Powered by Deep Web Technologies
Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Thermal dilepton rates from quenched lattice QCD  

E-Print Network [OSTI]

We present new lattice results on the continuum extrapolation of the vector current correlation function. Lattice calculations have been carried out in the deconfined phase at a temperature of 1.1 Tc, extending our previous results at 1.45 Tc, utilizing quenched non-perturbatively clover-improved Wilson fermions and light quark masses. A systematic analysis on multiple lattice spacings allows to perform the continuum limit of the correlation function and to extract spectral properties in the continuum limit. Our current analysis suggests the results for the electrical conductivity are proportional to the temperature and the thermal dilepton rates in the quark gluon plasma are comparable for both temperatures. Preliminary results of the continuum extrapolated correlation function at finite momenta, which relates to thermal photon rates, are also presented.

H. -T. Ding; A. Francis; O. Kaczmarek; F. Karsch; E. Laermann; S. Mukherjee; M. Müller; W. Soeldner

2013-01-30T23:59:59.000Z

2

NUMERICAL DESIGN TOOLS FOR THERMAL REPLICATION OF  

E-Print Network [OSTI]

by heating Ceramic block Glass workpiece before heating Figure 1: Thermal Replication (after Smith et al. [14NUMERICAL DESIGN TOOLS FOR THERMAL REPLICATION OF OPTICAL­QUALITY SURFACES Y.M. Stokes 1 Department. #12; Thermal replication of optical surfaces 1 1 Introduction Thermal replication is an industrial

Stokes, Yvonne

3

GCFR core thermal-hydralic design  

SciTech Connect (OSTI)

The approach for developing the thermal-hydraulic core assembly designs for the gas-cooled fast reactor (GCFR) is reviewed, and key considerations for improving the core performance at all power and flow conditions are discussed. It is shown how the thermal-hydraulic core assembly designs evolve from evaluations of plant size, material limitations, safety criteria, and structural performance considerations.

Schleuter, G.; Baxi, C.B.; Bennett, F.O.

1980-05-01T23:59:59.000Z

4

Integrated Thermal Analysis of the FRIB Cryomodule Design  

SciTech Connect (OSTI)

Thermal analysis of the FRIB cryomodule design is performed to determine the heat load to the cryogenic plant, to minimize the cryogenic plant load, to simulate thermal shield cool down as well as to determine the pressure relief sizes for failure conditions. Static and dynamic heat loads of the cryomodules are calculated and the optimal shield temperature is determined to minimize the cryogenic plant load. Integrated structural and thermal simulations of the 1100-O aluminium thermal shield are performed to determine the desired cool down rate to control the temperature profile on the thermal shield and to minimize thermal expansion displacements during the cool down. Pressure relief sizing calculations for the SRF helium containers, solenoids, helium distribution piping, and vacuum vessels are also described.

Y. Xu, M. Barrios, F. Casagrande, M.J. Johnson, M. Leitner, D. Arenius, V. Ganni, W.J. Schneider, M. Wiseman

2012-07-01T23:59:59.000Z

5

High-Temperature Air-Cooled Power Electronics Thermal Design  

Broader source: Energy.gov (indexed) [DOE]

* Thermal Design: Sub-module testing and model validation; fanducting testing; optimization * Thermal System Design: Balance- of-system analysis; full system models *...

6

Microscale Electrode Design Using Coupled Kinetic, Thermal and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical Modeling Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical Modeling 2010 DOE...

7

Microscale Electrode Design Using Coupled Kinetic, Thermal and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical Modeling Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical Modeling 2009 DOE...

8

Position paper -- Tank ventilation system design air flow rates  

SciTech Connect (OSTI)

The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

Goolsby, G.K.

1995-01-04T23:59:59.000Z

9

A Global Volcano Product for Thermal Emission and Effusion Rate  

E-Print Network [OSTI]

for solar reflectance component #12;Hyperion Thermal Product: Basic ­Extract hot pixelsA Global Volcano Product for Thermal Emission and Effusion Rate: Hyperion of these have non-zero thermal signatures Geographical Distribution of Volcano Sensorweb Targets #12

Schaffer, Steven

10

Design optimization of thermal paths in spacecraft systems  

E-Print Network [OSTI]

This thesis introduces a thermal design approach to increase thermal control system performance and decrease reliance on system resources, e.g., mass. Thermal design optimization has lagged other subsystems because the ...

Stout, Kevin Dale

2013-01-01T23:59:59.000Z

11

Design Tool for Cryogenic Thermal Insulation Systems  

SciTech Connect (OSTI)

Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

Demko, Jonathan A [ORNL] [ORNL; Fesmire, J. E. [NASA Kennedy Space Center, Kennedy Space Center, Florida] [NASA Kennedy Space Center, Kennedy Space Center, Florida; Augustynowicz, S. D. [Sierra Lobo Inc., Kennedy Space Center, Florida] [Sierra Lobo Inc., Kennedy Space Center, Florida

2008-01-01T23:59:59.000Z

12

Intraclass Price Elasticity & Electric Rate Design  

E-Print Network [OSTI]

INTRACLASS PRICE ELASTICITY &ELECTRIC RATE DESIGN KEVIN E. GRESHAM Senior Research Analyst Houston Lighting & Power Company Houston, Texas ABSTRACT PRICE ELASTICITY Electric ~ate design relies on cost incur rance for pricing and pricing... industries are already affecting electric utilities. Cogeneration is one example of competition which effects electric utilities. Utilities now have a competing source of generation which often causes load and revenue losses. Competition has specifically...

Gresham, K. E.

13

The Need for a Full-Chip and Package Thermal Model for Thermally Optimized IC Designs  

E-Print Network [OSTI]

ceramic ball-grid array (CBGA) pack- age consisting of the chip (die), thermal interface material, heatThe Need for a Full-Chip and Package Thermal Model for Thermally Optimized IC Designs Wei Huang detailed die temperature with a full-chip thermal model at early design stages is important to discover

Skadron, Kevin

14

Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids  

E-Print Network [OSTI]

Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids J. A for the measurement of the thermal diffusivity of liquids. The thermal diffusivities of distilled water, glycerol the thermal diffusivity of gases, particularly air,8,9 and vapors10 to a high degree of precision. Although

Mandelis, Andreas

15

Thermal expansion recovery microscopy: Practical design considerations  

SciTech Connect (OSTI)

A detailed study of relevant parameters for the design and operation of a photothermal microscope technique recently introduced is presented. The technique, named thermal expansion recovery microscopy (ThERM) relies in the measurement of the defocusing introduced by a surface that expands and recovers upon the heating from a modulated source. A new two lens design is presented that can be easily adapted to commercial infinite conjugate microscopes and the sensitivity to misalignment is analyzed. The way to determine the beam size by means of a focus scan and the use of that same scan to verify if a thermoreflectance signal is overlapping with the desired ThERM mechanism are discussed. Finally, a method to cancel the thermoreflectance signal by an adequate choice of a nanometric coating is presented.

Mingolo, N., E-mail: nmingol@fi.uba.ar; Martínez, O. E. [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)] [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)

2014-01-15T23:59:59.000Z

16

Thermal Issues in Disk Drive Design: Challenges and Possible Solutions  

E-Print Network [OSTI]

are to adhere to the thermal design envelope. We motivate the need for continued improvements in IDR by showing throttles its activities to remain within the thermal envelope. Categories and Subject Descriptors: B.4Thermal Issues in Disk Drive Design: Challenges and Possible Solutions SUDHANVA GURUMURTHI

Gurumurthi, Sudhanva

17

Evaluation of Instrumentation and Dynamic Thermal Ratings for Overhead Lines  

SciTech Connect (OSTI)

In 2010, a project was initiated through a partnership between the Department of Energy (DOE) and the New York Power Authority (NYPA) to evaluate EPRI?s rating technology and instrumentation that can be used to monitor the thermal states of transmission lines and provide the required real-time data for real-time rating calculations. The project included the installation and maintenance of various instruments at three 230 kV line sites in northern New York. The instruments were monitored, and data collection and rating calculations were performed for about a three year period.

Phillips, A.

2013-01-31T23:59:59.000Z

18

Passive Solar Building Design and Solar Thermal Space Heating Webinar  

Broader source: Energy.gov [DOE]

Webinar of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's presentation about passive solar building design and solar thermal space heating technologies and applications.

19

Absorption Cooling Optimizes Thermal Design for Cogeneration  

E-Print Network [OSTI]

Contrary to popular concept, in most cases, thermal energy is the real VALUE in cogeneration and not the electricity. The proper consideration of the thermal demands is equal to or more important than the electrical demands. High efficiency two...

Hufford, P. E.

1986-01-01T23:59:59.000Z

20

Battery Thermal Management System Design Modeling  

SciTech Connect (OSTI)

Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

Pesaran, A.; Kim, G. H.

2006-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Representation of thermal energy in the design process  

E-Print Network [OSTI]

The goal of thermal design is to go beyond the comfort zone. In spatial design architects don't just look up square footage requirements and then draw a rectangle that satisfies the givens. There must be an interpretation. ...

Roth, Shaun

1995-01-01T23:59:59.000Z

22

LUNAR SEISMIC PROFILING EXPERIMENT DESIGN VERIFICATION THERMAL PAGI OF  

E-Print Network [OSTI]

of the Analytical Model with Test Data 50 1. 1 5. 1. 2 5. 1. 3 5. I. 4 Lunar Surface and Cold Wall to ExperimentATM 1109 LUNAR SEISMIC PROFILING EXPERIMENT DESIGN VERIFICATION THERMAL PAGI OF VACUUM TEST DATE 9 /1 5I 72 This ATM summarizes the LSPE Design Verification Thermal Vacuum Test of the prototype model

Rathbun, Julie A.

23

Universal Parametrization of Thermal Photon Rates in Hadronic Matter  

E-Print Network [OSTI]

Electromagnetic (EM) radiation off strongly interacting matter created in high-energy heavy-ion collisions (HICs) encodes information on the high-temperature phases of nuclear matter. Microscopic calculations of thermal EM emission rates are usually rather involved and not readily accessible to broad applications in models of the fireball evolution which are required to compare to experimental data. An accurate and universal parametrization of the microscopic calculations is thus key to honing the theory behind the EM spectra. Here we provide such a parametrization for photon emission rates from hadronic matter, including the contributions from in-medium rho mesons (which incorporate effects from anti-/baryons), as well as Bremsstrahlung from pi-pi scattering. Individual parametrizations for each contribution are numerically determined through nested fitting functions for photon energies from 0.2 to 5 GeV in chemically equilibrated matter of temperatures 100-180 MeV and baryon chemical potentials 0-400 MeV. Special care is taken to extent the parameterizations to chemical off-equilibrium as encountered in HICs after chemical freezeout. This provides a functional description of thermal photon rates within a 20% variation of the microscopically calculated values.

Matthew Heffernan; Paul Hohler; Ralf Rapp

2014-11-25T23:59:59.000Z

24

Utility Rate Design Revision - A Frisbee Full of Boomerangs  

E-Print Network [OSTI]

Rising electricity prices have prompted investigation of utility rates and proposals for changed in their design. The purpose of this paper is to discuss the current design of electric rates, changes proposed, actual trends, and predictable results...

Dannenmaier, J. H.

1979-01-01T23:59:59.000Z

25

Thermal design through space and time  

E-Print Network [OSTI]

One of the primary roles of architecture is to control the environment at the service of a building's inhabitants. Thermal qualities are a significant factor in the overall experience one has inside and outside a building. ...

Feldgoise, Jeffrey

1997-01-01T23:59:59.000Z

26

An Innovative High Thermal Conductivity Fuel Design  

SciTech Connect (OSTI)

Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 [97% TD]. This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

Jamil A. Khan

2009-11-21T23:59:59.000Z

27

Optimization of Ice Thermal Storage Systems Design for HVAC Systems  

E-Print Network [OSTI]

Ice thermal storage is promising technology to reduce energy costs by shifting the cooling cost from on-peak to off-peak periods. The paper discusses the optimal design of ice thermal storage and its impact on energy consumption, demand, and total...

Nassif, N.; Hall, C.; Freelnad, D.

2013-01-01T23:59:59.000Z

28

A New Capability for Nuclear Thermal Propulsion Design  

SciTech Connect (OSTI)

This paper describes a new capability for Nuclear Thermal Propulsion (NTP) design that has been developed, and presents the results of some analyses performed with this design tool. The purpose of the tool is to design to specified mission and material limits, while maximizing system thrust to weight. The head end of the design tool utilizes the ROCket Engine Transient Simulation (ROCETS) code to generate a system design and system design requirements as inputs to the core analysis. ROCETS is a modular system level code which has been used extensively in the liquid rocket engine industry for many years. The core design tool performs high-fidelity reactor core nuclear and thermal-hydraulic design analysis. At the heart of this process are two codes TMSS-NTP and NTPgen, which together greatly automate the analysis, providing the capability to rapidly produce designs that meet all specified requirements while minimizing mass. A PERL based command script, called CORE DESIGNER controls the execution of these two codes, and checks for convergence throughout the process. TMSS-NTP is executed first, to produce a suite of core designs that meet the specified reactor core mechanical, thermal-hydraulic and structural requirements. The suite of designs consists of a set of core layouts and, for each core layout specific designs that span a range of core fuel volumes. NTPgen generates MCNPX models for each of the core designs from TMSS-NTP. Iterative analyses are performed in NTPgen until a reactor design (fuel volume) is identified for each core layout that meets cold and hot operation reactivity requirements and that is zoned to meet a radial core power distribution requirement.

Amiri, Benjamin W. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Nuclear and Radiological Engineering Department, University of Florida, Gainesville, FL 32611 (United States); Kapernick, Richard J. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sims, Bryan T. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Simpson, Steven P. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

2007-01-30T23:59:59.000Z

29

Thermal and Microcanonical Rates of Unimolecular Reactions from an Energy Diffusion Theory Approach  

E-Print Network [OSTI]

Thermal and Microcanonical Rates of Unimolecular Reactions from an Energy Diffusion Theory Approach; In Final Form: September 13, 1999 We present an energy diffusion theory approach for computing thermal compared to the thermal energy. The weak-collision limit has been extensively studied.1-9 However

Miller, William H.

30

Optimization of thermal comfort in building through envelope design  

E-Print Network [OSTI]

1 Optimization of thermal comfort in building through envelope design Milorad Bojia , Alexandre. The building is modeled in EnergyPlus software and HookeJeves optimization methodology. The investigated house optimizations are performed such as the optimization of the thickness of the concrete block layer, of the wood

Paris-Sud XI, Université de

31

Strategic Rate Design: The Role of Industrial Tariffs  

E-Print Network [OSTI]

utilities have as a primary objective the goal of setting rates that fully reflect costs. Even within this constraint, alternative pricing mechanisms are available to allow the utility to engage in strategic rate design. For example, time-of-use rates... to the same MW made up of several smaller-sized units, the larger-sized contracts are charged at a higher rate. The rate for the energy charge depends on time of use and a liberal tilt of the capacity costs into the energy charge provides the customer a...

Rosenblum, J. I.; House, R.

32

Thermal and Mechanical Design Aspects of the LIFE Engine  

SciTech Connect (OSTI)

The Laser Inertial confinement fusion - Fission Energy (LIFE) engine encompasses the components of a LIFE power plant responsible for converting the thermal energy of fusion and fission reactions into electricity. The design and integration of these components must satisfy a challenging set of requirements driven by nuclear, thermal, geometric, structural, and materials considerations. This paper details a self-consistent configuration for the LIFE engine along with the methods and technologies selected to meet these stringent requirements. Included is discussion of plant layout, coolant flow dynamics, fuel temperatures, expected structural stresses, power cycle efficiencies, and first wall survival threats. Further research and to understand and resolve outstanding issues is also outlined.

Abbott, R P; Gerhard, M A; Latkowski, J F; Kramer, K J; Morris, K R; Peterson, P F; Seifried, J E

2008-10-25T23:59:59.000Z

33

On the information content of the thermal infrared cooling rate profile from satellite instrument measurements  

E-Print Network [OSTI]

On the information content of the thermal infrared cooling rate profile from satellite instrument 2008; accepted 25 February 2008; published 13 June 2008. [1] This work investigates how remote sensing of the quantities required to calculate clear-sky cooling rate profiles propagates into cooling rate profile

Liou, K. N.

34

Method and apparatus for obtaining enhanced production rate of thermal chemical reactions  

DOE Patents [OSTI]

The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

2003-04-01T23:59:59.000Z

35

High-Temperature Air-Cooled Power Electronics Thermal Design (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the status of research at NREL on high temperature air-cooled power electronics thermal design.

Waye, S.

2014-06-01T23:59:59.000Z

36

Computational Design and Experimental Validation of New Thermal Barrier Systems  

SciTech Connect (OSTI)

This project (10/01/2010-9/30/2014), “Computational Design and Experimental Validation of New Thermal Barrier Systems”, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This project will directly support the technical goals specified in DE-FOA-0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. In this project, the focus is to develop and implement novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; perform material characterizations and oxidation/corrosion tests; and demonstrate our new thermal barrier coating (TBC) systems experimentally under integrated gasification combined cycle (IGCC) environments.

Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

2014-04-01T23:59:59.000Z

37

Thermal Design of the Mu2e Detector Solenoid  

SciTech Connect (OSTI)

The reference design for a superconducting Detector Solenoid (DS) for the Mu2e experiment has been completed. The main functions of the DS are to provide a graded field in the region of the stopping target which ranges from 2 T to 1 T and a uniform precision magnetic field of 1 T in a volume large enough to house a tracker downstream of the stopping target. The inner diameter of the magnet cryostat is 1.9 m and the length is 10.9 m. The gradient section of the magnet is about 4 m long and the spectrometer section with a uniform magnetic field is about 6 m long. The inner cryostat wall supports the stopping target, tracker, calorimeter and other equipment installed in the DS. This warm bore volume is under vacuum during operation. It is sealed on one end by the muon beam stop, while it is open on the other end where it interfaces with the Transport Solenoid. The operating temperature of the magnetic coil is 4.7 K and is indirectly cooled with helium flowing in a thermosiphon cooling scheme. This paper describes the thermal design of the solenoid, including the design aspects of the thermosiphon for the coil cooling, forced flow cooling of the thermal shields with 2 phase LN2 (Liquid Nitrogen) and the transient studies of the cool down of the cold mass as well.

Dhanaraj, Nandhini; Wands, Bob; Buehler, Marc; Feher, Sandor; Page, Thomas M; Peterson, Thomas; Schmitt, Richard L

2014-12-18T23:59:59.000Z

38

Evidence for thermalization of surface-desorbed molecules at heating rates of 108  

E-Print Network [OSTI]

Evidence for thermalization of surface-desorbed molecules at heating rates of 108 K/s C. R of aniline-d7 from a single-crystal surface 0001 of sapphire Al2O3 at a heating rate on the order of 108 K/s was studied using pulsed infrared laser radiation for desorption and resonance enhanced multiphoton ionization

Zare, Richard N.

39

Design of a novel conduction heating based stress-thermal cycling apparatus for composite materials and its utilization to characterize composite microcrack damage thresholds  

E-Print Network [OSTI]

performed as a function of mechanical inplane strain levels, heating rates, and number of thermal cycles. The apparatus generated cracks related to the in-plane stresses (or strains) on plies. The design and analysis concept of the synergistic stress...

Ju, Jaehyung

2006-10-30T23:59:59.000Z

40

THERMAL-HYDRAULIC STUDIES IN SUPPORT OF THE ARIES-CS T-TUBE DIVERTOR DESIGN  

E-Print Network [OSTI]

THERMAL-HYDRAULIC STUDIES IN SUPPORT OF THE ARIES-CS T-TUBE DIVERTOR DESIGN S. I. ABDEL-KHALIK,*a L and engineering optimization. This paper focuses on the thermal-hydraulic analyses and experiments performed

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Design and installation manual for thermal energy storage  

SciTech Connect (OSTI)

The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

1980-01-01T23:59:59.000Z

42

Computational Design and Experimental Validation of New Thermal Barrier Systems  

SciTech Connect (OSTI)

This project (10/01/2010-9/30/2013), “Computational Design and Experimental Validation of New Thermal Barrier Systems”, originates from Louisiana State University (LSU) Mechanical Engineering Department and Southern University (SU) Department of Computer Science. This proposal will directly support the technical goals specified in DE-FOA-0000248, Topic Area 3: Turbine Materials, by addressing key technologies needed to enable the development of advanced turbines and turbine-based systems that will operate safely and efficiently using coal-derived synthesis gases. We will develop novel molecular dynamics method to improve the efficiency of simulation on novel TBC materials; we will perform high performance computing (HPC) on complex TBC structures to screen the most promising TBC compositions; we will perform material characterizations and oxidation/corrosion tests; and we will demonstrate our new Thermal barrier coating (TBC) systems experimentally under Integrated gasification combined cycle (IGCC) environments. The durability of the coating will be examined using the proposed High Temperature/High Pressure Durability Test Rig under real syngas product compositions.

Guo, Shengmin; Yang, Shizhong; Khosravi, Ebrahim

2011-12-31T23:59:59.000Z

43

24-26 September 2008, Rome, Italy Thermal Design of  

E-Print Network [OSTI]

conductivity of most materials used to electrically insulate the devices enhances the thermal issues that could to estimate the overall thermal resistance by considering a combination of individual thermal resistances of layout parameters upon the thermal resistance of such devices. This contribution is aimed at supplying

Technische Universiteit Delft

44

High-rate chemical vapor deposition of nanocrystalline silicon carbide films by radio frequency thermal plasma  

E-Print Network [OSTI]

High-rate chemical vapor deposition of nanocrystalline silicon carbide films by radio frequency Semiconductor, Eden Prairie, MN, USA Received 10 July 2002; accepted 14 July 2002 Abstract Silicon carbide films; Nanomaterials; Silicon carbide; Thermal plasmas; Thin films; Si tetrachlorine precursor Silicon carbide has

Zachariah, Michael R.

45

Generic repository design concepts and thermal analysis (FY11).  

SciTech Connect (OSTI)

Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.

Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); Dupont, Mark (Savannah River Nuclear Solutions, Aiken, SC); Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Fratoni, Massimiliano (Lawrence Livermore National Laboratory, Livermore, CA); Greenberg, Harris (Lawrence Livermore National Laboratory, Livermore, CA); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Hardin, Ernest L.; Sutton, Mark A. (Lawrence Livermore National Laboratory, Livermore, CA)

2011-08-01T23:59:59.000Z

46

Design of bulk thermoelectric modules for integrated circuit thermal management  

E-Print Network [OSTI]

Index Terms—Contact resistance, equivalent circuit models,1-D equivalent circuit model. When the thermal resistance

Fukutani, K; Shakouri, A

2006-01-01T23:59:59.000Z

47

LSPE Qualification and Flight Acceptance T /V Test Su.m..mary and Thermal Design  

E-Print Network [OSTI]

5. 2 5. 3 5.4 5.5 5. 6 5.7 Nodal Description Thermal Resistances Solar Heating Lunar SurfaceLSPE Qualification and Flight Acceptance T /V Test Su.m..mary and Thermal Design Final Report NO Thermal Control Systems. The report is divided into three sections. The first section introduces

Rathbun, Julie A.

48

PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two Methods  

E-Print Network [OSTI]

PROCESS DESIGN AND CONTROL Efficient Conversion of Thermal Energy into Hydrogen: Comparing Two for the production of hydrogen from water and high temperature thermal energy are presented and compared. Increasing for the production of hydrogen from water has received considerable attention.1 High temperature thermal energy

Kjelstrup, Signe

49

Lattice-structures and constructs with designed thermal expansion coefficients  

SciTech Connect (OSTI)

A thermal expansion-managed lattice structure having a plurality of unit cells each having flexure bearing-mounted tabs supported on a base and actuated by thermal expansion of an actuator having a thermal expansion coefficient greater than the base and arranged so that the tab is inwardly displaced into a base cavity. The flexure bearing-mounted tabs are connected to other flexure-bearing-mounted tabs of adjacent unit cells so that the adjacent unit cells are spaced from each other to accommodate thermal expansion of individual unit cells while maintaining a desired bulk thermal expansion coefficient of the lattice structure as a whole.

Spadaccini, Christopher; Hopkins, Jonathan

2014-10-28T23:59:59.000Z

50

Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets  

SciTech Connect (OSTI)

A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed between the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.

Green, Michael A.; Pan, Heng; Liu, X. K.; Wang, Li; Wu, Hong; Chen, A. B.; Guo, X.L.

2009-07-01T23:59:59.000Z

51

Thermal hydraulic design of a salt-cooled highly efficient environmentally friendly reactor  

E-Print Network [OSTI]

A 1 OOOMWth liquid-salt cooled thermal spectrum reactor was designed with a long fuel cycle, and high core exit temperature. These features are desirable in a reactor designed to provide process heat applications such as ...

Whitman, Joshua (Joshua J.)

2009-01-01T23:59:59.000Z

52

Adaptive multi-domain thermal modeling and analysis for integrated circuit synthesis and design  

E-Print Network [OSTI]

-package thermal analysis is necessary for the de- sign and synthesis of reliable, high-performance, low-power responsible for a substantial proportion of overall power consumption in commercial designs and increases with temperature [3]. To enable reliable and low-power IC design, run-time thermal profiles must be predicted

Dick, Robert

53

Defects, thermal phenomena and design in photonic crystal systems  

E-Print Network [OSTI]

The physics of blackbodies has been an ongoing source of fascination and scientific research for over a hundred years. Kirchhoff's law states that emissivity and absorptivity are equal for an object in thermal equilibrium. ...

Chan, David Lik Chin

2006-01-01T23:59:59.000Z

54

Designing a Thermal Energy Storage Program for Electric Utilities  

E-Print Network [OSTI]

Electric utilities are looking at thermal energy storage technology as a viable demand side management (DSM) option. In order for this DSM measure to be effective, it must be incorporated into a workable, well-structured utility program. This paper...

Niehus, T. L.

1994-01-01T23:59:59.000Z

55

Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment  

E-Print Network [OSTI]

Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, ...

Zhou, Ao

56

The Impact of Thermal Conductivity and Diffusion Rates on Water Vapor Transport through Gas Diffusion Layers  

E-Print Network [OSTI]

Water management in a hydrogen polymer electrolyte membrane (PEM) fuel cell is critical for performance. The impact of thermal conductivity and water vapor diffusion coefficients in a gas diffusion layer (GDL) has been studied by a mathematical model. The fraction of product water that is removed in the vapour phase through the GDL as a function of GDL properties and operating conditions has been calculated and discussed. Furthermore, the current model enables identification of conditions when condensation occurs in each GDL component and calculation of temperature gradient across the interface between different layers, providing insight into the overall mechanism of water transport in a given cell design. Water transport mode and condensation conditions in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDL and water removal scenarios have been identified and related to experimentally-determined GDL proper...

Burlatsky, S F; Gummallaa, M; Condita, D; Liua, F

2013-01-01T23:59:59.000Z

57

A thermal method for measuring the rate of water movement in plants  

E-Print Network [OSTI]

L?BP A 8 V a L ?BPA8B8 op A THERMAL METHOD FOR MEASURING THE RATE OF WATER MOVEMENT IN PLANTS A Dissertation By Morris Elkins Bloodworth Vao Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in Partial... Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY May, 1958 TLX Major Subject: Soil Physics p ^i???pP ??^i?? ??? ??p?????? ^i? ?p^? ?? WATER MOVEMENT IN PLANTS A Dissertation By Morris Elkins Bloodworth Approved as to style...

Bloodworth, Morris Elkins

1958-01-01T23:59:59.000Z

58

Design and global optimization of high-efficiency solar thermal systems  

E-Print Network [OSTI]

Design and global optimization of high-efficiency solar thermal systems with tungsten cermets David, Massachusetts 02139, USA bermel@mit.edu Abstract: Solar thermal, thermoelectric, and thermophotovoltaic (TPV by selective solar absorbers and TPV selective emitters. To improve these critical components, we study a class

Soljaèiæ, Marin

59

INNOVATIVE DESIGN AND MATERIAL SOLUTIONS OF THERMAL CONTACT LAYERS FOR HIGH HEAT FLUX APPLICATIONS IN FUSION  

E-Print Network [OSTI]

INNOVATIVE DESIGN AND MATERIAL SOLUTIONS OF THERMAL CONTACT LAYERS FOR HIGH HEAT FLUX APPLICATIONS of sacrificial plasma facing components that have to handle the high heat and particle fluxes in ITER armour thermal and electrical contact with the cooled sub-structure while promoting remote, in

Tillack, Mark

60

The Framework of an Optimization Model for the Thermal Design of Building Envelopes  

E-Print Network [OSTI]

Careful long term decisions in the design and operation of buildings can significantly improve the thermal performance and thus reduce the consumption of energy. The availability and ease of use of today's computers can be a sigruficant benefit...

Al-Homoud, M. S.; Degelman, L. O.; Boyer, L. L.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NREL research determines optimal HVAC system design for proper air mixing and thermal comfort in homes.  

E-Print Network [OSTI]

NREL research determines optimal HVAC system design for proper air mixing and thermal comfort in homes. As U.S. homes become more energy efficient, heating, ventilation, and cooling (HVAC) systems

62

Optimal operation and design of solar-thermal energy storage systems  

E-Print Network [OSTI]

The present thesis focuses on the optimal operation and design of solar-thermal energy storage systems. First, optimization of time-variable operation to maximize revenue through selling and purchasing electricity to/from ...

Lizarraga-García, Enrique

2012-01-01T23:59:59.000Z

63

Integrated structural and thermal design of an entry vehicle aeroshell  

E-Print Network [OSTI]

Concept. Element Types Used in the Finite Element Model. . . . 17 23 Application of LOX Mass to Shell Wall . 25 12 Internal Pressure Exerted on the Common Tank Wall . . . 26 13 Minimum Required Thickness of the Aluminum Shell. . . . . . . . . 28 14... based on acceleration loads, pressures, and etc. Next, a thermal protection system is added to the exterior of the shell. This methodology leads to two main problems related to the efiiciency of a reusable structure 1. The structure is redundant...

Cochran, David Brian

1996-01-01T23:59:59.000Z

64

Synthesis and design of optimal thermal membrane distillation networks  

E-Print Network [OSTI]

distillation as a technology that can be driven by thermal energy at low enthalpy, such as geothermal energy, by using a hybrid air gap membrane distillation- fluidized bed crystallization assembly for desalination. Tomaszewska (2000) has studied... of pre-pressurizing of the membrane pores and control of dissolved gas concentrations in the feed and recycled permeate in order to prevent pore penetration and wetting (Agashichev and Sivakov, 1993). Temperature polarization effects have been...

Nyapathi Seshu, Madhav

2006-10-30T23:59:59.000Z

65

A Comparison of Real-Time Thermal Rating Systems in the U.S. and the U.K.  

SciTech Connect (OSTI)

Real-time thermal rating is a smart-grid technology that allows the rating of electrical conductors to be increased based on local weather conditions. Overhead lines are conventionally given a conservative, constant seasonal rating based on seasonal and regional worst case scenarios rather than actual, say, local hourly weather predictions. This paper provides a report of two pioneering schemes-one in the U.S. and one in the U.K.-where real-time thermal ratings have been applied. Thereby, we demonstrate that observing the local weather conditions in real time leads to additional capacity and safer operation. Second, we critically compare both approaches and discuss their limitations. In doing so, we arrive at novel insights which will inform and improve future real-time thermal rating projects.

Jake P. Gentle; Kurt S. Myers; Jason W. Bush; Isaac J. West; David M. Greenwood; Grant L. Ingram; Peter J. Davison; Matthias C.M. Troffaes

2014-08-01T23:59:59.000Z

66

The Impact of Rate Design and Net Metering on the Bill Savings...  

Open Energy Info (EERE)

Area: Renewable Energy Topics: Best Practices Website: eetd.lbl.goveaempreportslbnl-3276e.pdf Equivalent URI: cleanenergysolutions.orgcontentimpact-rate-design-and-net-m...

67

Criterion for burner design in thermal weed control  

E-Print Network [OSTI]

A covered infrared burner was designed and constructed so that it could be compared to an open-flame burner. Two covered burners, a high configuration and a low configuration, were constructed. A low configuration covered infrared burner, high...

Gonzalez, Telca Marisa

2001-01-01T23:59:59.000Z

68

Synthetic aperture design for increased SAR image rate  

DOE Patents [OSTI]

High resolution SAR images of a target scene at near video rates can be produced by using overlapped, but nevertheless, full-size synthetic apertures. The SAR images, which respectively correspond to the apertures, can be analyzed in sequence to permit detection of movement in the target scene.

Bielek, Timothy P. (Albuquerque, NM); Thompson, Douglas G. (Albuqerque, NM); Walker, Bruce C. (Albuquerque, NM)

2009-03-03T23:59:59.000Z

69

Abstract --The influence on the thermal resistance of emitter design parameters like emitter area, aspect ratio, and distance to  

E-Print Network [OSTI]

Abstract -- The influence on the thermal resistance of emitter design parameters like emitter area-state) thermal resistance, but also in a faster thermal transient of the transistors. Accurate RC networks are extracted by measurements in order to model the thermal impedance transient of devices with or without Al

Technische Universiteit Delft

70

Thermal-hydraulic design of the target/blanket for the accelerator production of tritium conceptual design  

SciTech Connect (OSTI)

A conceptual design was developed for the target/blanket system of an accelerator-based system to produce tritium. The target/blanket system uses clad tungsten rods for a spallation target and clad lead rods as a neutron multiplier in a blanket surrounding the target. The neutrons produce tritium in {sup 3}He, which is contained in aluminum tubes located in the decoupler and blanket regions. This paper presents the thermal-hydraulic design of the target, decoupler, and blanket developed for the conceptual design of the Accelerator Production of Tritium Project, and demonstrates there is adequate margin in the design at full power operation.

Willcutt, G.J.E. Jr.; Kapernick, R.J.

1997-11-01T23:59:59.000Z

71

Effects of engine speed, fueling rate, and combustion phasing on the thermal stratification required to limit HCCI knocking intensity.  

