patents [OSTI]

An apparatus for generation of steam in a borehole for penetration into an earth formation wherein feedback preheater means are provided for the fuel and water before entering the combustor assembly. First, combustion gases are conducted from the combustion chamber to locations in proximity to the water and fuel supplies. Secondly, both hot combustion gases and steam are conducted from the borehole back to the water and fuel supply. The water used for conversion to steam is passed in a countercurrent manner through a plurality of annular water flow channels surrounding the combustion chamber. In this manner, the water is preheated, and the combustion chamber is cooled simultaneously, thereby minimizing thermal stresses and deterioration of the walls of the combustion chamber. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet of the combustor assembly. The outlet doors and fluid flow functions may be controlled by a diagnostic/control module. The module is positioned in the water flow channel to maintain a relatively constant, controlled temperature.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

458

Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of HyperCoal  

SciTech Connect (OSTI)

HyperCoal was produced from coal by a solvent extraction method. The effect of the partial pressure of steam on the gasification rate and gas composition at temperatures of 600, 650, 700, and 750{sup o}C was examined. The gasification rate decreased with decreasing steam partial pressure. The reaction order with respect to steam partial pressure was between 0.2 and 0.5. The activation energy for the K{sub 2}CO{sub 3}-catalyzed HyperCoal gasification was independent of the steam partial pressure and was about 108 kJ/mol. The gas composition changed with steam partial pressure and H{sub 2} and CO{sub 2} decreased and CO increased with decreasing steam partial pressure. By changing the partial pressure of the steam, the H{sub 2}/CO ratio of the synthesis gas can be controlled. 18 refs., 7 figs., 2 tabs.

Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

2009-09-15T23:59:59.000Z

459

A new profile control design based on quantitative identification of steam breakthrough channel in heavy oil reservoirs  

Science Journals Connector (OSTI)

Steam breakthrough has a great negative influence on the development of steam flooding in heavy oil reservoirs. In this article, a new profile control design based on quantitative identification of steam break...

Chuan Lu; Huiqing Liu; Zhanxi Pang…

2014-03-01T23:59:59.000Z

460

Industrialization and Urbanization: Did the Steam Engine Contribute to the Growth of Cities in the United States?  

E-Print Network [OSTI]

in the Century of the Steam Engine, Vol. 1. University Pressat Work: The Corliss Steam Engine in the Late-Nineteenth-and Adoption of the Steam Engine in American Manufacturing,”

Kim, Sukkoo

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Savings Accomplished by Replacing Steam Ejectors with Electric Driven Vacuum Pumps in Crude Distillation Vacuum Towers  

E-Print Network [OSTI]

The low cost of steam combined with the maintenance free operation of steam ejectors has assured their unquestioned use in providing the necessary vacuum for crude distillation vacuum towers. However, the cost of steam production has risen...

Nelson, R. E.

1982-01-01T23:59:59.000Z

462

Life assessment product catalog for boilers, steam pipes, and steam turbines  

SciTech Connect (OSTI)

Aging fossil power plants, escalating costs of new plant construction, and load growth rate uncertainties are motivating utilities to make the most effective use of critical components in existing power plants. To help meet this need, EPRI has refined existing methods and developed new methods of predicting the remaining life of key fossil plant components with greater accuracy and confidence. This report describes 16 EPRI products (guidelines, computer programs, and other tools) that apply these techniques to boiler tubes, boiler headers, steam lines, and turbine rotors, blades, and casings. Utility personnel, including plant engineers, maintenance supervisor, engineering department staff, plant operating staff, and performance engineers, can use these products to assess remaining component life, as well as to set cost-effective maintenance procedures, inspection schedules, and operating procedures.

