Powered by Deep Web Technologies
Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Definition: Thermal Rating | Open Energy Information  

Open Energy Info (EERE)

Rating Jump to: navigation, search Dictionary.png Thermal Rating The maximum amount of electrical current that a transmission line or electrical facility can conduct over a...

2

Mythology of rate design  

SciTech Connect

If power rates are determined by marginal costs with clear signals to the consumer, then the load curve will regulate itself without burdening the public with ethical and patriotic issues. Manipulation of the load factor will only cause hardship and inconvenience, but a choice of rates will allow consumers to determine their own balance between rates and convenience. It makes sense to charge consumers the true cost rather than having the same rate apply during a 24-hour period when costs are not uniform. Discussions of how to determine equitable rate structures flounder because we cannot define equity. Economists, who base their recommendations on the assumption that income distribution is reasonable, believe marginal-cost pricing allows the customer to save whatever the utility is saving. Such a system is economically efficient in that the utility charges 100 percent-load-factor consumers according to a base load plant, while charging peak and offpeak consumers what it costs to add them to the system. Adjustment of prices to cause a minimal distortion of the market is the economists' general rule for handling the balancing of cost increases and regulated profits. (DCK)

Streiter, S.H.

1977-01-01T23:59:59.000Z

3

Active solar thermal design manual  

SciTech Connect

This manual is aimed at systems design engineers, architects, system supplier/installers, and contractor/builders. Practical information for both skilled and inexperienced designers. Solar thermal applications focuses on residential and commercial space heating, potable hot water heating, process water heating, and space cooling.

1985-01-01T23:59:59.000Z

4

Battery Thermal Management System Design Modeling (Presentation)  

DOE Green Energy (OSTI)

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z

5

Thermal dilepton rates from quenched lattice QCD  

E-Print Network (OSTI)

We present new lattice results on the continuum extrapolation of the vector current correlation function. Lattice calculations have been carried out in the deconfined phase at a temperature of 1.1 Tc, extending our previous results at 1.45 Tc, utilizing quenched non-perturbatively clover-improved Wilson fermions and light quark masses. A systematic analysis on multiple lattice spacings allows to perform the continuum limit of the correlation function and to extract spectral properties in the continuum limit. Our current analysis suggests the results for the electrical conductivity are proportional to the temperature and the thermal dilepton rates in the quark gluon plasma are comparable for both temperatures. Preliminary results of the continuum extrapolated correlation function at finite momenta, which relates to thermal photon rates, are also presented.

H. -T. Ding; A. Francis; O. Kaczmarek; F. Karsch; E. Laermann; S. Mukherjee; M. Müller; W. Soeldner

2013-01-30T23:59:59.000Z

6

Electric rate structures for thermal energy storage evaluation  

DOE Green Energy (OSTI)

Future electric rate structures are critical to thermal energy storage (TES) technologies that are specifically designed to take advantage of electric energy costs that vary depending on the magnitude, duration, and timing of power demand (e.g., cool storage). In fact, rate structure characteristics may affect the TES system design and operating approach as well as economic feasibility. The objective of this study, conducted by the Pacific Northwest Laboratory for the US Department of Energy, was to define reference electric utility rate structures to be used in technical assessments of TES technologies. Electric rate structures were characterized for residential, commercial and industrial sectors. A range of conditions for several alternative rate structures was identified for each sector to capture the variability of likely conditions. Individual rate structure characteristics include demand charges and energy charges applicable during different months of the year, days of the week, and hours of the day. 7 refs., 21 tabs.

Brown, D R; Garrett, S M; Sedgewick, J M

1991-05-01T23:59:59.000Z

7

High Heating Rate Thermal Desorption for Molecular Surface ...  

High Heating Rate Thermal Desorption for Molecular Surface Sampling Note: The technology described above is an early stage opportunity. Licensing ...

8

Integrated Thermal Analysis of the FRIB Cryomodule Design  

SciTech Connect

Thermal analysis of the FRIB cryomodule design is performed to determine the heat load to the cryogenic plant, to minimize the cryogenic plant load, to simulate thermal shield cool down as well as to determine the pressure relief sizes for failure conditions. Static and dynamic heat loads of the cryomodules are calculated and the optimal shield temperature is determined to minimize the cryogenic plant load. Integrated structural and thermal simulations of the 1100-O aluminium thermal shield are performed to determine the desired cool down rate to control the temperature profile on the thermal shield and to minimize thermal expansion displacements during the cool down. Pressure relief sizing calculations for the SRF helium containers, solenoids, helium distribution piping, and vacuum vessels are also described.

Y. Xu, M. Barrios, F. Casagrande, M.J. Johnson, M. Leitner, D. Arenius, V. Ganni, W.J. Schneider, M. Wiseman

2012-07-01T23:59:59.000Z

9

System design description PFP thermal stabilization  

SciTech Connect

The purpose of this document is to provide a system design description and design basis for the Plutonium Finishing P1ant (PFP) Thermal Stabilization project. The sources of material for this project are residues scraped from glovebox floors and materials already stored in vault storage that need further stabilizing to meet the 3013 storage requirements. Stabilizing this material will promote long term storage and reduced worker exposure. This document addresses: function design, equipment, and safety requirements for thermal stabilization of plutonium residues and oxides.

RISENMAY, H.R.

1998-11-10T23:59:59.000Z

10

Building C-400 Thermal Treatment 90% Remedial Design Report and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation Full Document...

11

Designing a Thermal Energy Storage Program for Electric Utilities  

E-Print Network (OSTI)

Electric utilities are looking at thermal energy storage technology as a viable demand side management (DSM) option. In order for this DSM measure to be effective, it must be incorporated into a workable, well-structured utility program. This paper describes a methodology to design a successful thermal energy storage program for electric utilities. The design process is addressed beginning with the market research phase. The research includes information obtained from utilities having successful thermal storage programs. In addition, information is gathered from interviews with local architects and engineers, air conditioning contractors and potential thermal energy storage customers. From this information a marketing plan is developed that addresses the target market, market penetration, promotional methods, incentive types and levels, internal and external training requirements and optimal organizational structure. The marketing plan also includes various rate structures, program procedures and evaluation techniques. In addition to the marketing plan, several case histories are addressed.

Niehus, T. L.

1994-01-01T23:59:59.000Z

12

Ratings of Transmission Lines: Applications, Computations, and Thermal Models  

Science Conference Proceedings (OSTI)

The thermal rating of overhead transmission lines can be complex, because there is no way to directly measure the line rating and because high current load events occur only rarely in most parts of the power system. A thermal line rating is a prediction of how the conductor will behave thermally, mechanically, and electrically in the event of a high electrical current. It is possible to calculate ratings incorrectly and not discover that this is true until a most inopportune timeduring a system emergency...

2011-12-16T23:59:59.000Z

13

Design Tool for Cryogenic Thermal Insulation Systems  

Science Conference Proceedings (OSTI)

Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

Demko, Jonathan A [ORNL; Fesmire, J. E. [NASA Kennedy Space Center, Kennedy Space Center, Florida; Augustynowicz, S. D. [Sierra Lobo Inc., Kennedy Space Center, Florida

2008-01-01T23:59:59.000Z

14

Intraclass Price Elasticity & Electric Rate Design  

E-Print Network (OSTI)

Electric rate design relies on cost incurrance for pricing and pricing structures. However, as utilities move into a marketing mode, rate design needs to respond more to customer reactions to pricing changes. Intraclass price elasticities aid rate designers by estimating customer behavior to change. Intraclass price elasticities vary with customer usage. The more energy used by a customer, the greater the amount of elasticity. For an industrial customer, this means that all energy consumed up to the amount necessary for base operations is relatively inelastic. All energy consumption beyond this becomes more elastic as usage increases. In the book "Innovative Electric Rates," John Chamberlin and Charles Dickson utilize an economic model to test conservation programs. This model utilizes intraclass price elasticities and has a direct use in current electric rate design. The model is a strong indicator of how best a company's electric prices and pricing structures manage demand-side growth, increase energy sales consumption, and aide in non-discriminatory economic development.

Gresham, K. E.

1987-09-01T23:59:59.000Z

15

Simulation and design of solar thermal processes  

DOE Green Energy (OSTI)

Methods of simulation and design of solar thermal processes have been developed and used in process system studies. During the period of this contract, new process component model formulations have been developed, including: transient LiBr--H/sub 2/O absorption cooler; CPC and other ''advanced'' collectors; and windows, storage wall and shading devices for passive solar heating. Systems studies have included: parallel and series solar/heat pump combinations; phase change storage in solar heating; absorption cooling with and without cooler transients. The general solar process simulation program, TRNSYS, has been further developed, documented, distributed and supported. Design procedure studies have led to development of a method for calculating the phi, the average solar radiation availability, and the development of the phi, f-chart method for design of closed-loop solar heating systems which (a) can have load temperatures other than 20/sup 0/C, and (b) have approximately constant COP of any energy converters between storage and load.

Not Available

1978-12-01T23:59:59.000Z

16

A Dynamic Thermal Circuit Rating (DTCR) Thermal Parameter Database for Substation Terminal Equipment  

Science Conference Proceedings (OSTI)

EPRI's DTCR (Dynamic Thermal Circuit Rating) software uses real-time or historical weather and electrical load data to calculate power equipment ratings for overhead lines, underground cables, power transformers, and substation terminal equipment. This technical update concerns the organization of a thermal parameter database for substation terminal equipment intended to simplify the documentation and access to the data required for rating calculations. This update contains an organized and partly popula...

2008-02-25T23:59:59.000Z

17

Design of Thermal Power Generation Device for Vehicle Recharging  

Science Conference Proceedings (OSTI)

With thermal power generation as the basis, vehicle heat sources (such as engine and exhaust pipe) as the carrier, and AT89C52 as the control center, this paper has designed a thermal power generation device for vehicle recharging. This device consists ... Keywords: thermal power generation, power supply for recharging, vehicle devices, design

Hong Fang

2012-07-01T23:59:59.000Z

18

Simulation and design of solar thermal processes  

SciTech Connect

Methods of simulation and design of solar thermal processes have been developed and used in process system studies. During the period of this contract, new process component model formulations have been developed, including: transient LiBr--H/sub 2/O absorption cooler; CPC and other ''advanced'' collectors; and windows, storage wall and shading devices for passive solar heating. Systems studies have included: parallel and series solar/heat pump combinations; phase change storage in solar heating; absorption cooling with and without cooler transients. The general solar process simulation program, TRNSYS, has been further developed, documented, distributed and supported. Design procedure studies have led to development of a method for calculating the phi, the average solar radiation availability, and the development of the phi, f-chart method for design of closed-loop solar heating systems which (a) can have load temperatures other than 20/sup 0/C, and (b) have approximately constant COP of any energy converters between storage and load.

1978-12-01T23:59:59.000Z

19

Evaluation of Instrumentation and Dynamic Thermal Ratings for Overhead Lines  

Science Conference Proceedings (OSTI)

In 2010, a project was initiated through a partnership between the Department of Energy (DOE) and the New York Power Authority (NYPA) to evaluate EPRI?s rating technology and instrumentation that can be used to monitor the thermal states of transmission lines and provide the required real-time data for real-time rating calculations. The project included the installation and maintenance of various instruments at three 230 kV line sites in northern New York. The instruments were monitored, and data collection and rating calculations were performed for about a three year period.

Phillips, A.

2013-01-31T23:59:59.000Z

20

Battery Thermal Management System Design Modeling  

SciTech Connect

Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

Pesaran, A.; Kim, G. H.

2006-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Building C-400 Thermal Treatment 90% Remedial Design Report and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Paducah Gaseous Diffusion Plant (PGDP) Review Report: Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation, PGDP, Paducah Kentucky...

22

Design of a Solar Thermal Powered Cooling System.  

E-Print Network (OSTI)

??Abstract The main objective of the thesis was to design a mechanical structure for a desiccant evaporative cooling, to apply solar thermal powered air conditioning… (more)

Hurri, Olli

2011-01-01T23:59:59.000Z

23

Thermal Design of Refractory Lined Pressure Oxidation Autoclaves  

Science Conference Proceedings (OSTI)

... for designing a refractory lining as a thermal barrier in pressure oxidation autoclaves. ... Incorporating Radiant Heat Exchange into Finite Element Models of ...

24

Representation of thermal energy in the design process  

E-Print Network (OSTI)

The goal of thermal design is to go beyond the comfort zone. In spatial design architects don't just look up square footage requirements and then draw a rectangle that satisfies the givens. There must be an interpretation. ...

Roth, Shaun

1995-01-01T23:59:59.000Z

25

Absorption Cooling Optimizes Thermal Design for Cogeneration  

E-Print Network (OSTI)

Contrary to popular concept, in most cases, thermal energy is the real VALUE in cogeneration and not the electricity. The proper consideration of the thermal demands is equal to or more important than the electrical demands. High efficiency two-stage absorption chillers of the type used at Rice University Cogen Plant offer the most attractive utilization of recoverable thermal energy. With a coefficient of performance (COP) up to 1.25, the two-stage, parallel flow absorption chiller can offer over fifty (50) percent more useful thermal energy from the same waste heat source--gas turbine exhaust, I.C. engine exhaust and jacketwater, incinerator exhaust, or steam turbine extraction.

Hufford, P. E.

1986-01-01T23:59:59.000Z

26

Electrical conductivity and thermal dilepton rate from quenched lattice QCD  

E-Print Network (OSTI)

We report on a continuum extrapolation of the vector current correlation function for light valence quarks in the deconfined phase of quenched QCD. This is achieved by performing a systematic analysis of the influence of cut-off effects on light quark meson correlators at $T\\simeq 1.45 T_c$ using clover improved Wilson fermions. We discuss resulting constraints on the electrical conductivity and the thermal dilepton rate in a quark gluon plasma. In addition new results at 1.2 and 3.0 $T_c$ will be presented.

Olaf Kaczmarek; Anthony Francis

2011-09-19T23:59:59.000Z

27

Electrical conductivity and thermal dilepton rate from quenched lattice QCD  

E-Print Network (OSTI)

We report on a continuum extrapolation of the vector current correlation function for light valence quarks in the deconfined phase of quenched QCD. This is achieved by performing a systematic analysis of the influence of cut-off effects on light quark meson correlators at $T\\simeq 1.45 T_c$ using clover improved Wilson fermions. We discuss resulting constraints on the electrical conductivity and the thermal dilepton rate in a quark gluon plasma. In addition new results at 1.2 and 3.0 $T_c$ will be presented.

Kaczmarek, Olaf

2011-01-01T23:59:59.000Z

28

Thermal design through space and time  

E-Print Network (OSTI)

One of the primary roles of architecture is to control the environment at the service of a building's inhabitants. Thermal qualities are a significant factor in the overall experience one has inside and outside a building. ...

Feldgoise, Jeffrey

1997-01-01T23:59:59.000Z

29

An Innovative High Thermal Conductivity Fuel Design  

SciTech Connect

Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 [97% TD]. This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

Jamil A. Khan

2009-11-21T23:59:59.000Z

30

A Scalable Modeling Technique to Estimate Dynamic Thermal Design Power of Datapath Intensive Designs  

Science Conference Proceedings (OSTI)

In this paper, a power modeling approach for the estimation of dynamic power under Thermal Design Power (TDP1) for datapath intensive designs is proposed. Early estimation of TDP is crucial for the design of thermal and cooling solutions of a chip and ...

Prashant Agrawal; Srinivasa R. STG; Ajit N. Oke; Saurabh Vijay

2007-03-01T23:59:59.000Z

31

Simulation and design of solar thermal processes  

DOE Green Energy (OSTI)

Research on simulation using TRNSYS and FCHART methods is described including systems analysis, user services, design procedures, and model validation. (MHR)

Not Available

1979-10-31T23:59:59.000Z

32

Thermal and flow design of helium-cooled reactors  

Science Conference Proceedings (OSTI)

This book continues the American Nuclear Society's series of monographs on nuclear science and technology. Chapters of the book include information on the first-generation gas-cooled reactors; HTGR reactor developments; reactor core heat transfer; mechanical problems related to the primary coolant circuit; HTGR design bases; core thermal design; gas turbines; process heat HTGR reactors; GCFR reactor thermal hydraulics; and gas cooling of fusion reactors.

Melese, G.; Katz, R.

1984-01-01T23:59:59.000Z

33

Utility Rate Design Revision - A Frisbee Full of Boomerangs  

E-Print Network (OSTI)

Rising electricity prices have prompted investigation of utility rates and proposals for changed in their design. The purpose of this paper is to discuss the current design of electric rates, changes proposed, actual trends, and predictable results of the proposals and trends.

Dannenmaier, J. H.

1979-01-01T23:59:59.000Z

34

Design Evolution Study Thermal Operating Methodology  

Science Conference Proceedings (OSTI)

This study provides results supporting the conclusion that the repository can be operated over a varying range of thermal modes and therefore temperatures. In particular, this work focused on limiting the peak, postclosure waste package surface temperature to less than 85 degrees Celsius, a possible limit due to corrosion considerations. These operating modes were compared by varying the waste package in drift spacing (0.1-2.83 meters), drift pitch (drift spacing centerline to centerline of 40-120 meters), ventilation duration (75-300 years), and ventilation efficiency (50-80%). The resulting graphical representation shows where the constant temperature of the waste package (85 degrees Celsius) lies with respect to drift pitch and waste package spacing. The waste considered in this study is the strict youngest fuel first 5 years old fuel. Using only strict youngest fuel first 5 years old fuel in the waste stream results in an average heat load per waste package of 12.48kW/Pkg. With this high average heat load, it is not possible to achieve a maximum waste package surface temperature of 85 degrees Celsius or less. By aging 63% of the strict youngest fuel first 5 years old fuel for 27 years, it becomes possible to maintain the waste package surface temperature at 85 degrees Celsius or less. The 27 years of aging comes from the fact that the repository could be closed in as little as 50 years. It takes 23 years to emplace the waste and therefore the last fuel received for emplacement is 27 years prior to closures. The strict youngest fuel first 5 years old fuel waste stream with 63% aged for 27 years, results in an average power level of 8.4kW/Pkg. This lower heat load allows the controlled parameters of drift pitch, waste package spacing, aging, and ventilation duration to be varied to achieve the desired results. This study compares the hot strict youngest fuel first 5 years old fuel to the previous waste stream, which has an average of 26-year-old fuel. The 26-year-old fuel waste stream has an average power level of 7.2 kW/Pkg. This comparison illustrated how the parameters important to thermal performance differ for these two assumptions about the waste stream.

T.L. Mitchell

2002-04-29T23:59:59.000Z

35

Thermal design for protection of downhole electronic packages  

DOE Green Energy (OSTI)

Design improvements made for downhole tools based on results obtained from the thermal analysis of the instrument package are described. Results include heat flux at the tool surface and temperature-time histories of each subsystem. The research stems from a need for tools that can survive the harsh environment present in geothermal wellbores. The high temperatures and pressures create stress on the tools that function in this environment. Improvements in the design of downhole tools lead to more accurate data obtained from the wellbore during experimentation. The analysis showed that the thermal potential and the conductance between electronics and its heat sink was too small and was misdirected. Significant improvements were achieved by increasing the available thermal capacity of the heat sink, the thermal potential between the heat sink and electronics, and the conductance of the heat transfer paths.

Bennett, G.A.; Sherman, G.R.

1983-01-01T23:59:59.000Z

36

Design criteria linear power rate-of-rise instrumentation  

SciTech Connect

Studies of reactor safety considerations have demonstrated the need for automatic safety circuit action based on the measured rate of power increase in the power level range from 10{sup {minus}2} to 10 {sup 0} times equilibrium power level. Budget and Preliminary Engineering Studies were performed. This document provides the design criteria for detailed design of the proposed Linear Power Rate-Of-Rise Instrumentation facilities and is applicable to any of the eight IPD reactors.

Herrman, B.W.

1964-01-16T23:59:59.000Z

37

Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats  

E-Print Network (OSTI)

The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K. Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) includi...

Bourcey, N; Parma, V; Poncet, A; Rohmig, P; Serio, L; Skoczen, Blazej; Tock, J P; Williams, L R

2004-01-01T23:59:59.000Z

38

Design and operation of solar thermal heat transfer systems  

Science Conference Proceedings (OSTI)

The importance of heat transfer systems in the collection and use of solar energy is discussed. The success or failure of many solar energy systems has been determined by the design of the heat transfer system. This report includes a short summary of some of the DOE sponsored solar industrial process heat sites. From the design, construction, and operation of these systems many lessons were learned which will be important to designers and potential users of solar thermal systems. Also included is a discussion of solar collector foundation over-design that has increased the collector system costs.

Rush, E.E.

1985-01-01T23:59:59.000Z

39

Rates of reaction and process design data for the Hydrocarb Process  

DOE Green Energy (OSTI)

In support of studies for developing the coprocessing of fossil fuels with biomass by the Hydrocarb Process, experimental and process design data are reported. The experimental work includes the hydropryolysis of biomass and the thermal decomposition of methane in a tubular reactor. The rates of reaction and conversion were obtained at temperature and pressure conditions pertaining to a Hydrocarb Process design. A Process Simulation Computer Model was used to design the process and obtain complete energy and mass balances. Multiple feedstocks including biomass with natural gas and biomass with coal were evaluated. Additional feedstocks including green waste, sewage sludge and digester gas were also evaluated for a pilot plant unit.

Steinberg, M.; Kobayashi, Atsushi [Brookhaven National Lab., Upton, NY (United States); Tung, Yuanki [Hydrocarb Corp., New York, NY (United States)

1992-08-01T23:59:59.000Z

40

Thermal design of the fast-on-orbit recording of transient events (FORTE) satellite  

SciTech Connect

Analytical tools were used to design a thermal control system for the FORTE satellite. An overall spacecraft thermal model was developed to provide boundary temperatures for detailed thermal models of the FORTE instruments. The thermal design will be presented and thermal model results discussed.

Akau, R.L.; Behr, V.L. [Sandia National Labs., Albuquerque, NM (United States); Whitaker, R. [Los Alamos National Lab., NM (United States)

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Design for Krypton-85 Enrichment by Thermal Diffusion  

SciTech Connect

Substantial quantities of krypton having a krypton-85 concentration of less than 10% will become available if nuclear fuel-processing plants are required to collect the gaseous fission products rather than releasing them into the atmosphere. A modular thermal diffusion unit was designed for the enrichment of the krypton-85 to useful concentrations of greater than 45%. The design emphasizes reliability and integrity by incorporating no moving parts within the unit. The modular design also offers flexibility in the size of the enrichment facility that need be constructed at any time.

Schwind, Roger A.; Rutherford, William M.

1973-04-01T23:59:59.000Z

42

Thermal and cost goal analysis for passive solar heating designs  

DOE Green Energy (OSTI)

Economic methodologies developed over the past several years for the design of residential solar systems have been based on life cycle cost (LCC) minimization. Because of uncertainties involving future economic conditions and the varied decision making processes of home designers, builders, and owners, LCC design approaches are not always appropriate. To deal with some of the constraints that enter the design process, and to narrow the number of variables to those that do not depend on future economic conditions, a simplified thermal and cost goal approach for passive designs is presented. Arithmetic and graphical approaches are presented with examples given for each. Goals discussed include simple payback, solar savings fraction, collection area, maximum allowable construction budget, variable cost goals, and Btu savings.

Noll, S.A.; Kirschner, C.

1980-01-01T23:59:59.000Z

43

Optimizing the design and operation of aquifer thermal energy systems  

DOE Green Energy (OSTI)

The design of Aquifer Thermal Energy Storage (ATES) systems is complicated by significant uncertainties in ones ability to reliably predict the response of the aquifer to fluid and thermal fluxes. Overdesigning the system, to compensate for these uncertainties, reduces the potential economic and energy benefits of an ATES system. Underdesigning the system results in systems that fail to meet design targets. Unfortunately, standard aquifer characterization methods and hydrologic models do not provide adequate information to overcome these uncertainties. Thus, expensive full-scale tests are generally recommended to develop an adequate-understanding of the systems response. However, the standard engineering {open_quotes}design-build-operate{close_quotes} process is not. appropriate for ATES systems because an optimal design cannot be completed without some operational experience, i.e., field tests. A more adaptive engineering process is required. This engineering process should be flexible enough to allow the design to be adjusted during the operation, as monitoring data become available and as an understanding of the system response increases. Engineering approaches being developed for environmental restoration of contaminated soil and groundwater can be adapted to optimally design and operate ATES systems.

Vail, L.W.; Jenne, E.A.

1994-11-01T23:59:59.000Z

44

Standby rate design: current issues and possible innovations  

SciTech Connect

While options pricing principles have some relevance for the design a standby distribution rates, insurance pricing may provide an even better model. An insurance-based approach using an outage probability methodology also provides powerful incentives to the utility to connect additional DG resources to the grid. (author)

Goulding, A.J.; Bahceci, Serkan

2007-05-15T23:59:59.000Z

45

Lead Coolant Test Facility Systems Design, Thermal Hydraulic Analysis and Cost Estimate  

SciTech Connect

The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed: (1) Develop and Demonstrate Feasibility of Submerged Heat Exchanger; (2) Develop and Demonstrate Open-lattice Flow in Electrically Heated Core; (3) Develop and Demonstrate Chemistry Control; (4) Demonstrate Safe Operation; and (5) Provision for Future Testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimate. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

Soli Khericha; Edwin Harvego; John Svoboda; Ryan Dalling

2012-01-01T23:59:59.000Z

46

Method and apparatus for obtaining enhanced production rate of thermal chemical reactions  

DOE Patents (OSTI)

The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

2003-04-01T23:59:59.000Z

47

SUSTAINABLE DESIGN THIRD-PARTY RATING OF HEALTHCARE FACILITIES  

E-Print Network (OSTI)

(GBCI) began requiring that all new construction and major renovation projects seeking LEED certification for inpatient, outpatient, or long-term care facilities must use the LEED for Healthcare rating system. 2. BACKGROUND: The VA Sustainable Design and Energy Reduction Manual (April 2010) requires major construction projects to achieve a third-party green building certification of at least LEED Silver or two Green Globes. VA commissioned a study to determine the impact of USGBC’s new requirement on VA’s construction program. The study compared LEED for Health Care (LEED HC) to LEED for New Construction (LEED NC) and determined that there will be little impact to cost or effort when using LEED HC in lieu of LEED NC. (1) Projects using the Green Building Initiative’s (GBI) Green Globes rating system will not be affected. 3. NEW STANDARD: All VA healthcare projects registering for LEED

unknown authors

2012-01-01T23:59:59.000Z

48

Design criteria and mitigation options for thermal fatigue effects in ATW blankets.  

Science Conference Proceedings (OSTI)

Thermal fatigue due to beam interruptions is an issue that must be addressed in the design of an ATW blanket. Two different approaches can be taken to address this issue. One approach is to analyze current ATW blanket designs in order to set interrupt frequency design limits for the accelerator. The other approach is to assume that accelerator reliability can not be guaranteed before design and construction of the blanket. In this approach the blanket must be designed so as to accommodate an accelerator with a beam interruption frequency significantly higher than current high power accelerators in order to provide a margin of error. Both approaches are considered in this paper. Both a sodium cooled blanket design and a lead-bismuth cooled blanket design are considered. Thermal hydraulic analysis of the blanket for beam interruption transients is carried out with the SASSYS-1 systems analysis code to obtain the time histories of the coolant temperatures in contact with structural components. These coolant temperatures are then used in a detailed structure temperature calculation to obtain structure surface and structure average temperatures. The difference between the average temperature and the surface temperature is used to obtain thermal strains. Low cycle fatigue curves from the American Society of Mechanical Engineers Boiler and Pressure Vessel Code are used to determine the number of cycles that the structural components can endure, based on these strains. Calculations are made for base case designs and for a number of mitigation options. The mitigation options include using two separate accelerators to provide the beam, reducing the thickness of the above core load pads in the subassemblies, increasing the coolant flow rate or reducing power in order to reduce the core temperature rise, and reducing the superheat in the once-through steam generator.

Dunn, F. E.

2000-12-07T23:59:59.000Z

49

Design and installation manual for thermal energy storage  

DOE Green Energy (OSTI)

The purpose for this manual is to provide information on the design and installation of thermal energy storage in solar heating systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating system, and stand-alone domestic hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M [eds.

1979-02-01T23:59:59.000Z

50

Design and installation manual for thermal energy storage  

DOE Green Energy (OSTI)

The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

1980-01-01T23:59:59.000Z

51

Mechanical and thermal design of the Cascade reactor  

Science Conference Proceedings (OSTI)

We present an improved Cascade fusion reaction chamber that is optimized with respect to chamber radius, wall thickness, and pebble blanket outlet temperature. We show results of a parameter study where we varied chamber radius from 3 to 6 m, wall thickness from 15 to 80 mm, and blanket outlet temperature from 900 to 1400 K. Based on these studies, we achieved an optimized chamber with 50% the volume of the original design and 60% of its blanket. Chamber radius is only 4.4 m and its half length is only 5.9 m, decreased from the original 5-m radius and 8-m half-length. In our optimization method, we calculate both thermal and mechanical stresses resulting from x-ray, fusion-pellet-debris, and neutron-generated momentum, pressure from ablated material, centrifugal action, vacuum inside the chamber, and gravity. We add the mechanical stresses to thermal stresses and keep the total less than the yield stress. Further, we require that fluctuations in these stresses be less than that which would produce creep-fatigue failure within the chamber 30-year lifetime.

Pitts, J.H.

1983-01-01T23:59:59.000Z

52

Thermal/Electrical Modeling for Abuse-Tolerant Design of Li-Ion Modules (Presentation)  

DOE Green Energy (OSTI)

To help design safe, high-performing batteries, NREL and NASA created and verified a new multicell math model capturing electrical-thermal interactions of cells with PTC devices during thermal abuse.

Smith, K.; Kim, G.-H.; Pesaran, A.; Darcy, E.

2008-11-01T23:59:59.000Z

53

Design Considerations, Modeling and Analysis for the Multispectral Thermal Imager  

SciTech Connect

The design of remote sensing systems is driven by the need to provide cost-effective, substantive answers to questions posed by our customers. This is especially important for space-based systems, which tend to be expensive, and which generally cannot be changed after they are launched. We report here on the approach we employed in developing the desired attributes of a satellite mission, namely the Multispectral Thermal Imager. After an initial scoping study, we applied a procedure which we call: "End-to-end modeling and analysis (EEM)." We began with target attributes, translated to observable signatures and then propagated the signatures through the atmosphere to the sensor location. We modeled the sensor attributes to yield a simulated data stream, which was then analyzed to retrieve information about the original target. The retrieved signature was then compared to the original to obtain a figure of merit: hence the term "end-to-end modeling and analysis." We base the EEM in physics to ensure high fidelity and to permit scaling. As the actual design of the payload evolves, and as real hardware is tested, we can update the EEM to facilitate trade studies, and to judge, for example, whether components that deviate from specifications are acceptable.

Borel, C.C.; Clodius, W.B.; Cooke, B.J.; Smith, B.W.; Weber, P.G.

1999-02-01T23:59:59.000Z

54

Generic repository design concepts and thermal analysis (FY11).  

SciTech Connect

Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generated in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.

Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); Dupont, Mark (Savannah River Nuclear Solutions, Aiken, SC); Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Fratoni, Massimiliano (Lawrence Livermore National Laboratory, Livermore, CA); Greenberg, Harris (Lawrence Livermore National Laboratory, Livermore, CA); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Hardin, Ernest L.; Sutton, Mark A. (Lawrence Livermore National Laboratory, Livermore, CA)

2011-08-01T23:59:59.000Z

55

Improving Battery Design with Electro-Thermal Modeling  

DOE Green Energy (OSTI)

Temperature greatly affects the performance and life of batteries in electric and hybrid vehicles under real driving conditions, so increased attention is being paid to battery thermal management. Sophisticated electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. In this study we describe an electro-thermal finite element approach that predicts the thermal performance of a cell or module with realistic geometry, material properties, loads, and boundary conditions.

Pesaran, A.; Vlahinos, A.; Bharathan, D.; Kim, G.-H.; Duong, T.

2005-08-01T23:59:59.000Z

56

Electro-Thermal Modeling to Improve Battery Design: Preprint  

DOE Green Energy (OSTI)

Operating temperature greatly affects the performance and life of batteries in electric and hybrid electric vehicles (HEVs). Increased attention is necessary to battery thermal management. Electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. This study describes an electro-thermal finite element approach that predicts the thermal performance of a battery cell or module with realistic geometry.

Bharathan, D.; Pesaran, A.; Kim, G.; Vlahinos, A.

2005-09-01T23:59:59.000Z

57

Design and application of innovative site remediation technologies: Thermal destruction  

Science Conference Proceedings (OSTI)

The book covers wet air oxidation, Texaco gasification process, flameless thermal oxidation, and plasma furnaces. 17 figs., 20 tabs.

Holm, F.W.

1998-12-31T23:59:59.000Z

58

Multi-Function Waste Tank Facility thermal hydraulic analysis for Title II design  

Science Conference Proceedings (OSTI)

The purpose of this work was to provide the thermal hydraulic analysis for the Multi-Function Waste Tank Facility (MWTF) Title II design. Temperature distributions throughout the tank structure were calculated for subsequent use in the structural analysis and in the safety evaluation. Calculated temperatures of critical areas were compared to design allowables. Expected operating parameters were calculated for use in the ventilation system design and in the environmental impact documentation. The design requirements were obtained from the MWTF Functional Design Criteria (FDC). The most restrictive temperature limit given in the FDC is the 200 limit for the haunch and dome steel and concrete. The temperature limit for the rest of the primary and secondary tanks and concrete base mat and supporting pad is 250 F. Also, the waste should not be allowed to boil. The tank geometry was taken from ICF Kaiser Engineers Hanford drawing ES-W236A-Z1, Revision 1, included here in Appendix B. Heat removal rates by evaporation from the waste surface were obtained from experimental data. It is concluded that the MWTF tank cooling system will meet the design temperature limits for the design heat load of 700,000 Btu/h, even if cooling flow is lost to the annulus region, and temperatures change very slowly during transients due to the high heat capacity of the tank structure and the waste. Accordingly, transients will not be a significant operational problem from the viewpoint of meeting the specified temperature limits.

Cramer, E.R.

1994-11-10T23:59:59.000Z

59

Improving Battery Design with Electro-Thermal Modeling  

DOE Green Energy (OSTI)

Operating temperature greatly affects the performance and life of batteries in electric and hybrid vehicles. Increased attention is necessary to battery thermal management. Electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. In this study we describe an electro-thermal finite element approach that predicts the thermal performance of a cell or module with realistic geometry. To illustrate the process, we simulated the thermal performance of two generations of Panasonic prismatic nickel-metal-hydride modules used in the Toyota Prius. The model showed why the new generation of Panasonic modules had better thermal performance. Thermal images from two battery modules under constant current discharge indicate that the model predicts the experimental trend reasonably well.

Bharathan, D.; Pesaran, A.; Vlahinos, A.; Kim, G.-H.

2005-01-01T23:59:59.000Z

60

Thermal hydraulic design features for the BNCT application. Final report  

SciTech Connect

This project report is based on our investigations for thermal design of a heat pipe for removing generated heat resulting from Proton bombardments of a Lithium target for a BNCT application. In our investigation, an integral analysis was employed to investigate the vapor an liquid flow in a flat plate heat pipe heated asymmetrically for removal of the 75 kW generated from the BNCT application. The flat plate heat pipe configuration will be used for removing the heat which is generated as a result of proton bombardment of the lithium target. The working fluid in the heat pipe occurs in two phase namely liquid and vapor. The wick contains all the liquid phase and the vapor phase is mainly in the core region. Heat is applied by an external source at the evaporator section which vaporizes the working fluid in this section. This results in a pressure difference which drives the vapor to the condenser section where condenses and releases latent heat of vaporization to a heat sink in the condense section. Due to the vaporization of liquid in the evaporator, the liquid-vapor interface enters into the wick surface and hence capillary pressure is developed there. This capillary pressure causes the condensed liquid in the condenser to be pumped back to the evaporator again. The results of our investigation have enabled us to correlate such diverse information as; the thickness of the wick, the diameter of the heat pipe, the wetting angle, the capillary radius, the surface tension, the latent heat of evaporation, the permeability and porosity of the chosen wick, the length of the heat pipe, and the viscosity and density of the two phases; with the heat removal capabilities of the heat pipe. Expressions for the pressure and velocity distributions are obtained and discussed in relation to our application to BNCT. The present design clearly shows that it is possible to attain temperatures well below the melting temperature of the lithium in the BNCT application.

Blue, T.E.; Vafai, K.

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Thermal hydraulic design of a salt-cooled highly efficient environmentally friendly reactor  

E-Print Network (OSTI)

A 1 OOOMWth liquid-salt cooled thermal spectrum reactor was designed with a long fuel cycle, and high core exit temperature. These features are desirable in a reactor designed to provide process heat applications such as ...

Whitman, Joshua (Joshua J.)

2009-01-01T23:59:59.000Z

62

Preliminary design of a solar thermal propulsion technology demonstration experiment.  

E-Print Network (OSTI)

??Solar thermal propulsion (STP) is an advanced space propulsion technology wherein solar power is used to directly heat the propellant. It potentially allows for achieving… (more)

GAETANO, ANTONIO

2009-01-01T23:59:59.000Z

63

Computational Design and Experimental Validation of New Thermal...  

NLE Websites -- All DOE Office Websites (Extended Search)

State University Background Thermal barrier coating (TBC) systems safeguard modern gas turbine engines against significant temperature extremes and degradation. In order to...

64

Thermal design of heat exchanger for a swimming pool.  

E-Print Network (OSTI)

??This paper tells about what is a heat exchanger made of in terms of thermal analysis and the important tools and factors which play vital… (more)

Teka, Addisu

2012-01-01T23:59:59.000Z

65

Design of thermal imprinting system with uniform residual thickness  

Science Conference Proceedings (OSTI)

A new thermal imprinting system for the printed circuit boards (PCBs) with both large areas and fine conducting lines was developed adopting hot airs with a high pressure. Several small nickel stamps were used to cover the large area, and the stamps ... Keywords: Patterned circuit boards, Thermal imprinting system, Uniformity of residual thickness

Won-Ho Shin

2009-11-01T23:59:59.000Z

66

Peculiarities of parabolic-barrier penetrability and thermal decay rate with the quantum diffusion approach  

SciTech Connect

With the quantum diffusion approach, the passing probability through the parabolic barrier is examined in the limit of linear coupling in the momentum between the collective subsystem and environment. The dependencies of the penetrability on time, energy, and the coupling strength between the interacting subsystems are studied. The quasistationary thermal decay rate from a metastable state is considered in the cases of linear couplings both in the momentum and in the coordinate.