SciTech Connect (OSTI)

Thermal stratification has the potential to reduce pressure-rise rates and allow increased power output for HCCI engines. This paper systematically examines how the amount of thermal stratification of the core of the charge has to be adjusted to avoid excessive knock as the engine speed and fueling rate are increased. This is accomplished by a combination of multi-zone chemical-kinetics modeling and engine experiments, using iso-octane as the fuel. The experiments show that, for a low-residual engine configuration, the pressure traces are self-similar during changes to the engine speed when CA50 is maintained by adjusting the intake temperature. Consequently, the absolute pressure-rise rate measured as bar/ms increases proportionally with the engine speed. As a result, the knocking (ringing) intensity increases drastically with engine speed, unless counteracted by some means. This paper describes how adjustments of the thermal width of the in-cylinder charge can be used to limit the ringing intensity to 5 MW/m2 as both engine speed and fueling are increased. If the thermal width can be tailored without constraints, this enables smooth operation even for combinations of high speed, high load, and combustion phasing close to TDC. Since large alterations of the thermal width of the charge are not always possible, combustion retard is considered to reduce the requirement on the thermal stratification. The results show that combustion retard carries significant potential since it amplifies the benefit of a fixed thermal width. Therefore, the thermal stratification required for operation with an acceptable knocking intensity can be decreased substantially by the use of combustion retard. This enables combinations of high engine speed and high fueling rate even for operation with the naturally occurring thermal stratification. However, very precise control of the combustion phasing will likely be required for such operation.

SjÞoberg, Magnus; Dec, John E.

2004-12-01T23:59:59.000Z

72

Computer code input for thermal hydraulic analysis of Multi-Function Waste Tank Facility Title II design  

SciTech Connect (OSTI)

The input files to the P/Thermal computer code are documented for the thermal hydraulic analysis of the Multi-Function Waste Tank Facility Title II design analysis.

Cramer, E.R.

1994-10-01T23:59:59.000Z

73

The Solar Thermal Design Assistance Center report of its activities and accomplishments in Fiscal Year 1993  

SciTech Connect (OSTI)

The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories is a resource provided by the US Department of Energy`s Solar Thermal Program. Its major objectives are to accelerate the use of solar thermal systems through (a) direct technical assistance to users, (b) cooperative test, evaluation, and development efforts with private industry, and (c) educational outreach activities. This report outlines the major activities and accomplishments of the STDAC in Fiscal Year 1993. The report also contains a comprehensive list of persons who contacted the STDAC by telephone for information or technical consulting.

Menicucci, D.F.

1994-03-01T23:59:59.000Z

74

Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)  

SciTech Connect (OSTI)

Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

2013-02-01T23:59:59.000Z

75

Design considerations for a steady state fusion reactor's thermal energy dump (TED) with emphasis on SAFFIRE  

SciTech Connect (OSTI)

This work examines the use of a thermal dump to handle the severe particle and energy handling requirements of a diverted plasma. We outline a general approach for evaluating the design parameters and limitations of a thermal dump, considering such things as thermomechanical and erosion effects, compatibility, availability, machinability, coolant recirculation, vacuum pumping, economics, lifetime, etc. To demonstrate how the performance requirements are reflected in design decisions, we apply a solid-walled dump to a small-sized field reversed mirror (FRM). We also examine a liquid-lithium droplet thermal dump and point out some distinct advantages of this new concept over the solid-wall design in reducing stress, erosion, and vacuum pumping problems. The chief disadvantages of this scheme include liquid-metal safe-handling problems, vapor pressure-temperature limitations, and the need for differential pumping if T/sub Li/ > 310/sup 0/C is desired.

Werley, K.A.

1980-01-01T23:59:59.000Z

76

Cost of Service and Rate Design Issues Affecting Industrial Customers in Retail Rate Proceedings  

E-Print Network [OSTI]

alternative is not selected, or when the selected capacity expansion plan results in excess generation. A reduction in invested capital will reduce the system revenue requirements. The rate of return is equal to the sum of the weighted cost of debt plus... the position that the cost of all or part of an imprudent management decision should be borne by the stockholder. Prudency issues are usually raised when the cost of new generation units are excessive, when the most economic generation expansion...

Stover, C. N. Jr.

77

STDAC: Solar Thermal Design Assistance Center annual report fiscal year 1994  

SciTech Connect (OSTI)

The Solar Thermal Design Assistance Center (STDAC) at Sandia is a resource provided by the DOE Solar Thermal Program. The STDAC`s major objective is to accelerate the use of solar thermal systems by providing direct technical assistance to users in industry, government, and foreign countries; cooperating with industry to test, evaluate, and develop renewable energy systems and components; and educating public and private professionals, administrators, and decision makers. This FY94 report highlights the activities and accomplishments of the STDAC. In 1994, the STDAC continued to provide significant direct technical assistance to domestic and international organizations in industry, government, and education, Applying solar thermal technology to solve energy problems is a vital element of direct technical assistance. The STDAC provides information on the status of new, existing, and developing solar technologies; helps users screen applications; predicts the performance of components and systems; and incorporates the experience of Sandia`s solar energy personnel and facilities to provide expert guidance. The STDAC directly enhances the US solar industry`s ability to successfully bring improved systems to the marketplace. By collaborating with Sandia`s Photovoltaic Design Assistance Center and the National Renewable Energy Laboratory the STDAC is able to offer each customer complete service in applying solar thermal technology. At the National Solar Thermal Test Facility the STDAC tests and evaluates new and innovative solar thermal technologies. Evaluations are conducted in dose cooperation with manufacturers, and the results are used to improve the product and/or quantify its performance characteristics. Manufacturers, in turn, benefit from the improved design, economic performance, and operation of their solar thermal technology. The STDAC provides cost sharing and in-kind service to manufacturers in the development and improvement of solar technology.

NONE

1994-12-31T23:59:59.000Z

78

Design and Fabrication of Photonic Crystals for Thermal Energy Conservation  

SciTech Connect (OSTI)

The vision of intelligent and large-area fabrics capable of signal processing, sensing and energy harvesting has made incorporating electronic devices into flexible fibers an active area of research. Fiber-integrated rectifying junctions in the form of photovoltaic cells and light-emitting diodes (LEDs) have been fabricated on optical fiber substrates. However, the length of these fiber devices has been limited by the processing methods and the lack of a sufficiently conductive and transparent electrode. Their cylindrical device geometry is ideal for single device architectures, like photovoltaics and LEDs, but not amenable to building multiple devices into a single fiber. In contrast, the composite preform-to-fiber approach pioneered in our group addresses the key challenges of device density and fiber length simultaneously. It allows one to construct structured fibers composed of metals, insulators and semiconductors and enables the incorporation of many devices into a single fiber capable of performing complex tasks such as of angle of incidence and color detection. However, until now, devices built by the preform-to-fiber approach have demonstrated only ohmic behavior due to the chalcogenide semiconductor's amorphous nature and defect density. From a processing standpoint, non-crystallinity is necessary to ensure that the preform viscosity during thermal drawing is large enough to extend the time-scale of breakup driven by surface tension effects in the fluids to times much longer than that of the actual drawing. The structured preform cross-section is maintained into the microscopic fiber only when this requirement is met. Unfortunately, the same disorder that is integral to the fabrication process is detrimental to the semiconductors' electronic properties, imparting large resistivities and effectively pinning the Fermi level near mid-gap. Indeed, the defect density within the mobility gap of many chalcogenides has been found to be 1018-1019 cm-3 eV-1, resulting in a narrow depletion width and ohmic behavior at metal-semiconductor junctions. In this work we incorporated phase-changing semiconductors, those that may be easily converted between the amorphous and crystalline states, into composite fibers with a goal towards constructing rectifying junctions in fiber.

Professor John Joannopoulos; Professor Yoel Fink

2009-09-17T23:59:59.000Z

79

Exact evaluation of the rates of electrostatic decay and scattering off thermal ions for an unmagnetized Maxwellian plasma  

SciTech Connect (OSTI)

Electrostatic decay of Langmuir waves into Langmuir and ion sound waves (L?L?+S) and scattering of Langmuir waves off thermal ions (L+i?L?+i?, also called “nonlinear Landau damping”) are important nonlinear weak-turbulence processes. The rates for these processes depend on the quadratic longitudinal response function ?{sup (2)} (or, equivalently, the quadratic longitudinal susceptibility ?{sup (2)}), which describes the second-order response of a plasma to electrostatic wave fields. Previous calculations of these rates for an unmagnetized Maxwellian plasma have relied upon an approximate form for ?{sup (2)} that is valid where two of the wave fields are fast (i.e., v{sub ?}=?/k?V{sub e} where ? is the angular frequency, k is the wavenumber, and V{sub e} is the electron thermal speed) and one is slow (v{sub ?}?V{sub e}). Recently, an exact expression was derived for ?{sup (2)} that is valid for any phase speeds of the three waves in an unmagnetized Maxwellian plasma. Here, this exact ?{sup (2)} is applied to the calculation of the three-dimensional rates for electrostatic decay and scattering off thermal ions, and the resulting exact rates are compared with the approximate rates. The calculations are performed using previously derived three-dimensional rates for electrostatic decay given in terms of a general ?{sup (2)}, and newly derived three-dimensional rates for scattering off thermal ions; the scattering rate is derived assuming a Maxwellian ion distribution, and both rates are derived assuming arc distributions for the wave spectra. For most space plasma conditions, the approximate rate is found to be accurate to better than 20%; however, for sufficiently low Langmuir phase speeds (v{sub ?}/V{sub e}?3) appropriate to some spatial domains of the foreshock regions of planetary bow shocks and type II solar radio bursts, the use of the exact rate may be necessary for accurate calculations. The relative rates of electrostatic decay and scattering off thermal ions are calculated for a range of parameters using the exact expressions for the rates; electrostatic decay is found to have the larger growth rate over the whole range of parameters, consistent with previous approximate calculations.

Layden, B.; Cairns, Iver H.; Robinson, P. A. [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)] [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

2013-08-15T23:59:59.000Z

80

Conceptual design and engineering studies of adiabatic compressed air energy storage (CAES) with thermal energy storage  

SciTech Connect (OSTI)

The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)

Hobson, M.J.

1981-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Neutronic and thermal design considerations for heat-pipe reactors  

SciTech Connect (OSTI)

SABRE (Space-Arena Baseline Reactor) is a 100-kW/sub e/, heat-pipe-cooled, beryllium-reflected, fast reactor that produces heat at a temperature of 1500/sup 0/K and radiatively transmits it to high-temperature thermoelectric (TE) conversion elements. The use of heat pipes for core heat removal eliminates single-point failure mechanisms in the reactor cooling system, and provides minimal temperature drop radiative coupling to the TE array, as well as automatic, self-actuating removal of reactor afterheat. The question of how the failure of a fuel module heat pipe will affect neighboring fuel modules in the core is discussed, as is fission density peaking that occurs at the core/reflector interface. Results of neutronic calculations of the control margin available are described. Another issue that is addressed is that of helium generation in the heat pipes from neutron reactions in the core with the heat pipe fluid. Finally, the growth potential of the SABRE design to much higher powers is examined.

Ranken, W.A.; Koenig, D.R.

1983-01-01T23:59:59.000Z

82

Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger  

SciTech Connect (OSTI)

The analytical methodologies for the thermal design, mechanical design and cost estimation of printed circuit heat exchanger are presented in this study. In this study, three flow arrangements of parallel flow, countercurrent flow and crossflow are taken into account. For each flow arrangement, the analytical solution of temperature profile of heat exchanger is introduced. The size and cost of printed circuit heat exchangers for advanced small modular reactors, which employ various coolants such as sodium, molten salts, helium, and water, are also presented.

Su-Jong Yoon; Piyush Sabharwall; Eung-Soo Kim

2013-09-01T23:59:59.000Z

83

SOLCOST - Version 3. 0. Solar energy design program for non-thermal specialists  

SciTech Connect (OSTI)

The SOLCOST solar energy design program is a public domain computerized design tool intended for use by non-thermal specialists to size solar systems with a methodology based on life cycle cost. An overview of SOLCOST capabilities and options is presented. A detailed guide to the SOLCOST input parameters is included. Sample problems showing typical imput decks and resulting SOLCOST output sheets are given. Details of different parts of the analysis are appended. (MHR)

Not Available

1980-05-01T23:59:59.000Z

84

Thermal-hydraulic criteria for the APT tungsten neutron source design  

SciTech Connect (OSTI)

This report presents the thermal-hydraulic design criteria (THDC) developed for the tungsten neutron source (TNS). The THDC are developed for the normal operations, operational transients, and design-basis accidents. The requirements of the safety analyses are incorporated into the design criteria, consistent with the integrated safety management and the safety-by-design philosophy implemented throughout the APT design process. The phenomenology limiting the thermal-hydraulic design and the confidence level requirements for each limit are discussed. The overall philosophy of the uncertainty analyses and the confidence level requirements also are presented. Different sets of criteria are developed for normal operations, operational transients, anticipated accidents, unlikely accidents, extremely unlikely accidents, and accidents during TNS replacement. In general, the philosophy is to use the strictest criteria for the high-frequency events. The criteria is relaxed as the event frequencies become smaller. The THDC must be considered as a guide for the design philosophy and not as a hard limit. When achievable, design margins greater than those required by the THDC must be used. However, if a specific event sequence cannot meet the THDC, expensive design changes are not necessary if the single event sequence results in sufficient margin to safety criteria and does not challenge the plant availability or investment protection considerations.

Pasamehmetoglu, K.

1998-03-01T23:59:59.000Z

85

THERMAL ENHANCEMENT CARTRIDGE HEATER MODIFIED TECH MOD TRITIUM HYDRIDE BED DEVELOPMENT PART I DESIGN AND FABRICATION  

SciTech Connect (OSTI)

The Savannah River Site (SRS) tritium facilities have used 1{sup st} generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and 3{sup rd} generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen 3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed.

Klein, J.; Estochen, E.

2014-03-06T23:59:59.000Z

86

Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle  

E-Print Network [OSTI]

Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits/DC converter; electric drives; electric vehicles; fuel cell; hybrid electric vehicles; power electronics, motor

Mi, Chunting "Chris"

87

Design consistency and driver error as reflected by driver workload and accident rates  

E-Print Network [OSTI]

DESIGN CONSISTENCY AND DRIVER ERROR AS REFLECTED BY DRIVER WORKLOAD AND ACCIDENT RATES A Thesis by MARK DOUGLAS WOOLDRIDGE Approved as to style and content by: Daniel B. Fambro (Chair of Committee) Raymond A. Krammes (Member) Olga J.... Pendleton (Member) James T. P. Yao (Head of Department) May 1992 ABSTRACT Design Consistency and Driver Error as Reflected by Driver Workload and Accident Rates (May 1992) Mark Douglas Wooldridge, B. S. , Texas A&M University Chair of Advisory...

Wooldridge, Mark Douglas

1992-01-01T23:59:59.000Z

88

Public Utility Regulatory Policies Act of 1978: Natural Gas Rate Design Study  

SciTech Connect (OSTI)

First, the comments on May 3, 1979 Notice of Inquiry of DOE relating to the Gas Utility Rate Design Study Required by Section 306 of PURPA are presented. Then, comments on the following are included: (1) ICF Gas Utility Model, Gas Utility Model Data Outputs, Scenario Design; (2) Interim Model Development Report with Example Case Illustrations; (3) Interim Report on Simulation of Seven Rate Forms; (4) Methodology for Assessing the Impacts of Alternative Rate Designs on Industrial Energy Use; (5) Simulation of Marginal-Cost-Based Natural Gas Rates; and (6) Preliminary Discussion Draft of the Gas Rate Design Study. Among the most frequent comments expressed were the following: (a) the public should be given the opportunity to review the final report prior to its submission to Congress; (b) results based on a single computer model of only four hypothetical utility situations cannot be used for policy-making purposes for individual companies or the entire gas industry; (c) there has been an unobjective treatment of traditional and economic cost rate structures; the practical difficulties and potential detrimental consequences of economic cost rates are not fully disclosed; and (d) it is erroneous to assume that end users, particularly residential customers, are influenced by price signals in the rate structure, as opposed to the total bill.

None

1980-05-01T23:59:59.000Z

89

Investigations on Repository Near-Field Thermal Modeling - Repository Science/Thermal Load Management & Design Concepts (M41UF033302)  

SciTech Connect (OSTI)

The various layers of material from the waste package (such as components of the engineered barrier system and the host rock surface) to a given distance within the rock wall at a given distance can be described as concentric circles with varying thermal properties (see Figure 5.1-1). The selected model approach examines the contributions of the waste package, axial waste package neighbors and lateral neighboring emplacement drifts (see Section 5.2.1 and Appendix H, Section 2). In clay and deep borehole media, the peak temperature is driven by the central waste package whereas, in granite and salt, the contribution to the temperature rise by adjacent (lateral) waste packages in drift or emplacement borehole lines is dominant at the time of the peak temperature. Mathematical models generated using Mathcad software provide insight into the effects of changing waste package spacing for six waste forms, namely UOX, MOX, co-extraction, new extraction, E-Chem ceramic and E-Chem metal in four different geologic media (granite, clay, salt and deep borehole). Each scenario includes thermal conductivity and diffusivity for each layer between the waste package and the host rock, dimensions of representative repository designs (such as waste package spacing, drift or emplacement borehole spacing, waste package dimensions and layer thickness), and decay heat curves generated from knowledge of the contents of a given waste form after 10, 50, 100 and 200 years of surface storage. Key results generated for each scenario include rock temperature at a given time calculated at a given radius from the central waste package (Section 5.2.1 and Appendix H, Section 3), the corresponding temperature at the interface of the waste package and EBS material, and at each EBS layer in between (Section 5.2.2 and Appendix H, Section 4). This information is vital to understand the implications of repository design (waste package capacity, surface storage time, waste package spacing, and emplacement drift or borehole spacing) by comparing the peak temperature to the thermal limits of the concentric layers surrounding the waste package; specifically 100 C for the bentonite buffer in granite and clay repositories, 100 C for rock wall in a clay repository and 200 C at the rock wall for a salt repository. These thermal limits are both preliminary and approximate, and serve as a means to evaluate design options rather than determining compliance for licensing situations. The thermal behavior of a salt repository is more difficult to model because it is not a concentric geometry and because the crushed salt backfill initially has a much higher thermal resistance than intact salt. Three models were investigated, namely a waste package in complete contact with crushed salt, secondly a waste package in contact with intact salt, and thirdly a waste package in contact with 75% intact and 25% crushed salt. The latter model best depicts emplacement of a waste package in the corner of an intact salt alcove and subsequently covered with crushed salt backfill to the angle of repose. The most conservative model (crushed salt) had temperatures much higher than the other models and although bounding, is too conservative to use. The most realistic model (75/25) had only a small temperature difference from the simplest (non-conservative, intact salt) model, and is the one chosen in this report (see Section 5.2.3). A trade-study investigating three key variables (surface storage time, waste package capacity and waste package spacing) is important to understand and design a repository. Waste package heat can be reduced by storing for longer periods prior to emplacement, or by reducing the number of assemblies or canisters within that waste package. Waste package spacing can be altered to optimize the thermal load without exceeding the thermal limits of the host rock or EBS components. By examining each of these variables, repository footprint (and therefore cost) can be optimized. For this report, the layout was fixed for each geologic medium based on prior published designs in

Sutton, M; Blink, J A; Fratoni, M; Greenberg, H R; Ross, A D

2011-07-15T23:59:59.000Z

90

Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)  

SciTech Connect (OSTI)

This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

1990-07-01T23:59:59.000Z

91

Thermal Response of the Hybrid Loop-Pool Design for Sodium Cooled Faster Reactors  

SciTech Connect (OSTI)

An innovative hybrid loop-pool design for the sodium cooled fast reactor (SFR) has been recently proposed with the primary objective of achieving cost reduction and safety enhancement. With the hybrid loop-pool design, closed primary loops are immersed in a secondary buffer tank. This design takes advantage of features from conventional both pool and loop designs to further improve economics and safety. This paper will briefly introduce the hybrid loop-pool design concept and present the calculated thermal responses for unproctected (without reactor scram) loss of forced circulation (ULOF) transients using RELAP5-3D. The analyses examine both the inherent reactivity shutdown capability and decay heat removal performance by passive safety systems.

Zhang, Hongbin; Zhao, Haihua; Davis, Cliff

2008-09-01T23:59:59.000Z

92

Neutronics and thermal design analyses of US solid breeder blanket for ITER  

SciTech Connect (OSTI)

The US Solid Breeder Blanket is designed to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Safety, low tritium inventory, reliability, flexibility cost, and minimum R D requirements are the other design criteria. To satisfy these criteria, the produced tritium is recovered continuously during operation and the blanket coolant operates at low pressure. Beryllium multiplier material is used to control the solid-breeder temperature. Neutronics and thermal design analyses were performed in an integrated manner to define the blanket configuration. The reference parameters of ITER including the operating scenarios, the neutron wall loading distribution and the copper stabilizer are included in the design analyses. Several analyses were performed to study the impact of the reactor parameters, blanket dimensions, material characteristics, and heat transfer coefficient at the material interfaces on the blanket performance. The design analyses and the results from the different studies are summarized. 6 refs., 3 figs., 3 tabs.

Gohar, Y.; Billone, M.; Attaya, H. (Argonne National Lab., IL (USA)); Sawan, M. (Wisconsin Univ., Madison, WI (USA))

1990-09-01T23:59:59.000Z

93

Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report  

SciTech Connect (OSTI)

Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse ({approx}900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial applications as well as open loop systems for direct nuclear thermal propulsion. Although a number of fast spectrum reactor and engine designs suitable for direct nuclear thermal propulsion were proposed and designed, none were built. This report summarizes status results of evaluations of small nuclear reactor designs suitable for direct nuclear thermal propulsion.

Bruce G. Schnitzler

2012-01-01T23:59:59.000Z

94

Uncertainty Analysis on the Design of Thermal Conductivity Measurement by a Guarded Cut-Bar Technique  

SciTech Connect (OSTI)

A technique adapted from the guarded-comparative-longitudinal heat flow method was selected for the measurement of the thermal conductivity of a nuclear fuel compact over a temperature range characteristic of its usage. This technique fulfills the requirement for non-destructive measurement of the composite compact. Although numerous measurement systems have been created based on the guarded comparative method, comprehensive systematic (bias) and measurement (precision) uncertainty associated with this technique have not been fully analyzed. In addition to the geometric effect in the bias error, which has been analyzed previously, this paper studies the working condition which is another potential error source. Using finite element analysis, this study showed the effect of these two types of error sources in the thermal conductivity measurement process and the limitations in the design selection of various parameters by considering their effect on the precision error. The results and conclusions provide valuable reference for designing and operating an experimental measurement system using this technique.

Jeff Phillips; Changhu Xing; Colby Jensen; Heng Ban1

2011-07-01T23:59:59.000Z

95

RESOLUTION STRATEGY FOR GEOMECHANICALLY-RELATED REPOSITORY DESIGN FOR THERMAL-MECHANICAL EFFECTS (RDTME)  

SciTech Connect (OSTI)

In September of 2000, the U.S. Nuclear Regulatory Commission (NRC) issued an Issue Resolution Status Report (NRC 2000). The Key Technical Issue (KTI) agreements on Repository Design and Thermal-Mechanical Effects (RDTME) were jointly developed at the Technical Exchange and Management Meeting held on February 6-8, 2001 in Las Vegas, Nevada. In that report, a number of geomechanically-related issues were raised regarding the determination of rock properties, the estimation of the impacts of geologic variability, the use of numerical models, and the examination of drift degradation and design approach to the ground support system for the emplacement drifts. Ultimately, the primary end products of the KTI agreement resolution processes are an assessment of the preclosure stability of emplacement drifts and the associated ground support requirements. There is also an assessment of the postclosure degradation of the excavations when subjected to thermal and seismic-related stresses as well as in situ loading over time.

M. Board

2003-04-01T23:59:59.000Z

96

Thermal and Electrical Analysis of MARS Rover RTG, and Performance Comparison of Alternative Design Options.  

SciTech Connect (OSTI)

The paper describes the thermal, thermoelectric and electrical analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the MARS Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The work described was part of an RTG design study conducted by Fairchild Space Company for the U.S. Department of Energy, in support of the Jet Propulsion Laboratory's MRSR Project.; A companion paper presented at this conference described a reference mission scenario, al illustrative Rover design and activity pattern on Mars, its power system requirements and environmental constraints, a design approach enabling RTG operation in the Martian atmosphere, and the design and the structural and mass analysis of a conservative baseline RTG employing safety-qualified heat source modules and reliability-proven thermoelectric converter elements.; The present paper presents a detailed description of the baseline RTG's thermal, thermoelectric, and electrical analysis. It examines the effect of different operating conditions (beginning versus end of mission, water-cooled versus radiation-cooled, summer day versus winter night) on the RTG's performance. Finally, the paper describes and analyzes a number of alternative RTG designs, to determine the effect of different power levels (250W versus 125W), different thermoelectric element designs (standard versus short unicouples versus multicouples) and different thermoelectric figures of merit (0.00058K(superscript -1) to 0.000140K (superscript -1) on the RTG's specific power.; The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost.; There is a duplicate copy and also a duplicate copy in the ESD files.

Schock, Alfred; Or, Chuen T; Skrabek, Emanuel A

1989-09-29T23:59:59.000Z

97

IN-SITU MEASUREMENT OF WALL THERMAL PERFORMANCE: DATA INTERPRETATION AND APPARATUS DESIGN RECOMMENDATIONS  

E-Print Network [OSTI]

Description: The Envelope Thermal Test Unit (submitted forCross-sectional view of Envelope Thermal Test Unit blanketmeasurement prototype, the Envelope Thermal Test Unit,12 and

Modera, M.P.; Sherman, M.H.; de Vinuesa, S.G.

2008-01-01T23:59:59.000Z

98

Improving SFR Economics through Innovations from Thermal Design and Analysis Aspects  

SciTech Connect (OSTI)

Achieving economic competitiveness as compared to LWRs and other Generation IV (Gen-IV) reactors is one of the major requirements for large-scale investment in commercial sodium cooled fast reactor (SFR) power plants. Advances in R&D for advanced SFR fuel and structural materials provide key long-term opportunities to improve SFR economics. In addition, other new opportunities are emerging to further improve SFR economics. This paper provides an overview on potential ideas from the perspective of thermal hydraulics to improve SFR economics. These include a new hybrid loop-pool reactor design to further optimize economics, safety, and reliability of SFRs with more flexibility, a multiple reheat and intercooling helium Brayton cycle to improve plant thermal efficiency and reduce safety related overnight and operation costs, and modern multi-physics thermal analysis methods to reduce analysis uncertainties and associated requirements for over-conservatism in reactor design. This paper reviews advances in all three of these areas and their potential beneficial impacts on SFR economics.

Haihua Zhao; Hongbin Zhang; Vincent Mousseau; Per F. Peterson

2008-06-01T23:59:59.000Z

99

SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project  

SciTech Connect (OSTI)

The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

1980-03-01T23:59:59.000Z

100

Debate response: Which rate designs provide revenue stability and efficient price signals? Let the debate continue.  

SciTech Connect (OSTI)

Let's engage in further discussion that provides solutions and details, not just criticisms and assertions. Let's engage in a meaningful dialogue about the conditions where real-time pricing or critical peak pricing with decoupling or the SFV rate design with a feebate is most effective. (author)

Boonin, David Magnus

2009-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EXECUTIVE SUMMARY: RETHINKING STANDBY & FIXED COST CHARGES REGULATORY & RATE DESIGN PATHWAYS TO DEEPER SOLAR PV COST  

E-Print Network [OSTI]

to be recovered through variable, volume-based charges per kilowatt-hour (kWh). At the same time, however, someEXECUTIVE SUMMARY: RETHINKING STANDBY & FIXED COST CHARGES REGULATORY & RATE DESIGN PATHWAYS TO DEEPER SOLAR PV COST REDUCTIONS The Current Terrain In recent years, electric utilities have experienced

102

System Design Considerations for High data Rate Communications Over Multi-wire Overhead Power-  

E-Print Network [OSTI]

System Design Considerations for High data Rate Communications Over Multi-wire Overhead Power communications, multi-wire overhead lines, capacity, OFDM, coding. I. INTRODUCTION The increasing interest, and severe narrowband interference [1]. The channel characteristics of medium voltage overhead power-line

Kavehrad, Mohsen

103

A Thermally-Aware Methodology for Design-Specific Optimization of Supply and Threshold Voltages in Nanometer Scale ICs  

E-Print Network [OSTI]

411 A Thermally-Aware Methodology for Design-Specific Optimization of Supply and Threshold Voltages and associated thermal effects have strong impact on the packaging, cooling costs, and reliability for deep submicron technologies [2-5]. For power-constrained applications, lowering supply voltage (Vdd) offers

104

MULTIPLE WELL VARIABLE RATE WELL TEST ANALYSIS OF DATA FROM THE AUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRAM  

E-Print Network [OSTI]

experimental Thermal energy storage in confined aquifers. ©lAUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRM1 Christineseries of aquifer thermal energy storage field experiments.

Doughty, Christine

2012-01-01T23:59:59.000Z

105

Method and apparatus for obtaining enhanced production rate of thermal chemical reactions  

DOE Patents [OSTI]

Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

Tonkovich, Anna Lee Y. (Pasco, WA); Wang, Yong (Richland, WA); Wegeng, Robert S. (Richland, WA); Gao, Yufei (Kennewick, WA)

2006-05-16T23:59:59.000Z

106

Method and apparatus for obtaining enhanced production rate of thermal chemical reactions  

DOE Patents [OSTI]

Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

Tonkovich, Anna Lee; Wang, Yong; Wegeng, Robert S.; Gao, Yufei

2003-09-09T23:59:59.000Z

107

First-order thermal correction to the quadratic response tensor and rate for second harmonic plasma emission  

SciTech Connect (OSTI)

Three-wave interactions in plasmas are described, in the framework of kinetic theory, by the quadratic response tensor (QRT). The cold-plasma QRT is a common approximation for interactions between three fast waves. Here, the first-order thermal correction (FOTC) to the cold-plasma QRT is derived for interactions between three fast waves in a warm unmagnetized collisionless plasma, whose particles have an arbitrary isotropic distribution function. The FOTC to the cold-plasma QRT is shown to depend on the second moment of the distribution function, the phase speeds of the waves, and the interaction geometry. Previous calculations of the rate for second harmonic plasma emission (via Langmuir-wave coalescence) assume the cold-plasma QRT. The FOTC to the cold-plasma QRT is used here to calculate the FOTC to the second harmonic emission rate, and its importance is assessed in various physical situations. The FOTC significantly increases the rate when the ratio of the Langmuir phase speed to the electron thermal speed is less than about 3.

Layden, B.; Cairns, Iver H.; Robinson, P. A. [School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia); Percival, D. J. [Defence Science and Technology Organisation, P.O. Box 1500, Edinburgh, South Australia 5111 (Australia)

2011-02-15T23:59:59.000Z

108

In-Vessel Coil Material Failure Rate Estimates for ITER Design Use  

SciTech Connect (OSTI)

The ITER international project design teams are working to produce an engineering design for construction of this large tokamak fusion experiment. One of the design issues is ensuring proper control of the fusion plasma. In-vessel magnet coils may be needed for plasma control, especially the control of edge localized modes (ELMs) and plasma vertical stabilization (VS). These coils will be lifetime components that reside inside the ITER vacuum vessel behind the blanket modules. As such, their reliability is an important design issue since access will be time consuming if any type of repair were necessary. The following chapters give the research results and estimates of failure rates for the coil conductor and jacket materials to be used for the in-vessel coils. Copper and CuCrZr conductors, and stainless steel and Inconel jackets are examined.

L. C. Cadwallader

2013-01-01T23:59:59.000Z

109

25 kWe solar thermal stirling hydraulic engine system: Final conceptual design report  

SciTech Connect (OSTI)

This report documents the conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to the 11-meter Test Bed Concentrator at Sandia National Laboratories. A manufacturing cost assessment for 10,000 units per year was made by Pioneer Engineering and Manufacturing. The design meets all program objectives including a 60,000-hr design life, dynamic balancing, fully automated control, >33.3% overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs of $300/kW. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high-pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk. The engine design is based on a highly refined Stirling hydraulic engine developed over 20 years as a fully implantable artificial heart power source. 4 refs., 19 figs., 3 tabs.

Not Available

1988-01-01T23:59:59.000Z

110

Chiller Start/Stop Optimization for a Campus-wide Chilled Water System with a Thermal Storage Tank Under a Four-Period Electricity Rate Schedule  

E-Print Network [OSTI]

The existence of a 1.4-million-gallon chilled water thermal storage tank greatly increases the operational flexibility of a campuswide chilled water system under a four-part electricity rate structure. While significant operational savings can...

Zhou, J.; Wei, G.; Turner, W. D.; Deng, S.; Claridge, D.; Contreras, O.

2002-01-01T23:59:59.000Z

111

Operation and Thermal Modeling of the ISIS H– Source from 50 to 2 Hz Repetition Rates  

E-Print Network [OSTI]

CERN’s Linac4 accelerator H? ion source, currently under construction, will operate at a 2 Hz repetition rate, with pulse length of 0.5 ms and a beam current of 80 mA. Its reliability must exceed 99 % with a mandatory 3 month uninterrupted operation period. A Penning ion source is successfully operated at ISIS; at 50 Hz repetition rate it reliably provides 55 mA H? pulses of 0.25 ms duration over 1 month. The discharge plasma ignition is very sensitive to the temperatures of the discharge region, especially of its cathode. The investigation by modeling and measurement of operation parameters suitable for arc ignition and H? production at 2 Hz is of paramount importance and must be understood prior to the implementation of discharge ion sources in the Linac4 accelerator. In its original configuration, the ISIS H? source delivers beam only if the repetition rate is above 12.5 Hz, this paper describes the implementation of a temperature control of the discharge region aiming at lower repetition rate op...