Hoffman, S. (Hoffman (S.), Santa Clara, CA (United States))

1992-07-01T23:59:59.000Z

463

Steam reforming of carbo-metallic oils  

SciTech Connect (OSTI)

A process is disclosed for economically converting carbo-metallic oils to liquid fuel products by bringing a converter feed containing 650/sup 0/ F. + material characterized by a carbon residue on pyrolysis of at least about 1 and by containing at least about 4 ppm of nickel equivalents of heavy metals, including nickel, into contact with a particulate cracking catalyst in a progressive flow type reactor having an elongated conversion zone. The suspension of catalyst and feed in the reactor has a vapor residence time in the range of about 0.5 to about 10 seconds, a temperature of about 900/sup 0/ F. to about 1400/sup 0/ F. and a pressure of about 10 to about 50 pounds per square inch absolute for causing a conversion per pass in the range of about 50 to about 90 percent while depositing nickel on the catalyst and coke on the catalyst in amounts in the range of about 0.3 to about 3 percent by weight. The coke-laden catalyst is separated from the resulting stream of hydrocarbons and regenerated by combustion of the coke with oxygen, the regenerated catalyst being characterized by deposited nickel in at least a partially oxidized state and a level of carbon on catalyst of about 0.25 percent by weight or less. The regenerated catalyst is contacted with a reducing gas under reducing conditions sufficient to reduce at least a portion of the oxidized nickel deposits to a reduced state and the regenerated catalyst with reduced nickel deposits is recycled to the conversion zone for contact with fresh feed. Water is also introduced into the reactor conversion zone and the amount of water and the amount of reduced nickel on the recycled catalyst are sufficient to provide a steam reforming reaction so that hydrogen deficient components of the feed are converted to products having higher hydrogen to carbon ratios and the amount of feed converted to coke is reduced. The amount of deposited nickel on catalyst is preferably in the range from about 2,000 to about 20,000 ppm.

Myers, G.D.; Hettinger, W.P. Jr.; Kovach, S.M.; Zandona, O.J.

1984-02-21T23:59:59.000Z

464

EA-1178: 300 Area Steam Plant Replacement, Hanford Site, Richland,  

Broader source: Energy.gov (indexed) [DOE]

78: 300 Area Steam Plant Replacement, Hanford Site, Richland, 78: 300 Area Steam Plant Replacement, Hanford Site, Richland, Washington EA-1178: 300 Area Steam Plant Replacement, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts for a proposed energy conservation measure for a number of buildings in the 300 Area of the U.S. Department of Energy Hanford Site. The proposed action includes replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing new natural gas pipelines to provide a source for many of these units and constructing a central control building to operate and maintain the system. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 12, 1997 EA-1178: Finding of No Significant Impact

465

Graphite dust resuspension in an HTR-10 steam generator  

Science Journals Connector (OSTI)

Abstract Graphite dust has an important effect on the safety of high-temperature gas-cooled reactors (HTR). The flow field in the steam generator was studied by the computational fluid dynamics (CFD) method, with the results indicating that the friction velocity in the windward and the leeward of the heat transfer tubes is relatively low and is higher at the sides. Further analysis of the resuspension of graphite dust indicates that the resuspension fraction reaches nearly zero for particles with a diameter less than 1 ?m, whereas it will increases as the helium velocity in the steam generator increases for particle size larger than 1 ?m. Moreover, the resuspension fraction increases as the particle size increases. The results also indicate that resuspension of the particles with sizes larger than 1 ?m exhibited obvious differences in different parts of the steam generator.

Wei Peng; Tianqi Zhang; Yanan Zhen; Suyuan Yu

2014-01-01T23:59:59.000Z

466

Warming systems prolong steam-turbine life, accelerate startup  

SciTech Connect (OSTI)

Cycling capability is one of the top challenges in the design, operation, and maintenance of today's powerplants. This article describes how permanent warming systems can be a powerful ally in meeting this challenge, particularly for aging steam turbines. The warming system is typically used to hold steam-turbine shell temperatures during short shutdowns (up to about three days), or to pre-warm shells after longer shut-downs. Permanent warming systems elevate metal temperature above 500 F, distinguishing them from heat tracing systems that operate at much lower temperatures for freeze protection or viscosity control. Permanent warming systems can reduced steam-turbine damage during both startup heating and off-line cooling, and can reduce plant startup time.

Swanekamp, R.