Kuzyakin, R. A. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Omsk State Transport University, 644046 Omsk (Russian Federation); Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

2011-06-15T23:59:59.000Z

67

Defects, thermal phenomena and design in photonic crystal systems  

E-Print Network (OSTI)

The physics of blackbodies has been an ongoing source of fascination and scientific research for over a hundred years. Kirchhoff's law states that emissivity and absorptivity are equal for an object in thermal equilibrium. ...

Chan, David Lik Chin

2006-01-01T23:59:59.000Z

68

Summary - Building C-400 Thermal Treatment Remedial Design Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paducah, KY EM Project: Building C400 Thermal Treatment ETR Report Date: August 2007 ETR-8 United States Department of Energy Office of Environmental Management (DOE-EM) External...

69

Revised noise criteria for design and rating of HVAC systems  

Science Conference Proceedings (OSTI)

This paper reviews current methods of rating the noise produced by HVAC systems and explains why these ratings fail to be correlated with subjective opinion in many cases. An entirely new method of assigning noise ratings is proposed which is expected to provide a significantly better correlation between objective measurements and subjective response. The proposed new rating method makes use of a revised set of noise criterion curves (RC curves) which appeared for the first time in Chap. 35 of the 1980 Systems Volume of the ASHRAE Handbook. This paper also discusses the technical considerations leading to the development of the RC curves as a replacement for the NC curves which have been used in the past.

Warren E. Blazier Jr.

1984-01-01T23:59:59.000Z

70

Implications of carbon cap-and-trade for electricity rate design, with examples from Florida  

Science Conference Proceedings (OSTI)

The price of CO{sub 2} emissions allowances affects the structure of the utility's costs, which has implications for rate design and load management programs. Depending on the design of the program to recover these costs, utility total revenue requirements - and the rate design utilized to recover these requirements - may be impacted. A new way to think about rate design may be required. (author)

Parmesano, Hethie; Kury, Theodore J.

2010-10-15T23:59:59.000Z

71

Synthetic aperture design for increased SAR image rate  

DOE Patents (OSTI)

High resolution SAR images of a target scene at near video rates can be produced by using overlapped, but nevertheless, full-size synthetic apertures. The SAR images, which respectively correspond to the apertures, can be analyzed in sequence to permit detection of movement in the target scene.

Bielek, Timothy P. (Albuquerque, NM); Thompson, Douglas G. (Albuqerque, NM); Walker, Bruce C. (Albuquerque, NM)

2009-03-03T23:59:59.000Z

72

Design considerations for high-data-rate chip interconnect systems  

Science Conference Proceedings (OSTI)

Over the past decade, data rates for electrical interconnects in interchip communications systems have experienced a dramatic increase from <1 Gb/s to 10 Gb/s and beyond to keep up with ever increasing demands for more I/O bandwidth from modern high-capacity ...

Troy Beukema

2010-10-01T23:59:59.000Z

73

Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)  

DOE Green Energy (OSTI)

There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

Rabas, T.; Panchal, C.; Genens, L.

1990-01-01T23:59:59.000Z

74

TTUS FP&C Design & Building Standards Division 7 Thermal & Moisture Protection  

E-Print Network (OSTI)

TTUS FP&C Design & Building Standards Division 7 ­ Thermal & Moisture Protection Division for this project. Exterior Insulation and Finish Systems (EIFS) are not allowed without permission from the TTUS & Building Standards Division 7 ­ Thermal & Moisture Protection Bituminous Waterproofing Surfaces

Gelfond, Michael

75

Optimal operation and design of solar-thermal energy storage systems  

E-Print Network (OSTI)

The present thesis focuses on the optimal operation and design of solar-thermal energy storage systems. First, optimization of time-variable operation to maximize revenue through selling and purchasing electricity to/from ...

Lizarraga-García, Enrique

2012-01-01T23:59:59.000Z

76

Synthesis and design of optimal thermal membrane distillation networks  

E-Print Network (OSTI)

Thermal membrane distillation is one of the novel separation methods in the process industry. It involves the simultaneous heat and mass transfer through a hydrophobic semipermeable membrane through the use of thermal energy to bring about the separation of a feed mixture into two streams- a permeate and a retentate stream. Traditionally, studies on this technology have focused on the performance of individual modules as a function of material of the membrane and also configuration of the membrane. However, an investigation into the performance of a network of these modules has not been conducted in the past. A hierarchical parametric programming technique for synthesis of an optimal network of these modules is presented. A global mass allocation representation involving sources and sinks was used to solve the problem and derive criteria for optimality in specific regions of the parametric space. Two case studies have been presented to illustrate the applicability of the presented methodology.

Nyapathi Seshu, Madhav

2005-08-01T23:59:59.000Z

77

Magnet cold mass high load supports thermal response and performance design correlation  

SciTech Connect

Through General Dynamics Convair Division's experience in the design, detail analysis, and manufacturing of structural supports for superconducting magnet cryostats suspended in a vacuum enclosure, a data base, well suited for the development of correlations of pertinent thermal performance criteria for stainless steel supports, has been created. The thermal requirements of these supports in fusion applications are well defined for the Mirror Fusion Test Facility (MFTF) and have been analyzed in detail for cool-down response and steady-state performance, using Convair's THERMAL ANALYZER computer program. From the output of these thermal conditioning simulations, correlations were developed for magnet LHe heating from supports in terms of strut geometric parameters.

Jones, G.R.; Christensen, E.H.

1984-09-01T23:59:59.000Z

78

Design and characterization of nanowire array as thermal interface material for electronics packaging  

E-Print Network (OSTI)

To allow electronic devices to operate within allowable temperatures, heat sinks and fans are employed to cool down computer chips. However, cooling performance is limited by air gaps between the computer chip and the heat sink, due to the fact that air is a poor heat conductor. To alleviate this problem, thermal interface material (TIM) is often applied between mating substrates to fill air gaps. Carbon nanotube (CNT) based TIM has been reported to have excellent thermal impedance; however, because it is non biodegradable, its potential impact on the environment is a concern. In this thesis research, two types of TIMs were designed, synthesized, and characterized. The first type, Designed TIM 1, consisted of anodic aluminum oxide (AAO) templates with nanochannels (pore size=80nm) embedded with copper nanowires by electrodeposition. This type of nanostructure was expected to have low thermal impedance because the forest-like structure of copper nanowires can bridge two mating surfaces and efficiently transport heat one dimensionally from one substrate to the other. The second type, Designed TIM 2, was fabricated by sandwiching Designed TIM 1 with commercially available thermal grease to further reduce thermal impedance. It was expected that the copper nanowire structures would secure the thermal grease in place, thus preventing grease pump-out under contact pressure, which is a common problem associated with the usage of thermal grease. The morphologies of the two designed TIMs were studied using scanning electron microscopy (SEM), and their thermal properties were determined using ASTM D5470-06, the standard method for testing thermal transmission properties of thermally conductive materials. Experiments were conducted to evaluate the proposed TIMs, as well as commercially available TIMs, under different temperature and pressure settings. Experimental results suggest that the thermal impedance of TIMs can be reduced by increasing contact pressure or reducing thickness. Designed TIM 2 yielded 0.255?-cm2/W, which is lower than thermal grease and other available TIMs at the operating temperature of 50 to 60?. Considering the application limitations and safety issues of thermal grease, phase change material, and CNT-based TIMs, our designed TIMs are safe and promising for future applications.

Chiang, Juei-Chun

2008-12-01T23:59:59.000Z

79

Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies  

SciTech Connect

This document has been prepared to assist research reactor operators possessing spent fuel containing enriched uranium of United States origin to prepare part of the documentation necessary to ship this fuel to the United States. Data are included on the nuclear mass inventory, photon dose rate, and thermal decay heat of spent research reactor fuel assemblies. Isotopic masses of U, Np, Pu and Am that are present in spent research reactor fuel are estimated for MTR, TRIGA and DIDO-type fuel assembly types. The isotopic masses of each fuel assembly type are given as functions of U-235 burnup in the spent fuel, and of initial U-235 enrichment and U-235 mass in the fuel assembly. Photon dose rates of spent MTR, TRIGA and DIDO-type fuel assemblies are estimated for fuel assemblies with up to 80% U-235 burnup and specific power densities between 0.089 and 2.857 MW/kg[sup 235]U, and for fission product decay times of up to 20 years. Thermal decay heat loads are estimated for spent fuel based upon the fuel assembly irradiation history (average assembly power vs. elapsed time) and the spent fuel cooling time.

Pond, R.B.; Matos, J.E.

1996-12-31T23:59:59.000Z

80

Ocean thermal energy conversion (OTEC) power system development. Conceptual design  

DOE Green Energy (OSTI)

The conceptual design of a power system for application to the OTEC 100-MWe Demonstration Plant is presented. System modeling, design, and performance are described in detail. Materials considerations, module assembly, and cost considerations are discussed. Appendices include: A) systems analysis, B) general arrangements, C) system equipment, D) ammonia system material considerations; E) ammonia cycle, F) auxiliary subsystems, G) DACS availability analysis, H) heat exchanger supporting data, I) rotating machinery, and J) platform influences. (WHK)

Not Available

1978-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Need for a Full-Chip and Package Thermal Model for Thermally Optimized IC Designs  

E-Print Network (OSTI)

ceramic ball-grid array (CBGA) pack- age consisting of the chip (die), thermal interface material, heat to the heat spreader. The fact that detailed package information is needed to build an accurate com- pact spreader, heat sink and other layers of packaging components is shown in Fig. 1. Through this package, heat

Skadron, Kevin

82

Design and construction of a demonstration residence utilizing natural thermal storage  

DOE Green Energy (OSTI)

The Brookhaven House is an energy conserving residence which demonstrates how thermal mass combined with solar energy can be used to reduce heating costs in a conventional single-family house. The purpose of the project was to develop a prototypical house design that could result in immediate energy savings by being an acceptable, attractive design to developers, builders, and home buyers. Investigations were limited to only materials and methods of construction that were considered presently available and of Natural Thermal Storage design. Natural thermal storage is simply the heat storage obtained through architectural application of massive building materials integrated into the living space and structure of a residence. The research work involved analyzing many buildable configurations of thermal mass and combining their potential benefit with a variety of energy sources. It has been concluded that relatively thin mass walls of masonry directly irradiated through a multiglazed south facing aperture can significantly reduce annual heating requirements.

Jones, R.F.; Ghaffari, H.T.

1981-01-01T23:59:59.000Z

83

Multiphysics Design and Simulation of a Tungsten-Cermet Nuclear Thermal Rocket  

E-Print Network (OSTI)

The goal of this research is to apply modern methods of analysis to the design of a tungsten-cermet Nuclear Thermal Rocket (NTR) core. An NTR is one of the most viable propulsion options for enabling piloted deep-space exploration. Concerns over fuel safety have sparked interest in an NTR core based on tungsten-cermet fuel. This work investigates the capability of modern CFD and neutronics codes to design a cermet NTR, and makes specific recommendations for the configuration of channels in the core. First, the best CFD practices available from the commercial package Star-CCM+ are determined by comparing different modeling options with a hot-hydrogen flow experiment. Next, through grid convergence and sensitivity studies, numerical uncertainty is shown to be a small contributor to overall uncertainty; while fuel thermal conductivity, hydrogen specific heat, and fission energy deposition are found to have a large impact on simulation uncertainty. The model-form error is then estimated by simulation of a NERVA fuel element from an NRX-A6 engine test, where the peak temperature matches measured data to within 2.2%. Using a combination of Star-CCM+ and MCNP for neutronics, typical uncertainties are estimated at 3% for predicting fuel temperature, 2% for hydrogen temperature, and 5% for pressure. The second part uses the aforementioned analysis methods in a parametric study to determine what coolant channel size and distribution is optimum for a 10 klbf-thrust cermet NTR core. By varying the channel diameter and pitch-to-diameter ratio (p/d), it is found that a diameter of 0.12 cm with a p/d of 1.8 results in the lightest core with a peak temperature of 2850 K. The study also shows that element-by-element mass flow rate zoning is the best method for handling radial power peaking. In addition, a detailed simulation of a cermet design developed at the Argonne National Laboratory shows that modifications to the historical fuel element design are required to avoid overheating. The final part investigates the ability of Star-CCM+ to model fuel element failure modes. Through a combination of uncertainty quantification and a parametric analysis, this thesis ultimately lays a groundwork for future detailed design of cermet NTR fuel elements.

Appel, Bradley

2012-08-01T23:59:59.000Z

84

The Impact of Rate Design and Net Metering on the Bill Savings from  

E-Print Network (OSTI)

LBNL-3276E The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV Energy (Solar Energy Technologies Program) and the Office of Electricity Delivery and Energy Reliability of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers

85

Accurate quantum thermal rate constants for the three-dimensional H+H/sub 2/ reaction  

SciTech Connect

The rate constants for the three-dimensional H+H/sub 2/ reaction on the Liu--Siegbahn--Truhlar--Horowitz (LSTH) surface are calculated using Pack--Parker hyperspherical (APH) coordinates and a /ital C//sub 2/ital v// symmetry adapted direct product discrete variable representation (DVR). The /ital C//sub 2/ital v// symmetry decomposition and the parity decoupling on the basis are performed for the internal coordinate xi. The symmetry decomposition results in a block diagonal representation of the flux and Hamiltonian operators. The multisurface flux is introduced to represent the multichannel reactive flux. The eigenvalues and eigenvectors of the /ital J/=0 internal Hamiltonian are obtained by sequential diagonalization and truncation. The individual symmetry blocks of the flux operator are propagated by the corresponding blocks of the Hamiltonian, and the /ital J/=0 rate constant /ital k//sup 0/(/ital T/) is obtained as a sum of the rate constants calculated for each block. /ital k//sup 0/(/ital T/) is compared with the exact /ital k//sup 0/(/ital T/) obtained from thermal averaging of the /ital J/=0 reaction probabilities; the errors are within 5%--20% up to /ital T/=1500 K. The sequential diagonalization--truncation method reduces the size of the Hamiltonian greatly, but the resulting Hamiltonian matrix still describes the time evolution very accurately. For the /ital J//ne/0 rate constant calculations, the truncated internal Hamiltonian eigenvector basis is used to construct reduced (/ital JK//sub /ital J//) blocks of the Hamiltonian. The individual (/ital JK//sub /ital J//) blocks are diagonalized neglecting Coriolis coupling and treating the off-diagonal /ital K//sub /ital J//+-2 couplings by second order perturbation theory. The full wave function is parity decoupled. The rate constant is obtained as a sum over /ital J/ of (2/ital J/+1)/ital k//sup /ital J//(/ital T/).

Park, T. J.; Light, J. C.

1989-07-15T23:59:59.000Z

86

Microsoft Word - Lamellae tungsten tile design thermal and electromagnetic stress analysis_Final.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Lamellae tungsten tile design transient Lamellae tungsten tile design transient thermal/ electromagnetic stress analysis Thomas Willard*, Rui Vieira, Samuel Pierson MIT Plasma Science and Fusion Center, Cambridge, MA 02139 8 June 2006 Abstract A transient thermal/ electromagnetic stress analysis of the lamellae tungsten tile design has been performed to determine if the design is adequate to meet the maximum design load conditions of 12 MW/ m 2 uniform heat flux for 5 seconds (single pulse, no Diverter Plate temperature ratcheting) , superimposed on the electromagnetic body load due to eddy currents generated by disruptions. The results show that the design is adequate, with the stresses in the tungsten lamellae and the TZM molybdenum hardware less than the ultimate strength of

87

Utility rate structures and distributed thermal energy storage: a cost/benefit analysis. Basic research report, October 1978-February 1979  

SciTech Connect

This paper examines three alternative methods by which electric utilities might take advantage of distributed thermal energy storage to smooth out their load profiles. These three methods are: time-specific rates, time-invariant rates with subsidized storage, and direct load controls. The optimal form of each of these policies is determined, and formulas indicating the relative desirability of each policy are developed.

Koening, E.F.; Cambel, A.B.

1979-02-01T23:59:59.000Z

88

Design, cost, and performance comparisons of several solar thermal systems for process heat. Volume III. Receivers  

DOE Green Energy (OSTI)

The receiver subsystem converts reflected solar radiation into thermal power by heating a working fluid. The objective of the task described was to estimate the cost and performance of the receiver subsystem for parabolic troughs, parabolic dishes, and central receivers over a wide range of temperatures and power levels for thermal power applications. This volume presents the fundamental design philosophy employed, the constraints identified, the tradeoffs performed and the cost and performance results obtained for each receiver in the study matrix.

Woodard, J.B. Jr.

1981-03-01T23:59:59.000Z

89

Effects of engine speed, fueling rate, and combustion phasing on the thermal stratification required to limit HCCI knocking intensity.  

DOE Green Energy (OSTI)

Thermal stratification has the potential to reduce pressure-rise rates and allow increased power output for HCCI engines. This paper systematically examines how the amount of thermal stratification of the core of the charge has to be adjusted to avoid excessive knock as the engine speed and fueling rate are increased. This is accomplished by a combination of multi-zone chemical-kinetics modeling and engine experiments, using iso-octane as the fuel. The experiments show that, for a low-residual engine configuration, the pressure traces are self-similar during changes to the engine speed when CA50 is maintained by adjusting the intake temperature. Consequently, the absolute pressure-rise rate measured as bar/ms increases proportionally with the engine speed. As a result, the knocking (ringing) intensity increases drastically with engine speed, unless counteracted by some means. This paper describes how adjustments of the thermal width of the in-cylinder charge can be used to limit the ringing intensity to 5 MW/m2 as both engine speed and fueling are increased. If the thermal width can be tailored without constraints, this enables smooth operation even for combinations of high speed, high load, and combustion phasing close to TDC. Since large alterations of the thermal width of the charge are not always possible, combustion retard is considered to reduce the requirement on the thermal stratification. The results show that combustion retard carries significant potential since it amplifies the benefit of a fixed thermal width. Therefore, the thermal stratification required for operation with an acceptable knocking intensity can be decreased substantially by the use of combustion retard. This enables combinations of high engine speed and high fueling rate even for operation with the naturally occurring thermal stratification. However, very precise control of the combustion phasing will likely be required for such operation.

SjÞoberg, Magnus; Dec, John E.

2004-12-01T23:59:59.000Z

90

Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)  

DOE Green Energy (OSTI)

Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

2013-02-01T23:59:59.000Z

91

Design and Fabrication of Photonic Crystals for Thermal Energy Conservation  

DOE Green Energy (OSTI)

The vision of intelligent and large-area fabrics capable of signal processing, sensing and energy harvesting has made incorporating electronic devices into flexible fibers an active area of research. Fiber-integrated rectifying junctions in the form of photovoltaic cells and light-emitting diodes (LEDs) have been fabricated on optical fiber substrates. However, the length of these fiber devices has been limited by the processing methods and the lack of a sufficiently conductive and transparent electrode. Their cylindrical device geometry is ideal for single device architectures, like photovoltaics and LEDs, but not amenable to building multiple devices into a single fiber. In contrast, the composite preform-to-fiber approach pioneered in our group addresses the key challenges of device density and fiber length simultaneously. It allows one to construct structured fibers composed of metals, insulators and semiconductors and enables the incorporation of many devices into a single fiber capable of performing complex tasks such as of angle of incidence and color detection. However, until now, devices built by the preform-to-fiber approach have demonstrated only ohmic behavior due to the chalcogenide semiconductor's amorphous nature and defect density. From a processing standpoint, non-crystallinity is necessary to ensure that the preform viscosity during thermal drawing is large enough to extend the time-scale of breakup driven by surface tension effects in the fluids to times much longer than that of the actual drawing. The structured preform cross-section is maintained into the microscopic fiber only when this requirement is met. Unfortunately, the same disorder that is integral to the fabrication process is detrimental to the semiconductors' electronic properties, imparting large resistivities and effectively pinning the Fermi level near mid-gap. Indeed, the defect density within the mobility gap of many chalcogenides has been found to be 1018-1019 cm-3 eV-1, resulting in a narrow depletion width and ohmic behavior at metal-semiconductor junctions. In this work we incorporated phase-changing semiconductors, those that may be easily converted between the amorphous and crystalline states, into composite fibers with a goal towards constructing rectifying junctions in fiber.

Professor John Joannopoulos; Professor Yoel Fink

2009-09-17T23:59:59.000Z

92

Computer code input for thermal hydraulic analysis of Multi-Function Waste Tank Facility Title II design  

Science Conference Proceedings (OSTI)

The input files to the P/Thermal computer code are documented for the thermal hydraulic analysis of the Multi-Function Waste Tank Facility Title II design analysis.

Cramer, E.R.

1994-10-01T23:59:59.000Z

93

Channel specific rate constants relevant to the thermal decomposition of disilane.  

SciTech Connect

Rate constants for the thermal dissociation of Si{sub 2}H{sub 6} are predicted with a novel transition state model. The saddle points for dissociation on the Si{sub 2}H{sub 6} potential energy surface are lower in energy than the corresponding separated products, as confirmed by high level ab initio quantum mechanical calculations. Thus, the dissociations of Si{sub 2}H{sub 6} to produce SiH{sub 2} + SiH{sub 4} (R1) and H{sub 3}SiSiH + H{sub 2} (R2) both proceed through tight inner transition states followed by loose outer transition states. The present 'dual' transition state model couples variational phase space theory treatments of the outer transition states with ab initio based fixed harmonic vibrator treatments of the inner transition states to obtain effective numbers of states for the two transition states acting in series. It is found that, at least near room temperature, such a dual transition state model is generally required for the proper description of each of the dissociations. Only at quite high temperatures, i.e., above 2000 K for (R1) and 600 K for (R2), does a single fixed inner transition state provide an adequate description. Similarly, only at quite low temperatures (below 100 and 10 K for (R1) and (R2), respectively) does a single outer transition state provide an adequate description. Pressure dependent rate constants are obtained from solutions to the multichannel master equation. These calculations confirm that dissociation channel (R2) is negligible under conditions relevant to the thermal chemical vapor deposition (CVD) processes. Rate constants for the chemical activation reactions, SiH{sub 2} + SiH{sub 4} {yields} Si{sub 2}H{sub 6} (R-1) and SiH{sub 2} + SiH{sub 4} {yields} H{sub 3}SiSiH + H{sub 2} (R3), are also evaluated within the dual transition state model. It is found that reaction R3 is the dominant channel for low pressures and high temperatures, i.e., below 100 Torr for temperatures above 1100 K.

Matsumoto, Keiji (University of Tokyo, Tokyo, Japan); Klippenstein, Stephen J.; Koshi, Mitsuo (University of Tokyo, Tokyo, Japan); Tonokura, Kenichi (University of Tokyo, Tokyo, Japan)

2005-01-01T23:59:59.000Z

94

Neutronic and thermal design considerations for heat-pipe reactors  

SciTech Connect

SABRE (Space-Arena Baseline Reactor) is a 100-kW/sub e/, heat-pipe-cooled, beryllium-reflected, fast reactor that produces heat at a temperature of 1500/sup 0/K and radiatively transmits it to high-temperature thermoelectric (TE) conversion elements. The use of heat pipes for core heat removal eliminates single-point failure mechanisms in the reactor cooling system, and provides minimal temperature drop radiative coupling to the TE array, as well as automatic, self-actuating removal of reactor afterheat. The question of how the failure of a fuel module heat pipe will affect neighboring fuel modules in the core is discussed, as is fission density peaking that occurs at the core/reflector interface. Results of neutronic calculations of the control margin available are described. Another issue that is addressed is that of helium generation in the heat pipes from neutron reactions in the core with the heat pipe fluid. Finally, the growth potential of the SABRE design to much higher powers is examined.

Ranken, W.A.; Koenig, D.R.

1983-01-01T23:59:59.000Z

95

Solar Pilot Plant, Phase I. Preliminary design report. Volume V. Thermal storage subsystem. CDRL item 2  

DOE Green Energy (OSTI)

Design, specifications, and diagrams for the thermal storage subsystem for the 10-MW pilot tower focus power plant are presented in detail. The Honeywell thermal storage subsystem design features a sensible heat storage arrangement using proven equipment and materials. The subsystem consists of a main storage containing oil and rock, two buried superheater tanks containing inorganic salts (Hitec), and the necessary piping, instrumentation, controls, and safety devices. The subsystem can provide 7 MW(e) for three hours after twenty hours of hold. It can be charged in approximately four hours. Storage for the commercial-scale plant consists of the same elements appropriately scaled up. Performance analysis and tradeoff studies are included.

None

1977-05-01T23:59:59.000Z

96

STDAC: Solar Thermal Design Assistance Center annual report fiscal year 1994  

DOE Green Energy (OSTI)

The Solar Thermal Design Assistance Center (STDAC) at Sandia is a resource provided by the DOE Solar Thermal Program. The STDAC`s major objective is to accelerate the use of solar thermal systems by providing direct technical assistance to users in industry, government, and foreign countries; cooperating with industry to test, evaluate, and develop renewable energy systems and components; and educating public and private professionals, administrators, and decision makers. This FY94 report highlights the activities and accomplishments of the STDAC. In 1994, the STDAC continued to provide significant direct technical assistance to domestic and international organizations in industry, government, and education, Applying solar thermal technology to solve energy problems is a vital element of direct technical assistance. The STDAC provides information on the status of new, existing, and developing solar technologies; helps users screen applications; predicts the performance of components and systems; and incorporates the experience of Sandia`s solar energy personnel and facilities to provide expert guidance. The STDAC directly enhances the US solar industry`s ability to successfully bring improved systems to the marketplace. By collaborating with Sandia`s Photovoltaic Design Assistance Center and the National Renewable Energy Laboratory the STDAC is able to offer each customer complete service in applying solar thermal technology. At the National Solar Thermal Test Facility the STDAC tests and evaluates new and innovative solar thermal technologies. Evaluations are conducted in dose cooperation with manufacturers, and the results are used to improve the product and/or quantify its performance characteristics. Manufacturers, in turn, benefit from the improved design, economic performance, and operation of their solar thermal technology. The STDAC provides cost sharing and in-kind service to manufacturers in the development and improvement of solar technology.

NONE

1994-12-31T23:59:59.000Z

97

The Impact of Rate Design and Net Metering on the Bill Savings from  

Open Energy Info (EERE)

Impact of Rate Design and Net Metering on the Bill Savings from Impact of Rate Design and Net Metering on the Bill Savings from Distributed Photovoltaics (PV) for Residential Customers in California Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Impact of Rate Design and Net Metering on the Bill Savings from Distributed Photovoltaics (PV) for Residential Customers in California Focus Area: Renewable Energy Topics: Best Practices Website: eetd.lbl.gov/ea/emp/reports/lbnl-3276e.pdf Equivalent URI: cleanenergysolutions.org/content/impact-rate-design-and-net-metering-b Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This report analyzes the bill savings from photovoltaic (PV) deployment for residential customers of California's two largest electric utilities -

98

Conceptual design and engineering studies of adiabatic compressed air energy storage (CAES) with thermal energy storage  

DOE Green Energy (OSTI)

The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)

Hobson, M. J.

1981-11-01T23:59:59.000Z

99

Thermal-sprayed, thin-film pyrite cathodes for thermal batteries -- Discharge-rate and temperature studies in single cells  

DOE Green Energy (OSTI)

Using an optimized thermal-spray process, coherent, dense deposits of pyrite (FeS{sub 2}) with good adhesion were formed on 304 stainless steel substrates (current collectors). After leaching with CS{sub 2} to remove residual free sulfur, these served as cathodes in Li(Si)/FeS{sub 2} thermal cells. The cells were tested over a temperature range of 450 C to 550 C under baseline loads of 125 and 250 mA/cm{sup 2}, to simulate conditions found in a thermal battery. Cells built with such cathodes outperformed standard cells made with pressed-powder parts. They showed lower interracial resistance and polarization throughout discharge, with higher capacities per mass of pyrite. Post-treatment of the cathodes with Li{sub 2}O coatings at levels of >7% by weight of the pyrite was found to eliminate the voltage transient normally observed for these materials. Results equivalent to those of standard lithiated catholytes were obtained in this manner. The use of plasma-sprayed cathodes allows the use of much thinner cells for thermal batteries since only enough material needs to be deposited as the capacity requirements of a given application demand.

GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.; DAI,JINXIANG; XIAO,T. DANNY; REISNER,DAVID

2000-05-25T23:59:59.000Z

100

Analysis and thermal-design improvements of downhole tools for use in hot-dry wells  

DOE Green Energy (OSTI)

Design improvements made for downhole thermal protection of systems based on results obtained from the analysis of the electronics, heat sink, and dewar packaged in a steel tubular body are described. Results include heat flux at the tool surface, temperature-time histories of each subsystem and isotherm contour plots during the simulation. The analysis showed that the thermal potential between the electronics and the heat sink was in the wrong direction and also was too small to remove heat entering the electronics section. Also, the conductance of the available heat transfer paths from electronics to heat sink was too small to remove that heat efficiently. Significant improvements in survival at high temperatures were achieved by increasing the available thermal capacity of the heat sink, increasing the thermal potential between the heat sink and electronics, and vastly increasing the conductance of the heat transfer paths.

Bennett, G.A.; Sherman, G.R.

1983-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

SOLCOST - Version 3. 0. Solar energy design program for non-thermal specialists  

DOE Green Energy (OSTI)

The SOLCOST solar energy design program is a public domain computerized design tool intended for use by non-thermal specialists to size solar systems with a methodology based on life cycle cost. An overview of SOLCOST capabilities and options is presented. A detailed guide to the SOLCOST input parameters is included. Sample problems showing typical imput decks and resulting SOLCOST output sheets are given. Details of different parts of the analysis are appended. (MHR)

Not Available

1980-05-01T23:59:59.000Z

102

Molten salt thermal energy storage systems: system design. [LiKCO/sub 3/ mixture  

DOE Green Energy (OSTI)

A five-task research program aimed at the development of molten salt thermal energy storage systems commenced in June 1976. The first topical report, covering Task 1, the selection of suitable salt systems for storage at 850 to 1000/sup 0/F, was issued in August 1976. It was concluded that a 35 Wt percent Li/sub 2/CO/sub 3/-65 Wt percent K/sub 2/CO/sub 3/ (LiKCO/sub 3/) mixture was most suitable for the purpose. Interrelationships between various design parameters were examined using the available solutions, and an engineering-scale storage unit was designed. This unit has an annular configuration with a 1-ft OD, 1.5-ft high, 2-in. dia heat transfer well. Preliminary experiments on a pilot size (3-in. OD) unit showed that temperature profiles and progress of the solid-liquid interface agreed with those predicted theoretically. Also, no supercooling was observed during cooldown, and the presence of significant convective mixing was indicated by negligible temperature gradients. Use of a lithium aluminate volume-change suppressor was investigated, but it appears to be nonessential because of the low volume-change in the LiKCO/sub 3/ system. Consideration of the relative heat-transfer resistances under practical conditions suggested that the use of a conductivity promoter will enhance the heat-transfer rates, thereby requiring smaller heat-transfer areas. Different configurations and materials were considered for this application; an aluminum wool appears to be most suitable. The corrosion resistance of various construction materials was investigated. Stainless steels and aluminum appear to be suitable construction materials for carbonates in the 850 to 1000/sup 0/F range. Testing of the engineering-scale system (Task 3) and verification of the conclusions derived under Task 2 are in progress.

Maru, H.C.; Kardas, A.; Huang, V.M.; Dullea, J.F.; Paul, L.; Marianowski, L.G.

1977-02-01T23:59:59.000Z

103

Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle  

E-Print Network (OSTI)

for fuel cells and advanced heavy-duty hybrid electric vehicles. He also has experience with alternativeTopology, design, analysis and thermal management of power electronics for hybrid electric vehicle an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits

Mi, Chunting "Chris"

104

INTEGRATING THE DESIGN AND RELIABILITY ASSESSMENT OF A HYBRID PV-THERMAL MICROCONCENTRATOR SYSTEM  

E-Print Network (OSTI)

INTEGRATING THE DESIGN AND RELIABILITY ASSESSMENT OF A HYBRID PV-THERMAL MICROCONCENTRATOR SYSTEM M that the materials from the power electronics industry are also reliable when used in a concentrator PV module and reliability testing have been integrated as concurrent processes, enabling the early optimisation

105

Building Design and Operation for Improving Thermal Comfort in Naturally Ventilated Buildings in a Hot-Humid Climate  

E-Print Network (OSTI)

The goal of this research was to develop new techniques for designing and operating unconditioned buildings in a hot-humid climate that could contribute to an improvement of thermal performance and comfort condition. The recommendations proposed in this research will also be useful for facility managers on how to maintain unconditioned buildings in this climate. This study investigated two unconditioned Thai Buddhist temples located in the urban area of Bangkok, Thailand. One is a 100-year-old, high-mass temple. The other is a 5-year-old, lower-mass temple. The indoor measurements revealed that the thermal condition inside both temples exceed the ASHRAE-recommended comfort zone. Surprisingly, the older temple maintained a more comfortable indoor condition due to its thermal inertia, shading, and earth contacts. A baseline thermal and airflow model of the old temple was established using a calibrated computer simulation method. To accomplish this, HEATX, a 3-D Computational Fluid Dynamics (CFD) code, was coupled with the DOE-2 thermal simulation program. HEATX was used to calculate the airflow rate and the surface convection coefficients for DOE-2, and DOE-2 was used to provide physical input variables to form the boundary conditions for HEATX. In this way calibrated DOE-2/CFD simulation model was accomplished, and the baseline model was obtained. To investigate an improved design, four design options were studied: 1) a reflective or low-solar absorption roof, 2) R-30 ceiling insulation, 3) shading devices, and 4) attic ventilation. Each was operated using three modes of ventilation. The low-absorption roof and the R-30 ceiling insulation options were found to be the most effective options, whereas the shading devices and attic ventilation were less effective options, regardless of which ventilation mode was applied. All design options performed much better when nighttime-only ventilation was used. Based on this analysis, two prototype temples was proposed (i.e., low-mass and high-mass temples). From the simulation results of the two prototypes, design and operation guidelines are proposed, which consist of: 1) increased wall and ceiling insulation, 2) white-colored, low-absorption roof, 3) slab-on-ground floor, 4) shading devices, 5) nighttime-only ventilation, 6) attic ventilation, and 7) wider openings to increase the natural ventilation air flow windows, wing walls, and vertical fins.

Sreshthaputra, Atch

2007-11-29T23:59:59.000Z

106

Comparison of Methods for Evaluating Nuclear Thermal Propulsion Tie-Tube Designs  

Science Conference Proceedings (OSTI)

One of the fundamental structural components in a nuclear thermal rocket design is the tie tube. Proper cooling and flow modeling is important both for the structural integrity of the reactor core and for proper design of downstream components that operate on the hydrogen exiting the tie tube. Two models have been developed. The first is a spreadsheet-based tool designed for sizing tie-tube components, considering mechanical stress and strain limits, deposited moderator power, thermal expansion along the flow path, and conduction from adjacent fuel blocks. The second is a three-dimensional SINDA/FLUINT model used as a benchmark, containing a complete finite-element fuel block and a 1/6th tie-tube model. This paper discusses the performance of both models, as well as the advantages and limitations of each.

Kapernick, Richard J. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Dixon, David D. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

2008-01-21T23:59:59.000Z

107

Design of cold water pipe for sea thermal power plants. Progress report, 1 May 1975--30 May 1976  

DOE Green Energy (OSTI)

This report covers the preliminary analysis of design conditions for a 40-ft. diameter, 4000 ft. long, cold water supply pipe for a 100 MW sea thermal power plant. The pipe is assumed to be freely suspended from a floating platform. The design is based on a circular row of tubes with spacers between to form the pipe wall. Internal pressure conditions are calculated for maximum assumed flow rates in the pipe. External pressure distribution is calculated for maximum assumed ocean current velocity. Drag and moment distributions are calculated for the pipe loaded with an assumed current velocity profile and buoyancy distribution. Collapse stability calculations are made for the pipe and for the individual tubes. Tube and spacer interaction stresses are calculated for the combined pressure, bending moment, and tensile loads imposed on the pipe. Preliminary analysis is performed on a flexible pipe support system capable of isolating the pipe from the platform during any sea state likely to be encountered by a sea thermal power plant. It is concluded that the basic design is feasible and justifies more precise analysis.

Anderson, J.H.

1976-06-01T23:59:59.000Z

108

Effect of design parameter changes on the performance of thermal storage wall passive systems  

DOE Green Energy (OSTI)

Hour-by-hour computer simulations based on one year of solar radiation and temperature data are used to analyze annual energy savings in thermal storage wall passive designs, both Trombe wall and water wall cases. The calculations are rerun many times changing various parameters one at a time to assess the effect on performance. Parameters analyzed are: night insulation R-value, number of glazings, wall absorptance and emittance, thermal storage capacity, Trombe wall properties and vent area size, additional building mass, and temperature control set points. Calculations are done for eight cities.

McFarland, R.D.; Balcomb, J.D.

1979-01-01T23:59:59.000Z

109

Design sensitivity analysis and optimization of steady fluid-thermal systems  

E-Print Network (OSTI)

Design optimization of fluid-thermal systems has been an area of significant research interest for the aerospace and automotive industry. The subject studies the modification of internal and external flow passages under certain specified objective constraints while satisfying the governing flow equations. Amongst various available optimization procedures the analytical sensitivity analyses-based optimization is arguably the most efficient design tool for complex multi-dimensional practical problems. In this paper, we augmented the analysis capabilities of the computational fluid dynamics (CFD) code with design sensitivity analysis (DSA). The design sensitivities are computed efficiently via analytical differentiation methods. The CFD DSA codes are then combined with numerical optimization schemes. Finally, CFD DSA design optimization algorithm is applied to the optimization of heat exchanger fin and HVAC duct systems. 2001 Elsevier Science B.V. All rights reserved.

Balagangadhar; Uid-thermal Systems

2001-01-01T23:59:59.000Z

110

Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

427 427 Rev. 1 U.S. Department of Energy Office of Environmental Management Paducah Gaseous Diffusion Plant (PGDP) Review Report: Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation, PGDP, Paducah Kentucky 15 August 2007 Paducah Gaseous Diffusion Plant (PGDP) Paducah KY Paducah Gaseous Diffusion Plant (PGDP) Paducah KY Prepared for: Office of Groundwater and Soil Remediation Office of Engineering and Technology Review Report - C-400 Thermal Remediation PGDP WSRC-STI-2007-00427 rev. 1 Cover Photo: Oblique view overhead photograph of the Department of Energy Paducah Gaseous Diffusion Plant near Paducah KY. The TCE source area targeted for thermal treatment is located near the center of the photograph. .

