National Library of Energy BETA

Sample records for designated user facilities

  1. DOE Designated User Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designated User Facilities DOE Designated User Facilities DOE Designated User Facilities Sept 30 2015 More Documents & Publications Microsoft Word - DesignatedUserFacilitiesApri...

  2. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities User facility agreements allow Los Alamos partners and other entities to conduct research at our unique facilities. In 2011, LANL hosted more than 1,200 users at CINT, LANSCE, and NHMFL. Users came from across the DOE complex, from international academia, and from industrial companies from 45 states across the U.S. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility

  3. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities A new research frontier awaits! Our door is open, and we thrive on mutually beneficial partnerships and collaborations that drive innovations and new technologies. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, Los Alamos National Laboratory can implement user facility agreements that allow its partners and other entities to conduct research at many of its unique facilities. While our largest user

  4. Programs & User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Programs » Office of Science » Programs & User Facilities Programs & User Facilities Enabling remarkable discoveries, tools that transform our understanding of energy and matter and advance national, economic, and energy security Advanced Scientific Computing Research Applied Mathematics Co-Design Centers Exascale Co-design Center for Materials in Extreme Environments (ExMatEx) Center for Exascale Simulation of Advanced Reactors (CESAR) Center for Exascale Simulation of

  5. National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National User Facilities Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Berkeley Lab's User Facilities-Engines of Discovery Berkeley Lab's User Facilities provide state-of-the-art resources for scientists across the nation and around the world. About 10,000 researchers a year use these facilities, representing nearly one third of the total for all Department of Energy

  6. The Department of Energy has opted to utilize the following agreement for Designated Non-Proprietary User Facilities transactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    agreement for Designated Proprietary User Facilities transactions. Because these transactions are widespread across Departmental facilities, uniformity in agreement terms is desirable. Except for the *** provisions, minor modifications to the terms of this agreement may be made by CONTRACTOR, but any changes to the *** provisions or substantive changes to the non *** provisons will require approval by the DOE Contracting Officer, WHICH WILL LIKEY DELAY YOUR ACCESS TO THE USER FACILITY. In

  7. User Facilities at Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities at Argonne Argonne National Laboratory designs, builds, and operates national scientific user facilities for the benefit of researchers from industry, academia, and government laboratories. These one-of-a-kind facilities attract great minds from all over the nation to solve society's complex scientific problems. PDF icon User_Facilities

  8. Department of Energy Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today designated the Idaho National Laboratory's (INL) Advanced Test Reactor (ATR) as a National Scientific User Facility.  Establishing the ATR...

  9. Test and User Facilities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test and User Facilities Our test and user facilities are available to industry and other organizations for researching, developing, and evaluating energy technologies. We can work with you to design the tests and operate the equipment. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines B Battery Thermal and Life Test Facility Biochemical Conversion Pilot Plant C Controllable Grid Interface Test System D Distributed

  10. User Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Photon Source Argonne Leadership Computing Facility Argonne Tandem Linear Accelerator System Center for Nanoscale Materials Transportation Research and Analysis Computing Center Science Work with Argonne About Safety News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne User Facilities Advanced Photon Source Argonne

  11. User Facilities Expert Team - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IMG_2298.JPG User Facilities Expert Team Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device

  12. Office of Science User Facilities

    Broader source: Energy.gov [DOE]

    This presentation summarizes the information on the Office of Science User Facilities, which was given during the webinar on the DOE BRIDGE funding opportunity.

  13. User Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory is a premier user facility providing world-class expertise, instrumentation and infrastructure for interdisciplinary nanoscience and nanotechnology research....

  14. PIA - Advanced Test Reactor National Scientific User Facility Users Week

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 | Department of Energy Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 (316.78 KB) More Documents & Publications PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE PIA - INL Education Programs Business Enclav

  15. User's guide to DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The Department of Energy's research laboratories represent valuable, often unique, resources for university and industrial scientists. It is DOE policy to make these laboratories and facilities available to qualified scientists. The answers to such questions as who are eligible, what and where are the facilities, what is the cost, when can they be used, are given. Data sheets are presented for each facility to provide information such as location, user contact, description of research, etc. A subject index refers to areas of research and equipment available.

  16. PIA - Advanced Test Reactor National Scientific User Facility...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 (316.78 KB) More Documents & ...

  17. HEP User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP User Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User

  18. FES User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FES User Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User

  19. ASCR User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASCR User Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User

  20. All User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All User Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User

  1. User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Facilities User Facilities Print Text Size: A A A FeedbackShare Page The Nuclear Physics program supports the following national scientific user facilities: Argonne Tandem ...

  2. User Facilities at a Glance | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities at a Glance User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User

  3. Official List of SC User Facilities | U.S. DOE Office of Science...

    Office of Science (SC) Website

    On March 19, 2015 the Accelerator Test Facility was designated an Office of Science user facility and the National Synchrotron Light Source II entered operating status with a ...

  4. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities User Facilities User Facilities Home User Facilities at a Glance User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 jpg image, 64221 bytes The undulator hall of the Linac Coherent Light Source (LCLS). (SLAC National Accelerator Laboratory) jpg image, 93797 bytes Silicon

  5. User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    BER Home About Research Facilities User Facilities Atmospheric Radiation Measurement ... Atmospheric Radiation Measurement Climate Research Facility (ARM) at Global Network ARM is ...

  6. New User Facilities Web Page Highlights Work at National Laboratories...

    Office of Environmental Management (EM)

    User Facilities Web Page Highlights Work at National Laboratories New User Facilities Web Page Highlights Work at National Laboratories January 15, 2014 - 12:00am Addthis The User ...

  7. DOE national user facility in the Tropical Western Pacific.

    SciTech Connect (OSTI)

    Jones, L. A.; Porch, W. M.; Sisterson, Doug L.; Mather, J. H.; Long, C. N.

    2004-01-01

    In July 2003, the Department of Energy's Office of Biological and Environmental Research designated the Atmospheric Radiation Measurement sites as National User Facilities and renamed them the ARM Climate Research Facility (ACRF). As a result, the former ARM Cloud and Radiation Test bed (CART) sites are now collectively called Climate Research Sites. Part of the conditions associated with funding for ACRF is that the ARM program must attract new users. Located in Australia, and the island nations of Papua New Guinea and the Republic of Nauru, the three Tropical Western Pacific (TWP) research facilities offer unique scientific opportunities to prospective users. Although the locations of the facilities pose significant logistical challenges, particularly the two island sites, the TWP Office addresses these issues so that prospective users can focus on their research. The TWP Office oversees the operation of these sites by collaborating with the governments of Australia, Papua New Guinea, and the Republic of Nauru. Local observers are trained to effectively operate and maintain the facilities, and the state-side TWP Office offers supporting resources including daily instrument monitoring; equipment shipping, inventory tracking; customs coordination; and a readily deployable technical maintenance team at relatively minimal cost to prospective users. Satellite communications allow continuous, near-real time data from all three stations. The TWP Office also works diligently to maintain good local government and community relations with active outreach programs. This paper presents the TWP research facilities as the valuable resources they are to the scientific community.

  8. Training Courses for Argonne User Facilities | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Courses for Argonne User Facilities All core courses can be taken via the Remote Training web site. See the user training requirements summary for general information....

  9. Holifield Heavy Ion Research Facility: Users handbook

    SciTech Connect (OSTI)

    Auble, R.L.

    1987-01-01

    The primary objective of this handbook is to provide information for those who plan to carry out research programs at the Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge National Laboratory. The accelerator systems and experimental apparatus available are described. The mechanism for obtaining accelerator time and the responsibilities of those users who are granted accelerator time are described. The names and phone numbers of ORNL personnel to call for information about specific areas are given. (LEW)

  10. Audit of the Department of Energy's User Facilities, IG-0395

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Due to technology transfer efforts and excess capacities, even more facilities, such as ... 725,000 in Department added factor and depreciation costs in 41 user facility agreements. ...

  11. Biomass Feedstock National User Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstock National User Facility Biomass Feedstock National User Facility Breakout Session 1B-Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory kenney_biomass_2014.pdf (2.04 MB) More Documents & Publications Feedstock Supply and Logistics: Biomass as a Commodity Feedstock Supply and Logistics:Biomass as a Commodity 2013 Peer Review

  12. Acknowledging User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acknowledging User Facilities User Facilities User Facilities Home User Facilities at a Glance User Resources Getting Started User Safety Access Models User Agreements Data Management Resources Acknowledging User Facilities User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Resources Acknowledging

  13. User Survey | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Survey User Survey Results The ALCF conducts yearly surveys to gain a better understanding of how we can improve the user experience at ALCF. Below are the numeric results of these surveys. 2014 ALCF User Survey Results 2013 ALCF User Survey Results 2012 ALCF User Survey Results 2011 ALCF User Survey Results 2010 ALCF User Survey Results 2009 ALCF User Survey Results 2008 ALCF User Survey Results

  14. Annual Meeting Focuses on Bridging Science Across National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Meeting Focuses on Bridging Science Across National User Facilities Annual Meeting: Bridging Science Across National User Facilities The 2014 Annual Meeting was hosted by the Environmental Molecular Science Laboratory at Pacific Northwest National Laboratory on April 30-May 2. This meeting attracted a cross- section of more than 70 individuals ranging from facility directors, user representatives, user administrators, communicators, financial representative, and governmental affairs

  15. Office of Science User facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources » Office of Science User facilities Office of Science User facilities The Office of Science national scientific user facilities provide researchers with the most advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. In Fiscal Year 2013 over 30,000 researchers from academia, industry, and government laboratories, spanning all fifty

  16. On the future of BNL user facilities

    SciTech Connect (OSTI)

    Ben-Zvi, I.

    2010-08-01

    The purpose of this document is to portray the emerging technology of high-power high-brightness electron beams. This new technology will impact several fields of science and it is essential that BNL stay abreast of the development. BNL has a relative advantage and vital interest in pursuing this technology that will impact its two major facilities, the NSLS and RHIC. We have a sensible development path towards this critical future technology, in which BNL will gradually acquire a strong basis of Superconducting Radio Frequency (SRF) technology while executing useful projects. The technology of high-power AND high-brightness (HPHB) electron beams is based of the convergence of two extant, but relatively recent technologies: Photoinjectors and superconducting energy-recovering linacs. The HPHB technology presents special opportunities for the development of future BNL user facilities for High-Energy and Nuclear Science (HE-NP) and Basic Energy Science (BES). In HE-NP this technology makes it possible to build high-energy electron cooling for RHIC in the short range and a unique linac-based electron-ion collider (eRHIC). In BES, we can build short pulse, coherent FIR sources and high flux femtosecond hard x-ray sources based on Compton scattering in the short range and, in the longer range, femtosecond, ultra-high brightness synchrotron light sources and, ultimately, an X-ray Free-Electron Laser (FEL).

  17. Facility Interface Capability Assessment (FICA) user manual

    SciTech Connect (OSTI)

    Pope, R.B.; MacDonald, R.R.; Massaglia, J.L.; Williamson, D.A.; Viebrock, J.M.; Mote, N.

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is describe the FICA computer software and to provide the FICA user with a guide on how to use the FICA system. The FICA computer software consists of two executable programs: the FICA Reactor Report program and the FICA Summary Report program (written in the Ca-Clipper version 5.2 development system). The complete FICA software system is contained on either a 3.5 in. (double density) or a 5.25 in. (high density) diskette and consists of the two FICA programs and all the database files (generated using dBASE III). The FICA programs are provided as ``stand alone`` systems and neither the Ca-Clipper compiler nor dBASE III is required to run the FICA programs. The steps for installing the FICA software system and executing the FICA programs are described in this report. Instructions are given on how to install the FICA software system onto the hard drive of the PC and how to execute the FICA programs from the FICA subdirectory on the hard drive. Both FICA programs are menu driven with the up-arrow and down-arrow keys used to move the cursor to the desired selection.

  18. A U. S. Department of Energy User Facility Atmospheric Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U. S. Department of Energy User Facility Atmospheric ... INCOMING SOLAR RADIATION Surface Instruments REFLECTED ... Unfortunately, many of these useful datasets reside with the ...

  19. Number of Large Energy User Manufacturing Facilities by Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) State...

  20. Facility Operations and User Support | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Facility Operations and User Support This sub-program provides both necessary physical ... groups that enable the program to improve its planning and execution of its mission. ...

  1. National Laser Users' Facility Grant Program Awards | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) National Laser Users' Facility Grant Program Awards 2015 Awards 2012 Awards Learn More 2012 NLUF Awards 2015 NLUF Awards

  2. User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    These large-scale user facilities have made significant contributions to various scientific fields, including chemistry, physics, geology, materials science, environmental science, ...

  3. New User Facilities Web Page Highlights Work at National Laboratories

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Bioenergy Technologies Office (BETO) recently added a Web page titled, "User Facilities," to highlight the work at BETO-supported national laboratories.

  4. Guide to user facilities at the Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1984-04-01

    Lawrence Berkeley Laboratories' user facilities are described. Specific facilities include: the National Center for Electron Microscopy; the Bevalac; the SuperHILAC; the Neutral Beam Engineering Test Facility; the National Tritium Labeling Facility; the 88 inch Cyclotron; the Heavy Charged-Particle Treatment Facility; the 2.5 MeV Van de Graaff; the Sky Simulator; the Center for Computational Seismology; and the Low Background Counting Facility. (GHT)

  5. CRAD, Facility Safety- Nuclear Facility Design

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Design.

  6. ATR National Scientific User Facility 2009 Annual Report

    SciTech Connect (OSTI)

    Todd R. Allen; Mitchell K. Meyer; Frances Marshall; Mary Catherine Thelen; Jeff Benson

    2010-11-01

    This report describes activities of the ATR NSUF from FY-2008 through FY-2009 and includes information on partner facilities, calls for proposals, users week and education programs. The report also contains project information on university research projects that were awarded by ATR NSUF in the fiscal years 2008 & 2009. This research is university-proposed researcher under a user facility agreement. All intellectual property from these experiments belongs to the university per the user agreement.