Pereira, H; Lettry, J

2013-01-01T23:59:59.000Z

112

Two-tank indirect thermal storage designs for solar parabolic trough power plants.  

E-Print Network [OSTI]

??The performance of a solar thermal parabolic trough plant with thermal storage is dependent upon the arrangement of the heat exchangers that ultimately transfer energy… (more)

Kopp, Joseph E.

2009-01-01T23:59:59.000Z

113

Manual for the thermal and hydraulic design of direct contact spray columns for use in extracting heat from geothermal brines  

SciTech Connect (OSTI)

This report outlines the current methods being used in the thermal and hydraulic design of spray column type, direct contact heat exchangers. It provides appropriate referenced equations for both preliminary design and detailed performance. The design methods are primarily empirical and are applicable for us in the design of such units for geothermal application and for application with solar ponds. Methods for design, for both preheater and boiler sections of the primary heat exchangers, for direct contact binary powers plants are included. 23 refs., 8 figs.

Jacobs, H.R.

1985-06-01T23:59:59.000Z

114

Space nuclear-power reactor design based on combined neutronic and thermal-fluid analyses  

SciTech Connect (OSTI)

The design and performance analysis of a space nuclear-power system requires sophisticated analytical capabilities such as those developed during the nuclear rocket propulsion (Rover) program. In particular, optimizing the size of a space nuclear reactor for a given power level requires satisfying the conflicting requirements of nuclear criticality and heat removal. The optimization involves the determination of the coolant void (volume) fraction for which the reactor diameter is a minimum and temperature and structural limits are satisfied. A minimum exists because the critical diameter increases with increasing void fraction, whereas the reactor diameter needed to remove a specified power decreases with void fraction. The purpose of this presentation is to describe and demonstrate our analytical capability for the determination of minimum reactor size. The analysis is based on combining neutronic criticality calculations with OPTION-code thermal-fluid calculations.

Koenig, D.R.; Gido, R.G.; Brandon, D.I.

1985-01-01T23:59:59.000Z

115

A comparison between conventional hotothermal frequency scan and the lock-in rate window method in measuring thermal diffirsivity  

E-Print Network [OSTI]

that for thick materials with long thermal transport times across the sample where low-frequency measurements to measure thermal conductivity of materials by steady-state heat flow methods and thermal diffusivity for thermal diffusivity measurements of materials, is presented. In this comparison, a completely noncontact

Mandelis, Andreas

116

Design and optimization of a high thermal flux research reactor via Kriging-based algorithm  

E-Print Network [OSTI]

In response to increasing demands for the services of research reactors, a 5 MW LEU-fueled research reactor core is developed and optimized to provide high thermal flux within specified limits upon thermal hydraulic ...

Kempf, Stephanie Anne

2011-01-01T23:59:59.000Z

117

Design of a steady state thermal conductivity measurement device for CNT RET polymer composites  

E-Print Network [OSTI]

NY: Taylor & Francis. [10] Tritt, T. M. (2004). MeasurementBulk Materials. In T. M. Tritt, Thermal Conductivity Theory,

Louie, Brian Ming

2011-01-01T23:59:59.000Z

118

A Design Study for Thermal Control of a CVD Reactor for YBCO Martha A. Gallivan, David G. Goodwin, and Richard M. Murray  

E-Print Network [OSTI]

A Design Study for Thermal Control of a CVD Reactor for YBCO Martha A. Gallivan, David G. Goodwin, CA 91125 Email: martha@cco.caltech.edu Abstract Active thermal control of a reactor for YBa2Cu3O7-x, and linear feedback control methods are used to assess the reactor's thermal re- sponse. Performance

Gallivan, Martha A.

119

A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules  

E-Print Network [OSTI]

A model of the thermal processing of particles in solar nebula shocks: Application to the cooling for the thermal processing of particles in shock waves typical of the solar nebula. This shock model improves are accounted for in their ef fects on the mass, momentum and energy fluxes. Also, besides thermal exchange

Connolly Jr, Harold C.

120

THERMAL EVALUATION OF THE USE OF BWR MOX SNF IN THE WASTE PACKAGE DESIGN (SCPB: N/A)  

SciTech Connect (OSTI)

This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) as specified in the Waste Package Implementation Plan (pp. 4-8,4-11,4-24, 5-1, and 5-13; Ref. 5.10) and Waste Package Plan (pp. 3-15,3-17, and 3-24; Ref. 5.9). The design data request addressed herein is: (1) Characterize the conceptual 40 BWR and 24 BWR Multi-Purpose Canister (MPC) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. (2) Characterize the conceptual 44 BWR and 24 BWR Uncanistered Fuel (UCF) Waste Package (WP) design to show that the design is feasible for use in the MGDS environment when loaded with BWR MOX SNF. The purpose of this analysis is to respond to a concern that the long-term disposal thermal issues for the WP Design, if used with SNF designed for a MOX fuel cycle, do not preclude WP compatibility with the MGDS. The objective of this analysis is to provide thermal parameter information for the conceptual WP design with disposal container which is loaded with BWR MOX SNF under nominal MGDS repository conditions. The results are intended to show that the design has a reasonable chance to meet the MGDS design requirements for normal MGDS operation, and to provide the required guidance to determining the major design issues for future design efforts, and to show that the BWR MOX SNF loaded WP performance is similar to an WP loaded with commercial BWR SNF.

H. Wang

1997-01-23T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Design and Operation of Membrane Microcalorimeters for Thermal Screening of Highly Energetic Materials  

E-Print Network [OSTI]

thermal screening of an unknown sample may be used to determine the existence of an exothermic behavior. The relative thermal hazard of an unknown sample can be evaluated from information obtained from a thermal scan, which includes the position... of the exotherms, and its relative intensity and energy content. Sharp exotherms with relatively high area under 5 the peak, will be a sign of the possible presence of a HEM (i.e., explosives). On the other hand, insignificant exothermic behavior or its...

Carreto Vazquez, Victor 1976-

2010-12-07T23:59:59.000Z

122

Design and global optimization of high-efficiency solar thermal systems with tungsten cermets  

E-Print Network [OSTI]

Solar thermal, thermoelectric, and thermophotovoltaic (TPV) systems have high maximum theoretical efficiencies; experimental systems fall short because of losses by selective solar absorbers and TPV selective emitters. To ...

Chester, David A.

123

Microsoft PowerPoint - Module 6c - Pebble Bed Thermal-Fluid Design...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HTGR Thermal-fluid Behavior Outline * Key TF parameters * Key TF characteristics y * Heat transfer modeling * TF modeling challenges * Testing and test facilities 2 Slide 2 2...

124

Designing an Optimal Urban Community Mix for an Aquifer Thermal Energy Storage System.  

E-Print Network [OSTI]

??This research examined what mix of building types result in the most efficient use of a technology known as Aquifer Thermal Energy Storage (ATES). Hourly… (more)

Zizzo, Ryan

2010-01-01T23:59:59.000Z

125

Investigation of new heat exchanger design performance for solar thermal chemical heat pump.  

E-Print Network [OSTI]

?? The emergence of Thermally Driven Cooling system has received more attention recently due to its ability to utilize low grade heat from engine, incinerator… (more)

Cordova, Cordova

2013-01-01T23:59:59.000Z

126

Initial Scaling Studies and Conceptual Thermal Fluids Experiments for the Prismatic NGNP Point Design  

SciTech Connect (OSTI)

The objective of this report is to document the initial high temperature gas reactor scaling studies and conceptual experiment design for gas flow and heat transfer. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/ATHENA/RELAP5-3D calculations for the same geometry. Two aspects of the complex flow in an NGNP are being addressed: (1) flow and thermal mixing in the lower plenum ("hot streaking" issue) and (2) turbulence and resulting temperature distributions in reactor cooling channels ("hot channel" issue). Current prismatic NGNP concepts are being examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses are being applied to determine key non-dimensional parameters and their magnitudes over this operating range. For normal operation, the flow in the coolant channels can be considered to be dominant forced convection with slight transverse property variation. The flow in the lower plenum can locally be considered to be a situation of multiple buoyant jets into a confined density-stratified crossflow -- with obstructions. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other. Two heat transfer experiments are being considered. One addresses the "hot channel" problem, if necessary. The second experiment will treat heated jets entering a model plenum. Unheated MIR (Matched-Index-of-Refraction) experiments are first steps when the geometry is complicated. One does not want to use a computational technique which will not even handle constant properties properly. The MIR experiment will simulate flow features of the paths of jets as they mix in flowing through the array of posts in a lower plenum en route to the single exit duct. Initial conceptual designs for such experiments are described.

D. M. McEligot; G. E. McCreery

2004-09-01T23:59:59.000Z

127

The design, construction, and monitoring of photovoltaic power system and solar thermal system on the Georgia Institute of Technology Aquatic Center. Volume 1  

SciTech Connect (OSTI)

This is a report on the feasibility study, design, and construction of a PV and solar thermal system for the Georgia Tech Aquatic Center. The topics of the report include a discussion of site selection and system selection, funding, design alternatives, PV module selection, final design, and project costs. Included are appendices describing the solar thermal system, the SAC entrance canopy PV mockup, and the PV feasibility study.

Long, R.C.

1996-12-31T23:59:59.000Z

128

Critical Simulation Based Evaluation of Thermally Activated Building Systems (TABS) Design Models  

E-Print Network [OSTI]

4.7. Discomfort distribution on a design day as Occupancy4.8. Discomfort distribution on a design day as Occupancy4.7. Discomfort distribution on a design day as Occupancy

Basu, Chandrayee

2012-01-01T23:59:59.000Z

129

Course Course Title Area Leader Frequency 09 Fall 10 Spr 10 Fall 11 Spr 11 Fall 12 Spr 12 Fall 13 Spr MMAE 433 Design of Thermal System Thermal Sciences Yagoobi 2 x x x x  

E-Print Network [OSTI]

Spr MMAE 433 Design of Thermal System Thermal Sciences Yagoobi 2 x x x x MMAE 445 CAD 468 Introduction to Ceramic Materials Materials Science & Eng Gonczy 2 x x x x MMAE 470 Introduction Processes Materials Science & Eng Tin 2 x x x x MMAE 486 Properties of Ceramics Materials Science & Eng

Heller, Barbara

130

Multiphysics Thermal-Fluid Design Analysis of a Non-Nuclear Tester for Hot-Hydrogen Materials and Component Development  

SciTech Connect (OSTI)

The objective of this effort is to perform design analyses for a non-nuclear hot-hydrogen materials tester, as a first step towards developing efficient and accurate multiphysics, thermo-fluid computational methodology to predict environments for hypothetical solid-core, nuclear thermal engine thrust chamber design and analysis. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, thermally radiating, unstructured-grid, and pressure-based formulation. The multiphysics invoked in this study include hydrogen dissociation kinetics and thermodynamics, turbulent flow, convective, and thermal radiative heat transfers. The goals of the design analyses are to maintain maximum hot-hydrogen jet impingement energy and to minimize chamber wall heating. The results of analyses on three test fixture configurations and the rationale for final selection are presented. The interrogation of physics revealed that reactions of hydrogen dissociation and recombination are highly correlated with local temperature and are necessary for accurate prediction of the hot-hydrogen jet temperature.

Wang, T.-S.; Foote, John; Litchford, Ron [NASA Marshall Space Flight Center, Huntsville, Alabama, 35812 (United States)

2006-01-20T23:59:59.000Z

131

Thermal design of humidification dehumidification systems for affordable and small-scale desalination  

E-Print Network [OSTI]

The humidification dehumidification (HDH) technology is a carrier-gas-based thermal desalination technique ideal for application in a small-scale system but, currently, has a high cost of water production (about 30 $/m³ ...

Govindan, Prakash Narayan

2012-01-01T23:59:59.000Z

132

NEUTRONIC AND THERMAL HYDRAULIC DESIGNS OF ANNULAR FUEL FOR HIGH POWER DENSITY BWRS  

E-Print Network [OSTI]

As a promising new fuel for high power density light water reactors, the feasibility of using annular fuel for BWR services is explored from both thermal hydraulic and neutronic points of view. Keeping the bundle size ...

Morra, P.

133

A Review of Thermal Acoustical and Special Project Requirements Data in Designing a Duct System  

E-Print Network [OSTI]

conditions. The Sheet Metal and Air Conditioning Association (SMACNA) and the Thermal Insulation Manufacturers Association (TIMA), have done considerable testing on air loss and temperature drop on operating HVAC systems. It is important to note...

Lebens, A. F.

1986-01-01T23:59:59.000Z

134

Thermal segmentation along the N. EcuadorS. Colombia margin (14N): Prominent influence of sedimentation rate in the trench  

E-Print Network [OSTI]

Thermal segmentation along the N. Ecuador­S. Colombia margin (1­4°N): Prominent influence Ecuador Colombia Along the deformation front of the North Ecuador­South Colombia (NESC) margin, both

Vallée, Martin

135

Synergy Between Building Rating Systems and Design Methodology for Intelligent and Green Buildings  

E-Print Network [OSTI]

. What is needed is a new integral design approach which enables to integrate the different aspects of green and intelligent buildings in a supportive framework during the design process. Especially the focus is on Multi Criteria Decision making within...

Zeiler, W.; Boxem, G.

136

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 2, ventilated concrete slab  

SciTech Connect (OSTI)

This paper is the second of two papers that describe the modeling and design of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) adopted in a prefabricated, two-storey detached, low energy solar house and their performance assessment based on monitored data. The VCS concept is based on an integrated thermal-structural design with active storage of solar thermal energy while serving as a structural component - the basement floor slab ({proportional_to}33 m{sup 2}). This paper describes the numerical modeling, design, and thermal performance assessment of the VCS. The thermal performance of the VCS during the commissioning of the unoccupied house is presented. Analysis of the monitored data shows that the VCS can store 9-12 kWh of heat from the total thermal energy collected by the BIPV/T system, on a typical clear sunny day with an outdoor temperature of about 0 C. It can also accumulate thermal energy during a series of clear sunny days without overheating the slab surface or the living space. This research shows that coupling the VCS with the BIPV/T system is a viable method to enhance the utilization of collected solar thermal energy. A method is presented for creating a simplified three-dimensional, control volume finite difference, explicit thermal model of the VCS. The model is created and validated using monitored data. The modeling method is suitable for detailed parametric study of the thermal behavior of the VCS without excessive computational effort. (author)

Chen, Yuxiang; Galal, Khaled; Athienitis, A.K. [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

137

Analysis and System Design of a Large Chiller Plant for Korea, with or without Thermal Storage  

E-Print Network [OSTI]

% was provided by thermal storage as in the previous scheme. Electric centrifugal chillers, two (2) at 950 tons each, were still required to charge the ice tanks at night, because gas-fired absorption chillers cannot make the 28°F (-2.2"C) glycol solution... simulated. C. Electric Centrifugal Chillers with Thermal Storage: Local code requires that a maximum of 60% of the peak cooling load be satisfied "real-time" by electricity. Therefore, two (2) 1,020-ton electric centrifugal chillers provided 2,040 tons...

Levin, C.; Simmonds, P.

1996-01-01T23:59:59.000Z

138

Design and characterization of nanowire array as thermal interface material for electronics packaging  

E-Print Network [OSTI]

, because it is non biodegradable, its potential impact on the environment is a concern. In this thesis research, two types of TIMs were designed, synthesized, and characterized. The first type, Designed TIM 1, consisted of anodic aluminum oxide (AAO...

Chiang, Juei-Chun

2009-05-15T23:59:59.000Z

139

Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from Major Evaluated Data Libraries  

E-Print Network [OSTI]

We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellianaveraged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented.

Pritychenko, B

2012-01-01T23:59:59.000Z

140

Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs David L. C. Chan, Marin Soljaci, and J. D. Joannopoulos  

E-Print Network [OSTI]

Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs David L. C phenomena that drive thermal emission in one-dimensional periodic metallic photonic crystals, emphasizing of how the emissive properties of these systems can be tailored to our needs. DOI: 10.1103/PhysRevE.74

Soljaèiæ, Marin

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Rate Schedules  

Broader source: Energy.gov [DOE]

One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

142

A study involving the design and fabrication process on the SRAM behavior during a dose-rate event  

SciTech Connect (OSTI)

The experimental results analysis of TS4T1601 SRAMs in standby mode and electrical simulations show that the SRAM design and some slight mask misalignments during the fabrication process are dominant factors concerning the dose-rate upset patterns and thresholds.

Marec, R.; Gaillard, R. [Nucletudes S.A., Les Ulis (France)] [Nucletudes S.A., Les Ulis (France); Mary, P. [LRBA, Vernon (France)] [LRBA, Vernon (France); Palau, J.M.; Bruguier, G.; Gasiot, J. [Univ. Montpellier II (France). Centre Electronique de Montpellier] [Univ. Montpellier II (France). Centre Electronique de Montpellier

1996-06-01T23:59:59.000Z

143

Design and implementation of a high data rate wireless system using Low-Density Parity-Check codes  

E-Print Network [OSTI]

The aim of this research is to design a high performance, high data rate, low cost wireless communications system for use in a typical outdoor environment. The use of Low-Density Parity-check (LDPC) codes as the forward error correction scheme...

Bhatt, Tejas Maheshbhai

2000-01-01T23:59:59.000Z

144

Thermal Storage Commercial Plant Design Study for a 2-Tank Indirect Molten Salt System: Final Report, 13 May 2002 - 31 December 2004  

SciTech Connect (OSTI)

Subcontract report by Nexant, Inc., and Kearney and Associates regarding a study of a solar parabolic trough commercial plant design with 2-tank indirect molten salt thermal storage system.

Kelly, B.; Kearney, D.

2006-07-01T23:59:59.000Z

145

Building design and thermal renovation measures proposal by means of regression models issued from dynamic simulations  

E-Print Network [OSTI]

comparison between different energy reduction strategies, like improving the insulation levels or increasing the thermal inertia. An example of their use and a data comparison with a dynamic simulation is shown in last;Nowadays, the most reliable solutions to calculate the energy demand are the simulation energy tools

Boyer, Edmond

146

Critical Simulation Based Evaluation of Thermally Activated Building Systems (TABS) Design Models  

E-Print Network [OSTI]

results of water supply temperature, cooling capacity andcooling energy 34 Water supplyThe cooling generation source will be designed to supply the

Basu, Chandrayee

2012-01-01T23:59:59.000Z

147

Design Studies for a High-Repetition-Rate FEL Facility at LBNL.  

E-Print Network [OSTI]

Repetition-Rate FEL Facility at LBNL* A. B ELKACEM , J. M. BBerkeley National Laboratory (LBNL) is working to addressof several divisions at LBNL is working to define the

CORLETT, J.

2009-01-01T23:59:59.000Z

148

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept  

SciTech Connect (OSTI)

This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

149

Design and thermal modeling of a non-invasive probe for measuring perfusion by thermodiffusion  

E-Print Network [OSTI]

This research 1) explores the feasibility of developing a non-invasive probe to precisely quantify microcirculatory blood flow (tissue perfusion), in real time and in absolute units, and 2) presents designs and models of ...

Charles, Steven Knight

2004-01-01T23:59:59.000Z

150

Design and validation of an air window for a molten salt solar thermal receiver  

E-Print Network [OSTI]

This thesis contributes to the development of Concentrating Solar Power (CSP) receivers and focuses on the design of an efficient aperture. An air window is proposed for use as the aperture of a CSP molten salt receiver ...

Paxson, Adam Taylor

2009-01-01T23:59:59.000Z

151

Multiphysics Design and Simulation of a Tungsten-Cermet Nuclear Thermal Rocket  

E-Print Network [OSTI]

fuel safety have sparked interest in an NTR core based on tungsten-cermet fuel. This work investigates the capability of modern CFD and neutronics codes to design a cermet NTR, and makes specific recommendations for the configuration of channels...

Appel, Bradley

2012-10-19T23:59:59.000Z

152

Accepted for publication in Energy and Buildings. 2014. http://dx.doi.org/10.1016/j.enbuild.2014.03.056 Improvement of Borehole Thermal Energy Storage Design Based on  

E-Print Network [OSTI]

.03.056 1 Improvement of Borehole Thermal Energy Storage Design Based on Experimental and Modelling Results Thermal Energy Storage appears to be an attractive solution for solar thermal energy storage. The SOLARGEOTHERM research project aimed to evaluate the energetic potential of borehole thermal energy storage

Paris-Sud XI, Université de

153

Thermally Simulated 32kW Direct-Drive Gas-Cooled Reactor: Design, Assembly, and Test  

SciTech Connect (OSTI)

One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow pre-prototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW direct-drive gas-cooled reactor in the Early Flight Fission - Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.

Godfroy, Thomas J.; Bragg-Sitton, Shannon M. [NASA Marshall Space Flight Center, TD40, Huntsville, Alabama, 35812 (United States); University of Michgan, Dept. of Nuclear Engineering and Radiological Sciences, Ann Arbor MI 48109 (United States); Kapernick, Richard J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2004-02-04T23:59:59.000Z

154

Thermal hydraulic method for whole core design analysis of an HTGR  

SciTech Connect (OSTI)

A new thermal hydraulic method and initial results are presented for core-wide steady state analysis of prismatic High Temperature Gas-Cooled Reactors (HTGR). The method allows for the complete solution of temperature and coolant mass flow distribution by solving quasi-steady energy balances for the discretized core. Assembly blocks are discretized into unit cells for which the average temperature of each unit cell is determined. Convective heat removal is coupled to the unit cell energy balances by a 1-D axial flow model. The flow model uses established correlations for friction factor and Nusselt number. Bypass flow is explicitly calculated by using an initial guess for mass flow distribution and determining the exit pressure of each flow channel. The mass flow distribution is updated until a uniform core exit pressure condition is reached. Results are obtained for the MHTGR-350 with emphasis on the change in thermal hydraulic parameters due to various steady state power profiles and bypass gap widths. Steady state temperature distribution and its variations are discussed. (authors)

Huning, A. J.; Garimella, S. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

2013-07-01T23:59:59.000Z

155

Electricity Journal debate: a response to Boonin's straight fixed variable ''feebate'' rate design  

SciTech Connect (OSTI)

The Boonin proposal creates more problems than it solves. A rate structure with time-differentiated pricing based on marginal cost, with a more traditional decoupling mechanism and a fuel and purchased power adjustment, does a much better job of decoupling and achieving ratemaking objectives of revenue adequacy, efficiency, equity, price transparency, and administrative feasibility. (author)

Parmesano, Hethie

2009-11-15T23:59:59.000Z

156

Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review  

SciTech Connect (OSTI)

Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

Lesh, Pamela G.

2009-10-15T23:59:59.000Z

157

Ocean thermal energy conversion power system development. Final design report: PSD-I, Phase II  

SciTech Connect (OSTI)

The PSD-I program provides a heat exchanger sytem consisting of an evaporator, condenser and various ancillaries with ammonia used as a working fluid in a closed simulated Rankine cycle. It is to be installed on the Chepachet Research Vessel for test and evaluation of a number of OTEC concepts in a true ocean environment. It is one of several test articles to be tested. Primary design concerns include control of biofouling, corrosion and erosion of aluminum tubes, selection of materials, and the development of a basis for scale-up to large heat exchangers so as to ultimately demonstrate economic feasibility on a commercial scale. The PSD-I test article is devised to verify thermodynamic, environmental, and mechanical performance of basic design concepts. The detailed design, development, fabrication, checklist, delivery, installation support, and operation support for the Test Article Heat Exchangers are described. (WHK)

None

1980-06-30T23:59:59.000Z

158

The Design and Analysis of Thermal-Resilient Hard-Real-Time Systems  

E-Print Network [OSTI]

temperature, an IMD will have to reduce its computational load to prevent tissue damage due to heat1 . However transitions between modes. Furthermore, our system design permits the calculation of a new metric called/vision). However, recent studies [2], [3] have shown that the heat dissipated from IMDs due to the microprocessor

Fisher, Nathan W.

159

REVIEW REPORT: BUILDING C-400 THERMAL TREATMENT 90 PERCENT REMEDIAL DESIGN REPORT AND SITE INVESTIGATION, PGDP, PADUCAH, KENTUCKY  

SciTech Connect (OSTI)

On 9 April 2007, the U.S. Department of Energy (DOE) Headquarters, Office of Soil and Groundwater Remediation (EM-22) initiated an Independent Technical Review (ITR) of the 90% Remedial Design Report (RDR) and Site Investigation (RDSI) for thermal treatment of trichloroethylene (TCE) in the soil and groundwater in the vicinity of Building C-400 at the Paducah Gaseous Diffusion Plant (PGDP). The general ITR goals were to assess the technical adequacy of the 90% RDSI and provide recommendations sufficient for DOE to determine if modifications are warranted pertaining to the design, schedule, or cost of implementing the proposed design. The ultimate goal of the effort was to assist the DOE Paducah/Portsmouth Project Office (PPPO) and their contractor team in ''removing'' the TCE source zone located near the C-400 Building. This report provides the ITR findings and recommendations and supporting evaluations as needed to facilitate use of the recommendations. The ITR team supports the remedial action objective (RAO) at C-400 to reduce the TCE source area via subsurface Electrical Resistance Heating (ERH). Further, the ITR team commends PPPO, their contractor team, regulators, and stakeholders for the significant efforts taken in preparing the 90% RDR. To maximize TCE removal at the target source area, several themes emerge from the review which the ITR team believes should be considered and addressed before implementing the thermal treatment. These themes include the need for: (1) Accurate and site-specific models as the basis to verify the ERH design for full-scale implementation for this challenging hydrogeologic setting; (2) Flexible project implementation and operation to allow the project team to respond to observations and data collected during construction and operation; (3) Defensible performance metrics and monitoring, appropriate for ERH, to ensure sufficient and efficient clean-up; and (4) Comprehensive (creative and diverse) contingencies to address the potential for system underperformance, and other unforeseen conditions These themes weave through the ITR report and the various analyses and recommendations. The ITR team recognizes that a number of technologies are available for treatment of TCE sources. Further, the team supports the regulatory process through which the selected remedy is being implemented, and concurs that ERH is a potentially viable remedial technology to meet the RAOs adjacent to C-400. Nonetheless, the ITR team concluded that additional efforts are needed to provide an adequate basis for the planned ERH design, particularly in the highly permeable Regional Gravel Aquifer (RGA), where sustaining target temperatures present a challenge. The ERH design modeling in the 90% RDR does not fully substantiate that heating in the deep RGA, at the interface with the McNairy formation, will meet the design goals; specifically the target temperatures. Full-scale implementation of ERH to meet the RAOs is a challenge in the complex hydrogeologic setting at PGDP. Where possible, risks to the project identified in this ITR report as ''issues'' and ''recommendations'' should be mitigated as part of the final design process to increase the likelihood of remedial success. The ITR efforts were organized into five lines of inquiry (LOIs): (1) Site investigation and target zone delineation; (2) Performance objectives; (3) Project and design topics; (4) Health and safety; and (5) Cross cutting and independent cost evaluation. Within each of these LOIs, the ITR team identified a series of unresolved issues--topics that have remaining uncertainties or potential project risks. These issues were analyzed and one or more recommendations were developed for each. In the end, the ITR team identified 27 issues and provided 50 recommendations. The issues and recommendations are briefly summarized below, developed in Section 5, and consolidated into a single list in Section 6. The ITR team concluded that there are substantive unresolved issues and system design uncertainties, resulting in technical and financial risks to DOE.

Looney, B; Jed Costanza, J; Eva Davis, E; Joe Rossabi, J; Lloyd (Bo) Stewart, L; Hans Stroo, H

2007-08-15T23:59:59.000Z

160

Scaling of Thermal-Hydraulic Experiments for a Space Rankine Cycle and Selection of a Preconceptual Scaled Experiment Design  

SciTech Connect (OSTI)

To assist with the development of a space-based Rankine cycle power system using liquid potassium as the working fluid, a study has been conducted on possible scaled experiments with simulant fluids. This report will consider several possible working fluids and describe a scaling methodology to achieve thermal-hydraulic similarity between an actual potassium system and scaled representations of the Rankine cycle boiler or condenser. The most practical scaling approach examined is based on the selection of perfluorohexane (FC-72) as the simulant. Using the scaling methodology, a series of possible solutions have been calculated for the FC-72 boiler and condenser. The possible scaled systems will then be compared and preconceptual specifications and drawings given for the most promising design. The preconceptual design concept will also include integrating the scaled boiler and scaled condenser into a single experimental loop. All the preconceptual system specifications appear practical from a fabrication and experimental standpoint, but further work will be needed to arrive at a final experiment design.

Sulfredge, CD

2006-01-27T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Design of Recycle/Reuse Networks with Thermal Effects and Variable Sources  

E-Print Network [OSTI]

-effective allocation of process streams (sources) to process units (sinks) without adding new equipment to the process. Examples of sources in direct recycle/reuse systems are the waste or low value streams considered for recycling. Examples of sinks are those units... performance targets which can be determined ahead of detailed design. In this regard, the ?pinch? technology is quite effective. Performance targets in terms of minimum amount of fresh requirements and waste flow are necessary for direct recycle/reuse...

Zavala Oseguera, Jose Guadalupe

2010-10-12T23:59:59.000Z

162

Abstract --Design guidelines are provided to improve the thermal stability of three-finger bipolar transistors. Experiments  

E-Print Network [OSTI]

in selfheating and mutual thermal resistances, which are extracted through accurate 3-D numerical simulations. To avoid strong asymmetries between the mutual thermal resistances of two adjacent fingers compared to two of the thermal resistance of the transistors; as a consequence, selfheating and thermal coupling among

Technische Universiteit Delft

163

Designing frequency-dependent relaxation rates and Lamb shift for a giant artificial atom  

E-Print Network [OSTI]

In traditional quantum optics, where the interaction between atoms and light at optical frequencies is studied, the atoms can be approximated as point-like when compared to the wavelength of light. So far, this relation has also been true for artificial atoms made out of superconducting circuits or quantum dots, interacting with microwave radiation. However, recent and ongoing experiments using surface acoustic waves show that a single artificial atom can be coupled to a bosonic field at several points wavelengths apart. Here, we theoretically study this type of system. We find that the multiple coupling points give rise to a frequency dependence in the coupling strength between the atom and its environment, and also in the Lamb shift of the atom. The frequency dependence is given by the discrete Fourier transform of the coupling point coordinates and can therefore be designed. We discuss a number of possible applications for this phenomenon, including tunable coupling, single-atom lasing, and other effects that can be achieved by designing the relative coupling strengths of different transitions in a multi-level atom.

Anton Frisk Kockum; Per Delsing; Göran Johansson

2014-06-02T23:59:59.000Z

164

Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment  

SciTech Connect (OSTI)

In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

2012-07-01T23:59:59.000Z

165

Please cite this article in press as: Malen, J.A., et al., Thermal hydraulic design of a hydride-fueled inverted PWR core. Nucl. Eng. Des. (2009), doi:10.1016/j.nucengdes.2009.02.026  

E-Print Network [OSTI]

Please cite this article in press as: Malen, J.A., et al., Thermal hydraulic design of a hydride hydraulic design of a hydride-fueled inverted PWR core J.A. Malena, , N.E. Todreasb , P. Hejzlarb , P and its thermal hydraulic performance is compared to that of a standard rod bundle core design also fueled

Malen, Jonathan A.

2009-01-01T23:59:59.000Z

166

Assessment of organic compound exposures, thermal comfort parameters, and HVAC system-driven air exchange rates in public school portable classrooms in California  

E-Print Network [OSTI]

to the ASHRAE 55 (1992) thermal comfort envelope provided inASHRAE 55 (1992) thermal comfort envelope values provided inthe ASHRAE 55 (1992) thermal comfort envelope of 30-60% RH.

Shendell, Derek Garth

2010-01-01T23:59:59.000Z

167

Structures for attaching or sealing a space between components having different coefficients or rates of thermal expansion  

DOE Patents [OSTI]

A structure for attaching together or sealing a space between a first component and a second component that have different rates or amounts of dimensional change upon being exposed to temperatures other than ambient temperature. The structure comprises a first attachment structure associated with the first component that slidably engages a second attachment structure associated with the second component, thereby allowing for an independent floating movement of the second component relative to the first component. The structure can comprise split rings, laminar rings, or multiple split rings.

Corman, Gregory Scot; Dean, Anthony John; Tognarelli, Leonardo; Pecchioli, Mario

2005-06-28T23:59:59.000Z

168

Software/firmware design specification for 10-MWe solar-thermal central-receiver pilot plant  

SciTech Connect (OSTI)

The software and firmware employed for the operation of the Barstow Solar Pilot Plant are completely described. The systems allow operator control of up to 2048 heliostats, and include the capability of operator-commanded control, graphic displays, status displays, alarm generation, system redundancy, and interfaces to the Operational Control System, the Data Acquisition System, and the Beam Characterization System. The requirements are decomposed into eleven software modules for execution in the Heliostat Array Controller computer, one firmware module for execution in the Heliostat Field Controller microprocessor, and one firmware module for execution in the Heliostat Controller microprocessor. The design of the modules to satisfy requirements, the interfaces between the computers, the software system structure, and the computers in which the software and firmware will execute are detailed. The testing sequence for validation of the software/firmware is described. (LEW)

Ladewig, T.D.

1981-03-01T23:59:59.000Z

169

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

SciTech Connect (OSTI)

Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

2011-06-01T23:59:59.000Z

170

Midtemperature Solar Systems Test Facility predictions for thermal performance based on test data: Custom Engineering trough with glass reflector surface and Sandia-designed receivers  

SciTech Connect (OSTI)

Thermal performance predictions based on test data are presented for the Custom Engineering trough and Sandia-designed receivers, with glass reflector surface, for three output temperatures at five cities in the United States. Two experimental receivers were tested, one with an antireflective coating on the glass envelope around the receiver tube and one without the antireflective coating.

Harrison, T.D.