111

Conceptual design of an open-cycle ocean thermal energy conversion net power-producing experiment (OC-OTEC NPPE)  

DOE Green Energy (OSTI)

This report describes the conceptual design of an experiment to investigate heat and mass transfer and to assess the viability of open-cycle ocean thermal energy conversion (OC-OTEC). The experiment will be developed in two stages, the Heat- and Mass-Transfer Experimental Apparatus (HMTEA) and the Net Power-Producing Experiment (NPPE). The goal for the HMTEA is to test heat exchangers. The goal for the NPPE is to experimentally verify OC-OTEC's feasibility by installing a turbine and testing the power-generating system. The design effort met the goals of both the HMTEA and the NPPE, and duplication of hardware was minimal. The choices made for the design resource water flow rates are consistent with the availability of cold and warm seawater as a result of the seawater systems upgrade carried out by the US Department of Energy (DOE), the state of Hawaii, and the Pacific International Center for High Technology Research. The choices regarding configuration of the system were made based on projected performance, degree of technical risk, schedule, and cost. The cost for the future phase of the design and the development of the HMTEA/NPPE is consistent with the projected future program funding levels. The HMTEA and NPPE were designed cooperatively by PICHTR, Argonne National Laboratory, and Solar Energy Research Institute under the guidance of DOE. The experiment will be located at the DOE's Seacoast Test Facility at the Natural Energy Laboratory of Hawaii, Kailua-Kona, Hawaii. 71 refs., 41 figs., 34 tabs.

Bharathan, D.; Green, H.J.; Link, H.F.; Parsons, B.K.; Parsons, J.M.; Zangrando, F.

1990-07-01T23:59:59.000Z

112

Thermal-Hydrologic Sensitivity Analysis of Engineered Barrier System Design Options  

Science Conference Proceedings (OSTI)

This sensitivity study presents the effects that changing the ventilation time and initial linear power loading can have on specific thermal-hydrologic response parameters, such as waste package peak temperatures. Results show that an approximate 55 C drop in waste package peak temperature can be expected from the reference case design if the initial line loading is reduced to 0.90 kW/m or if the ventilation time is increased to 125 years. Increasing the waste package to waste package spacing in order to reduce the linear load to 0.90 kW/m requires additional emplacement drifts and an expansion of the area that the repository occupies. Increasing the ventilation duration requires that the repository remains open and is maintained for long periods of time. The effectiveness and expense of each design alternative must be weighed in determining the best way to achieve a particular thermal goal. Also, this sensitivity study shows that certain thermal goals may not be reached if only using ventilation, sometimes only the reduction of the linear load or a combination of linear loading and ventilation can reduce the thermal response to lower temperature specifications, if considered. As an example, Figure 1 shows that waste package peak temperatures below 96 C would require both a reduction in the linear load and an increase in ventilation duration.

B. Dunlap

2000-11-01T23:59:59.000Z

113

Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report  

DOE Green Energy (OSTI)

Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse ({approx}900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial applications as well as open loop systems for direct nuclear thermal propulsion. Although a number of fast spectrum reactor and engine designs suitable for direct nuclear thermal propulsion were proposed and designed, none were built. This report summarizes status results of evaluations of small nuclear reactor designs suitable for direct nuclear thermal propulsion.

Bruce G. Schnitzler

2012-01-01T23:59:59.000Z

114

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

Marketing > RATES Marketing > RATES RATES Current Rates Past Rates 2006 2007 2008 2009 2010 2011 2012 Rates Schedules Power CV-F13 CPP-2 Transmissions CV-T3 CV-NWT5 PACI-T3 COTP-T3 CV-TPT7 CV-UUP1 Ancillary CV-RFS4 CV-SPR4 CV-SUR4 CV-EID4 CV-GID1 Future and Other Rates SNR Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K)

115

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning & Projects Planning & Projects Power Marketing Rates You are here: SN Home page > Power Marketing > RATES Rates and Repayment Services Rates Current Rates Power Revenue Requirement Worksheet (FY 2014) (Oct 2013 - Sep 2014) (PDF - 30K) PRR Notification Letter (Sep 27, 2013) (PDF - 959K) FY 2012 FP% True-Up Calculations(PDF - 387K) Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) PRR Forecast FY14-FY17 (May 23, 2013) (PDF - 100K) Forecasted Transmission Rates (May 2013) (PDF - 164K) Past Rates 2013 2012 2011 2010 2009 Historical CVP Transmission Rates (April 2013) (PDF - 287K) Rate Schedules Power - CV-F13 - CPP-2 Transmission - CV-T3 - CV-NWT5 - PACI-T3 - COTP-T3 - CV-TPT7 - CV-UUP1 Ancillary - CV-RFS4 - CV-SPR4 - CV-SUR4 - CV-EID4 - CV-GID1 Federal Register Notices - CVP, COTP and PACI

116

Ocean thermal energy conversion (OTEC) power system development. Preliminary design report, Appendices, Part 1 (Final)  

DOE Green Energy (OSTI)

The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC demonstration plant. In turn, this demonstration plant is to demonstrate, by 1984, the operation and performance of an Ocean Thermal Power Plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the demonstration plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibilty studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report contains appendices on the developed computer models, water system dynamic studies, miscellaneous performance analysis, materials and processes, detailed equipment lists, turbine design studies, tube cleaner design, ammonia leak detection, and heat exchanger design supporting data. (WHK)

Not Available

1978-12-04T23:59:59.000Z

117

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

RATES RATES Rates Document Library SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K) Appendix D - Western Transmission System Facilities Map (PDF - 274K) Appendix E - Estimated FY12 FP and BR Customer (PDF - 1144K) Appendix F - Forecasted Replacements and Additions FY11 - FY16 (PDF - 491K) Appendix G - Definitions (PDF - 1758K) Appendix H - Acronyms (PDF - 720K)

118

Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report  

DOE Green Energy (OSTI)

Westinghouse has completed the Preliminary Design Phase for the Power System Development of the Ocean Thermal Energy Conversion (OTEC) Demonstration Plant project. This study included the development of a preliminary design for a Modular Application scaled power system (10MWe) and Heat Exchanger Test Articles, both based on the concept developed in the Conceptual Design Phase. The results of this study were used to improve the baseline design of the 50MWe module for the Commercial Size Power System, which was recommended for the demonstration plant by the conceptual design study. The 50MWe module was selected since it has the lowest cost, and since its size convincingly demonstrates that future economically viable commercial plants, having reliable operation with credible anticipated costs, are possible. Additional optimization studies on the size of the power system plus hull continue to identify 50MWe as the preferred minimum cost configuration. This study was limited to a closed cycle ammonia power system module, using a seawater temperature difference of 40/sup 0/F, and a surface platform/ship reference hull. This volume describes system operation, a complete test program to verify mechanical reliability and thermal performance, fabrication and installation operations, and a cost analysis. (WHK)

Not Available

1978-12-04T23:59:59.000Z

119

Energy Analysis Department Electricity Markets and Policy Group The Impact of Rate Design and Net  

E-Print Network (OSTI)

Energy Analysis Department Electricity Markets and Policy Group The Impact of Rate Design and Net of Energy #12;Energy Analysis Department Electricity Markets and Policy Group 2 Project Overview Context alternative compensation mechanisms #12;Energy Analysis Department Electricity Markets and Policy Group 3

120

Debate response: Which rate designs provide revenue stability and efficient price signals? Let the debate continue.  

SciTech Connect

Let's engage in further discussion that provides solutions and details, not just criticisms and assertions. Let's engage in a meaningful dialogue about the conditions where real-time pricing or critical peak pricing with decoupling or the SFV rate design with a feebate is most effective. (author)

Boonin, David Magnus

2009-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion  

SciTech Connect

Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were constrained to fit within the payload volume of the then planned space shuttle. The SNRE core design utilized hexagonal fuel elements and hexagonal structural support elements. The total number of elements can be varied to achieve engine designs of higher or lower thrust levels. Some variation in the ratio of fuel elements to structural elements is also possible. Options for SNRE-based engine designs in the 25,000-lbf thrust range were described in a recent (2010) Joint Propulsion Conference paper. The reported designs met or exceeded the performance characteristics baselined in the DRA 5.0 Study. Lower thrust SNRE-based designs were also described in a recent (2011) Joint Propulsion Conference paper. Recent activities have included parallel evaluation and design efforts on fast spectrum engines employing refractory metal alloy fuels. These efforts include evaluation of both heritage designs from the Argonne National Laboratory (ANL) and General Electric Company GE-710 Programs as well as more recent designs. Results are presented for a number of not-yet optimized fast spectrum engine options.

Bruce G. Schnitzler; Stanley K. Borowski

2012-07-01T23:59:59.000Z

122

Design, effectiveness, and construction of passive-thermal-control roofing shingles. Technical final report  

Science Conference Proceedings (OSTI)

The concept of a passive thermal control roofing shingle, which is a shingle that reflects the summer sun and absorbs the winter sun, is discussed. Such a shingle will reduce summer cooling and winter heating costs and conserve electricity and natural gas or heating oil. Design calculations indicate that it is possible to design shingles for particular latitudes and styles of roof which absorb nearly all of the winter solar energy and reflect nearly all of the summer solar energy. Calculations of the energy savings and cost effectiveness of the passive thermal control roofing shingle indicate that it is most cost effective on all south facing pitched roofs regardless of heating fuel type, and on flat or east or west facing roofs that are heated with costly fuels such as electricity or heating oil. The shingle is most effective on poorly insulated structures. If the cost of the shingle is about one dollar per square foot it will be cost effective in these applications. Additional calculations demonstrate the feasibility of using the passive thermal control roofing shingle in conjunction with a heat pump to pump heat absorbed by the shingle into a well insulated structure. Construction of a variety of models of the passive thermal control roofing shingle illustrate numerous alternate methods of manufacture. A profile extruded, plastic, glazed shingle appears to be the most promising approach. Additionally, extruded plastic reflector assemblies of various kinds could be added to existing shingled roofs. Use of a glazed shingle can increase the effectiveness of the passive thermal control roofing shingle by reducing convective heat losses.

Wolf, L. Jr.

1982-09-01T23:59:59.000Z

123

Kuiper Belt Object Occultations: Expected Rates, False Positives, and Survey Design  

E-Print Network (OSTI)

A novel method of generating artificial scintillation noise is developed and used to evaluate occultation rates and false positive rates for surveys probing the Kuiper Belt with the method of serendipitous stellar occultations. A thorough examination of survey design shows that: (1) diffraction-dominated occultations are critically (Nyquist) sampled at a rate of 2 Fsu^{-1}, corresponding to 40 s^{-1} for objects at 40 AU, (2) occultation detection rates are maximized when targets are observed at solar opposition, (3) Main Belt Asteroids will produce occultations lightcurves identical to those of Kuiper Belt Objects if target stars are observed at solar elongations of: 116 deg 7-8 sigma should be adopted to ensure that viable candidate events can be disentangled from false positives.

Bickerton, Steven; Kavelaars, JJ

2009-01-01T23:59:59.000Z

124

KUIPER BELT OBJECT OCCULTATIONS: EXPECTED RATES, FALSE POSITIVES, AND SURVEY DESIGN  

Science Conference Proceedings (OSTI)

A novel method of generating artificial scintillation noise is developed and used to evaluate occultation rates and false positive rates for surveys probing the Kuiper Belt with the method of serendipitous stellar occultations. A thorough examination of survey design shows that (1) diffraction-dominated occultations are critically (Nyquist) sampled at a rate of 2 Fsu{sup -1}, corresponding to 40 s{sup -1} for objects at 40 AU, (2) occultation detection rates are maximized when targets are observed at solar opposition, (3) Main Belt asteroids will produce occultations light curves identical to those of Kuiper Belt Objects (KBOs) if target stars are observed at solar elongations of: 116{sup 0} {approx}7-8{sigma} should be adopted to ensure that viable candidate events can be disentangled from false positives.

Bickerton, S. J. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Welch, D. L. [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Kavelaars, J. J. [Herzberg Institute of Astrophysics, Victoria, BC V9E 2E7 (Canada)], E-mail: bick@astro.princeton.edu, E-mail: welch@physics.mcmaster.ca, E-mail: JJ.Kavelaars@nrc-cnrc.gc.ca

2009-05-15T23:59:59.000Z

125

In-Vessel Coil Material Failure Rate Estimates for ITER Design Use  

SciTech Connect

The ITER international project design teams are working to produce an engineering design for construction of this large tokamak fusion experiment. One of the design issues is ensuring proper control of the fusion plasma. In-vessel magnet coils may be needed for plasma control, especially the control of edge localized modes (ELMs) and plasma vertical stabilization (VS). These coils will be lifetime components that reside inside the ITER vacuum vessel behind the blanket modules. As such, their reliability is an important design issue since access will be time consuming if any type of repair were necessary. The following chapters give the research results and estimates of failure rates for the coil conductor and jacket materials to be used for the in-vessel coils. Copper and CuCrZr conductors, and stainless steel and Inconel jackets are examined.

L. C. Cadwallader

2013-01-01T23:59:59.000Z

126

Assisted thermal stripping (ATS) for removal of PCBs from contaminated soils. Design of experiments modeling of the ATS process  

Science Conference Proceedings (OSTI)

In a companion report, the Assisted Thermal Stripping (ATS) process for enhanced removal of PCBs from PCB-contaminated soil is described. In studies directed toward achieving residual PCB levels of {le}2 ppm, it was found that four factors were particularly important -- (1) process temperature; (2) process time; (3) the amount of additive (for enhancing the removal of PCBs); and (4) steam flow rate. In order to optimize the ATS process, it was deemed crucial to ascertain the relative effect exerted by each of those process factors and the reproducibility of the process. To accomplish that, we have relied on the technique {open_quotes}Design of Experiments{close_quotes} (DOE) to mathematically model the ATS process. After considering the findings from our previous investigations, it was decided to employ formic acid as the additive for enhancing the removal of PCBs.

Krabbenhoft, H.O.; Webb, J.L.; Gascoyne, D.G. [GE Corporate Research & Development, Schenectady, NY (United States); Cawse, J.N. [GE Plastics, Pittsfield, MA (United States)

1996-12-31T23:59:59.000Z

127

Power system development: Ocean Thermal Energy Conversion (OTEC). Preliminary design report: appendices, Part 2 (Final)  

DOE Green Energy (OSTI)

The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC demonstration plant. In turn, this demonstration plant is to demonstrate, by 1984, the operation and performance of an Ocean Thermal Power Plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the demonstration plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibilty studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report contains appendices on the electrical system, instrumentation and control, ammonia pump evaluation study, ammonia and nitrogen support subsystems, piping and support design calculations, and plant availability. (WHK)

None

1978-12-04T23:59:59.000Z

128

Thermal analysis and cooling structure design of the primary collimator in CSNS/RCS  

E-Print Network (OSTI)

The rapid cycling synchrotron (RCS) of the China Spallation Neutron Source (CSNS) is a high intensity proton ring with beam power of 100 kW. In order to control the residual activation to meet the requirements of hands-on maintenance, a two-stage collimation system has been designed for the RCS. The collimation system consists of one primary collimator made of thin metal to scatter the beam and four secondary collimators as absorbers. Thermal analysis is an important aspect in evaluating the reliability of the collimation system. The calculation of the temperature distribution and thermal stress of the primary collimator with different materials is carried out by using ANSYS code. In order to control the temperature rise and thermal stress of the primary collimator to a reasonable level, an air cooling structure is intended to be used. The mechanical design of the cooling structure is presented, and the cooling effciency with different chin numbers and wind velocity is also analyzed. Finally, the fatigue life...

Zou, Yi-Qing; Kang, Ling; Qu, Hua-Min; He, Zhe-Xi; Yu, Jie-Bing; 10.1088/1674-1137/37/5/057004

2013-01-01T23:59:59.000Z

129

SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project  

DOE Green Energy (OSTI)

The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

1980-03-01T23:59:59.000Z

130

The Impact of Rate Design and Net Metering on the Bill Savings from  

NLE Websites -- All DOE Office Websites (Extended Search)

The Impact of Rate Design and Net Metering on the Bill Savings from The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California Title The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California Publication Type Report Refereed Designation Unknown Year of Publication 2010 Authors Darghouth, Naïm, Galen L. Barbose, and Ryan H. Wiser Pagination 62 Date Published 04/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, electricity rate design, energy analysis and environmental impacts department, net metering, photovoltaics Abstract Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption.1 Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). Though net metering has played an important role in jump-starting the PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the bill-savings value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings benefits of PV varies under net metering, and how the bill savings under net metering compares to savings associated with other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE).3 The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state. We focus on these two utilities, both because we had ready access to a sample of load data for their residential customers, and because their service territories are the largest markets for residential PV in the country.

131

Summary - Building C-400 Thermal Treatment Remedial Design Report and Investigation, Paducah, Kentucky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paducah, KY Paducah, KY EM Project: Building C400 Thermal Treatment ETR Report Date: August 2007 ETR-8 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation, Paducah Kentucky Why DOE-EM Did This Review The groundwater underlying the Paducah Gaseous Diffusion Plant (PGDP) is contaminated by chlorinated solvents, principally trichloroethylene (TCE), as well as other contaminants. TCE was released as a dense nonaqueous phase liquid (DNAPL) to the subsurface soils and groundwater as a result of operations that began in 1952. The Building C-400 area is coincident with the highest TCE concentrations in the groundwater plumes at PGDP. Based on all characterization data

132

Topology, Design, Analysis, and Thermal Management of Power Electronics for Hybrid Electric Vehicle Applications  

DOE Green Energy (OSTI)

Power electronics circuits play an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits in hybrid vehicles include electric motor drive circuits and DC/DC converter circuits. Conventional circuit topologies, such as buck converters, voltage source inverters and bidirectional boost converters are challenged by system cost, efficiency, controllability, thermal management, voltage and current capability, and packaging issues. Novel topologies, such as isolated bidirectional DC/DC converters, multilevel converters, and Z-source inverters, offer potential improvement to hybrid vehicle system performance, extended controllability and power capabilities. This paper gives an overview of the topologies, design, and thermal management, and control of power electronics circuits in hybrid vehicle applications.

Mi, C.; Peng, F. Z.; Kelly, K. J.; O'Keefe, M.; Hassani, V.

2008-01-01T23:59:59.000Z

133

Design and Operation of Membrane Microcalorimeters for Thermal Screening of Highly Energetic Materials  

E-Print Network (OSTI)

Following several terrorist attacks that have occurred during this decade, there is an urgent need to develop new technologies for the detection of highly energetic materials that can represent an explosive hazard. In an effort to contribute to the development of these new technologies, this work presents the design aspects of a chip-scale calorimeter that can be used to detect an explosive material by calorimetric methods. The aim of this work is to apply what has been done in the area of chip-scale calorimetry to the screening of highly energetic materials. The prototypes presented here were designed using computer assisted design and finite element analysis tools. The design parameters were set to satisfy the requirements of a sensor that can be integrated into a portable system (handheld) for field applications. The design approach consisted of developing a sensor with thick silicon membranes that can hold micro-size samples and that can operate at high temperatures, while keeping the cost of the sensor low. Contrary to other high resolution systems based on thin-film membranes, our prototypes exhibit a contribution from addenda that is comparable to that from the sample, and hence they have lower sensitivity. However, using thick membranes offers the advantage of producing sensors strong enough for this application and that have significantly lower cost. Once the prototypes were designed, the fabrication was performed using standard microfabrication techniques. Finally, the operation of our prototypes was demonstrated by conducting thermal analysis of different liquid and solid samples.

Carreto Vazquez, Victor 1976-

2010-12-01T23:59:59.000Z

134

Method and apparatus for obtaining enhanced production rate of thermal chemical reactions  

DOE Patents (OSTI)

Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

Tonkovich, Anna Lee Y. (Pasco, WA); Wang, Yong (Richland, WA); Wegeng, Robert S. (Richland, WA); Gao, Yufei (Kennewick, WA)

2006-05-16T23:59:59.000Z

135

MULTIPLE WELL VARIABLE RATE WELL TEST ANALYSIS OF DATA FROM THE AUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRAM  

E-Print Network (OSTI)

LBL-9459. experimental Thermal energy storage in confinedAUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRM1 Christineseries of aquifer thermal energy storage field experiments.

Doughty, Christine

2012-01-01T23:59:59.000Z

136

Ocean thermal energy conversion gas desorption studies. Volume 1. Design of experiments. [Open-cycle power systems  

Science Conference Proceedings (OSTI)

Seawater deaeration is a process affecting almost all proposed Ocean Thermal Energy Conversion (OTEC) open-cycle power systems. If the noncondensable dissolved air is not removed from a power system, it will accumulate in thecondenser, reduce the effectiveness of condensation, and result in deterioration of system performance. A gas desorption study is being conducted at Oak Ridge National Laboratory (ORNL) with the goal of mitigating these effects; this study is designed to investigate the vacuum deaeration process for low-temperature OTEC conditions where conventional steam stripping deaeration may not be applicable. The first in a series describing the ORNL studies, this report (1) considers the design of experiments and discusses theories of gas desorption, (2) reviews previous relevant studies, (3) describes the design of a gas desorption test loop, and (4) presents the test plan for achieving program objectives. Results of the first series of verification tests and the uncertainties encountered are also discussed. A packed column was employed in these verification tests and test data generally behaved as in previous similar studies. Results expressed as the height of transfer unit (HTU) can be correlated with the liquid flow rate by HTU = 4.93L/sup 0/ /sup 25/. End effects were appreciable for the vacuum deaeration system, and a correlation of them to applied vacuum pressure was derived.

Golshani, A.; Chen, F.C.

1980-10-01T23:59:59.000Z

137

Thermal decoupling and the smallest subhalo mass in dark matter models with Sommerfeld-enhanced annihilation rates  

E-Print Network (OSTI)

We consider dark matter consisting of weakly interacting massive particles (WIMPs) and revisit in detail its thermal evolution in the early universe, with a particular focus on models where the annihilation rate is enhanced by the Sommerfeld effect. After chemical decoupling, or freeze-out, dark matter no longer annihilates but is still kept in local thermal equilibrium due to scattering events with the much more abundant standard model particles. During kinetic decoupling, even these processes stop to be effective, which eventually sets the scale for a small-scale cutoff in the matter density fluctuations. Afterwards, the WIMP temperature decreases more quickly than the heat bath temperature, which causes dark matter to reenter an era of annihilation if the cross-section is enhanced by the Sommerfeld effect. Here, we give a detailed and self-consistent description of these effects. As an application, we consider the phenomenology of simple leptophilic models that have been discussed in the literature and fin...

Aarssen, Laura G van den; Goedecke, Yasar C

2012-01-01T23:59:59.000Z

138

25 kWe solar thermal stirling hydraulic engine system: Final conceptual design report  

DOE Green Energy (OSTI)

This report documents the conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to the 11-meter Test Bed Concentrator at Sandia National Laboratories. A manufacturing cost assessment for 10,000 units per year was made by Pioneer Engineering and Manufacturing. The design meets all program objectives including a 60,000-hr design life, dynamic balancing, fully automated control, >33.3% overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs of $300/kW. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high-pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk. The engine design is based on a highly refined Stirling hydraulic engine developed over 20 years as a fully implantable artificial heart power source. 4 refs., 19 figs., 3 tabs.

Not Available

1988-01-01T23:59:59.000Z

139

Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report  

DOE Green Energy (OSTI)

Westinghouse has completed the Preliminary Desigh Phase for the Power System Development of the Ocean Thermal Energy Conversion (OTEC) Demonstration Plant project. This study included the development of a preliminary design for a Modular Application scaled power system (10MWe) and Heat Exchanger Test Articles, both based on the concept developed in the Conceptual Design Phase. The results of this study were used to improve the baseline design of the 50MWe module for the Commercial Size Power System, which was recommended for the demonstration plant by the conceptual design study. The 50MWe module was selected since it has the lowest cost, and since its size convincingly demonstrates that future economically viable commercial plants, having reliable operation with credible anticipated costs, are possible. Additional optimization studies on the size of the power system plus hull continue to identify 50MWe as the preferred minimum cost configuration. This study was limited to a closed cycle ammonia power system module, using a seawater temperature difference of 40/sup 0/F, and a surface platform/ship reference hull. This volume presents the preliminary design configuration and system optimization. (WHK)

Not Available

1978-12-04T23:59:59.000Z

140

First-order thermal correction to the quadratic response tensor and rate for second harmonic plasma emission  

SciTech Connect

Three-wave interactions in plasmas are described, in the framework of kinetic theory, by the quadratic response tensor (QRT). The cold-plasma QRT is a common approximation for interactions between three fast waves. Here, the first-order thermal correction (FOTC) to the cold-plasma QRT is derived for interactions between three fast waves in a warm unmagnetized collisionless plasma, whose particles have an arbitrary isotropic distribution function. The FOTC to the cold-plasma QRT is shown to depend on the second moment of the distribution function, the phase speeds of the waves, and the interaction geometry. Previous calculations of the rate for second harmonic plasma emission (via Langmuir-wave coalescence) assume the cold-plasma QRT. The FOTC to the cold-plasma QRT is used here to calculate the FOTC to the second harmonic emission rate, and its importance is assessed in various physical situations. The FOTC significantly increases the rate when the ratio of the Langmuir phase speed to the electron thermal speed is less than about 3.

Layden, B.; Cairns, Iver H.; Robinson, P. A. [School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia); Percival, D. J. [Defence Science and Technology Organisation, P.O. Box 1500, Edinburgh, South Australia 5111 (Australia)

2011-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies  

SciTech Connect

As part of the Department of Energy`s spent nuclear fuel acceptance criteria, the mass of uranium and transuranic elements in spent research reactor fuel must be specified. These data are, however, not always known or readily determined. It is the purpose of this report to provide estimates of these data for some of the more common research reactor fuel assembly types. The specific types considered here are MTR, TRIGA and DIDO fuel assemblies. The degree of physical protection given to spent fuel assemblies is largely dependent upon the photon dose rate of the spent fuel material. These data also, are not always known or readily determined. Because of a self-protecting dose rate level of radiation (dose rate greater than 100 ren-x/h at I m in air), it is important to know the dose rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR, TRIGA and DIDO-type fuel assemblies are given in this report.

Pond, R.B.; Matos, J.E.

1996-05-01T23:59:59.000Z

142

Solar Pilot Plant Phase I, detailed design report: thermal storage subsystem research experiment. CDRL Item No. 8 (Approved)  

DOE Green Energy (OSTI)

The Thermal Storage Subsystem Research Experiment is designed to give maximum information for evaluating the design, performance, and operating parameters of the Barstow Solar Pilot Plant. The experiment is summarized, and the experiment components detail design and integration are described. The experiment test and operation is described which is designed to collect engineering data to allow the design, performance, and operational characteristics to be specified for the Pilot Plant. Appended are: design documentation; pressure drop calculations; materials studies for thermal energy storage; flow charts for data acquisition and control; condenser detail design; instrumentation error analysis; logic diagrams for the control system; literature survey to evaluate the two-phase forced convection heat transfer; and the vaporizer performance model. (LEW)

Not Available

1976-09-17T23:59:59.000Z

143

Thermal dilepton rate and electrical conductivity: An analysis of vector current correlation functions in quenched lattice QCD  

E-Print Network (OSTI)

We calculate the vector current correlation function for light valence quarks in the deconfined phase of QCD. The calculations have been performed in quenched lattice QCD at T=1.45 Tc for four values of the lattice cut-off on lattices up to size 128^3x48. This allows to perform a continuum extrapolation of the correlation function in the Euclidean time interval tau*T -in [0.2, 0.5], which extends to the largest temporal separations possible at finite temperature, to better than 1% accuracy. In this interval, at the value of the temperature investigated, we find that the vector correlation function never deviates from the free correlator for massless quarks by more than 9%. We also determine the first two non-vanishing thermal moments of the vector meson spectral function. The second thermal moment deviates by less than 7% from the free value. With these constraints, we then proceed to extract information on the spectral representation of the vector correlator and discuss resulting consequences for the electrical conductivity and the thermal dilepton rate in the plasma phase.

H. -T. Ding; A. Francis; O. Kaczmarek; F. Karsch; E. Laermann; W. Soeldner

2010-12-22T23:59:59.000Z

144

Design of Recycle/Reuse Networks with Thermal Effects and Variable Sources  

E-Print Network (OSTI)

Recycle/reuse networks are commonly used in industrial facilities to conserve natural resources, reduce environmental impact, and improve process economics. The design of these networks is a challenging task because of the numerous possibilities of assigning stream (process sources) to units that may potentially employ them (process sinks). Additionally, several fresh streams with different qualities and costs may be used to supplement the recycle of process streams. The selection of the type and flow of these fresh resources is an important step in the design of the recycle/reuse networks. This work introduces systematic approaches to address two new categories in the design of recycle/reuse networks: (a) The incorporation of thermal effects in the network. Two new aspects are introduced: heat of mixing of process sources and temperature constraints imposed on the feed to the process sinks iv (b) Dealing with variation in process sources. Two types of source variability are addressed: flowrate and composition For networks with thermal effects, an assignment optimization formulation is developed. Depending on the functional form of the heat of mixing, the formulation may be a linear or a nonlinear program. The solution of this program provides optimum flowrates of the fresh streams as well as the segregation, mixing, and allocation of the process sources to sinks. For networks with variable sources, a computer code is developed to solve the problem. It is based on discretizing the search space and using the concept of "floating pinch" to insure solution feasibility and optimal targets. Case studies are solved to illustrate the applicability of the new approaches.

Zavala Oseguera, Jose Guadalupe

2009-08-01T23:59:59.000Z

145

Thermal Design in the Open Compute Datacenter Eitan Frachtenberg, Dan Lee, Marco Magarelli, Veerendra Mulay and Jay Park  

E-Print Network (OSTI)

energy compared to typical datacenters. · Eliminate the need for chillers, cooling towers and asso the summer of 2011. KEY WORDS: Datacenter Cooling, Air Economization, Thermal Design I. INTRODUCTION Facebook on the third area, the design and optimization of the datacenter cooling scheme, which is a major factor

Frachtenberg, Eitan

146

Thermal Hydraulics of Sodium-Cooled Fast Reactors: Key Design and Safety Issues and Highlights  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Fission Reactors; Thermal Hydraulics

Hisashi Ninokata; Hideki Kamide

147

Two-tank indirect thermal storage designs for solar parabolic trough power plants.  

E-Print Network (OSTI)

??The performance of a solar thermal parabolic trough plant with thermal storage is dependent upon the arrangement of the heat exchangers that ultimately transfer energy… (more)

Kopp, Joseph E.

2009-01-01T23:59:59.000Z

148

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

Borenstein, S. , 2007. Electricity Rate Structures and theEnvironmentally-Sound Electricity Rates for the Twenty-FirstCap-and-Trade for Electricity Rate Design, with Examples

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

149

The Mechanical and Thermal Design for the MICE Focusing SolenoidMagnet System  

DOE Green Energy (OSTI)

The focusing solenoids for MICE surround energy absorbers that are used to reduce the transverse momentum of the muon beam that is being cooled within MICE. The focusing solenoids will have a warm-bore diameter of 470 mm. Within this bore is a flask of liquid hydrogen or a room temperature beryllium absorber. The focusing solenoid consists of two coils wound with a copper matrix Nb-Ti conductor originally designed for MRI magnets. The two coils have separate leads, so that they may be operated at the same polarity or at opposite polarity. The focusing magnet is designed so that it can be cooled with a pair of 1.5 W (at 4.2 K) coolers. The MICE cooling channel has three focusing magnets with their absorbers. The three focusing magnets will be hooked together in series for a circuit stored-energy of about 9.0 MJ. Quench protection for the focusing magnets is discussed. This report presents the mechanical and thermal design parameters for this magnet, including the results of finite element calculations of mechanical forces and heat flow in the magnet cold mass.

Yang, S.Q.; Green, M.A.; Barr, G.; Bravar, U.; Cobb, J.; Lau, W.; Senanayake, R.S.; White, A.E.; Witte, H.

2004-05-07T23:59:59.000Z

150

Guidelines for conceptual design and evaluation of aquifer thermal energy storage  

DOE Green Energy (OSTI)

Guidelines are presented for use as a tool by those considering application of a new technology, aquifer thermal energy storage (ATES). The guidelines will assist utilities, municipalities, industries, and other entities in the conceptual design and evaluation of systems employing ATES. The potential benefits of ATES are described, an overview is presented of the technology and its applications, and rules of thumb are provided for quickly judging whether a proposed project has sufficient promise to warrant detailed conceptual design and evaluation. The characteristics of sources and end uses of heat and chill which are seasonally mismatched and may benefit from ATES (industrial waste heat, cogeneration, solar heat, and winter chill, for space heating and air conditioning) are discussed. Storage and transport subsystems and their expected performance and cost are described. A 10-step methodology is presented for conceptual design of an ATES system and evaluation of its technical and economic feasibility in terms of energy conservation, cost savings, fuel substitution, improved dependability of supply, and abatement of pollution, with examples, and the methodology is applied to a hypothetical proposed ATES system, to illustrate its use.

Meyer, C.F.; Hauz, W.

1980-10-01T23:59:59.000Z

151

Thermal and flow analyses of the Nuclear Materials Storage Facility Renovation Title I 60% design  

Science Conference Proceedings (OSTI)

The authors are continuing to use the computational fluid dynamics code CFX-4.2 to evaluate the steady-state thermal-hydraulic conditions in the Nuclear Material Storage Facility Renovation Title 1 60% Design. The analyses build on those performed for the 30% design. They have run an additional 9 cases to investigate both the performance of the passive vault and of an individual drywell. These cases investigated the effect of wind on the inlet tower, the importance of resolving boundary layers in the analyses, and modifications to the porous-medium approach used in the earlier analyses to represent better the temperature fields resulting from the detailed modeling of the boundary layers. The difference between maximum temperatures of the bulk air inside the vault for the two approaches is small. They continued the analyses of the wind effects around the inflector fixture, a canopy and cruciform device, on the inlet tower by running a case with the wind blowing diagonally across the inflector. The earlier analyses had investigated a wind that was blowing parallel to one set of vanes on the inflector. Several subcases for these analyses investigated coupling the analysis to the facility analysis and design changes for the inflector.

Knight, T.D.; Steinke, R.G.; Mueller, C.

1998-08-01T23:59:59.000Z

152

Design of a novel conduction heating based stress-thermal cycling apparatus for composite materials and its utilization to characterize composite microcrack damage thresholds  

E-Print Network (OSTI)

The objective of this research was to determine the effect of thermal cycling combined with mechanical loading on the development of microcracks in M40J/PMR-II- 50, the second generation aerospace application material. The objective was pursued by finding the critical controlling parameters for microcrack formation from mechanical stress-thermal cycling test. Three different in-plane strains (0%, 0.175~0.350%, and 0.325~0.650%) were applied to the composites by clamping composite specimens (M40J/PMR-II-50, [0,90]s, a unitape cross-ply) on the radial sides of half cylinders having two different radii (78.74mm and 37.96mm). Three different thermal loading experiments, 1) 23oC to �196oC to 250oC, 2) 23oC to 250oC, and 3) 23oC to -196oC, were performed as a function of mechanical inplane strain levels, heating rates, and number of thermal cycles. The apparatus generated cracks related to the in-plane stresses (or strains) on plies. The design and analysis concept of the synergistic stress-thermal cycling experiment was simplified to obtain main and interaction factors by applying 2k factorial design from the various factors affecting microcrack density of M40J/PMR-II-50. Observations indicate that the higher temperature portion of the cycle under load causes fiber/matrix interface failure. Subsequent exposure to higher stresses in the cryogenic temperature region results in composite matrix microcracking due to the additional stresses associated with the fiber-matrix thermal expansion mismatch.

Ju, Jaehyung

2005-08-01T23:59:59.000Z

153

An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design  

SciTech Connect

Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed.

Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

1993-10-25T23:59:59.000Z

154

Manual for the thermal and hydraulic design of direct contact spray columns for use in extracting heat from geothermal brines  

DOE Green Energy (OSTI)

This report outlines the current methods being used in the thermal and hydraulic design of spray column type, direct contact heat exchangers. It provides appropriate referenced equations for both preliminary design and detailed performance. The design methods are primarily empirical and are applicable for us in the design of such units for geothermal application and for application with solar ponds. Methods for design, for both preheater and boiler sections of the primary heat exchangers, for direct contact binary powers plants are included. 23 refs., 8 figs.

Jacobs, H.R.

1985-06-01T23:59:59.000Z

155

Ocean thermal energy conversion (OTEC) power system development (PSD) II. Preliminary design report. Appendix II: supporting data  

DOE Green Energy (OSTI)

The trade studies, calculations, and reports which provide the rationale for design conclusions for the 10 MWe OTEC power system are presented in this volume. These appendices include: (1) system design and optimization model; (2) system off-design performance computer model; (3) seawater system dynamics; (4) system mechanical design studies; (5) electrical design studies; (6) structural design studies; (7) tube cleaner design report and proposed brush test program; (8) heat exchangers: mechanical design; (9) heat exchangers: thermal hydraulic computer model; (10) heat exchangers: manufacturing flow plan; (11) heat exchangers: installation and removal procedures; (12) heat exchangers: stainless steel conceptual design; (13) heat exchangers: cost studies; (14)heat exchangers: materials selection and corrosion; and (15) heat exchangers: quality assurance. (WHK)

Not Available

1979-08-10T23:59:59.000Z

156

Thermal Design of an Ultrahigh Temperature Vapor Core Reactor Combined Cycle Nuclear Power Plant  

SciTech Connect

Current work modeling high temperature compact heat exchangers may demonstrate the design feasibility of a Vapor Core Reactor (VCR) driven combined cycle power plant. For solid nuclear fuel designs, the cycle efficiency is typically limited by a metallurgical temperature limit which is dictated by fuel and structural melting points. In a vapor core, the gas/vapor phase nuclear fuel is uniformly mixed with the topping cycle working fluid. Heat is generated homogeneously throughout the working fluid thus extending the metallurgical temperature limit. Because of the high temperature, magnetohydrodynamic (MHD) generation is employed for topping cycle power extraction. MHD rejected heat is transported via compact heat exchanger to a conventional Brayton gas turbine bottoming cycle. High bottoming cycle mass flow rates are required to remove the waste heat because of low heat capacities for the bottoming cycle gas. High mass flow is also necessary to balance the high Uranium Tetrafluoride (UF{sub 4}) mass flow rate in the topping cycle. Heat exchanger design is critical due to the high temperatures and corrosive influence of fluoride compounds and fission products existing in VCR/MHD exhaust. Working fluid compositions for the topping cycle include variations of Uranium Tetrafluoride, Helium and various electrical conductivity seeds for the MHD. Bottoming cycle working fluid compositions include variations of Helium and Xenon. Some thought has been given to include liquid metal vapor in the bottoming cycle for a Cheng or evaporative cooled design enhancement. The NASA Glenn Lewis Research Center code Chemical Equilibrium with Applications (CEA) is utilized for evaluating chemical species existing in the gas stream. Work being conducted demonstrates the compact heat exchanger design, utilization of the CEA code, and assessment of different topping and bottoming working fluid compositions. (authors)

Bays, Samuel E.; Anghaie, Samim; Smith, Blair; Knight, Travis [Innovative Space Power and Propulsion Institute, University of Florida, 202 Nuclear Science Building, Gainesville, FL 32611 (United States)

2004-07-01T23:59:59.000Z

157

Design, improvement, and testing of a thermal-electrical analysis application of a multiple beta-tube AMTEC converter  

E-Print Network (OSTI)

A new design AMTEC converter model was developed, and its effectiveness as a design tool was evaluated. To develop the model, requirements of the model were defined, several new design models were successively developed, and finally an optimal new design model was developed. The model was created within Sinda/Fluint, with its graphical interface, Thermal Desktop, a software package that can be used to conduct complex thermal and fluid analyses. Performance predictions were then correlated and compared with actual performance data from the Road Runner II AMTEC converter. Predicted performance results were within 10% of actual performance data for all operating conditions analyzed. This accuracy tended to increase within operating ranges that would be more likely encountered in AMTEC applications. Performance predictions and parametric design studies were then performed on a proposed new design converter model with a variety of annular condenser heights and with potassium as a working fluid to evaluate the effects of various design modifications. Results clearly indicated the effects of the converter design modifications on the converter's power and efficiency, thus simplifying the design optimization process. With the close correlation to actual data and the design information obtained from parametric studies, it was determined that the model could serve as an effective tool for the design of AMTEC converters.