  7. Major UMass User Facilities-Resources-PHaSe-EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major UMass User Facilities TRPL photo Researchers can access the capabilities of the various investigator interested in organic electronic materials, in PHaSE's original participating departments, and other centers and facilities, including the following: Materials Research Science & Engineering Center Center for Hierarchal Manufacturing High Field NMR Facility Mass Spectrometry Facility EPR Facility Keck Nanostructures Laboratory X-ray powder and single crystal diffraction Polymer

  8. Facility Operations and User Support | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Facility Operations and User Support This sub-program provides both necessary physical facility and operational support for reliable, cross-lab production computing and storage environments as well as a suite of user services for effective use of ASC tri-lab computing resources. The scope of the facility operations includes planning, integration and deployment, continuing product support, software license and maintenance fees, procurement of operational equipment and

  9. The Fifth Omega Laser Facility Users Group Workshop

    SciTech Connect (OSTI)

    Petrasso, R. D.

    2015-10-01

    A capacity gathering of over 100 researchers from 25 universities and laboratories met at the Laboratory for Laser Energetics (LLE) for the Fifth Omega Laser Facility Users Group (OLUG) workshop. The purpose of the 2.5-day workshop was to facilitate communications and exchanges among individual Omega users and between users and the LLE management; to present ongoing and proposed research; to encourage research opportunities and collaborations that could be undertaken at the Omega Laser Facility and in a complementary fashion at other facilities [such as the National Ignition Facility (NIF) or the Laboratoire pour l’Utilisation des Lasers Intenses (LULI)]; to provide an opportunity for students, postdoctoral fellows, and young researchers to present their research in an informal setting; and to provide feedback to LLE management from the users about ways to improve the facility and future experimental campaigns.

  10. The Sixth Omega Laser Facility Users Group Workshop

    SciTech Connect (OSTI)

    Petrasso, R. D.

    2014-10-01

    A capacity gathering of over 100 researchers from 25 universities and laboratories met at the Laboratory for Laser Energetics (LLE) for the Sixth Omega Laser Facility Users Group (OLUG) workshop. The purpose of the 2.5-day workshop was to facilitate communications and exchanges among individual OMEGA users, and between users and the LLE management; to present ongoing and proposed research; to encourage research opportunities and collaborations that could be undertaken at the Omega Laser Facility and in a complementary fashion at other facilities [such as the National Ignition Facility (NIF) or the Laboratoire pour lUtilisation des Lasers Intenses (LULI)]; to provide an opportunity for students, postdoctoral fellows, and young researchers to present their research in an informal setting; and to provide feedback from the users to LLE management about ways to improve and keep the facility and future experimental campaigns at the cutting edge.

  11. New User Guide | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] New User Guide ► USER TIP: View "Getting Started" --a video introduction to ALCF services and resources with useful tips to boost your job throughput. Step 1. Request an ALCF Project Step 2. Get an ALCF User Account Step 3. Logging in to an ALCF Resource Step 4. Setting Up Your Computing Environment Step 5. Data Step 6. How to Run a Job

  12. Argonne User Facility Agreements | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials (CNM), The Argonne Leadership Computing Facility (ALCF), The Argonne Tandem Linac Accelerator System (ATLAS), and The Intermediate Voltage Electron Microscopy...

  13. User Authentication Policy | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users of the Argonne production systems are required to use a CRYPTOCard one time password... are: Something you know (for example, a password); Something you have (for example, an ID ...

  14. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Fusion Energy Sciences (FES) FES Home About Research Facilities User Facilities DIII-D National Fusion Facility (DIII-D) National Spherical Torus Experiment (NSTX) Alcator C-Mod ITER External link Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F:

  15. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    Douglas M. Gerstner

    2009-05-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 “flux traps” (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop’s temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation.

  16. DOE Thermochemical Users Facility A Proving Ground for Biomass Technology

    SciTech Connect (OSTI)

    None

    2003-11-01

    The National Bioenergy Center at the National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products.

  17. ATR National Scientific User Facility 2013 Annual Report

    SciTech Connect (OSTI)

    Ulrich, Julie A.; Robertson, Sarah

    2015-03-01

    This is the 2013 Annual Report for the Advanced Test Reactor National Scientific User Facility. This report includes information on university-run research projects along with a description of the program and the capabilities offered researchers.

  18. User Support | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services The ALCF User Experience Help Desk assists users with support requests related to their ALCF projects. The help desk is open from 9 a.m. until 5 p.m. (Central time) Monday through Friday, exclusive of holidays. Contact Us Email: support@alcf.anl.gov Telephone: 630-252-3111 866-508-9181 Help Desk: Building 240, 2-D-15/16 Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 Help Tickets To submit a help ticket for a technical issue, please email support@alcf.anl.gov and to

  19. User Advisory Council | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | National Nuclear Security Administration | (NNSA) fieldoffices / Welcome to the NNSA Production Office / NPO News Releases Uranium Processing Facility Project Celebrates Changing the Skyline of Y-12 August 25, 2016 Groundbreaking Ceremony Held for the Construction Support Building OAK RIDGE, Tenn.-The Uranium Processing Facility (UPF) Project celebrated the groundbreaking for its Construction Support Building (CSB) today, signifying the first building construction activity where the

  20. NP User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    User Facilities at a Glance NP User Facilities Print Text Size: A A A FeedbackShare Page The Nuclear Physics program supports the following national scientific user facilities: ...

  1. User Guides | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Allocations Mira/Cetus/Vesta Cooley Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] User Guides Information and instructions on system access, computing environment, running jobs, debugging and tuning performance for our computing resources at the ALCF. How to Get an Allocation How to get an Allocation: You must be awarded an allocation in order to use our computer systems. Please

  2. Advanced Test Reactor National Scientific User Facility 2010 Annual Report

    SciTech Connect (OSTI)

    Mary Catherine Thelen; Todd R. Allen

    2011-05-01

    This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

  3. Joint Facilities User Forum on Data Intensive Computing Lessons Learned

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Forum on Data Intensive Computing Lessons Learned - NERSC/JGI Partnership Kjiersten Fagnan, NERSC User Services/JGI --- 1 --- June 1 7, 2 013 Outline * Overview o f N ERSC/JGI P artnership - DOE J GI b ackground - Team o verview - Compute r esources * CompuBng S trategic P lan - JGI G oals - NERSC G oals * Lessons Learned --- 2 --- DOE Joint Genome Institute 3 DOE JGI, Serving as a genomic user facility in support of the DOE missions: * Walnut Creek, CA facility opened in 1999 * 250

  4. User Facility News | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News User Facilities User Facilities Home User Facilities at a Glance User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Facility News Print Text Size: A A A FeedbackShare Page GO 09.02.16User Facility SLAC and Stanford Team Finds a Tough New Catalyst for Use in Renewable Fuels

  5. National Laser User Facilities Program | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) National Laser User Facilities Program National Laser Users' Facility Grant Program Overview The Laboratory for Laser Energetics (LLE) at the University of Rochester (UR) was established in 1970 to investigate the interaction of high power lasers with matter. It is home of the Omega Laser Facility that includes OMEGA, a 30 kJ UV 60-beam laser system (at a wavelength of 0.35 mm) and OMEGA EP, a four-beam, high-energy, laser system with up to 26 kJ UV. Two of the OMEGA

  6. Data Needs for LCLS-II Amedeo Perazzo SLAC Joint Facilities User...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amedeo Perazzo SLAC Joint Facilities User Forum on Data Intensive Computing, June 16 th 2014 Joint Facilities User Forum on Data Intensive Computing - LCLS-II Data Needs ...

  7. Production Facility SCADA Design Report

    SciTech Connect (OSTI)

    Dale, Gregory E.; Holloway, Michael Andrew; Baily, Scott A.; Woloshun, Keith Albert; Wheat, Robert Mitchell Jr.

    2015-03-23

    The following report covers FY 14 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production facility. The goal of this effort is to provide Northstar with a baseline system design.

  8. User Facility Access Policy | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Access Policy 1. Summary The Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC National Accelerator Laboratory is a U.S. Department of Energy (DOE) Office of Science national user facility that provides synchrotron radiation to researchers in many fields of science and technology, including biology, catalysis, chemistry, energy, engineering, forensics, geoscience, materials science, medicine, molecular environmental science, and physics. With a pioneering start in 1974, the

  9. DOE Thermochemical Users Facility: A Proving Ground for Biomass Technology

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    The National Bioenergy Center at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products, including electricity, high-value chemicals, and transportation fuels.

  10. Nuclear Science User Facilities (NSUF) Monthly Report March 2015

    SciTech Connect (OSTI)

    Soelberg, Renae

    2015-03-01

    Nuclear Science User Facilities (NSUF) Formerly: Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report February 2015 Highlights; Jim Cole attended the OECD NEA Expert Group on Innovative Structural Materials meeting in Paris, France; Jim Lane and Doug Copsey of Writers Ink visited PNNL to prepare an article for the NSUF annual report; Brenden Heidrich briefed the Nuclear Energy Advisory Committee-Facilities Subcommittee on the Nuclear Energy Infrastructure Database project and provided them with custom reports for their upcoming visits to Argonne National Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory and the Massachusetts Institute of Technology; and University of California-Berkeley Principal Investigator Mehdi Balooch visited PNNL to observe measurements and help finalize plans for completing the desired suite of analyses. His visit was coordinated to coincide with the visit of Jim Lane and Doug Copsey.

  11. Preliminary design for a maglev development facility

    SciTech Connect (OSTI)

    Coffey, H.T.; He, J.L.; Chang, S.L.; Bouillard, J.X.; Chen, S.S.; Cai, Y.; Hoppie, L.O.; Lottes, S.A.; Rote, D.M. ); Zhang, Z.Y. ); Myers, G.; Cvercko, A. ); Williams, J.R. )

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable of powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.

  12. Advanced Test Reactor - A National Scientific User Facility

    SciTech Connect (OSTI)

    Clifford J. Stanley

    2008-05-01

    The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected nuclear research reactor with a maximum operating power of 250 MWth. The unique serpentine configuration of the fuel elements creates five main reactor power lobes (regions) and nine flux traps. In addition to these nine flux traps there are 68 additional irradiation positions in the reactor core reflector tank. There are also 34 low-flux irradiation positions in the irradiation tanks outside the core reflector tank. The ATR is designed to provide a test environment for the evaluation of the effects of intense radiation (neutron and gamma). Due to the unique serpentine core design each of the five lobes can be operated at different powers and controlled independently. Options exist for the individual test trains and assemblies to be either cooled by the ATR coolant (i.e., exposed to ATR coolant flow rates, pressures, temperatures, and neutron flux) or to be installed in their own independent test loops where such parameters as temperature, pressure, flow rate, neutron flux, and energy can be controlled per experimenter specifications. The full-power maximum thermal neutron flux is ~1.0 x1015 n/cm2-sec with a maximum fast flux of ~5.0 x1014 n/cm2-sec. The Advanced Test Reactor, now a National Scientific User Facility, is a versatile tool in which a variety of nuclear reactor, nuclear physics, reactor fuel, and structural material irradiation experiments can be conducted. The cumulative effects of years of irradiation in a normal power reactor can be duplicated in a few weeks or months in the ATR due to its unique design, power density, and operating flexibility.

  13. National Laser Users' Facility Grant Program | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) National Laser Users' Facility Grant Program The Laboratory for Laser Energetics (LLE) at the University of Rochester (UR) was established in 1970 to investigate the interaction of high power lasers with matter. It is home of the Omega Laser Facility that includes OMEGA, a 30 kJ UV 60-beam laser system (at a wavelength of 0.35 mm) and OMEGA EP, a four-beam, high energy, laser system with up to 26 kJ UV. Two of the OMEGA EP beamlines can also be operated as

  14. Chapter 9: Enabling Capabilities for Science and Energy | User Facility Statistics Supplemental Information

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    User Facility Statistics Chapter 9: Enabling Capabilities for Science and Energy Scientific User Facility Statistics User facilities 1 - federally sponsored research facilities available for external use to advance scientific or technical knowledge - are a core component of the Department of Energy's (DOE) Office of Science (DOE-SC) mission and an important part of the broader DOE mission. The 34 DOE user facilities 2 provide state-of-the-art experimental and/or computational resources that are

  15. Facility design, construction, and operation

    SciTech Connect (OSTI)

    1995-04-01

    France has been disposing of low-level radioactive waste (LLW) at the Centre de Stockage de la Manche (CSM) since 1969 and now at the Centre de Stockage de l`Aube (CSA) since 1992. In France, several agencies and companies are involved in the development and implementation of LLW technology. The Commissariat a l`Energie Atomic (CEA), is responsible for research and development of new technologies. The Agence National pour la Gestion des Dechets Radioactifs is the agency responsible for the construction and operation of disposal facilities and for wastes acceptance for these facilities. Compagnie Generale des Matieres Nucleaires provides fuel services, including uranium enrichment, fuel fabrication, and fuel reprocessing, and is thus one generator of LLW. Societe pour les Techniques Nouvelles is an engineering company responsible for commercializing CEA waste management technology and for engineering and design support for the facilities. Numatec, Inc. is a US company representing these French companies and agencies in the US. In Task 1.1 of Numatec`s contract with Martin Marietta Energy Systems, Numatec provides details on the design, construction and operation of the LLW disposal facilities at CSM and CSA. Lessons learned from operation of CSM and incorporated into the design, construction and operating procedures at CSA are identified and discussed. The process used by the French for identification, selection, and evaluation of disposal technologies is provided. Specifically, the decisionmaking process resulting in the change in disposal facility design for the CSA versus the CSM is discussed. This report provides` all of the basic information in these areas and reflects actual experience to date.