1981-05-01T23:59:59.000Z

171

Rate Design and Renewables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, andEpidermal Growth Factor. |INCIDENCE OF AN OIL

172

Receiver subsystem analysis report (RADL Item 4-1). 10-MWe Solar Thermal Central-Receiver Pilot Plant: solar-facilities design integration  

SciTech Connect (OSTI)

The results are presented of those thermal hydraulic, structural, and stress analyses required to demonstrate that the Receiver design for the Barstow Solar Pilot Plant will satisfy the general design and performance requirements during the plant's design life. Recommendations resulting from those analyses and supporting test programs are presented regarding operation of the receiver. The analyses are limited to receiver subsystem major structural parts (primary tower, receiver unit core support structure), pressure parts (absorber panels, feedwater, condensate and steam piping/components, flash tank, and steam mainfold) and shielding. (LEW)

Not Available

1982-04-01T23:59:59.000Z

173

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network [OSTI]

rates, rather than at avoided costs. In comparison, theexcess generation at an avoided cost based rate, rather thana price reflective of avoided costs. Our analysis indicates

Darghouth, Naim R.

2012-01-01T23:59:59.000Z

174

Thermal-spectrum recriticality energetics  

SciTech Connect (OSTI)

Large computer codes have been created in the past to predict the energy release in hypothetical core disruptive accidents (CDA), postulated to occur in liquid metal reactors (LMR). These codes, such as SIMMER, are highly specific to LMR designs. More recent attention has focused on thermal-spectrum criticality accidents, such as for fuel storage basins and waste tanks containing fissile material. This paper resents results from recent one-dimensional kinetics simulations, performed for a recriticality accident in a thermal spectrum. Reactivity insertion rates generally are smaller than in LMR CDAs, and the energetics generally are more benign. Parametric variation of input was performed, including reactivity insertion and initial temperature.

Schwinkendorf, K.N.

1993-12-01T23:59:59.000Z

175

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

SciTech Connect (OSTI)

Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

Darghouth, Naim; Barbose, Galen; Wiser, Ryan

2010-03-30T23:59:59.000Z

176

Design and Construction of a Guarded Hot Box Facility for Evaluating the Thermal Performance of Building Wall Materials  

E-Print Network [OSTI]

, studs in walls are also thermal bridges, since the thermal resistance of wood is much less than the insulation surrounding them. [5] In order to block thermal bridging, either exterior insulation or Aerogel stud strips can be used. [4]. Most exterior... components. [6] 3 3 Aerogel is a silica based nano-scale structure originally developed by NASA and used on the Mars Rover that is 98% air [7], [8]. Until recently aerogel has been far too expensive to even consider using in homes, however...

Mero, Claire Renee

2012-07-16T23:59:59.000Z

177

Design, improvement, and testing of a thermal-electrical analysis application of a multiple beta-tube AMTEC converter  

E-Print Network [OSTI]

A new design AMTEC converter model was developed, and its effectiveness as a design tool was evaluated. To develop the model, requirements of the model were defined, several new design models were successively developed, and finally an optimal new...

Pavlenko, Ilia V.

2004-09-30T23:59:59.000Z

178

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation  

E-Print Network [OSTI]

-flexible with respect to the source of thermal energy and unprocessed waste heat can be harvested for CHP purposes for residential solar generation or on a small commercial building scale. The Stirling engine is a key component

Sanders, Seth

179

Mechanical Engineering & Thermal Group  

E-Print Network [OSTI]

Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has, and ground- based mechanical systems. Instrument Design Building on decades of design experience that has evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

Mojzsis, Stephen J.

180

NANO REVIEW Open Access Thermal conductivity and thermal boundary  

E-Print Network [OSTI]

NANO REVIEW Open Access Thermal conductivity and thermal boundary resistance of nanostructures and the thermal transport prop- erties is a key point to design materials with preferred thermal properties with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity

Boyer, Edmond

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Radial Loss of Ions Trapped in the Thermal Barrier Potential and the Design of Divertor Magnetic Field in GAMMA10  

SciTech Connect (OSTI)

The ion radial loss exists in the presence of a non-axisymmetric electrostatic potential in the end-mirror cells of GAMMA10, which leads to a formation of the thermal barrier potential. The non-axisymmetric electrostatic potential can also exist in the central cell. A design for divertor magnetic field of GAMMA10 is performed, the purpose of which is first to reduce an ion radial transport in the central cell by making electrostatic potential circular and second to assure the macroscopic plasma stability of GAMMA10 without help of non-axisymmetric anchor cells which enhances a neoclassical radial transport.

Katanuma, I. [Plasma Research Center, University of Tsukuba (Japan); Ito, T. [Plasma Research Center, University of Tsukuba (Japan); Saimaru, H. [Plasma Research Center, University of Tsukuba (Japan); Sasagawa, Y. [Plasma Research Center, University of Tsukuba (Japan); Pastukhov, V.P. [I.V.Kuruchatov Atomic Energy Institute (Russian Federation); Ishii, K. [Plasma Research Center, University of Tsukuba (Japan); Tatematsu, Y. [Plasma Research Center, University of Tsukuba (Japan); Saito, T. [Plasma Research Center, University of Tsukuba (Japan); Islam, Md.K. [Plasma Research Center, University of Tsukuba (Japan); Nakashima, Y. [Plasma Research Center, University of Tsukuba (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)

2005-01-15T23:59:59.000Z

182

Design and experimental testing of the performance of an outdoor LiBr/H{sub 2}O solar thermal absorption cooling system with a cold store  

SciTech Connect (OSTI)

A domestic-scale prototype experimental solar cooling system has been developed based on a LiBr/H{sub 2}O absorption system and tested during the 2007 summer and autumn months in Cardiff University, UK. The system consisted of a 12 m{sup 2} vacuum tube solar collector, a 4.5 kW LiBr/H{sub 2}O absorption chiller, a 1000 l cold storage tank and a 6 kW fan coil. The system performance, as well as the performances of the individual components in the system, were evaluated based on the physical measurements of the daily solar radiation, ambient temperature, inlet and outlet fluid temperatures, mass flow rates and electrical consumption by component. The average coefficient of thermal performance (COP) of the system was 0.58, based on the thermal cooling power output per unit of available thermal solar energy from the 12 m{sup 2} Thermomax DF100 vacuum tube collector on a hot sunny day with average peak insolation of 800 W/m{sup 2} (between 11 and 13.30 h) and ambient temperature of 24 C. The system produced an electrical COP of 3.6. Experimental results prove the feasibility of the new concept of cold store at this scale, with chilled water temperatures as low as 7.4 C, demonstrating its potential use in cooling domestic scale buildings. (author)

Agyenim, Francis; Knight, Ian; Rhodes, Michael [The Welsh School of Architecture, Bute Building, King Edward VII Avenue, Cardiff University, Cardiff, CF10 3NB Wales (United Kingdom)

2010-05-15T23:59:59.000Z

183

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network [OSTI]

Forecast of Long-Term Avoided Costs for the Evaluation ofexcess generation at an avoided cost based rate, rather thanexamine the range of other avoided costs, we do consider the

Darghouth, Naim

2010-01-01T23:59:59.000Z

184

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network [OSTI]

The Solar Alliance, The California Solar Energy IndustriesRates Undermine California’s Solar Photovoltaic Subsidies?solar and other renewable generation projects smaller A recent law passed in California,

Darghouth, Naim

2010-01-01T23:59:59.000Z

185

NGNP Point Design - Results of the Initial Neutronics and Thermal-Hydraulic Assessments During FY-03, Rev. 1  

SciTech Connect (OSTI)

This report presents the preliminary preconceptual designs for two possible versions of the Next Generation Nuclear Plant (NGNP), one for a prismatic fuel type helium gas-cooled reactor and one for a pebble bed fuel helium gas reactor. Both designs are to meet three basic requirements: a coolant outlet temperature of 1000 °C, passive safety, and a total power output consistent with that expected for commercial high-temperature gas-cooled reactors. The two efforts are discussed separately below. The analytical results presented in this report are very promising, however, we wish to caution the reader that future, more detailed, design work will be needed to provide final answers to a number of key questions including the allowable power level, the inlet temperature, the power density, the optimum fuel form, and others. The point design work presented in this report provides a starting point for other evaluations, and directions for the detailed design, but not final answers.

Philip E. MacDonald; James W. Sterbentz; Robert L. Sant; P. Bayless; H. D. Gougar; R. L. Moore; A. M. Ougouag; W. K. Terry

2003-09-01T23:59:59.000Z

186

User's manual for DELSOL2: a computer code for calculating the optical performance and optimal system design for solar-thermal central-receiver plants  

SciTech Connect (OSTI)

DELSOL2 is a revised and substantially extended version of the DELSOL computer program for calculating collector field performance and layout, and optimal system design for solar thermal central receiver plants. The code consists of a detailed model of the optical performance, a simpler model of the non-optical performance, an algorithm for field layout, and a searching algorithm to find the best system design. The latter two features are coupled to a cost model of central receiver components and an economic model for calculating energy costs. The code can handle flat, focused and/or canted heliostats, and external cylindrical, multi-aperture cavity, and flat plate receivers. The program optimizes the tower height, receiver size, field layout, heliostat spacings, and tower position at user specified power levels subject to flux limits on the receiver and land constraints for field layout. The advantages of speed and accuracy characteristic of Version I are maintained in DELSOL2.

Dellin, T.A.; Fish, M.J.; Yang, C.L.

1981-08-01T23:59:59.000Z

187

Spectrally selective beam splitters designed to decouple quantum and thermal solar energy conversion in hybrid concentrating systems: Final report, Phase 1 and 2  

SciTech Connect (OSTI)

The technical feasibility and flexibility of developing elements that separate concentrated solar irradiation into specific spectral regions matched to specific photoquantum processes have been shown. These elements, spectrally selective beam splitters or filters, are designed to decouple quantum and thermal solar energy conversion in hybrid concentrating systems. Both interference filters and liquid absorption filters were investigated for use as spectrally selective beam splitters. Spectral selectivity is investigated for a variety of quantum systems with various spectral windows utilizing interference and absorption filters designed. Detailed analysis of one typical quantum system is provided consisting of a model of the silicon cell photovoltaic/photothermal hybrid system using spectral selectivity. The performance benefits of this approach are shown. Interference filters show the greatest flexibility and ability to match specific spectral windows. Liquid absorption filters appear to be a lower cost option, when an appropriate spectrally selective solution that can be used as a heat transfer fluid is available. 18 refs., 88 figs., 9 tabs.

Osborn, D.E.

1988-06-01T23:59:59.000Z

188

Double Feature Capstone Design Projects  

E-Print Network [OSTI]

solutions to counter the erosion and to protect the shore facilities. Evaluating the Power Output of an OTEC from a small floating ocean thermal energy conversion (OTEC) pilot plant that would be deployed off intake pipe and flow rate), the scaling down of an existing published OTEC plant design and the use

Frandsen, Jannette B.

189

Feasibility and preliminary design study for a high velocity, low density wind tunnel utilizing the thermal creep effect  

E-Print Network [OSTI]

Average molecular velocity Cartesian length co-ordinate Thermal accomodation co-efficient Constant used in Appendix I Element of volume in velocity space Angular displacement Viscosity co-efficient Gas density cm cm/sec cm/sec cm/sec cm... on spheres in a rarefied gas as a means of making correc- tions to the results of Millikan's oil drop experiment. 4 Sanger's work was followed by a paper in which Tsien out- lined the field of low density, high speed gas dynamics. In this work, Tsien used...

Stephen, Alton Lee

1968-01-01T23:59:59.000Z

190

Thermal transport properties of grey cast irons  

SciTech Connect (OSTI)

Thermal diffusivity and thermal conductivity of grey cast iron have been measured as a function of graphite flake morphology, chemical composition, and position in a finished brake rotor. Cast iron samples used for this investigation were cut from ``step block`` castings designed to produce iron with different graphite flake morphologies resulting from different cooling rates. Samples were also machined from prototype alloys and from production brake rotors representing a variation in foundry practice. Thermal diffusivity was measured at room and elevated temperatures via the flash technique. Heat capacity of selected samples was measured with differential scanning calorimetry, and these results were used to calculate the thermal conductivity. Microstructure of the various cast iron samples was quantified by standard metallography and image analysis, and the chemical compositions were determined by optical emission spectroscopy.

Hecht, R.L. [Ford Motor Co., Dearborn, MI (United States). Ford Research Lab.; Dinwiddie, R.B.; Porter, W.D.; Wang, Hsin [Oak Ridge National Lab., TN (United States)

1996-10-01T23:59:59.000Z

191

University of North Carolina at Charlotte Design and Construction Manual Section 2, Division 07 Thermal and Moisture Protection  

E-Print Network [OSTI]

the following reflectivity standards: 1. Solar Reflectivity/Emissivity: Energy Star. Solar Reflectance IndexUniversity of North Carolina at Charlotte Design and Construction Manual Section 2, Division 07 punctures/penetrations sealed). 4. Floors (including penetrations) of all mechanical rooms above other areas

Xie,Jiang (Linda)

192

Thermal Fluids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Fluids The Thermal Fluids and Heat Transfer program works on thermal hydraulic reactor safety code development and experimental heat transferthermal hydraulics. The...

193

Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors  

SciTech Connect (OSTI)

This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.

Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

2013-11-29T23:59:59.000Z

194

Energy Management Through Innovative Rates  

E-Print Network [OSTI]

of energy efficiency in the industrial sector and specific rate design alternatives for doing so....

Williams, M. L.

1982-01-01T23:59:59.000Z

195

Experimental Design for a Macrofoam-Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials  

SciTech Connect (OSTI)

This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam-swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (culture and polymerase chain reaction) will be used. Only one previous study has investigated how the false negative rate depends on test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam-swab sampling at low concentrations.

Piepel, Gregory F.; Hutchison, Janine R.

2014-12-05T23:59:59.000Z

196

7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant  

E-Print Network [OSTI]

and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using7-31 7-88 A geothermal power plant uses geothermal liquid water at 160ºC at a specified rate saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k

Bahrami, Majid

197

The selection of appropriate material has always been issue of concern for design of lightweight clothing meant for cold weather conditions. The thermal comfort  

E-Print Network [OSTI]

and physiological interactions with the textile materials. Modelling of thermal comfort properties facilitate by studying the effect of different parameters on thermal and evaporative resistance of multilayered fabric were studied at different convective modes. It was observed that the thermal resistance increases

Kumar, M. Jagadesh

198

Thermal Abuse Modeling of Li-Ion Cells and Propagation in Modules (Presentation)  

SciTech Connect (OSTI)

The objectives of this paper are: (1) continue to explore thermal abuse behaviors of Li-ion cells and modules that are affected by local conditions of heat and materials; (2) use the 3D Li-ion battery thermal abuse 'reaction' model developed for cells to explore the impact of the location of internal short, its heating rate, and thermal properties of the cell; (3) continue to understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-ion cells and modules; and (4) explore the use of the developed methodology to support the design of abuse-tolerant Li-ion battery systems.

Kim, G.-H.; Pesaran, A.; Smith, K.

2008-05-01T23:59:59.000Z

199

Thermal decomposition of energetic materials; 65: Conversion of insensitive explosives (NTO, ANTA) and related compounds to polymeric melon-like cyclic azine burn-rate suppressants  

SciTech Connect (OSTI)

Selected triazole, tetrazole, triazine, tetrazine, furazan, and acyclic backbone compounds are shown by IR spectroscopy to convert to polymeric, melon-like, cyclic azine residues upon heating to T [ge] 500 C. These compounds include the insensitive explosives 3-nitro-1,2,4-triazol-5-one (NTO), 3-amino-5-nitro-1,2,4-triazole (ANTA), and nitroguanidine. The melon-like residue could suppress the burn rate if these compounds are formulated into solid rocket propellants. The IR-active gaseous products from thermolysis are determined as a function of pressure and are related to the atom connectivity in the parent molecules.

Williams, G.K.; Palopoli, S.F.; Brill, T.B. (Univ. of Delaware, Newark, DE (United States). Dept. of Chemistry)

1994-08-01T23:59:59.000Z

200

Low Conductivity Thermal Barrier Coatings  

E-Print Network [OSTI]

Low Conductivity Thermal Barrier Coatings A Dissertation Presented to The Faculty of the School conductivity of the coatings. The minimum thermal conductivity occurs at a low rotation rate and is 0.8 W intrinsic thermal conductivity, good phase stability and greater resistance to sintering and CMAS attack

Wadley, Haydn

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Experimental Design for a Macrofoam Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials  

SciTech Connect (OSTI)

This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (plating/counting and polymerase chain reaction) will be used. Only one previous study has investigated false negative as a function of affecting test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam swab sampling at low concentrations.

Piepel, Gregory F.; Hutchison, Janine R.

2014-04-16T23:59:59.000Z

202

Value of solar thermal industrial process heat  

SciTech Connect (OSTI)

This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

1986-03-01T23:59:59.000Z

203

Liquid metal thermal electric converter  

DOE Patents [OSTI]

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

204

Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.  

SciTech Connect (OSTI)

A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

Fuller, Thomas F. (Georgia Institute of Technology, Atlanta, GA); Bandhauer, Todd (Georgia Institute of Technology, Atlanta, GA); Garimella, Srinivas (Georgia Institute of Technology, Atlanta, GA)

2012-01-01T23:59:59.000Z

205

Indoor air movement acceptability and thermal comfort in hot-humid climates  

E-Print Network [OSTI]

HVAC) and the thermal envelope of buildings, but designments concern the thermal envelope, lighting and acoustics,HVAC and building’s thermal envelope. Yet requirements for

Candido, Christhina Maria

2010-01-01T23:59:59.000Z

206

Sierra Designs 20 degrees F Wild Bill Climashield Sleeping Bag ClimashieldTM HL, a high-loft continuous filament insulation, offers excellent thermal  

E-Print Network [OSTI]

-loft continuous filament insulation, offers excellent thermal efficiency, durability and water resistance Chest to create a pillow; no need for a pillow to take up valuable space in your backpack Insulated draft tube

Walker, Lawrence R.

207

E-Print Network 3.0 - acceptance thermal vacuum Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design 38 Nuclear htg and thermal effects Vacuum vessel is subject to two basic heat loads: - Direct... : Vacuum Vessel Design 43 VV thermal deformation and ... Source:...

208

Thermal Systems Process and Components Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Thermal Systems Process and Components Laboratory at the Energy Systems Integration Facility. The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds test systems that can provide heat transfer fluids for the evaluation of heat exchangers and thermal energy storage devices. The existing system provides molten salt at temperatures up to 800 C. This unit is charged with nitrate salt rated to 600 C, but is capable of handling other heat transfer fluid compositions. Three additional test bays are available for future deployment of alternative heat transfer fluids such as hot air, carbon dioxide, or steam systems. The Thermal Systems Process and Components Laboratory performs pilot-scale thermal energy storage system testing through multiple charge and discharge cycles to evaluate heat exchanger performance and storage efficiency. The laboratory equipment can also be utilized to test instrument and sensor compatibility with hot heat transfer fluids. Future applications in the laboratory may include the evaluation of thermal energy storage systems designed to operate with supercritical heat transfer fluids such as steam or carbon dioxide. These tests will require the installation of test systems capable of providing supercritical fluids at temperatures up to 700 C.

Not Available

2011-10-01T23:59:59.000Z

209

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network [OSTI]

CA. Itron, Inc, 2012. CPUC California Solar Initiative; 2010The Solar Alliance, The California Solar Energy IndustriesRates Undermine California’s Solar Photovoltaic Subsidies? (

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

210

Dish Stirling High Performance Thermal Storage  

Broader source: Energy.gov (indexed) [DOE]

metrology for development and production Glint and glare Design tools National Solar Thermal Test Facility: Rich Dish Stirling Tradition Involvement with most Dish...

211

Design study of magnetic environments for XYZ polarization analysis using 3He for the new thermal time of flight spectrometer TOPAS  

E-Print Network [OSTI]

We present a finite element calculation of the magnetic field (MagNet software) taken with the newly proposed PASTIS Coil, which uses a wide-angle banana shaped 3He Neuton Spin Filter cell (NSF) to cover a large range of scattering angle. The goal of this insert is to enable XYZ polarization analysis to be installed on the future thermal time-of flight spectrometer TOPAS.

Zahir Salhi; Earl Babcock; Alexander Ioffe

2012-01-25T23:59:59.000Z

212

Similarity and generalized analysis of efficiencies of thermal energy storage systems  

SciTech Connect (OSTI)

This paper examined the features of three typical thermal storage systems including: (1) direct storage of heat transfer fluid in containers, (2) storage of thermal energy in a packed bed of solid filler material, with energy being carried in/out by a flowing heat transfer fluid which directly contacts the packed bed, and (3) a system in which heat transfer fluid flows through tubes that are imbedded into a thermal storage material which may be solid, liquid, or a mixture of the two. The similarity of the three types of thermal storage systems was discussed, and generalized energy storage governing equations were introduced in both dimensional and dimensionless forms. The temperatures of the heat transfer fluid during energy charge and discharge processes and the overall energy storage efficiencies were studied through solution of the energy storage governing equations. Finally, provided in the paper are a series of generalized charts bearing curves for energy storage effectiveness against four dimensionless parameters grouped up from many of the thermal storage system properties including dimensions, fluid and thermal storage material properties, as well as the operational conditions including mass flow rate of the fluid, and the ratio of energy charge and discharge time periods. Engineers can conveniently look up the charts to design and calibrate the size of thermal storage tanks and operational conditions without doing complicated individual modeling and computations. It is expected that the charts will serve as standard tools for thermal storage system design and calibration.

Peiwen Li; Jon Van Lew; Cholik Chan; Wafaa Karaki; Jake Stephens; J. E. O'Brien

2012-03-01T23:59:59.000Z

213

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network [OSTI]

rates, assuming a levelized cost of energy (LCOE) of about $to the levelized cost per unit of delivered energy amongto the levelized cost per unit of delivered energy, of the

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

214

Thermal test options  

SciTech Connect (OSTI)

Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods.

Koski, J.A.; Keltner, N.R.; Sobolik, K.B.

1993-02-01T23:59:59.000Z

215

Expansion and user study of CoolVent : inclusion of thermal comfort models in an early-design natural ventilation tool  

E-Print Network [OSTI]

CoolVent, a software design tool for architects, has been improved. The work of Maria- Alejandra Menchaca-B. and colleagues has been improved to include a more robust and intuitive building and window dimensioning scheme, ...

Rich, Rebecca E. (Rebecca Eileen)

2011-01-01T23:59:59.000Z

216

ARIES-IV Nested Shell Blanket Design  

SciTech Connect (OSTI)

The ARIES-IV Nested Shell Blanket (NSB) Design is an alternate blanket concept of the ARIES-IV low activation helium-cooled reactor design. The reference design has the coolant routed in the poloidal direction and the inlet and outlet plena are located at the top and bottom of the torus. The NSB design has the high velocity coolant routed in the toroidal direction and the plena are located behind the blanket. This is of significance since the selected structural material is SiC-composite. The NSB is designed to have key high performance components with characteristic dimensions of no larger than 2 m. These components can be brazed to form the blanket module. For the diverter design, we eliminated the use of W as the divertor coating material by relying on the successful development of the gaseous divertor concept. The neutronics and thermal-hydraulic performance of both blanket concepts are similar. The selected blanket and divertor configurations can also meet all the projected structural, neutronics and thermal-hydraulics design limits and requirements. With the selected blanket and divertor materials, the design has a level of safety assurance rate of I (LSA-1), which indicates an inherently safe design.

Wong, C.P.C.; Redler, K.; Reis, E.E.; Will, R. [General Atomics, San Diego, CA (United States); Cheng, E. [TSI Research, Inc. (United States); Hasan, C.M.; Sharafat, S. [California Univ., Los Angeles, CA (United States)

1993-11-01T23:59:59.000Z

217

5th International Conference on Research in Air Transportation (ICRAT 2012) Design, Testing and Evaluation of a Pushback Rate Control Strategy  

E-Print Network [OSTI]

airports. This paper describes the implementation of a congestion control strategy at Boston Logan International Airport (BOS). The approach predicts the departure throughput in the next 15 minute interval International airport (ATH) [11]. In contrast to these approaches, the Pushback Rate Control strategy is a low

Gummadi, Ramakrishna

218

Energy Rating  

E-Print Network [OSTI]

Consistent, accurate, and uniform ratings based on a single statewide rating scale Reasonable estimates of potential utility bill savings and reliable recommendations on cost-effective measures to improve energy efficiency Training and certification procedures for home raters and quality assurance procedures to promote accurate ratings and to protect consumers Labeling procedures that will meet the needs of home buyers, homeowners, renters, the real estate industry, and mortgage lenders with an interest in home energy ratings

Cabec Conference; Rashid Mir P. E

2009-01-01T23:59:59.000Z

219

Low thermal stress ceramic turbine nozzle  

DOE Patents [OSTI]

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes therebetween. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

Glezer, Boris (Del Mar, CA); Bagheri, Hamid (San Diego, CA); Fierstein, Aaron R. (San Diego, CA)

1996-01-01T23:59:59.000Z

220

APPLIED THERMAL ENGINEERING Manuscript Draft  

E-Print Network [OSTI]

the heat pump from the grid during the two hours of electrical peak power · Design of a new heat exchangerAPPLIED THERMAL ENGINEERING Manuscript Draft TITLE: Experimental assessment of a PCM to air heat This paper presents a heat exchanger prototype containing PCM material designed to provide a 1kW heating

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Analysis, testing, and operation of the MAGI thermal control system  

SciTech Connect (OSTI)

The Aerospace Corporation has completed the development of the Mineral and Gas Identifier (MAGI) sensor - an airborne multi-spectral infrared instrument that is designed to discriminate surface composition and to detect gas emissions from the environment. Sensor performance was demonstrated in a series of flights aboard a Twin Otter aircraft in December 2011 as a stepping stone to a future satellite sensor design. To meet sensor performance requirements the thermal control system was designed to operate the HgCdTe focal plane array (FPA) at 50 K with a 1.79 W heat rejection load to a 44.7 K sink and the optical assembly at 100 K with a 7.5 W heat load to a 82.3 K sink. Two commercial off-theshelf (COTS) Sunpower Stirling cryocoolers were used to meet the instrument’s cooling requirements. A thermal model constructed in Thermal Desktop was used to run parametric studies that guided the mechanical design and sized the two cryocoolers. This paper discusses the development, validation, and operation of the MAGI thermal control system. Detailed energy balances and temperature predictions are presented for various test cases to demonstrate the utility and accuracy of the thermal model. Model inputs included measured values of heat lift as a function of input power and cold tip temperature for the two cryocoolers. These measurements were also used to make predictions of the cool-down behavior from ambient conditions. Advanced heater software was developed to meet unique requirements for both sensor cool-down rate and stability at the set point temperatures.

Yi, Sonny; Hall, Jeffrey L.; Kasper, Brian P. [The Aerospace Corporation, El Segundo, CA 90245 (United States)

2014-01-29T23:59:59.000Z

222

Advanced Thermal Simulator Testing: Thermal Analysis and Test Results  

SciTech Connect (OSTI)

Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe [NASA Marshall Space Flight Center, Nuclear Systems Branch/ER24, MSFC, AL 35812 (United States)

2008-01-21T23:59:59.000Z

223

Conceptual design selection and development of a latent-heat thermal-energy-storage subsystem for a saturated-steam solar receiver and load  

SciTech Connect (OSTI)

The following latent heat storage concepts are described and evaluated in comparison with each other and with an oil/rock sensible heat storage system: (1) passive tube intensive (shell-and-tube heat exchanger) with and without heat transfer enhanced by fins; (2) phase change material cans (or chubbs) with a biphenyl intermediate heat transfer fluid; (3) phase change material macroencapsulation in a containment tank full of tubes; (4) microencapsulation in a porous carrier; (5) direct contact heat exchange; and (6) systems using mechanical scrapers for removing solidified phase change material from container surfaces. A tube intensive system with heat transfer enhancement was selected, and the conceptual design and cost/performance estimates are given for it. A commercial scale unit is assessed, and design changes and corresponding costs are presented that would be required to make the system meet changed requirements. (LEW)

Not Available

1981-02-01T23:59:59.000Z

224

Slepian-Wolf coded nested quantization (SEC-NQ) for Wyner-Ziv coding: high-rate performance analysis, code design, and application to cooperative networks  

E-Print Network [OSTI]

exploits the correlation between two signals (one is the source and the other is the side information) and thus makes it possible to encode the source signal alone and to decode it jointly with the help of the side information at the decoder. Nested lattice... quantization provides a practical scheme for Wyner-Ziv cod- ing. We examine the high-rate performance of nested lattice quantizers and give the theoretical performance for general continuous sources. Based on our analysis, a new practical Wyner-Ziv coding...

Liu, Zhixin

2009-05-15T23:59:59.000Z

225

Modeling thermal/chemical/mechanical response of energetic materials  

SciTech Connect (OSTI)

An overview of modeling at Sandia National Laboratories is presented which describes coupled thermal, chemical and mechanical response of energetic materials. This modeling addresses cookoff scenarios for safety assessment studies in systems containing energetic materials. Foundation work is discussed which establishes a method for incorporating chemistry and mechanics into multidimensional analysis. Finite element analysis offers the capabilities to simultaneously resolve reactive heat transfer and structural mechanics in complex geometries. Nonlinear conduction heat transfer, with multiple step finite-rate chemistry, is resolved using a thermal finite element code. Rate equations are solved element-by-element using a modified matrix-free stiff solver This finite element software was developed for the simulation of systems requiring large numbers of finite elements. An iterative implicit scheme, based on the conjugate gradient method, is used and a hemi-cube algorithm is employed for the determination of view factors in surface-to-surface radiation transfer The critical link between the reactive heat transfer and mechanics is the introduction of an appropriate constitutive material model providing a stress-strain relationship for quasi-static mechanics analysis. This model is formally derived from bubble nucleation theory, and parameter variations of critical model parameters indicate that a small degree of decomposition leads to significant mechanical response. Coupled thermal/chemical/mechanical analysis is presented which simulates experiments designed to probe cookoff thermal-mechanical response of energetic materials.

Baer, M.R.; Hobbs, M.L.; Gross, R.J. [and others

1995-07-01T23:59:59.000Z

226

Quantification of design margins/safety factors based on the prediction uncertainty in tritium production rate from fusion integral experiments of the USDOE/JAERI collaborative program on fusion blanket neutronics  

SciTech Connect (OSTI)

Various engineering-oriented fusion integral experiments were performed within the USDOE/JAERI Collaborative Program on Fusion Blanket Neutronics during the last decade. The objectives of this ten-year program were: (a) to establish new experimental techniques for design-related neutronics experiments, (b) to provide experimental data on local and integrated parameters such as tritium production rate, nuclear heating, and activation for the purpose of assessing the accuracies of present nuclear data and calculational methods, and (c) to provide designers with design margin for important responses. Tritium breeding rate (TPR) has the prime focus among other reactions. The program consisted of three phases in which local and integrated measurements inside a Li{sub 2}O test assembly that has various engineering features of a prototypical blanket (e.g. SS FW, H{sub 2}O coolant channels, beryllium multiplier). The analysis of the experiments were performed independently by the US and JAERI using their own codes/databases. A wide range of the calculated-to-experimental (C/E) values were observed in all these experiments for local TPR from Li-6 (T{sub 6}), from Li-7 (T{sub 7}), and from Li-natural (T{sub n}). In this paper, the experimental and calculational data sets of local TPR in each experiment were interpreted to give estimate to the prediction uncertainty, u{sub i}, of the line-integrated TPR and its standard deviation, {sigma}{sub i}.

Youssef, M.Z.; Kumar, A.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)] [and others

1994-12-31T23:59:59.000Z

227

Disk Drive Roadmap from the Thermal Perspective: A Case for Dynamic Thermal Management  

E-Print Network [OSTI]

to the thermal envelope of drive design. We present two mechanisms for buying back some of this IDR loss allowing higher RPMs than the thermal envelope, and employs dynamic throttling of disk drive activities to remain within this envelope. Keywords: Disk Drives, Thermal Management, Technology Scaling. 1

Gurumurthi, Sudhanva

228

ME 343 Thermal-Fluid Systems ABET EC2000 syllabus  

E-Print Network [OSTI]

) 8. Unsteady thermal system modeling, energy storage 9. Software design and development ClassME 343 ­ Thermal-Fluid Systems Page 1 ABET EC2000 syllabus ME 343 ­ Thermal-Fluid Systems Spring thermal and fluid processes are central to function and performance: thermodynamics of nonreacting

Ben-Yakar, Adela

229

Thermal diffusivity mapping of 4D carbon-carbon composites  

SciTech Connect (OSTI)

High resolution, 2-D thermal diffusivity maps of carbon-carbon composites were obtained by a state-of-the-art infrared thermal imaging system. Unlike the traditional single-point IR detector used for thermal diffusivity measurements, the IR camera is capable of capturing images in its 256 x 256 pixel Focal Plane Array detector in a snap-shot mode. The camera takes up to 200 images at a rate of 120 frames/second. The temperature resolution of the Ir camera is 0.015 C and the spatial resolution is 20 {micro}m. Thermal diffusivity was calculated for each pixel. Four-direction carbon-carbon composites were used for the thermal diffusivity mapping study. The fiber bundles along the heat flow direction were found to have 25% higher diffusivity values than the surrounding matrix. The diffusivity map also showed detailed local variations in diffusivity which were impossible to measure using a single-point detector. Accurate diffusivity maps are very important to the design of composite materials.

Wang, H.; Dinwiddie, R.B.

1997-03-01T23:59:59.000Z

230

Rational design of gold catalysts with enhanced thermal stability: post modification of Au/TiO2 by amorphous SiO2 matrix  

SciTech Connect (OSTI)

Au/TiO{sub 2} is highly active for CO oxidation, but it often suffers from sintering in high-temperature environments. In this work, we report on a novel design of gold catalysts, in which pre-formed Au/TiO{sub 2} catalysts were post decorated by amorphous SiO{sub 2} to suppress the agglomeration of gold particles. Even after being aged in O{sub 2}-He at 700 C, the SiO{sub 2}-decorated Au/TiO{sub 2} was still active for CO oxidation at ambient temperature.