Pavlenko, Ilia V.

2003-12-01T23:59:59.000Z

158

Design philosophy for high-resolution rate and throughput spectroscopy systems  

SciTech Connect

The paper describes the philosophy behind the design of a pulse processing system used in a semiconductor detector x-ray spectrometer to be used for plasma diagnostics at the Princeton TFTR facility. This application presents the unusual problems of very high counting rates and a high-energy neutron background while still requiring excellent resolution. To meet these requirements three specific new advances are included in the design: (i) A symmetrical triangular pulse shape is employed in the main pulse-processing channel. A new simple method of generating a close approximation to the symmetrical triangle has been developed. (ii) To cope with the very wide dynamic range of signals while maintaining a constant fast resolving time, approximately symmetical triangular pulse shaping is also used in the fast pulse pile-up inspection channel. (iii) The demand for high throughput has resulted in a re-examination of the operation of pile-up rejectors and pulse stretchers. As a result a technique has been developed that, for a given total pulse shaping time, permits approximately a 40% increase in throughput in the system. Performance results obtained using the new techniques are presented.

Goulding, F.S.; Landis, D.A.; Madden, N.W.

1982-05-01T23:59:59.000Z

159

Design and optimization of a high thermal flux research reactor via Kriging-based algorithm  

E-Print Network (OSTI)

In response to increasing demands for the services of research reactors, a 5 MW LEU-fueled research reactor core is developed and optimized to provide high thermal flux within specified limits upon thermal hydraulic ...

Kempf, Stephanie Anne

2011-01-01T23:59:59.000Z

160

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

Practices in State Net Metering Policies and InterconnectionThe Economic Cost of Net Metering in Maryland: Who Bears theImpact of Rate Design and Net Metering on the Bill Savings

Darghouth, Naim R.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

Practices in State Net Metering Policies and InterconnectionThe Economic Cost of Net Metering in Maryland: Who Bears theof Rate Design and Net Metering on the Bill Savings from

Darghouth, Naim R.

2012-01-01T23:59:59.000Z

162

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

Pricing Beneficial to Solar PV in New York City? PreparedSubstantial Benefit of Solar PV. ” The Electricity Journal,36: MRW & Associates. 2007. Solar PV and Retail Rate Design.

Darghouth, Naim

2010-01-01T23:59:59.000Z

163

Design and analysis of a high-rate acoustic link for underwater video transmission  

E-Print Network (OSTI)

A high bit rate acoustic link for underwater video transmission is examined. Currently, encoding standards support video transmission at bit rates as low as 64 kbps. While this rate is still above the limit of commercially ...

Pelekanakis, Konstantinos

2004-01-01T23:59:59.000Z

164

Thermal decoupling and the smallest subhalo mass in dark matter models with Sommerfeld-enhanced annihilation rates  

E-Print Network (OSTI)

We consider dark matter consisting of weakly interacting massive particles (WIMPs) and revisit in detail its thermal evolution in the early universe, with a particular focus on models where the annihilation rate is enhanced by the Sommerfeld effect. After chemical decoupling, or freeze-out, dark matter no longer annihilates but is still kept in local thermal equilibrium due to scattering events with the much more abundant standard model particles. During kinetic decoupling, even these processes stop to be effective, which eventually sets the scale for a small-scale cutoff in the matter density fluctuations. Afterwards, the WIMP temperature decreases more quickly than the heat bath temperature, which causes dark matter to reenter an era of annihilation if the cross-section is enhanced by the Sommerfeld effect. Here, we give a detailed and self-consistent description of these effects. As an application, we consider the phenomenology of simple leptophilic models that have been discussed in the literature and find that the relic abundance can be affected by as much two orders of magnitude or more. We also compute the mass of the smallest dark matter subhalos in these models and find it to be in the range of about 10^{-10} to 10 solar masses; even much larger cutoff values are possible if the WIMPs couple to force carriers lighter than about 100 MeV. We point out that a precise determination of the cutoff mass allows to infer new limits on the model parameters, in particular from gamma-ray observations of galaxy clusters, that are highly complementary to existing constraints from g-2 or beam dump experiments.

Laura G. van den Aarssen; Torsten Bringmann; Yasar C. Goedecke

2012-02-24T23:59:59.000Z

165

Design and characterization of convective thermal cyclers for high-speed DNA analysis  

E-Print Network (OSTI)

An ideal polymerase chain reaction (PCR) system should be capable of rapidly amplifying a wide range of targets in both single and multiplex formats. Unfortunately, the timescales and complexities involved in many existing technologies impose significant limitations on achievable throughput. Buoyancy driven PCR is emerging as a simplified version of thermally driven bio-analysis systems. Here, we demonstrate a simplified convectively driven thermocycler capable of performing single and multiplex PCR for amplicons ranging from 191 bp to 1.3 kb within 10 to 50 minutes using 10 to 25 µL reaction volumes. By positioning two independent thermoelectric heating elements along the perimeter of a flow loop reactor constructed using ordinary plastic tubing, a buoyancy-driven flow is established that continuously circulates reagents through temperature zones associated with the PCR process. Unlike conventional benchtop thermocyclers, this arrangement allows reactions to be performed without the need for dynamic temperature control of inactive hardware components while maintaining comparable product yields and requiring no modifications to standard PCR protocols. We also provide a general correlation that can be applied to design reactor geometries satisfying virtually any combination of reagent volume and cycling time. In addition to offering an attractive combination of cost and performance, this system is readily adaptable for portable battery powered operation, making it feasible to perform PCRbased assays in a broader array of settings.

Agrawal, Nitin

2006-12-01T23:59:59.000Z

166

Thermal-Structural Design of a Water Shield For Surface Reactor Missions  

SciTech Connect

Water shielding is an attractive option for an affordable lunar surface fission reactor program. The attractiveness of the water shielding option arises from the relative ease of proto-typing and ground testing, the relatively low development effort needed, as well as the fabrication and operating experience with stainless steel and water. The most significant limitation in using a water shield is temperature: to prevent the formation of voids and the consequent loss of cooling, the water temperature has to be maintained below the saturation temperature corresponding to the shield pressure. This paper examines natural convection for a prototypic water shield design using the computational fluid dynamics (CFD) code CFX-5 as well as analytical modeling. The results show that natural convection is adequate to keep the water well-mixed. The results also show that for the above-ground configuration, shield surface and water temperatures during lunar day conditions are high enough to require shield pressures up to 2.5 atm to prevent void formation. For the buried configuration, a set of ammonia heat pipes attached to the shield outer wall can be used to maintain water temperatures within acceptable limits. Overall the results show that water shielding is feasible for lunar surface applications. The results of the CFD analyses can also be used to guide development of testing plans for shield thermal testing. (authors)

Sadasivan, Pratap; Kapernick, Richard J.; Poston, David I. [D-5 Nuclear Systems Design Group MS K575, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 (United States)

2006-07-01T23:59:59.000Z

167

Design and global optimization of high-efficiency solar thermal systems with tungsten cermets  

E-Print Network (OSTI)

Solar thermal, thermoelectric, and thermophotovoltaic (TPV) systems have high maximum theoretical efficiencies; experimental systems fall short because of losses by selective solar absorbers and TPV selective emitters. To ...

Chester, David A.

168

Investigation of new heat exchanger design performance for solar thermal chemical heat pump.  

E-Print Network (OSTI)

?? The emergence of Thermally Driven Cooling system has received more attention recently due to its ability to utilize low grade heat from engine, incinerator… (more)

Cordova, Cordova

2013-01-01T23:59:59.000Z

169

Mechanical and thermal design of the CEBAF Hall a beam calorimeter  

SciTech Connect

A calorimeter is being fabricated to provide 0.5% - 1.0% absolute measurement of the beam current in the Hall A end station of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLAB). Modern powder metallurgy processes have produced high density, high thermal conductivity tungsten-copper composite materials that minimize electromagnetic and hadronic energy loss while maintaining a rapid thermal response time. Heat leaks are minimized by mounting the mass in vacuum on glass ceramic mounts. A conduction cooling scheme utilizes an advanced carbon fiber compliant thermal interface material. Transient finite difference and finite element models were developed to estimate heat leaks and thermal response times.

M. Bevins; A. Day; P. Degtiarenko; L.A. Dillon-Townes; A. Freyberger; R. Gilman; A. Saha; S. Slachtouski

2005-05-16T23:59:59.000Z

170

The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating  

Science Conference Proceedings (OSTI)

The coefficient of thermal expansion (CTE) is a key design parameter for thermoelectric (TE) materials, especially in energy harvesting applications since stresses generated by CTE mismatch, thermal gradients, and thermal transients scale with the CTE of the TE material. For the PbTe PbS-based TE material (Pb 0.95 Sn 0.05 Te) 0.92(PbS) 0.08 0.055 % PbI 2 over the temperature ranges of 293 543 and 293 773 K, a CTE, alpha avg , of 21.4 0.3 x 10-6 K-1 was measured using (1) dilatometry and (2) high-temperature X-ray diffraction (HT-XRD) for powder and bulk specimens. The CTE values measured via dilatometry and HT-XRD are similar to the literature values for other Pb-based chalcogenides. However, the processing technique was found to impact the thermal expansion such that bloating (which leads to a hysteresis in thermal expansion) occurred for hot pressed billets heated to temperatures [603 K while specimens fabricated by pulsed electric current sintering and as-cast specimens did not show a bloating-modified thermal expansion even for temperatures up to 663 K. The relationship of bloating to the processing techniques is discussed, along with a pos- sible mechanism for inhibiting bloating in powder processed specimens.

Ni, Jennifer E. [Michigan State University, East Lansing; Case, Eldon D [Michigan State University, East Lansing; Schmidt, Robert [Michigan State University, East Lansing; Wu, Chun-I [Michigan State University, East Lansing; Hogan, Timothy [Michigan State University, East Lansing; Trejo, Rosa M [ORNL; Kirkham, Melanie J [ORNL; Lara-Curzio, Edgar [ORNL; Kanatzidis, Mercouri G. [Northwestern University, Evanston

2013-01-01T23:59:59.000Z

171

WindPACT Turbine Rotor Design, Specific Rating Study; Period of Performance: June 29, 2000--March 1, 2003  

DOE Green Energy (OSTI)

In 2000, the National Renewable Energy Laboratory (NREL) launched the Wind Partnerships for Advanced Component Technologies (WindPACT) program to examine ways in which the cost of wind energy could be reduced a further 30%. One element of the WindPACT program has been a series of design studies aimed at each of the major subsystems of the wind turbine to study the effect of scale and of alternative design approaches. The WindPACT Turbine Rotor Design Study was carried out by Global Energy Concepts, LLC, (GEC) on behalf of NREL, and the final report was delivered in June 2002. The study examined what configuration and design changes in the rotor would reduce the overall cost of energy. The objectives of this report are to use the 1.5-MW baseline configuration from the earlier WindPACT Rotor Design Study to examine the effect of different power ratings and to identify an optimum specific rating; to examine the effect of different maximum tip speeds on overall cost of energy (COE); to examine the role of different wind regimes on the optimum specific rating; and to examine how the optimum specific rating may be affected by introducing more advanced blade designs.

Malcolm, D. J.; Hansen, A. C.

2003-11-01T23:59:59.000Z

172

Initial Scaling Studies and Conceptual Thermal Fluids Experiments for the Prismatic NGNP Point Design  

SciTech Connect

The objective of this report is to document the initial high temperature gas reactor scaling studies and conceptual experiment design for gas flow and heat transfer. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/ATHENA/RELAP5-3D calculations for the same geometry. Two aspects of the complex flow in an NGNP are being addressed: (1) flow and thermal mixing in the lower plenum ("hot streaking" issue) and (2) turbulence and resulting temperature distributions in reactor cooling channels ("hot channel" issue). Current prismatic NGNP concepts are being examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses are being applied to determine key non-dimensional parameters and their magnitudes over this operating range. For normal operation, the flow in the coolant channels can be considered to be dominant forced convection with slight transverse property variation. The flow in the lower plenum can locally be considered to be a situation of multiple buoyant jets into a confined density-stratified crossflow -- with obstructions. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other. Two heat transfer experiments are being considered. One addresses the "hot channel" problem, if necessary. The second experiment will treat heated jets entering a model plenum. Unheated MIR (Matched-Index-of-Refraction) experiments are first steps when the geometry is complicated. One does not want to use a computational technique which will not even handle constant properties properly. The MIR experiment will simulate flow features of the paths of jets as they mix in flowing through the array of posts in a lower plenum en route to the single exit duct. Initial conceptual designs for such experiments are described.

D. M. McEligot; G. E. McCreery

2004-09-01T23:59:59.000Z

173

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

of Carbon Cap-and-Trade for Electricity Rate Design, withmeet cap-and- trade regulations in the electricity sector:

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

174

Evolution of Design Methodologies for Next Generation of Reactor Pressure Vessels and Extensive Role of Thermal-Hydraulic Numerical Tools  

SciTech Connect

The thermal-hydraulic design of the first pressurized water reactors was mainly based on an experimental approach, with a large series of tests on the main equipment [control rod guide tubes, reactor pressure vessel (RPV) plenums, etc.] to check performance.Development of computational fluid dynamics codes and computers now allows for complex simulations of hydraulics phenomena. Provided adequate qualification, these numerical tools are an efficient means to determine hydraulics in the given design and to perform sensitivities for optimization of new designs. Experiments always play their role, first for qualification and then for validation at the last stage of the design. The design of the European Pressurized Water Reactor (EPR), jointly developed by Framatome ANP, Electricite de France (EDF), and the German utilities, is based on both hydraulics calculations and experiments handled in a complementary approach.This paper describes the collective effort launched by Framatome ANP and EDF on hydraulics calculations for the RPV of the EPR. It concerns three-dimensional calculations of RPV inlets, including the cold legs, the RPV downcomer and lower plenum, and the RPV upper plenum up to and including the hot legs. It covers normal operating conditions but also accidental conditions such as pressurized thermal shock in a small-break loss-of-coolant accident. Those hydraulics studies have provided much useful information for the mechanical design of RPV internals.

Bellet, Serge [Electricite de France - Septen (EDF) (France); Goreaud, Nicolas [Framatome ANP(France); Nicaise, Norbert [Framatome ANP (France)

2005-11-15T23:59:59.000Z

175

Evolution of the design methodologies for the next generation of RPV Extensive role of the thermal-hydraulics numerical tools  

SciTech Connect

The thermal-hydraulic design of the first PWR's was mainly based on an experimental approach, with a large series of test on the main equipment (control rod guide tubes, RPV plenums..), to check its performances. Development of CFD-codes and computers now allows for complex simulations of hydraulic phenomena. Provided adequate qualification, these numerical tools are efficient means to determine hydraulics in given design, and to perform sensitivities for optimization of new designs. Experiments always play their role, first for qualification, and for validation at the last stage of the design. The design of the European Pressurized water Reactor (EPR), is based on both hydraulic calculations and experiments, handled in a complementary approach. This paper describes the effort launched by Framatome-ANP on hydraulic calculations for the Reactor Pressure Vessel (RPV) of the EPR reactor. It concerns 3D-calculations of RPV-inlet including cold legs, RPV-downcomer and lower plenum, RPV-upper plenum up to and including hot legs. It covers normal operating conditions, but also accidental conditions as PTS (Pressurized Thermal Shock) in small break loss of coolant accident (SB-LOCA). Those hydraulic studies have provided numerous useful information for the mechanical design of RPV-internals. (authors)

Goreaud, Nicolas; Nicaise, Norbert [Framatome ANP, Tour Areva 92 084 Paris La Defense (France); Stoudt, Roger [Framatome ANP, 3315 Old forest road, Lynchburg, VA 24501 (United States)

2004-07-01T23:59:59.000Z

176

Probability of passing through a parabolic barrier and thermal decay rate: Case of linear coupling both in momentum and in coordinate  

SciTech Connect

With the quantum diffusion approach, the probability of passing through the parabolic barrier and the quasistationary thermal decay rate from a metastable state are examined in the limit of linear coupling both in momentum and in coordinate between a collective subsystem and the environment. An increase of passing probability with friction coefficient is demonstrated to occur at subbarrier energies.

Kuzyakin, R. A. [Joint Institute for Nuclear Research, RU-141980 Dubna (Russian Federation); Omsk State Transport University, RU-644046 Omsk (Russian Federation); Sargsyan, V. V. [Joint Institute for Nuclear Research, RU-141980 Dubna (Russian Federation); Yerevan State University, International Center for Advanced Studies, Yerevan (Armenia); Adamian, G. G.; Antonenko, N. V. [Joint Institute for Nuclear Research, RU-141980 Dubna (Russian Federation)

2011-09-15T23:59:59.000Z

177

NEUTRONIC AND THERMAL HYDRAULIC DESIGNS OF ANNULAR FUEL FOR HIGH POWER DENSITY BWRS  

E-Print Network (OSTI)

As a promising new fuel for high power density light water reactors, the feasibility of using annular fuel for BWR services is explored from both thermal hydraulic and neutronic points of view. Keeping the bundle size ...

Morra, P.

178

Designing Safe Lithium-Ion Battery Packs Using Thermal Abuse Models (Presentation)  

DOE Green Energy (OSTI)

NREL and NASA developed a thermal-electrical model that resolves PTC and cell behavior under external shorting, now being used to evaluate safety margins of battery packs for spacesuit applications.

Pesaran, A. A.; Kim, G. H.; Smith, K.; Darcy, E.

2008-12-01T23:59:59.000Z

179

Thermal design of humidification dehumidification systems for affordable and small-scale desalination  

E-Print Network (OSTI)

The humidification dehumidification (HDH) technology is a carrier-gas-based thermal desalination technique ideal for application in a small-scale system but, currently, has a high cost of water production (about 30 $/m³ ...

Govindan, Prakash Narayan

2012-01-01T23:59:59.000Z

180

Preliminary designs for ocean thermal energy conversion (OTEC) stationkeeping subsystems (SKSS). Task II. Conceptual design. Final report  

DOE Green Energy (OSTI)

The study is presented in five sections: design loads, conceptual designs, trade studies, cost analysis and concept evaluation and ranking. Extensive appendixes provide back up calculations and data to support the results. Environmental forces and yaw moments acting on the barge and spar in the various design sea states are presented including wave, wind and current effects. A parametric analysis illustrates the impact on holding power requirement of varying the return periods for operational and extreme sea state. The conceptual designs are presented for the barge followed by those for the spar, including configuration definition, performance characteristics, interfaces, areas for development, and deployment scenarios for selected concepts. The concept definition is followed by a set of trade studies that were performed to evaluate candidate anchor types and anchor leg materials. Parametric variations in anchor leg characteristics, wire-rope-to-chain length ratio for example, illustrate the influence of the significant design parameters on performance. An extensive cost analysis of the candidate SKSS concepts is presented, including cost estimates, life cycle cost scenarios leading to expected value of life cycle cost, and cost equivalence of operational failures. An evaluation of the eight SKSS concepts is presented, including assessment of performance and rankings based on risk versus cost and technology development. The appendixes include a report on the Electrical Transmission System interface, wave drift force, typical cost disbursement schedule and computer program listing, the IMODCO conceptual design report, and static configuration results.

Not Available

1979-07-27T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The design, construction, and monitoring of photovoltaic power system and solar thermal system on the Georgia Institute of Technology Aquatic Center. Volume 1  

DOE Green Energy (OSTI)

This is a report on the feasibility study, design, and construction of a PV and solar thermal system for the Georgia Tech Aquatic Center. The topics of the report include a discussion of site selection and system selection, funding, design alternatives, PV module selection, final design, and project costs. Included are appendices describing the solar thermal system, the SAC entrance canopy PV mockup, and the PV feasibility study.

Long, R.C.

1996-12-31T23:59:59.000Z

182

Ocean thermal energy conversion power system development-I. Phase I. Preliminary design report. Volume 1. Final report  

DOE Green Energy (OSTI)

The results of a conceptual and preliminary design study of Ocean Thermal Energy Conversion (OTEC) closed loop ammonia power system modules performed by Lockheed Missiles and Space Company, Inc. (LMSC) are presented. This design study is the second of 3 tasks in Phase I of the Power System Development-I Project. The Task 2 objectives were to develop: 1) conceptual designs for a 40 to 50-MW(e) closed cycle ammonia commercial plant size power module whose heat exchangers are immersed in seawater and whose ancillary equipments are in a shirt sleeve environment; preliminary designs for a modular application power system sized at 10-MW(e) whose design, construction and material selection is analogous to the 50 MW(e) module, except that titanium tubes are to be used in the heat exchangers; and 3) preliminary designs for heat exchanger test articles (evaporator and condenser) representative of the 50-MW(e) heat exchangers using aluminum alloy, suitable for seawater service, for testing on OTEC-1. The reference ocean platform was specified by DOE as a surface vessel with the heat exchanger immersed in seawater to a design depth of 0 to 20 ft measured from the top of the heat exchanger. For the 50-MW(e) module, the OTEC 400-MW(e) Plant Ship, defined in the Platform Configuration and Integration study, was used as the reference platform. System design, performance, and cost are presented. (WHK)

Not Available

1978-12-18T23:59:59.000Z

183

Vapor cooled lead and stacks thermal performance and design analysis by finite difference techniques  

SciTech Connect

Investigation of the combined thermal performance of the stacks and vapor-cooled leads for the Mirror Fusion Test Facility-B (MFTF-B) demonstrates considerable interdependency. For instance, the heat transfer to the vapor-cooled lead (VCL) from warm bus heaters, environmental enclosure, and stack is a significant additional heat load to the joule heating in the leads, proportionately higher for the lower current leads that have fewer current-carrying, counter flow coolant copper tubes. Consequently, the specific coolant flow (G/sec-kA-lead pair) increases as the lead current decreases. The definition of this interdependency and the definition of necessary thermal management has required an integrated thermal model for the entire stack/VCL assemblies. Computer simulations based on finite difference thermal analyses computed all the heat interchanges of the six different stack/VCL configurations. These computer simulations verified that the heat load of the stacks beneficially alters the lead temperature profile to provide added stability against thermal runaway. Significant energy is transferred through low density foam filler in the stack from warm ambient sources to the vapor-cooled leads.

Peck, S.D.; O' Loughlin, J.M.; Christensen, E.H.

1984-09-01T23:59:59.000Z

184

Thermal and Geometric Controls on the Rate of Surface Air Temperature Changes in a Medium-Sized, Midlatitude City  

Science Conference Proceedings (OSTI)

Gradual cooling in the evening forms a wintertime nocturnal urban heat island. This work, with a mesoscale model involving urban canopy physics, is an examination of how four thermal and geometric controls—anthropogenic heat QF, heat capacity C, ...

Tomohiko Tomita; Hiroyuki Kusaka; Ryo Akiyoshi; Yoshiyuki Imasato

2007-02-01T23:59:59.000Z

185

Preliminary designs for ocean thermal energy conversion (OTEC) stationkeeping subsystems (SKSS). Task I. Design requirements. Final report  

DOE Green Energy (OSTI)

The results of Task I, Design Requirements, are presented. Environmental conditions for the Punta Tuna, Puerto Rico site are reviewed and synthesized to provide definition of current, wind and wave severity, direction, and occurrence for service, operational, and extreme sea states. SKSS performance requirements, including design life and watch circle, are followed by interface considerations particularly for the electrical transmission riser cable, and design criteria including safety and load factors. The SKSS concepts will be analyzed to evaluate performance, reliability, and cost. Performance analysis conducted included catenary anchor leg static calculations to size components, as well as drag due to environmental loads in the operational and extreme sea states for both ship and spar platforms. Dynamic analyses and trade studies to be conducted in Task II are presented. A reliability and risk assessment analysis of the three basic SKSS types - single-, multiple-, and tension-anchor-leg moors - was completed, indicating that the multiple-anchor-leg/multiple-point rotary or turret moor has the lowest risk-criticality for the ship, while that for the spar is the multiple-anchor-leg/multiple-point moor. The catenary single-anchor-leg/single-point moor has insufficient reliability for both platforms. The life cycle cost analysis methodology, including work breakdown structure, cost estimating, and cost minimization define the approach to costing to be followed throughout the study. The results of these design trades and analyses will first be applied to concept ranking required for recommendation of a SKSS concept for each platform.

Not Available

1979-06-01T23:59:59.000Z

186

Design of solar water-heater installations for seasonal users of thermal energy  

SciTech Connect

A mathematical model has been developed for a solar water-heating unit intended to be employed by seasonal users of thermal energy. The expected characteristics of such units are calculated for an ''average'' operating season.

Valyuzhinich, A.A.; Myshko, Yu.L.; Smirnov, S.I.

1980-01-01T23:59:59.000Z

187

Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review  

Science Conference Proceedings (OSTI)

Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

Lesh, Pamela G.

2009-10-15T23:59:59.000Z

188

Evaluation of Some Ground Truth Designs for Satellite Estimates of Rain Rate  

Science Conference Proceedings (OSTI)

In this paper point gauge measurements are analyzed as part of a ground truth design to validate satellite retrieval algorithms at the field-of-view spatial level (typically about 20 km). Even in the ideal case the ground and satellite ...

Eunho Ha; Gerald R. North; Chulsang Yoo; Kyung-Ja Ha

2002-01-01T23:59:59.000Z

189

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 2, ventilated concrete slab  

Science Conference Proceedings (OSTI)

This paper is the second of two papers that describe the modeling and design of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) adopted in a prefabricated, two-storey detached, low energy solar house and their performance assessment based on monitored data. The VCS concept is based on an integrated thermal-structural design with active storage of solar thermal energy while serving as a structural component - the basement floor slab ({proportional_to}33 m{sup 2}). This paper describes the numerical modeling, design, and thermal performance assessment of the VCS. The thermal performance of the VCS during the commissioning of the unoccupied house is presented. Analysis of the monitored data shows that the VCS can store 9-12 kWh of heat from the total thermal energy collected by the BIPV/T system, on a typical clear sunny day with an outdoor temperature of about 0 C. It can also accumulate thermal energy during a series of clear sunny days without overheating the slab surface or the living space. This research shows that coupling the VCS with the BIPV/T system is a viable method to enhance the utilization of collected solar thermal energy. A method is presented for creating a simplified three-dimensional, control volume finite difference, explicit thermal model of the VCS. The model is created and validated using monitored data. The modeling method is suitable for detailed parametric study of the thermal behavior of the VCS without excessive computational effort. (author)

Chen, Yuxiang; Galal, Khaled; Athienitis, A.K. [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

190

Rate Schedules  

Energy.gov (U.S. Department of Energy (DOE))

One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

191

Phase 1: conceptual design. Ocean thermal energy conversion power system development. Volume 2 of 3. Technical details. Final report  

DOE Green Energy (OSTI)

Westinghouse has completed the conceptual design of the Power System for the Ocean Thermal Energy Conversion (OTEC) Demonstration Plant project. This study included the development of a conceptual design for the following three items: first, a full-size power system module for the 100 MWe Demonstration Plant; second, a scaled proof of concept power system; and third, a heat exchanger test article. The study was limited to a closed cycle ammonia power system module, using a water temperature difference of 40/sup 0/F., and a surface platform/ship reference hull. Two power module of 50 MWe each are recommended for the demonstration plant. The 50 MWe module was selected since it has the lowest cost, and since it is of a size which convincingly demonstrates that future economically viable commercial plants, having reliable operation with credible anticipated costs, are possible. A modular, tube bundle approach to heat exchanger design makes large heat exchangers practical and economical. Other power module elements are considered to be within state-of-practice. Technological assessments of all subsystems indicate requirements for verification only, rather than continued research. A complete test program, which will verify the mechanical reliability as well as thermal performance, is recommended.

Not Available

1978-01-30T23:59:59.000Z

192

Application of Extruded Dielectric Cable Model in the Dynamic Thermal Circuit Rating (DTCR) System for San Diego Gas & Electric's Ot ay Mesa Power Loop Project  

Science Conference Proceedings (OSTI)

Due to limited incentives for new construction, utilities around the world are undergoing a major transformation that is redefining the use of existing power equipment in the electric transmission network. Under these circumstances, utilities are forced to find new ways to increase power flow through the existing transmission corridors with minimal investments. This report addresses the application of the Electric Power Research Institute's (EPRI's) Dynamic Thermal Circuit Rating (DTCR) program to San Di...

2010-02-02T23:59:59.000Z

193

Thermal Storage Commercial Plant Design Study for a 2-Tank Indirect Molten Salt System: Final Report, 13 May 2002 - 31 December 2004  

DOE Green Energy (OSTI)

Subcontract report by Nexant, Inc., and Kearney and Associates regarding a study of a solar parabolic trough commercial plant design with 2-tank indirect molten salt thermal storage system.

Kelly, B.; Kearney, D.

2006-07-01T23:59:59.000Z

194

Ocean thermal energy conversion (OTEC). Power system development. Preliminary design report, final  

DOE Green Energy (OSTI)

The preliminary design of the 10 MWe OTEC power module and the 200 kWe test articles is given in detail. System operation and performance; power system cost estimates; 10 MWe heat exchangers; 200 kWe heat exchanger articles; biofouling control;ammonia leak detection, and leak repair; rotating machinery; support subsystem; instrumentation and control; electrical subsystem; installation approach; net energy and resource analysis; and operability, maintainability, and safety are discussed. The conceptual design of the 40 MWe electrical power system includes four or five 10 MWe modules as designed for the 10 MWe pilot plant. (WHK)

Not Available

1978-12-04T23:59:59.000Z

195

Design, construction and commissioning of the Thermal Screen Control System for the CMS Tracker detector at CERN  

E-Print Network (OSTI)

The CERN (European Organization for Nuclear Research) laboratory is currently building the Large Hadron Collider (LHC). Four international collaborations have designed (and are now constructing) detectors able to exploit the physics potential of this collider. Among them is the Compact Muon Solenoid (CMS), a general purpose detector optimized for the search of Higgs boson and for physics beyond the Standard Model of fundamental interactions between elementary particles. This thesis presents, in particular, the design, construction, commissioning and test of the control system for a screen that provides a thermal separation between the Tracker and ECAL (Electromagnetic CALorimeter) detector of CMS (Compact Muon Solenoid experiment). Chapter 1 introduces the new challenges posed by these installations and deals, more in detail, with the Tracker detector of CMS. The size of current experiments for high energy physics is comparable to that of a small industrial plant: therefore, the techniques used for controls a...

Carrone, E; Tsirou, A

196

Critical Simulation Based Evaluation of Thermally Activated Building Systems (TABS) Design Models  

E-Print Network (OSTI)

Building index YOC Climate zone Use and loads Envelope CAin California CZ03 climate zone. The design models wereinvestigated the California climate zones CZ03, CZ04, CZ05,

Basu, Chandrayee

2012-01-01T23:59:59.000Z

197

Ocean thermal energy conversion power system development-I. Volume 4. Appendix G. Preliminary design report  

DOE Green Energy (OSTI)

The conceptual design of a 40 to 50 MW closed cycle ammonia OTEC commercial plant, the preliminary design of a 10 MW OTEC module analogous to the 50 MW module, and the preliminary design of heat exchanger test articles (evaporator and condenser) representative of the 50 MW heat exchangers for testing in OTEC-1 are presented. This volume of the report presents Appendix G: ammonia cycle, auxiliaries and ancillaries. Design descriptions are given (for the 50 MW commercial plant and the 10 MW module) for the ammonia vapor and condensate systems, ammonia storage and fill systems, noncondensible gas removal systems, ammonia cleanup systems, ammonia unloading systems, leak detection systems, and fluid sampling systems. (WHK)

Not Available

1978-12-18T23:59:59.000Z

198

Design and validation of an air window for a molten salt solar thermal receiver  

E-Print Network (OSTI)

This thesis contributes to the development of Concentrating Solar Power (CSP) receivers and focuses on the design of an efficient aperture. An air window is proposed for use as the aperture of a CSP molten salt receiver ...

Paxson, Adam Taylor

2009-01-01T23:59:59.000Z

199

The Mechanical and Thermal Design for the MICE Focusing Solenoid Magnet System  

E-Print Network (OSTI)

part of the gravity feed heat pipe that delivers the heattemperature drop along the heat pipe is independent of thethe magnet [10]. If the heat pipe is correctly designed, the

2004-01-01T23:59:59.000Z

200

Ocean thermal energy conversion cold water pipe preliminary design project. Task 2. Analysis for concept selection  

DOE Green Energy (OSTI)

The successful performance of the CWP is of crucial importance to the overall OTEC system; the pipe itself is considered the most critical part of the entire operation. Because of the importance the CWP, a project for the analysis and design of CWP's was begun in the fall of 1978. The goals of this project were to study a variety of concepts for delivering cold water to an OTEC plant, to analyze and rank these concepts based on their relative cost and risk, and to develop preliminary design for those concepts which seemed most promising. Two representative platforms and sites were chosen: a spar buoy of a Gibbs and Cox design to be moored at a site off Punta Tuna, Puerto Rico, and a barge designed by APL/Johns Hopkins University, grazing about a site approximately 200 miles east of the coast of Brazil. The approach was to concentrate on the most promising concepts and on those which were either of general interest or espoused by others (e.g., steel and concrete concepts). Much of the overall attention, therefore, focused on analyzing rigid and compliant wall design, while stockade (except for the special case of the FRP stockade) and bottom-mounted concepts received less attention. A total of 67 CWP concepts were initially generated and subjected to a screening process. Of these, 16 were carried through design analysis, costing, and ranking. Study results are presented in detail. (WHK)

None

1979-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A solar thermal cooling and heating system for a building: Experimental and model based performance analysis and design  

Science Conference Proceedings (OSTI)

A solar thermal cooling and heating system at Carnegie Mellon University was studied through its design, installation, modeling, and evaluation to deal with the question of how solar energy might most effectively be used in supplying energy for the operation of a building. This solar cooling and heating system incorporates 52 m{sup 2} of linear parabolic trough solar collectors; a 16 kW double effect, water-lithium bromide (LiBr) absorption chiller, and a heat recovery heat exchanger with their circulation pumps and control valves. It generates chilled and heated water, dependent on the season, for space cooling and heating. This system is the smallest high temperature solar cooling system in the world. Till now, only this system of the kind has been successfully operated for more than one year. Performance of the system has been tested and the measured data were used to verify system performance models developed in the TRaNsient SYstem Simulation program (TRNSYS). On the basis of the installed solar system, base case performance models were programmed; and then they were modified and extended to investigate measures for improving system performance. The measures included changes in the area and orientation of the solar collectors, the inclusion of thermal storage in the system, changes in the pipe diameter and length, and various system operational control strategies. It was found that this solar thermal system could potentially supply 39% of cooling and 20% of heating energy for this building space in Pittsburgh, PA, if it included a properly sized storage tank and short, low diameter connecting pipes. Guidelines for the design and operation of an efficient and effective solar cooling and heating system for a given building space have been provided. (author)

Qu, Ming [School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051 (United States); Yin, Hongxi [School of Engineering Education, Purdue University, 701 W. Stadium Ave., West Lafayette, IN 47907-2061 (United States); Archer, David H. [Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 (United States)

2010-02-15T23:59:59.000Z

202

Ocean Thermal Energy Conversion Cold Water Pipe Preliminary Design Project. Final report  

DOE Green Energy (OSTI)

NOAA/DOE has selected three concepts for a baseline design of the cold water pipe (CWP) for OTEC plants: (1) a FRP CWP of sandwich wall construction suspended from the Applied Physical Laboratory/John Hopkins University (APL/JHU) barge at a site 200 miles east of the coast of Brazil using a horizontal deployment scheme; (2) an elastomer CWP suspended from the APL/JHU barge off the south-east coast of Puerto Rico using either a horizontal or vertical deployment scheme; and (3) a polyethylene CWP (single or multiple pipe) suspended from the Gibbs and Cox spar at the Puerto Rico site using a horizontal deployment scheme. TRW has developed a baseline design for each of these configurations. Detailed designs and analyses for the FRP, polyethylene, and elastomer concepts, respectively, are described. Each section includes a discussion of fabrication plans and processes, schedules for mobilization of facilities and equipment, installation plans, and cost breakdown. (WHK)

Not Available

1979-11-20T23:59:59.000Z

203

Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept  

SciTech Connect

This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

2010-11-15T23:59:59.000Z

204

A new approach to the design of uniquely folded thermally stable proteins  

E-Print Network (OSTI)

.9% after 30 days immersion in simulated body fluid (SBF) at 37±0.5 °C, and the corrosion rates were 0. Kokubo, Thermochim. Acta 280­281 (1996) 479­490. [47] L. Jonásová, F.A. Müller, A. Helebrant, J. Strnad

Farid, Hany

205

Investigation of Thermal Feedback Design for Improved Load-Following Capability of Thorium Molten Salt Reactors  

Science Conference Proceedings (OSTI)

The increasing deployment of renewable energy sources has raised concerns about the ramp-rate limitations of conventional steam and combustion turbines in providing load following during solar photovoltaic transients. As one of the promising Generation ... Keywords: molten salt reactors, thorium

Andrew M. Dodson, Roy A. Mccann

2013-04-01T23:59:59.000Z

206

INNOVATIVE DESIGN AND MATERIAL SOLUTIONS OF THERMAL CONTACT LAYERS FOR HIGH HEAT FLUX APPLICATIONS IN FUSION  

E-Print Network (OSTI)

of the damaged assembly. These operations will require the use of special purpose remote handling tools. Since in the design shown in Fig. 1 to allow remote handling tools to grab and move the assembly. After engaging of locking mechanisms. It should be noted that the remote handling tools used in the installation may

Tillack, Mark

207

Rankine cycle energy conversion system design considerations for low and intermediate temperature sensible heat sources. Geothermal, waste heat, and solar thermal conversion  

DOE Green Energy (OSTI)

Design considerations are described for energy conversion systems for low and intermediate temperature sensible heat sources such as found in geothermal, waste heat, and solar-thermal applications. It is concluded that the most cost effective designs for the applications studied did not require the most efficient thermodynamic cycle, but that the efficiency of the energy conversion hardware can be a key factor.