  16. BER User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    The Biological and Environmental Research program supports the following national scientific user facilities: Atmospheric Radiation Measurement Climate Research Facility (ARM) at ...

  17. DOE Designated User Facilities Multiple Laboratories

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Gaining Recognition as a Leader," originally presented in May 2013. In addition to this text version of the audio, you can access a recording of the webinar. Sam Rashkin: Slide 1: This is about the DOE Challenge Home as a way for builders to be recognized a leader. Eventually Challenge Home is promoting zero energy ready homes across the country. I believe the business model that we're kinda tapping into is the old Apple business model, which is, they build products

  18. Scientific User Facilities (SUF) Division Homepage | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) SUF Home Scientific User Facilities (SUF) Division SUF Home About User Facilities Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home Print Text Size: A A A FeedbackShare Page Research Needs Workshop Reports Workshop Reports The Scientific User Facilities (SUF) Division supports the R&D, planning, construction, and operation of scientific user facilities for the development of novel nano-materials and for materials

  19. Orientation to pollution prevention for facility design

    SciTech Connect (OSTI)

    Raney, E.A.; Whitehead, J.K.; Encke, D.B.; Dorsey, J.A.

    1994-01-01

    This material was developed to assist engineers in incorporating pollution prevention into the design of new or modified facilities within the U.S. Department of Energy (DOE). The material demonstrates how the design of a facility can affect the generation of waste throughout a facility`s entire life and it offers guidance on how to prevent the generation of waste during design. Contents include: Orientation to pollution prevention for facility design training course booklet; Pollution prevention design guideline; Orientation to pollution prevention for facility design lesson plan; Training participant survey and pretest; and Training facilitator`s guide and schedule.

  20. Joint Facilities User Forum on Data-Intensive Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using the Adaptable I/O System (ADIOS) Joint Facilities User Forum on Data-Intensive Computing June 18, 2014 Norbert Podhorszki Thanks to: H. Abbasi, S. Ahern, C. S. Chang, J. Chen, S. Ethier, B. Geveci, J. Kim, T. Kurc, S. Klasky, J. Logan, Q. Liu, K. Mu, G. Ostrouchov, M. Parashar, D. Pugmire, J. Saltz, N. Samatova, K. Schwan, A. Shoshani, W. Tang, Y. Tian, M. Taufer, W. Xue, M. Wolf + many more Subtle m essage o f t he f orum a genda . . . . . . . . . What i s A DIOS? * ADaptable I /O S ystem

  1. Support - Facilities - Radiation Effects Facility / Cyclotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    During experiments at the Radiation Effects Facility users are assisted by the experienced ... shops are available to the users of the Radiation Effects Facility for design, ...

  2. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

    2013-02-01

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

  3. Metals Processing Laboratory Users (MPLUS) Facility Annual Report FY 2002 (October 1, 2001-September 30, 2002)

    SciTech Connect (OSTI)

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program, user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary user centers: (1) Processing--casting, powder metallurgy, deformation processing (including extrusion, forging, rolling), melting, thermomechanical processing, and high-density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, and bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; and (4) Materials/Process Modeling--mathematical design and analyses, high-performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials databases A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state-of-the-art materials characterization capabilities, and high-performance computing to manufacturing technologies. MPLUS can be accessed through a standardized user-submitted proposal and a user agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provided free of charge

  4. Metals Processing Laboratory Users (MPLUS) Facility Annual Report: October 1, 2000 through September 30, 2001

    SciTech Connect (OSTI)

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary User Centers including: (1) Processing--casting, powder metallurgy, deformation processing including (extrusion, forging, rolling), melting, thermomechanical processing, high density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; (4) Materials/Process Modeling--mathematical design and analyses, high performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials data bases. A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state of the art materials characterization capabilities, high performance computing, to manufacturing technologies. MPLUS can be accessed through a standardized User-submitted Proposal and a User Agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provides free of charge while

  5. User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Experimental Tests (FACET) Accelerator Test Facility (ATF) Facility Ops Projects, ... Accelerator Test Facility (ATF) at Brookhaven National Laboratory The Accelerator Test ...

  6. User Statistics Collection Practices Archives | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Policies and Processes » User Statistics Collection Practices » User Statistics Collection Practices Archives User Facilities User Facilities Home User Facilities at a Glance User Resources User Statistics Policies and Processes Definition Designation Process Official List of SC User Facilities User Statistics Collection Practices User Statistics Collection Practices Archives Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of

  7. Vehicle Technologies Office Merit Review 2015: User Facilities for Energy Storage Materials Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about user facilities...

  8. Cold vacuum drying facility design requirements

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  9. Data Management Resources at the Office of Science User Facilities...

    Office of Science (SC) Website

    ... for Advanced Accelerator Experimental Tests (FACET) SLAC Link External link Accelerator Test Facility (ATF) BNL Link External link Nuclear Physics (NP) Facility Host Institution ...

  10. User Statistics Collection Practices | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Statistics Collection Practices User Facilities User Facilities Home User Facilities at a Glance User Resources User Statistics Policies and Processes Definition Designation Process Official List of SC User Facilities User Statistics Collection Practices User Statistics Collection Practices Archives Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P:

  11. Designing a user-system interface

    SciTech Connect (OSTI)

    Pfuderer, H.A.; Miller, K.C.

    1989-01-01

    Our team at the Oak Ridge National Laboratory (ORNL) has been successful in guiding managers of government organizations in planning and implementing successful strategic information systems. The essence of the ORNL methodology is to provide users at all levels in the organization many opportunities to participate in systems development. This user involvement included: incorporating their own critical success factors into the planning process; defining the business objectives, processes, and needed systems implementation in a team approach; and providing down-to-earth, usability feedback in prototyping the most strategic systems. 2 figs.

  12. National Ignition Facility Title II Design Plan

    SciTech Connect (OSTI)

    Kumpan, S

    1997-03-01

    This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed.

  13. Ultraviolet Free Electron Laser Facility preliminary design report

    SciTech Connect (OSTI)

    Ben-Zvi, I.

    1993-02-01

    This document, the Preliminary Design Report (PDR) for the Brookhaven Ultraviolet Free Electron Laser (UV FEL) facility, describes all the elements of a facility proposed to meet the needs of a research community which requires ultraviolet sources not currently available as laboratory based lasers. Further, for these experiments, the requisite properties are not extant in either the existing second or upcoming third generation synchrotron light sources. This document is the result of our effort at BNL to identify potential users, determine the requirements of their experiments, and to design a facility which can not only satisfy the existing need, but have adequate flexibility for possible future extensions as need dictates and as evolving technology allows. The PDR is comprised of three volumes. In this, the first volume, background for the development of the proposal is given, including descriptions of the UV FEL facility, and representative examples of the science it was designed to perform. Discussion of the limitations and potential directions for growth are also included. A detailed description of the facility design is then provided, which addresses the accelerator, optical, and experimental systems. Information regarding the conventional construction for the facility is contained in an addendum to volume one (IA).

  14. The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

  15. The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy & image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

  16. Advanced Test Reactor National Scientific User Facility: Addressing...

    Office of Scientific and Technical Information (OSTI)

    capability focused on resolving nuclear material performance issues through analysis on ... chemistry water loop for the ATR center flux trap, and a dedicated facility intended to ...

  17. Advances in Ion Accelerators Boost Argonne's ATLAS User Facility...

    Office of Science (SC) Website

    generation, high-current accelerator-based isotope production facilities, and compact high-intensity proton accelerators for medical, industrial and homeland security applications. ...

  18. Applying User Centered Design to Research Work

    SciTech Connect (OSTI)

    Scholtz, Jean; Love, Oriana J.; Pike, William A.; Bruce, Joseph R.; Kim, Dee DH; McBain, Arthur S.

    2014-07-01

    The SuperIdentity (SID) research project is a collaboration between six universities in the UK (Bath, Dundee, Kent, Leicester, Oxford, and Southampton) and the Pacific Northwest National Laboratory (PNNL). SID offers an innovative and exciting new approach to the concept of identity. The assumption underlying our hypothesis is that while there may be many dimensions to an identity - some more stable than others - all should ultimately reference back to a single core identity or a 'SuperIdentity.' The obvious consequence is that identification is improved by the combination of measures. Our work at PNNL has focused on the developing use cases to use in developing a model of identity and in developing visualizations for both researchers to explore the model and in the future for end users to use in determining various paths that may be possible to obtain various identity attributes from a set that is already known.

  19. Office of Nuclear Safety Basis and Facility Design

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety Basis & Facility Design establishes safety basis and facility design requirements and expectations related to analysis and design of nuclear facilities to ensure protection of workers and the public from the hazards associated with nuclear operations.

  20. Data Management Resources at the Office of Science User Facilities | U.S.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Office of Science (SC) Data Management Resources at the Office of Science User Facilities Funding Opportunities Funding Opportunities Home Grants & Contracts Support Award Search / Public Abstracts Find Funding Early Career Research Program Statement on Digital Data Management Suggested Elements for a Data Management Plan Frequently Asked Questions Resources at the Office of Science User Facilities Acknowledgements of Federal Support Contact Information Office of Science U.S.

  1. Office of Science User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Office of Science User Facilities DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Identifying a Collaborating DOE Laboratory Scientist Research Proposal Guidelines Office of Science Priority Research Areas for SCGSR Program About the Office of Science Office of Science User Facilities Priority Areas For Past SCGSR Solicitations Letters of Support Graduate Transcripts for Current Graduate Institution Application

  2. Accommodations for Joint Facilities User Forum on Data-Intensive Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & HPCOR Accommodations Accommodations for Joint Facilities User Forum on Data-Intensive Computing & HPCOR Both the Joint Facilities User Forum on Data-Intensive Computing and the DOE HPCOR meetings are being held in downtown Oakland, CA. We have reserved room blocks at two locations in Berkeley, CA. We recommend making your reservations as soon as possible because hotel rooms in the San Francisco Bay Area are in great demand. Hotel Shattuck Plaza Reservation cutoff date is May 23,

  3. Designing user models in a virtual cave environment

    SciTech Connect (OSTI)

    Brown-VanHoozer, S.; Hudson, R.; Gokhale, N.

    1995-12-31

    In this paper, the results of a first study into the use of virtual reality for human factor studies and design of simple and complex models of control systems, components, and processes are described. The objective was to design a model in a virtual environment that would reflect more characteristics of the user`s mental model of a system and fewer of the designer`s. The technology of a CAVE{trademark} virtual environment and the methodology of Neuro Linguistic Programming were employed in this study.

  4. Highly Enriched Uranium Materials Facility, Major Design Changes...

    Energy Savers [EERE]

    Highly Enriched Uranium Materials Facility, Major Design Changes Late...Lessons Learned Report, NNSA, Dec 2010 Highly Enriched Uranium Materials Facility, Major Design Changes...

  5. Interim Approach to the MRS facility design

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The purpose is to present the proposed Interim Approach to the Monitored Retrievable Storage (MRS) facility design development. This Interim Approach document fulfills the function allocated to the OCRWM-SEMP (DOE/RW-0051REVlP, March 1990, Section 5.2 Approach to the MRS Design) until the MRS section of the OCRWM-SEMP is approved. Until completion of the OCRWM-SEMP, this Interim Approach document will be approved and controlled according to the Program Change Control Procedure (DOE/RW-0223REV3P). This document discusses the general approach to Conceptual Design (CD), Title I Design, and Title II Design activities.

  6. User Facilities: Tools for Seeing Atoms | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Seeing Matter at Atomic and Molecular Scales » User Facilities: Tools for Seeing Atoms Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Facilities Nano for Energy Scale of Things Chart Contact Information Basic Energy Sciences U.S.

  7. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect (OSTI)

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG&G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  8. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    SciTech Connect (OSTI)

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

  9. Cold vacuum drying facility 90% design review

    SciTech Connect (OSTI)

    O`Neill, C.T.

    1997-05-02

    This document contains review comment records for the CVDF 90% design review. Spent fuels retrieved from the K Basins will be dried at the CVDF. It has also been recommended that the Multi-Conister Overpacks be welded, inspected, and repaired at the CVD Facility before transport to dry storage.

  10. Earth integrated design: office dormitory facility

    SciTech Connect (OSTI)

    Shapira, H.B.; Barnes, P.R.

    1980-01-01

    The generation process of the design of the Joint Institute for Heavy Ion Research is described. Architectural and energy considerations are discussed. The facility will contain living quarters for guest scientists who come to Oak Ridge to conduct short experiments and sleeping alcoves for local researchers on long experimental shifts as well as office space. (MHR)

  11. NERSC User's Group Meeting 2.4.14 Computational Facilities: NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User's Group Meeting 2.4.14 Computational Facilities: NERSC Collaborators: Martin Karplus, Eric Vanden-Eijnden, Kwangho Nam, Anne Houdusse, Robert Sauer Financial support: NIH Conformational change in biology: from amino acids to enzymes and molecular motors. Victor Ovchinnikov NERSC User's Group Meeting 2.4.14 2 Introduction  Conformational motions in biomolecules define all living things - Transport across membranes - Enzyme reactions (from proton transfer to DNA replication and repair) -

  12. LANSCE | Users | User Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Office LANSCE User Office and Visitor Center The LANSCE User Office is responsible for coordinating the users with LANSCE instrument scientist and the facility. Users contact the User Office weeks before they arrive at the LANSCE Visitor Center at Technical Area 53. Among their many responsibilities, the team issues the call for proposals, coordinates proposal experiment schedules, directs users to the training center, issues badges and dosimeters, helps to arrange tours of the facilities,

  13. Facility for Rare Isotope Beams: The Journey Has Begun on DOE's latest Scientific User Facility

    Broader source: Energy.gov [DOE]

    After many years of planning, ground was officially broken on the Facility for Rare Isotope Beams (FRIB) in a ceremony held at the construction site on Michigan State University’s campus.