Zhu, Haoguo [ORNL; Ma, Zhen [ORNL; Overbury, Steven {Steve} H [ORNL; Dai, Sheng [ORNL

2007-01-01T23:59:59.000Z

231

An internship with Redfish Unlimited, focused on design, construction and operation of a thermal refuge for the protection of red drum from winter cold-kill  

E-Print Network [OSTI]

12 16 18 20 33 35 37 APPENDIX 38 VITA 39 LIST OF FIGURES Figure Page 1 2 3 4 5 Refuge design . Simulation: heater on when pond below 6 C. Simulation: maintenance of refuge at 8 C when pond below 6 C. Simulation: heater on when pond... below 8 C. . . . . . Simulation: maintenance of refuge at 6 C when pond below 6 C. Simulation: maintenance of refuge at 8 C when pond below 8 C. 10 22 24 26 28 30 LIST OF TABLES Table Page 3 4 5 6 Calculation of hole size in discharge...

Schwarz, Michael H.

1991-01-01T23:59:59.000Z

232

SUPERGLASS. Engineering field tests - Phase 3. Production, market planning, and product evaluation for a high-thermal-performance insulating glass design utilizing HEAT MIRROR transparent insulation. Final report  

SciTech Connect (OSTI)

HEAT MIRROR transparent window insulation consists of a clear polyester film two mils (.002'') thick with a thin, clear low-emissivity (.15) coating deposited on one side by state-of-the-art vacuum deposition processes. This neutral-colored invisible coating reflects long-wave infrared energy (heat). When mounted by being stretched with a 1/2'' air-gap on each side of the film, the resulting unit reduces heat loss by 60% compared to dual insulating glass. Southwall Corporation produces HEAT MIRROR transparent insulation and markets it to manufacturers of sealed insulating glass (I.G.) units and window and building manufacturers who make their own I.G. These companies build and sell the SUPERGLASS sealed glazing units. Units made and installed in buildings by six customers were visited. These units were located in many geographic regions, including the Pacific Northwest, Rocky Mountains, New England, Southeast, and West Coast. As much as could be obtained of their history was recorded, as was their current condition and performance. These units had been in place from two weeks to over a year. All of the units were performing thermally very well, as measured by taking temperature profiles through them and through adjacent conventional I.G. units. Some units had minor visual defects (attributed to I.G. assembly techniques) which are discussed in detail. Overall occupant acceptance was enthusiastically positive. In addition to saving energy, without compromise of optical quality or appearance, the product makes rooms with large glazing areas comfortable to be in in cold weather. All defects observed were present when built; there appears to be no in-field degradation of quality at this time.

Tilford, C L

1982-11-01T23:59:59.000Z

233

QUEENSLAND UNIVERSITY OF TECHNOLOGY CENTRE FOR MEDICAL, HEALTH AND ENVIRONMENTAL PHYSICS SCHOOL OF PHYSICAL AND CHEMICAL SCIENCES MODIFICATION OF ATRIUM DESIGN TO IMPROVE THERMAL AND DAYLIGHTING PERFORMANCE  

E-Print Network [OSTI]

The inclusion of a central court or atrium within a building is a popular design due to its aesthetic, open appearance. The greater penetration of natural light aids in the reduction in use of artificial lighting during the day. Care must be taken to balance the solar heat gain against the daylight penetration. This balance is critical for the reduction of the electrical energy load of the building, whilst maintaining a high level of comfort for the occupants. In the tropics modifications to atrium building designs are necessary to diminish high elevation direct solar heat gain. Traditionally, shading the window apertures or lowering the transmission through the glazing was used. These solutions limit the view and reduce the light level. The use of angular selective glazing upon atria allows the rejection of high elevation direct sunlight whilst redirecting and therefore improving low elevation skylight penetration. Tilted angular selective glazing used upon adjoining spaces to atria help vertical light in the atrium well to be redirected horizontally deep into the space. These effects reduce overheating which would normally restrict the use of atria in warmer environments as well as improve illumination penetration into adjoining spaces.

Ashley Mabb; Centre For Medical; Environmental Physics

234

10-MWe solar-thermal central-receiver pilot plant, solar facilities design integration: collector-field optimization report (RADL item 2-25)  

SciTech Connect (OSTI)

Appropriate cost and performance models and computer codes have been developed to carry out the collector field optimization, as well as additional computer codes to define the actual heliostat locations in the optimized field and to compute in detail the performance to be expected of the defined field. The range of capabilities of the available optimization and performance codes is described. The role of the optimization code in the definition of the pilot plant is specified, and a complete description of the optimization process itself is given. The detailed cost model used by the optimizer for the commercial system optimization is presented in the form of equations relating the cost element to each of the factors that determine it. The design basis for the commercial system is presented together with the rationale for its selection. The development of the individual heliostat performance code is presented. Use of the individual heliostat code in a completed study of receiver panel power under sunrise startup conditions is described. The procedure whereby performance and heliostat spacing data from the representative commercial-scale system are converted into coefficients of use in the layout processor is described, and the actual procedure used in the layout processor is described. Numerous special studies in support of the pilot plant design are described. (LEW)

Not Available

1981-01-01T23:59:59.000Z

235

Thermal resistance gaps for solid breeder blankets using packed beds  

SciTech Connect (OSTI)

The main design features of a new concept for solid breeder blanket thermal resistance gaps are described and analysis is shown for the blanket thermal characteristics. The effective thermal conductivity of a helium-beryllium packed bed configuration is studied, including the effect of a purge stream. Possible applications of this concept to ITER blanket designs are stressed.

Gorbis, Z.R.; Raffray, A.R.; Tillack, M.S.; Abdou, M.A.

1989-03-01T23:59:59.000Z

236

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

237

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

238

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

239

Flow distribution analysis on the cooling tube network of ITER thermal shield  

SciTech Connect (OSTI)

Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube network for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly.

Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Kyoung-O; Ahn, Hee Jae; Lee, Hyeon Gon [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)

2014-01-29T23:59:59.000Z

240

Hybrid Dynamic Energy and Thermal Management in Heterogeneous Embedded Multiprocessor SoCs  

E-Print Network [OSTI]

Hybrid Dynamic Energy and Thermal Management in Heterogeneous Embedded Multiprocessor SoCs Shervin propose a joint thermal and energy management technique specifically designed for heterogeneous MPSo technique simultaneously reduces the thermal hot spots, temperature gradients, and energy consumption

Simunic, Tajana

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fusion integral experiments and analysis and the determination of design safety factors - II: Application to the prediction uncertainty of tritium production rate from the U.S. DOE/JAERI collaborative program on fusion blanket neutronics  

SciTech Connect (OSTI)

Many fusion integral experiments were performed during the last decade within a well-established collaboration between the United States and Japan on fusion breeder neutronics. The tritium production rate (TPR) has the prime focus among other reactions. The experimental and calculational data sets of local TPR in each experiment were interpolated to give an estimate of the prediction uncertainty, and the standard deviation, of the line-integrated TPR, a quantity that is closely related to the total breeding ratio (TBR) in the test assembly. A novel methodology developed during the collaboration was applied to arrive at estimates to design safety factors that fusion blanket designers can use to ensure that the achievable TBR in a blanket does not fall below a minimum required value. Associated with each safety factor is a confidence level, designers may choose to have, that calculated TPR will not exceed the actual measured value. Higher confidence levels require larger safety factors. Tabular and graphical forms for these factors are given, as derived independently for TPR from Li-6(T{sub 6}), Li-7 (T{sub 7}), and natural lithium (T{sub n}). Furthermore, distinction was made between safety factors based on the technique applied, discrete ordinates methods, and Monte Carlo methods in the U.S. calculations, JAERI`s calculations, and in both calculations considered simultaneously. The derived factors are applicable to TPR in Li{sub 2}O breeding material, 48 refs., 51 figs., 7 tabs.

Youssef, M.Z.; Kumar, A.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)] [and others

1995-09-01T23:59:59.000Z

242

Guide to Setting Thermal Comfort Criteria and Minimizing Energy Use in Delivering Thermal Comfort  

SciTech Connect (OSTI)

Historically thermal comfort in buildings has been controlled by simple dry bulb temperature settings. As we move into more sophisticated low energy building systems that make use of alternate systems such as natural ventilation, mixed mode system and radiant thermal conditioning strategies, a more complete understanding of human comfort is needed for both design and control. This guide will support building designers, owners, operators and other stakeholders in defining quantifiable thermal comfort parameters?these can be used to support design, energy analysis and the evaluation of the thermal comfort benefits of design strategies. This guide also contains information that building owners and operators will find helpful for understanding the core concepts of thermal comfort. Whether for one building, or for a portfolio of buildings, this guide will also assist owners and designers in how to identify the mechanisms of thermal comfort and space conditioning strategies most important for their building and climate, and provide guidance towards low energy design options and operations that can successfully address thermal comfort. An example of low energy design options for thermal comfort is presented in some detail for cooling, while the fundamentals to follow a similar approach for heating are presented.

Regnier, Cindy

2012-08-31T23:59:59.000Z

243

Space Science: Atmosphere Thermal Structure  

E-Print Network [OSTI]

Space Science: Atmosphere Part -2 Thermal Structure Review tropospheres Absorption of Radiation Adiabatic Lapse Rate ~ 9 K/km Slightly smaller than our estimate Pressure ~3000ft under ocean surface thickness (positive up) is the solar zenith angle Fs is the solar energy flux at frequency (when

Johnson, Robert E.

244

Improvements of the Variable Thermal Resistance  

E-Print Network [OSTI]

A flat mounting unit with electronically variable thermal resistance [1] has been presented in the last year [2]. The design was based on a Peltier cell and the appropriate control electronics and software. The device is devoted especially to the thermal characterization of packages, e.g. in dual cold plate arrangements. Although this design meets the requirements of the static measurement we are intended to improve its parameters as the settling time and dynamic thermal impedance and the range of realized thermal resistance. The new design applies the heat flux sensor developed by our team as well [3], making easier the control of the device. This development allows even the realization of negative thermal resistances.

Székely, V; Kollar, E

2008-01-01T23:59:59.000Z

245

Improvements of the Variable Thermal Resistance  

E-Print Network [OSTI]

A flat mounting unit with electronically variable thermal resistance [1] has been presented in the last year [2]. The design was based on a Peltier cell and the appropriate control electronics and software. The device is devoted especially to the thermal characterization of packages, e.g. in dual cold plate arrangements. Although this design meets the requirements of the static measurement we are intended to improve its parameters as the settling time and dynamic thermal impedance and the range of realized thermal resistance. The new design applies the heat flux sensor developed by our team as well [3], making easier the control of the device. This development allows even the realization of negative thermal resistances.

V. Szekely; S. Torok; E. Kollar

2008-01-07T23:59:59.000Z

246

Practical Solar Thermal Chilled Water  

E-Print Network [OSTI]

the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical...

Leavell, B.

2010-01-01T23:59:59.000Z

247

Thermal Imaging Control of Furnaces and Combustors  

SciTech Connect (OSTI)

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

248

Previous Power Rates (rates/current)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home DesignPresentations Presentations SortConferences PreviousRates

249

Thermal Storage with Conventional Cooling Systems  

E-Print Network [OSTI]

demand which results in lower electrical costs. The effectiveness of this 'Thermal Retention System" is determined by its design characteristics, its operational efficiency and comparative system analysis. Today's computer technology has provided...

McGee, E. E.

1990-01-01T23:59:59.000Z

250

Thermal energy storage for cooling of commercial buildings  

SciTech Connect (OSTI)

The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

Akbari, H. (Lawrence Berkeley Lab., CA (USA)); Mertol, A. (Science Applications International Corp., Los Altos, CA (USA))

1988-07-01T23:59:59.000Z

251

Futurestock'2003 9 International Conference on Thermal Energy Storage, Warsaw, POLAND  

E-Print Network [OSTI]

is also needed when designing a BTES (Borehole Thermal Energy Storage) system. The ground thermal381 Futurestock'2003 9 th International Conference on Thermal Energy Storage, Warsaw, POLAND, BTES, TED-measurement ABSTRACT The thermal conductivity of the ground and thermal resistance

252

Morphology and non-isothermal crystallization kinetics of CuInS{sub 2} nanocrystals synthesized by solvo-thermal method  

SciTech Connect (OSTI)

Nanocrystals of copper indium disulphide (CuInS{sub 2}) were synthesized by a solvo-thermal method. The structure, morphology and non-isothermal crystallization kinetic behavior of samples were investigated using X-ray diffraction, field emission scanning electron microscopy, field emission transmission electron microscopy, thermogravimetric analysis and differential thermal analysis techniques. Non-isothermal measurements at different heating rates were carried out and the crystallization kinetics of samples were analyzed using the most reliable non-isothermal kinetic methods. The kinetic parameters such as glass transition temperature, thermal stability, activation energy, Avrami exponent etc. were evaluated. - Highlights: Black-Right-Pointing-Pointer CuInS{sub 2} nanocrystals have scientific and technological importance. Black-Right-Pointing-Pointer Samples have been prepared by solvo-thermal method. Black-Right-Pointing-Pointer Synthesized samples exhibit excellent morphology and thermal properties. Black-Right-Pointing-Pointer Investigated properties may be utilized in design and fabrication of solar cell devices.

Majeed Khan, M.A., E-mail: majeed_phys@yahoo.co.in [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Kumar, Sushil [Department of Physics, Chaudhary Devi Lal University, Sirsa 125055 (India); Alsalhi, M.S. [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Department of Physics and Astronomy, King Saud University, Riyadh 11451 (Saudi Arabia); Ahamed, Maqusood [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Alhoshan, Mansour [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Chemical Engineering Department, King Saud University, Riyadh 11451 (Saudi Arabia); Alrokayan, Salman A. [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Ahamad, Tansir [Department of Chemistry, King Saud University, Riyadh 11451 (Saudi Arabia)

2012-03-15T23:59:59.000Z

253

Thermal conductivity of thermal-battery insulations  

SciTech Connect (OSTI)

The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

Guidotti, R.A.; Moss, M.

1995-08-01T23:59:59.000Z

254

THERMAL ANALYSIS OF 3013/9975 CONFIGURATION  

SciTech Connect (OSTI)

The 3013 containers are designed in accordance with the DOE-STD-3013-2004 and are qualified to store plutonium (Pu) bearing materials for 50 years. The U.S. Department of Energy (DOE) certified Model 9975 shipping package is used to transport the 3013 containers to the K-Area Material Storage (KAMS) facility at the Savannah River Site (SRS) and to store the containers until the plutonium can be properly dispositioned. Detailed thermal analyses to support the storage in the KAMS facility are given in References 2, 3, and 4. The analyses in this paper serve to provide non-accident condition, non-bounding, specific 3013 container temperatures for use in the surveillance activities. This paper presents a methodology where critical component temperatures are estimated using numerical methods over a range of package and storage parameters. The analyses include factors such as ambient storage temperature and the content weight, density, heat generation rate, and fill height, that may impact the thermal response of the packages. Statistical methods are used to develop algebraic equations for ease of computations to cover the factor space. All computations were performed in BTU-FT-Hr-{sup o}F units.

Gupta, N.

2009-11-10T23:59:59.000Z

255

Thermal Hydraulic Modeling: Cross-Verification, Validation and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aleks Obabko, Paul Fischer, and Tim Tautges, Argonne National Laboratory Thermal Hydraulic Modeling: Cross-Verification, Validation and Co-design PI Name: Paul F. Fischer PI...

256

Energy Conversion and Thermal Efficiency Sales Tax Exemption  

Broader source: Energy.gov [DOE]

Ohio may provide a sales and use tax exemption for certain tangible personal property used in energy conversion, solid waste energy conversion, or thermal efficiency improvement facilities designed...

257

Mechanical properties of thermal protection system materials.  

SciTech Connect (OSTI)

An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.

Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul; Hofer, John H.

2005-06-01T23:59:59.000Z

258

Chemical preconcentrator with integral thermal flow sensor  

DOE Patents [OSTI]

A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2003-01-01T23:59:59.000Z

259

Rate schedule  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, andEpidermal Growth Factor. |INCIDENCET3PACI-T3Rate

260

Thermal Manikin Evaluation of Liquid Cooling Garments Intended for Use in Hazardous Waste Management  

SciTech Connect (OSTI)

Thermal manikins are valuable tools for quantitatively evaluating the performance of protective clothing ensembles and microclimate cooling systems. The goal of this investigation was to examine the performance of Coretech personal cooling systems, designed to reduce the effects of physiological and environmental heat stress, using a sweating thermal manikin. A sweating manikin takes into account the effective physiological evaporative heat transfer. Three tubesuits containing different densities of tubing were evaluated on the thermal manikin in conjunction with body armor and two Chemical-Biological suits (SPM and JSLIST). The experiments were carried out in an environmental chamber set at a temperature of 35 C with a relative humidity of 30%. For the tubesuits, two flow rates were tested and the heat removal rates were obtained by measuring the amount of power required to maintain the manikin's surface at a constant temperature of 35 C. The sweating rates were adjusted to maintain a fully wetted manikin surface at the above environmental conditions. For fluid flow rates ranging from approximately 250 to 750 ml/min, and inlet temperatures to the tubesuit ranging from 7 to 10 C, heat removal rates between 220 W to 284 W were measured, indicating the effectiveness of tubesuits at removing excessive body heat. This research was performed at the U.S. Army Soldier and Biological Chemical Command (SBCCOM) in Natick, Massachusetts.

Dionne, J. P.; Semeniuk, K.; Makris, A.; Teal, W.; Laprise, B.

2003-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

An investigation of the efficiency of the receiver of a solar thermal cooker with thermal energy storage.  

E-Print Network [OSTI]

??A small scale solar concentrator cooker with a thermal energy storage system was designed, constructed and tested on the roof of the Physics building at… (more)

Heilgendorff, Heiko Martin.

2015-01-01T23:59:59.000Z

262

Calculate thermal-expansion coefficients  

SciTech Connect (OSTI)

To properly design and use process equipment, an engineer needs a sound knowledge of physical and thermodynamic property data. A lack of such knowledge can lead to design or operating mistakes that can be dangerous, costly or even fatal. One useful type of property data is the thermal-expansion coefficient. This article presents equations and tables to find the thermal-expansion coefficients of many liquids that contain carbon. These data are useful in process-engineering applications, including the design of relief systems which are crucial to safeguarding process equipment. Data are provided for approximately 350 compounds. A computer software program, which contains the thermophysical property data for all of the compounds discussed in this article, is available for $43 prepaid from the author (Carl L. Yaws, Box 10053, Lamar University, beaumont, TX 77710; Tel. 409-880-8787; fax 409-880-8404). The program is in ASCII format, which can be accessed by most other types of computer software.

Yaws, C.L. [Lamar Univ., Beaumont, TX (United States)

1995-08-01T23:59:59.000Z

263

Design of a solar thermal collector simulator.  

E-Print Network [OSTI]

??The recent increased interest in renewable energy has created a need for research in the area of solar technology. This has brought about many new… (more)

Bolton, Kirk G.

2009-01-01T23:59:59.000Z

264

High Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

265

Thermal processing systems for TRU mixed waste  

SciTech Connect (OSTI)

This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

1992-01-01T23:59:59.000Z

266

Thermal processing systems for TRU mixed waste  

SciTech Connect (OSTI)

This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

1992-08-01T23:59:59.000Z

267

Thermal treatment for VOC control  

SciTech Connect (OSTI)

Catalytic and thermal oxidation are well-established technologies for controlling volatile organic compounds (VOCs). Oxidation destroys pollutants, rather than capturing them. Oxidation units can destroy nearly 100% of VOC and toxic emissions targeted by the Clean Air Act Amendments of 1990--some systems attain destruction efficiencies over 99.99%. To assist in the design of these systems, an engineer will often look a/t the heat of combustion of the gas stream, along with the type of pollutant, to best determine the correct type of oxidation device to use. The paper discusses catalytic and thermal oxidation, energy recovery, and equipment for these processes.

Cloud, R.A. [Huntington Environmental Systems, Schaumburg, IL (United States)

1998-07-01T23:59:59.000Z

268

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

269

Passive solar design handbook  

SciTech Connect (OSTI)

The Passive Solar Design Handbook, Volume Three updates Volume Two by presenting extensive new data on the optimum mix of conservation and solar direct gain, sunspaces, thermal storage walls, and solar radiation. The direct gain, thermal storage wall, and solar radiation data are greatly expanded relative to the Volume 2 coverage. The needed flexibility to analyze a variety of system designs is accommodated by the large number of reference designs to be encompassed - 94 in contrast to 6 in Volume two - and the large amount of sensitivity data for direct gain and sunspace systems - approximately 1100 separate curves.

Jones, R.W.

1981-01-01T23:59:59.000Z

270

Nanoscale thermal transport. II. 2003–2012  

SciTech Connect (OSTI)

A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ?1?nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal analysis using proximal probes has achieved spatial resolution of 10?nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.

Cahill, David G., E-mail: d-cahill@illinois.edu; Braun, Paul V. [Department of Materials Science and Engineering and the Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Chen, Gang [Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139 (United States); Clarke, David R. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Fan, Shanhui [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Goodson, Kenneth E. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Keblinski, Pawel [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); King, William P. [Department of Mechanical Sciences and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Mahan, Gerald D. [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States); Majumdar, Arun [Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States); Maris, Humphrey J. [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States); Phillpot, Simon R. [Department of Materials Science and Engineering, University of Florida, Gainseville, Florida 32611 (United States); Pop, Eric [Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Shi, Li [Department of Mechanical Engineering, University of Texas, Autin, Texas 78712 (United States)

2014-03-15T23:59:59.000Z

271

Thermal unobtainiums? The perfect thermal conductor and  

E-Print Network [OSTI]

contribute to thermal resistance · Isotopically pure diamond has highest thermal conductivity of any material materials: disordered layered crystals Conclude with some thoughts on promising, high-risk, research even in a computer model. #12;Thermal resistance is created by Umklapp scattering (U

Braun, Paul

272

RESEARCHANDTECHNICALNOTES Thermal contraction of Vespel SP-22 and  

E-Print Network [OSTI]

materials is becoming common in low temperature apparatus. Vespel SP-22 has a thermal conductivity nearly of thermal contraction of such construction materials is often necessary for proper design of low temperature devices. We present here data on the total thermal contraction of these two materials, measured relative

Packard, Richard E.

273

Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The team’s design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

None

2011-02-01T23:59:59.000Z

274

Thermal Control & System Integration  

Broader source: Energy.gov [DOE]

The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

275

ENVIRONMENTAL DESIGN CONSULTANTS + LIGHTING DESIGNERS | atelierten.com Sustainable Design  

E-Print Network [OSTI]

Strategies · Proposed Design & Alternate Energy Efficiency Measures · Earth Duct analysis · High Performance zero energy, carbon, and water performance. · Improve campus connectivity and exemplify best practices-fitting of renewable energy systems or other technologies. Create a high-performance, energy efficient, thermally

Massachusetts at Amherst, University of

276

Home Energy Ratings and Building Performance  

E-Print Network [OSTI]

climate as they affect the rating score of a proposed or completed structure. The rating is used to determine the most cost effective mechanical systems, building envelope design including window and door types, effect of various roofing materials...

Gardner, J.C.

277

Coshcous turbulence and its thermalization  

SciTech Connect (OSTI)

Dissipation rate {mu}[cosh(k/k{sub c}) - 1] in Fourier space, which reduces to the Newtonian viscosity dissipation rate {nu}k{sup 2} for small k/k{sub c}, can be scaled to make a hydrodynamic system either actually or potentially converge to its Galerkin truncation. The former case acquires convergence to the truncation at a finite wavenumber k{sub G}; the latter realizes as the wavenumber grows to infinity. Intermittency reduction and vitiation of extended self-similarity (ESS) in the partially thermalized regime of turbulence are confirmed and clarified. Onsager's pictures of intermittent versus nonintermittent flows are visualized from thermalized numerical fields, showing cleanly spotty versus mistily uniform properties, the latter of which destroys self-organization and so the ESS property.

Zhu, Jian-zhou [Los Alamos National Laboratory; Taylor, Mark [SNL

2008-01-01T23:59:59.000Z

278

Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report  

SciTech Connect (OSTI)

The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel tracers that would improve method sensitivity, (3) development of a software tool for design and interpretation of reactive tracer tests and (4) field testing of the reactive tracer temperature monitoring concept.

Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

2011-07-01T23:59:59.000Z

279

Thermal Management of Solar Cells  

E-Print Network [OSTI]

a better thermal conductance and when ceramic particles areor ceramic fillers that enhances thermal conductivity. Solid

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

280

Low thermal stress ceramic turbine nozzle  

DOE Patents [OSTI]

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components, the metallic components having a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes there between. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component. 4 figs.

Glezer, B.; Bagheri, H.; Fierstein, A.R.

1996-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

GCFR thermal-hydraulic experiments  

SciTech Connect (OSTI)

The thermal-hydraulic experimental studies performed and planned for the Gas-Cooled Fast Reactor (GCFR) core assemblies are described. The experiments consist of basic studies performed to obtain correlations, and bundle experiments which provide input for code validation and design verification. These studies have been performed and are planned at European laboratories, US national laboratories, Universities in the US, and at General Atomic Company

Schlueter, G.; Baxi, C.B.; Dalle Donne, M.; Gat, U.; Fenech, H.; Hanson, D.; Hudina, M.

1980-01-01T23:59:59.000Z

282

Graphene optical-to-thermal converter  

E-Print Network [OSTI]

Infrared plasmons in doped graphene nanostructures produce large optical absorption that can be used for narrow-band thermal light emission at tunable frequencies that strongly depend on the doping charge. By virtue of Kirchhoff's law, thermal light emission is proportional to the absorption, thus resulting in narrow emission lines associated with the electrically controlled plasmons of heated graphene. Here we show that realistic designs of graphene plasmonic structures can release over 90% of the emission through individual infrared lines with 1% bandwidth. We examine anisotropic graphene structures in which efficient heating can be produced upon optical pumping tuned to a plasmonic absorption resonance situated in the blue region relative to the thermal emission. An incoherent thermal light converter is thus achieved. Our results open a radically different approach for designing tunable nanoscale infrared light sources.

Manjavacas, Alejandro; Greffet, Jean-Jacques; de Abajo, F Javier García

2014-01-01T23:59:59.000Z

283

Thermalization of Strongly Coupled Field Theories  

SciTech Connect (OSTI)

Using the holographic mapping to a gravity dual, we calculate 2-point functions, Wilson loops, and entanglement entropy in strongly coupled field theories in d=2, 3, and 4 to probe the scale dependence of thermalization following a sudden injection of energy. For homogeneous initial conditions, the entanglement entropy thermalizes slowest and sets a time scale for equilibration that saturates a causality bound. The growth rate of entanglement entropy density is nearly volume-independent for small volumes but slows for larger volumes. In this setting, the UV thermalizes first.

Balasubramanian, V. [David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Bernamonti, A.; Copland, N.; Craps, B.; Staessens, W. [Theoretische Natuurkunde, Vrije Universiteit Brussel, and International Solvay Institutes, B-1050 Brussels (Belgium); Boer, J. de [Institute for Theoretical Physics, University of Amsterdam, 1090 GL Amsterdam (Netherlands); Keski-Vakkuri, E. [Helsinki Institute of Physics and Department of Physics, FIN-00014 University of Helsinki (Finland); Mueller, B. [Department of Physics and CTMS, Duke University, Durham, North Carolina 27708 (United States); Schaefer, A. [Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg (Germany); Shigemori, M. [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan)

2011-05-13T23:59:59.000Z

284

Holographic thermalization patterns  

E-Print Network [OSTI]

We investigate the behaviour of various correlators in N=4 super Yang Mills theory, taking finite coupling corrections into account. In the thermal limit we investigate the flow of the quasinormal modes as a function of the 't Hooft coupling. Then by using a specific model of holographic thermalization we investigate the deviation of the spectral densities from their thermal limit in an out-of-equilibrium situation. The main focus lies on the thermalization pattern with which the various plasma constituents of different energies approach their final thermal distribution as the coupling constant decreases from the infinite coupling limit. All results point towards the weakening of the usual top down thermalization pattern.

Stefan Stricker

2014-03-11T23:59:59.000Z

285

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

286

Phonon wave-packet simulations of Ar/Kr interfaces for thermal rectification  

E-Print Network [OSTI]

by designing them to have extremely low thermal conductivities in the one direction.4 Thermally rectifying extremely difficult. Materials that exhibit thermal rectification would drastically improve our ability and dissimilar materials which have shown thermal rectify- ing behavior. In 2002, Terraneo et al.6 demonstrated

Walker, D. Greg

287

Thermal loading study for FY 1995  

SciTech Connect (OSTI)

This report provides the results of sensitivity analyses designed to assist the test planners in focusing their in-situ measurements on parameters that appear to be important to waste isolation. Additionally, the study provides a preliminary assessment of the feasibility of certain thermal management options. A decision on thermal loading is a critical part of the scientific and engineering basis for evaluating regulatory compliance of the potential repository for waste isolation. To show, with reasonable assurance, that the natural and engineered barriers will perform adequately under expected repository conditions (thermally perturbed) will require an integrated approach based on thermal testing (laboratory, and in-situ), natural analog observations, and analytic modeling. The Office of Civilian Radioactive Waste Management needed input to assist in the planning of the thermal testing program. Additionally, designers required information on the viability of various thermal management concepts. An approximately 18-month Thermal Loading Study was conducted from March, 1994 until September 30, 1995 to address these issues. This report documents the findings of that study. 89 refs., 71 figs., 33 tabs.

NONE

1996-01-31T23:59:59.000Z

288

Non-thermal Plasma Chemistry Non-thermal Thermal  

E-Print Network [OSTI]

-thermal Plasma Chemical Flow Reactor #12;Werner von Siemens ,, ... construction of an apparatus generation (1857) pollution control volatile organic components, NOx reforming, ... radiation sources excimer;Leuchtstoffröhre Plasma-Bildschirm Energiesparlampe #12;electrical engineering light sources textile industry

Greifswald, Ernst-Moritz-Arndt-Universität

289

Fast Poisson Solvers for Thermal Analysis HAIFENG QIAN, IBM T. J. Watson Research Center  

E-Print Network [OSTI]

not only determine the maximum performance envelope of an integrated circuit in the form of thermal designFast Poisson Solvers for Thermal Analysis HAIFENG QIAN, IBM T. J. Watson Research Center SACHIN S thermal analysis for a VLSI chip is crucial, both for sign-off reliability verification and for design

Sapatnekar, Sachin

290

Thermal Stability Of Formohydroxamic Acid  

SciTech Connect (OSTI)

The thermal stability of formohydroxamic acid (FHA) was evaluated to address the potential for exothermic decomposition during storage and its use in the uranium extraction process. Accelerating rate calorimetry showed rapid decomposition at a temperature above 65 {degree}?C; although, the rate of pressure rise was greater than two orders of magnitude less than the lower bound for materials which have no explosive properties with respect to transportation. FHA solutions in water and nitric acid did not reach runaway conditions until 150 {degree}?C. Analysis by differential scanning calorimetry showed that FHA melted at 67 {degree}?C and thermally decomposed at 90 {degree}?C with an enthalpy of -1924 J/g. The energics of the FHA thermal decomposition are comparable to those measured for aqueous solutions of hydroxylamine nitrate. Solid FHA should be stored in a location where the temperature does not exceed 20-25 {degree}?C. As a best practice, the solid material should be stored in a climate-controlled environment such as a refrigerator or freezer. FHA solutions in water are not susceptible to degradation by acid hydrolysis and are the preferred way to handle FHA prior to use.

Fondeur, F. F.; Rudisill, T. S.

2011-10-21T23:59:59.000Z

291

Thermal contact resistance  

E-Print Network [OSTI]

This work deals with phenomena of thermal resistance for metallic surfaces in contact. The main concern of the work is to develop reliable and practical methods for prediction of the thermal contact resistance for various ...

Mikic, B. B.

1966-01-01T23:59:59.000Z

292

Thermal Processes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Production Current Technology Thermal Processes Thermal Processes Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass,...

293

The creation of a courtyard microclimate thermal model for the analysis of courtyard houses  

E-Print Network [OSTI]

in the air change rates, solar absorptivity, and ambient air (rooftop) temperatures. The courtyard microclimate model was then used in combination with thermal simulation software (DOE-2) to analyze the thermal performance of the case study house, which...

Bagneid, Amr

2009-05-15T23:59:59.000Z

294

Multiwavelength Thermal Emission  

E-Print Network [OSTI]

Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks

California at Santa Cruz, University of

295

Thermal Performance Benchmarking (Presentation)  

SciTech Connect (OSTI)

This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

Moreno, G.

2014-11-01T23:59:59.000Z

296

Thermal neutron detection system  

DOE Patents [OSTI]

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

297

On the ‘‘direct’’ calculation of thermal rate constants  

E-Print Network [OSTI]

required to obtain C f,s (t) is evaluated by a Lanczos iteration procedure which calculates only the nonzero eigenvalues. The propagation in complex time, t c =t?i??/2, is carried out using a Chebychev expansion. This method is seen to be both accurate...

Thompson, Ward H.; Miller, William H.

1995-03-01T23:59:59.000Z

298

Wind Issues in Solar Thermal Performance Ratings: Preprint  

SciTech Connect (OSTI)

We suggest that wind bias against unglazed solar water heaters be mitigated by using a calibrated collector model to derive a wind correction to the measured efficiency curve.

Burch, J.; Casey, R.

2009-04-01T23:59:59.000Z

299

Thermal management concepts for higher efficiency heavy vehicles.  

SciTech Connect (OSTI)

Thermal management is a cross-cutting technology that directly or indirectly affects engine performance, fuel economy, safety and reliability, aerodynamics, driver/passenger comfort, materials selection, emissions, maintenance, and component life. This review paper provides an assessment of thermal management for large trucks, particularly as it impacts these features. Observations arrived at from a review of the state of the art for thermal management for over-the-road trucks are highlighted and commented on. Trends in the large truck industry, pertinent engine truck design and performance objectives, and the implications of these relative to thermal management, are presented. Finally, new thermal management concepts for high efficiency vehicles are described.