Abbin, J.P. Jr.

1976-10-01T23:59:59.000Z

208

Ocean Thermal Energy Conservation (OTEC) power system development (PDS) II. Preliminary design report  

DOE Green Energy (OSTI)

This report documents the results and conclusions of the PDS II, Phase I, preliminary design of a 10 MWe OTEC power system, using enhanced plate type heat exchangers, and of representative 0.2 MWe test articles. It further provides the documentation (specifications, drawings, trade studies, etc.) resulting from the design activities. The data and discussions of the technical concepts are organized to respond to the PDS II, Phase II proposal evaluation criteria. This volume, which specifically addresses the three evaluation categories (heat exchangers, rotating machinery, and power system configuration and performance) is an integral part of the Phase II plans (proposal) which describe the technical approach to delivering test articles to OTEC-1. In addition, there is a section which addresses power system cost and net energy analysis and another which discusses the results of stainless steel feasibility studies. Supporting documentation is contained in two appendix volumes.

Not Available

1979-08-10T23:59:59.000Z

209

Ocean thermal energy conversion cold water pipe preliminary design project. Appendices to final report  

DOE Green Energy (OSTI)

NOAA/DOE has selected three concepts for a baseline design of the cold water pipe (CWP) for OTEC plants: (1) a FRP CWP of sandwich wall construction suspended from the Applied Physical Laboratory/John Hopkins University (APL/JHU) barge at a site 200 miles east of the coast of Brazil using a horizontal deployment scheme; (2) an elastomer CWP suspended from the APL/JHU barge off the southeast coast of Puerto Rico using either a horizontal or vertical deployment scheme; and (3) a polyethylene CWP (single or multiple pipe) suspended from the Gibbs and Cox spar at the Puerto Rico site using a horizontal deployment scheme. TRW has developed a baseline design for each of these configurations. This volume of the report includes the following appendices: (A) fiberglass reinforced plastic cold water pipe (specification and drawingss); (B) specification for polyethylene CWP; (C) elastomer pipe drawings; (D) drawings for OTEC 10/40 hull/CWP transitions; (E) structural design of OTEC 10/40 CWP support and CWP transitions; (F) universal transition joint for CWP; (G) dynamic spherical seal of CWP; (H) at-sea deployment loads - surface towing loads; (I) OTEC 10/40 CWP deployment up-ending loads; (J) cost estimates for OTEC 10/40 hull/CWP transitions; and (K) OTEC 10/40 CWP deployment scenario and cost estimate. (WHK)

Not Available

1979-11-20T23:59:59.000Z

210

REVIEW REPORT: BUILDING C-400 THERMAL TREATMENT 90 PERCENT REMEDIAL DESIGN REPORT AND SITE INVESTIGATION, PGDP, PADUCAH, KENTUCKY  

Science Conference Proceedings (OSTI)

On 9 April 2007, the U.S. Department of Energy (DOE) Headquarters, Office of Soil and Groundwater Remediation (EM-22) initiated an Independent Technical Review (ITR) of the 90% Remedial Design Report (RDR) and Site Investigation (RDSI) for thermal treatment of trichloroethylene (TCE) in the soil and groundwater in the vicinity of Building C-400 at the Paducah Gaseous Diffusion Plant (PGDP). The general ITR goals were to assess the technical adequacy of the 90% RDSI and provide recommendations sufficient for DOE to determine if modifications are warranted pertaining to the design, schedule, or cost of implementing the proposed design. The ultimate goal of the effort was to assist the DOE Paducah/Portsmouth Project Office (PPPO) and their contractor team in ''removing'' the TCE source zone located near the C-400 Building. This report provides the ITR findings and recommendations and supporting evaluations as needed to facilitate use of the recommendations. The ITR team supports the remedial action objective (RAO) at C-400 to reduce the TCE source area via subsurface Electrical Resistance Heating (ERH). Further, the ITR team commends PPPO, their contractor team, regulators, and stakeholders for the significant efforts taken in preparing the 90% RDR. To maximize TCE removal at the target source area, several themes emerge from the review which the ITR team believes should be considered and addressed before implementing the thermal treatment. These themes include the need for: (1) Accurate and site-specific models as the basis to verify the ERH design for full-scale implementation for this challenging hydrogeologic setting; (2) Flexible project implementation and operation to allow the project team to respond to observations and data collected during construction and operation; (3) Defensible performance metrics and monitoring, appropriate for ERH, to ensure sufficient and efficient clean-up; and (4) Comprehensive (creative and diverse) contingencies to address the potential for system underperformance, and other unforeseen conditions These themes weave through the ITR report and the various analyses and recommendations. The ITR team recognizes that a number of technologies are available for treatment of TCE sources. Further, the team supports the regulatory process through which the selected remedy is being implemented, and concurs that ERH is a potentially viable remedial technology to meet the RAOs adjacent to C-400. Nonetheless, the ITR team concluded that additional efforts are needed to provide an adequate basis for the planned ERH design, particularly in the highly permeable Regional Gravel Aquifer (RGA), where sustaining target temperatures present a challenge. The ERH design modeling in the 90% RDR does not fully substantiate that heating in the deep RGA, at the interface with the McNairy formation, will meet the design goals; specifically the target temperatures. Full-scale implementation of ERH to meet the RAOs is a challenge in the complex hydrogeologic setting at PGDP. Where possible, risks to the project identified in this ITR report as ''issues'' and ''recommendations'' should be mitigated as part of the final design process to increase the likelihood of remedial success. The ITR efforts were organized into five lines of inquiry (LOIs): (1) Site investigation and target zone delineation; (2) Performance objectives; (3) Project and design topics; (4) Health and safety; and (5) Cross cutting and independent cost evaluation. Within each of these LOIs, the ITR team identified a series of unresolved issues--topics that have remaining uncertainties or potential project risks. These issues were analyzed and one or more recommendations were developed for each. In the end, the ITR team identified 27 issues and provided 50 recommendations. The issues and recommendations are briefly summarized below, developed in Section 5, and consolidated into a single list in Section 6. The ITR team concluded that there are substantive unresolved issues and system design uncertainties, resulting in technical and financial risks to DOE.

Looney, B; Jed Costanza, J; Eva Davis, E; Joe Rossabi, J; Lloyd (Bo) Stewart, L; Hans Stroo, H

2007-08-15T23:59:59.000Z

211

Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment  

SciTech Connect

In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

2012-07-01T23:59:59.000Z

212

Scaling of Thermal-Hydraulic Experiments for a Space Rankine Cycle and Selection of a Preconceptual Scaled Experiment Design  

Science Conference Proceedings (OSTI)

To assist with the development of a space-based Rankine cycle power system using liquid potassium as the working fluid, a study has been conducted on possible scaled experiments with simulant fluids. This report will consider several possible working fluids and describe a scaling methodology to achieve thermal-hydraulic similarity between an actual potassium system and scaled representations of the Rankine cycle boiler or condenser. The most practical scaling approach examined is based on the selection of perfluorohexane (FC-72) as the simulant. Using the scaling methodology, a series of possible solutions have been calculated for the FC-72 boiler and condenser. The possible scaled systems will then be compared and preconceptual specifications and drawings given for the most promising design. The preconceptual design concept will also include integrating the scaled boiler and scaled condenser into a single experimental loop. All the preconceptual system specifications appear practical from a fabrication and experimental standpoint, but further work will be needed to arrive at a final experiment design.

Sulfredge, CD

2006-01-27T23:59:59.000Z

213

Central Receiver Solar Thermal Power System, Phase 1: CDRL Item 2, Pilot plant preliminary design report. Volume 1. Executive overview  

SciTech Connect

This summary introduces the McDonnell Douglas Astronautics Company (MDAC) Central Receiver System Preliminary Design and reports the results of the Subsystem Research Experiments (SRE) recently completed. The baseline central receiver concept defined by the MDAC team consists of the following features: (A) An external receiver mounted on a tower, and located in a 360-deg array of sun-tracking heliostats which comprise the collector subsystem. (B) Feedwater from the electrical power generation subsystem is pumped through a riser to the receiver, where the feedwater is converted to superheated steam in a single pass through the tubes of the receiver panels. (C) The steam from the receiver is routed through a downcomer to the ground and introduced to a turbine directly for expansion and generation of electricity, and/or to a thermal storage subsystem, where the steam is condensed in charging heat exchangers to heat a dual-medium oil and rock thermal storage unit (TSU). (D) Extended operation after daylight hours is facilitated by discharging the TSU to generate steam for feeding the admission port of the turbine. (E) Overall control of the system is provided by a master control unit, which handles the interactions between subsystems that take place during startup, shutdown, and transitions between operating modes.

Hallet, Jr., R. W.; Gervais, R. L.

1977-10-01T23:59:59.000Z

214

Conceptual Engine System Design for NERVA derived 66.7KN and 111.2KN Thrust Nuclear Thermal Rockets  

Science Conference Proceedings (OSTI)

The Nuclear Thermal Rocket concept is being evaluated as an advanced propulsion concept for missions to the moon and Mars. A tremendous effort was undertaken during the 1960's and 1970's to develop and test NERVA derived Nuclear Thermal Rockets in the 111.2 KN to 1112 KN pound thrust class. NASA GRC is leveraging this past NTR investment in their vehicle concepts and mission analysis studies, and has been evaluating NERVA derived engines in the 66.7 KN to the 111.2 KN thrust range. The liquid hydrogen propellant feed system, including the turbopumps, is an essential component of the overall operation of this system. The NASA GRC team is evaluating numerous propellant feed system designs with both single and twin turbopumps. The Nuclear Engine System Simulation code is being exercised to analyze thermodynamic cycle points for these selected concepts. This paper will present propellant feed system concepts and the corresponding thermodynamic cycle points for 66.7 KN and 111.2 KN thrust NTR engine systems. A pump out condition for a twin turbopump concept will also be evaluated, and the NESS code will be assessed against the Small Nuclear Rocket Engine preliminary thermodynamic data.

Fittje, James E. [Analex Corporation, Cleveland Ohio (United States); Buehrle, Robert J. [NASA Glenn Research Center, Brookpark Ohio 44135 (United States)

2006-01-20T23:59:59.000Z

215

Analysis and System Design of a Large Chiller Plant for Korea, with or without Thermal Storage  

E-Print Network (OSTI)

A 625,600 ft2 (58,120 m2) office building with retail in South Korea has a total cooling load of 3,330 tons refrigeration (1 1,7 12 kW). In order to evaluate the most economical manner to provide cooling, a simulation program was used. Five different configurations of chiller plants were investigated; each configuration was carefully described so that the computer model was a good representation of the intended plants. This paper outlines the design and analysis procedure, and the results show the difference in energy consumption between the configurations.

Levin, C.; Simmonds, P.

1996-01-01T23:59:59.000Z

216

THERMAL DESIGN METHODOLOGY FOR LOW FLOW RATE SINGLE-PHASE AND TWO-PHASE MICRO-CHANNEL HEAT SINKS  

E-Print Network (OSTI)

in Engine Cooling Systems,'' Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics 1997, June 1997, ``A Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow,'' Ind. Eng. Chem the engines in automotive applications. Heat is transferred essentially under subcooled flow boiling

Qu, Weilin

217

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

Science Conference Proceedings (OSTI)

Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

2011-06-01T23:59:59.000Z

218

Software/firmware design specification for 10-MWe solar-thermal central-receiver pilot plant  

DOE Green Energy (OSTI)

The software and firmware employed for the operation of the Barstow Solar Pilot Plant are completely described. The systems allow operator control of up to 2048 heliostats, and include the capability of operator-commanded control, graphic displays, status displays, alarm generation, system redundancy, and interfaces to the Operational Control System, the Data Acquisition System, and the Beam Characterization System. The requirements are decomposed into eleven software modules for execution in the Heliostat Array Controller computer, one firmware module for execution in the Heliostat Field Controller microprocessor, and one firmware module for execution in the Heliostat Controller microprocessor. The design of the modules to satisfy requirements, the interfaces between the computers, the software system structure, and the computers in which the software and firmware will execute are detailed. The testing sequence for validation of the software/firmware is described. (LEW)

Ladewig, T.D.

1981-03-01T23:59:59.000Z

219

Areal power density: A preliminary examination of underground heat transfer in a potential Yucca Mountain repository and recommendations for thermal design approaches; Yucca Mountain Site Characterization Project  

SciTech Connect

The design of the potential Yucca Mountain repository is subject to many thermal goals related to the compliance of the site with federal regulations. This report summarizes a series of sensitivity studies that determined the expected temperatures near the potential repository. These sensitivity studies were used to establish an efficient loading scheme for the spent fuel canisters and a maximum areal power density based strictly on thermal goals. Given the current knowledge of the site, a design-basis areal power density of 80 kW/acre can be justified based on thermal goals only. Further analyses to investigate the impacts of this design-basis APD on mechanical and operational aspects of the potential repository must be undertaken before a final decision is made.

Hertel, E.S. Jr.; Ryder, E.E.

1991-11-01T23:59:59.000Z

220

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

Electricity Rates..generation at retail electricity rates (Rose et al. 2009).of the underlying retail electricity rate, as well as on the

Darghouth, Naim

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

Residential Electricity Rates..2.1.1. Current Residential Electricity Rates PG&E and SCESCE, current residential electricity rates have inclining

Darghouth, Naim

2010-01-01T23:59:59.000Z

222

Conceptual design of ocean thermal energy conversion (OTEC) power plants in the Philippines  

SciTech Connect

Extensive temperature readings were obtained to determine suitable OTEC power plant sites in the Philippines. An analysis of temperature profiles reveals that surface seawater is in the range of 25 to 29{degree}C throughout the year while seawater at 500 to 700 m depth remains at a low temperature of 8 to 4{degree}C, respectively. In this article, 14 suitable sites within the Philippine seas are suggested. Conceptual designs for a 5-MW onland-type and a 25-MW floating-type OTEC power plant are proposed. Optimum conditions are determined and plant specifications are computed. Cost estimates show that a floating-type 25-MW OTEC power plant can generate electricity at a busbar power cost of 5.33 to 7.57 cents/kW {times} h while an onshore type 5-MW plant can generate electricity at a busbar cost of 14.71 to 18.09 cents/kW {times} h.

Haruo Uehara; Dilao, C.O.; Tsutomu Nakaoka (Saga Univ. (Japan))

1988-01-01T23:59:59.000Z

223

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

use (TOU) rate. 15 The utilities’ flat rates are “incliningin Tier 5. Both utilities’ flat rates also specify a minimumprices of both utilities’ TOU rates are summarized in Figure

Darghouth, Naim

2010-01-01T23:59:59.000Z

224

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

details on the residential electricity rates offered by PG&Eis based on the residential retail electricity rates and net

Darghouth, Naim R.

2012-01-01T23:59:59.000Z

225

The design, construction, and testing of a nuclear fuel rod thermal simulation system to study gallium/Zircaloy interactions  

E-Print Network (OSTI)

The presence of gallium in weapons grade plutonium has raised many questions concerning its use in light water reactor (LWR) fuel rods. The biggest concern is that the gallium will migrate down the thermal gradient in the fuel rod and deposit on the inner surface of the clad, which could cause it to fail. In order to study these effects, a fuel rod thermal simulation system (FRTSS) has been developed to recreate the shape and magnitude of the temperature profile in pressurized water reactor (PWR) fuel rods. The system uses electrically heated simulated fuel rods inside of a large, natural convection heat exchanger that uses lead-bismuth eutectic (LBE) (45 <% Pb, 55 <% Bi) as the working fluid. The simulated rods consist of small diameter electric heaters, annular pellets of depleted uranium/cerium oxide doped with approximately 10 ppm of gallium, a small helium filled gap, and generic Zircaloy IV cladding. The system is controlled through a computer-based data acquisition system that is used to record temperature data and operate the various pieces of equipment. A simple mathematical model was used to design the heat exchanger and predict the temperature profile within the simulated rods. Results from system tests indicated that the mathematical model was capable of predicting heater surface temperatures within 6.15% +/- 1.82% and clad outer surface temperatures within 1.91% +/- 4.46%. In addition, the tests also revealed that the system could accurately simulate the temperature profiles of operating PWR fuel rods. Consequently, the FRTSS provides a safe and effective means for studying gallium migration in the fuel pellets and its subsequent interactions with Zircaloy IV.

Allison, Christopher Curtis

1999-01-01T23:59:59.000Z

226

Gas Atomization of Amorphous Aluminum: Part I. Thermal Behavior Calculations  

E-Print Network (OSTI)

article, the thermal history and cooling rate experienced byalloys, knowledge of the thermal history and cooling rate isarticle, the thermal history and cooling rate experienced by

Zheng, Baolong; Lin, Yaojun; Zhou, Yizhang; Lavernia, Enrique J.

2009-01-01T23:59:59.000Z

227

Design and demonstration of heat pipe cooling for NASP and evaluation of heating methods at high heating rates  

SciTech Connect

An evaluation of two heating methods for demonstration of NASP leading edge heat pipe technology was conducted. The heating methods were and rf induction heated plasma jet and direct rf induction. Tests were conducted to determine coupling from the argon plasma jet on a surface physically similar to a heat pipe. A molybdenum tipped calorimeter was fabricated and installed in an rf induction heated plasma jet for the test. The calorimetric measurements indicated a maximum power coupling of approximately 500 W/cm{sup 2} with the rf plasma jet. The effect of change in gas composition on the heating rate was investigated using helium. An alternative to the plasma heating of a heat pipe tip, an rf concentrator was evaluated for coupling to the hemispherical tip of a heat pipe. A refractory metal heat pipe was designed, fabricated, and tested for the evaluation. The heat pipe was designed for operation at 1400 to 1900 K with power input to 1000 W/cm{sup 2} over a hemispherical nose tip. Power input of 800 W/cm{sup 2} was demonstrated using the rf concentrator. 2 refs., 13 figs.

Merrigan, M.A.; Sena, J.T.

1989-01-01T23:59:59.000Z

228

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

and the Economics of Solar PV: Could Mandatory Time-of-Usea Substantial Benefit of Solar PV. The Electricity JournalMRW and Associates, 2007. Solar PV and Retail Rate Design (

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

229

Silicon nucleation and film evolution on silicon dioxide using disilane: Rapid thermal chemical vapor deposition of very smooth silicon at high deposition rates  

SciTech Connect

An investigation of Si{sub 2}H{sub 6} and H{sub 2} for rapid thermal chemical vapor deposition (RTCVD) of silicon on SiO{sub 2} has been performed at temperatures ranging from 590 to 900 C and pressures ranging from 0.1 to 1.5 Torr. Deposition at 590 C yields amorphous silicon films with the corresponding ultrasmooth surface with a deposition rate of 68 nm/min. Cross-sectional transmission electron microscopy of a sample deposited at 625 C and 1 Torr reveals a bilayer structure which is amorphous at the growth surface and crystallized at the oxide interface. Higher temperatures yield polycrystalline films where the surface roughness depends strongly on both deposition pressure and temperature. Silane-based amorphous silicon deposition in conventional systems yields the expected ultrasmooth surfaces, but at greatly reduced deposition rates unsuitable for single-wafer processing. However, disilane, over the process window considered here, yields growth rates high enough to be appropriate for single-wafer manufacturing, thus providing a viable means for deposition of very smooth silicon films on SiO{sub 2} in a single-wafer environment.

Violette, K.E.; Oeztuerk, M.C.; Christensen, K.N.; Maher, D.M. [North Carolina State Univ., Raleigh, NC (United States)

1996-02-01T23:59:59.000Z

230

Rate constants for the thermal decomposition of ethanol and its bimolecular reactions with OH and D : reflected shock tube and theoretical studies.  

Science Conference Proceedings (OSTI)

The thermal decomposition of ethanol and its reactions with OH and D have been studied with both shock tube experiments and ab initio transition state theory-based master equation calculations. Dissociation rate constants for ethanol have been measured at high T in reflected shock waves using OH optical absorption and high-sensitivity H-atom ARAS detection. The three dissociation processes that are dominant at high T are: C{sub 2}H{sub 5}OH {yields} C{sub 2}H{sub 4} + H{sub 2}O; C{sub 2}H{sub 5}OH {yields} CH{sub 3} + CH{sub 2}OH; C{sub 2}H{sub 5}OH {yields} C{sub 2}H{sub 5} + OH. The rate coefficient for reaction C was measured directly with high sensitivity at 308 nm using a multipass optical White cell. Meanwhile, H-atom ARAS measurements yield the overall rate coefficient and that for the sum of reactions B and C, since H-atoms are instantaneously formed from the decompositions of CH{sub 2}OH and C{sub 2}H{sub 5} into CH{sub 2}O + H and C{sub 2}H{sub 4} + H, respectively. By difference, rate constants for reaction 1 could be obtained. One potential complication is the scavenging of OH by unreacted ethanol in the OH experiments, and therefore, rate constants for OH + C{sub 2}H{sub 5}OH {yields} products were measured using tert-butyl hydroperoxide (tBH) as the thermal source for OH. The present experiments can be represented by the Arrhenius expression k = (2.5 {+-} 0.43) x 10{sup -11} exp(- 911 {+-} 191 K/T) cm{sup 3} molecule{sup -1} s{sup -1} over the T range 857-1297 K. For completeness, we have also measured the rate coefficient for the reaction of D atoms with ethanol D + C{sub 2}H{sub 5}OH {yields} products whose H analogue is another key reaction in the combustion of ethanol. Over the T range 1054-1359 K, the rate constants from the present experiments can be represented by the Arrhenius expression, k = (3.98 {+-} 0.76) x 10{sup -10} exp(- 4494 {+-} 235 K/T) cm{sup 3} molecule{sup -1} s{sup -1}. The high-pressure rate coefficients for reactions B and C were studied with variable reaction coordinate transition state theory employing directly determined CASPT2/cc-pvdz interaction energies. Reactions A, D, and E were studied with conventional transition state theory employing QCISD(T)/CBS energies. For the saddle point in reaction A, additional high-level corrections are evaluated. The predicted reaction exo- and endothermicities are in good agreement with the current Active Thermochemical Tables values. The transition state theory predictions for the microcanonical rate coefficients in ethanol decomposition are incorporated in master equation calculations to yield predictions for the temperature and pressure dependences of reactions A-C. With modest adjustments (<1 kcal/mol) to a few key barrier heights, the present experimental and adjusted theoretical results yield a consistent description of both the decomposition (1-3) and abstraction kinetics (4 and 5). The present results are compared with earlier experimental and theoretical work.

Sivaramakrishnan, R.; Su, M.-C.; Michael, J. V.; Klippenstein, S. J.; Harding, L. B.; Ruscic, B. (Chemical Sciences and Engineering Division)

2010-09-09T23:59:59.000Z

231

Midtemperature Solar Systems Test Facility predictions for thermal performance based on test data: Custom Engineering trough with glass reflector surface and Sandia-designed receivers  

DOE Green Energy (OSTI)

Thermal performance predictions based on test data are presented for the Custom Engineering trough and Sandia-designed receivers, with glass reflector surface, for three output temperatures at five cities in the United States. Two experimental receivers were tested, one with an antireflective coating on the glass envelope around the receiver tube and one without the antireflective coating.

Harrison, T.D.

1981-05-01T23:59:59.000Z

232

Receiver subsystem analysis report (RADL Item 4-1). 10-MWe Solar Thermal Central-Receiver Pilot Plant: solar-facilities design integration  

DOE Green Energy (OSTI)

The results are presented of those thermal hydraulic, structural, and stress analyses required to demonstrate that the Receiver design for the Barstow Solar Pilot Plant will satisfy the general design and performance requirements during the plant's design life. Recommendations resulting from those analyses and supporting test programs are presented regarding operation of the receiver. The analyses are limited to receiver subsystem major structural parts (primary tower, receiver unit core support structure), pressure parts (absorber panels, feedwater, condensate and steam piping/components, flash tank, and steam mainfold) and shielding. (LEW)

Not Available

1982-04-01T23:59:59.000Z

233

Resources, and the United States Environmental Protection AgencyDesigning Rate Structures that Support Your Objectives: Guidelines for NC Water Systems  

E-Print Network (OSTI)

The purpose for these rate setting guidelines is to provide water and wastewater utility managers and technical assistance providers with a framework in setting water and wastewater rates and rate structures that would meet the state’s and the utility’s policies and objectives. These guidelines provide step by step instructions and necessary information to allow the utility manager to make an informed policy-driven choice on the rate structure design. These guidelines do not provide instruction on how to project revenues and costs and how to calculate rates (dollar amounts) to balance a budget, but references other documents that provide such guidelines. These rate setting guidelines were developed by the Environmental Finance Center at the

unknown authors

2009-01-01T23:59:59.000Z

234

Optimum utilization of site energy sources for all-season thermal comfort in new residential construction for single-family attached (rowhouse/townhouse) designs  

DOE Green Energy (OSTI)

A proposed design analysis is presented of a passive solar energy efficient system for a typical three-level, three bedroom, two story, garage-under townhouse. The design incorporates the best, most performance-proven and cost effective products, materials, processes, technologies, and sub-systems which are available today. Seven distinct categories recognized for analysis are identified as: the exterior environment; the interior environment; conservation of energy; natural energy utilization; auxiliary energy utilization; control and distribution systems; and occupant adaptation. Preliminary design features, fenestration sysems, the plenum-supply system, the thermal-storage party-fire walls, direct gain storage, the radiant comfort system, and direct passive cooling systems are briefly described. Features of the design under analysis and on which conclusions have not yet been formulated are: the energy reclamation system, auxiliary energy back-up systems, the distribution system and operating modes, the control systems, and non-comfort energy systems and inputs. (MCW)

Not Available

1981-02-26T23:59:59.000Z

235

Solar-thermal technology  

DOE Green Energy (OSTI)

Solar-thermal technology converts sunlight into thermal energy. It stands alongside other solar technologies including solar-electric and photovoltaic technologies, both of which convert sunlight into electricity. Photovoltaic technology converts by direct conversion, and solar-electric converts by using sunlight`s thermal energy in thermodynamic power cycles. The numerous up-and-running solar energy systems prove solar-thermal technology works. But when is it cost-effective, and how can HVAC engineers and facility owners quickly identify cost-effective applications? This article addresses these questions by guiding the reader through the basics of solar-thermal technology. The first section provides an overview of today`s technology including discussions of collectors and typical systems. The next section presents an easy method for identifying potentially cost-effective applications. This section also identifies sources for obtaining more information on the technology--collector ratings and performance, solar manufacturers, and solar design and analysis tools. The article discusses only those collectors and systems that are most often used. Many others are on the market--the article does not, by omission, mean to infer that one is better than the other.

Bennett, C. [Sandia National Labs., Albuquerque, NM (United States)

1995-09-01T23:59:59.000Z

236

Development and Validation of Temperature Dependent Thermal Neutron Scattering Laws for Applications and Safety Implications in Generation IV Reactor Designs  

Science Conference Proceedings (OSTI)

The overall obljectives of this project are to critically review the currently used thermal neutron scattering laws for various moderators as a function of temperature, select as well documented and representative set of experimental data sensitive to the neutron spectra to generate a data base of benchmarks, update models and models parameters by introducing new developments in thermalization theory and condensed matter physics into various computational approaches in establishing the scattering laws, benchmark the results against the experimentatl set. In the case of graphite, a validation experiment is performed by observing nutron slowing down as a function of temperatures equal to or greater than room temperature.

Ayman Hawari

2008-06-20T23:59:59.000Z

237

Central receiver solar thermal power system, Phase 1. CDRL Item 2. Pilot plant preliminary design report. Volume V. Thermal storage subsystem. [Sensible heat storage using Caloria HT43 and mixture of gravel and sand  

DOE Green Energy (OSTI)

The proposed 100-MWe Commercial Plant Thermal Storage System (TSS) employs sensible heat storage using dual liquid and solid media for the heat storage in each of four tanks, with the thermocline principle applied to provide high-temperature, extractable energy independent of the total energy stored. The 10-MW Pilot Plant employs a similar system except uses only a single tank. The high-temperature organic fluid Caloria HT43 and a rock mixture of river gravel and No. 6 silica sand were selected for heat storage in both systems. The system design, installation, performance testing, safety characteristics, and specifications are described in detail. (WHK)

Hallet, Jr., R. W.; Gervais, R. L.

1977-10-01T23:59:59.000Z

238

Ocean thermal energy conversion (OTEC) power system development utilizing advanced, high-performance heat transfer techniques. Volume 1. Conceptual design report  

DOE Green Energy (OSTI)

The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC Demonstration Plant. In turn, this Demonstration Plant is to demonstrate, by 1984, the operation and performance of an ocean thermal power plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the Demonstration Plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibility studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report describes the full-size power system module, and summarizes the design parameters and associated costs for the Demonstration Plant module (prototype) and projects costs for commercial plants in production. The material presented is directed primarily toward the surface platform/ship basic reference hull designated for use during conceptual design; however, other containment vessels were considered during the design effort so that the optimum power system would not be unduly influenced or restricted. (WHK)

Not Available

1978-05-12T23:59:59.000Z

239

Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Design of a Multithreaded Barnes-Hut Algorithm for Multicore Clusters Technical Report Junchao Zhang and Babak Behzad Department of Computer Science, University of Illinois at Urbana-Champaign {jczhang, bbehza2}@illinois.edu Marc Snir Department of Computer Science, University of Illinois at Urbana-Champaign and MCS Division, Argonne National Laboratory snir@anl.gov Abstract We describe in this paper an implementation of the Barnes-Hut al- gorithm on multicore clusters. Based on a partitioned global ad- dress space (PGAS) library, the design integrates intranode mul- tithreading and internode one-sided communication, exemplifying a PGAS + X programming style. Within a node, the computation is decomposed into tasks (subtasks), and multitasking is used to hide network latency. We study the tradeoffs between locality in private caches and locality in shared caches

240

Integrated heat pipe-thermal storage design for a solar receiver. [Constant power source with heat from sun or from storage  

SciTech Connect

Light-weight heat pipe wall elements that incorporate a thermal storage subassembly within the vapor space are being developed as part of the Organic Rankine Cycle Solar Dynamic Power Systems (ORC-SDPS) receiver for the space station application. The operating temperature of he heat pipe elements is in the 770 to 810/sup 0/K range with a design power throughput of 4.8 kW per pipe. The total heat pipe length is 1.9 M. The Rankine cycle boiler heat transfer surfaces are positioned within the heat pipe vapor space, providing a relatively constant temperature input to the vaporizer. The heat pipe design employs axial arteries and distribution wicked thermal storage units with potassium as the working fluid. Stainless steel is used as the containment tube and screen material. Performance predictions for this configuration have been conducted and the design characterized as a function of artery geometry, distribution wick thickness, porosity, pore size, and permeability. Details of the analysis and of fabrication and assembly procedures are presented. 2 refs., 8 figs.

Keddy, E.S.; Sena, J.T.; Woloshun, K.; Merrigan, M.A.; Heidenreich, G.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Radial Loss of Ions Trapped in the Thermal Barrier Potential and the Design of Divertor Magnetic Field in GAMMA10  

Science Conference Proceedings (OSTI)

The ion radial loss exists in the presence of a non-axisymmetric electrostatic potential in the end-mirror cells of GAMMA10, which leads to a formation of the thermal barrier potential. The non-axisymmetric electrostatic potential can also exist in the central cell. A design for divertor magnetic field of GAMMA10 is performed, the purpose of which is first to reduce an ion radial transport in the central cell by making electrostatic potential circular and second to assure the macroscopic plasma stability of GAMMA10 without help of non-axisymmetric anchor cells which enhances a neoclassical radial transport.

Katanuma, I. [Plasma Research Center, University of Tsukuba (Japan); Ito, T. [Plasma Research Center, University of Tsukuba (Japan); Saimaru, H. [Plasma Research Center, University of Tsukuba (Japan); Sasagawa, Y. [Plasma Research Center, University of Tsukuba (Japan); Pastukhov, V.P. [I.V.Kuruchatov Atomic Energy Institute (Russian Federation); Ishii, K. [Plasma Research Center, University of Tsukuba (Japan); Tatematsu, Y. [Plasma Research Center, University of Tsukuba (Japan); Saito, T. [Plasma Research Center, University of Tsukuba (Japan); Islam, Md.K. [Plasma Research Center, University of Tsukuba (Japan); Nakashima, Y. [Plasma Research Center, University of Tsukuba (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)

2005-01-15T23:59:59.000Z

242

NGNP Point Design - Results of the Initial Neutronics and Thermal-Hydraulic Assessments During FY-03, Rev. 1  

SciTech Connect

This report presents the preliminary preconceptual designs for two possible versions of the Next Generation Nuclear Plant (NGNP), one for a prismatic fuel type helium gas-cooled reactor and one for a pebble bed fuel helium gas reactor. Both designs are to meet three basic requirements: a coolant outlet temperature of 1000 °C, passive safety, and a total power output consistent with that expected for commercial high-temperature gas-cooled reactors. The two efforts are discussed separately below. The analytical results presented in this report are very promising, however, we wish to caution the reader that future, more detailed, design work will be needed to provide final answers to a number of key questions including the allowable power level, the inlet temperature, the power density, the optimum fuel form, and others. The point design work presented in this report provides a starting point for other evaluations, and directions for the detailed design, but not final answers.

Philip E. MacDonald; James W. Sterbentz; Robert L. Sant; P. Bayless; H. D. Gougar; R. L. Moore; A. M. Ougouag; W. K. Terry

2003-09-01T23:59:59.000Z

243

Design and experimental testing of the performance of an outdoor LiBr/H{sub 2}O solar thermal absorption cooling system with a cold store  

Science Conference Proceedings (OSTI)

A domestic-scale prototype experimental solar cooling system has been developed based on a LiBr/H{sub 2}O absorption system and tested during the 2007 summer and autumn months in Cardiff University, UK. The system consisted of a 12 m{sup 2} vacuum tube solar collector, a 4.5 kW LiBr/H{sub 2}O absorption chiller, a 1000 l cold storage tank and a 6 kW fan coil. The system performance, as well as the performances of the individual components in the system, were evaluated based on the physical measurements of the daily solar radiation, ambient temperature, inlet and outlet fluid temperatures, mass flow rates and electrical consumption by component. The average coefficient of thermal performance (COP) of the system was 0.58, based on the thermal cooling power output per unit of available thermal solar energy from the 12 m{sup 2} Thermomax DF100 vacuum tube collector on a hot sunny day with average peak insolation of 800 W/m{sup 2} (between 11 and 13.30 h) and ambient temperature of 24 C. The system produced an electrical COP of 3.6. Experimental results prove the feasibility of the new concept of cold store at this scale, with chilled water temperatures as low as 7.4 C, demonstrating its potential use in cooling domestic scale buildings. (author)

Agyenim, Francis; Knight, Ian; Rhodes, Michael [The Welsh School of Architecture, Bute Building, King Edward VII Avenue, Cardiff University, Cardiff, CF10 3NB Wales (United Kingdom)

2010-05-15T23:59:59.000Z

244

User's manual for DELSOL2: a computer code for calculating the optical performance and optimal system design for solar-thermal central-receiver plants  

DOE Green Energy (OSTI)

DELSOL2 is a revised and substantially extended version of the DELSOL computer program for calculating collector field performance and layout, and optimal system design for solar thermal central receiver plants. The code consists of a detailed model of the optical performance, a simpler model of the non-optical performance, an algorithm for field layout, and a searching algorithm to find the best system design. The latter two features are coupled to a cost model of central receiver components and an economic model for calculating energy costs. The code can handle flat, focused and/or canted heliostats, and external cylindrical, multi-aperture cavity, and flat plate receivers. The program optimizes the tower height, receiver size, field layout, heliostat spacings, and tower position at user specified power levels subject to flux limits on the receiver and land constraints for field layout. The advantages of speed and accuracy characteristic of Version I are maintained in DELSOL2.

Dellin, T.A.; Fish, M.J.; Yang, C.L.

1981-08-01T23:59:59.000Z

245

Design, performance, and analysis of an aquifer thermal-energy-storage experiment using the doublet-well configuration  

DOE Green Energy (OSTI)

In March 1980 Auburn University began series of aquifer thermal energy storage (ATES) experiments using the doublet well configuration. The test site was in Mobile, Alabama. The objectives of the three experimental cycles were to demonstrate the technical feasibility of the ATES concept, to identify and resolve operational problems, and to acquire a data base for developing and testing mathematical models. Pre-injection tests were performed and analyses of hydraulic, geochemical, and thermodynamic data were completed. Three injection-storage-recovery cycles had injection volumes of 25,402 m/sup 3/, 58,010 m/sup 3/, and 58,680 m/sup 3/ and average injection temperatures of 58.5/sup 0/C, 81.0/sup 0/C, and 79.0/sup 0/C, respectively. The first cycle injection began in February 1981 and the third cycle recovery was completed in November 1982. Attributable to the doublet well configuration no clogging of injection wells occurred. Energy recovery percentages based on recovery volumes equal to the injection volumes were 56, 45, and 42%. Thermal convection effects were observed. Aquifer nonhomogeneity, not detectable using standard aquifer testing procedures, was shown to reduce recovery efficiency.

Molz, F.J.; Melville, J.G.; Gueven, O.; Parr, A.D.