  14. User Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and laboratories for physical and chemical analyses of biomass and engineered biomass feedstocks. Energy System Laboratory Access The biomass Feedstock Process Demonstration...

  15. Summary - Salt Waste Processing Facility Design at the Savannah...

    Office of Environmental Management (EM)

    of the Salt Waste Processing Facility Design at the Savannah River Site (SRS) Why ... and disposal in grout vaults. Parsons to design, construct, commission and initially ...

  16. Facility Safeguardability Analysis In Support of Safeguards-by-Design

    SciTech Connect (OSTI)

    Philip Casey Durst; Roald Wigeland; Robert Bari; Trond Bjornard; John Hockert; Michael Zentner

    2010-07-01

    The following report proposes the use of Facility Safeguardability Analysis (FSA) to: i) compare and evaluate nuclear safeguards measures, ii) optimize the prospective facility safeguards approach, iii) objectively and analytically evaluate nuclear facility safeguardability, and iv) evaluate and optimize barriers within the facility and process design to minimize the risk of diversion and theft of nuclear material. As proposed by the authors, Facility Safeguardability Analysis would be used by the Facility Designer and/or Project Design Team during the design and construction of the nuclear facility to evaluate and optimize the facility safeguards approach and design of the safeguards system. Through a process of “Safeguards-by-Design” (SBD), this would be done at the earliest stages of project conceptual design and would involve domestic and international nuclear regulators and authorities, including the International Atomic Energy Agency (IAEA). The benefits of the Safeguards-by-Design approach is that it would clarify at a very early stage the international and domestic safeguards requirements for the Construction Project Team, and the best design and operating practices for meeting these requirements. It would also minimize the risk to the construction project, in terms of cost overruns or delays, which might otherwise occur if the nuclear safeguards measures are not incorporated into the facility design at an early stage. Incorporating nuclear safeguards measures is straight forward for nuclear facilities of existing design, but becomes more challenging with new designs and more complex nuclear facilities. For this reason, the facility designer and Project Design Team require an analytical tool for comparing safeguards measures, options, and approaches, and for evaluating the “safeguardability” of the facility. The report explains how preliminary diversion path analysis and the Proliferation Resistance and Physical Protection (PRPP) evaluation

  17. ARM Mobile Facility - Design and Schedule for Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mobile Facility - Design and Schedule for Integration K. B. Widener Pacific Northwest ... The design phase for developing the AMF has begun. A design review was held for the AMF in ...

  18. Project W-441, cold vacuum drying facility design requirements document

    SciTech Connect (OSTI)

    O`Neill, C.T.

    1997-05-08

    This document has been prepared and is being released for Project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility. This document sets forth the physical design criteria, Codes and Standards, and functional requirements that were used in the design of the Cold Vacuum Drying Facility. This document contains section 3, 4, 6, and 9 of the Cold Vacuum Drying Facility Design Requirements Document. The remaining sections will be issued at a later date. The purpose of the Facility is to dry, weld, and inspect the Multi-Canister Overpacks before transport to dry storage.

  19. GCtool for fuel cell systems design and analysis : user documentation.

    SciTech Connect (OSTI)

    Ahluwalia, R.K.; Geyer, H.K.

    1999-01-15

    GCtool is a comprehensive system design and analysis tool for fuel cell and other power systems. A user can analyze any configuration of component modules and flows under steady-state or dynamic conditions. Component models can be arbitrarily complex in modeling sophistication and new models can be added easily by the user. GCtool also treats arbitrary system constraints over part or all of the system, including the specification of nonlinear objective functions to be minimized subject to nonlinear, equality or inequality constraints. This document describes the essential features of the interpreted language and the window-based GCtool environment. The system components incorporated into GCtool include a gas flow mixer, splitier, heater, compressor, gas turbine, heat exchanger, pump, pipe, diffuser, nozzle, steam drum, feed water heater, combustor, chemical reactor, condenser, fuel cells (proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate), shaft, generator, motor, and methanol steam reformer. Several examples of system analysis at various levels of complexity are presented. Also given are instructions for generating two- and three-dimensional plots of data and the details of interfacing new models to GCtool.

  20. Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... offered at CAMD's annual user meeting) or by retaking the online CAMD Radiation Safety Test. If your training has expired your access card will not allow access to the ...

  1. Weidlinger-Navarro selected for waste staging facility design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    staging facility design support business selected Weidlinger-Navarro Northern New Mexico Joint Venture, was selected to perform architectural and engineering work for the Lab's...

  2. Design criteria for Waste Coolant Processing Facility and preliminary proposal 722 for Waste Coolant Processing Facility

    SciTech Connect (OSTI)

    Not Available

    1991-09-27

    This document contains the design criteria to be used by the architect-engineer (A-E) in the performance of Titles 1 and 2 design for the construction of a facility to treat the biodegradable, water soluble, waste machine coolant generated at the Y-12 plant. The purpose of this facility is to reduce the organic loading of coolants prior to final treatment at the proposed West Tank Farm Treatment Facility.

  3. Hanford Site waste tank farm facilities design reconstitution program plan

    SciTech Connect (OSTI)

    Vollert, F.R.

    1994-09-06

    Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan.

  4. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect (OSTI)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  5. San Diego County- Design Standards for County Facilities

    Broader source: Energy.gov [DOE]

    The San Diego County Board of Supervisors established design standards for county facilities and property. Among other requirements,  the policy requires that all new county buildings or major...

  6. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014

    SciTech Connect (OSTI)

    Dan Ogden

    2014-10-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014 Highlights • Rory Kennedy, Dan Ogden and Brenden Heidrich traveled to Germantown October 6-7, for a review of the Infrastructure Management mission with Shane Johnson, Mike Worley, Bradley Williams and Alison Hahn from NE-4 and Mary McCune from NE-3. Heidrich briefed the group on the project progress from July to October 2014 as well as the planned path forward for FY15. • Jim Cole gave two invited university seminars at Ohio State University and University of Florida, providing an overview of NSUF including available capabilities and the process for accessing facilities through the peer reviewed proposal process. • Jim Cole and Rory Kennedy co-chaired the NuMat meeting with Todd Allen. The meeting, sponsored by Elsevier publishing, was held in Clearwater, Florida, and is considered one of the premier nuclear fuels and materials conferences. Over 340 delegates attended with 160 oral and over 200 posters presented over 4 days. • Thirty-one pre-applications were submitted for NSUF access through the NE-4 Combined Innovative Nuclear Research Funding Opportunity Announcement. • Fourteen proposals were received for the NSUF Rapid Turnaround Experiment Summer 2014 call. Proposal evaluations are underway. • John Jackson and Rory Kennedy attended the Nuclear Fuels Industry Research meeting. Jackson presented an overview of ongoing NSUF industry research.

  7. Preconceptual Design Description for Caustic Recycle Facility

    SciTech Connect (OSTI)

    Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.; Kurath, Dean E.

    2008-04-12

    The U.S. Department of Energy plans to vitrify both high-level and low-activity waste at the Hanford Site in southeastern Washington State. One aspect of the planning includes a need for a caustic recycle process to separate sodium hydroxide for recycle. Sodium is already a major limitation to the waste-oxide loading in the low-activity waste glass to be vitrified at the Waste Treatment Plant, and additional sodium hydroxide will be added to remove aluminum and to control precipitation in the process equipment. Aluminum is being removed from the high level sludge to reduce the number of high level waste canisters produced. A sodium recycle process would reduce the volume of low-activity waste glass produced and minimize the need to purchase new sodium hydroxide, so there is a renewed interest in investigating sodium recycle. This document describes an electrochemical facility for recycling sodium for the WTP.

  8. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure and Sustainable Energy Future Mission/Facilities Facilities Tara Camacho-Lopez 2016-04-06T18:06:13+00:00 National Solar Thermal Test Facility (NSTTF) facility_nsttf_slide NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants, which have three generic system architectures: line-focus (trough and continuous linear Fresnel reflector systems), point-focus central

  9. Technology Transitions Facilities Database

    Broader source: Energy.gov [DOE]

    The types of R&D facilities at the DOE Laboratories available to the public typically fall into three broad classes depending on the mode of access: Designated User Facilities, Shared R&D...

  10. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014

    SciTech Connect (OSTI)

    Soelberg, Renae

    2014-11-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014 Highlights Rory Kennedy and Sarah Robertson attended the American Nuclear Society Winter Meeting and Nuclear Technology Expo in Anaheim, California, Nov. 10-13. ATR NSUF exhibited at the technology expo where hundreds of meeting participants had an opportunity to learn more about ATR NSUF. Dr. Kennedy briefed the Nuclear Engineering Department Heads Organization (NEDHO) on the workings of the ATR NSUF. • Rory Kennedy, James Cole and Dan Ogden participated in a reactor instrumentation discussion with Jean-Francois Villard and Christopher Destouches of CEA and several members of the INL staff. • ATR NSUF received approval from the NE-20 office to start planning the annual Users Meeting. The meeting will be held at INL, June 22-25. • Mike Worley, director of the Office of Innovative Nuclear Research (NE-42), visited INL Nov. 4-5. Milestones Completed • Recommendations for the Summer Rapid Turnaround Experiment awards were submitted to DOE-HQ Nov. 12 (Level 2 milestone due Nov. 30). Major Accomplishments/Activities • The University of California, Santa Barbara 2 experiment was unloaded from the GE-2000 at HFEF. The experiment specimen packs will be removed and shipped to ORNL for PIE. • The Terrani experiment, one of three FY 2014 new awards, was completed utilizing the Advanced Photon Source MRCAT beamline. The experiment investigated the chemical state of Ag and Pd in SiC shell of irradiated TRISO particles via X-ray Absorption Fine Structure (XAFS) spectroscopy. Upcoming Meetings/Events • The ATR NSUF program review meeting will be held Dec. 9-10 at L’Enfant Plaza. In addition to NSUF staff and users, NE-4, NE-5 and NE-7 representatives will attend the meeting. Awarded Research Projects Boise State University Rapid Turnaround Experiments (14-485 and 14-486) Nanoindentation and TEM work on the T91, HT9, HCM12A and 9Cr ODS specimens has been completed at

  11. LLE 1998 annual report, October 1997--September 1998. Inertial fusion program and National Laser Users` Facility program

    SciTech Connect (OSTI)

    1999-01-01

    This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users` Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets.

  12. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  13. Cold Vacuum Drying (CVD) Facility Design Basis Accident Analysis Documentation

    SciTech Connect (OSTI)

    PIEPHO, M.G.

    1999-10-20

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR.

  14. NGDS User Centered Design Meeting the Needs of the Geothermal Community

    SciTech Connect (OSTI)

    Boyd, Suzanne; Zheng, Sam; Patten, Kim; Blackman, Harold

    2013-10-01

    In order to ensure the widest and greatest utility of IT and software projects designed for geothermal reservoir engineer- ing the full consideration of end users’ task and workflow needs must be evaluated. This paper describes the user-centered design (UCD) approach taken in the development of a user interface (UI) solution for the National Geothermal Data System (NGDS). This development process has been research based, highly collabora- tive, and incorporates state-of-the-art practices to ensure a quality user experience. Work is continuing on the interface, including future usability tests to further refine the interfaces as the overall system is developed.

  15. NGDS USER CENTERED DESIGN MEETING THE NEEDS OF THE GEOTHERMAL COMMUNITY

    SciTech Connect (OSTI)

    Boyd, Suzanne; Zheng, Sam Xianjun; Patten, Kim; Blackman, Harold

    2013-12-23

    In order to ensure the widest and greatest utility of IT and software projects designed for geothermal reservoir engineering the full consideration of end users’ task and workflow needs must be evaluated. This paper describes the user-centered design (UCD) approach taken in the development of a user interface (UI) solution for the National Geothermal Data System (NGDS). This development process has been researched based, highly collaborative, and incorporates state-of-the-art practices to ensure a quality user experience. Work is continuing on the interface, including future usability tests to further refine the interfaces as the overall system is developed.

  16. Waste receiving and processing facility module 1, detailed design report

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    WRAP 1 baseline documents which guided the technical development of the Title design included: (a) A/E Statement of Work (SOW) Revision 4C: This DOE-RL contractual document specified the workscope, deliverables, schedule, method of performance and reference criteria for the Title design preparation. (b) Functional Design Criteria (FDC) Revision 1: This DOE-RL technical criteria document specified the overall operational criteria for the facility. The document was a Revision 0 at the beginning of the design and advanced to Revision 1 during the tenure of the Title design. (c) Supplemental Design Requirements Document (SDRD) Revision 3: This baseline criteria document prepared by WHC for DOE-RL augments the FDC by providing further definition of the process, operational safety, and facility requirements to the A/E for guidance in preparing the design. The document was at a very preliminary stage at the onset of Title design and was revised in concert with the results of the engineering studies that were performed to resolve the numerous technical issues that the project faced when Title I was initiated, as well as, by requirements established during the course of the Title II design.

  17. Requirements and design concept for a facility mapping system

    SciTech Connect (OSTI)

    Barry, R.E.; Burks, B.L.; Little, C.Q.