1994-08-01T23:59:59.000Z

467

Steam driven centrifugal pump for low cost boiler feed service  

SciTech Connect (OSTI)

This article describes a steam driven centrifugal pump for boiler feed-water and other high pressure water applications, which was awarded Top Honors in the special pumps category of the 1982 Chemical processing Vaaler competition, because the simple design with turbine, pump and controls combined in an integral unit provides high operating efficiency and reliable performance with minimal maintenance. Single source responsibility for all components when the pump may have to be serviced is another advantage. These features meet the requirements for boiler feed pumps that are critical to maintaining a consistent steam supply in a process plant where downtime can be extremely expensive. The annual cost to operate the pump for 8000 hours is about $100,000, if electricity costs 5 cents/kwh. These pumps can be run for about $30,000 on steam, if natural gas costs $4.00/mcf. Cost savings are $70,000 annually.

Not Available

1982-11-01T23:59:59.000Z

468

Steam injection method and apparatus for recovery of oil  

SciTech Connect (OSTI)

A method and apparatus for recovering oil from an oil bearing formation utilizing steam injected into the formation. A working fluid is heated at the surface to produce a reversible, chemical reaction, particularly a reforming reaction in a reforming/methanation reaction cycle. The products of the reforming reaction are transported at near ambient temperatures to a downhole heat exchanger through which water is circulated. There a catalyst triggers the methanation reaction, liberating heat energy to convert the water to steam. The products of the methanation reaction are recirculated to the surface to repeat the cycle. In one embodiment the products of the methanation reaction are injected into the formation along with the steam. Various catalysts, and various systems for heating the working fluid are disclosed.

Meeks, T.; Rhoades, C.A.

1983-02-08T23:59:59.000Z

469

Geothermal Steam Act of 1970 | Open Energy Information  

Open Energy Info (EERE)

Steam Act of 1970 Steam Act of 1970 Jump to: navigation, search To encourage the development of geothermal energy, the United States government passed the Geothermal Steam Act in 1970 allowing the leasing of land containing geothermal resources; however, Congress excluded any lands within the National Park System, U.S. Fish and Wildlife Service lands, and any other lands prohibited from leasing by the Mineral Leasing Act of 1920. The Bureau of Land Management (BLM) administrates the Act, issuing distinct authorizations for the exploration, development, production, and closeout of a geothermal resource. When a lessee first receives a lease, they have ten years to reach a certain level of development with the land; upon demonstrating such development, BLM extends their lease to 40 years, after

470

Superalloys for ultra supercritical steam turbines--oxidation behavior  

SciTech Connect (OSTI)

Goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so called ultra-supercritical (USC) steam conditions. One of the important materials performance considerations is steam-side oxidation resistance. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism under USC conditions. A methodology to calculate Cr evaporation rates from chromia scales with cylindrical geometries was developed that allows for the effects of CrO2(OH)2 saturation within the gas phase. This approach was combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles as a function of exposure time and to predict the time until the alloy surface concentration of Cr reaches zero. This time is a rough prediction of the time until breakaway oxidation. A hypothetical superheater tube, steam pipe, and high pressure turbine steam path was examined. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. The predicted time until breakaway oxidation increases dramatically with decreases in temperature and total pressure. Possible mitigation techniques were discussed, including those used in solid oxide fuel cell metallic interconnects (lowering the activity of Cr in the oxide scale by adding Mn to the alloy), and thermal barrier coating use on high pressure turbine blades for both erosion and chromia evaporation protection.

Holcomb, G.R.

2008-09-01T23:59:59.000Z

471

A simplified model of decontamination by BWR steam suppression pools  

SciTech Connect (OSTI)