1983-09-01T23:59:59.000Z

246

Preliminary design for Ocean Thermal Energy Conversion (OTEC) Stationkeeping Subsystem (SKSS). Task IV. Development and testing recommendations  

DOE Green Energy (OSTI)

The preliminary designs of Stationkeeping Subsystems (SKSS) for the OTEC Modular Experiment Plant are being prepared for a barge and spar platform. The SKSS selected by NOAA for the barge is a multiple anchor leg mooring with active tensioning (MAL), while that for the spar is a tension anchor leg (TAL) moor. The development and testing program required to provide design data and to validate performance predictions is described. Basic assumptions are made with regard to site characteristics, behavior of the SKSS and platform in the sea state, and characteristics of SKSS components. The test program is intended to provide the data necessary to confirm assumptions or to support design revisions. The testing program for the multiple anchor leg system is considered first, followed by the tension anchor leg program. Development and testing are recommended in the areas of materials, components and procedures which are beyond modest extrapolation of current ocean engineering practice. (WHK)

None

1979-11-09T23:59:59.000Z

247

830 IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 30, NO. 4, DECEMBER 2007 Thermal Design Methodology for Low Flow  

E-Print Network (OSTI)

. M., and Gui, F., 1993, "Experimental Measurements of Fluid Flow and Heat Transfer in Microchannel, "Developing Convective Heat Transfer in Deep Rectangular Microchannels," Int. J. Heat Fluid Flow, 20, pp. 149 sinks pro- duce much higher convective heat transfer coefficients, reduce coolant flow rate requirements

Qu, Weilin

248

Electric Utility Rate Design Study: embedded generation costs on a time-of-day basis for Iowa Southern Utilities Company  

SciTech Connect

This report develops a method for determining average embedded generation costs on a time-of-day basis and describes the application of the method to Iowa Southern Utilities. These costs are not allocated to customer classes. Since average embedded costs are composed of the running (or variable) costs and the capital costs, the analysis examines each of these separately. Running costs on a time-of-day basis are determined through the use of a generation dispatch model that reports the loadings by generating unit and the running costs of meeting the load. These costs are reported on an hour-by-hour basis. The dispatch model takes into account the operating characteristics of each unit and the major engineering constraints on a system; e.g., must-run units, minimum up and down time, startup cost. After reviewing several suggested capital-cost allocation procedures, a method is developed that allocates capital costs on a time-of-day basis by using a recontracting-for-capacity procedure that allows capacity to vary by hour for each month. The method results in allocations to customers who benefit from its use. An important and distinguishing feature of this method is that it allows calculation of the costs before rating periods are chosen.

1980-01-01T23:59:59.000Z

249

Thermally-related safety issues associated with thermal batteries.  

DOE Green Energy (OSTI)

Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

Guidotti, Ronald Armand

2006-06-01T23:59:59.000Z

250

Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors  

SciTech Connect

This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.

Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

2013-11-29T23:59:59.000Z

251

Ocean thermal energy conversion (OTEC) power system development (PSD) II. Preliminary design report. Appendix I: specifications and drawings  

DOE Green Energy (OSTI)

This volume contains the specifications and drawings prepared in support of the preliminary design of a 10MWe OTEC power system using enhanced plate type heat exchangers. Included are: (1) the specification tree; (2) system specification; (3) 10 MWe heat exchangers; (4) nitrogen storage, conditioning and supply subsystem specification; (5) ammonia storage, conditioning and supply specification; (6) electrical power distribution and control subsystem specification; (7) equipment valves, instruments and live lists and specifications; (8) drawing tree; (9) drawing package; and (10) 0.2 MWe test articles procurement specifications. (WHK)

Pearson, R.O.

1979-08-10T23:59:59.000Z

252

Effect of Solder Microstructure on Mechanical and Thermal Shock ...  

Science Conference Proceedings (OSTI)

Critical tests were designed to couple the corresponding microstructure with mechanical and thermal shock properties. For thermal shock resistance of ...

253

Study of the design Method of an Efficient Ground Source Heat Pump Thermal Source System in a Cold Area  

E-Print Network (OSTI)

The ground source heat pump (GSHP) system-an energy efficiency and environment friendly system-is becoming popular in many parts of China. However, an imbalance usually exists between the annual heat extracted from and rejected to the ground due to the different heating and cooling load of a building, which will consistently deteriorate the heat pump efficiency leading even to the breakdown of the heat pump. This paper brings forward a design method of adding supplemental heat rejection equipment, a cooling tower, in the system to solve the problem in a cold area. Taking an office building in Beijing as an example, the authors simulate the GSHP system with two different connection methods between the cooling tower and vertical buried-pipe heat exchangers (in series and in parallel) using TRNSYS simulation software, and put forward several design schemes that can ensure the whole system continually operates with high efficiency. This also makes it possible to perform a more detailed economic optimization of the GSHP-based system in the future.

Shu, H.; Duanmu, L.; Hua, R.; Zou, Y.; Du, G.

2006-01-01T23:59:59.000Z

254

A Space-Filling Algorithm to Extrapolate Narrow-Swath Instantaneous TRMM Microwave Rain-Rate Estimates Using Thermal IR Imagery  

Science Conference Proceedings (OSTI)

A space-filling algorithm (SFA) based on 2D spectral estimation techniques was developed to extrapolate the spatial domain of the narrow-swath near-instantaneous rain-rate estimates from Tropical Rainfall Measuring Mission (TRMM) precipitation ...

Ana P. Barros; Kun Tao

2008-11-01T23:59:59.000Z

255

Data Center Rating Infrastructure Rating Development  

NLE Websites -- All DOE Office Websites (Extended Search)

in Portfolio Manager on June 7, 2010. The questions below are designed to help data center owners and operators better understand the rating and benchmark their buildings in...

256

7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant  

E-Print Network (OSTI)

7-31 7-88 A geothermal power plant uses geothermal liquid water at 160ºC at a specified rate and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k

Bahrami, Majid

257

Design and Construction of a Guarded Hot Box Facility for Evaluating the Thermal Performance of Building Wall Materials  

E-Print Network (OSTI)

The focus of this study was to design and build a guarded hot box to test the R-Value of building materials. The Riverside Energy Efficiency Laboratory is looking to expand their testing capabilities by including this service. Eventually, the laboratory will become energy star certified. A guarded hot box facility consists of two boxes maintained at specific temperatures and a guard box around each one that is maintained at the same temperature as the box it surrounds. The ASTM C1363 standard was used as guide for the construction and testing of sample specimen. This standard called for an air velocity profile uniform within 10 percent of the average. Velocity tests were performed with various different configurations to give a uniform velocity. Although the velocity did not meet standards, the configuration chosen included a piece of 1/4" pegboard placed 2" away from the top and the bottom of the inner box. By using the known overall heat added and removed from the system, as well as all the heat losses the heat transferred through the specimen and its R-Value can be calculated. The uncertainty of the R-Value and the accuracy of the testing facility gave conflicting results. Future experiments will use improved testing methods that include differential thermocouples to obtain better uncertainty for the R-Value calculations.

Mero, Claire Renee

2012-05-01T23:59:59.000Z

258

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

2.2.1.1 Current Residential Electricity Rates PG&E and SCEhave total residential electricity rates that are similar toElectricity Rates .. 164 Residential

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

259

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

of Commercial Electric Utility Rate Structure Elements on1961. Principles of public utility rates, 2nd ed. ColumbiaPrinciples of Public Utility Rates, he cites the following

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

260

Use of computer simulation and molecular modeling techniques for the design of molecularly organized urea-urethane prototypes for thermal insulation  

Science Conference Proceedings (OSTI)

Polyurethane foams having densities as low as 120 kg/m3 are currently being used as thermal insulators. The closed-cell foam structure encompassing the air molecules prevents the thermal conductivity and enhances the efficiency of the used ... Keywords: Connolly surface, diffusion, free volume, molecular dynamics, polyurea-urethane foams, thermal insulators

Tarek M. Madkour

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

default electricity rate in the United States, especiallystates, including Washington, Louisiana, or Arkansas, have total residential electricity ratesStates are often compensated at the customer’s underlying retail electricity rate

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

262

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

compensation options. All rates increase slightly due to thesimilarly. The flat rate increases by $0.011/kWh (or 5.6%)peak and low period rates increase by 6%-12%. Since roughly

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

263

Thermal masses in leptogenesis  

E-Print Network (OSTI)

We investigate the validity of using thermal masses in the kinematics of final states in the decay rate of heavy neutrinos in leptogenesis calculations. We find that using thermal masses this way is a reasonable approximation, but corrections arise through quantum statistical distribution functions and leptonic quasiparticles.

Kiessig, Clemens P

2009-01-01T23:59:59.000Z

264

Thermal Barrier Coating Systems II  

Science Conference Proceedings (OSTI)

Oct 26, 2009... on the application requirements and not on substrate physical properties such as thermal expansion rate Esp. within the same class of alloys.

265

Thermally activated miniaturized cooling system.  

E-Print Network (OSTI)

??A comprehensive study of a miniaturized thermally activated cooling system was conducted. This study represents the first work to conceptualize, design, fabricate and successfully test… (more)

Determan, Matthew Delos

2008-01-01T23:59:59.000Z

266

Thermal Storage Applications for Commercial/Industrial Facilities  

E-Print Network (OSTI)

Texas Utilities Electric Company has been actively encouraging installations of thermal storage since 1981. Financial incentives and advantageous rates can make thermal storage an attractive cooling concept in Texas Utilities Electric Company service area. Currently, 14 million square feet of commercial building space in Dallas is either constructing thermal storage or using it on a day-by-day basis. This presentation will discuss three technologies for thermal storage systems noting the particular advantages of each. Thermal storage technologies are selected by the temperature range of the storage media. This is not a design-oriented presentation, but an overview of what one utility sees taking place in the commercial and industrial refrigeration market place.

Knipp, R. L.

1986-06-01T23:59:59.000Z

267

THERMAL RECOVERY  

NLE Websites -- All DOE Office Websites (Extended Search)

THERMAL RECOVERY Thermal recovery comprises the techniques of steamflooding, cyclic steam stimulation, and in situ combustion. In steamflooding, high-temperature steam is injected...

268

Catalytic thermal barrier coatings  

Science Conference Proceedings (OSTI)

A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

2009-06-02T23:59:59.000Z

269

Advanced Heat Transfer and Thermal Storage Fluids  

DOE Green Energy (OSTI)

The design of the next generation solar parabolic trough systems for power production will require the development of new thermal energy storage options with improved economics or operational characteristics. Current heat-transfer fluids such as VP-1?, which consists of a eutectic mixture of biphenyl and diphenyl oxide, allow a maximum operating temperature of ca. 300 C, a limit above which the vapor pressure would become too high and would require pressure-rated tanks. The use of VP-1? also suffers from a freezing point around 13 C that requires heating during cold periods. One of the goals for future trough systems is the use of heat-transfer fluids that can act as thermal storage media and that allow operating temperatures around 425 C combined with lower limits around 0 C. This paper presents an outline of our latest approach toward the development of such thermal storage fluids.

Moens, L.; Blake, D.

2005-01-01T23:59:59.000Z

270

Thermal Abuse Modeling of Li-Ion Cells and Propagation in Modules (Presentation)  

DOE Green Energy (OSTI)

The objectives of this paper are: (1) continue to explore thermal abuse behaviors of Li-ion cells and modules that are affected by local conditions of heat and materials; (2) use the 3D Li-ion battery thermal abuse 'reaction' model developed for cells to explore the impact of the location of internal short, its heating rate, and thermal properties of the cell; (3) continue to understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-ion cells and modules; and (4) explore the use of the developed methodology to support the design of abuse-tolerant Li-ion battery systems.

Kim, G.-H.; Pesaran, A.; Smith, K.

2008-05-01T23:59:59.000Z

271

The Segregation of Aerosols by Cloud-Nucleating Activity. Part I: Design, Construction, and Testing of A High-Flux Thermal Diffusion Cloud Chamber for Mass Separation  

Science Conference Proceedings (OSTI)

We describe a thermal diffusion cloud chamber operated in series with an aerodynamic dichotomous separator that can segregate aerosol particles by their abilities to nucleate cloud droplets. The apparatus takes advantage of compensating gradients ...

Lee Harrison; Halstead Harrison

1985-04-01T23:59:59.000Z

272

The Application and Verification of ASHRAE 152-2004 (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems) to DOE-2-1e Simulation Program  

E-Print Network (OSTI)

This report describes the application and verification of duct model on DOE 2.1e version 119 using ASHRAE 152-2004 (Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems). It begins with a concept of duct model which is developed by ASHRAE and shows the application and the verification of the duct model to DOE 2.1e version 119 simulation program.

Kim, S.; Haberl, J. S.

2008-06-01T23:59:59.000Z

273

Liquid metal thermal electric converter  

DOE Patents (OSTI)

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

274

Thermal Stability of Li-Ion Cells  

DOE Green Energy (OSTI)

The thermal stability of Li-ion cells with intercalating carbon anodes and metal oxide cathodes was measured as a function of state of charge and temperature for two advanced cell chemistries. Cells of the 18650 design with Li{sub x}CoO{sub 2} cathodes (commercial SONY cells) and Li{sub x}Ni{sub 0.8}Co{sub 0.2}O{sub 2} cathodes were measured for thermal reactivity in the open circuit cell condition. Accelerating rate calorimetry (ARC) was used to measure cell thermal runaway as a function of state of charge (SOC). Microcalorimetry was used to measure the time dependence of heat generating side reactions also as a function of SOC. Components of cells were measured using differential scanning calorimetry (DSC) to study the thermal reactivity of the individual electrodes to determine the temperature regimes and conditions of the major thermal reactions. Thermal decomposition of the SEI layer at the anodes was identified as the initiating source for thermal runaway. The cells with Li{sub x}CoO{sub 2} cathodes showed greater sensitivity to SOC and higher accelerating heating rates than seen for the cells with Li{sub x}Ni{sub 0.8}Co{sub 0.2}O{sub 2}cathodes. Lower temperature reactions starting as low as 40 C were also observed that were SOC dependent but not accelerating. These reactions were also measured in the microcalorimeter and observed to decay over time with a power-law dependence and are believed to result in irreversible capacity loss in the cells.

ROTH,EMANUEL P.

1999-09-17T23:59:59.000Z

275

Value of solar thermal industrial process heat  

DOE Green Energy (OSTI)

This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

1986-03-01T23:59:59.000Z

276

Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.  

SciTech Connect

A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

Fuller, Thomas F. (Georgia Institute of Technology, Atlanta, GA); Bandhauer, Todd (Georgia Institute of Technology, Atlanta, GA); Garimella, Srinivas (Georgia Institute of Technology, Atlanta, GA)

2012-01-01T23:59:59.000Z

277

University of Colorado Thermal Comfort Report  

NLE Websites -- All DOE Office Websites (Extended Search)

A A Warmboard sub-floor with tubing and wood Image Courtsey of Warmboard Image Thermal Comfort "That Condition of mind, which expresses satisfaction with the thermal environment" (ASHRAE Standard 55) Design Criteria Design Criteria Design Criteria Design Criteria 1. Thermally comfortable conditions achieved by integrating technologically and economically innovative, low-energy strategies: a. Temperatures between 72 o F and 76 o F b. Humidity between 40.0% and 55.0% 2. Minimal distractions to the occupant 3. Easy control of thermal comfort system 4. Uniform thermal conditions exist throughout the house Bio Bio Bio Bio- - - -S S S S ( ( ( (h h h h) ) ) ) ip ip ip ip Thermal Comfort Features Thermal Comfort Features Thermal Comfort Features Thermal Comfort Features

278

Cooling thermal storage  

Science Conference Proceedings (OSTI)

This article gives some overall guidelines for successful operation of cooling thermal storage installations. Electric utilities use rates and other incentives to encourage thermal storage, which not only reduces their system peaks but also transfers a portion of their load from expensive daytime inefficient peaking plants to less expensive nighttime base load high efficiency coal and nuclear plants. There are hundreds of thermal storage installations around the country. Some of these are very successful; others have failed to achieve all of their predicted benefits because application considerations were not properly addressed.

Gatley, D.P.

1987-04-01T23:59:59.000Z

279

Aluminum/TPG Metal Matrix Composite with Improved Thermal ...  

Science Conference Proceedings (OSTI)

It was found that A356/TPG interface was optimal for the examined MMC's high thermal conductivity. Low cooling rates assisted in reducing thermal stresses at ...

280

Soil Thermal Resistivity and Thermal Stability Measuring Instrument: Volume 5: Abridged Manual for Use of the Statistical Weather Analysis Program  

Science Conference Proceedings (OSTI)

Numerous considerations influence the thermal design of an underground power cable, including the soil thermal resistivity, thermal diffusivity, and thermal stability. Each of these properties is a function of soil moisture which is, in turn, a function of past weather, soil composition, and biological burden. The Neher-McGrath formalism has been widely used for thermal cable design. However, this formalism assumes knowledge of soil thermal properties. For design purposes, these parameters should be trea...

1981-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Central receiver solar thermal power system. Phase 1. CDRL item 2; Pilot Plant preliminary design report. Volume II. System decription and system analysis  

SciTech Connect

An active system analysis and integration effort has been maintained. These activities have included the transformation of initial program requirements into a preliminary system design, the evolution of subsystem requirements which lay the foundation for subsystem design and test activity, and the overseeing of the final preliminary design effort to ensure that the subsystems are operationally compatible and capable of producing electricity at the lowest possible cost per unit of energy. Volume II of the Preliminary Design Report presents the results of the overall system effort that went on during this contract. The effort is assumed to include not only the total system definition and design but also all subsystem interactions.

Hallet, Jr., R. W.; Gervais, R. L.

1977-10-01T23:59:59.000Z

282

860 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 6, JUNE 2009 Multiscale Thermal Analysis for Nanometer-Scale  

E-Print Network (OSTI)

of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309 USA (e-mail: li power densities are making this problem more important. Characterizing the thermal profile of an IC in software and used for the full-chip ther- mal analysis and temperature-dependent leakage analysis of an IC

Dick, Robert

283

Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering  

E-Print Network (OSTI)

Designing Austin Energy’s Solar Tariff Using a Distributedtwo-part tariff that recovers both energy and capacity costsa two-part tariff, however, when the energy charge is a (

Darghouth, Naim Richard

2013-01-01T23:59:59.000Z

284

Simultaneous measurement of the thermal conductivity and thermal diffusivity of unconsolidated materials by the transient hot wire method  

Science Conference Proceedings (OSTI)

This paper describes a new design for the transient hot wire method that can obtain the thermal conductivity and thermal diffusivity of unconsolidated materials. In this method

Greg C. Glatzmaier; W. Fred Ramirez

1985-01-01T23:59:59.000Z

285

Ocean thermal energy conversion power system development: I. Preliminary design report. Phase I. Volume 5. Appendixes H, I, J, and K. Final report  

DOE Green Energy (OSTI)

The conceptual design of a 40 to 50 MW closed cycle ammonia OTEC commercial plant, the preliminary design of a 10 MW OTEC module analogous to the 50 MW module, and the preliminary design of heat exchanger test articles (evaporator and condenser) representative of the 50 MW heat exchangers for testing in OTEC-1 are presented. This volume of the report includes the following appendices: H) conceptual design description of the electrical systems; I) control and instrumentation; J) OTEC power module assembly; and K) cost estimates for each of the cost components. (WHK)

Not Available

1978-12-18T23:59:59.000Z

286

Central Receiver Solar Thermal Power System, Phase 1. CDRL Item 2. Pilot Plant preliminary design report. Volume III, Book 1. Collector subsystem  

DOE Green Energy (OSTI)

The central receiver system consists of a field of heliostats, a central receiver, a thermal storage unit, an electrical power generation system, and balance of plant. This volume discusses the collector field geometry, requirements and configuration. The development of the collector system and subsystems are discussed and the selection rationale outlined. System safety and availability are covered. Finally, the plans for collector portion of the central receiver system are reviewed.

Hallet, Jr., R. W.; Gervais, R. L.

1977-10-01T23:59:59.000Z

287

Cesium capsule thermal analysis  

SciTech Connect

Double-walled stainless steel capsules, produced by the Hanford Waste Encapsulation and Storage Facility (WESF), were designed to facilitate storage of radioactive cesium chloride (CsCl). The capsules were later determined to be a useful resource for irradiation facilities (IFs), and are currently being used at several commercial IFs. A capsule at one of these facilities recently failed, resulting in a release of the CsCl. A thermal analysis of a WESF capsule was performed by Pacific Northwest Laboratory (PNL) at the request of Westinghouse Hanford Company. In this analysis, parametric calculations demonstrates the impact that various parameters have on the temperature distribution within a capsule in a commercial irradiation facility. Specifically, the effect of varying the gas gap conductivity, the exterior heat sink temperatures, the exterior heat transfer distribution, the stainless steel emissivity, and the gamma heating rate were addressed. In addition, a calculation was performed to estimate the highest temperatures likely to have been encountered in one of these capsules. 8 refs., 17 figs., 4 tabs.

Eyler, L.L.; Dodge, R.E.

1989-12-01T23:59:59.000Z

288

Rates - WAPA-137 Rate Order  

NLE Websites -- All DOE Office Websites (Extended Search)

WAPA-137 Rate Order WAPA-137 Rate Order 2009 CRSP Management Center Customer Rates Second Step Presentation from the June 25, 2009, Customer Meeting Handout Materials from the June 25, 2009, Customer Meeting Customer Comment Letters ATEA CREDA Farmington ITCA AMPUA Rate Adjustment Information The second step of WAPA-137 SLCA/IP Firm Power, CRSP Transmission and Ancillary Services rate adjustment. FERC Approval of Rate Order No. WAPA-137 Notice Of Filing for Rate Order No. WAPA-137 Published Final FRN for Rate Order No. WAPA-137 Letter to Customers regarding the published Notice of Extension of Public Process for Rate Order No. WAPA-137 Published Extension of Public Process for Rate Order No. WAPA-137 FRN Follow-up Public Information and Comment Forum Flier WAPA-137 Customer Meetings and Rate Adjustment Schedule

289

Research Article Building Thermal, Lighting,  

NLE Websites -- All DOE Office Websites (Extended Search)

Article Building Thermal, Lighting, and Acoustics Modeling E-mail: yanda@tsinghua.edu.cn A detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E Dandan Zhu 1 , Tianzhen Hong 2 , Da Yan 1 (), Chuang Wang 1 1. Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China 2. Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA Abstract Building energy simulation is widely used to help design energy efficient building envelopes and HVAC systems, develop and demonstrate compliance of building energy codes, and implement building energy rating programs. However, large discrepancies exist between simulation results

290

Design of an EPR blanket  

SciTech Connect

A blanket concept is presented which meets typical requirements anticipated for an Experimental Power Reactor. Design alternatives are reviewed. One-dimensional neutronic and thermal hydraulic results are presented for the ORNL reference design. Design consideration was given for remote maintenance and assembly requirements. Modifications of the reference design first wall are necessary because of high thermal stresses. (auth)

Bettis, E.S.; Huxford, T.J.; McAlees, D.G.; Santoro, R.T.; Watts, H.L.; Williams, M.L.

1975-01-01T23:59:59.000Z

291

Investigation of component failure rates for pulsed versus steady state tokamak operation  

Science Conference Proceedings (OSTI)

This report presents component failure rate data sources applicable to magnetic fusion systems, and defines multiplicative factors to adjust these data for specific use on magnetic fusion experiment designs. The multipliers address both long pulse and steady state tokamak operation. Thermal fatigue and radiation damage are among the leading reasons for large multiplier values in pulsed operation applications. Field failure rate values for graphite protective tiles are presented, and beryllium tile failure rates in laboratory testing are also given. All of these data can be used for reliability studies, safety analyses, design tradeoff studies, and risk assessments.

Cadwallader, L.C.

1992-07-01T23:59:59.000Z

292

A transient model for data center thermal prediction  

Science Conference Proceedings (OSTI)

Fast thermal maps are a crucial component for many green data center design techniques. However, most state of the art work on thermal mapping ignores critical temporal aspects of thermal behavior and relies on modeling assumptions, such as the steady ...

Michael Jonas; Rose Robin Gilbert; Joshua Ferguson; Georgios Varsamopoulos; Sandeep K. S. Gupta

2012-06-01T23:59:59.000Z

293

Thermal springs of Wyoming  

SciTech Connect

This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

Breckenridge, R.M.; Hinckley, B.S.

1978-01-01T23:59:59.000Z

294

Thermal springs of Wyoming  

DOE Green Energy (OSTI)

This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

Breckenridge, R.M.; Hinckley, B.S.

1978-01-01T23:59:59.000Z

295

Analysis of the Thermal Loads on the KSTAR Cryogenic System  

SciTech Connect

A large-scale helium refrigeration system is one of the key components for the KSTAR (Korea Superconducting Tokamak Advanced Research) device. In the design of the refrigeration system, an estimation of the thermal loads on the cold mass is an important issue according to the operation scenario. The cold mass of the KSTAR device is about 250 tons including 30 superconducting (SC) coils and the magnet structure. In addition to the static thermal loads, pulsed thermal loads to the refrigeration system have been considered in the operation stage. The main pulsed thermal loads on magnet system are AC losses in the SC coils and eddy current losses in the magnet structure that depend on the magnetic field variation rate. The nuclear radiation loss due to plasma pulse operation is also considered. The designed cooling capacity of the refrigeration system is estimated to be about 9 kW at 4.5 K isothermal. In this paper, calculation of the various kinds of thermal loads on KSTAR cryogenic system and design of the large-scale helium refrigeration system are presented.

Kim, Y.S.; Oh, Y.K.; Kim, W.C.; Park, Y.M.; Lee, Y.J.; Jin, S.B.; Sa, J.W.; Choi, C.H.; Cho, K.W.; Bak, J.S.; Lee, G.S. [Korea Basic Science Institute, Yusung-Ku, Daejeon 305-806 (Korea, Republic of)

2004-06-23T23:59:59.000Z

296

Expansion and user study of CoolVent : inclusion of thermal comfort models in an early-design natural ventilation tool  

E-Print Network (OSTI)

CoolVent, a software design tool for architects, has been improved. The work of Maria- Alejandra Menchaca-B. and colleagues has been improved to include a more robust and intuitive building and window dimensioning scheme, ...

Rich, Rebecca E. (Rebecca Eileen)

2011-01-01T23:59:59.000Z

297

Thermal Systems Process and Components Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Thermal Systems Process and Components Laboratory at the Energy Systems Integration Facility. The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds test systems that can provide heat transfer fluids for the evaluation of heat exchangers and thermal energy storage devices. The existing system provides molten salt at temperatures up to 800 C. This unit is charged with nitrate salt rated to 600 C, but is capable of handling other heat transfer fluid compositions. Three additional test bays are available for future deployment of alternative heat transfer fluids such as hot air, carbon dioxide, or steam systems. The Thermal Systems Process and Components Laboratory performs pilot-scale thermal energy storage system testing through multiple charge and discharge cycles to evaluate heat exchanger performance and storage efficiency. The laboratory equipment can also be utilized to test instrument and sensor compatibility with hot heat transfer fluids. Future applications in the laboratory may include the evaluation of thermal energy storage systems designed to operate with supercritical heat transfer fluids such as steam or carbon dioxide. These tests will require the installation of test systems capable of providing supercritical fluids at temperatures up to 700 C.

Not Available

2011-10-01T23:59:59.000Z

298

Thermal characterization of Li-ion cells using calorimetric techniques  

DOE Green Energy (OSTI)

The thermal stability of Li-ion cells with intercalating carbon anodes and metal oxide cathodes was measured as a function of state of charge and temperature for two advanced cell chemistries. Cells of the 18650 design with Li{sub x}CoO{sub 2} cathodes (commercial Sony cells) and Li{sub x}Ni{sub 0.8}Co{sub 0.2}O{sub 2} cathodes were measured for thermal reactivity. Accelerating rate calorimetry (ARC) was used to measure cell thermal runaway as a function of state of charge (SOC), microcalorimetry was used to measure the time dependence of thermal output, and differential scanning calorimetry (DSC) was used to study the thermal reactivity of the individual components. Thermal decomposition of the anode solid electrolyte interphase (SEI) layer occurred at low temperatures and contributes to the initiation of thermal runaway. Low temperature reactions from 40 C--70 C were observed during the ARC runs that were SOC dependent. These reactions measured in the microcalorimeter decayed over time with power-law dependence and were highly sensitive to SOC and temperature. ARC runs of aged and cycled cells showed complete absence of these low-temperature reactions but showed abrupt exothermic spikes between 105--135 C. These results suggest that during aging the anode SEI layer is decomposing from a metastable state to a stable composition that is breaking down at elevated temperatures.

ROTH,EMANUEL P.

2000-05-31T23:59:59.000Z

299

Energy Rating  

E-Print Network (OSTI)

Consistent, accurate, and uniform ratings based on a single statewide rating scale Reasonable estimates of potential utility bill savings and reliable recommendations on cost-effective measures to improve energy efficiency Training and certification procedures for home raters and quality assurance procedures to promote accurate ratings and to protect consumers Labeling procedures that will meet the needs of home buyers, homeowners, renters, the real estate industry, and mortgage lenders with an interest in home energy ratings

Cabec Conference; Rashid Mir P. E

2009-01-01T23:59:59.000Z

300

Insertion Rates  

Science Conference Proceedings (OSTI)

HOME > Insertion Rates. TECH HEADLINES. Research Explores a New Layer in Additive Manufacturin... Grand Opening Slated for Electron Microscopy Facility.

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Central receiver solar thermal power system, Phase 1: CDRL Item 2, pilot plant preliminary design report. Volume VII. Pilot plant cost and commercial plant cost and performance  

DOE Green Energy (OSTI)

Detailed cost and performance data for the proposed tower focus pilot plant and commercial plant are given. The baseline central receiver concept defined by the MDAC team consists of the following features: (A) an external receiver mounted on a tower, and located in a 360/sup 0/ array of sun-tracking heliostats which comprise the collector subsystem. (B) feedwater from the electrical power generation subsystem is pumped through a riser to the receiver, where the feedwater is converted to superheated steam in a single pass through the tubes of the receiver panels. (C) The steam from the receiver is routed through a downcomer to the ground and introduced to a turbine directly for expansion and generation of electricity, and/or to a thermal storage subsystem, where the steam is condensed in charging heat exchangers to heat a dual-medium oil and rock thermal storage unit (TSU). (D) Extended operation after daylight hours is facilitated by discharging the TSU to generate steam for feeding the admission port of the turbine. (E) Overall control of the system is provided by a master control unit, which handles the interactions between subsystems that take place during startup, shutdown, and transitions between operating modes. (WHK)

Hallet, Jr., R. W.; Gervais, R. L.

1980-05-01T23:59:59.000Z

302

P-D Project Rate Adjustment  

NLE Websites -- All DOE Office Websites (Extended Search)

Parker-Davis Project Rate Adjustment Data Parker-Davis Project Rate Adjustment Data FY2014 Informal Customer Meeting Notification of Meeting Presentation Preliminary CAS Preliminary Rate Design Preliminary PRS Final Documents Notification of Rates Final CAS Final Rate Design Final PRS FY2013 Informal Customer Meeting Notification of Meeting Presentation Preliminary CAS Preliminary Rate Design Preliminary PRS Supplemental Information Final Documents Notification of Rates Final CAS Final Rate Design Final PRS FY2012 Informal Customer Meeting Notification of Meeting Presentation Preliminary CAS Preliminary Rate Design Preliminary PRS Customer Requested Scenario Final Documents Notification of Rates Final CAS Final Rate Design Final PRS FY2011 Informal Customer Meeting Notification of Meeting Presentation Preliminary CAS Preliminary Rate Design

303

10-MWe solar-thermal central-receiver pilot plant, solar-facilities design integration: system integration laboratory test plan (RADL item 6-4)  

DOE Green Energy (OSTI)

A general demonstration test plan is provided for the activities to be accomplished at the Systems Integration Laboratory. The Master Control System, Subsystem Distributed Process Control, Representative Signal Conditioning Units, and Redline Units from the Receiver Subsystem and the Thermal Storage Subsystem and other external interface operational functions will be integrated and functionally demonstrated. The Beckman Multivariable Control Unit will be tested for frequency response, static checks, configuration changes, switching transients, and input-output interfaces. Maximum System Integration Laboratory testing will demonstrate the operational readiness of Pilot Plant controls and external interfaces that are available. Minimum System Integration Laboratory testing will be accomplished with reduced set of hardware, which will provide capability for continued development and demonstration of Operational Control System plant control application software. Beam Control System Integration Laboratory testing will demonstrate the operational readiness of the Beam Control System equipment and software. (LEW)

Not Available

1980-10-01T23:59:59.000Z

304

Rate schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Firm Power Service Provided by Rate/Charges Firm Power Service Provided by Rate/Charges Rate/Charges Effective Through (or until superceded) Firm Sales (SLIP-F9) Composite Rate SLIP 29.62 mills/kWh 9/30/2015 Demand Charge SLIP $5.18/kW-month 9/30/2015 Energy Charge SLIP 12.19 mills/kWh 9/30/2015 Cost Recovery Charge (CRC) SLIP 0 mills/kWh 9/30/2015 Transmission Service Provided by Current Rates effective10/12 - 9/15 (or until superceded) Rate Schedule Effective Through Firm Point-to-Point Transmission (SP-PTP7) CRSP $1.14 per kW-month $13.69/kW-year $0.00156/kW-hour $0.04/kW-day $0.26/kW-week 10/1/2008-9/30/2015 Network Integration Transmission (SP-NW3) CRSP see rate schedule 10/1/2008-9/30/2015 Non-Firm Point-to-Point Transmission (SP-NFT6) CRSP see rate schedule 10/1/2008-9/30/2015 Ancillary Services Provided by Rate Rate Schedule

305

A solar concentrating photovoltaic/thermal collector.  

E-Print Network (OSTI)

??This thesis discusses aspects of a novel solar concentrating photovoltaic / thermal (PV/T) collector that has been designed to produce both electricity and hot water.… (more)

Coventry, Joseph S

2008-01-01T23:59:59.000Z

306

Ocean thermal energy conversion power system development-I. Preliminary design report. Volume 3. Appendixes D, E, and F. Phase I. Final report  

DOE Green Energy (OSTI)

The conceptual design of a 40 to 50 MW closed cycle ammonia OTEC commercial plant, the preliminary design of a 10 MW OTEC module analogous to the 50 MW module, and the preliminary design of heat exchanger test articles (evaporator and condenser) representative of the 50 MW heat exchangers for testing in OTEC-1 are presented. This volume includes the appendices: D) system equipment (hardware breakdown structure; 10-MW hardware listing; list of support and maintenance equipment, tools and spare parts; sacrificial anodes; M.A.N. brush; and Alclad 3004 data); E) heat exchanger supporting data (analyses/configuration, contract tooling, manufacturing plan, specification, and evaporator ammonia liquid distribution system); and F) rotating machinery (performance characteristics, radial inflow turbine; item descriptions; weight calculation-rotor; producibility analysis; long lead-time items; spares; support equipment; non recurring costs; performance characteristics-axial flow turbine; Worthington pump data; and American M.A.N. Corporation data). Also included is attachment 1 to the phase I final report which presents details of the system modeling; design, materials considerations, and systems analysis of the baseline module; system cost analysis; and supporting data. (WHK)

Not Available

1978-12-18T23:59:59.000Z

307

Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report. [ODSP-3 code; OTEC Steady-State Analysis Program  

DOE Green Energy (OSTI)

The following appendices are included; Dynamic Simulation Program (ODSP-3); sample results of dynamic simulation; trip report - NH/sub 3/ safety precautions/accident records; trip report - US Coast Guard Headquarters; OTEC power system development, preliminary design test program report; medium turbine generator inspection point program; net energy analysis; bus bar cost of electricity; OTEC technical specifications; and engineer drawings. (WHK)

Not Available

1978-12-04T23:59:59.000Z

308

Thermal test options  

SciTech Connect

Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods.

Koski, J.A.; Keltner, N.R.; Sobolik, K.B.

1993-02-01T23:59:59.000Z

309

Central receiver solar thermal power system, Phase 1. CRDL Item 2. Pilot plant preliminary design report. Volume III, Book 2. Collector subsystem  

DOE Green Energy (OSTI)

The methods and plans for the manufacture of the 10-MW collector heliostats and associated controls for the pilot plant are detailed. An in-depth description of the production, installation, and verification testing of heliostats for the pilot plant is presented. Specifications for the performance, design, and test requirements for the pilot plant collector subsystem are included. Also, a heliostat location summary report is given. (WHK)

Hallet, Jr., R. W.; Gervais, R. L.

1977-10-01T23:59:59.000Z

310

Similarity and generalized analysis of efficiencies of thermal energy storage systems  

SciTech Connect

This paper examined the features of three typical thermal storage systems including: (1) direct storage of heat transfer fluid in containers, (2) storage of thermal energy in a packed bed of solid filler material, with energy being carried in/out by a flowing heat transfer fluid which directly contacts the packed bed, and (3) a system in which heat transfer fluid flows through tubes that are imbedded into a thermal storage material which may be solid, liquid, or a mixture of the two. The similarity of the three types of thermal storage systems was discussed, and generalized energy storage governing equations were introduced in both dimensional and dimensionless forms. The temperatures of the heat transfer fluid during energy charge and discharge processes and the overall energy storage efficiencies were studied through solution of the energy storage governing equations. Finally, provided in the paper are a series of generalized charts bearing curves for energy storage effectiveness against four dimensionless parameters grouped up from many of the thermal storage system properties including dimensions, fluid and thermal storage material properties, as well as the operational conditions including mass flow rate of the fluid, and the ratio of energy charge and discharge time periods. Engineers can conveniently look up the charts to design and calibrate the size of thermal storage tanks and operational conditions without doing complicated individual modeling and computations. It is expected that the charts will serve as standard tools for thermal storage system design and calibration.

Peiwen Li; Jon Van Lew; Cholik Chan; Wafaa Karaki; Jake Stephens; J. E. O'Brien

2012-03-01T23:59:59.000Z

311

Dynamic Modeling in Solid-Oxide Fuel Cells Controller Design  

SciTech Connect

In this paper, a dynamic model of the solid-oxide fuel cell (SOFC) power unit is developed for the purpose of designing a controller to regulate fuel flow rate, fuel temperature, air flow rate, and air temperature to maintain the SOFC stack temperature, fuel utilization rate, and voltage within operation limits. A lumped model is used to consider the thermal dynamics and the electro-chemial dynamics inside an SOFC power unit. The fluid dynamics at the fuel and air inlets are considered by using the in-flow ramp-rates.

Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

2007-06-28T23:59:59.000Z

312

Measuring Thermal Conductivity of Powder Insulation at Cryogenic Temperatures.  