    1995-02-01

    The Department of Energy (DOE) has for some time been considering the Decontamination and Dismantlement (D&D) of facilities which are no longer in use, but which are highly contaminated with radioactive wastes. One of the holdups in performing the D&D task is the accumulation of accurate facility characterizations that can enable a safe and orderly cleanup process. According to the Technical Strategic Plan for the Decontamination and Decommissioning Integrated Demonstration, {open_quotes}the cost of characterization using current baseline technologies for approximately 100 acres of gaseous diffusion plant at Oak Ridge alone is, for the most part incalculable{close_quotes}. Automated, robotic techniques will be necessary for initial characterization and continued surveillance of these types of sites. Robotic systems are being designed and constructed to accomplish these tasks. This paper describes requirements and design concepts for a system to accurately map a facility contaminated with hazardous wastes. Some of the technologies involved in the Facility Mapping System are: remote characterization with teleoperated, sensor-based systems, fusion of data sets from multiple characterization systems, and object recognition from 3D data models. This Facility Mapping System is being assembled by Oak Ridge National Laboratory for the DOE Office of Technology Development Robotics Technology Development Program.

  18. MHTool User's Guide - Software for Manufactured Housing Structural Design

    SciTech Connect (OSTI)

    W. D. Richins

    2005-07-01

    Since the late 1990s, the Department of Energy's Idaho National Laboratory (INL) has worked with the US Department of Housing and Urban Development (HUD), the Manufactured Housing Institute (MHI), the National Institute of Standards and Technology (NIST), the National Science Foundation (NSF), and an industry committee to measure the response of manufactured housing to both artificial and natural wind loads and to develop a computational desktop tool to optimize the structural performance of manufactured housing to HUD Code loads. MHTool is the result of an 8-year intensive testing and verification effort using single and double section homes. MHTool is the first fully integrated structural analysis software package specifically designed for manufactured housing. To use MHTool, industry design engineers will enter information (geometries, materials, connection types, etc.) describing the structure of a manufactured home, creating a base model. Windows, doors, and interior walls can be added to the initial design. Engineers will input the loads required by the HUD Code (wind, snow loads, interior live loads, etc.) and run an embedded finite element solver to find walls or connections where stresses are either excessive or very low. The designer could, for example, substitute a less expensive and easier to install connection in areas with very low stress, then re-run the analysis for verification. If forces and stresses are still within HUD Code requirements, construction costs would be saved without sacrificing quality. Manufacturers can easily change geometries or component properties to optimize designs of various floor plans then submit MHTool input and output in place of calculations for DAPIA review. No change in the regulatory process is anticipated. MHTool, while not yet complete, is now ready for demonstration. The pre-BETA version (Build-16) was displayed at the 2005 National Congress & Expo for Manufactured & Modular Housing. Additional base models and an

  19. Design characteristics for facilities which process hazardous particulate

    SciTech Connect (OSTI)

    Abeln, S.P.; Creek, K.; Salisbury, S.

    1998-12-01

    Los Alamos National Laboratory is establishing a research and processing capability for beryllium. The unique properties of beryllium, including light weight, rigidity, thermal conductivity, heat capacity, and nuclear properties make it critical to a number of US defense and aerospace programs. Concomitant with the unique engineering properties are the health hazards associated with processing beryllium in a particulate form and the potential for worker inhalation of aerosolized beryllium. Beryllium has the lowest airborne standard for worker protection compared to all other nonradioactive metals by more than an order of magnitude. This paper describes the design characteristics of the new beryllium facility at Los Alamos as they relate to protection of the workforce. Design characteristics to be reviewed include; facility layout, support systems to minimize aerosol exposure and spread, and detailed review of the ventilation system design for general room air cleanliness and extraction of particulate at the source.

  20. SLAC Accelerator Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACET & TF Careers & Education Archived FACET User Facility Quick Launch About FACET & Test Facilities Expand About FACET & Test Facilities FACET & Test Facilities User Portal...

  1. User-Centered Design Guidelines for Collaborative Software for Intelligence Analysis

    SciTech Connect (OSTI)

    Scholtz, Jean; Endert, Alexander N.

    2014-08-01

    In this position paper we discuss the necessity of using User-Centered Design (UCD) methods in order to design collaborative software for the intelligence community. We present some standing issues in collaborative software based on existing work within the intelligence community. Based on this information we present opportunities to address some of these challenges.

  2. User-Centered Design Guidelines for Collaborative Software for Intelligence Analysis

    SciTech Connect (OSTI)

    Scholtz, Jean; Endert, Alexander

    2014-07-01

    In this position paper we discuss the necessity of using User-Centered Design (UCD) methods in order to design collaborative software for the intelligence community. We discuss a number of studies of collaboration in the intelligence community and use this information to provide some guidelines for collaboration software.

  3. Safeguards-by-Design: Early Integration of Physical Protection and Safeguardability into Design of Nuclear Facilities

    SciTech Connect (OSTI)

    T. Bjornard; R. Bean; S. DeMuth; P. Durst; M. Ehinger; M. Golay; D. Hebditch; J. Hockert; J. Morgan

    2009-09-01

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities has the potential to minimize proliferation and security risks as the use of nuclear energy expands worldwide. This paper defines a generic SBD process and its incorporation from early design phases into existing design / construction processes and develops a framework that can guide its institutionalization. SBD could be a basis for a new international norm and standard process for nuclear facility design. This work is part of the U.S. DOEs Next Generation Safeguards Initiative (NGSI), and is jointly sponsored by the Offices of Non-proliferation and Nuclear Energy.

  4. BES User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Sources Neutron Sources SNS Chamber Neutron Scattering Facilities Nanoscience Centers TMF Clean Room Nanoscale Science Research Centers (NSRCs) Last modified: 352016 7:54:57

  5. Improving the quality of numerical software through user-centered design

    SciTech Connect (OSTI)

    Pancake, C. M., Oregon State University

    1998-06-01

    The software interface - whether graphical, command-oriented, menu-driven, or in the form of subroutine calls - shapes the user`s perception of what software can do. It also establishes upper bounds on software usability. Numerical software interfaces typically are based on the designer`s understanding of how the software should be used. That is a poor foundation for usability, since the features that are ``instinctively right`` from the developer`s perspective are often the very ones that technical programmers find most objectionable or most difficult to learn. This paper discusses how numerical software interfaces can be improved by involving users more actively in design, a process known as user-centered design (UCD). While UCD requires extra organization and effort, it results in much higher levels of usability and can actually reduce software costs. This is true not just for graphical user interfaces, but for all software interfaces. Examples show how UCD improved the usability of a subroutine library, a command language, and an invocation interface.

  6. Final Design Report for the RH LLW Disposal Facility (RDF) Project

    SciTech Connect (OSTI)

    Austad, S. L.

    2015-05-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  7. Final Design Report for the RH LLW Disposal Facility (RDF) Project

    SciTech Connect (OSTI)

    Austad, Stephanie Lee

    2015-09-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  8. Neutron Scattering Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science

  9. Conceptual design of an RTG Facility Transportation System

    SciTech Connect (OSTI)

    Black, S.J.; Gentzlinger, R.C.; Lujan, R.E.

    1994-06-03

    The conceptual design of an Radioisotope Thermoelectric Generator (RTG) Facility Transportation System which is part of the overall RTG Transportation System has been completed and is described in detail. The Facility Transportation System serves to provide locomotion, cooling, shock protection and data acquisition for the RTG package during loading and unloading sequences. The RTG Facility Transportation System consists of a Transporter Subsystem, a Package Cooling Subsystem, and a Shock Limiting Transit Device Subsystem. The Transporter Subsystem is a uniquely designed welded steel cart combined with a pneumatically-driven hand tug for locomotion. The Package Cooling Subsystem provides five kilowatts of active liquid cooling via an on-board refrigeration system. The Shock limiting Transit Device Subsystem consists of a consumable honeycomb transit frame which provides shock protection for the 3855 kg (8500 LB) RTG package. These subsystems have been combined into an integrated system which will facilitate the unloading and loading of the RTG , of the Transport Trailer as well as meet ALARA radiation Package into and out exposure guidelines.

  10. Cold Vacuum Drying facility design basis accident analysis documentation

    SciTech Connect (OSTI)

    CROWE, R.D.

    2000-08-08

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report (FSAR), ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR. The calculations in this document address the design basis accidents (DBAs) selected for analysis in HNF-3553, ''Spent Nuclear Fuel Project Final Safety Analysis Report'', Annex B, ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' The objective is to determine the quantity of radioactive particulate available for release at any point during processing at the Cold Vacuum Drying Facility (CVDF) and to use that quantity to determine the amount of radioactive material released during the DBAs. The radioactive material released is used to determine dose consequences to receptors at four locations, and the dose consequences are compared with the appropriate evaluation guidelines and release limits to ascertain the need for preventive and mitigative controls.

  11. Laser design basis for the National Ignition Facility

    SciTech Connect (OSTI)

    Hunt, J.T.; Manes, K.R.; Murray, J.R.; Renard, P.A.; Sawicki, R.; Trenholme, J.B.; Williams, W.

    1994-06-01

    Controlled nuclear fusion initiated by highly intense laser beams has been the subject of experiment for many years. The National Ignition Facility (NIF) represents the culmination of design efforts to provide a laser facility that will successfully demonstrate fusion ignition in the laboratory. In this so-called inertial confinement approach, energetic driver beams (laser, X-ray, or charged particle) heat the outer surface of a spherical capsule containing deuterium and tritium (DT) fuel. As the capsule surface explosively evaporates, reaction pressure compresses the DT fuel causing the central core of the fuel to reach extreme density and temperature. When the central temperature is high enough, DT fusion reactions occur. The energy released from these reactions further heats the compressed fuel, and fusion burn propagates outward through the colder regions of the capsule much more rapidly than the inertially confined capsule can expand. The resulting fusion reactions yield many times more energy than was absorbed from the driver beams.

  12. Magnet design considerations for Fusion Nuclear Science Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; Titus, Peter

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  13. Safeguards design strategies: designing and constructing new uranium and plutonium processing facilities in the United States

    SciTech Connect (OSTI)

    Scherer, Carolynn P; Long, Jon D

    2010-09-28

    In the United States, the Department of Energy (DOE) is transforming its outdated and oversized complex of aging nuclear material facilities into a smaller, safer, and more secure National Security Enterprise (NSE). Environmental concerns, worker health and safety risks, material security, reducing the role of nuclear weapons in our national security strategy while maintaining the capability for an effective nuclear deterrence by the United States, are influencing this transformation. As part of the nation's Uranium Center of Excellence (UCE), the Uranium Processing Facility (UPF) at the Y-12 National Security Complex in Oak Ridge, Tennessee, will advance the U.S.'s capability to meet all concerns when processing uranium and is located adjacent to the Highly Enriched Uranium Materials Facility (HEUMF), designed for consolidated storage of enriched uranium. The HEUMF became operational in March 2010, and the UPF is currently entering its final design phase. The designs of both facilities are for meeting anticipated security challenges for the 21st century. For plutonium research, development, and manufacturing, the Chemistry and Metallurgy Research Replacement (CMRR) building at the Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico is now under construction. The first phase of the CMRR Project is the design and construction of a Radiological Laboratory/Utility/Office Building. The second phase consists of the design and construction of the Nuclear Facility (NF). The National Nuclear Security Administration (NNSA) selected these two sites as part of the national plan to consolidate nuclear materials, provide for nuclear deterrence, and nonproliferation mission requirements. This work examines these two projects independent approaches to design requirements, and objectives for safeguards, security, and safety (3S) systems as well as the subsequent construction of these modern processing facilities. Emphasis is on the use of Safeguards-by-Design (SBD

  14. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    SciTech Connect (OSTI)

    1985-09-01

    In April 1985, the Department of Energy (DOE) selected the Clinch River site as its preferred site for the construction and operation of the monitored retrievable storage (MRS) facility (USDOE, 1985). In support of the DOE MRS conceptual design activity, available data describing the site have been gathered and analyzed. A composite geotechnical description of the Clinch River site has been developed and is presented herein. This report presents Clinch River site description data in the following sections: general site description, surface hydrologic characteristics, groundwater characteristics, geologic characteristics, vibratory ground motion, surface faulting, stability of subsurface materials, slope stability, and references. 48 refs., 35 figs., 6 tabs.

  15. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The facility has been used for more than a decade by a virtual Who's Who of the semiconductor industry to simulate the potential failures posed by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User Information The Neutron and Nuclear Science (WNR) Facility welcomes proposals for beam time experiments from industry users. Proprietary and non-proprietary industrial

  16. Greening Federal Facilities: An Energy, Environmental, and Economic Resource Guide for Federal Facility managers and Designers; Second Edition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FEDERAL FACILITIES An Energy, Environmental, and Economic Resource Guide for Federal Facility Managers and Designers SECOND EDITION DOE/GO-102001-1165 Section DOE/GO-102001-1165 NREL/BK-710-29267 May 2001 i Greening Federal Facilities An Energy, Environmental, and Economic Resource Guide for Federal Facility Managers and Designers SECOND EDITION "Then I say the earth belongs to each ... generation during its course, fully and in its own right, no generation can contract debts greater than

  17. User Safety | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Safety User Facilities User Facilities Home User Facilities at a Glance User Resources Getting Started User Safety Access Models User Agreements Data Management Resources Acknowledging User Facilities User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Resources User Safety Print Text Size: A

  18. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing needs

  19. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing needs

  20. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy User Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing

  1. Proprietary User Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alliance/NREL 10-12-15 The Department of Energy has opted to utilize the following agreement for Designated Proprietary User Facilities transactions. Because these transactions are widespread across Departmental facilities, uniformity in agreement terms is desirable. Except for the *** provisions, minor modifications to the terms of this agreement may be made by CONTRACTOR, but any changes to the *** provisions or substantive changes to the non *** provisions will require approval by the DOE

  2. Human factors design guidelines for maintainability of Department of Energy nuclear facilities

    SciTech Connect (OSTI)

    Bongarra, J.P. Jr.; VanCott, H.P.; Pain, R.F.; Peterson, L.R.; Wallace, R.I.