Wambsganss, M. W.

1999-05-19T23:59:59.000Z

300

Experimental Design for a Sponge-Wipe Study to Relate the Recovery Efficiency and False Negative Rate to the Concentration of a Bacillus anthracis Surrogate for Six Surface Materials  

SciTech Connect (OSTI)

Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the probability of correct detection (PCD) (or equivalently the false negative rate FNR = 1 ? PCD). The PCD/FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5) sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method. A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not PCD/FNR (which left a major gap in available information). Quantifying the PCD/FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in PCD/FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The study will investigate the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge-wipe samples, RE, and PCD/FNR. The experimental design involves 16 test runs, to be performed in two blocks of eight runs. Three surface materials (stainless steel, vinyl tile, and ceramic tile) were tested in the first block, while three other surface materials (plastic, painted wood paneling, and faux leather) will be tested in the second block. The eight surface concentrations of the surrogate were randomly assigned to test runs within each block. Some of the concentrations will be very low and may present challenges for deposition, sampling, and analysis. However, such tests are needed to investigate RE and PCD/FNR over the full range of concentrations of interest. In each run, there will be 10 test coupons of each of the three surface materials. A positive control sample will be generated prior to each test sample. The positive control results will be used to 1) calculate RE values for the wipe sampling and analysis method, and 2) fit RE- and PCD-concentration equations, for each of the six surface materials. Data analyses will support 1) estimating the PCD for each combination of contaminant concentration and surface material, 2) estimating the surface concentrations and their uncertainties of the contaminant for each combination of concentration and surface material, 3) estimating RE (%) and their uncertainties for each combination of contaminant concentration and surface material, 4) fitting PCD-concentration and RE-concentration equations for each of the six surface materials, 5) assessing goodness-of-fit of the equations, and 6) quantifying the uncertainty in PCD and RE predictions made with the fitted equations.

Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula; Einfeld, Wayne

2010-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Experimental Design for a Sponge-Wipe Study to Relate the Recovery Efficiency and False Negative Rate to the Concentration of a Bacillus anthracis Surrogate for Six Surface Materials  

SciTech Connect (OSTI)

Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the false negative rate (FNR). The FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5) sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method. A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not FNR (which left a major gap in available information). Quantifying the FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The testing was performed by SNL and is now completed. The study investigated the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge-wipe samples, RE, and FNR. The experimental design involves 16 test runs, performed in two blocks of eight runs. Three surface materials (stainless steel, vinyl tile, and ceramic tile) were tested in the first block, while three other surface materials (plastic, painted wood paneling, and faux leather) were tested in the second block. The eight surface concentrations of the surrogate were randomly assigned to test runs within each block. Some of the concentrations were very low and presented challenges for deposition, sampling, and analysis. However, such tests are needed to investigate RE and FNR over the full range of concentrations of interest. In each run, there were 10 test coupons of each of the three surface materials. A positive control sample was generated at the same time as each test sample. The positive control results will be used to 1) calculate RE values for the wipe sampling and analysis method, and 2) fit RE- and FNR-concentration equations, for each of the six surface materials. Data analyses will support 1) estimating the FNR for each combination of contaminant concentration and surface material, 2) estimating the surface concentrations and their uncertainties of the contaminant for each combination of concentration and surface material, 3) estimating RE (%) and their uncertainties for each combination of contaminant concentration and surface material, 4) fitting FNR-concentration and RE-concentration equations for each of the six surface materials, 5) assessing goodness-of-fit of the equations, and 6) quantifying the uncertainty in FNR and RE predictions made with the fitted equations.

Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula; Einfeld, Wayne

2011-05-01T23:59:59.000Z

302

Heating Rate Profiles in Galaxy Clusters  

E-Print Network [OSTI]

In recent years evidence has accumulated suggesting that the gas in galaxy clusters is heated by non-gravitational processes. Here we calculate the heating rates required to maintain a physically motived mass flow rate, in a sample of seven galaxy clusters. We employ the spectroscopic mass deposition rates as an observational input along with temperature and density data for each cluster. On energetic grounds we find that thermal conduction could provide the necessary heating for A2199, Perseus, A1795 and A478. However, the suppression factor, of the clasical Spitzer value, is a different function of radius for each cluster. Based on the observations of plasma bubbles we also calculate the duty cycles for each AGN, in the absence of thermal conduction, which can provide the required energy input. With the exception of Hydra-A it appears that each of the other AGNs in our sample require duty cycles of roughly $10^{6}-10^{7}$ yrs to provide their steady-state heating requirements. If these duty cycles are unrealistic, this may imply that many galaxy clusters must be heated by very powerful Hydra-A type events interspersed between more frequent smaller-scale outbursts. The suppression factors for the thermal conductivity required for combined heating by AGN and thermal conduction are generally acceptable. However, these suppression factors still require `fine-tuning` of the thermal conductivity as a function of radius. As a consequence of this work we present the AGN duty cycle as a cooling flow diagnostic.

Edward C. D. Pope; Georgi Pavlovski; Christian R. Kaiser; Hans Fangohr

2006-01-05T23:59:59.000Z

303

E-Print Network 3.0 - auto thermal reforming Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

psig H2 PSA Natural Gas Syngas CMP HX CMP HX Thermal... ACR is more cost effective 12;Praxair BP 7 Reformer Design 150 kW thermal NG unit 0 10 20 30 40 50... GE Autothermal...

304

Diode-pumped Q-switched Nd{sup 3+} : YAG laser operating in a wide temperature range without thermal stabilisation of pump diodes  

SciTech Connect (OSTI)

A model sample of a compact low-power-consumption Nd{sup 3+} : YAG laser emitting 20-mJ pulses with a pulse repetition rate up to 20 Hz (in cyclic duty) at a wavelength of 1064 nm is developed and studied. The laser is designed for operating at external temperatures from -40 to +50 deg C. This was achieved by using quasi-end diode pumping without thermal stabilisation of pump diodes. (laser optics 2012)

Vainshenker, A E; Vilenskiy, A V; Kazakov, A A; Lysoy, B G; Mikhailov, L K; Pashkov, V A [Open Joint-Stock Company 'M.F. Stel'makh Polyus Research and Development Institute', Moscow (Russian Federation)

2013-02-28T23:59:59.000Z

305

Chlorite Dissolution Rates  

SciTech Connect (OSTI)

Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

Carroll, Susan

2013-07-01T23:59:59.000Z

306

Chlorite Dissolution Rates  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

Carroll, Susan

307

The Interest Rate Conundrum  

E-Print Network [OSTI]

Flows and US Interest Rates,” NBER Working Paper No 12560. [Working Paper # 2008 -03 The Interest Rate Conundrum Roger

Craine, Roger; Martin, Vance L.

2009-01-01T23:59:59.000Z

308

Comparisons of field performance to closed-door test T ABLE 1 ratings indicate the laboratory procedure is a valid indica-Design Options to Improve the Energy Efficiency of a  

E-Print Network [OSTI]

be incorporated into the conventional RF design (a Option 8 High-efficiency fan motor single fan-forced evaporator heat load. Adaptive condensate at the door gaskets were estimated by ..zeroing defrost, efficient fan the laboratory procedure is a valid indica- Design Options to Improve the Energy Efficiency of a tion of energy

Oak Ridge National Laboratory

309

Underground Coal Thermal Treatment  

SciTech Connect (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

310

Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint  

SciTech Connect (OSTI)

A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

Turchi, C. S.; Ma, Z.; Erbes, M.

2011-03-01T23:59:59.000Z

311

Thermal Storage Applications for Commercial/Industrial Facilities  

E-Print Network [OSTI]

THERMAL STORAGE APPLICATIONS FOR COMMERCIAL/INDUSTRIAL FACILITIES Roger 1. Knipp, PE. Dallas Power & Light Company Dallas, Texas ABSTRACT Texas Utilities Electric Company has been actively encouraging installations of thermal storage... since 1981. Financial incentives and advantageous rates can make thermal storage an attractive cooling concept in Texas Utilities Electric Company service area. Currently, 14 million square feet of commercial building space in Dallas is either...

Knipp, R. L.

312

New Reliability Assessment Method for Solder Joints in BGA Package by Considering the Interaction between Design Factors  

E-Print Network [OSTI]

As the integration and the miniaturization of electronics devices, design space become narrower and interactions between design factors affect their reliability. This paper presents a methodology of quantifying the interaction of each design factor in electronics devices. Thermal fatigue reliability of BGA assembly was assessed with the consideration of the interaction between design factors. Sensitivity analysis shows the influence of each design factor to inelastic strain range of a solder joint characterizing the thermal fatigue life if no interaction occurs. However, there is the interaction in BGA assembly since inelastic strain range depends on not only a mismatch in CTE but also a warpage of components. Clustering can help engineers to clarify the relation between design factors. The variation in the influence was taken to quantify the interaction of each design factor. Based on the interaction, simple evaluating approach of inelastic strain range for the BGA assembly was also developed. BGA package was simplified into a homogeneous component and equivalent CTE wascalculated from the warpage of BGA and PCB. The estimated equation was derived by using the response surface method as a function of design factors. Based upon these analytical results, design engineers can rate each factor's effect on reliability and assess the reliability of their basic design plan at the concept design stage.

Satoshi Kondo; Qiang Yu; T. Shibutani; M. Shiratori

2008-01-07T23:59:59.000Z

313

Thermal blooming experiments. Final report  

SciTech Connect (OSTI)

The goals of this program were to design an experiment for determining the effect of stimulated thermal Brillouin scattering (STBS) on single pulse laser propagation and to establish the ability of both a wave optics code and of linearized theory to predict the results of the experiment accurately. The second goal is particularly important because no experimental verification of analytical tools currently in use for single pulse high power laser propagation is available. When a high power laser propagates through the atmosphere, a small fraction of the laser energy is absorbed, creating acoustic waves that may move a significant distance transverse to the propagation direction during the pulse. Such waves lead to the well-known t{sup 3}-blooming refractive-index variations. When such blooming is sufficiently strong, the induced refractive-index alters the intensity profile of the beam farther along the propagation path. This altered intensity profile induces a somewhat different refractive-index profile that may reinforce the path-integrated t{sup 3} blooming. This self-enhancement may be called near-forward stimulated thermal Brillouin scattering (STBS). The design effort described here was carried out much like the proposed experimental program, which calls for the interaction of experimental work with analytical theory and with a wave optics code, A linearized theory of STBS was developed. Results from this theory were compared to output from a wave optics propagation code for several well defined sets of operating conditions. Once good agreement between theory and code simulation was obtained for these test conditions, the theory was used to define and operating regime for a laboratory scale thermal blooming experiment that would provide information relevant to high power laser propagation. A conceptual design for this experiment was then generated and, finally, and experimental set-up, including diagnostics, was proposed.

Not Available

1990-05-01T23:59:59.000Z

314

CONDENSATION AND EVAPORATION FOR THERMALLY UNEQUILIBRATED PHASES  

E-Print Network [OSTI]

CONDENSATION AND EVAPORATION FOR THERMALLY UNEQUILIBRATED PHASES R. A. Marcus1 , A. V. Fedkin2-K) equation for the rate of condensation of a gas or evaporation of a solid or liquid is used for systems, Tg, differs from that of the condensed phase, Ts . Here, we modify the H-K equation for this case

Grossman, Lawrence

315

Thermal Stability of Chelated Indium Activable Tracers  

SciTech Connect (OSTI)

The thermal stability of indium tracer chelated with organic ligands ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) was measured for reservoir temperatures of 150, 200, and 240 C. Measurements of the soluble indium concentration was made as a function of time by neutron activation analysis. From the data, approximate thermal decomposition rates were estimated. At 150 C, both chelated tracers were stable over the experimental period of 20 days. At 200 C, the InEDTA concentration remained constant for 16 days, after which the thermal decomposition occurred at a measured rate constant of k = 0.09 d{sup -1}. The thermal decomposition of InNTA at 200 C showed a first order reaction with a measured rate constant of k = 0.16 d{sup -1}. At 240 C, both indium chelated tracers showed rapid decomposition with rate constants greater than 1.8 d{sup -1}. The data indicate that for geothermal reservoir with temperatures up to about 200 C, indium chelated tracers can be used effectively for transit times of at least 20 days. These experiments were run without reservoir rock media, and do not account for concomitant loss of indium tracer by adsorption processes.

Chrysikopoulos, Costas; Kruger, Paul

1986-01-21T23:59:59.000Z

316

THERMAL DESTRUCTION OF HIGHLY CHLORINATED MIXED WASTES WITHOUT GENERATING CORROSIVE OFF-GASES USING MOLTEN SALT OXIDATION (1,2)  

SciTech Connect (OSTI)

A pilot-scale MSO (Molten Salt Oxidation) system was used to process 45-gallons of a halogenated mixed waste that is difficult to treat with other thermal systems. The mixed waste was a halogenated solvent that consisted mostly of methylchloroform. The 80 weight percent of waste consisting of highly corrosive chlorine was captured in the first process vessel as sodium chloride. The sodium chloride leached chrome from that process vessel and the solidified salt exhibited the toxicity characteristic for chrome as measured by TCLP (Toxicity Characteristic Leaching Procedure) testing. The operating ranges for parameters such as salt bed temperature, off-gas temperature, and feed rate that enable sustained operation were identified. At feed rates below the sustainable limit, both processing capacity and maintenance requirements increased with feed rate. Design and operational modifications to increase the sustainable feed rate limit and reduce maintenance requirements reduced both salt carryover and volumetric gas flows.

Smith, W.; Feizollahi, F.

2002-02-25T23:59:59.000Z

317

Neutrino Physics with Thermal Detectors  

SciTech Connect (OSTI)

The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

2009-11-09T23:59:59.000Z

318

Cavitation methods in therapeutic ultrasound : techniques, mechanisms, and system design  

E-Print Network [OSTI]

Focused ultrasound is currently being developed as a non-invasive thermal ablation technique for benign and cancerous tumors in several organ systems. Although these therapies are designed to ablate tissue purely by thermal ...

Sokka, Shunmugavelu D. (Shunmugavelu Doraivelu), 1975-

2004-01-01T23:59:59.000Z

319

An Evaluation of Thermal Storage at Two Industrial Plants  

E-Print Network [OSTI]

Thermal storage offers substantial energy cost savings potential in situations with favorable electrical rates and significant cooling demand. Full storage is usually restricted to facilities occupied only part of the day, but two industrial plants...

Brown, M. L.; Gurta, M. E.

320

STANDARD DATA FILES FOR COMPUTER THERMAL SIMULATION  

E-Print Network [OSTI]

STANDARD DATA FILES FOR COMPUTER THERMAL SIMULATION OF SOLAR LOW ENERGY NON-RESIDENTIAL BUILDINGS has been collated into descriptions of standard buildings to provide starting points for designers); Weather File Analyses (6) Standard Model Building Descriptions 6 Testing of Model Buildings 7 Summary 7

Amor, Robert

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ResearchArticle BuildingThermal,Lighting,  

E-Print Network [OSTI]

ResearchArticle BuildingThermal,Lighting, andAcousticsModeling E-mail: yanda@tsinghua.edu.cn A detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E Dandan and partitions. This comparison study did not produce another test suite, but rather a methodology to design

322

Thermal comfort during surgery  

E-Print Network [OSTI]

THERMAL COMFORT DURING SURGERY A Thesis by DAVID HAROLD MANNING Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1978 Major Subject: Industrial... Engineering THERMAL COMFORT DURING SURGERY A Thesis by DAVID HAROLD MANNING Approved as to style and content by: airman of C it ee Head of Department Member Me er December 1978 ABSTRACT Thermal Comfort During Surgery (December 1978) David Harold...

Manning, David Harold

1978-01-01T23:59:59.000Z

323

Thermal Infrared Remote Sensing  

E-Print Network [OSTI]

Thermal Infrared Remote Sensing Thermal Infrared Remote Sensing #12;0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4 and x-ray Ultraviolet Infrared Microwave and radio waves Wavelength in meters (m) Electromagnetic.77 700 red limit 30k0.041 2.48 green500 near-infrared far infrared ultraviolet Thermal Infrare refers

324

EXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM  

E-Print Network [OSTI]

cost benefits are still evident. Currently, there are many solar power plants that have been announced Abstract Thermal energy storage is attractive in the design of concentrator solar thermal systems because, power output from a solar field. At the right cost, a storage system can improve overall economics

325

Thermal-aware Synthesis of Integrated Photonic Ring Resonators  

E-Print Network [OSTI]

Thermal-aware Synthesis of Integrated Photonic Ring Resonators Christopher Condrat Calypto Design-chip optical-interconnect wavelength division multi- plexing (WDM) network architectures. Thermal interactions literature proposes active compensation for such refractive index variations (e.g. carrier-injection based

Kalla, Priyank

326

Thermal Reliability Study of Bypass Diodes in Photovoltaic Modules (Poster)  

SciTech Connect (OSTI)

This paper presents the result of high-temperature durability and thermal cycling testing and analysis for the selected diodes to study the detail of the thermal design and relative long-term reliability of the bypass diodes used to limit the detrimental effects of module hot-spot susceptibility.

Zhang, Z.; Wohlgemuth, J.; Kurtz, S.

2013-05-01T23:59:59.000Z

327

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

the external fluid mechanics of OTEC plants: report coveringocean thermal energy conversion (OTEC) plants by mid-1980's.1980. A baseline design of a 40-MW OTEC Pilot Johns Hopkins

Sullivan, S.M.

2014-01-01T23:59:59.000Z

328

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

THERMAL COGENERATION A solar tracker and concentrator was3.1.Tracking System The solar tracker is designed to supportSummary and Conclusion A solar tracker and concentrator was

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

329

Damage of MEMS thermal actuators heated by laser irradiation.  

SciTech Connect (OSTI)

Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

2004-11-01T23:59:59.000Z

330

Damage of MEMS thermal actuators heated by laser irradiation.  

SciTech Connect (OSTI)

Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

2005-01-01T23:59:59.000Z

331

Variable pressure thermal insulating jacket  

DOE Patents [OSTI]

A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

1994-09-20T23:59:59.000Z

332

Direct estimation of decoherence rates  

E-Print Network [OSTI]

The decoherence rate is a nonlinear channel parameter that describes quantitatively the decay of the off-diagonal elements of a density operator in the decoherence basis. We address the question of how to experimentally access such a nonlinear parameter directly without the need of complete process tomography. In particular, we design a simple experiment working with two copies of the channel, in which the registered mean value of a two-valued measurement directly determines the value of the average decoherence rate. No prior knowledge of the decoherence basis is required.

Vladimír Bužek; Peter Rapcan; Jochen Rau; Mario Ziman

2012-07-30T23:59:59.000Z

333

W-320 Project thermal modeling  

SciTech Connect (OSTI)

This report summarizes the results of thermal analysis performed to provide a technical basis in support of Project W-320 to retrieve by sluicing the sludge in Tank 241-C-106 and to transfer into Tank 241-AY-102. Prior theraml evaluations in support of Project W-320 safety analysis assumed the availability of 2000 to 3000 CFM, as provided by Tank Farm Operations, for tank floor cooling channels from the secondary ventilation system. As this flow availability has no technical basis, a detailed Tank 241-AY-102 secondary ventilation and floor coating channel flow model was developed and analysis was performed. The results of the analysis show that only about 150 cfm flow is in floor cooLing channels. Tank 241-AY-102 thermal evaluation was performed to determine the necessary cooling flow for floor cooling channels using W-030 primary ventilation system for different quantities of Tank 241-C-106 sludge transfer into Tank 241-AY-102. These sludge transfers meet different options for the project along with minimum required modification of the ventilation system. Also the results of analysis for the amount of sludge transfer using the current system is presented. The effect of sludge fluffing factor, heat generation rate and its distribution between supernatant and sludge in Tank 241-AY-102 on the amount of sludge transfer from Tank 241-C-106 were evaluated and the results are discussed. Also transient thermal analysis was performed to estimate the time to reach the steady state. For a 2 feet sludge transfer, about 3 months time will be requirad to reach steady state. Therefore, for the purpose of process control, a detailed transient thermal analysis using GOTH Computer Code will be required to determine transient response of the sludge in Tank 241-AY-102. Process control considerations are also discussed to eliminate the potential for a steam bump during retrieval and storage in Tanks 241-C-106 and 241-AY-102 respectively.

Sathyanarayana, K., Fluor Daniel Hanford

1997-03-18T23:59:59.000Z

334

PSNC Energy (Gas)- Green Building Rate Discount  

Broader source: Energy.gov [DOE]

This discounted rate is available to commercial customers whose building meets the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) certification or equivalent. To...

335

Rainfall-induced Landslide Hazard Rating System  

E-Print Network [OSTI]

This research develops a Landslide Hazard Rating System for the rainfall-induced landslides in the Chenyulan River basin area in central Taiwan. This system is designed to provide a simplified and quick evaluation of the ...

Chen, Yi-Ting, Civ. E., Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

336

Syngas Production from Propane Using Atmospheric Non-thermal Plasma  

E-Print Network [OSTI]

Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure and low temperature (420 K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen was formed as a main product (H2 concentration up to 50%). By-products (C2-hydrocarbons, methane, carbon dioxide) were measured with concentrations lower than 6%. The mean electrical power injected in the discharge is less than 2 kW. The process efficiency is described in terms of propane conversion rate, steam reforming and cracking selectivity, as well as by-products production. Chemical processes modelling based on classical thermodynamic equilibrium reactor is also proposed. Calculated data fit quiet well experimental results and indicate that the improvement of C3H8 conversion and then H2 production can be achieved by increasing the gas fraction through the discharge. By improving the reactor design, the non-thermal plasma has a potential for being an effective way for supplying hydrogen or synthesis gas.

Ouni, Fakhreddine; Cormier, Jean Marie; 10.1007/s11090-009-9166-2

2009-01-01T23:59:59.000Z

337

PRELIMINARY REPORT: EFFECTS OF IRRADIATION AND THERMAL EXPOSURE ON ELASTOMERIC SEALS FOR CASK TRANSPORTATION AND STORAGE  

SciTech Connect (OSTI)

A testing and analysis approach to predict the sealing behavior of elastomeric seal materials in dry storage casks and evaluate their ability to maintain a seal under thermal and radiation exposure conditions of extended storage and beyond was developed, and initial tests have been conducted. The initial tests evaluate the aging response of EPDM elastomer O-ring seals. The thermal and radiation exposure conditions of the CASTOR® V/21 casks were selected for testing as this cask design is of interest due to its widespread use, and close proximity of the seals to the fuel compared to other cask designs leading to a relatively high temperature and dose under storage conditions. A novel test fixture was developed to enable compression stress relaxation measurements for the seal material at the thermal and radiation exposure conditions. A loss of compression stress of 90% is suggested as the threshold at which sealing ability of an elastomeric seal would be lost. Previous studies have shown this value to be conservative to actual leakage failure for most aging conditions. These initial results indicate that the seal would be expected to retain sealing ability throughout extended storage at the cask design conditions, though longer exposure times are needed to validate this assumption. The high constant dose rate used in the testing is not prototypic of the decreasingly low dose rate that would occur under extended storage. The primary degradation mechanism of oxidation of polymeric compounds is highly dependent on temperature and time of exposure, and with radiation expected to exacerbate the oxidation.

Verst, C.; Skidmore, E.; Daugherty, W.

2014-05-30T23:59:59.000Z

338

E-Print Network 3.0 - affect thermal dissipation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10 In the design of high-performance computer systems, power and temperature Summary: and remote routers affects that router's temperature. Because each router's power and thermal...

339

THERMAL IMPACT OF WASTE EMPLACEMENT AND SURFACE COOLING ASSOCIATED WITH GEOLOGIC DISPOSAL OF NUCLEAR WASTE  

E-Print Network [OSTI]

waste repository design AERE-R--9343 Atomic Energy Researchof the thermal s t r e s s field. AERE R-8999, Atomic Energy

Wang, J.S.Y.

2010-01-01T23:59:59.000Z

340

E-Print Network 3.0 - analog ic designed Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: problems facing IC designers. High-power ICs rapidly deplete battery energy. Rapid changes in power... in IC design. Modeling and optimizing IC thermal...

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Thermal protection apparatus  

DOE Patents [OSTI]

The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

Bennett, G.A.; Elder, M.G.; Kemme, J.E.

1984-03-20T23:59:59.000Z

342

Thermal protection apparatus  

DOE Patents [OSTI]

An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

Bennett, Gloria A. (Los Alamos, NM); Elder, Michael G. (Los Alamos, NM); Kemme, Joseph E. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

343

Effective Rate Period  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the FY Mid-Year Change 10012013 - 03312014 04012014 - 09302014 Power Rates Annual Revenue Requirement Rate Schedule Power Revenue Requirement 73,441,557...

344

Radiation-Dominated Disks Are Thermally Stable  

E-Print Network [OSTI]

When the accretion rate is more than a small fraction of Eddington, the inner regions of accretion disks around black holes are expected to be radiation-dominated. However, in the alpha-model, these regions are also expected to be thermally unstable. In this paper, we report two 3-d radiation MHD simulations of a vertically-stratified shearing box in which the ratio of radiation to gas pressure is ~ 10, and yet no thermal runaway occurs over a timespan ~ 40 cooling times. Where the time-averaged dissipation rate is greater than the critical dissipation rate that creates hydrostatic equilibrium by diffusive radiation flux, the time-averaged radiation flux is held to the critical value, with the excess dissipated energy transported by radiative advection. Although the stress and total pressure are well-correlated as predicted by the alpha-model, we show that stress fluctuations precede pressure fluctuations, contrary to the usual supposition that the pressure controls the saturation level of the magnetic energy. This fact explains the thermal stability. Using a simple toy-model, we show that independently-generated magnetic fluctuations can drive radiation pressure fluctuations, creating a correlation between the two while maintaining thermal stability.

Shigenobu Hirose; Julian H. Krolik; Omer Blaes

2008-09-10T23:59:59.000Z

345

Solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

346

Tunable thermal link  

DOE Patents [OSTI]

Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

2014-07-15T23:59:59.000Z

347

Thermal Recovery Methods  

SciTech Connect (OSTI)

Thermal Recovery Methods describes the basic concepts of thermal recovery and explains the injection patterns used to exploit reservoir conditions. Basic reservoir engineering is reviewed with an emphasis on changes in flow characteristics caused by temperature. The authors discuss an energy balance for steam and combustion drive, and they explain in situ reactions. Heat loss, combustion drive, and steam displacement also are examined in detail, as well as cyclic steam injection, downhole ignition, well heating, and low-temperature oxidation. Contents: Thermal processes; Formation and reservoir evaluations; Well patterns and spacing; Flow and process equations; Laboratory simulation of thermal recovery; Heat loss and transmission; Displacement and production; Equipment; Basic data for field selection; Laboratory evaluation of combustion characteristics; Thermal properties of reservoirs and fluids.

White, P.D.; Moss, J.T.

1983-01-01T23:59:59.000Z

348

Thermal treatment wall  

DOE Patents [OSTI]

A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

2000-01-01T23:59:59.000Z

349

Microsecond switchable thermal antenna  

SciTech Connect (OSTI)

We propose a thermal antenna that can be actively switched on and off at the microsecond scale by means of a phase transition of a metal-insulator material, the vanadium dioxide (VO{sub 2}). This thermal source is made of a periodically patterned tunable VO{sub 2} nanolayer, which support a surface phonon-polariton in the infrared range in their crystalline phase. Using electrodes properly registered with respect to the pattern, the VO{sub 2} phase transition can be locally triggered by ohmic heating so that the surface phonon-polariton can be diffracted by the induced grating, producing a highly directional thermal emission. Conversely, when heating less, the VO{sub 2} layers cool down below the transition temperature, the surface phonon-polariton cannot be diffracted anymore so that thermal emission is inhibited. This switchable antenna could find broad applications in the domain of active thermal coatings or in those of infrared spectroscopy and sensing.

Ben-Abdallah, Philippe, E-mail: pba@institutoptique.fr; Benisty, Henri; Besbes, Mondher [Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France)

2014-07-21T23:59:59.000Z

350

On the Effect of Ramp Rate in Damage Accumulation of the CPV Die-Attach: Preprint  

SciTech Connect (OSTI)

It is commonly understood that thermal cycling at high temperature ramp rates may activate unrepresentative failure mechanisms. Increasing the temperature ramp rate of thermal cycling, however, could dramatically reduce the test time required to achieve an equivalent amount of thermal fatigue damage, thereby reducing overall test time. Therefore, the effect of temperature ramp rate on physical damage in the CPV die-attach is investigated. Finite Element Model (FEM) simulations of thermal fatigue and thermal cycling experiments are made to determine if the amount of damage calculated results in a corresponding amount of physical damage measured to the die-attach for a variety of fast temperature ramp rates. Preliminary experimental results are in good agreement with simulations and reinforce the potential of increasing temperature ramp rates. Characterization of the microstructure and resulting fatigue crack in the die-attach suggest a similar failure mechanism across all ramp rates tested.

Bosco, N. S.; Silverman, T. J.; Kurtz, S. R.

2012-06-01T23:59:59.000Z

351

Thermal emission in the ultrastrong coupling regime  

E-Print Network [OSTI]

We study thermal emission of a cavity quantum electrodynamic system in the ultrastrong-coupling regime where the atom-cavity coupling rate becomes comparable the cavity resonance frequency. In this regime, the standard descriptions of photodetection and dissipation fail. Following an approach that was recently put forward by Ridolfo et al.[arXiv:1206.0944], we are able to calculate the emission of systems with arbitrary strength of light matter interaction, by expressing the electric field operator in the cavity-emitter dressed basis. Here we present thermal photoluminescence spectra, calculated for given temperatures and for different couplings in particular for available circuit QED parameters.

A. Ridolfo; M. Leib; S. Savasta; M. J. Hartmann

2012-10-08T23:59:59.000Z

352

Multi channel thermal hydraulic analysis of gas cooled fast reactor using genetic algorithm  

SciTech Connect (OSTI)

There are three analyzes to be done in the design process of nuclear reactor i.e. neutronic analysis, thermal hydraulic analysis and thermodynamic analysis. The focus in this article is the thermal hydraulic analysis, which has a very important role in terms of system efficiency and the selection of the optimal design. This analysis is performed in a type of Gas Cooled Fast Reactor (GFR) using cooling Helium (He). The heat from nuclear fission reactions in nuclear reactors will be distributed through the process of conduction in fuel elements. Furthermore, the heat is delivered through a process of heat convection in the fluid flow in cooling channel. Temperature changes that occur in the coolant channels cause a decrease in pressure at the top of the reactor core. The governing equations in each channel consist of mass balance, momentum balance, energy balance, mass conservation and ideal gas equation. The problem is reduced to finding flow rates in each channel such that the pressure drops at the top of the reactor core are all equal. The problem is solved numerically with the genetic algorithm method. Flow rates and temperature distribution in each channel are obtained here.

Drajat, R. Z.; Su'ud, Z.; Soewono, E.; Gunawan, A. Y. [Department of Mathematics, Institut Teknologi Bandung, Bandung 40132 (Indonesia); Department of Physics, Institut Teknologi Bandung, Bandung 40132 (Indonesia); Department of Mathematics, Institut Teknologi Bandung, Bandung 40132 (Indonesia)

2012-05-22T23:59:59.000Z

353

Anomalous thermal conduction characteristics of phase change composites with single walled carbon nanotube inclusions  

E-Print Network [OSTI]

of the phase change materials, because low thermal conductivity hinders the rate of energy storage and release of the new way of improving the thermal conductivity of phase change materials by seeding nano materials way to manipulate the thermal conductivity of nano composites using one dimensional nano material

Maruyama, Shigeo

354

Foolproof completions for high rate production wells  

E-Print Network [OSTI]

gravel pack (GP) and high rate water pack (HRWP) completions over high-permeability fracturing (HPF), known in the vernacular as a frac&pack (FP) for very high rate wells. While a properly designed GP completion may prevent sand production, it does...

Tosic, Slavko

2008-10-10T23:59:59.000Z

355

Foolproof completions for high rate production wells  

E-Print Network [OSTI]

gravel pack (GP) and high rate water pack (HRWP) completions over high-permeability fracturing (HPF), known in the vernacular as a frac&pack (FP) for very high rate wells. While a properly designed GP completion may prevent sand production, it does...

Tosic, Slavko

2009-05-15T23:59:59.000Z

356

False Discovery Rates John D. Storey  

E-Print Network [OSTI]

positives. The false discovery rate is designed to quantify this type of trade-off, making it particularly Hypothesis Testing In hypothesis testing, statistical significance is typically based on calculations involving p-values and Type I error rates. A p-value calculated from a single statistical hypothesis test

Storey, John D.

357

Computational Design of Lignin Depolymerization Catalysts  

SciTech Connect (OSTI)

Lignin is a major component of plant cell walls that is typically underutilized in selective conversion strategies for renewable fuels and chemicals. The mechanisms by which thermal and catalytic treatments deconstruct lignin remain elusive, for which quantum mechanical calculations can offer fundamental insights. In this work, a computational approach has been used to elucidate the reductive deconstruction pathway of a ruthenium-catalyzed system. Transition states have been computed to determine the rate-limiting steps for a catalyst that cleaves arylether linkages. Our calculations are supported by experimental synthesis and kinetic and thermodynamic measurements of the deconstruction of model lignin dimers by a ruthenium catalyst with the ultimate objective of designing new catalysts to eventually utilize lignin in biorefineries.

Kim, S.; Chmely, S. C.; Sturgeon, M.; Katahira, R.; Paton, R. S.; Beckham, G. T.

2012-01-01T23:59:59.000Z

358

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

359

Photovoltaic-Thermal New Technology Demonstration  

SciTech Connect (OSTI)

Photovoltaic-thermal (PV-T) hybrid solar systems offer increased electricity production by cooling the PV panel, and using the removed thermal energy to heat water - all in the same footprint as a standard PV system. GPG's assessment of the nation's first large-scale PV-T system installed at the Thomas P. O'Neill, Jr. Federal Building in Boston, MA, provided numerous lessons learned in system design, and identified a target market of locations with high utility costs and electric hot water backup.