E-Print Network (OSTI)

?? A device to measure bulk effective thermal conductivity of powder insulation at cryogenic temperatures has been designed and tested. The design consists of two… (more)

Barrios, Matthew Nicklas

2006-01-01T23:59:59.000Z

313

Thermal modeling of the lithium/polymer battery  

DOE Green Energy (OSTI)

Research in the area of advanced batteries for electric-vehicle applications has increased steadily since the 1990 zero-emission-vehicle mandate of the California Air Resources Board. Due to their design flexibility and potentially high energy and power densities, lithium/polymer batteries are an emerging technology for electric-vehicle applications. Thermal modeling of lithium/polymer batteries is particularly important because the transport properties of the system depend exponentially on temperature. Two models have been presented for assessment of the thermal behavior of lithium/polymer batteries. The one-cell model predicts the cell potential, the concentration profiles, and the heat-generation rate during discharge. The cell-stack model predicts temperature profiles and heat transfer limitations of the battery. Due to the variation of ionic conductivity and salt diffusion coefficient with temperature, the performance of the lithium/polymer battery is greatly affected by temperature. Because of this variation, it is important to optimize the cell operating temperature and design a thermal management system for the battery. Since the thermal conductivity of the polymer electrolyte is very low, heat is not easily conducted in the direction perpendicular to cell layers. Temperature profiles in the cells are not as significant as expected because heat-generation rates in warmer areas of the cell stack are lower than heat-generation rates in cooler areas of the stack. This nonuniform heat-generation rate flattens the temperature profile. Temperature profiles as calculated by this model are not as steep as those calculated by previous models that assume a uniform heat-generation rate.

Pals, C.R. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-10-01T23:59:59.000Z

314

Heat Exchanger Thermal Performance Margin Guidelines  

Science Conference Proceedings (OSTI)

This report provides utility engineers with guidance on how to identify the thermal performance margin that is available in a given heat exchanger by comparing the thermal performance requirement at design limiting conditions to the thermal performance capability of the heat exchanger under those same conditions.

2005-11-30T23:59:59.000Z

315

Thermal Conductivity and Shear Strength of K Basin Sludge  

DOE Green Energy (OSTI)

Hanford K Basin sludge contains metallic uranium and uranium oxides that will corrode, hydrate, and, consequently, generate heat and hydrogen gas during storage. Heat is generated within the K Basin sludge by radiolytic decay and the reaction of uranium metal with water. To maintain thermal stability, the sludge must be retrieved, staged, transported, and stored in systems designed to provide a rate of heat removal that prevents the temperature in the sludge from increasing beyond acceptable limits. To support the dispositioning of the sludge to T Plant, modeling and testing and analyses are being performed to predict the behavior of sludge when placed into the storage containers. Two physical properties of the sludge that are critical to the modeling and analyses efforts are thermal conductivity and the sludge shear strength (yield stress). This report provides the results of thermal conductivity and shear strength measurements performed on representative sludge samples from the K East Basin.

Poloski, Adam P. (BATTELLE (PACIFIC NW LAB)); Bredt, Paul R. (BATTELLE (PACIFIC NW LAB)); Schmidt, Andrew J. (BATTELLE (PACIFIC NW LAB)); Swoboda, Robert G. (BATTELLE (PACIFIC NW LAB)); Chenault, Jeffrey W. (BATTELLE (PACIFIC NW LAB)); Gano, Sue (BATTELLE (PACIFIC NW LAB))

2002-05-17T23:59:59.000Z

316

SUPERGLASS. Engineering field tests - Phase 3. Production, market planning, and product evaluation for a high-thermal-performance insulating glass design utilizing HEAT MIRROR transparent insulation. Final report  

DOE Green Energy (OSTI)

HEAT MIRROR transparent window insulation consists of a clear polyester film two mils (.002'') thick with a thin, clear low-emissivity (.15) coating deposited on one side by state-of-the-art vacuum deposition processes. This neutral-colored invisible coating reflects long-wave infrared energy (heat). When mounted by being stretched with a 1/2'' air-gap on each side of the film, the resulting unit reduces heat loss by 60% compared to dual insulating glass. Southwall Corporation produces HEAT MIRROR transparent insulation and markets it to manufacturers of sealed insulating glass (I.G.) units and window and building manufacturers who make their own I.G. These companies build and sell the SUPERGLASS sealed glazing units. Units made and installed in buildings by six customers were visited. These units were located in many geographic regions, including the Pacific Northwest, Rocky Mountains, New England, Southeast, and West Coast. As much as could be obtained of their history was recorded, as was their current condition and performance. These units had been in place from two weeks to over a year. All of the units were performing thermally very well, as measured by taking temperature profiles through them and through adjacent conventional I.G. units. Some units had minor visual defects (attributed to I.G. assembly techniques) which are discussed in detail. Overall occupant acceptance was enthusiastically positive. In addition to saving energy, without compromise of optical quality or appearance, the product makes rooms with large glazing areas comfortable to be in in cold weather. All defects observed were present when built; there appears to be no in-field degradation of quality at this time.

Tilford, C L

1982-11-01T23:59:59.000Z

317

10-MWe solar-thermal central-receiver pilot plant, solar facilities design integration: collector-field optimization report (RADL item 2-25)  

DOE Green Energy (OSTI)

Appropriate cost and performance models and computer codes have been developed to carry out the collector field optimization, as well as additional computer codes to define the actual heliostat locations in the optimized field and to compute in detail the performance to be expected of the defined field. The range of capabilities of the available optimization and performance codes is described. The role of the optimization code in the definition of the pilot plant is specified, and a complete description of the optimization process itself is given. The detailed cost model used by the optimizer for the commercial system optimization is presented in the form of equations relating the cost element to each of the factors that determine it. The design basis for the commercial system is presented together with the rationale for its selection. The development of the individual heliostat performance code is presented. Use of the individual heliostat code in a completed study of receiver panel power under sunrise startup conditions is described. The procedure whereby performance and heliostat spacing data from the representative commercial-scale system are converted into coefficients of use in the layout processor is described, and the actual procedure used in the layout processor is described. Numerous special studies in support of the pilot plant design are described. (LEW)

Not Available

1981-01-01T23:59:59.000Z

318

Measurement of Passive Uptake Rates for Volatile Organic Compounds on  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement of Passive Uptake Rates for Volatile Organic Compounds on Measurement of Passive Uptake Rates for Volatile Organic Compounds on Commercial Thermal Desorption Tubes and the Effect of Ozone on Sampling Title Measurement of Passive Uptake Rates for Volatile Organic Compounds on Commercial Thermal Desorption Tubes and the Effect of Ozone on Sampling Publication Type Report LBNL Report Number LBNL-6257E Year of Publication 2013 Authors Maddalena, Randy L., Amanda Parra, Marion L. Russell, and Wen-Yee Lee Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords indoor air quality, Passive Sampling, Uptake Rates, vocs Abstract Diffusive or passive sampling methods using commercially filled axial-sampling thermal desorption tubes are widely used for measuring volatile organic compounds (VOCs) in air. The passive sampling method provides a robust, cost effective way to measure air quality with time-averaged concentrations spanning up to a week or more. Sampling rates for VOCs can be calculated using tube geometry and Fick's Law for ideal diffusion behavior or measured experimentally. There is evidence that uptake rates deviate from ideal and may not be constant over time. Therefore, experimentally measured sampling rates are preferred. In this project, a calibration chamber with a continuous stirred tank reactor design and constant VOC source was combined with active sampling to generate a controlled dynamic calibration environment for passive samplers. The chamber air was augmented with a continuous source of 45 VOCs ranging from pentane to diethyl phthalate representing a variety of chemical classes and physiochemical properties. Both passive and active samples were collected on commercially filled Tenax TA thermal desorption tubes over an 11-day period and used to calculate passive sampling rates. A second experiment was designed to determine the impact of ozone on passive sampling by using the calibration chamber to passively load five terpenes on a set of Tenax tubes and then exposing the tubes to different ozone environments with and without ozone scrubbers attached to the tube inlet. During the sampling rate experiment, the measured diffusive uptake was constant for up to seven days for most of the VOCs tested but deviated from linearity for some of the more volatile compounds between seven and eleven days. In the ozone experiment, both exposed and unexposed tubes showed a similar decline in terpene mass over time indicating back diffusion when uncapped tubes were transferred to a clean environment but there was no indication of significant loss by ozone reaction.

319

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Tariff Rates FY 2014 Rates and Rate Schedules FY 2013 Rates and Rate Schedules FY 2012 Rates and Rate Schedules FY 2011 Rates and Rate Schedules FY 2010 Rates and Rate Schedules FY...

320

Quasi-Dynamic Rating Pilot Projects: Tool Development  

Science Conference Proceedings (OSTI)

Operators must rate power equipment conservatively to avoid damage during occasional periods of poor weather. When load and equipment temperatures are not calculated or monitored, power equipment must be assumed to be at high temperature at the onset of limited-time ratings. Such assumptions often result in underestimating thermal capacity (thermal rating) of power equipment under most actual operating conditions. EPRI's Dynamic Thermal Circuit Rating (DTCR) technology, which encompasses a number of soft...

2003-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

THERMAL NEUTRONIC REACTOR  

DOE Patents (OSTI)

A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

Spinrad, B.I.

1960-01-12T23:59:59.000Z

322

Low thermal stress ceramic turbine nozzle  

DOE Patents (OSTI)

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes therebetween. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

Glezer, Boris (Del Mar, CA); Bagheri, Hamid (San Diego, CA); Fierstein, Aaron R. (San Diego, CA)

1996-01-01T23:59:59.000Z

323

Advanced Thermal Simulator Testing: Thermal Analysis and Test Results  

SciTech Connect

Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe [NASA Marshall Space Flight Center, Nuclear Systems Branch/ER24, MSFC, AL 35812 (United States)

2008-01-21T23:59:59.000Z

324

2009 Rate Design Window Dynamic Pricing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Compressed Air Energy Compressed Air Energy Storage (CAES) Hal LaFlash Director Emerging Clean Technologies Pacific Gas and Electric Company November 3, 2010 Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through National Energy Technology Laboratory 1 Project Need * California regulations will require that utilities procure 33% of their energy from eligible renewables * Scenario projections show that nearly 70% of the renewable energy (23% of total energy) is likely to be provided by variable solar and wind resources. * The CA ISO expects it will need high amounts of flexible resources, especially energy storage, to integrate renewable energy into the grid. * Compressed Air Energy Storage has a long history of being one of the most economic forms of energy storage.

325

2009 Rate Design Window Dynamic Pricing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Compressed Air Energy Storage (CAES) Hal LaFlash Director Emerging Clean Technologies Pacific Gas and Electric Company November 3, 2010 Funded in part by the Energy Storage Systems...

326

Thermal Properties  

Science Conference Proceedings (OSTI)

Table 12   Thermal conductivities of polymers and other materials...40,000 2.8 Aluminum 24,000 1.7 Steel 5000 0.35 Granite 350 0.02 Crown glass (75 wt% silica) 90 0.006 Source: Ref 4...

327

Underhood Thermal Management [Heat Transfer and Fluid Mechanics] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Underhood Thermal Underhood Thermal Management Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Underhood Thermal Management Hybrid Vehicle Underhood Thermal Analysis Hybrid Vehicle Underhood Thermal Analysis. Click on image to view larger image. In addition to nuclear system applications, the section applies its

328

Research experiments detailed design review  

DOE Green Energy (OSTI)

The illustrations for the detailed design review of the heliostats for a solar thermal pilot plant are presented. Also included are the program schedule, meeting agenda, and component design features. (MHR)

Not Available

1976-01-01T23:59:59.000Z

329

Balance of Power: Dynamic Thermal Management for Internet Data Centers  

Science Conference Proceedings (OSTI)

The advent of Internet-based applications and their resulting multitier distributed architecture has changed the focus of design for large-scale Internet computing. Internet server applications execute in a horizontally scalable topology across hundreds ... Keywords: dynamic thermal management, thermal-load balancing, Internet data center, row-wise and regional thermal management, thermal policies

Ratnesh K. Sharma; Cullen E. Bash; Chandrakant D. Patel; Richard J. Friedrich; Jeffrey S. Chase

2005-01-01T23:59:59.000Z

330

THERMALLY DRIVEN ATMOSPHERIC ESCAPE  

Science Conference Proceedings (OSTI)

Accurately determining the escape rate from a planet's atmosphere is critical for determining its evolution. A large amount of Cassini data is now available for Titan's upper atmosphere and a wealth of data is expected within the next decade on escape from Pluto, Mars, and extra-solar planets. Escape can be driven by upward thermal conduction of energy deposited well below the exobase, as well as by nonthermal processes produced by energy deposited in the exobase region. Recent applications of a model for escape driven by upward thermal conduction, called the slow hydrodynamic escape model, have resulted in surprisingly large loss rates for the atmosphere of Titan, Saturn's largest moon. Based on a molecular kinetic simulation of the exobase region, these rates appear to be orders of magnitude too large. Therefore, the slow hydrodynamic model is evaluated here. It is shown that such a model cannot give a reliable description of the atmospheric temperature profile unless it is coupled to a molecular kinetic description of the exobase region. Therefore, the present escape rates for Titan and Pluto must be re-evaluated using the atmospheric model described here.

Johnson, Robert E., E-mail: rej@virginia.ed [Engineering Physics, Thornton Hall B102, University of Virginia, Charlottesville, VA 22902 (United States); Physics Department, New York University, New York, NY 10003 (United States)

2010-06-20T23:59:59.000Z

331

Cylindrical thermal contact conductance  

E-Print Network (OSTI)

Thermal contact conductance is highly important in a wide variety of applications, from the cooling of electronic chips to the thermal management of spacecraft. The demand for increased efficiency means that components need to withstand higher temperatures and heat transfer rates. Many situations call for contact heat transfer through nominally cylindrical interfaces, yet relatively few studies of contact conductance through cylindrical interfaces have been undertaken. This study presents a review of the experimental and theoretical investigations of the heat transfer characteristics of composite cylinders, presenting data available in open literature in comparison with relevant correlations. The present investigation presents a study of the thermal contact conductance of cylindrical interfaces. The experimental investigation of sixteen different material combinations offers an opportunity to develop predictive correlations of the contact conductance, in conjunction with an analysis of the interface pressure as a function of the thermal state of the individual cylindrical shells. Experimental results of the present study are compared with previously published conductance data and conductance models.

Ayers, George Harold

2003-08-01T23:59:59.000Z

332

Cornell University Thermal Comfort Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Comfort Thermal Comfort Thermal comfort in the CUSD home is a top priority for our team. Accordingly, we designed a redundant HVAC system that would carefully manage the comfort of our decathletes and guests throughout the competition and the life of the house. The CUSD home's HVAC system was optimized for Washington, DC, with the cold Ithaca climate in mind. Our design tools included a schematic energy-modeling interface called TREAT, which was built off of the SuNREL platform. TREAT was used to passively condition the space. Our schematic energy modeling helped us properly size window areas, overhangs, and building mass distribution. We used a computation fluid dynamics (CFD) package called AirPak, to refine our design. The home was modeled in both

333

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

334

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

335

Global estimation of potential unreported plutonium in thermal research reactors  

SciTech Connect

As of November, 1993, 303 research reactors (research, test, training, prototype, and electricity producing) were operational worldwide; 155 of these were in non-nuclear weapon states. Of these 155 research reactors, 80 are thermal reactors that have a power rating of 1 MW(th) or greater and could be utilized to produce plutonium. A previously published study on the unreported plutonium production of six research reactors indicates that a minimum reactor power of 40 MW (th) is required to make a significant quantity (SQ), 8 kg, of fissile plutonium per year by unreported irradiations. As part of the Global Nuclear Material Control Model effort, we determined an upper bound on the maximum possible quantity of plutonium that could be produced by the 80 thermal research reactors in the non-nuclear weapon states (NNWS). We estimate that in one year a maximum of roughly one quarter of a metric ton (250 kg) of plutonium could be produced in these 80 NNWS thermal research reactors based on their reported power output. We have calculated the quantity of plutonium and the number of years that would be required to produce an SQ of plutonium in the 80 thermal research reactors and aggregated by NNWS. A safeguards approach for multiple thermal research reactors that can produce less than 1 SQ per year should be conducted in association with further developing a safeguards and design information reverification approach for states that have multiple research reactors.

Dreicer, J.S.; Rutherford, D.A.

1996-09-01T23:59:59.000Z

336

Solar applications of thermal energy storage. Final report  

DOE Green Energy (OSTI)

A technology assessment is presented on solar energy systems which use thermal energy storage. The study includes characterization of the current state-of-the-art of thermal energy storage, an assessment of the energy storage needs of solar energy systems, and the synthesis of this information into preliminary design criteria which would form the basis for detailed designs of thermal energy storage. (MHR)

Lee, C.; Taylor, L.; DeVries, J.; Heibein, S.

1979-01-01T23:59:59.000Z

337

Mobile Window Thermal Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Window Thermal Test (MoWiTT) Facility Mobile Window Thermal Test (MoWiTT) Facility winter.jpg (469135 bytes) The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems is one strategy for reducing the energy use of buildings. But the net energy flowing through a window is a combination of temperature- driven thermal flows and transmission of incident solar energy, both of which vary with time. U-factor and solar heat gain coefficient (SHGC), the window properties that control these flows, depend partly on ambient conditions. Window energy flows can affect how much energy a building uses, depending on when the window flows are available to help meet other energy demands within the building, and when they are adverse, adding to building energy use. This leads to a second strategy for reducing building energy use: using the beneficial solar gain available through a window, either for winter heating or for daylighting, while minimizing adverse flows.

338

Design for Energy Efficiency in Residential Buildings  

E-Print Network (OSTI)

This paper presents the thermal design and heating design of an energy saving residential building in Beijing where the owners lived until 2004. Results show the advantages and disadvantages of a household-based heating mode by natural gas. Based on the quantity of natural gas by field tests in 2005, we conclude that thermal design influences heating design calculations.

Song, M.; Zhang, Y.; Yang, G.

2006-01-01T23:59:59.000Z

339

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Customer Letter - Preliminary Review of Drought Adder Component for 2011 Firm Power Rates 2010 Rates and Rate Schedule - Current * 2009 Rates and Rate Schedule 2008 Rates and...

340

Yankee hood performance studies; The effect of air balance on thermal efficiency  

Science Conference Proceedings (OSTI)

With today's ever-increasing production rates on tissue-grade machines, many mills experience a need to increase the contribution of Yankee hoods to drying. Until the cylinder is replaced, its contribution to drying is fixed at its maximum drying rate. Consequently, the hoods should be checked routinely to ensure that they run optimally. Most air systems are not gas-or oil-fired, in contrast to the original steam-heated designs. As a result, Yankee air systems are energy intensive. A proper hood balance ensures minimum thermal consumption, or optimum thermal efficiency. Thermal efficiency is defined as the Btu's consumed by the burner per pound of water evaporated by hood. A simple engineering survey, or system examination, allows the papermaker to verify hood performance and balance the air system. In this paper typical data from a such a survey are shown. These surveys can often lead to considerably savings in burner fuel.

Schukov, V. (Yankee Air Systems (US)); Wozny, J. (Enerquin Air Inc., Montreal, Quebec (CA))

1991-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Upgrades in thermal protection for downhole instruments  

DOE Green Energy (OSTI)

Measurement of geophysical parameters in progressively deeper and hotter wells has prompted design changes that improve the performance of downhole instruments and their associated thermal protection systems. This report provides a brief description of the mechanical and thermal loads to which these instruments and systems are subjected. Each design change made to the passive thermal protection system is described along with its resulting improvement. An outline of work being done to scope an active thermal protection system and the preliminary qualitative results are also described. 3 refs., 4 figs.

Bennett, G.A.

1985-01-01T23:59:59.000Z

342

An Empirical Model of UO2 Thermal Conductivity Based on Laser Flash Measurements of Thermal Diffusivity  

Science Conference Proceedings (OSTI)

Thermal conductivity of irradiated fuel materials, which can be derived from measured thermal diffusivity (TD), is a key consideration in thermal performance and design of a fuel rod. However, without interpretation, the measured TD data cannot be used directly to calculate fuel temperatures during irradiation. This report provides such interpretation and presents an empirical model for the degradation of UO2 thermal conductivity with burn-up.

1998-10-07T23:59:59.000Z

343

Thermal via placement in 3D ICs  

E-Print Network (OSTI)

As thermal problems become more evident, new physical design paradigms and tools are needed to alleviate them. Incorporating thermal vias into integrated circuits (ICs) is a promising way of mitigating thermal issues by lowering the thermal resistance of the chip itself. However, thermal vias take up valuable routing space, and therefore, algorithms are needed to minimize their usage while placing them in areas where they would make the greatest impact. With the developing technology of three-dimensional integrated circuits (3D ICs), thermal problems are expected to be more prominent, and thermal vias can have a larger impact on them than in traditional 2D ICs. In this paper, thermal vias are assigned to specific areas of a 3D IC and used to adjust their effective thermal conductivities. The thermal via placement method makes iterative adjustments to these thermal conductivities in order to achieve a desired maximum temperature objective. Finite element analysis (FEA) is used in formulating the method and in calculating temperatures quickly during each iteration. As a result, the method efficiently achieves its thermal objective while minimizing the thermal via utilization.

Brent Goplen

2005-01-01T23:59:59.000Z

344

Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries  

Science Conference Proceedings (OSTI)

We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.

Pritychenko, B. [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)] [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Mughabghab, S.F. [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)] [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

2012-12-15T23:59:59.000Z

345

Computational Design of Low Thermal Conductivity TBC ...  

Science Conference Proceedings (OSTI)

Page 1. Edwin R. Fuller, Jr., National Institute of Standards and Technology Gaithersburg, MD 20899 Yougen Yang, Derek D. Hass, and Haydn NG ...

2004-05-17T23:59:59.000Z

346

The Effect of High Cooling Rate and Powder Composition on ...  

Science Conference Proceedings (OSTI)

Coatings were deposited by applying different types of thermal spray systems. Influence of the heating and cooling rates on coating microstructure and ...

347

Effects of Cooling Rate and Mechanical Shock Impact on the ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The effects of cooling rates and mechanical shock on the ... Current-induced Electrical-thermal-mechanical Responses of Cu Strips.

348

Rate Schedules | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rate Schedules Rate Schedules Rate Schedules One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate levels and these studies for each of Southeastern's four power marketing systems are updated annually. They demonstrate the adequacy of the rates for each system. Rates are considered to be adequate when revenues are sufficient to repay all costs associated with power production and transmission costs, which include the amortization of the Federal investment allocated to power. Latest Rate Schedules October 1, 2012 ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System: Georgia-Alabama-South Carolina October 1, 2012

349

The impact of retail rate structures on the economics of commercial photovoltaic systems in California  

E-Print Network (OSTI)

the impact of retail electricity rate design on the economiccustomer retail electricity rates currently offered in thethe design of retail electricity rates, particularly for

Mills, Andrew D.

2009-01-01T23:59:59.000Z

350

The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California  

E-Print Network (OSTI)

the impact of retail electricity rate design on the economiccustomer retail electricity rates currently offered in thethe design of retail electricity rates, particularly for

Mills, Andrew

2009-01-01T23:59:59.000Z

351

Passive solar design handbook  

DOE Green Energy (OSTI)

The Passive Solar Design Handbook, Volume Three updates Volume Two by presenting extensive new data on the optimum mix of conservation and solar direct gain, sunspaces, thermal storage walls, and solar radiation. The direct gain, thermal storage wall, and solar radiation data are greatly expanded relative to the Volume 2 coverage. The needed flexibility to analyze a variety of system designs is accommodated by the large number of reference designs to be encompassed - 94 in contrast to 6 in Volume two - and the large amount of sensitivity data for direct gain and sunspace systems - approximately 1100 separate curves.

Jones, R.W.

1981-01-01T23:59:59.000Z

352

Thermal Stabilization Blend Plan  

SciTech Connect

The Blend Plan was written to identify items stored outside of the 213 MBA that will be moved into the MBA for thermal stabilization processing. Product quality oxide items stored in our vaults are found in Appendix A. A table is included in Appendix A which details the isotopic values for the oxide items and calculates the amount of material of any specific run that can be placed in a product can and maintain the 15 watt limit to meet storage vault specifications. This Revision of the Blend Plan adds items of lesser dose rate to lower the exposure of the workers until additional shielding can be added to the gloveboxes.

RISENMAY, H.R.

2000-04-20T23:59:59.000Z

353

Hybrid Dynamic Energy and Thermal Management in Heterogeneous Embedded Multiprocessor SoCs  

E-Print Network (OSTI)

Hybrid Dynamic Energy and Thermal Management in Heterogeneous Embedded Multiprocessor SoCs Shervin propose a joint thermal and energy management technique specifically designed for heterogeneous MPSo technique simultaneously reduces the thermal hot spots, temperature gradients, and energy consumption

Simunic, Tajana

354

New simplified thermal and HVAC design tools for building designers.  

E-Print Network (OSTI)

?? Please read the abstract in the section 00front of this document © University of Pretoria 1999 Accompanied by 2 computer discs available at Main… (more)

Ellis, Michael Wayne

2007-01-01T23:59:59.000Z

355

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates Loveland Area Project Firm Power Rates Transmission and Ancillary Services Rates 2012 Rate Adjustment-Transmission and Ancillary Services 2010 Rate Adjustment-Firm Power 2009...

356

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates and Repayment Services Consolidated Rate Schedules FY 2014 Rates BCP Annual Rate Process Central Arizona Project Transmission Rate Process DSW Multiple System Transmission...

357

Standard thermal energy group structure for generation of thermal group constants from ENDF/B data  

SciTech Connect

The final specifications of a standard energy group structure for the generation of thermal group constants from ENDF/B data are presented. The report represents the work of a committee appointed by the Codes and Formats Subcommittee of the Cross Section Evaluation Working Group and is a parallel effort to work being done in the epithermal energy range. The thermal energy group structure specified in this report was accepted November 10, 1972, by the Cross Section Evaluation Working Group as the standard for generation of thermal group constants from ENDF/B data. The standard thermal group structure specified in this report is consistent with past design experience and thermal spectrum codes, and incorporates specific features for effects known to be important in nuclear design applications in the thermal energy range. Specific recommendations are made as to methods to be used for generation of thermal group constants. (auth)

Finch, D.R.

1974-03-01T23:59:59.000Z

358

Thermal decomposition of mercuric sulfide  

Science Conference Proceedings (OSTI)

The rate of thermal decomposition of mercuric sulfide (HgS) has been measured at temperatures from 265 to 345 C. These data have been analyzed using a first-order chemical reaction model for the time dependence of the reaction and the Arrhenius equation for the temperature dependence of the rate constant. Using this information, the activation energy for the reaction was found to be 55 kcal/mol. Significant reaction vessel surface effects obscured the functional form of the time dependence of the initial portion of the reaction. The data and the resulting time-temperature reaction-rate model were used to predict the decomposition rate of HgS as a function of time and temperature in thermal treatment systems. Data from large-scale thermal treatment studies already completed were interpreted in terms of the results of this study. While the data from the large-scale thermal treatment studies were consistent with the data from this report, mass transport effects may have contributed to the residual amount of mercury which remained in the soil after most of the large-scale runs.

Leckey, J.H.; Nulf, L.E.

1994-10-28T23:59:59.000Z

359

Particle Swarm Optimization and Gradient Descent Methods for Optimization of PI Controller for AGC of Multi-area Thermal-Wind-Hydro Power Plants  

Science Conference Proceedings (OSTI)

The automatic generation control (AGC) of three unequal interconnected Thermal, Wind and Hydro power plant has been designed with PI controller. Further computational intelligent technique Particle Swarm Optimization and conventional Gradient Descent ... Keywords: Automatic generation control, Particle swarm optimization, Gradient Descent method, Generation rate constraint, Area control error, Wind energy conversion system

Naresh Kumari, A N. Jha

2013-04-01T23:59:59.000Z

360

2011 Heat Rate Improvement Conference  

Science Conference Proceedings (OSTI)

With the rising cost of fuel and the strong possibility of CO2 emissions regulations and limitations in the near future, utilities and power generation companies are focusing on power plant heat rate and performance. The Electric Power Research Institute (EPRI) 17th Heat Rate Improvement Conference is the latest in a series of meetings designed to assist attendees in addressing problems with power plant performance and in identifying cost-effective solutions for achieving and sustaining heat rate improve...

2011-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Thermal Imaging Control of Furnaces and Combustors  

Science Conference Proceedings (OSTI)

The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

David M. Rue; Serguei Zelepouga; Ishwar K. Puri

2003-02-28T23:59:59.000Z

362

Thermal Stabilization Blend Plan  

SciTech Connect

The Blend Plan was written to identify items stored outside of the 213 MBA that will be moved into the MBA for thermal stabilization processing. Product quality oxide items stored in our vaults are found in Appendix B. A table is included in Appendix B which details the isotopic values for the oxide items and calculates the amount of material of any specific run that can be placed in a product can and maintain the 15 watt limit to meet storage vault specifications. There is no chance of exceeding the 15 watt limit with items starting with the designations ''LAO'' or ''PBO.'' All items starting with the designations ''BO,'' ''BLO,'' and ''DZ0'' are at risk of exceeding the 15 watt specification if the can were to be filled.

RISENMAY, H.R.

1999-08-19T23:59:59.000Z

363

Thermal conductivity of thermal-battery insulations  

DOE Green Energy (OSTI)

The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

Guidotti, R.A.; Moss, M.

1995-08-01T23:59:59.000Z

364

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network (OSTI)

PERFORMANCE VALUES FOR SEVERAL WINDOW DESIGNS XBL 796-10098IN MINNEAPOLIS AS A FUNCTION OF WINDOW AREA AND GLAZING/Thermal Performance of Insulating Window Systems Stephen E.

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

365

Thermal Management of Onboard Cryogenic Hydrogen Storage Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan: (A) System Weight and Volume (C) Efficiency (E) ChargingDischarging Rates (J) Thermal Management Technical Targets In this project, studies are being conducted to develop...

366

Examination of cadmium safety rod thermal test specimens and failure mechanism evaluation  

SciTech Connect

The reactor safety rods may be subjected to high temperatures due to gamma heating after the core coolant level has dropped during the ECS phase of a hypothetical LOCA event. Accordingly, an experimental cadmium safety rod testing subtask was established as part of a task to address the response of reactor core components to this accident. Companion reports describe the experiments and a structural evaluation (finite element analysis) of the safety rod. This report deals primarily with the examination of the test specimens, evaluation of possible failure mechanisms, and confirmatory separate effects experiments. It is concluded that the failures observed in the cadmium safety rod thermal tests which occurred at low temperature (T < 600{degrees}C) with slow thermal ramp rates (slow cladding strain rates) resulted from localized dissolution of the stainless steel cladding by the cadmium/aluminum solution and subsequent ductility exhaustion and rupture. The slow thermal ramp rate is believed to be the root cause for the failures; specifically, the slow ramp rate led to localized cladding shear deformation which ruptured the protective oxide film on the cladding inner surface and allowed dissolution to initiate. The test results and proposed failure mechanism support the conclusion that the rods would not fail below 500{degrees}C even at slow ramp rates. The safety rod thermal test specimen failures which occurred at high temperature (T > 800{degrees}C) with fast thermal ramp rates are concluded to be mechanical in nature without significant environmental degradation. Based on these tests, tasks were initiated to design and manufacture B{sub 4}C safety rods to replace the cadmium safety rods. The B{sub 4}C safety rods have been manufactured at this time and it is currently planned to charge them to the reactor in the near future. 60 refs.

Thomas, J.K.; Peacock, H.B.; Iyer, N.C.

1992-01-01T23:59:59.000Z

367

Microbiology of thermally polluted environments. Technical progress report, August 1, 1973--July 31, 1974  

SciTech Connect

Thermal pollution is discussed with regard to sources of manmade thermal water; thermal consequences of thermal pollution; and thermal effects on water quality. Natural habitats receiving thermal additions are discussed with regard to geothermal habitats and geothermal modification of normal aquatic ecosystems. Ecological observations on geothermal habitats include upper temperature limits for various taxonomic groups and consequences of species restriction by temperature. General ecological consequences of thermal polution are discussed with regard to differences between thermal effects on cold and warm water habitats; adaptation to the thermal environment; effect of temperature on gruwth rate; temperatare and water quality; and bacterial indicators of thermal pollution. (HLW)

Brock, T.D.

1974-04-01T23:59:59.000Z

368

Rates & Repayment  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Rates and Repayment Services Rates Current and Historical Rate Information Collbran Power Rates CRSP Power Rates CRSP Transmission System Rates CRSP Management Center interest rates Falcon-Amistad Power Rates Provo River Power Rates Rio Grande Power Rates Seedskadee Power Rates SLCA/IP Power Rates Rate Schedules & Supplemental Rate Information Current Rates for Firm Power, Firm & Non-firm Transmission Service, & Ancillary Services Current Transmission & Ancillary Services Rates Tariffs Components of the SLCA/IP Existing Firm Power Rate Cost Recovery Charge (CRC) Page MOA Concerning the Upper Colorado River Basin

369

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration.  

E-Print Network (OSTI)

??A solar tracker and concentrator was designed and assembled for the purpose of cogeneration of thermal power and electrical power using thermoelectric technology. A BiTe… (more)

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

370

Thermal energy storage for cooling of commercial buildings  

DOE Green Energy (OSTI)

The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

Akbari, H. (Lawrence Berkeley Lab., CA (USA)); Mertol, A. (Science Applications International Corp., Los Altos, CA (USA))

1988-07-01T23:59:59.000Z

371

Practical Solar Thermal Chilled Water  

E-Print Network (OSTI)

With the pressing need for the United States to reduce our dependence upon fossil fuels, it has become a national priority to develop technologies that allow practical use of renewable energy sources. One such energy source is sunlight. It has the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical success. The primary reason for these disappointments is a misunderstanding of solar energy dynamics by air conditioning designers; combined with a similar misunderstanding by solar engineers of how thermally driven chillers react to the loads and energy sources applied to them. With this in mind, a modeling tool has been developed which provides the flexibility to apply a strategy which can be termed, Optimization by Design.

Leavell, B.

2010-01-01T23:59:59.000Z

372

Chemical preconcentrator with integral thermal flow sensor  

DOE Patents (OSTI)

A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2003-01-01T23:59:59.000Z

373

Commercial Building Asset Rating Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 eere.energy.gov 1 eere.energy.gov Commercial Building Asset Rating Program August 23, 2011 12 p.m. ET, 9 a.m. PT Presenter: Cody Taylor PRE-DECISIONAL Information included in this document is for discussion purposes and does not constitute the final program design. FOR INFORMATION ONLY 2 eere.energy.gov Outline * Goals * Scope & schedule * Guiding principles * Program design issues - Metrics - Rating method - Rating scale - Opportunities for efficiency improvement - Quality assurance Please submit clarifying questions during today's webinar via the Q&A function of Live Meeting. 3 eere.energy.gov National Building Rating Program Goals * Facilitate cost-effective investment in energy efficiency and reduce energy use in the commercial building sector * Establish a national standard for voluntary commercial building asset rating

374

Morphology and non-isothermal crystallization kinetics of CuInS{sub 2} nanocrystals synthesized by solvo-thermal method  

Science Conference Proceedings (OSTI)

Nanocrystals of copper indium disulphide (CuInS{sub 2}) were synthesized by a solvo-thermal method. The structure, morphology and non-isothermal crystallization kinetic behavior of samples were investigated using X-ray diffraction, field emission scanning electron microscopy, field emission transmission electron microscopy, thermogravimetric analysis and differential thermal analysis techniques. Non-isothermal measurements at different heating rates were carried out and the crystallization kinetics of samples were analyzed using the most reliable non-isothermal kinetic methods. The kinetic parameters such as glass transition temperature, thermal stability, activation energy, Avrami exponent etc. were evaluated. - Highlights: Black-Right-Pointing-Pointer CuInS{sub 2} nanocrystals have scientific and technological importance. Black-Right-Pointing-Pointer Samples have been prepared by solvo-thermal method. Black-Right-Pointing-Pointer Synthesized samples exhibit excellent morphology and thermal properties. Black-Right-Pointing-Pointer Investigated properties may be utilized in design and fabrication of solar cell devices.

Majeed Khan, M.A., E-mail: majeed_phys@yahoo.co.in [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Kumar, Sushil [Department of Physics, Chaudhary Devi Lal University, Sirsa 125055 (India); Alsalhi, M.S. [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Department of Physics and Astronomy, King Saud University, Riyadh 11451 (Saudi Arabia); Ahamed, Maqusood [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Alhoshan, Mansour [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Chemical Engineering Department, King Saud University, Riyadh 11451 (Saudi Arabia); Alrokayan, Salman A. [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Ahamad, Tansir [Department of Chemistry, King Saud University, Riyadh 11451 (Saudi Arabia)

2012-03-15T23:59:59.000Z

375

CPC thermal collector test plan  

DOE Green Energy (OSTI)

A comprehensive set of test procedures has evolved at Argonne National Laboratory for establishing the performance of compound parabolic and related concentrating thermal collectors with large angular fields of view. The procedures range from separate thermal and optical tests, to overall performance tests. A calorimetric ratio technique has been developed to determine the heat output of a collector without knowledge of the heat transfer fluid's mass flow rate and heat capacity. Sepcial attention is paid to the problem of defining and measuring the incident solar flux with respect to which the collector efficiency is to be calculated.

Reed, K A

1977-01-01T23:59:59.000Z

376

Seasonal thermal energy storage  

DOE Green Energy (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

377

Solar Total Energy System, Large Scale Experiment, Shenandoah, Georgia. Final technical progress report. Volume II, Section 3. Facility concept design. [1. 72 MW thermal and 383. 6 kW electric power for 42,000 ft/sup 2/ knitwear plant  

DOE Green Energy (OSTI)

The Stearns-Roger Engineering Company conceptual design of ERDA's Large Scale Experiment No. 2 (LSE No. 2) is presented. The various LSEs are part of ERDA's Solar Total Energy Program (STES) and a separate activity of the National Solar Thermal Power Systems Program. The object of this LSE is to design, construct, test, evaluate and operate a STES for the purpose of obtaining experience with large scale hardware systems and to establish engineering capability for subsequent demonstration projects. This particular LSE is to be located at Shenandoah, Georgia, and will provide power to the Bleyle knitwear factory. The Solar Total Energy system is sized to supply 1.720 MW thermal power and 383.6 KW electrical power. The STES is sized for the extended knitwear plant of 3902 M/sup 2/ (42,000 sq-ft) which will eventually employ 300 people. The details of studies conducted for Phase II of the Solar Total Energy System (STES) for the conceptual design requirements of the facility are presented. Included in this section are the detailed descriptions and analyses of the following subtasks: facility concept design, system concept design, performance analysis, operation plan, component and subsystem development, procurement plan, cost estimating and scheduling, and technical and management plans. (WHK)

None,

1977-10-17T23:59:59.000Z

378

DESIGN, ANALYSIS AND TEST CONCEPT FOR PROTOTYPE CRYOLINE OF ITER  

Science Conference Proceedings (OSTI)

The ITER cryo-distribution and cryoline is a part of the in-kind supply for India. The design of the systems is in progress. The topology of torus and neutral beam cryoline is defined as six process pipes along with thermal shield at 80 K and outer vacuum jacket. In order to develop confidence in the concept and to establish the high level of engineering and manufacturing technology, a prototype testing has been proposed. The prototype test will be carried out on 1:1 model in terms of dimension. However, the mass flow rate of the supercritical helium at 4.5 K and gaseous helium at 80 K will be on a 1:10 scale. The prototype cryoline has been designed and analyzed for thermal, structural and hydraulic parameters. The objective of this prototype test is to verify mechanical behavior due to thermal stress and pressure force, thermal and hydraulic performances. The concept of test facility has been realized along with the Piping and Instrumentation (P and I) diagram, instrumentation, controls, data acquisition, 80 K helium generation system along with supply and return valve boxes and interfacing hardware. The design concept, methodology for analysis and results, as well as the test facility have been discussed.