    1985-06-18

    Intent of these guidelines is to provide design and design review teams of DOE nuclear facilities with human factors principles to enhance the design and aid in the inspection of DOE nuclear facilities, systems, and equipment. These guidelines are concerned with design features of DOE nuclear facilities which can potentially affect preventive and corrective maintenance of systems within DOE nuclear facilities. Maintenance includes inspecting, checking, troubleshooting, adjusting, replacing, repairing, and servicing activities. Other factors which influence maintainability such as repair and maintenance suport facilities, maintenance information, and various aspects of the environment are also addressed.

  3. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly ReportJanuary 2015

    SciTech Connect (OSTI)

    Soelberg, Renae

    2015-01-01

    Highlights; Mike Worley and Shane Johnson visited INL Jan. 22 for an NSUF strategy discussion; Rory Kennedy attended a NSLS-2 Beamline Advisory Team meeting at Brookhaven; Provided a final cost estimate to the NSUF Program Office in support of the NEET/NSUF proposal, “Metal-ceramic and metal-metal composites for extreme radiation and temperature environment: An in situ interface stability and mechanical behavior study by high energy x-ray diffraction with a synchrotron probe.”; Assisted in the development of conceptual designs and performed a preliminary thermal hydraulic analysis for two NEET/NSUF proposals. The challenge for both experiments is to provide high (>1000 C and up to 1600 C)) specimen temperatures in a small space (0.5" diameter ATR Outboard A-position) without overheating the coolant. Several designs were analyzed and found to be feasible, although detailed design and analysis will be required after the projects are awarded; and A single USU TEM specimen is packaged and awaiting shipment from MFC to CAES. Once at CAES, SEM, TEM and LEAP analysis will be performed. Professor Ban has requested additional sub-samples to be made to take back to his laboratory at USU for thermal diffusivity studies.

  4. Design-only conceptual design report for pit disassembly and conversion facility. Rev 0

    SciTech Connect (OSTI)

    Zygmunt, S.; Christensen, L.; Richardson, C.

    1997-12-12

    This design-only conceptual design report (DOCDR) was prepared to support a funding request by the Department of Energy (DOE)-Office of Fissile Material Disposition (OFMD) for engineering design of the Pit Disassembly and Conversion Facility (PDCF) Project No. 99-D-141. The PDCF will be used to disassemble the nation`s inventory of surplus nuclear weapons pits and convert the plutonium recovered from those pits into a form suitable for storage, international inspection, and final disposition. The PDCF is a complex consisting of a hardened building that will contain the plutonium processes in a safe and secure manner, and conventional buildings and structures that will house support personnel, systems, and equipment. The PDCF uses the Advanced Recovery and Integrated Extraction System (ARIES), a low waste, modular pyroprocessing system to convert pits to plutonium oxide. The PDCF project consists of engineering and design, and construction of the buildings and structures, and engineering and design, procurement, installation, testing and start-up of equipment to disassemble pits and convert plutonium in pits to oxide form. The facility is planned to operate for 10 years, averaging 3.5 metric tons (3.86 tons) of plutonium metal per year. On conclusion of operations, the PDCF will be decontaminated and decommissioned.

  5. Application of Engineering and Technical Requirements for 30, 60, and 90% Design of DOE Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Standard Review Plan (SRP), Application of Engineering and Technical Requirements for 30, 60 and 90% Design of DOE Nuclear Facilities, was developed by the Office of Chief of Nuclear Safety (CNS), Office of the Environmental Management. The SRP is designed to help strengthen the technical rigor of line management oversight and federal monitoring of the design process of DOE nuclear facilities.

  6. NIF Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    users NIF Users Research Opportunities at the National Ignition Facility The National Ignition Facility provides the scientific community with an unprecedented capability for studying materials at extreme pressures, temperatures, and densities. NIF is expected to achieve temperatures and densities almost an order of magnitude greater than those in the sun's core and pressures far in excess of those at the core of Jupiter. The density of neutrons during the tens of picoseconds the NIF target

  7. Conceptual Design of an Antiproton Generation and Storage Facility...

    Office of Scientific and Technical Information (OSTI)

    The Antiproton Generation and Storage Facility (AGSF) creates copious quantities of antiprotons, for bottling and transportation to remote cancer therapy centers. The 12;first ...

  8. NNSA Authorizes Start of Design for New Uranium Storage Facility | National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration | (NNSA) Authorizes Start of Design for New Uranium Storage Facility September 06, 2002 PDF icon 9-5-

  9. Seismic requirements for design of nuclear power plants and nuclear test facilities

    SciTech Connect (OSTI)

    Not Available

    1985-02-01

    This standard establishes engineering requirements for the design of nuclear power plants and nuclear test facilities to accommodate vibratory effects of earthquakes.

  10. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing needs

  11. User Resources | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources User Facilities User Facilities Home User Facilities at a Glance User Resources Getting Started User Safety Access Models User Agreements Data Management Resources Acknowledging User Facilities User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Resources Print Text Size: A A A

  12. Microsoft Word - CR Users Policy1110.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAMD Cleanroom Users Policy revised 04/11 Statement of Work: A cleanroom environment for processing and m etrology is required for precisi on and reproducibility in Microfabrication. Rules and regulations have been devised to ensure sa fety, high yield, and reliable operation for users and the facility. I. Equipment Use  Equipment training is conducted by the designated equipment manager or appointed Cleanroom Staff . Staff members are ass igned designated machines in which users can request

  13. Irradiation Test Plan for the ATR National Scientific User Facility - University of Wisconsin Pilot Project

    SciTech Connect (OSTI)

    Heather J. MacLean; Kumar Sridharan; Timothy A. Hyde

    2008-06-01

    The performance of advanced nuclear systems critically relies on the performance of the materials used for cladding, duct, and other structural components. In many proposed advanced systems, the reactor design pushes the temperature and the total radiation dose higher than typically seen in a light water reactor. Understanding the stability of these materials under radiation is critical. There are a large number of materials or material systems that have been developed for greater high temperature or high dose performance for which little or no information on radiation response exists. The goal of this experiment is to provide initial data on the radiation response of these materials. The objective of the UW experiment is to irradiate materials of interest for advanced reactor applications at a variety of temperatures (nominally 300°C, 400°C, 500°C, and 700°C) and total dose accumulations (nominally 3 dpa and 6 dpa). Insertion of this irradiation test is proposed for September 2008 (ATR Cycle 143A).

  14. LSU EFRC - Center for Atomic Level Catalyst Design - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities >> space control Synchrotron Capabilities space control Analytical Capabilities space control Computational Capabilities space control space control Facilities space control space control Synchrotron Capabilities space control Center for Advanced Microstructures & Devices (CAMD), Baton Rouge, LA Micromachining X-ray Lithography Beamline (XRLM) Infrared Microspectroscopy Beamline X-ray Powder Diffraction Beamline (XPD) Protein Crystallography MAD Beamline (GCPCC) X-ray

  15. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    SciTech Connect (OSTI)

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  16. Fire protection considerations for the design and operation of liquefied petroleum gas (LPG) storage facilities

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This standard addresses the design, operation, and maintenance of LPG storage facilities from the standpoint of prevention and control of releases, fire-protection design, and fire-control measures, as well as the history of LPG storage facility failure, facility design philosophy, operating and maintenance procedures, and various fire-protection and firefighting approaches and presentations. The storage facilities covered are LPG installations (storage vessels and associated loading/unloading/transfer systems) at marine and pipeline terminals, natural gas processing plants, refineries, petrochemical plants, and tank farms.

  17. Natural phenomena hazards design and evaluation criteria for Department of Energy Facilities

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This DOE standard gives design and evaluation criteria for natural phenomena hazards (NPH) effects as guidance for implementing the NPH mitigation requirements of DOE 5480.28. Goal of the criteria is to assure that DOE facilities can withstand the effects of earthquakes, extreme winds, tornadoes, flooding, etc. They apply to the design of new facilities and the evaluation of existing facilities; they may also be used for modification and upgrading of the latter.

  18. Natural Phenomena Hazard Analysis and Design Criteria for Department of Energy Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-08-03

    This Department of Energy (DOE) Standard (STD)-1020-2012, Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities, provides criteria and guidance for the analysis and design of facility structures, systems, and components (SSCs) that are necessary to implement the requirements of DOE Order (O) 420.1C, Facility Safety, and to ensure that the SSCs will be able to effectively perform their intended safety functions under the effects of natural phenomena hazards (NPHs).

  19. Biomass -Feedstock User Facility

    Broader source: Energy.gov (indexed) [DOE]

    Kevin L. Kenney Idaho National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Feedstock Supply and Logistics 2 | ...

  20. Programs & User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Advanced Solar Photophysics (CASP) Biological & Environmental Research Next Generation Ecosystem Experiments (NGEE) - Arctic Next Generation Ecosystem Experiments ...

  1. Joint Facilities User Forum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Environmental Management System (EMS) Joint Environmental Management System (EMS) Joint Environmental Management System (EMS) The environmental management system (EMS) has two areas of focus: environmental compliance and environmental sustainability. The environmental compliance aspect of the EMS consists of regulatory compliance and monitoring programs that implement federal, state, local, and tribal requirements; agreements; and permits under the Legacy Management contract. The

  2. User Facility Science Highlights

    Office of Science (SC) Website

    In this experiment, a 5.5-GeV beam of electrons was directed onto a target of liquid hydrogen, which has a single proton in its nucleus. The researchers collected data on...

  3. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    SciTech Connect (OSTI)

    Smith, K.E.

    1994-03-21

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

  4. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  5. Nonreactor Nuclear Safety Design Criteria and Explosive Safety Criteria Guide for Use with DOE O 420.1, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-03-28

    This Guide provides guidance on the application of requirements for nonreactor nuclear facilities and explosives facilities of Department of Energy (DOE) O 420.1, Facility Safety, Section 4.1, Nuclear and Explosives Safety Design Criteria. No cancellation.

  6. AIRMaster+ User Manual | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    User Manual AIRMaster+ User Manual This user manual is designed to help users understand the AIRMaster+ compressed air software. AIRMaster+ User Manual (2000) (2.39

  7. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support the Lab's security mission

  8. Designing Biological Systems for Sustainability and Programmed Environmental Interface (2011 JGI User Meeting)

    ScienceCinema (OSTI)

    Silver, Pam [Harvard University

    2011-06-03

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Pam Silver of Harvard University gives a presentation on "Designing Biological Systems for Sustainability and Programmed Environmental Interface" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  9. Designing Biological Systems for Sustainability and Programmed Environmental Interface (2011 JGI User Meeting)

    SciTech Connect (OSTI)

    Silver, Pam [Harvard University] [Harvard University

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Pam Silver of Harvard University gives a presentation on "Designing Biological Systems for Sustainability and Programmed Environmental Interface" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  10. Safeguards by design - industry engagement for new uranium enrichment facilities in the United States

    SciTech Connect (OSTI)

    Demuth, Scott F; Grice, Thomas; Lockwood, Dunbar

    2010-01-01

    The United States Department of Energy's (DOE's) Office of Nonproliferation and International Security (NA-24) has initiated a Safeguards by Design (SBD) effort to encourage the incorporation of international (IAEA) safeguards features early in the design phase of a new nuclear facility in order to avoid the need to redesign or retrofit the facility at a later date. The main goals of Safeguards by Design are to (1) make the implementation of international safeguards at new civil nuclear facilities more effective and efficient, (2) avoid costly and time-consuming re-design work or retrofits at such facilities and (3) design such facilities in a way that makes proliferation as technically difficult, as time-consuming, and as detectable as possible. The U.S. Nuclear Regulatory Commission (NRC) has recently hosted efforts to facilitate the use of Safeguards by Design for new uranium enrichment facilities currently being planned for construction in the U.S. While SBD is not a NRC requirement, the NRC is aiding the implementation of SBD by coordinating discussions between DOE's NA-24 and industry's facility design teams. More specifically, during their normal course of licensing discussions the NRC has offered industry the opportunity to engage with NA-24 regarding SBD.

  11. Summary - Salt Waste Processing Facility Design at the Savannah River Site

    Office of Environmental Management (EM)

    Salt Waste Processing Facility ETR Report Date: November 2006 ETR-4 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Salt Waste Processing Facility Design at the Savannah River Site (SRS) Why DOE-EM Did This Review The Salt Waste Processing Facility (SWPF) is intended to remove and concentrate the radioactive strontium (Sr), actinides, and cesium (Cs) from the bulk salt waste solutions in the SRS high-level waste tanks. The sludge

  12. Non-Proprietary User Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Non-Proliferation Treaty

    Alliance/NREL 1-21-16 The Department of Energy has opted to utilize the following agreement for Designated Non-Proprietary User Facilities transactions. Because these transactions are widespread across Departmental facilities, uniformity in agreement terms is desirable. Except for the *** provisions, minor modifications to the terms of this agreement may be made by CONTRACTOR, but any changes to the *** provisions or substantive changes to the non *** provisons will

  13. Department of Energy Designates the Idaho National Laboratory...

    Office of Environmental Management (EM)

    Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility Department of Energy Designates the Idaho National Laboratory Advanced Test ...

  14. Regulation study for the facility control system design at the Facility Operations Center at TA55

    SciTech Connect (OSTI)

    1994-03-16

    NMT-8 is proposing to upgrade the existing Facility Control System (FCS) located within the Facility Operations Center (FOC) at the TA-55 Plutonium Processing and Handling Facility (PPHF). The FCS modifications will upgrade the existing electronics to provide better reliability of system functions. Changes include replacement of the FCS computers and field multiplex units which are used for transmitting systems data. Data collected at the FCS include temperature, pressure, contact closures, etc., and are used for monitoring and/or control of key systems at TA-55. Monitoring is provided for the electrical power system status, PF-4 HVAC air balance status (Static Differential pressure), HVAC fan system status, site chill water return temperature, fire system information, and radioactive constant air monitors alarm information, site compressed air pressure and other key systems used at TA-55. Control output signals are provided for PF-4 HVAC systems, and selected alarms for criticality, fire, loss of pressure in confinement systems. A detailed description of the FCS modifications is provided in Section 2.