Dean, J.; McNutt, P.; Lisell, L.; Burch, J.; Jones, D.; Heinicke, D.

2015-01-01T23:59:59.000Z

360

Determination of temperature-dependent heat conductivity and thermal diffusivity of waste glass melter feed  

SciTech Connect (OSTI)

The cold cap is a layer of reacting glass batch floating on the surface of melt in an all-electric continuous glass melter. The heat needed for the conversion of the melter feed to molten glass must be transferred to and through the cold cap. Since the heat flux into the cold cap determines the rate of melting, the heat conductivity is a key property of the reacting feed. We designed an experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples that monitors the evolution of the temperature field while the crucible is heated at a constant rate. Then we used two methods to calculate the heat conductivity and thermal diffusivity of the reacting feed: the approximation of the temperature field by polynomial functions and the finite-volume method coupled with least-squares analysis. Up to 680°C, the heat conductivity of the reacting melter feed was represented by a linear function of temperature.

Pokorny, Richard; Rice, Jarrett A.; Schweiger, Michael J.; Hrma, Pavel R.

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Multilayer thermal barrier coating systems  

DOE Patents [OSTI]

The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

Vance, Steven J. (Orlando, FL); Goedjen, John G. (Oviedo, FL); Sabol, Stephen M. (Orlando, FL); Sloan, Kelly M. (Longwood, FL)

2000-01-01T23:59:59.000Z

362

Solar Thermal Conversion  

SciTech Connect (OSTI)

The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

Kreith, F.; Meyer, R. T.

1982-11-01T23:59:59.000Z

363

Design for manufacturability Design verification  

E-Print Network [OSTI]

ITRS Design #12;Design · Design for manufacturability · Design verification #12;Design for Manufacturability · Architecture challenges · Logic and circuit challenges · Layout and physical design challenges · Expected to be the source of multiple DFM challenges · Invest in variability reduction or design

Patel, Chintan

364

Solar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind  

E-Print Network [OSTI]

upstream of the EarthÃ?s bow shock. The WIND/WAVES thermal noise receiver was specially designed to measureSolar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind the in situ plasma thermal noise spectra, from which the electron density and temperature can be accurately

California at Berkeley, University of

365

PTEC: A System for Predictive Thermal and Energy Control in Data Centers  

E-Print Network [OSTI]

1 PTEC: A System for Predictive Thermal and Energy Control in Data Centers Jinzhu Chen Rui Tan presents the design and evaluation of PTEC ­ a system for predictive thermal and energy control in data energy consumption by more than 30%, compared with baseline thermal control strategies. I. INTRODUCTION

Xing, Guoliang

366

Thermal insulations using vacuum panels  

DOE Patents [OSTI]

Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

1991-07-16T23:59:59.000Z

367

Manipulation of Thermal Phonons  

E-Print Network [OSTI]

to manipulate the behavior of phonons is crucial for both energy applications and the cooling of integrated circuits. A novel class of artificially periodic structured materials — phononic crystals — might make manipulation of thermal phonons possible. In many...

Hsu, Chung-Hao

2013-03-28T23:59:59.000Z

368

Thermally Polymerized Rylene Nanoparticles  

E-Print Network [OSTI]

Rylene dyes functionalized with varying numbers of phenyl trifluorovinyl ether (TFVE) moieties were subjected to a thermal emulsion polymerization to yield shape-persistent, water-soluble chromophore nanoparticles. Perylene ...

Andrew, Trisha Lionel

369

Thermal Insulation Systems  

E-Print Network [OSTI]

Thermal insulation systems are receiving a high degree of attention in view of increasing energy cost. Industrial, commercial and residential energy users are all well aware of energy cost increases and great emphasis is being directed to energy...

Stanley, T. F.

1982-01-01T23:59:59.000Z

370

Thermally driven circulation  

E-Print Network [OSTI]

Several problems connected by the theme of thermal forcing are addressed herein. The main topic is the stratification and flow field resulting from imposing a specified heat flux on a fluid that is otherwise confined to a ...

Nelken, Haim

1987-01-01T23:59:59.000Z

371

Contact thermal lithography  

E-Print Network [OSTI]

Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

Schmidt, Aaron Jerome, 1979-

2004-01-01T23:59:59.000Z

372

Exploring the Optimal Thermal Mass to Investigate the Potential of a Novel Low-Energy House Concept  

E-Print Network [OSTI]

In conventional buildings thermal mass is a permanent building characteristic depending on the building design. However, none of the permanent thermal mass concepts are optimal in all operational conditions. We propose a concept that combines...

Hoes, P. J.; Trcka, M.; Hensen, J.; Bonnema, B.

2010-01-01T23:59:59.000Z

373

Photovoltaic-thermal collectors  

DOE Patents [OSTI]

A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

Cox, III, Charles H. (Carlisle, MA)

1984-04-24T23:59:59.000Z

374

Technical and economic feasibility of a Thermal Gradient Utilization Cycle (TGUC) power plant  

E-Print Network [OSTI]

Energy Conversion unit mass mass flow rate life of system Ocean Thermal Energy Conversion power pressure heat flow Rl R4 TGUC TP T2 total primary energy subsidy expressed as BTU input per 1000 BTU output thermal energy subsidy expressed... has grown in energy technologies that use renewable resources such as solar (thermal conversion, ocean thermal energy conversion, photovoltaics, wind and biomass conversion), geothermal and magnetohydrodynamics (MHD) . A new concept that can...

Raiji, Ashok

1980-01-01T23:59:59.000Z

375

Dynamic modelling for thermal micro-actuators using thermal networks  

E-Print Network [OSTI]

Dynamic modelling for thermal micro-actuators using thermal networks Beatriz L´opez-Wallea,1 and analytical calculations. Key words: Micro-actuators, Thermal modelling, Electrical analogy, Thermal network 1 and MicroMechatronic Systems Department (AS2M), 24 rue Alain Savary, 25000 Besan¸con, France Abstract

Paris-Sud XI, Université de

376

Simplified methodology for indoor environment designs  

E-Print Network [OSTI]

Current design of the building indoor environment uses averaged single parameters such as air velocity, air temperature or contaminant concentration. This approach gives only general information about thermal comfort and ...

Srebric, Jelena, 1970-

2000-01-01T23:59:59.000Z

377

Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System  

SciTech Connect (OSTI)

Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

Robert C. O'Brien; Andrew C. Klein; William T. Taitano; Justice Gibson; Brian Myers; Steven D. Howe

2011-02-01T23:59:59.000Z

378

Designing CPV Receivers With Reliability: Early Evaluation of Components  

E-Print Network [OSTI]

. Everett, A. Blakers Centre for Sustainable Energy Systems, The Australian National University, Canberra: Early detection of performance issues allows more rapid & reliable design optimisation. Thermal. Ultra light-weight Fresnel mirror enclosed system. DESIGN RELIABILITY PRODUCTION Early detection

379

QUIKPAS : a microcomputer based passive solar analytical design tool  

E-Print Network [OSTI]

Social and economic pressures are causing architectural designers to resume their responsibility to consider the effects that design decisions will have on the thermal performance of buildings. Recent studies have shown ...

St. Clair, Charles A

1984-01-01T23:59:59.000Z

380

Ablative thermal management structural material on the hypersonic vehicles  

SciTech Connect (OSTI)

A hypersonic vehicle is designed to fly at high Mach number in the earth`s atmosphere that will result in higher aerodynamic heating loads on specific areas of the vehicle. A thermal protection system is required for these areas that may exceed the operating temperature limit of structural materials. This paper delineates the application of ablative material as the passive type of thermal protection system for the nose or wing leading edges. A simplified quasi-steady-state one-dimensional computer model was developed to evaluate the performance and thermal design of a leading edge. The detailed description of the governing mathematical equations and results are presented. This model provides a quantitative information to support the design estimate, performance optimization, and assess preliminary feasibility of using ablation as a design approach.

Shortland, H.; Tsai, C. [Rockwell International Corporation, Seal Beach, CA (United States)

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Building envelope thermal anomaly analysis  

SciTech Connect (OSTI)

A detailed study has been made of building energy thermal anomalies (BETA's) in a large modern office building using computer simulation, on-site inspections, and infrared thermography. The goal was to better understand the heat and moisture flow through these ''bridges,'' develop the beginnings of a classification scheme, and establish techniques for assessing the potential for retrofit or initial design modifications. In terms of presently available analytical techniques, a one-dimensional equivalent of the bridge and its affected area can be created from a steady-state computer simulation. This equivalent, combined with a degree day model, yields good estimates of the bridge behavior in buildings employing heating only. With heating and cooling, the equivalent must be used with an hour-by-hour simulation. A classification scheme based on the one-dimensional equivalent is proposed which should make it possible to create a catalog of basic bridge types that can be used to estimate their effects without requiring a complete hour-by-hour simulation of each building. The classification relates both energy loss and moisture condensation potential to the bridge configuration and the building envelope. The potential for moisture condensation on interior surfaces near a BETA was found to be as significant as the energy loss and this factor needds to be considered in assessing the complete detrimental effects of a bridge. With such a catalog, building designers and analysts would be able to determine and estimate the advantages or disadvantages of modifying the building envelope to reduce the impact of a thermal bridge. 18 refs., 31 figs., 17 tabs.

Melton, B.S.; Mulroney, P.; Scott, T.; Childs, K.W.

1987-12-01T23:59:59.000Z

382

Article for thermal energy storage  

DOE Patents [OSTI]

A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

Salyer, Ival O. (Dayton, OH)

2000-06-27T23:59:59.000Z

383

Artificial Retina Project: Electromagnetic and Thermal Effects  

SciTech Connect (OSTI)

This award supported the investigation on electromagnetic and thermal effects associated with the artificial retina, designed in collaboration with national laboratories, universities, and private companies. Our work over the two years of support under this award has focused mainly on 1) Design of new telemetry coils for optimal power and data transfer between the implant and the external device while achieving a significant size reduction with respect to currently used coils; 2) feasibility study of the virtual electrode configuration 3) study the effect of pulse shape and duration on the stimulation efficacy.

Lazzi, Gianluca

2014-08-29T23:59:59.000Z

384

Thermal control of solid breeder blankets  

SciTech Connect (OSTI)

An assessment of the thermal control mechanisms applicable to solid breeder blanket designs under ITER-like operating conditions is presented in this paper. Four cases are considered: a helium gap; a sintered block Be region; a sintered block helium region with a metallic felt at the Be/clad interface; and a Be packed bed region. For these cases, typical operating are explored to determine the ranges of wall load which can be accommodated while maintaining the breeder within its allowable operating temperature window. The corresponding region thicknesses are calculated to help identify practicality and design tolerances.

Raffray, A.R.; Ying, A.; Gorbis, Z.; Tillack, M.S.; Abdou, M.A.

1991-12-31T23:59:59.000Z

385

Thermal control of solid breeder blankets  

SciTech Connect (OSTI)

An assessment of the thermal control mechanisms applicable to solid breeder blanket designs under ITER-like operating conditions is presented in this paper. Four cases are considered: a helium gap; a sintered block Be region; a sintered block helium region with a metallic felt at the Be/clad interface; and a Be packed bed region. For these cases, typical operating are explored to determine the ranges of wall load which can be accommodated while maintaining the breeder within its allowable operating temperature window. The corresponding region thicknesses are calculated to help identify practicality and design tolerances.

Raffray, A.R.; Ying, A.; Gorbis, Z.; Tillack, M.S.; Abdou, M.A.

1991-01-01T23:59:59.000Z

386

THERMAL NEUTRON BACKSCATTER IMAGING.  

SciTech Connect (OSTI)

Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

2004-10-16T23:59:59.000Z

387

Thermal insulated glazing unit  

SciTech Connect (OSTI)

An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

1991-01-01T23:59:59.000Z

388

Thermal insulated glazing unit  

SciTech Connect (OSTI)

An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

1988-04-05T23:59:59.000Z

389

Thermal trim for luminaire  

DOE Patents [OSTI]

A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

2013-11-19T23:59:59.000Z

390

Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California  

SciTech Connect (OSTI)

This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30percent using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation to field test results provides an understanding of the DR potential in commercial buildings.

Yin, Rongxin; Kiliccote, Sila; Piette, Mary Ann; Parrish, Kristen

2010-05-14T23:59:59.000Z

391

Design operators  

E-Print Network [OSTI]

Design operators is a thesis that investigates the nature and characteristics of the design process by examining the interaction of computation with architectural design. The effects of the introduction of these media in ...

Dritsas, Stylianos, 1978-

2004-01-01T23:59:59.000Z

392

Thermal ignition combustion system  

DOE Patents [OSTI]

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

393

Scattering Solar Thermal Concentrators  

Broader source: Energy.gov [DOE]

"This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

394

Systems analysis of thermal storage  

SciTech Connect (OSTI)

During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

Copeland, R.J.

1981-08-01T23:59:59.000Z

395

NEW METHOD AND SOFTWARE FOR MULTI-VARIABLE TECHNO-ECONOMIC DESIGN OPTIMIZATION OF CSP PLANTS  

E-Print Network [OSTI]

for design optimization of solar thermal power plants. Thereby, optimization potential can be discovered to a 50 MWel parabolic trough power plant using thermal oil as heat transfer fluid (HTF), a molten salt, parabolic trough 1. Motivation (Introduction) Today, designs of solar thermal power plants are developed

Ábrahám, Erika

396

2007 Wholesale Power Rate Case Final Proposal : Wholesale Power Rate Development Study.  

SciTech Connect (OSTI)

The Wholesale Power Rate Development Study (WPRDS) serves two primary purposes. It synthesizes information supplied by the other final studies that comprise the BPA rate proposal and shows the actual calculations for BPA's power rates. In addition, the WPRDS is the primary source for certain information used in establishing the power rates. Information developed in the WPRDS includes rate design (including seasonal and diurnal shapes for energy rates, demand, and load variance rates), the risk mitigation tools (Cost Recovery Adjustment Clause (CRAC), along with the [N]ational Marine Fisheries Service [F]ederal Columbia River Power System [B]iological Opinion (NFB) Adjustment, the Emergency NFB Surcharge, and Dividend Distribution Clause (DDC)), development of the Slice rate, and all discounts and other adjustments that are included in the rate schedules and the General Rate Schedule Provisions. The WPRDS also includes the description of the methodology for the Cost of Service Analysis (COSA), and the various rate design steps necessary to establish BPA's power rates. The WPRDS also shows the calculations for inter-business line revenues and expenses, the revenue forecast and, finally, includes a description of all of the rate schedules. The actual rate schedules are shown in ''Administrator's Final Record of Decision (ROD), Appendix A: 2007 Wholesale Power Rate Schedules and General Rate Schedule Provisions, WP-07-A-02''. The WPRDS also includes the Partial Resolution of Issues, shown in Attachment 1 of the ROD. The Partial Resolution of Issues affected many of the features described in this study. These are noted where appropriate.

United States. Bonneville Power Administration.

2006-07-01T23:59:59.000Z

397

Heart Rate Artifact Suppression.  

E-Print Network [OSTI]

??Motion artifact strongly corrupts heart rate measurements in current pulse oximetry systems. In many, almost any motion will greatly diminish the system’s ability to extract… (more)

Dickson, Christopher

2012-01-01T23:59:59.000Z

398

Residential Solar Valuation Rates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

399

Effective Rate Period  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

charges or credits associated with the creation, termination, or modification to any tariff, contract, or rate schedule accepted or approved by the Federal Energy Regulatory...

400

LCC Guidance Rates  

Broader source: Energy.gov [DOE]

Notepad text file provides the LCC guidance rates in a numbered format for the various regions throughout the U.S.

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Treatment of nitrocellulose by thermal decomposition  

SciTech Connect (OSTI)

Waste fines generated during the manufacture of nitrocellulose (NC) are classified as a RCRA K044 hazardous waste due to their explosive properties. The objective of this study was to evaluate controlled thermal treatment of NC in order to render it nonhazardous and allow for more economical ultimate disposal. The results indicate that controlled thermal decomposition at 130--150 C is a technically feasible process. Rates improved significantly at higher temperatures. At 150 C, only 10 hours were needed to reduce the nitrogen content of NC from 13.7% to below 10% (versus 105 h at 130 C), a level found in many commercial, nonhazardous grades of NC. The air flow rate over the heated NC, and the moisture content of the NC or air above it had no discernible effect on rates of nitrogen removal. Greater mass loss from the NC than what was attributable to the nitro groups alone indicated that decomposition of the polymer backbone also occurred. This was confirmed by FTIR analyses, the appearance of CO{sub 2} in the off-gas, and a lack of correlation between percent nitrogen and heat of combustion. Samples of thermally treated NC containing 9.7% nitrogen failed three of the basic tests used by the Bureau of Explosives to ascertain explosive characteristics, indicating that the product was no longer hazardous based on its energetic properties. Although technically feasible, use of thermal decomposition to treat NC fines will most likely be restricted by safety concerns. Operating close to 130 C would mitigate the risk, but considerably extends the time required for treatment. The most suitable application of this technology may instead by treatment of NC-contaminated soils.

Campbell, R.K.; Freedman, D.L.; Kim, B.J.

1999-07-01T23:59:59.000Z

402

Microscopic description of neutron emission rates in compound nuclei  

E-Print Network [OSTI]

The neutron emission rates in thermal excited nuclei are conventionally described by statistical models with a phenomenological level density parameter that depends on excitation energies, deformations and mass regions. In the microscopic view of hot nuclei, the neutron emission rates can be determined by the external neutron gas densities without any free parameters. Therefore the microscopic description of thermal neutron emissions is desirable that can impact several understandings such as survival probabilities of superheavy compound nuclei and neutron emissivity in reactors. To describe the neutron emission rates microscopically, the external thermal neutron gases are self-consistently obtained based on the Finite-Temperature Hartree-Fock-Bogoliubov (FT-HFB) approach. The results are compared with the statistical model to explore the connections between the FT-HFB approach and the statistical model. The Skyrme FT-HFB equation is solved by HFB-AX in deformed coordinate spaces. Based on the FT-HFB approach, the thermal properties and external neutron gas are properly described with the self-consistent gas substraction procedure. Then neutron emission rates can be obtained based on the densities of external neutron gases. The thermal statistical properties of $^{238}$U and $^{258}$U are studied in detail in terms of excitation energies. The thermal neutron emission rates in $^{238, 258}$U and superheavy compound nuclei $_{112}^{278}$Cn and $_{114}^{292}$Fl are calculated, which agree well with the statistical model by adopting an excitation-energy-dependent level density parameter. The coordinate-space FT-HFB approach can provide reliable microscopic descriptions of neutron emission rates in hot nuclei, as well as microscopic constraints on the excitation energy dependence of level density parameters for statistical models.

Yi Zhu; Junchen Pei

2014-11-02T23:59:59.000Z

403

Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing  

SciTech Connect (OSTI)

Non-nuclear testing can be a valuable tool in the development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Work at the NASA Marshall Space Flight Center seeks to develop high fidelity thermal simulators that not only match the static power profile that would be observed in an operating, fueled nuclear reactor, but also match the dynamic fuel pin performance during feasible transients. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being developed are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. Static and dynamic fuel pin performances for a proposed reactor design have been determined using SINDA/FLUINT thermal analysis software, and initial comparison has been made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analysis, a conceptual high fidelity design will be developed, followed by engineering design, fabrication, and testing to validate the overall design process. Although the resulting thermal simulator will be designed for a specific reactor concept, establishing this rigorous design process will assist in streamlining the thermal simulator development for other reactor concepts. This paper presents the current status of high fidelity thermal simulator design relative to a SNAP derivative reactor design that could be applied for Lunar surface power.

Bragg-Sitton, Shannon M.; Dickens, Ricky; Adams, Mike; Davis, Joe [NASA Marshall Space Flight Center, Nuclear Systems Branch/ER24, MSFC, AL 25812 (United States); Dixon, David [Los Alamos National Laboratory, Decision Applications Division, Los Alamos, NM 87545 (United States); North Carolina State University, Raleigh, NC (United States); Kapernick, Richard [Los Alamos National Laboratory, Decision Applications Division, Los Alamos, NM 87545 (United States)

2007-01-30T23:59:59.000Z

404

Thermal Reactor Safety  

SciTech Connect (OSTI)

Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

Not Available

1980-06-01T23:59:59.000Z

405

Thermal management of nanoelectronics  

E-Print Network [OSTI]

-state thermoelectric on- spot cooling, requiring efficient thermoelectric materials that can be integrated with the IC are further complicated by the fact that the material's ability to conduct heat deteriorates when at the packaging level but also at the nanoscale materials and device levels. THERMAL CHALLENGES AT NANOSCALE One

406

Thermal Infrared Remote Sensing  

E-Print Network [OSTI]

to us, like reflective ("nearreflective ("near--" infrared (0.7" infrared (0.7 -- 3.03.0 µµm)m) andand near-infrared far infrared ultraviolet Thermal Infrared refers to region o EM spectrum from ~3 - 14 µm.landscape. IMPORTANT: NEARIMPORTANT: NEAR--INFRARED is short enough wavelength toINFRARED is short enough wavelength

407

Low thermal conductivity skutterudites  

SciTech Connect (OSTI)

Recent experimental results on semiconductors with the skutterudite crystal structure show that these materials possess attractive transport properties and have a good potential for achieving ZT values substantially larger than for state-of-the-art thermoelectric materials. Both n-type and p-type conductivity samples have been obtained, using several preparation techniques. Associated with a low hole effective mass, very high carrier mobilities, low electrical resistivities and moderate Seebeck coefficients are obtained in p-type skutterudites. For a comparable doping level, the carrier mobilities of n-type samples are about an order of magnitude lower than the values achieved on p-type samples. However, the much larger electron effective masses and Seebeck coefficients on p-type samples. However, the much larger electron effective masses and Seebeck coefficients make n-type skutterudite promising candidates as well. Unfortunately, the thermal conductivities of the binary skutterudites compounds are too large, particularly at low temperatures, to be useful for thermoelectric applications. Several approaches to the reduction of the lattice thermal conductivity in skutterudites are being pursued: heavy doping, formation of solid solutions and alloys, study of novel ternary and filled skutterudite compounds. All those approaches have already resulted in skutterudite compositions with substantially lower thermal conductivity values in these materials. Recently, superior thermoelectric properties in the moderate to high temperature range were achieved for compositions combining alloying and filling of the skutterudite structure. Experimental results and mechanisms responsible for low thermal conductivity in skutterudites are discussed.

Fleurial, J.P.; Caillat, T.; Borshchevsky, A.

1997-07-01T23:59:59.000Z

408

Thermal barrier coating  

DOE Patents [OSTI]

A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

2001-01-01T23:59:59.000Z

409

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

410

Thermal processing system concepts and considerations for RWMC buried waste  

SciTech Connect (OSTI)

This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

1992-02-01T23:59:59.000Z

411

22.39 Integration of Reactor Design, Operations, and Safety, Fall 2005  

E-Print Network [OSTI]

This course integrates studies of reactor physics and engineering sciences into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and ...

Todreas, Neil E.

412

Preliminary requirements for thermal storage subsystems in solar thermal applications  

SciTech Connect (OSTI)

Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

Copeland, R.J.

1980-04-01T23:59:59.000Z

413

Power Rate Cases (pbl/rates)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power > FinancialPowerRates

414

Power Rates Announcements (pbl/rates)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power > FinancialPowerRates

415

Rates Meetings and Workshops (pbl/rates)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, andEpidermal Growth Factor. |INCIDENCET3PACI-T3Rate

416

Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor  

SciTech Connect (OSTI)

A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m{sup 3}/hr.

Polzin, Kurt A.; Godfroy, Thomas J. [NASA Marshall Space Flight Center Propulsion Research and Technology Applications Branch/ER24, MSFC, AL 35812 (United States)

2008-01-21T23:59:59.000Z

417

Quantifying the Thermal Behavior of Slags (TRP 9903)  

SciTech Connect (OSTI)

Successful operation of a continuous caster is based upon control of heat transfer in the mold. The mold slag is a key component in the success of continuous casting; however, the phenomena that occur in the gap between the shell and the mold are largely unknown as until recently there have been no techniques that allowed visualization and quantification of the solidification behavior of liquid slags. This has lead to slag design being an empirical science or art. Recently a new experimental technique, called Double Hot Thermocouple Technique (DHTT), was developed at Carnegie Mellon University that allowed the solidification behavior of a slag to be observed and quantified under conditions that simulate the thermal conditions that occur in steelmaking environments. This technique allows ladle, tundish and mold slags to be characterized under extreme conditions including those found between the mold wall and the growing shell of a continuous caster. Thus, a program is initiated, under this grant, to quantify and describe the phenomena that occur during the solidification of a slag in a steel mill environment. This will allow slag design to become an engineering science rather than an empirical exercise. The project deliverables were as follows: (1) The further development of a tool that will have broad use in the quantification of slag melting and solidification behavior; and (2) The development of a set of meaningful design criteria for slag application in steel mill environments. The project was broken down into a number of objectives: (a) Develop a systematic understanding of the effect of cooling rate on slag solidification; (b) Develop a systematic understanding on the effect of slag chemistry changes on slag solidification behavior; (c) Develop a method to characterize slag melting; (d) Develop an understanding of the role of the environment on slag solidification and melting; (e) Develop the ability to understand slag solidification under the conditions that occur in a continuous caster; (f) Develop an ability to predict the solidification behavior of slags; and (g) Develop the criteria for optimization of slags in steelmaking environments where they are under thermal gradients.

Alan W. Cramb

2003-05-30T23:59:59.000Z

418

Computer Aided Duct Design  

E-Print Network [OSTI]

is designed with a higher static pressure and greater noise and turbulence than is necessary. A computer model helps to resolve these problems, reducing the fan horsepower needed to deliver the air. Computer optimization also reduces noise and the high rate...

Clark, W. H.

1994-01-01T23:59:59.000Z

419

The Role of Thermal Conduction in Tearing Mode Theory  

E-Print Network [OSTI]

The role of anisotropic thermal diffusivity on tearing mode stability is analysed in general toroidal geometry. A dispersion relation linking the growth rate to the tearing mode stability parameter, Delta, is derived. By using a resistive MHD code, modified to include such thermal transport, to calculate tearing mode growth rates, the dispersion relation is employed to determine Delta in situations with finite plasma pressure that are stabilised by favourable average curvature in a simple resistive MHD model. We also demonstrate that the same code can also be used to calculate the basis-functions [C J Ham, et al, Plasma Phys. Control. Fusion 54 (2012) 105014] needed to construct Delta.

Connor, J W; Hastie, R J; Liu, Y Q

2014-01-01T23:59:59.000Z

420

Thick Thermal Barrier Coatings (TTBCs) for Low Emission, High Efficiency Diesel Engine Components  

SciTech Connect (OSTI)

The objective of this program was to advance the fundamental understanding of thick thermal barrier coating (TTBC) systems for application to low heat rejection diesel engine combustion chambers. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of thermal barrier coating to diesel engines.(1) Areas of TTBC technology examined in this program include powder characteristics and chemistry; bond coating composition, coating design, microstructure and thickness as they affect properties, durability, and reliability; and TTBC "aging" effects (microstructural and property changes) under diesel engine operating conditions. Fifteen TTBC ceramic powders were evaluated. These powders were selected to investigate the effects of different chemistries, different manufacturing methods, lot-to-lot variations, different suppliers and varying impurity levels. Each of the fifteen materials has been sprayed using 36 parameters selected by a design of experiments (DOE) to determine the effects of primary gas (Ar and N2), primary gas flow rate, voltage, arc current, powder feed rate, carrier gas flow rate, and spraying distance. The deposition efficiency, density, and thermal conductivity of the resulting coatings were measured. A coating with a high deposition efficiency and low thermal conductivity is desired from an economic standpoint. An optimum combination of thermal conductivity and disposition efficiency was found for each lot of powder in follow-on experiments and disposition parameters were chosen for full characterization.(2) Strengths of the optimized coatings were determined using 4-point bending specimens. The tensile strength was determined using free-standing coatings made by spraying onto mild steel substrates which were subsequently removed by chemical etching. The compressive strengths of the coatings were determined using composite specimens of ceramic coated onto stainless steel substrates, tested with the coating in compression and the steel in tension. The strength of the coating was determined from an elastic bi-material analysis of the resulting failure of the coating in compression.(3) Altough initial comparisons of the materials would appear to be straight forward from these results, the results of the aging tests of the materials are necessary to insure that trends in properties remain after long term exposure to a diesel environment. Some comparisons can be made, such as the comparison between for lot-to-lot variation. An axial fatigue test to determine the high cycle fatigue behavior of TTBCs was developed at the University of Illinois under funding from this program.(4) A fatigue test apparatus has been designed and initial work performed which demonstrates the ability to provide a routine method of axial testing of coating. The test fixture replaces the normal load frame and fixtures used to transmit the hydraulic oil loading to the sample with the TTBC specimen itself. The TTBC specimen is a composite metal/coating with stainless steel ends. The coating is sprayed onto a mild steel center tube section onto which the stainless steel ends are press fit. The specimen is then machined. After machining, the specimen is placed in an acid bath which etches the mild steel away leaving the TTBC attached to the the stainless steel ends. Plugs are then installed in the ends and the composite specimen loaded in the test fixture where the hydraulic oil pressurizes each end to apply the load. Since oil transmits the load, bending loads are minimized. This test fixture has been modified to allow piston ends to be attached to the specimen which allows tensile loading as well as compressive loading of the specimen. In addition to the room temperature data, specimens have been tested at 800 Degrees C with the surprising result that at high temperature, the TTBC exhibits much higher fatigue strength. Testing of the TTBC using tension/compression cycling has been con

M. Brad Beardsley, Caterpillar Inc.; Dr. Darrell Socie, University of Illinois; Dr. Ed Redja, University of Illinois; Dr. Christopher Berndt, State University of New York at Stony Brook

2006-03-02T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Thermal control of ceramic breeder blankets  

SciTech Connect (OSTI)

Thermal control is an important issue for ceramic breeder blankets since the breeder needs to operate within its temperature window for the tritium release and inventory to be acceptable. A thermal control region is applicable not only to situations where the coolant can be run at low temperature, such as for the International Thermonuclear Experimental Reactor (ITER) base blanket, but also to ITER test module and power reactor situations, where it would allow for ceramic breeder operation over a wide range of power densities in space and time. Four thermal control mechanisms applicable to ceramic breeder blanket designs are described: A helium gap, a beryllium sintered block region, a beryllium sintered block region with a metallic felt at the beryllium-cladding interface, and a beryllium packed-bed region. Key advantages and issues associated with each of these mechanisms are discussed. Experimental and modeling studies focusing on beryllium packed-bed thermal conductivity and wall conductance, and beryllium sintered block-stainless steel cladding contact resistance are then described. Finally, an assessment of the potential of the different mechanisms for both passive and active control is carried out based on example calculations for a given set of ITER-like conditions. 28 refs., 33 figs., 3 tabs.

Raffray, A.R.; Tillack, M.S.; Abdou, M.A. (Univ. of California, Los Angeles, CA (United States))

1993-05-01T23:59:59.000Z

422

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

423

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedLow Temperature Thermal Energy Storage Program of Oak Ridge

Authors, Various

2011-01-01T23:59:59.000Z

424

Ocean Thermal Extractable Energy Visualization: Final Technical...  

Office of Environmental Management (EM)

Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

425

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftin Ocean Thermal Energy Conversion (OTEC) technology haveThe Ocean Thermal Energy Conversion (OTEC) 2rogrammatic

Sands, M.Dale

2013-01-01T23:59:59.000Z

426

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

427

Structural stability vs. thermal performance: old dilemma, new solutions  

SciTech Connect (OSTI)

In many building envelopes, actual thermal performance falls quite a bit short of nominal design parameters given in standards. Very often only windows, doors, and a small part of the wall area meet standards requirements. In the other parts of the building envelope, unaccounted thermal bridges reduce the effective thermal resistance of the insulation material. Such unaccounted heat losses compromise the thermal performance of the whole building envelope. For the proper analysis of the thermal performance of most wall and roof details, measurements and three-dimensional thermal modeling are necessary. For wall thermal analysis the whole-wall R-value calculation method can be very useful. In ties method thermal properties of all wall details are incorporated as an area weighted average. For most wall systems, the part of the wall that is traditionally analyzed, is the clear wall, that is, the flat part of the wall that is uninterrupted by details. It comprises only 50 to 80% of the total area of the opaque wall. The remaining 20 to 50% of the wall area is not analyzed nor are its effects incorporated in the thermal performance calculations. For most of the wall technologies, traditionally estimated R-values are 20 to 30% higher than whole-wall R-values. Such considerable overestimation of wall thermal resistance leads to significant errors in building heating and cooling load estimations. In this paper several examples are presented of the use of the whole-wall R-value procedure for building envelope components. The advantages of the use of the whole wall R-value calculation procedure are also discussed. For several building envelope components, traditional clear-wall R-values are compared with the results of whole-wall thermal analysis to highlight significant limits on the use of the traditional methods and the advantages of advanced computer modeling.

Kosny, J.; Christian, J.E.

1996-10-01T23:59:59.000Z

428

Thermal loading considerations for synchrotron radiation mirrors  

SciTech Connect (OSTI)

Grazing incidence mirrors used to focus synchrotron radiation beams through small distant apertures have severe optical requirements. The surface distortion due to heat loading of the first mirror in a bending magnet beam line is of particular concern when a large fraction of the incident beam is absorbed. In this paper we discuss mirror design considerations involved in minimizing the thermal/mechanical loading on vertically deflecting first surface mirrors required for SPEAR synchrotron radiation beam lines. Topics include selection of mirror material and cooling method, the choice of SiC for the substrate, optimization of the thickness, and the design of the mirror holder and cooling mechanism. Results obtained using two-dimensional, finite-element thermal/mechanical distortion analysis are presented for the case of a 6/sup 0/ grazing incidence SiC mirror absorbing up to 260 W at Beam Line VIII on the SPEAR ring. Test descriptions and results are given for the material used to thermally couple this SiC mirror to a water-cooled block. The interface material is limited to applications for which the equivalent normal heat load is less than 20 W/cm/sup 2/.