Phenomena that can decontaminate aerosol-laden gases sparging through steam suppression pools of boiling water reactors during reactor accidents are described. Uncertainties in aerosol properties, aerosol behavior within gas bubbles, and bubble behavior in plumes affect predictions of decontamination by steam suppression pools. Uncertainties in the boundary and initial conditions that are dictated by the progression of severe reactor accidents and that will affect predictions of decontamination by steam suppression pools are discussed. Ten parameters that characterize boundary and initial condition uncertainties, nine parameters that characterize aerosol property and behavior uncertainties, and eleven parameters that characterize uncertainties in the behavior of bubbles in steam suppression pools are identified. Ranges for the values of these parameters and subjective probability distributions for parametric values within the ranges are defined. These uncertain parameters are used in Monte Carlo uncertainty analyses to develop uncertainty distributions for the decontamination that can be achieved by steam suppression pools and the size distribution of aerosols that do emerge from such pools. A simplified model of decontamination by steam suppression pools is developed by correlating features of the uncertainty distributions for total decontamination factor, DF(total), mean size of emerging aerosol particles, d{sub p}, and the standard deviation of the emerging aerosol size distribution, {sigma}, with pool depth, H. Correlations of the median values of the uncertainty distributions are suggested as the best estimate of decontamination by suppression pools. Correlations of the 10 percentile and 90 percentile values of the uncertainty distributions characterize the uncertainty in the best estimates. 295 refs., 121 figs., 113 tabs.

Powers, D.A.

1997-05-01T23:59:59.000Z

472

1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000.

Chase, J.

2000-10-24T23:59:59.000Z

473

List of Steam-system upgrades Incentives | Open Energy Information  

Open Energy Info (EERE)

upgrades Incentives upgrades Incentives Jump to: navigation, search The following contains the list of 100 Steam-system upgrades Incentives. CSV (rows 1 - 100) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Steam-system upgrades Water Heaters Windows Biodiesel Biomass CHP/Cogeneration Ethanol Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Photovoltaics Renewable Fuels Solar Water Heat Commercial Refrigeration Equipment Natural Gas Yes Ameren Missouri (Gas) - Business Energy Efficiency Program (Missouri) Utility Rebate Program Missouri Commercial

474

The nuclear heated steam reformer — Design and semitechnical operating experiences  

Science Journals Connector (OSTI)

Good operating experiences of the EVA I- and EVA II-plant have been described. Therin the comparison of the different catalyst concepts has been given. Further the behaviour of the bundle of EVA II plant by isolation of individual reformer tubes as well as the performance of the bundle under transient conditions have been explained. Different design concepts for a nuclear heated steam reformer based on the concentric tubes and baffles have been given. Main points of studies are constructional details, thermohydraulic of the bundle and stress analysis. It can be shown that the present standard of knowledge allows the application of the steam reformer for coal refinement with nuclear heat.

J. Singh; H.F. Niessen; R. Harth; H. Fedders; H. Reutler; W. Panknin; W.D. Müller; H.G. Harms

1984-01-01T23:59:59.000Z

475

High temperature gas cooled reactor steam-methane reformer design  

SciTech Connect (OSTI)

The concept of the long distance transportation of process heat energy from a High Temperature Gas Cooled Reactor (HTGR) heat source, based on the steam-methane reforming reaction, is being evaluated by the Department of Energy as an energy source/application for use early in the 21st century. This paper summaries the design of a helium heated steam reformer utilized in conjunction with an intermediate loop, 850/degree/C reactor outlet temperature, HTGR process heat plant concept. This paper also discusses various design considerations leading to the mechanical design features, the thermochemical performance, the materials selection and the structural design analysis. 12 refs.

Impellezzeri, J.R.; Drendel, D.B.; Odegaard, T.K.

1981-01-01T23:59:59.000Z

476

A Comparative Study between Co and Rh for Steam Reforming of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

between Co and Rh for Steam Reforming of Ethanol. A Comparative Study between Co and Rh for Steam Reforming of Ethanol. Abstract: Rh and Co-based catalyst performance was compared...

477

Catalytic roles of Co0 and Co2+ during steam reforming of ethanol...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

roles of Co0 and Co2+ during steam reforming of ethanol on CoMgO catalysts . Catalytic roles of Co0 and Co2+ during steam reforming of ethanol on CoMgO catalysts . Abstract:...

478

Microsoft Word - Seattle Steam Draft EA for concurrence-6-16...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The exhaust gas from the turbine would be routed to a once-through (heat recovery) steam generator, which would be equipped with natural gas-fired duct burners to increase steam...