Sarkar, B.; Badgujar, S.; Vaghela, H.; Shah, N.; Bhattacharya, R.; Chakrapani, Ch. [Institute for Plasma Research Bhat, Gandhinagar, Gujarat, 382428 (India)

2008-03-16T23:59:59.000Z

379

Thermal aspects of a superconducting coil for fusion reactor  

SciTech Connect

Computer models are used to simulate both localized and extensive thermal excursions in a large superconducting magnet for fusion reactor. Conditions for the failure of fusion magnet due to thermal excursion are delineated. Designs to protect the magnet against such thermal excursion are evaluated. (auth)

Yeh, H.T.

1975-01-01T23:59:59.000Z

380

Thermal Comfort under Transient Metabolic and Dynamic Localized Airflow Conditions Combined with Neutral and Warm Ambient Temperatures  

E-Print Network (OSTI)

Human thermal environments constitute complex combinations of various interacting thermal factors. The transient and non-uniform nature of those thermal factors further increases the complexity of the thermal comfort problem. The conventional approach to the thermal comfort problem has been simplifying the problem and providing steady thermal environments which would satisfy the majority of the people in a given space. However, several problems emerged with this approach. People became finely tuned to the narrow range of conditions and developed expectations for the same conditions which made them uncomfortable when there were slight deviations from those conditions. Also, the steady approach didn't solve the comfort problem because, in practice, people move between spaces, and thermal conditions such as metabolic rate, surface temperatures, airflow speed and direction vary in a typical day. A human subject test was designed to determine the transient relationship between the people and their environments. In the first part, thermal perceptions of people were taken during various metabolic rate conditions. In the second and the third parts, transient conditions of different thermal factors were created. Various combinations of airflow frequencies, airflow location around the body, metabolic rate, and room temperatures were tested for their individual and interaction effects of providing thermal comfort. The concept of Localized Dynamic Airflow was proposed in which room airflow was simply redirected to different parts of the body with a varying airflow speed. Results showed that males and females respond differently to the thermal conditions. The room temperatures they found neutral were significantly different. People?s thermal comfort during transient metabolic conditions was similar to high metabolic conditions. This heightened response extended into the next ten minutes after the high metabolic conditions ended. Test results suggested that people tolerate higher temperatures during transient environmental conditions. The average response was for comfortable even during the high temperature (83°F) and high metabolic rate (4 met) conditions. Low energy use of the localized dynamic airflow and the increased room temperatures has significant potential for monetary savings.

Ugursal, Ahmet

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The team’s design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

None

2011-02-01T23:59:59.000Z

382

Thermal Hydraulic Optimization of Nuclear Systems [Heat Transfer and Fluid  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Hydraulic Thermal Hydraulic Optimization of Nuclear Systems Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Thermal Hydraulic Optimization of Nuclear Systems Accelerator Driven Test Facility Target Accelerator Driven Test Facility Target. Click on image to view larger

383

The creation of a courtyard microclimate thermal model for the analysis of courtyard houses  

E-Print Network (OSTI)

This research is an effort to revive the use of courtyard housing clusters in a modern context, which were traditionally known for their distinctive passive cooling performance. The goal is to promote energy efficient design in hot-arid climates and temperate climates by reviving the use of courtyard housing clusters. The objective is to introduce a simplified thermal model that simulates the courtyard microclimate, which has been tested with actual field data from a case study house. The case study house was an indigenous courtyard house in Cairo, Egypt that was built around 1400 AD, having an area of about 5000 sq. ft. (i.e., comparable to the size of a single-family house) with heavy thermal mass. To accomplish this, a finite difference thermal network model was created for simulating the case study courtyard microclimate. The finite difference (FD) model showed validity as it calibrated very well against field data. This model allowed running parametric sensitivity studies on the courtyard thermal simulation factors: air change rates, thermal mass, solar absorption, wall and floor emissivity, ground temperature, cloud cover, and ambient air temperature. The results of the parametric analysis showed that the model was sensitive to variations in the air change rates, solar absorptivity, and ambient air (rooftop) temperatures. The courtyard microclimate model was then used in combination with thermal simulation software (DOE-2) to analyze the thermal performance of the case study house, which was also validated with measured field data. The DOE-2 program showed limitations when applied to the case study, non-conditioned building, and showed a convergence deficiency when simulating high thermal mass buildings. The DOE-2 program did not perform well in simulating the impact of changes in thermal mass as compared to previous published field measurements. The proposed combinations of the FD microclimate/DOE-2 simulation did not perform as well as the FD microclimate simulation. The FD courtyard microclimate simulation model with onsite data for calibration is advantageous in introducing for the first time the ability to perform computer simulations on any number of proposed courtyard design alternatives for reaching optimum thermal performance.

Bagneid, Amr

2006-08-01T23:59:59.000Z

384

Additive Manufacturing - Materials by Design  

Livermore materials scientists and engineers are designing and building new materials that will open up new spaces on many Ashby material selection charts, such as those for stiffness and density as well as thermal expansion and stiffness. This is ...

385

Experimental Design for a Sponge-Wipe Study to Relate the Recovery Efficiency and False Negative Rate to the Concentration of a Bacillus anthracis Surrogate for Six Surface Materials  

SciTech Connect

Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the probability of correct detection (PCD) (or equivalently the false negative rate FNR = 1 ? PCD). The PCD/FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5) sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method. A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not PCD/FNR (which left a major gap in available information). Quantifying the PCD/FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in PCD/FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The study will investigate the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge-wipe samples, RE, and PCD/FNR. The experimental design involves 16 test runs, to be performed in two blocks of eight runs. Three surface materials (stainless steel, vinyl tile, and ceramic tile) were tested in the first block, while three other surface materials (plastic, painted wood paneling, and faux leather) will be tested in the second block. The eight surface concentrations of the surrogate were randomly assigned to test runs within each block. Some of the concentrations will be very low and may present challenges for deposition, sampling, and analysis. However, such tests are needed to investigate RE and PCD/FNR over the full range of concentrations of interest. In each run, there will be 10 test coupons of each of the three surface materials. A positive control sample will be generated prior to each test sample. The positive control results will be used to 1) calculate RE values for the wipe sampling and analysis method, and 2) fit RE- and PCD-concentration equations, for each of the six surface materials. Data analyses will support 1) estimating the PCD for each combination of contaminant concentration and surface material, 2) estimating the surface concentrations and their uncertainties of the contaminant for each combination of concentration and surface material, 3) estimating RE (%) and their uncertainties for each combination of contaminant concentration and surface material, 4) fitting PCD-concentration and RE-concentration equations for each of the six surface materials, 5) assessing goodness-of-fit of the equations, and 6) quantifying the uncertainty in PCD and RE predictions made with the fitted equations.

Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula; Einfeld, Wayne

2010-12-16T23:59:59.000Z

386

Experimental Design for a Sponge-Wipe Study to Relate the Recovery Efficiency and False Negative Rate to the Concentration of a Bacillus anthracis Surrogate for Six Surface Materials  

DOE Green Energy (OSTI)

Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the false negative rate (FNR). The FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5) sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method. A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not FNR (which left a major gap in available information). Quantifying the FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The testing was performed by SNL and is now completed. The study investigated the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge-wipe samples, RE, and FNR. The experimental design involves 16 test runs, performed in two blocks of eight runs. Three surface materials (stainless steel, vinyl tile, and ceramic tile) were tested in the first block, while three other surface materials (plastic, painted wood paneling, and faux leather) were tested in the second block. The eight surface concentrations of the surrogate were randomly assigned to test runs within each block. Some of the concentrations were very low and presented challenges for deposition, sampling, and analysis. However, such tests are needed to investigate RE and FNR over the full range of concentrations of interest. In each run, there were 10 test coupons of each of the three surface materials. A positive control sample was generated at the same time as each test sample. The positive control results will be used to 1) calculate RE values for the wipe sampling and analysis method, and 2) fit RE- and FNR-concentration equations, for each of the six surface materials. Data analyses will support 1) estimating the FNR for each combination of contaminant concentration and surface material, 2) estimating the surface concentrations and their uncertainties of the contaminant for each combination of concentration and surface material, 3) estimating RE (%) and their uncertainties for each combination of contaminant concentration and surface material, 4) fitting FNR-concentration and RE-concentration equations for each of the six surface materials, 5) assessing goodness-of-fit of the equations, and 6) quantifying the uncertainty in FNR and RE predictions made with the fitted equations.

Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula; Einfeld, Wayne

2011-05-01T23:59:59.000Z

387

Control of waste gas from a thermal EOR operation  

SciTech Connect

This paper summarizes a waste-gas treatment system designed to control emissions from thermal EOR wells. This case study discusses the need, design, installation, and operation of the system.

Peavy, M.A.; Braun, J.E. (Oryx Energy Co. (US))

1991-06-01T23:59:59.000Z

388

Benchmarking and Performance Based Rating System for Commercial...  

NLE Websites -- All DOE Office Websites (Extended Search)

and green building rating systems such as Leadership in Energy and Environment Design (LEED-India) and Green Rating for Integrated Habitat Assessment (GRIHA) have been the prime...

389

Power and thermal challenges in mobile devices  

Science Conference Proceedings (OSTI)

In spite of significant advances in the development of low-power designs and power management techniques, power remains and will remain a first-class design constraint for mobile devices. The functionality integrated into mobile devices will only continue ... Keywords: leakage power, mobile devices, power management, process variability, thermal management

Krishna Sekar

2013-09-01T23:59:59.000Z

390

STLOAD 1.0, Substation Equipment Thermal Loading Program  

Science Conference Proceedings (OSTI)

The Substation Equipment Thermal Loading Program, STLOAD Version 1.0 software is intended for use by substation engineers for the purpose of establishing thermal ratings for and making diagnostic evaluations of substation equipment. STLOAD 1.0 software calculates substation equipment operating temperatures and thermal ratings based on user-specified physical parameters for the equipment and user-specified load and air temperature data. Substation equipment that can be modeled using STLOAD includes strain...

2006-03-15T23:59:59.000Z

391

MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT  

DOE Green Energy (OSTI)

The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

H.C. Maru; M. Farooque

2003-03-01T23:59:59.000Z

392

A thermal energy storage system for adsorbent low-pressure natural gas storage  

SciTech Connect

Thermal energy storage (TES) was previously demonstrated to be a potentially promising technique to mitigate heat effects associated with low-pressure carbon adsorption systems for natural gas storage. Further investigations were conducted to develop information for the design of an optimized adsorption system that incorporates TES heat management. The selection of appropriate phase-change materials and nucleating agents, encapsulant materials, and corrosion inhibitors for a TES heat management system are discussed and the results of extended thermal cyclic behavior are presented. Engineering analyses and finite element analyses are employed to calculate adsorption rates, heat generation, temperatures, and heat transfer within the adsorbent bed. The size, volume, and arrangement of components for an operational TES system designed to accommodate fast-fill within a defined time limit is presented.

Jasionowski, W.J.; Kountz, K.J.; Blazek, C.F.; Tiller, A.J. (Institute of Gas Technology, Chicago, IL (United States)); Gauthier, S.W.; Takagishi, S.K. (Gas Research Inst., Chicago, IL (United States))

1992-01-01T23:59:59.000Z

393

A thermal energy storage system for adsorbent low-pressure natural gas storage  

SciTech Connect

Carbon-based adsorbents were determined to be the best enhanced storage media that would store more natural gas at low pressures than achieved with compression only. Thermal energy storage (TES) was previously demonstrated to be a potentially promising technique to mitigate heat effects associated with low-pressure carbon adsorption systems for natural gas storage. Further investigations were conducted to develop information for the design of an optimized adsorption system that incorporates TES heat management. The selection of appropriate phase-change materials and nucleating agents, encapsulant materials, and corrosion inhibitors for a TES heat management system are discussed and the results of extended thermal cyclic behavior are presented. Engineering analyses and finite element analyses are employed to calculate adsorption rates, heat generation, temperatures, and heat transfer within the adsorbent bed. The size, volume, and arrangement of components for an operational TES system designed to accommodate fast-fill within a defined time limit is presented.

Blazek, C.F.; Jasionowski, W.J.; Kountz, K.J.; Tiller, A.J. [Institute of Gas Technology, Chicago, IL (United States); Gauthier, S.W.; Takagishi, S.K. [Gas Research Inst., Chicago, IL (United States)

1992-12-31T23:59:59.000Z

394

Calculating thermal radiation fields from 3D flame reconstruction  

Science Conference Proceedings (OSTI)

Designing fire safety into a building requires a designer to think through issues that include fire ignition, growth and spread. Radiative heat transfer from flames is the dominant method of spread. It is, therefore, necessary to determine the thermal ... Keywords: configuration factor, flame geometry, heat flux, radial basis function, thermal radiation field

Paul Mason; Chris Rogers

2003-02-01T23:59:59.000Z

395

Thermal analysis of solar thermal energy storage in a molten-salt thermocline  

SciTech Connect

A comprehensive, two-temperature model is developed to investigate energy storage in a molten-salt thermocline. The commercially available molten salt HITEC is considered for illustration with quartzite rocks as the filler. Heat transfer between the molten salt and quartzite rock is represented by an interstitial heat transfer coefficient. Volume-averaged mass and momentum equations are employed, with the Brinkman-Forchheimer extension to the Darcy law used to model the porous-medium resistance. The governing equations are solved using a finite-volume approach. The model is first validated against experiments from the literature and then used to systematically study the discharge behavior of thermocline thermal storage system. Thermal characteristics including temperature profiles and discharge efficiency are explored. Guidelines are developed for designing solar thermocline systems. The discharge efficiency is found to be improved at small Reynolds numbers and larger tank heights. The filler particle size strongly influences the interstitial heat transfer rate, and thus the discharge efficiency. (author)

Yang, Zhen; Garimella, Suresh V. [Cooling Technologies Research Center, NSF I/UCRC, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 (United States)

2010-06-15T23:59:59.000Z

396

Wind Issues in Solar Thermal Performance Ratings: Preprint  

DOE Green Energy (OSTI)

We suggest that wind bias against unglazed solar water heaters be mitigated by using a calibrated collector model to derive a wind correction to the measured efficiency curve.

Burch, J.; Casey, R.

2009-04-01T23:59:59.000Z

397

Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report  

DOE Green Energy (OSTI)

The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel tracers that would improve method sensitivity, (3) development of a software tool for design and interpretation of reactive tracer tests and (4) field testing of the reactive tracer temperature monitoring concept.

Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

2011-07-01T23:59:59.000Z

398

Low thermal stress ceramic turbine nozzle  

DOE Patents (OSTI)

A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components, the metallic components having a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes there between. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component. 4 figs.

Glezer, B.; Bagheri, H.; Fierstein, A.R.

1996-02-27T23:59:59.000Z

399

Energy Management Through Innovative Rates  

E-Print Network (OSTI)

Increased costs and a continuing dependence on uncertain supplies of domestic and foreign energy resources have prompted many companies to focus their attention on energy management. The author explores the potential for achieving a greater measure of energy efficiency in the industrial sector and specific rate design alternatives for doing so.

Williams, M. L.

1982-01-01T23:59:59.000Z

400

EPRI's Twelfth Heat Rate Improvement Conference Proceedings  

Science Conference Proceedings (OSTI)

The Twelfth Heat Rate Improvement Conference, sponsored by EPRI's Heat Rate and Cost Optimization Value Package, is the latest in a series of meetings designed to assist utilities in addressing problems with power plant performance and in identifying cost-effective solutions for achieving and maintaining heat rate improvement. The last conference was held in Baltimore in September 1998.

2001-01-22T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

402

Heating Rate Profiles in Galaxy Clusters  

E-Print Network (OSTI)

In recent years evidence has accumulated suggesting that the gas in galaxy clusters is heated by non-gravitational processes. Here we calculate the heating rates required to maintain a physically motived mass flow rate, in a sample of seven galaxy clusters. We employ the spectroscopic mass deposition rates as an observational input along with temperature and density data for each cluster. On energetic grounds we find that thermal conduction could provide the necessary heating for A2199, Perseus, A1795 and A478. However, the suppression factor, of the clasical Spitzer value, is a different function of radius for each cluster. Based on the observations of plasma bubbles we also calculate the duty cycles for each AGN, in the absence of thermal conduction, which can provide the required energy input. With the exception of Hydra-A it appears that each of the other AGNs in our sample require duty cycles of roughly $10^{6}-10^{7}$ yrs to provide their steady-state heating requirements. If these duty cycles are unrealistic, this may imply that many galaxy clusters must be heated by very powerful Hydra-A type events interspersed between more frequent smaller-scale outbursts. The suppression factors for the thermal conductivity required for combined heating by AGN and thermal conduction are generally acceptable. However, these suppression factors still require `fine-tuning` of the thermal conductivity as a function of radius. As a consequence of this work we present the AGN duty cycle as a cooling flow diagnostic.

Edward C. D. Pope; Georgi Pavlovski; Christian R. Kaiser; Hans Fangohr

2006-01-05T23:59:59.000Z

403

Dynamic melt rate control on a Laboratory scale VAR furnace without load cell feedback  

SciTech Connect

Based on a linearized version of an accurate, low order, dynamic melt rate model, a feedback melt rate controller was designed and tested on a small VAR furnace at Los Alamos National Laboratory. Model based control was necessary because the furnace is not equipped with a working load cell transducer. The model was incorporated into a process filter that produces estimates of electrode thermal boundary layer, electrode gap, electrode position and electrode mass. Estimated values for the thermal boundary layer and electrode gap were used for feedback. The input commands were melting current and electrode drive speed. A test melt was performed wherein a 0.127 m diameter 304SS electrode was melted into 0.165 m diameter ingot at a nominal melt rate of 27 g/s. Toward the end of the test, a melt rate step up to 32 g/s was commanded. The controller initiated a nonlinear current ramp to produce the commanded step. Electrode position data were analyzed and the results used to determine that the actual melt rate profile followed the commanded profile relatively well.

Beaman, Joseph J.; Melgaard, d; Shelmidine, G. J. (Gregory J.); Tubesing, P. K. (Philip K.); Aikin, R. M. (Robert M.); Williamson, R. L. (Rodney L.)

2001-01-01T23:59:59.000Z

404

Solar Thermal Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Incentive Program Solar Thermal Incentive Program Solar Thermal Incentive Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate 50% of the project cost Program Info Funding Source Public Benefits Fund State Connecticut Program Type State Rebate Program Rebate Amount Calculated: $70 multiplied by the SRCC "C" rating multiplied by the number of collectors multiplied by the Shading Factor Provider Clean Energy Finance and Investment Authority Note: This program is not currently accepting applications. Check the program web site for information regarding future financing programs. To participate in the residential solar hot water rebate, homeowners must first complete an energy assessment. Then, they must work with CEFIA

405

The CRC handbook of thermal engineering  

Science Conference Proceedings (OSTI)

This book is not a traditional handbook. Engineers in industry need up-to-date, accessible information on the applications of heat and mass transfer. This book is the answer. Contents include: (1) emphasis on applications in thermal design and computer solutions of thermal engineering problems; (2) an introduction to the use of the Second Law of Thermodynamics in analysis, optimization, and economics; (3) information on topics of current interest--in a form convenient and accessible to the average engineer; (4) three chapters of background material--enough to review the basic principles needed to understand specific thermal applications; and (5) extensive treatment of computational tools and numerical analysis.

Kreith, F. [ed.

1999-12-01T23:59:59.000Z

406

Thermal contact resistance  

E-Print Network (OSTI)

This work deals with phenomena of thermal resistance for metallic surfaces in contact. The main concern of the work is to develop reliable and practical methods for prediction of the thermal contact resistance for various ...

Mikic, B. B.

1966-01-01T23:59:59.000Z

407

GEOTEMP2. Advanced Wellbore Thermal Simulator  

Science Conference Proceedings (OSTI)

GEOTEMP2, which is based on the earlier GEOTEMP program, is a wellbore thermal simulator designed for geothermal well drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with several different casing sizes and cement intervals can be modeled. The code allows variables, such as flow rate, to change with time enabling a realistic treatment of well operations. Provision is made in the flow equations to allow the flow areas of the tubing to vary with depth in the wellbore. Multiple liquids can exist in GEOTEMP2 simulations. Liquid interfaces are tracked through the tubing and annulus as one liquid displaces another. GEOTEMP2, however, does not attempt to simulate displacement of liquids with a gas or two-phase steam or vice versa. This means that it is not possible to simulate an operation where the type of drilling fluid changes, e.g. mud going to air. GEOTEMP2 was designed primarily for use in predicting the behavior of geothermal wells, but it is flexible enough to handle many typical drilling, production, and injection problems in the oil industry as well. However, GEOTEMP2 does not allow the modeling of gas-filled annuli in production or injection problems. In gas or mist drilling, no radiation losses are included in the energy balance. No attempt is made to model flow in the formation. Average execution time is 50 CP seconds on a CDC CYBER170. This edition of GEOTEMP2 is designated as Version 2.0 by the contributors.

Mitchell, R.F. [Enertech Engineering and Research Co., Houston, TX (United States); Monday, L.A.; Duda, L.E. [Sandia National Labs., Albuquerque, NM (United States)

1984-11-01T23:59:59.000Z

408

Thermal and Electrical Transport in Oxide Heterostructures  

E-Print Network (OSTI)

of thermal conductivity . . . . . . . . . . . . . . . .4.4 Thermal transport in2.3.2 Thermal transport . . . . . . . . . . . . . . . .

Ravichandran, Jayakanth

2011-01-01T23:59:59.000Z

409

Thermal Spray Coatings  

Science Conference Proceedings (OSTI)

Table 35   Thermal spray coatings used for hardfacing applications...piston ring (internal combustion);

410

Plasma-Thermal Synthesis  

INL’s Plasma-Thermal Synthesis process improves the conversion process for natural gas into liquid hydrocarbon fuels.

411

Ocean Thermal Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

412

Nanocomposite Thermal Spray Coatings.  

Science Conference Proceedings (OSTI)

Long-Term Surface Restoration Effect Introduced by Advanced Lubricant Additive · Nanocomposite Thermal Spray Coatings. New Hardfacing Overlay Claddings ...

413

Comparisons of field performance to closed-door test T ABLE 1 ratings indicate the laboratory procedure is a valid indica-Design Options to Improve the Energy Efficiency of a  

E-Print Network (OSTI)

#12;#12;Comparisons of field performance to closed-door test T ABLE 1 ratings indicate commercially manufactured refrigerators were u~ as laboratory test beds, a testing sequence of ..as PHASE I cabinets with an optimized Option 2 Evaporator/condenser size, surface r~frige~tion circuit or cvcle were

Oak Ridge National Laboratory

414

Nuclear power plant design analysis  

SciTech Connect

Information concerning the engineering aspects of the design of commercial nuclear power plants is presented. Topics discussed include: electric utility economics; nuclear plant cconomics; thermal-transport systems and core design; nuclear analysis methods; safcty requirements; fuel-system analysis; dcsign considerations; and optimization approaches. (DCC)

Sesonske, A.

1973-01-01T23:59:59.000Z

415

Thermal Management of Solar Cells  

E-Print Network (OSTI)

phonon transmission and interface thermal conductance acrossF. Miao, et al. , "Superior Thermal Conductivity of Single-Advanced Materials for Thermal Management of Electronic

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

416

Thermal numerical simulator for laboratory evaluation of steamflood oil recovery  

Science Conference Proceedings (OSTI)

A thermal numerical simulator running on an IBM AT compatible personal computer is described. The simulator was designed to assist laboratory design and evaluation of steamflood oil recovery. An overview of the historical evolution of numerical thermal simulation, NIPER's approach to solving these problems with a desk top computer, the derivation of equations and a description of approaches used to solve these equations, and verification of the simulator using published data sets and sensitivity analysis are presented. The developed model is a three-phase, two-dimensional multicomponent simulator capable of being run in one or two dimensions. Mass transfer among the phases and components is dictated by pressure- and temperature-dependent vapor-liquid equilibria. Gravity and capillary pressure phenomena were included. Energy is transferred by conduction, convection, vaporization and condensation. The model employs a block centered grid system with a five-point discretization scheme. Both areal and vertical cross-sectional simulations are possible. A sequential solution technique is employed to solve the finite difference equations. The study clearly indicated the importance of heat loss, injected steam quality, and injection rate to the process. Dependence of overall recovery on oil volatility and viscosity is emphasized. The process is very sensitive to relative permeability values. Time-step sensitivity runs indicted that the current version is time-step sensitive and exhibits conditional stability. 75 refs., 19 figs., 19 tabs.

Sarathi, P.

1991-04-01T23:59:59.000Z

417

Thermal neutron detection system  

DOE Patents (OSTI)

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

418

Heat pipe thermal control of slender optics probes  

SciTech Connect

The thermal design for a stereographic viewing system is presented. The design incorporates an annular heat pipe and thermal isolation techniques. Test results are compared with design predictions for a prototype configuration. Test data obtained during heat pipe startup showing temperature gradients along the evaporator wall are presented. Correlations relating maximum wall temperature differences to a liquid Reynolds number were obtained at low power levels. These results are compared with Nusselt's Falling Film theory.

Prenger, F.C.

1979-01-01T23:59:59.000Z

419

Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint  

DOE Green Energy (OSTI)

A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

Turchi, C. S.; Ma, Z.; Erbes, M.

2011-03-01T23:59:59.000Z

420

Meta-design: design for designers  

Science Conference Proceedings (OSTI)

One fundamental challenge for the design of the interactive systems of the future is to invent and design environments and cultures in which humans can express themselves and engage in personally meaningful activities. Unfortunately, a large number of ... Keywords: consumer and designer mindsets, designing “out of the box”, domain-oriented design environments, evolutionary growth, impact of new media on design, open evolvable systems, open source, reseeding model, seeding, underdesigned systems

Gerhard Fischer; Eric Scharff

2000-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Definition: Dynamic Capability Rating System | Open Energy Information  

Open Energy Info (EERE)

Capability Rating System Capability Rating System Jump to: navigation, search Dictionary.png Dynamic Capability Rating System Dynamic capability rating adjusts the thermal rating of power equipment based on factors such as air temperature, wind speed, and solar radiation to reflect actual operating conditions. These systems are primarily used on high capacity or critical power system elements such as transmission lines and large power transformers.[1] Related Terms transmission lines, Dynamic capability rating, thermal rating, power, solar radiation, rating, transmission line, transformer References ↑ https://www.smartgrid.gov/category/technology/dynamic_capability_rating_system [[Category LikeLike UnlikeLike You like this.Sign Up to see what your friends like. : Smart Grid Definitions|Template:BASEPAGENAME]]

422

Distributed Rate Allocation for Wireless Networks  

E-Print Network (OSTI)

This paper describes a distributed algorithm for rate allocation in wireless networks. As the main result, the paper establishes that this algorithm is throughput-optimal for very general class of throughput regions. In contrast to distributed on-off scheduling algorithms, this algorithm enables optimal utilization of physical layer schemes by scheduling multiple rate levels. The algorithm is based on a Markov process on these discrete set of rates with certain transition rates. For dealing with multiple rate levels, the paper introduces an important structure for the transition rates, which enable the design of appropriate update rule for these transition rates. The update uses local queue length information alone, and thus does not require global exchange of queue length information. In addition, the algorithm requires that each link can determine the feasibility of increasing its data-rate from the current value without reducing the data-rates of other links. Determining rate feasibility does not introduce...

Jose, Jubin

2010-01-01T23:59:59.000Z

423

Cavitation methods in therapeutic ultrasound : techniques, mechanisms, and system design  

E-Print Network (OSTI)

Focused ultrasound is currently being developed as a non-invasive thermal ablation technique for benign and cancerous tumors in several organ systems. Although these therapies are designed to ablate tissue purely by thermal ...

Sokka, Shunmugavelu D. (Shunmugavelu Doraivelu), 1975-

2004-01-01T23:59:59.000Z

424

Thermal management concepts for higher efficiency heavy vehicles.  

DOE Green Energy (OSTI)

Thermal management is a cross-cutting technology that directly or indirectly affects engine performance, fuel economy, safety and reliability, aerodynamics, driver/passenger comfort, materials selection, emissions, maintenance, and component life. This review paper provides an assessment of thermal management for large trucks, particularly as it impacts these features. Observations arrived at from a review of the state of the art for thermal management for over-the-road trucks are highlighted and commented on. Trends in the large truck industry, pertinent engine truck design and performance objectives, and the implications of these relative to thermal management, are presented. Finally, new thermal management concepts for high efficiency vehicles are described.

Wambsganss, M. W.

1999-05-19T23:59:59.000Z

425

Design Fires for Structures Project  

Science Conference Proceedings (OSTI)

... eg, ISO 834), or prescribed, non-standard heating rates (provided by oil-burners). ... the design of the fuel delivery system (eg, natural gas burners) to ...

2013-11-13T23:59:59.000Z

426

Tracking the Libor Rate  

E-Print Network (OSTI)

Investigating the Libor Rate,” mimeo. Abrantes-Metz, R. ,Libor data: Historial 1 month Libor rates, British Bankers1108R) Tracking the Libor Rate Rosa M. Abrantes-Metz , Sofia

Abrantes-Metz, Rosa; Villas-Boas, Sofia B.; Judge, George G.

2013-01-01T23:59:59.000Z

427

Thermal & Chemical Behavior of Uranium Metal Bearing Hanford K East Basin Sludge  

DOE Green Energy (OSTI)

Uranium-metal-bearing sludge from the Hanford site K East Basin is to be loaded into containers and moved to interim storage in a dry cell at T Plant on the Hanford site. Thermal and chemical behavior of this sludge in its storage container are of interest to design and safety, because oxidation of its uranium generates power and hydrogen gas, with resulting implications for flammability of the container and cell headspaces, and the potential for local temperature escalation. Key aspects of experimental work and model development necessary to support the technical basis for design and safety analyses are reported here: (1) Experimental data supporting the oxidation rate law, including reactive surface area depletion, (2) Experimental data defining the maximum allowable heat generation rate in wet sludge, the so-called dryout heat flux, and (3) Integral modeling of physical and chemical processes to predict temperature and hydrogen concentration histories during loading, shipping, handling, and storage.

DUNCAN, D.R.

2003-05-16T23:59:59.000Z

428

Building Energy Software Tools Directory: Thermal Comfort  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Comfort Thermal Comfort logo. Provides a user-friendly interface for calculating thermal comfort parameters and making thermal comfort predictions using several thermal...

429

Positive design  

Science Conference Proceedings (OSTI)

This article is focused on the changes needed in design to create positive solutions for all involved in design processes. It draws upon the rich discussion and discourse from a conference focused on positive design involving managers, designers, and ...

Jurgen Faust

2009-09-01T23:59:59.000Z

430

Thermal energy storage for coal-fired power generation  

DOE Green Energy (OSTI)

This paper presents an engineering and economic evaluation of using thermal energy storage (TES) with coal-fired conventional and combined cycle power plants. In the first case, conventional pulverized coal combustion equipment was assumed to continuously operate to heat molten nitrate salt which was then stored in a tank. During intermediate-load demand periods, hot salt was withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allowed the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The use of nitrate salt TES also reduced the levelized cost of power by between 5% and 24% depends on the operating schedule. The second case evaluate the use of thermal energy storage with an integrated gasification combined cycle (IGCC) power plant. In this concept, the nitrate salt was heated by a combination of the gas turbine exhaust and the hot fuel gas. The IGCC plant also contained a low-temperature storage unit that uses a mixture of oil and rock as the thermal storage medium. Thermal energy stored in the low-temperature TES was used to preheat the feedwater after it leaves the condenser and to produce process steam for other applications in the IGCC plant. This concept study also predicted a 5% to 20% reduction in levelized cost of power compared to other coal-fired alternatives. If significant escalation rates in the price of fuel were assumed, the concept could be competitive with natural-gas-fired intermediate-load power generation. A sensitivity analysis of using a direct-contact heat exchanger instead of the conventional finned-tube design showed a significant reduction in the installed capital cost. 3 refs., 2 figs., 6 tabs.

Drost, M.K.; Somasundaram, S.; Brown, D.R.; Antoniak, Z.I.

1990-11-01T23:59:59.000Z

431

Lithium oxide in the Li(Si)/FeS/sub 2/ thermal battery system  

SciTech Connect

The formation of lithium oxide (Li/sub 2/O) in Li(Si)/FeS/sub 2/ thermal batteries during the required shelf life of twenty-five years has been identified in previous work as a reaction deleterious to thermal battery performance. This paper gives the results of a study designed to determine performance degradation caused by Li/sub 2/O and to determine an acceptable level of Li/sub 2/O that can be used to define required dryness of battery parts and allowable leak rates. Pellets preconditioned with Li/sub 2/O were used in single cells or in batteries. Their performance was compared with discharges made using pellets with no Li/sub 2/O added. The actual Li/sub 2/O present in anode pellets at various stages during fabrication was determined by using 14 MeV neutron activation analysis. Results are reported. This work shows that thermal battery production controls should be designed in such a manner that not more than 15 wt.% of the Li(Si) is oxidized at the end of the desired self life. Furthermore, the formation of a Li/sub 2/O layer equivalent to the oxidation of 6.0 wt.% of the anode on the surface facing the current collector must be prevented. Battery designers must allow for a drop in coulombic efficiency as the Li(Si) reacts, and the effect on performance of Li/sub 2/O in the separator must be considered.

Searcy, J.Q.; Neiswander, P.A.; Armijo, J.R.; Bild, R.W.

1981-11-01T23:59:59.000Z

432

2012 Rate Adjustments  

NLE Websites -- All DOE Office Websites (Extended Search)

Register Notices Meetings Brochure Brochure Addendum Customer Comment Letter Approved Rate Order FERC Confirmation If you have questions, call Rates and Repayment, 800-472-2306...

433

Rail Coal Transportation Rates  

U.S. Energy Information Administration (EIA)

figure data Figure 7 shows the percent change in average real rates for those state-to-state ... Estimated transportation rates for coal delivered to electric ...

434

Effective Rate Period  

NLE Websites -- All DOE Office Websites (Extended Search)

10012012 - 09302013 Mid-Year Changes (if applicable) 10012012 - 09302013 Power Rates Annual Revenue Requirement Rate Schedule Power Revenue Requirement 73,381,487...

435

Underground Coal Thermal Treatment  

Science Conference Proceedings (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

436

Options for thermal energy storage in solar-cooling systems. Final report  

DOE Green Energy (OSTI)

The current effort concentrates on design requirements of thermal storage subsystems for active solar cooling systems. The use of thermal storage with respect to absorption, Rankine, and desiccant cooling technologies is examined.

Curran, H.M.; DeVries, J.

1981-05-01T23:59:59.000Z

437

Thermally activated heat pumps  

SciTech Connect

This article describes research to develop efficient gas-fired heat pumps heat and cool buildings without CFCs. Space heating and cooling use 46% of all energy consumed in US buildings. Air-conditioning is the single leading cause of peak demand for electricity and is a major user of chlorofluorocarbons (CFCs). Advanced energy conversion technology can save 50% of this energy and eliminate CFCs completely. Besides saving energy, advanced systems substantially reduce emissions of carbon dioxide (a greenhouse gas), sulfur dioxide, and nitrogen oxides, which contribute to smog and acid rain. These emissions result from the burning of fossil fuels used to generate electricity. The Office of Building Technologies (OBT) of the US Department of Energy supports private industry`s efforts to improve energy efficiency and increase the use of renewable energy in buildings. To help industry, OBT, through the Oak Ridge National Laboratory, is currently working on thermally activated heat pumps. OBT has selected the following absorption heat pump systems to develop: generator-absorber heat-exchange (GAX) cycle for heating-dominated applications in residential and light commercial buildings; double-condenser-coupled (DCC) cycle for commercial buildings. In addition, OBT is developing computer-aided design software for investigating the absorption cycle.

NONE

1995-05-01T23:59:59.000Z

438

Insulated pipe clamp design  

SciTech Connect

Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized.

Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

1980-01-01T23:59:59.000Z

439

The Strong Case for Thermal Energy Storage and Utility Incentives  

E-Print Network (OSTI)

With the general increase in electricity rates, commercial and industrial customers have become strongly motivated to seek innovative methods of achieving reductions of their electric bills. At the same time, utilities have been faced with rising construction costs, more stringent regulations, and increasing environmental constraints regarding development of new generating facilities. As the thermal cooling storage technology has matured, more and more utilities are recognizing that widespread use of cool storage will provide an inexpensive alternative to new generating capacity. Every megawatt of load shift from peak to off-peak hours is equivalent to a megawatt of new generating capacity. This paper will review the state-of-the-art of cool storage technology, the economic benefits and utility programs designed to encourage the application of cool storage systems.

McCannon, L. W.

1986-06-01T23:59:59.000Z

440

Central receiver solar thermal power system, Phase 1. CDRL Item 2. Pilot plant preliminary design report. Volume IV. Receiver subsystem. [10-MW Pilot Plant and 100-MW Commercial Plant  

DOE Green Energy (OSTI)

The conception, design, and testing of the receiver subsystem proposed by the McDonnell Douglas/Rocketdyne Receiver team for the DOE 10-MW Pilot Plant and the 100-MW Commercial Plant are described. The receiver subsystem consists of the receiver unit, the tower on which the receiver unit is mounted above the collector field, and the supporting control and instrumentation equipment. The plans for implementation of the Pilot Plant are given including the anticipated schedule and production plan (procurement, installation, checkout, and maintenance). Specifications for the performance, design, and test requirements for the Pilot Plant receiver subsystem are included. (WHK)

Hallet, Jr., R. W.; Gervais, R. L.

1977-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "design thermal rating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.<