Holdener, F.R.; Berglin, E.J.; Fuchs, B.A.; Humpal, H.H.; Karpenko, V.P.; Martin, R.W.; Tirsell, K.G.

1986-03-26T23:59:59.000Z

429

Thermal Stabilization Blend Plan  

SciTech Connect (OSTI)

This Blend Plan documents the feed material items that are stored in 2736-2 vaults, the 2736-ZB 638 cage, the 192C vault, and the 225 vault that will be processed through the thermal stabilization furnaces. The purpose of thermal stabilization is to heat the material to 1000 degrees Celsius to drive off all water and leave the plutonium and/or uranium as oxides. The stabilized material will be sampled to determine the Loss On Ignition (LOI) or percent water. The stabilized material must meet water content or LOI of less than 0.5% to be acceptable for storage under DOE-STD-3013-99 specifications. Out of specification material will be recycled through the furnaces until the water or LOI limits are met.

RISENMAY, H.R.

2000-05-02T23:59:59.000Z

430

Thermal synthesis apparatus  

DOE Patents [OSTI]

An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

Fincke, James R. (Idaho Falls, ID) [Idaho Falls, ID; Detering, Brent A. (Idaho Falls, ID) [Idaho Falls, ID

2009-08-18T23:59:59.000Z

431

Transformer design and application considerations for nonsinusoidal load currents  

SciTech Connect (OSTI)

The use of adjustable-speed drives requires transformers capable of withstanding high levels of harmonic currents under normal operating conditions. Experience has been that overheating problems are much more common with dry-type transformers than with liquid-filled transformers. Transformer insulation life is determined by the hot spot temperature but confirmation of hot spot temperature rise is one performance characteristic which is ignored in industry standards. This is especially important for transformers rated for nonsinusoidal load currents. Hot spot allowances used in IEEE standards for ventilated dry-type transformers were developed in 1944 and recent data indicates that revisions are required. The design of transformers for nonsinusoidal load currents should include an analysis of the eddy loss distribution in the windings and calculation of the hot spot temperature rise. Calculations and thermal tests giving only average winding temperature rises are not sufficient. Thermal tests with nonsinusoidal currents and measurements of hot spot temperature rises are extremely difficult on large transformers. The combination of testing and analysis may be the only economically practical approach. Analysis indicates that the dry type transformer hot spot temperature is very sensitive to the eddy loss magnitude and distribution. The Underwriters Laboratories Inc. (UL) K-factor rated dry type transformer and the recommended practices given in ANSI/IEEE C57.110 are reviewed. When purchasing transformers subject to nonsinusoidal load currents, considerations should be given to the manufacturer`s development program and capability to calculate the eddy loss distribution and hot spot temperatures.

Pierce, L.W. [General Electric Co., Rome, GA (United States)] [General Electric Co., Rome, GA (United States)

1996-05-01T23:59:59.000Z

432

Thermal reactor safety  

SciTech Connect (OSTI)

Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

Not Available

1980-06-01T23:59:59.000Z

433

Cermet fuel thermal conductivity  

E-Print Network [OSTI]

CERMET FUEL THERMAL CONDUCTIVITY A Thesis by JOHN MARK ALVIS, JR. Submitted to the Graduate College of Texas A&. M University in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE August 1988 Major Subject: Nuclear... particles of low conductivity dispersed in a metal matrix of high conductivity. A computer code was developed in order to compute the conductivity of cermet fuels as predicted by existing models and an additional model derived in this work...

Alvis, John Mark

1988-01-01T23:59:59.000Z

434

Thermally actuated thermionic switch  

DOE Patents [OSTI]

A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

Barrus, D.M.; Shires, C.D.

1982-09-30T23:59:59.000Z

435

Helium circulator design considerations for modular high temperature gas-cooled reactor plant  

SciTech Connect (OSTI)

Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the U.S.

McDonald, C.F.; Nichols, M.K.

1987-01-01T23:59:59.000Z

436

Helium circulator design considerations for modular high temperature gas-cooled reactor plant  

SciTech Connect (OSTI)

Efforts are in progress to develop a standard modular high temperature gas-cooled reactor (MHTGR) plant that is amenable to design certification and serial production. The MHTGR reference design, based on a steam cycle power conversion system, utilizes a 350 MW(t) annular reactor core with prismatic fuel elements. Flexibility in power rating is afforded by utilizing a multiplicity of the standard module. The circulator, which is an electric motor-driven helium compressor, is a key component in the primary system of the nuclear plant, since it facilitates thermal energy transfer from the reactor core to the steam generator; and, hence, to the external turbo-generator set. This paper highlights the helium circulator design considerations for the reference MHTGR plant and includes a discussion on the major features of the turbomachine concept, operational characteristics, and the technology base that exists in the US.

McDonald, C.F.; Nichols, M.K.

1986-12-01T23:59:59.000Z

437

Loca study for a helium-cooled solid breeder design for ITER  

SciTech Connect (OSTI)

The analysis of thermal processes after a loss-of-coolant accident (LOCA) in a solid breeder blanket is important because of the first wall and solid breeder maximum allowable temperature constraints. The objective is to design for a LOCA so that following a LOCA, the maximum solid breeder and structure temperatures are less than the limit beyond which irreversible damage is done, which would lead to loss of investment. The temporal temperature profiles for the solid breeder and first wall regions of a helium-cooled solid breeder design for ITER were calculated based on afterheat values for adiabatic and non-adiabatic conditions and the results are presented in this paper. It is found that, for this design, even when excluding radiation to the cooled inboard, a LOCA can be recommended by energy removal through a flowing purge with a reasonable flow rate.

Gorbis, Z.R.; Raffray, A.R.; Fujimura, K.; Jun, I.; Abdou, M.A.

1989-03-01T23:59:59.000Z

438

Methods of forming thermal management systems and thermal management methods  

DOE Patents [OSTI]

A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

Gering, Kevin L.; Haefner, Daryl R.

2012-06-05T23:59:59.000Z

439

Multiscale thermal transport.  

SciTech Connect (OSTI)

A concurrent computational and experimental investigation of thermal transport is performed with the goal of improving understanding of, and predictive capability for, thermal transport in microdevices. The computational component involves Monte Carlo simulation of phonon transport. In these simulations, all acoustic modes are included and their properties are drawn from a realistic dispersion relation. Phonon-phonon and phonon-boundary scattering events are treated independently. A new set of phonon-phonon scattering coefficients are proposed that reflect the elimination of assumptions present in earlier analytical work from the simulation. The experimental component involves steady-state measurement of thermal conductivity on silicon films as thin as 340nm at a range of temperatures. Agreement between the experiment and simulation on single-crystal silicon thin films is excellent, Agreement for polycrystalline films is promising, but significant work remains to be done before predictions can be made confidently. Knowledge gained from these efforts was used to construct improved semiclassical models with the goal of representing microscale effects in existing macroscale codes in a computationally efficient manner.

Graham, Samuel Jr. (; .); Wong, C. C.; Piekos, Edward Stanley

2004-02-01T23:59:59.000Z

440

Target design optimization for an electron accelerator driven subcritical facility with circular and square beam profiles.  

SciTech Connect (OSTI)

A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed via the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from tungsten and uranium are very similar allowing the use of either material in the subcritical assembly without changing its characteristics. However, the uranium target has a higher neutron yield, which increases the neutron flux of the subcritical assembly. Based on the considered dimensions and heat generation profiles, the commercial CFD software Star-CD is used for the thermal-hydraulic analysis of each target design to satisfy a set of thermal criteria, the most limiting of which being to maintain the water temperature 50 below the boiling point. It is found that the turbulence in the inlet channels dissipates quickly in narrow gaps between the target plates and, as a result, the heat transfer is limited by the laminar flow conditions. On average, 3-D CFD analyses of target assemblies agree well with 1-D calculations using RELAP (performed by KIPT). However, the recirculation and stagnation zones predicted with the CFD models prove the importance of a 3-D analysis to avoid the resulting hotspots. The calculated temperatures are subsequently used for the structural analysis of each target configuration to satisfy the other engineering design requirements. The thermo-structural calculations are performed mostly with NASTRAN and the results occasionally compared with the results from MARC. Both, NASTRAN and MARC are commercially available structural-mechanics analysis software. Although, a significant thermal gradient forms in target elements along the beam direction, the high thermal stresses are generally observed peripherally around the edge of thin target disks/plates. Due to its high thermal conductivity, temperatures and thermal stresses in tungsten target are estimated to be significantly lower than in uranium target. The deformations of the target disks/plates are found to be insignificant, which eliminate concerns for flow blockages in narrow coolant channels. Consistent with the specifications of the KIPT accelerator to be used in this facility, the electron beam power is 100-kW with electron energy in the range of 100 to 200 MeV. As expected, the 100 MeV el

Gohar, M. Y. A; Sofu, T.; Zhong, Z.; Belch, H.; Naberezhnev, D.; Nuclear Engineering Division

2008-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

On Thermonuclear Reaction Rates  

E-Print Network [OSTI]

Nuclear reactions govern major aspects of the chemical evolution od galaxies and stars. Analytic study of the reaction rates and reaction probability integrals is attempted here. Exact expressions for the reaction rates and reaction probability integrals for nuclear reactions in the case of nonresonant, modified nonresonant, screened nonresonant and resonant cases are given. These are expressed in terms of H-functions, G-functions and in computable series forms. Computational aspects are also discussed.

H. J. Haubold; A. M. Mathai

1996-12-02T23:59:59.000Z

442

Fabrication and Characterization of a Conduction Cooled Thermal Neutron Filter  

SciTech Connect (OSTI)

Installation of a conduction cooled thermal (low-energy) neutron filter in an existing domestic test reactor would provide the U.S. the capability to test new reactor fuels and materials for advanced fast (high-energy) reactor concepts. A composite consisting of Al3Hf-Al has been proposed for the neutron filter due to both the neutron filtering properties of hafnium and the conducting capabilities of aluminum. Knowledge of the thermal conductivity of the Al3Hf-Al composite is essential for the design of the filtering system. The present objectives are to identify a suitable fabrication technique and to measure the thermophysical properties of the Al3Hf intermetallic, which has not been done previous to this study. A centrifugal casting method was used to prepare samples of Al3Hf. X-ray diffraction and Rietveld analysis were conducted to determine the structural make-up of each of the samples. Thermophysical properties were measured as follows: specific heat by a differential scanning calorimeter (DSC), thermal diffusivity by a laser flash thermal diffusivity measuring system, thermal expansion by a dilatometer, and thermal conductivity was calculated based on the previous measurements. All measurements were acquired over a temperature range of 90°C - 375°C with some measurements outside these bounds. The average thermal conductivity of the intermetallic Al3Hf (~7 at.% Hf) was found to be ~ 41 W/m-K for the given temperature range. This information fills a knowledge gap in the thermophysical properties of the intermetallic Al3Hf with the specified percentage of hafnium. A model designed to predict composite properties was used to calculate a thermal conductivity of ~177 W/m-K for an Al3Hf-Al composite with 23 vol% Al3Hf. This calculation was based upon the average thermal conductivity of Al3Hf over the specified temperature range.

Heather Wampler; Adam Gerth; Heng Ban; Donna Post Guillen; Douglas Porter; Cynthia Papesch

2010-06-01T23:59:59.000Z

443

Thermal performance of steel-framed walls. Final report  

SciTech Connect (OSTI)

In wall construction, highly conductive members spaced along the wall, which allow higher heat transfer than that through less conductive areas, are referred to as thermal bridges. Thermal bridges in walls tend to increase heat loss and, under certain adverse conditions, can cause dust streaking (``ghosting``) on interior walls over studs due to temperature differentials, as well as condensation in and on walls. Although such adverse conditions can be easily avoided by proper thermal design of wall systems, these effects have not been well understood and thermal data has been lacking. Therefore, the present study was initiated to provide (1) a better understanding of the thermal behavior of steel-framed walls, (2) a set of R-values for typical wall constructions, and (3) information that could be used to develop improved methods of predicting R-values. An improved method for estimating R-value would allow an equitable comparison of thermal performance with other construction types and materials. This would increase the number of alternative materials for walls available to designers, thus allowing them to choose the optimum choice for construction. Twenty-three wall samples were tested in a calibrated hot box (ASTM C9761) to measure the thermal performance of steel-framed wall systems. The tests included an array of stud frame configurations, exterior sheathing and fiberglass batt insulations. Other studies have not included the use of insulating sheathing, which reduces the extent of the thermal bridges and improves total thermal performance. The purpose of the project was to provide measured R-values for commonly used steel-framed wall configurations and to improve R-value estimating methods. Test results were compared to R-value estimates using the parallel path method, the isothermal planes method and the ASHRAE Zone method. The comparison showed that the known procedures do not fully account for the three-dimensional effects created by steel framing in a wall.

Barbour, E. [NAHB Research Center, Inc., Upper Marlboro, MD (United States); Goodrow, J. [Holometrix, Inc., Bedford, MA (United States); Kosny, J.; Christian, J.E. [Oak Ridge National Lab., TN (United States)

1994-11-21T23:59:59.000Z

444

Thermal control structure and garment  

DOE Patents [OSTI]

A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.

Klett, James W. (Knoxville, TN); Cameron, Christopher Stan (Sanford, NC)

2012-03-13T23:59:59.000Z

445

Thermal structure of a protostellar envelope  

E-Print Network [OSTI]

A numerical hydrodynamical model for the evolution of spherically symmetric collapsing clouds, designed for the calculation of the thermal structure of these objects in both the prestellar and protostellar stages of their evolution, is presented. Distinctive features of the model include the possibility of independently describing the temperatures of the gas and dust, which is extremely important when calculating the thermal structure of prestellar and protostellar clouds, and the account of the radiation flux from the central protostar. This model is used to compare the theoretical density and temperature distributions with observations for nearby sites of star formation obtained with the Herschel Space Observatory. Application of the diffusion approximation with a flux limiter describes well the radial density and temperature distributions in protostellar clouds. However, significant differences between the model and observational density profiles were found for prestellar stages, suggesting the presence of...

Pavlyuchenkov, Ya N; Vorobyov, E I; Fateeva, A M

2015-01-01T23:59:59.000Z

446

Thermal Fluid Multiphysics Optimization of Spherical Tokamak  

SciTech Connect (OSTI)

An experimental Fusion Nuclear Science Facility (FNSF) is required that will create the environment that simultaneously achieves high energy neutrons and high ion fluence necessary in order to bridge the gaps from ITER to the realization of a fusion nuclear power plant. One concept for achieving this is a high duty cycle spherical torus. This study will focus on thermal modeling of the spherical torus centerpost using computational fluid dynamics to effectively model the thermal transfer of the cooling fluid to the centerpost. The design of the fluid channels is optimized in order to minimize the temperature in the centerpost. Results indicate the feasibility of water cooling for a long-pulse spherical torus FNSF.

Lumsdaine, Arnold [ORNL; Tipton, Joseph B [ORNL; Peng, Yueng Kay Martin [ORNL

2012-01-01T23:59:59.000Z

447

Flameless thermal oxidation. Innovative technology summary report  

SciTech Connect (OSTI)

The Flameless Thermal Oxidizer (FTO) is a commercial technology offered by Thermatrix, Inc. The FTO has been demonstrated to be an effective destructive technology for process and waste stream off-gas treatment of volatile organic compounds (VOCs), and in the treatment of VOC and chlorinated volatile organic compounds (CVOCs) off-gases generated during site remediation using either baseline or innovative in situ environmental technologies. The FTO process efficiently converts VOCs and CVOCs to carbon dioxide, water, and hydrogen chloride. When FTO is coupled with a baseline technology, such as soil vapor extraction (SVE), an efficient in situ soil remediation system is produced. The innovation is in using a simple, reliable, scalable, and robust technology for the destruction of VOC and CVOC off-gases based on a design that generates a uniform thermal reaction zone that prevents flame propagation and efficiently oxidizes off-gases without forming products of incomplete combustion (PICs).

NONE

1995-09-01T23:59:59.000Z

448

Flameless Thermal Oxidation. Innovative Technology Summary Report  

SciTech Connect (OSTI)

The Flameless Thermal Oxidizer (FTO) is a commercial technology offered by Thermatrix, Inc. The FTO has been demonstrated to be an effective destructive technology for process and waste stream off-gas treatment of volatile organic compounds (VOCs), and in the treatment of VOC and chlorinated volatile organic compounds (CVOCs) off-gases generated during site remediation using either baseline or innovative in situ environmental technologies. The FTO process efficiently converts VOCs and CVOCs to carbon dioxide, water, and hydrogen chloride. When FTO is coupled with a baseline technology, such as soil vapor extraction (SVE), an efficient in situ soil remediation system is produced. The innovation is in using a simple, reliable, scalable, and robust technology for the destruction of VOC and CVOC off-gases based on a design that generates a uniform thermal reaction zone that prevents flame propagation and efficiently oxidizes off-gases without forming products of incomplete combustion (Plcs ).

None

1995-09-01T23:59:59.000Z

449

IMPROVEMENTS IN CODED APERTURE THERMAL NEUTRON IMAGING.  

SciTech Connect (OSTI)

A new thermal neutron imaging system has been constructed, based on a 20-cm x 17-cm He-3 position-sensitive detector with spatial resolution better than 1 mm. New compact custom-designed position-decoding electronics are employed, as well as high-precision cadmium masks with Modified Uniformly Redundant Array patterns. Fast Fourier Transform algorithms are incorporated into the deconvolution software to provide rapid conversion of shadowgrams into real images. The system demonstrates the principles for locating sources of thermal neutrons by a stand-off technique, as well as visualizing the shapes of nearby sources. The data acquisition time could potentially be reduced two orders of magnitude by building larger detectors.

VANIER,P.E.

2003-08-03T23:59:59.000Z

450

THERMAL PERFORMANCE OF MANAGED WINDOW SYSTEMS  

E-Print Network [OSTI]

on Thermal Performance of the Exterior Envelopes ofof thermal loads resulting from the building envelope areThermal Test Facility, LhL-9653, prepared for the ASHRAE/DOE Conference-on"t:heThermal Performance the Exterior Envelope

Selkowitz, S. E.

2011-01-01T23:59:59.000Z

451

Thermal management systems and methods  

DOE Patents [OSTI]

A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

Gering, Kevin L.; Haefner, Daryl R.

2006-12-12T23:59:59.000Z

452

On the transition from photoluminescence to thermal emission and its implication on solar energy conversion  

E-Print Network [OSTI]

Photoluminescence (PL) is a fundamental light-matter interaction, which conventionally involves the absorption of energetic photon, thermalization and the emission of a red-shifted photon. Conversely, in optical-refrigeration the absorption of low energy photon is followed by endothermic-PL of energetic photon. Both aspects were mainly studied where thermal population is far weaker than photonic excitation, obscuring the generalization of PL and thermal emissions. Here we experimentally study endothermic-PL at high temperatures. In accordance with theory, we show how PL photon rate is conserved with temperature increase, while each photon is blue shifted. Further rise in temperature leads to an abrupt transition to thermal emission where the photon rate increases sharply. We also show how endothermic-PL generates orders of magnitude more energetic photons than thermal emission at similar temperatures. Relying on these observations, we propose and theoretically study thermally enhanced PL (TEPL) for highly eff...

Manor, Assaf; Rotschild, Carmel

2014-01-01T23:59:59.000Z

453

OCH Spacer Design  

SciTech Connect (OSTI)

The purpose of the OCH module spacers is to keep the given dimension of .224-inch between the 1.83-inch absorber plates. This distance is determined by two liquid argon gaps of .09-inch each and a readout board of .044-inch. The spacer should be made out of a material that would give a minimum thermal contraction movement. Also the dimension of the spacer will be determined dependent upon the load applied to the spacers and the strength of the material chosen. Considering both thermal contraction and yield strength, it is found that Invar-36 would be a suitable material from which to make the spacers for the OCh module, provided that SS304 washers are used in conjunction with the spacers. The spacers would be positioned about 1-inch from the corners of each of the copper plates, and would have a diameter of about 0.85453399-inch. The thickness of the Invar spacer would be 0.15394250-inch and that of the SS304 would be 0.07005750-inch. This combination of materials used for spacing purposes should result in zero displacement due to thermal contraction and no buckling due to overloading. The actual design of the spacer can be found in DWG.

Kurita, C.H.; /Fermilab

1987-02-04T23:59:59.000Z

454

Thermal and non-thermal energies in solar flares  

E-Print Network [OSTI]

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

455

Integrated Vehicle Thermal Management Systems (VTMS) Analysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced Heat Transfer Technologies...

456

Ultratough, Thermally Stable Polycrystalline Diamond/Silicon...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide Nanocomposites for Drill Bits Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide...

457

Report on workshop on thermal property measurements  

SciTech Connect (OSTI)

Results of thermogravimetric analysis of basalt is discussed. Heat capacity, thermal conductivity and thermal expansion are specifically addressed. (CBS)

Robertson, E.C.

1987-01-01T23:59:59.000Z

458

Prediction of cooling rate and microstructure in laser spot welds  

E-Print Network [OSTI]

of the energy balance along the keyhole wall, locally solving the energy balance equation and representing the temperature dependence of material properties and latent heat of phase transfor- mation is employed to simulate thermal cycles and cooling rates experienced by the material under various combinations of power

Cambridge, University of

459

Architecture and Environmental Building Design  

E-Print Network [OSTI]

1 56% 2% 7% 2% 5% 28% Architecture and Environmental Building Design 33% response rate Full Seeking Employment as of the date they completed the survey- 27% 69% 19% 12% Landscape Architecture 46" Architecture, Master of Architecture (M.Arch) Fulltime Employment Amanda Levete Architects, Design, Part II

Plotkin, Joshua B.

460

Rate design is the no. 1 energy efficiency tool  

SciTech Connect (OSTI)

It is one thing to understand the theory of efficient pricing and another thing to actually implement it. However, the job is getting easier, as wholesale markets simplify the task of estimating marginal generation and transmission costs, advanced metering infrastructure makes time-varying pricing feasible, and the industry recognizes the value of straightforward, easy-to-understand prices. (author)

Parmesano, Hethie

2007-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber  

SciTech Connect (OSTI)

A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

2012-07-08T23:59:59.000Z

462

Compound Refractive Lenses for Thermal Neutron Applications  

SciTech Connect (OSTI)

This project designed and built compound refractive lenses (CRLs) that are able to focus, collimate and image using thermal neutrons. Neutrons are difficult to manipulate compared to visible light or even x rays; however, CRLs can provide a powerful tool for focusing, collimating and imaging neutrons. Previous neutron CRLs were limited to long focal lengths, small fields of view and poor resolution due to the materials available and manufacturing techniques. By demonstrating a fabrication method that can produce accurate, small features, we have already dramatically improved the focal length of thermal neutron CRLs, and the manufacture of Fresnel lens CRLs that greatly increases the collection area, and thus efficiency, of neutron CRLs. Unlike a single lens, a compound lens is a row of N lenslets that combine to produce an N-fold increase in the refraction of neutrons. While CRLs can be made from a variety of materials, we have chosen to mold Teflon lenses. Teflon has excellent neutron refraction, yet can be molded into nearly arbitrary shapes. We designed, fabricated and tested Teflon CRLs for neutrons. We demonstrated imaging at wavelengths as short as 1.26 ? with large fields of view and achieved resolution finer than 250 ?m which is better than has been previously shown. We have also determined designs for Fresnel CRLs that will greatly improve performance.

Gary, Charles K.

2013-11-12T23:59:59.000Z

463

Thermal acidization and recovery process for recovering viscous petroleum  

DOE Patents [OSTI]

A thermal acidization and recovery process for increasing production of heavy viscous petroleum crude oil and synthetic fuels from subterranean hydrocarbon formations containing clay particles creating adverse permeability effects is described. The method comprises injecting a thermal vapor stream through a well bore penetrating such formations to clean the formation face of hydrocarbonaceous materials which restrict the flow of fluids into the petroleum-bearing formation. Vaporized hydrogen chloride is then injected simultaneously to react with calcium and magnesium salts in the formation surrounding the bore hole to form water soluble chloride salts. Vaporized hydrogen fluoride is then injected simultaneously with its thermal vapor to dissolve water-sensitive clay particles thus increasing permeability. Thereafter, the thermal vapors are injected until the formation is sufficiently heated to permit increased recovery rates of the petroleum.

Poston, Robert S. (Winter Park, FL)

1984-01-01T23:59:59.000Z

464

Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools  

E-Print Network [OSTI]

contours for one of the PVC frames studied by Gustavsen etframe with a polyvinyl chloride (PVC ) thermal breakand a PVC frame] were examined with air leakage rates of

Gustavsen, Arild

2009-01-01T23:59:59.000Z

465

Thermal indicator for wells  

DOE Patents [OSTI]

Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

Gaven, Jr., Joseph V. (Oakton, VA); Bak, Chan S. (Newbury Park, CA)

1983-01-01T23:59:59.000Z

466

Thermally switchable dielectrics  

DOE Patents [OSTI]

Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

Dirk, Shawn M.; Johnson, Ross S.

2013-04-30T23:59:59.000Z

467

Thermal network reduction  

SciTech Connect (OSTI)

A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

Balcomb, J.D.

1983-06-01T23:59:59.000Z

468

Thermal network reduction  

SciTech Connect (OSTI)

A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

469

OECD MCCI Small-Scale Water Ingression and Crust Strength tests (SSWICS) design report, Rev. 2 October 31, 2002.  

SciTech Connect (OSTI)

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are planned to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. A description of the test apparatus, instrumentation, data reduction, and test matrix are the subject of the first portion of this report. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The introduction of a thermal gradient across the crust is thought to be important for these tests because of uncertainty in the magnitude of the thermal stresses and thus their relative importance in the crust fracture mechanism at plant scale. The second half of this report describes the apparatus for measuring crust strength. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength).

Farmer, M.; Lomperski, S.; Kilsdonk, D.; Aeschlimann, B.; Pfeiffer, P. (Nuclear Engineering Division); (NRC)

2011-05-23T23:59:59.000Z

470

Comparative ranking of 0. 1 to 10 MW(e) solar thermal electric power systems. Volume I. Summary of results. Final report  

SciTech Connect (OSTI)

This report is part of a two-volume set summarizing the results of a comparative ranking of generic solar thermal concepts designed specifically for electric power generation. The original objective of the study was to project the mid-1990 cost and performance of selected generic solar thermal electric power systems for utility applications and to rank these systems by criteria that reflect their future commercial acceptance. This study considered plants with rated capacities of 1 to 10 MW(e), operating over a range of capacity factors from the no-storage case to 0.7 and above. Later, the study was extended to include systems with capacities from 0.1 to 1 MW(e), a range that is attractive to industrial and other non-utility applications. This volume summarizes the results for the full range of capacities from 0.1 to 10 MW(e). Volume II presents data on performance and cost and ranking methodology.

Thornton, J.P.; Brown, K.C.; Finegold, J.G.; Gresham, J.B.; Herlevich, F.A.; Kowalik, J.S.; Kriz, T.A.

1980-08-01T23:59:59.000Z

471

Viability of the diagonal implicit algorithm for hypersonic flowfields with finite rate chemistry  

E-Print Network [OSTI]

The diagonal implicit algorithm has been examined for high speed, moderate density flows. In this flight regime, nonequilibrium thermal, chemical, and radiative effects are important and the determination of these finite rate processes, coupled...

Roy, Christopher John

2012-06-07T23:59:59.000Z

472

Variational bounds on the energy dissipation rate in body-forced shear flow  

E-Print Network [OSTI]

, the bulk (space and time averaged) dissipation rate per unit mass is proportional to the power required applied to many flows driven by boundary conditions, including shear flows and a variety of thermal

Petrov, Nikola

473

E-Print Network 3.0 - acid oxidation rate Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4. Evaluation of some anti-oxidants Summary: of the various formulations on the rate of degradation of EPDM against chain oxidation involved in thermal and UV... formulations on...

474

Rates and Repayment Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, andEpidermal Growth Factor.Tariff Rates FY 2015 Rates

475

Daylighting controls; Orphan of HVAC design  

SciTech Connect (OSTI)

This paper reports that in the array of strategies employed for energy-efficient design and retrofitting in commercial buildings, the use of daylighting controls is often overlooked or omitted. Thus, daylighting controls are a worthy but neglected orphan of the design process, stranded between the lighting designer, architect and engineer. Most daylighting analysis ignores HVAC effects, despite obvious interactions between windows, heat-from-lights, and thermal loads.

Rundquist, R.A. (R.A. Rundquist Associates Inc., Northampton, MA (US))

1991-11-01T23:59:59.000Z

476

Reactor as a Source of Antineutrinos: Thermal Fission Energy  

E-Print Network [OSTI]

Deeper insight into the features of a reactor as a source of antineutrinos is required for making further advances in studying the fundamental properties of the neutrino. The relationship between the thermal power of a reactor and the rate of the chain fission reaction in its core is analyzed.

V. Kopeikin; L. Mikaelyan; V. Sinev

2004-10-07T23:59:59.000Z

477

Design of a bead holder for thermal atherosclerosis sensor  

E-Print Network [OSTI]

Atherosclerosis is a systemic disease that causes plaque accumulation in arteries and diminished endothelial function. Because it is rarely identified until serious symptoms appear, there is value in a noninvasive technique ...

Savage, Christopher (Christopher R.)

2007-01-01T23:59:59.000Z

478

The design and analysis of a thermal mass groundwater flowmeter  

E-Print Network [OSTI]

in the Graetz problem is dT 24o dz RpV c (35a) or in dimensionless form: dd 4 dX Pe (356) The second snd third assumptions require modification of the numerical algorithm. Hence, the algorithm described in the previous section is used for flowmeter...

Weathers, Lenly Joseph

1990-01-01T23:59:59.000Z

479

Design of thermal control systems for testing of electronics  

E-Print Network [OSTI]

In the electronic component manufacturing industry, most components are subjected to a full functional test before they are sold. Depending on the type of components, these functional tests may be performed at room ...

Sweetland, Matthew, 1970-

2001-01-01T23:59:59.000Z

480

Design of bulk thermoelectric modules for integrated circuit thermal management  

E-Print Network [OSTI]

of the TEC based on the Peltier effect. Meanwhile, there isthermal resis- tances. Here, Peltier cooling and heating andsources. There are two Peltier effects and one Joule heating

Fukutani, K; Shakouri, A

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fire Retardant Polymer Nanocomposites: Materials Design and Thermal Degradation Modeling.  

E-Print Network [OSTI]

??Compared to conventional materials, polymer matrix composites (PMCs) have a number of attractive properties, including light weight, easiness of installation, potential to lower system-level cost,… (more)

Zhuge, Jinfeng

2012-01-01T23:59:59.000Z

482

Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologiesfrom Biodegradable MaterialsReginaldModeling

483

Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologiesfrom Biodegradable

484

Compact thermal modeling for package design with practical power maps  

E-Print Network [OSTI]

response temp (Celsius) Y kjk Reference temp. Identifiedmodel X kþ1 A B C D X k U kjk 3.2. Persistently excitingxðk þ 1Þ; …; xðk þ N2Þ; U kjk ?½uðkÞ; uðk þ 1Þ; …; uðk þ

Liu, Zao; Tan, Sheldon; Hua, Yingbo; Wang, Hai; Gupta, Ashish

2014-01-01T23:59:59.000Z

485

Summary - Building C-400 Thermal Treatment Remedial Design Report...  

Office of Environmental Management (EM)

Decision. What the ETR Team Recommended The data provide an initial basis for designoperation; however, characterization should include expanding the target treatment zones in...

486

Building C-400 Thermal Treatment 90% Remedial Design Report and...  

Office of Environmental Management (EM)

project team to respond to observations and data collected during construction and operation * Defensible performance metrics and monitoring, appropriate for ERH, to ensure...

487

Design and thermal modeling of a residential building  

E-Print Network [OSTI]

Recent trends of green energy upgrade in commercial buildings show promise for application to residential houses as well, where there are potential energy-saving benefits of retrofitting the residential heating system from ...

Yeh, Alice Su-Chin

2009-01-01T23:59:59.000Z

488

Independent Manipulation of Electric and Thermal Fields with Bilayer Structure  

E-Print Network [OSTI]

Recently, increasing attention has been focused on the employment of transformation and metamaterial for manipulation of various physical fields, which requires complicated configuration and usually limits in single field. Here, for the first time, we propose and experimentally demonstrated bilayer structure to achieve simultaneously independent manipulation of multi-physics field (dc electric fields and thermal) by directly solving the dc electric/ thermal field equations. This structure is composed of two layers: the outer layer is made of isotropic and homogeneous material, while the inner layer is fan-shape layer. Since it is not based on TO, it can be readily experimentally fabricated with naturally occurring materials. Experimentally, we has designed, fabricated and characterized two structures simultaneously behaving as dc electric cloak/ thermal concentrator and dc electric concentrator/ thermal cloak, respectively. The simulation results agree well with the experiment ones, thus confirming the feasib...

Lan, Chuwen; Wu, Lingling; Li, Bo; Zhou, Ji

2015-01-01T23:59:59.000Z

489

Electric Motor Thermal Management for Electric Traction Drives (Presentation)  

SciTech Connect (OSTI)

Thermal constraints place significant limitations on how electric motors ultimately perform. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of material thermal properties and convective heat transfer coefficients. In this work, the thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. Also, convective heat transfer coefficients of automatic transmission fluid (ATF) jets were measured to better understand the heat transfer of ATF impinging on motor copper windings. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients.

Bennion, K.; Cousineau, J.; Moreno, G.

2014-09-01T23:59:59.000Z

490

Thermally Activated Desiccant Technology for Heat Recovery and Comfort  

SciTech Connect (OSTI)

Desiccant cooling is an important part of the diverse portfolio of