479

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS  

E-Print Network [OSTI]

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS Kimberly established that biomass pyrolysis oil could be steam-reformed to generate hydrogen using non pyrolysis oil could be almost stoichiometrically converted to hydrogen. However, process performance

480

Experimental Research on Low-Temperature Methane Steam Reforming Technology in a Chemically Recuperated Gas Turbine  

Science Journals Connector (OSTI)

Under the operating parameters of a chemically recuperated gas turbine (CRGT), the low-temperature methane steam reforming test bench is designed and built; systematic experimental studies about fuel steam reforming are conducted. Four different reforming ...

Qian Liu; Hongtao Zheng

2014-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "destination metallurgical steam" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Revitalization of a Steam Lab to Meet Energy Challenge and Strengthen Mechanical Engineering Education  

E-Print Network [OSTI]

An 'old' and 'obsolete' boiler system was revitalized and an enhanced Steam Lab was established based on that system. In this project, modifications and improvements were made to the facility, which contains a 150 BHP boiler, condenser, steam...

Kozman, T.; Simon, W. E.; Guidry, J.; Liu, Y.

2011-01-01T23:59:59.000Z

482

E-Print Network 3.0 - analyzing steam generator Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the early develop- ment of high-pressure steam... A History of the Growth of the Steam Engine (1883) Hero of Alexandria, who lived around 60 AD, con- ducted Source: Leveson,...

483

E-Print Network 3.0 - area steam plants Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewables 79 copyright Summary: Figure 1: 50 kW prototype solar power plant using Steam Engine Induction Generator Paraboloid dish... Modelling of a 400m2 steam based...

484

Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries  

Broader source: Energy.gov [DOE]

This report assesses steam generation and use in the pulp and paper, chemical manufacturing, and the petroleum refining industries. The report also estimates the energy savings potential available from implementing steam system performance and efficiency improvements.

485

The Passenger Steamboat Phoenix: An Archaeological Study of Early Steam Propulsion in North America  

E-Print Network [OSTI]

The advent of steam contributed heavily to the economic transformation of early America, facilitating trade through the transportation of goods along the country’s lakes, rivers, and canals. Serious experimentation with steam navigation began...

Schwarz, George 1977-

2012-08-31T23:59:59.000Z

486

From Basic Control to Optimized Systems-Applying Digital Control Systems to Steam Boilers  

E-Print Network [OSTI]

This presentation examines the application of Distributed Digital Controls in order to review the application of this recent control technology towards Steam Boilers in a step-by-step manner. The main purpose of a steam generating boiler...

Hockenbury, W. D.

1982-01-01T23:59:59.000Z

487

Energy Comparison Vacuum Producing Equipment - Mechanical Vacuum Pumps vs. Steam Ejectors  

E-Print Network [OSTI]

vacuum on condensers, process reactors, or equipment and processes requiring subatmospheric conditions, has been to utilize steam ejectors. Due to the inherent operating inefficiency and wastefulness of the steam ejector, coupled with the rapidly...

Foisy, E. C.; Munkittrick, M. T.

1982-01-01T23:59:59.000Z

488

Flash High-Pressure Condensate to Regenerate Low-Pressure Steam  

SciTech Connect (OSTI)

This revised ITP tip sheet on regenerating low-pressure steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

489

Steam turbines of the Ural Turbine Works for advanced projects of combined-cycle plants  

Science Journals Connector (OSTI)

We describe the design features, basic thermal circuits, and efficiency of steam turbines developed on the basis of serially produced steam turbines of Ural Turbine Works and used as part of combined-cycle plants...

G. D. Barinberg; A. E. Valamin; A. Yu. Kultyshev

2009-09-01T23:59:59.000Z

490

New draft projects of steam turbines for combined-cycle plants  

Science Journals Connector (OSTI)

We describe the design features, basic thermal circuits, and efficiency of steam turbines developed on the basis of serially produced steam turbines at the Ural Turbine Works and intended for use as part of combined

G. D. Barinberg; A. E. Valamin; A. Yu. Kultyshev; A. A. Ivanovskii…

2011-01-01T23:59:59.000Z

491

Modelling of a Coil Steam Generator for Concentrated Solar Power Applications.  