  15. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    J.F. Beesley

    2005-04-21

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

  16. Preliminary design for hot dirty-gas control-valve test facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  17. Conceptual design of a technology development facility (TDF)

    SciTech Connect (OSTI)

    Doggett, J.N.; Damm, C.C.

    1981-01-01

    We have developed a concept for employing a single-cell mirror machine in a facility for testing and developing fusion reactor materials, components, and subsystems in a fusion reactor environment. Our approach is similar to that of the 1974 FERF study, except that we have added an auxiliary thermal-barrier cell at each end of the yin-yang magnet. In this way, we provide for plasma microstability by confining a warm plasma component between potential peaks at each end of the device (just as in the tandem mirror with auxiliary barrier cells) while we further improve confinement by the inherent reduction in ambipolar potential drop in the central cell.

  18. Nonreactor Nuclear Safety Design Guide for use with DOE O 420.1C, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    This Guide provides an acceptable approach for safety design of DOE hazard category 1, 2 and 3 nuclear facilities for satisfying the requirements of DOE O 420.1C. Supersedes DOE G 420.1-1.

  19. Progress in the title I design of the National Ignition Facility

    SciTech Connect (OSTI)

    Paisner, J.A.; Hogan, W.J.

    1996-12-31

    The National Ignition Facility (NIF) Project officially began in December of 1995. In October of 1996, advanced conceptual design studies, complete environmental impact study, facilitization of the manufacturing capabilities of optics vendors began. The Title I preliminary engineering design had not yet began until the end of December, but it is expected to be on schedule. It is expected that the conventional facilities design will be completed first. The Independent Cost Estimate (ICF) process will begin after the facilities design is complete. Other elements of the design will be submitted in one- or two-week intervals. This phase method of completing Title I was also used at the end of Complete Design Report and proved to be efficient. 9 refs., 11 figs.

  20. HPC revs up engine designs | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPC revs up engine designs Author: ASCR Discovery July 20, 2016 Facebook Twitter LinkedIn Google E-mail Printer-friendly version An Argonne National Laboratory team is combining software innovations with supercomputing advances to jump-start internal-combustion engine designs in the name of conservation. "Even with the push toward electrification in the automotive sector, it's estimated that there are over 200 million internal combustion engines sold a year," says Sibendu Som, an

  1. Engineering test facility conceptual design. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1980-02-01

    Because of the close relationship between the ETF design work conducted under this contract, and the design work of Potential Early Commercial MHD Power Plants (PSPEC) conducted under a separate and parallel DOE/NASA study contract, (DEN 3-51), the ETF design work reported on here was coordinated as far as possible with the design information developed in the above-mentioned separate PSPEC study. The reference power system configuration originally specified for the ETF considered the use of a high-temperature-air preheater, separately fired initially with oil and subsequently with a LBtu gas produced in a coal gasifier integrated with the power plant. The potential attractiveness of using oxygen enrichment in combustion of the coal for early commercial MHD power plant applications was indicated in our original ETF Conceptual Design Document. This eliminates the need for a high-temperature-air preheater and its associated gasifier. The results from our initial parametric design analysis in the separate study of Early Commercial MHD Power Plants reinforced the potential attractiveness of the use of oxygen enrichment of the combustion air. Therefore, preliminary analysis of the use of oxygen enrichment for the ETF was included as part of the ETF contract amendment work reported on here.

  2. A Test Facility for MEIC ERL Circulator Ring Based Electron Cooler Design

    SciTech Connect (OSTI)

    Zhang, Yuhong; Derbenev, Yaroslav S.; Douglas, David R.; Hutton, Andrew M.; Krafft, Geoffrey A.; Nissen, Edward W.

    2013-05-01

    An electron cooling facility which is capable to deliver a beam with energy up to 55 MeV and average current up to 1.5 A at a high bunch repetition rate up to 750 MHz is required for MEIC. The present cooler design concept is based on a magnetized photo-cathode SRF gun, an SRF ERL and a compact circulator ring. In this paper, we present a proposal of a test facility utilizing the JLab FEL ERL for a technology demonstration of this cooler design concept. Beam studies will be performed and supporting technologies will also be developed in this test facility.

  3. NREL: Research Facilities - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Your name: Your email address: Your message: Send Message Printable Version Research Facilities Home Laboratories Test & User Facilities Laboratories & Facilities by Technology...

  4. Spent nuclear fuel project cold vacuum drying facility vacuum and purge system design description

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Vacuum and Purge System (VPS) . The SDD was developed in conjunction with HNF-SD-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-002, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the VPS equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  5. Gas turbine based cogeneration facilities: Key issues to be addressed at an early design stage

    SciTech Connect (OSTI)

    Vandesteene, J.L.; De Backer, J.

    1998-07-01

    The basic design of a cogeneration facility implies much more than looking for a gas turbine generating set that matches the steam host heat demand, and making an economical evaluation of the project. Tractebel Energy Engineering (TEE) has designed, built and commissioned since the early nineties 350 MW of cogeneration facilities, mainly producing electricity and steam with natural gas fired gas turbines, which is the present most common option for industrial combined heat and power production. A standardized cogeneration design does not exist. Each facility has to be carefully adapted to the steam host's particular situation, and important technical issues have to be addressed at an early stage of plant design. Unexpected problems, expensive modifications, delays during execution of the project and possible long term operational limitations or drawbacks may result if these questions are left unanswered. This paper comments the most frequent questions on design values, required flexibility of the HRSG, reliability and backup, control system, connection to the grid

  6. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities The the WTGa1 turbine (aka DOE/SNL #1) retuns to power as part of a final series of commissioning tests. Permalink Gallery First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during Recommissioning The Department of Energy's Scaled Wind Farm Technology (SWiFT) Facility reached an exciting milestone with the return to power production of the WTGa1 turbine (aka DOE/SNL #1)

  7. Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect (OSTI)

    Krstulovich, S.F.

    1986-11-12

    This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

  8. ALS Users' Association Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility. Thorough discussion with users of current projects, as well as plans for the future, will place ALS management in a better position to evaluate the needs of users and...

  9. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  10. User Statistics | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistics User Facilities User Facilities Home User Facilities at a Glance User Resources User Statistics By Institution By Project Data Archive User Statistics Collection Practices Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Statistics Print Text Size: A A A FeedbackShare Page The Office of Science

  11. LANSCE | Users | LUG | Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charter I. NAME The name of this organization shall be the Los Alamos Neutron Science Center (LANSCE) User Group. II. PURPOSE The purpose of the LANSCE User Group (LUG) is to: * Provide a formal channel for the exchange of information between LANSCE management and the researchers who use the facilities. * Supply a vehicle for users of LANSCE to transmit concerns and recommendations to the LANSCE management about operating policy, facilities, and other matters affecting the user community. *

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 15, 2008 [Facility News] National User Facility Organization Meets to Discuss Progress and Ideas Bookmark and Share In late April, the ARM Technical Director attended an annual meeting of the National User Facility Organization. Comprised of representatives from Department of Energy (DOE) national user facilities, the purpose of this group is to promote and encourage discussions among user facility administrators, their management, and their user organization representatives by communicating

  13. SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT & M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS

    SciTech Connect (OSTI)

    RYAN GW

    2008-04-25

    In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI!ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized.

  14. REPORT OF THE WORKSHOP ON NUCLEAR FACILITY DESIGN INFORMATION EXAMINATION AND VERIFICATION FOR SAFEGUARDS

    SciTech Connect (OSTI)

    Richard Metcalf; Robert Bean

    2009-10-01

    Executive Summary The International Atomic Energy Agency (IAEA) implements nuclear safeguards and verifies countries are compliant with their international nuclear safeguards agreements. One of the key provisions in the safeguards agreement is the requirement that the country provide nuclear facility design and operating information to the IAEA relevant to safeguarding the facility, and at a very early stage. , This provides the opportunity for the IAEA to verify the safeguards-relevant features of the facility and to periodically ensure that those features have not changed. The national authorities (State System of Accounting for and Control of Nuclear Material - SSAC) provide the design information for all facilities within a country to the IAEA. The design information is conveyed using the IAEAs Design Information Questionnaire (DIQ) and specifies: (1) Identification of the facilitys general character, purpose, capacity, and location; (2) Description of the facilitys layout and nuclear material form, location, and flow; (3) Description of the features relating to nuclear material accounting, containment, and surveillance; and (4) Description of existing and proposed procedures for nuclear material accounting and control, with identification of nuclear material balance areas. The DIQ is updated as required by written addendum. IAEA safeguards inspectors examine and verify this information in design information examination (DIE) and design information verification (DIV) activities to confirm that the facility has been constructed or is being operated as declared by the facility operator and national authorities, and to develop a suitable safeguards approach. Under the Next Generation Safeguards Initiative (NGSI), the National Nuclear Security Administrations (NNSA) Office of Non-Proliferation and International Security identified the need for more effective and efficient verification of design information by the IAEA for improving international safeguards in

  15. Facility design philosophy: Tank Waste Remediation System Process support and infrastructure definition

    SciTech Connect (OSTI)

    Leach, C.E.; Galbraith, J.D.; Grant, P.R.; Francuz, D.J.; Schroeder, P.J.

    1995-11-01

    This report documents the current facility design philosophy for the Tank Waste Remediation System (TWRS) process support and infrastructure definition. The Tank Waste Remediation System Facility Configuration Study (FCS) initially documented the identification and definition of support functions and infrastructure essential to the TWRS processing mission. Since the issuance of the FCS, the Westinghouse Hanford Company (WHC) has proceeded to develop information and requirements essential for the technical definition of the TWRS treatment processing programs.

  16. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  17. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-05-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  18. Beamlines & Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Group: Beamlines The X-ray Micrscopy and Imaging Group operates several beamlines and facilities. The bending magnet beamline (2-BM) entertaines 2 general user programs in...

  19. JLab Users Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Users Group Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? JLab Users Group User Liaison Home Users Group Program Advisory Committee User/Researcher Information print version UG Resources Background & Purpose Users Group Wiki By Laws Board of Directors Board of Directors Minutes Directory of Members Events At-A-Glance Member Institutions News Users Group Mailing

  20. Waste Receiving and Processing Facility Module 1: Volume 1, Preliminary Design report

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The Preliminary Design Report (Title 1) for the Waste Receiving and Processing (WRAP) Module 1 provides a comprehensive narrative description of the proposed facility and process systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title 1 design. The primary mission of the WRAP 1 Facility is to characterize and certify contact-handled (CH) waste in 55-gallon drums for disposal. Its secondary function is to certify CH waste in Standard Waste Boxes (SWBs) for disposal. The preferred plan consist of retrieving the waste and repackaging as necessary in the Waste Receiving and Processing (WRAP) facility to certify TRU waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. WIPP is a research and development facility designed to demonstrate the safe and environmentally acceptable disposal of TRU waste from National Defense programs. Retrieved waste found to be Low-Level Waste (LLW) after examination in the WRAP facility will be disposed of on the Hanford site in the low-level waste burial ground. The Hanford Site TRU waste will be shipped to the WIPP for disposal between 1999 and 2013.

  1. NIF User Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    group NIF User Group The National Ignition Facility User Group provides an organized framework and independent vehicle for interaction between the scientists who use NIF for "Science Use of NIF" experiments and NIF management. Responsibility for NIF and the research programs carried out at NIF resides with the NIF Director. The NIF User Group advises the NIF Director on matters of concern to users, as well as providing a channel for communication for NIF users with funding agencies and

  2. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    SciTech Connect (OSTI)

    Dippre, M. A.

    2003-02-25

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational

  3. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    SciTech Connect (OSTI)

    Drewmark Communications; Sartor, Dale; Wilson, Mark

    2010-07-01

    High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

  4. Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design

    SciTech Connect (OSTI)

    Coles, Garill A.; Hockert, John; Gitau, Ernest TN; Zentner, Michael D.

    2013-01-26

    FSA is a screening process intended to focus a facility designers attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

  5. Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design

    SciTech Connect (OSTI)

    Coles, Garill A.; Gitau, Ernest TN; Hockert, John; Zentner, Michael D.

    2012-11-09

    FSA is a screening process intended to focus a facility designers attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

  6. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-01-31

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  7. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This ACDR was performed following completed of the Conceptual Design Report in July 1992; the work encompassed August 1992 to January 1994. Mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage at Hanford and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford from about DOE sites. This volume provides an introduction to the ACDR process and the scope of the task along with a project summary of the facility, treatment technologies, cost, and schedule. Major areas of departure from the CDR are highlighted. Descriptions of the facility layout and operations are included.

  8. Design report for the interim waste containment facility at the Niagara Falls Storage Site. [Surplus Facilities Management Program

    SciTech Connect (OSTI)

    Not Available

    1986-05-01

    Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection.

  9. User Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Information User Information Print ALSHub User Portal User Guide A step-by-step guide for users about how to apply and prepare for beam time at the ALS. Experiment Safety Upon receiving beam time, complete an Experiment Safety Sheet Prospective Users Users from Industry Contacts for Users User Policy Data Management Users' Executive Committee (UEC) User Meeting

  10. ADDRESSING POLLUTION PREVENTION ISSUES IN THE DESIGN OF A NEW NUCLEAR RESEARCH FACILITY

    SciTech Connect (OSTI)

    Cournoyer, Michael E.; Corpion, Juan; Nelson, Timothy O.

    2003-02-27

    The Chemistry and Metallurgical Research (CMR) Facility was designed in 1949 and built in 1952 at Los Alamos National Laboratory (LANL) to support analytical chemistry, metallurgical studies, and actinide research and development on samples of plutonium and other nuclear materials for the Atomic Energy Commission's nuclear weapons program. These primary programmatic uses of the CMR Facility have not changed significantly since it was constructed. In 1998, a seismic fault was found to the west of the CMR Facility and projected to extend beneath two wings of the building. As part of the overall Risk Management Strategy for the CMR Facility, the Department of Energy (DOE) proposed to replace it by 2010 with what is called the CMR Facility Replacement (CMRR). In an effort to make this proposed new nuclear research facility environmentally sustainable, several pollution prevention/waste minimization initiatives are being reviewed for potential incorporation during the design phase. A two-phase approach is being adopted; the facility is being designed in a manner that integrates pollution prevention efforts, and programmatic activities are being tailored to minimize waste. Processes and procedures that reduce waste generation compared to current, prevalent processes and procedures are identified. Some of these ''best practices'' include the following: (1) recycling opportunities for spent materials; (2) replacing lithium batteries with alternate current adaptors; (3) using launderable contamination barriers in Radiological Control Areas (RCAs); (4) substituting mercury thermometers and manometers in RCAs with mercury-free devices; (5) puncturing and recycling aerosol cans; (6) using non-hazardous low-mercury fluorescent bulbs where available; (7) characterizing low-level waste as it is being generated; and (8) utilizing lead alternatives for radiological shielding. Each of these pollution prevention initiatives are being assessed for their technical validity, relevancy

  11. Cold Vacuum Dryer (CVD) Facility Fire Protection System Design Description (SYS 24)

    SciTech Connect (OSTI)

    SINGH, G.

    2000-10-17

    This system design description (SDD) addresses the Cold Vacuum Drying (CVD) Facility fire protection system (FPS). The primary features of the FPS for the CVD are a fire alarm and detection system, automatic sprinklers, and fire hydrants. The FPS also includes fire extinguishers located throughout the facility and fire hydrants to assist in manual firefighting efforts. In addition, a fire barrier separates the operations support (administrative) area from the process bays and process bay support areas. Administrative controls to limit combustible materials have been established and are a part of the overall fire protection program. The FPS is augmented by assistance from the Hanford Fire Department (HED) and by interface systems including service water, electrical power, drains, instrumentation and controls. This SDD, when used in conjunction with the other elements of the definitive design package, provides a complete picture of the FPS for the CVD Facility.

  12. LANSCE | Users | User Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANSCE User Program LANSCE's User Program ensures the research it oversees represents the cutting edge of nuclear and materials science and technology. The User Program plays a key role in training the next generation of top scientists, attracting the best graduate students, postdoctoral researchers, and early-career scientists (defined as those less than 40-years old). The User Program typically begins with the first call for proposals and run until the end of the run-cycle. The User-Program

  13. Design of a test facility for gas-fired desiccant-based air conditioning systems

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.A.; Steele, W.G.; Hodge, B.K.

    1996-12-31

    The design of a facility for testing desiccant-based air conditioning systems is presented. The determination of the performance parameters of desiccant systems is discussed including moisture removal capacity, latent and total cooling capacities, and efficiency indexes. The appropriate procedures and key measurements for determining these parameters are identified using uncertainty analysis.

  14. Design-Build Process for the Research Support Facility (RSF) (Book)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    An in-depth look at how the U.S. DOE and NREL used a performance-based design-build contract to build the Research Support Facility (RSF); one of the most energy efficient office buildings in the world.

  15. Third International Meeting on Next Generation Safeguards:Safeguards-by-Design at Enrichment Facilities

    SciTech Connect (OSTI)

    Long, Jon D.; McGinnis, Brent R; Morgan, James B; Whitaker, Michael; Lockwood, Mr. Dunbar; Shipwash, Jacqueline L

    2011-01-01

    The Third International Meeting on Next Generation Safeguards (NGS3) was hosted by the U.S. Department of Energy (DOE)/National Nuclear Security Administration's (NNSA) Office of Nonproliferation and International Security (NIS) in Washington, D.C. on 14-15 December 2010; this meeting focused on the Safeguards-by-Design (SBD) concept. There were approximately 100 participants from 13 countries, comprised of safeguards policy and technical experts from government and industry. Representatives also were present from the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), the European Atomic Energy Agency (Euratom), and the International Atomic Energy Agency (IAEA). The primary objective of this meeting was to exchange views and provide recommendations on implementation of the SBD concept for four specific nuclear fuel cycle facility types: gas centrifuge enrichment plants (GCEPs), GEN III and GEN IV reactors, aqueous reprocessing plants, and mixed oxide fuel fabrication facilities. The general and facility-specific SBD documents generated from the four working groups, which were circulated for comment among working group participants, are intended to provide a substantive contribution to the IAEA's efforts to publish SBD guidance for these specific types of nuclear facilities in the near future. The IAEA has described the SBD concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' As part of the Next Generation Safeguards Initiative (NGSI), the DOE is working to establish SBD as a global norm through DOE laboratory studies, international workshops, engagement with industry and the IAEA, and setting an example through its use in new nuclear facilities in the United States. This paper describes the discussion topics and final recommendations of the Enrichment Facilities Working

  16. Technical Support Document: Development of the Advanced Energy Design Guide for Small Hospitals and Healthcare Facilities--30% Guide

    SciTech Connect (OSTI)

    Bonnema, E.; Doebber, I.; Pless, S.; Torcellini, P.

    2010-03-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Small Hospitals and Healthcare Facilities.

  17. Safeguards Guidance for Designers of Commercial Nuclear Facilities – International Safeguards Requirements for Uranium Enrichment Plants

    SciTech Connect (OSTI)

    Philip Casey Durst; Scott DeMuth; Brent McGinnis; Michael Whitaker; James Morgan

    2010-04-01

    For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

  18. Design review plan for Multi-Function Waste Tank Facility (Project W-236A)

    SciTech Connect (OSTI)

    Renfro, G.G.

    1994-12-20

    This plan describes how the Multi-Function Waste Tank Facility (MWTF) Project conducts reviews of design media; describes actions required by Project participants; and provides the methodology to ensure that the design is complete, meets the technical baseline of the Project, is operable and maintainable, and is constructable. Project W-236A is an integrated project wherein the relationship between the operating contractor and architect-engineer is somewhat different than that of a conventional project. Working together, Westinghouse Hanford Company (WHC) and ICF Karser Hanford (ICF KH) have developed a relationship whereby ICF KH performs extensive design reviews and design verification. WHC actively participates in over-the-shoulder reviews during design development, performs a final review of the completed design, and conducts a formal design review of the Safety Class I, ASME boiler and Pressure Vessel Code items in accordance with WHC-CM-6-1, Standard Engineering Practices.

  19. Development of Probabilistic Design Basis Earthquake (DBE) Parameters for Moderate and High Hazard Facilities at INEEL

    SciTech Connect (OSTI)

    S. M. Payne; V. W. Gorman; S. A. Jensen; M. E. Nitzel; M. J. Russell; R. P. Smith

    2000-03-01

    Design Basis Earthquake (DBE) horizontal and vertical response spectra are developed for moderate and high hazard facilities or Performance Categories (PC) 3 and 4, respectively, at the Idaho National Engineering and Environmental Laboratory (INEEL). The probabilistic DBE response spectra will replace the deterministic DBE response spectra currently in the U.S. Department of Energy Idaho Operations Office (DOE-ID) Architectural Engineering Standards that govern seismic design criteria for several facility areas at the INEEL. Probabilistic DBE response spectra are recommended to DOE Naval Reactors for use at the Naval Reactor Facility at INEEL. The site-specific Uniform Hazard Spectra (UHS) developed by URS Greiner Woodward Clyde Federal Services are used as the basis for developing the DBE response spectra. In 1999, the UHS for all INEEL facility areas were recomputed using more appropriate attenuation relationships for the Basin and Range province. The revised UHS have lower ground motions than those produced in the 1996 INEEL site-wide probabilistic ground motion study. The DBE response spectra were developed by incorporating smoothed broadened regions of the peak accelerations, velocities, and displacements defined by the site-specific UHS. Portions of the DBE response spectra were adjusted to ensure conservatism for the structural design process.

  20. Cold Vacuum Drying Facility Crane and Hoist System Design Description (SYS 14)

    SciTech Connect (OSTI)

    TRAN, Y.S.

    2000-06-07

    This system design description (SDD) is for the Cold Vacuum Drying (CVD) Facility overhead crane and hoist system. The overhead crane and hoist system is a general service system. It is located in the process bays of the CVD Facility, supports the processes required to drain the water and dry the spent nuclear fuel (SNF) contained in the multi-canister overpacks (MCOs) after they have been removed from the K-Basins. The location of the system in the process bay is shown.

  1. Experiments, conceptual design, preliminary cost estimates and schedules for an underground research facility

    SciTech Connect (OSTI)

    Korbin, G.; Wollenberg, H.; Wilson, C.; Strisower, B.; Chan, T.; Wedge, D.

    1981-09-01

    Plans for an underground research facility are presented, incorporating techniques to assess the hydrological and thermomechanical response of a rock mass to the introduction and long-term isolation of radioactive waste, and to assess the effects of excavation on the hydrologic integrity of a repository and its subsequent backfill, plugging, and sealing. The project is designed to utilize existing mine or civil works for access to experimental areas and is estimated to last 8 years at a total cost for contruction and operation of $39.0 million (1981 dollars). Performing the same experiments in an existing underground research facility would reduce the duration to 7-1/2 years and cost $27.7 million as a lower-bound estimate. These preliminary plans and estimates should be revised after specific sites are identified which would accommodate the facility.

  2. Conceptual design of a solar cogeneration facility at Pioneer Mill Co. , Ltd

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    Results are reported of a conceptual design study of the retrofit of a solar central receiver system to an existing cogeneration facility at a Hawaii raw sugar factory. Background information on the site, the existing facility, and the project organization is given. Then the results are presented o the work to select the site specific configuration, including the working fluid, receiver concept, heliostat field site, and the determination of the solar facility size and of the role of thermal storage. The system selected would use water-steam as its working fluid in a twin-cavity receiver collecting sunlight from 41,420 m/sup 2/ of heliostat mirrors. The lates version of the system specification is appended, as are descriptions of work to measure site insolation and a site insolation mathematical model and interface data for the local utility. (LEW)

  3. Fermilab D-0 Experimental Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect (OSTI)

    Krstulovich, S.F.

    1987-10-31

    This report is developed as part of the Fermilab D-0 Experimental Facility Project Title II Design Documentation Update. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis.

  4. User Financial Account Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/20/13 User Financial Account Form Establish a user financial account at SLAC to procure gases, chemicals, supplies or services to support your experiment at SLAC's user facilities and to send samples, dewars, or other equipment between SLAC and your institution. To open or renew your SLAC user financial account, complete and submit this form along with a Purchase Order (PO) from your institution. The PO should be made to SLAC National Accelerator Laboratory for the amount of estimated

  5. Conceptual design of a solar cogeneration facility industrial process heat. Final report, September 30, 1980-August 14, 1981

    SciTech Connect (OSTI)

    Joy, P.; Brzeczek, M.; Seilestad, H.; Silverman, C.; Yenetchi, G.

    1981-07-01

    The cogeneration facility systems specification is presented which defines the characteristics, and design and environmental requirements for the facility and the performance, characteristics and economic data for the solar additions as well as certain design data for the existing facility. Climatological data are presented for the site. A copy of the Pacific Gas and Electric Draft Power Sales Agreement is included. Collector operating and safety procedures are given.

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (BERAC) published findings and recommendations from their assessment of the effectiveness of ARM Climate Research Facility as a national scientific user facility. Based on...

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility use by total visitor days and facility to track actual visitors and active user research computer accounts. Historical data show an apparent relationship between the...

  8. Decommissioning Lines-of-Inquiry for Design Review of New Nuclear Facilities

    SciTech Connect (OSTI)

    Negin, C.A.; Urland, C.S.

    2008-01-15

    An independent review of the design of the Salt Waste Processing Facility (SWPF) at Savannah River included a requirement to address the ability to decommission the facility. This paper addresses the lines of inquiry (that were developed for the review and their use in future for reviews of other projects, referred to herein as 'DDLOI'. Decommissioning activities for almost any type of facility are well within the technological state-of-the-art. The major impacts for complications resulting from insufficient consideration during design of a new facility that involves radioactive processes and/or material is the cost of: a) gaining access to high radiation areas and b) dealing with high levels of contamination. For this reason, the DDLOI were developed as a way of raising the awareness of designers and design reviewers to design features that can impede or facilitate ultimate decommissioning. The intent is that this report can be used not only for review, but also by engineers in the early stages of design development when requirements are being assembled. The focus for the DDLOI is on types of facilities that contain nuclear and/or radioactive processes and materials. The level of detail is more specific than would be found in decommissioning plans prepared for regulatory purposes. In commencing this review, the author's could find no precedent for a systematic review of design for decommissioning that included results of a review. Therefore, it was decided to create a report that would provide detailed lines of inquiry along with the rationale for each. The resulting DDLOI report included 21 topical areas for design review. The DDLOI combined the authors' experience in developing baselines for facilities to be deactivated or demolished with prior publications by the U.S. Army and the International Atomic Energy Agency. These two references were found via an Internet search and were the only ones judged to be useful at a field application level. Most others

  9. NIF and Jupiter User Group Meeting 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    home / nif workshops / user group 2015 NIF and Jupiter User Group Meeting 2015 Information on the NIF User Facility About the NIF and Jupiter Laser Facility User Group Meeting The NIF and Jupiter Laser Facility (JLF) User Groups hosted a joint meeting from Sunday, February 8, 2015, through Wednesday, February 11, 2015, in Livermore, CA. The meeting described NIF's and JLF's capabilities to current and potential users and included presentations about capabilities and recent experiments. The

  10. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    SciTech Connect (OSTI)

    Groth, B.D.

    1995-01-11

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.