E-Print Network [OSTI]

??The project investigates a new design for a CSP plant steam generation system, the Coil Steam Generator(CSG). This system allows faster start-ups and therefore higher… (more)

PELAGOTTI, LEONARDO

2014-01-01T23:59:59.000Z

492

Energy Management of Steam Distribution Systems Through Energy Audits and Computerized Reporting Programs  

E-Print Network [OSTI]

ENERGY KANAGEKBNT OF STEAM DISTRIBUTION SYSTEMS THROUGH BNKRGY AUDITS AND COItPlTl'ERIZED REPORTING PROGRAtIS NORMAN J. RIVERS and HARTIN MANDZUK Armstrong Machine Works, Inc. Three Rivers, Michigan ABSTRACT This presentation will highlight... the economic losses associated with steam distribution systems and how to establish good energy management programs to reduce energy cost by 15 to 25 percent. Recognizing energy losses in steam systems involves I 1. Steam lost through defective valves...

Rivers, N.; Mandzuk, N.

493

Semiconductor systems utilizing materials that form rectifying junctions in both N and P-type doping regions, whether metallurgically or field induced, and methods of use  

DOE Patents [OSTI]

Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

Welch, James D. (10328 Pinehurst Ave., Omaha, NE 68124)

2000-01-01T23:59:59.000Z

494

The apparent “super-Carnot” efficiency of hurricanes: Nature’s steam engine versus the steam locomotive  

Science Journals Connector (OSTI)

The thermodynamics of the hurricane—Nature’s steam engine—presents surprising contrasts with that of the steam locomotive. The hurricane rejects not only its waste heat at the lowest available temperature (as all heat engines must do to maximize efficiency) but also its work (that is the kinetic energy of its winds) via frictional dissipation at the highest available temperature. We show how the hurricane’s “super-Carnot” efficiency is consistent with the laws of thermodynamics. We also show that even standard heat engines can achieve “super-Carnot” efficiency albeit via a different mechanism and to a far inferior degree than the hurricane.

Jack Denur

2011-01-01T23:59:59.000Z

495

"Table A49. Average Prices of Purchased Electricity, Steam, and Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Average Prices of Purchased Electricity, Steam, and Natural Gas" 9. Average Prices of Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam",," Natural Gas" ," (Million kWh)",," (Billion Btu)",," (1000 cu ft)" ,"-","-----------","-","-----------","-","-","-","RSE" " ","Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row"

496

Table A23. Quantity of Purchased Electricity, Steam, and Natural Gas by Type  

U.S. Energy Information Administration (EIA) Indexed Site

3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" 3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,," Electricity",," Steam",," Natural Gas" ,," (Million kWh)",," (Billion Btu)",," (Billion cu ft)" ,," -------------------------",," -------------------------",," ---------------------------------------",,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row"

497

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 37  

E-Print Network [OSTI]

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 37 Proving Safety Properties of the Steam Boiler Controller Formal Methods for Industrial Applications: A Case Study system consisting of a continuous steam boiler and a discrete controller. Our model uses the Lynch

Lynch, Nancy

498

An Algebraic Speci cation of the Steam-Boiler Control System  

E-Print Network [OSTI]

An Algebraic Speci#12;cation of the Steam-Boiler Control System Michel Bidoit 1 , Claude Chevenier describe how to derive an algebraic speci#12;cation of the Steam-Boiler Control System starting from to specify the detection of the steam-boiler fail- ures. Finally we discuss validation and veri#12;cation

Bidoit, Michel

499

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 20  

E-Print Network [OSTI]

Proving Safety Properties of the Steam Boiler Controller G. Leeb, N. Lynch Page 1 of 20 Proving Safety Properties of the Steam Boiler Controller Formal Methods for Industrial Applications: A Case Study system consisting of a continuous steam boiler and a discrete controller. Our model uses the Lynch

Lynch, Nancy

500

Assertional Specification and Verification using PVS of the Steam Boiler Control System  

E-Print Network [OSTI]

Assertional Specification and Verification using PVS of the Steam Boiler Control System Jan Vitt 1 of the steam boiler control system has been derived using a formal method based on assumption/commitment pairs Introduction The steam boiler control system, as described in chapter AS of this book, has been designed

Hooman, Jozef