Powered by Deep Web Technologies
Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Passive solar space heating  

DOE Green Energy (OSTI)

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

2

Design and development of a titanium heat-pipe space radiator  

SciTech Connect

A titanium heat-pipe radiator has been designed for use in a 100-kW/sub e/ nuclear-thermoelectric (TE) space power plant. The radiator is required to have a 99% probability of remaining functional at full power at the end of a seven-year mission. The radiator has a conical-cylindrical shape and is compatible for launch in the space shuttle. The radiator heat pipes are arranged into panel segments and each reactor-core thermoelectric heat-pipe unit has four radiator heat pipes for redundancy. Radiator mass was minimized was based on acceptable losses due to micrometeoroid impact. Results of studies on various design parameters are presented in terms of radiator mass. Developments on the design and testing of the radiator heat pipes are also presented. Prototype titanium (potassium working fluid) heat pipes were fabricated and tested in space-simulating conditions. Testing results are compared to analytical performance predictions.

Girrens, S.P.

1982-03-01T23:59:59.000Z

3

Optimization of design and control strategies for geothermal space heating systems. Final report  

DOE Green Energy (OSTI)

The efficient design and operation of geothermal space heating systems requires careful analysis and departure from normal design practices. Since geothermal source temperatures are much lower than either fossil fuel or electrical source temperatures, the temperature of the delivered energy becomes more critical. Also, since the geothermal water is rejected after heat exchange, it is necessary to extract all of the energy that is practical in one pass; there is no second change for energy recovery. The present work examines several heating system configurations and describes the desired design and control characteristics for operation on geothermal sources. Specific design methods are outlined as well as several generalized guidelines that should significantly improve the operation of any geothermally heated system.

Batdorf, J.A.; Simmons, G.M.

1984-07-01T23:59:59.000Z

4

Space design  

Science Conference Proceedings (OSTI)

Space stations, Moon bases and Mars bases are artificial habitats intended to support human life in extreme conditions. Their purpose is to pursue human progress and to gain knowledge and experience of the environment surrounding our planet. This research ... Keywords: Human factors, Interior design, Space habitability, Sustainability, Vision

Irene Lia Schlacht; Henrik Birke

2011-06-01T23:59:59.000Z

5

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

6

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

7

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

8

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

9

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

10

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

11

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

12

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

13

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

14

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

15

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

16

Optimal design of seasonal storage for 100% solar space heating in buildings  

DOE Green Energy (OSTI)

An analysis is presented of seasonal solar systems that contain water as the sensible heat storage medium. A concise model is developed under the assumption of a fully mixed, uniform temperature, storage tank that permits efficient simulation of long-term (multi-day) system performance over the course of the year. The approach explicitly neglects the effects of short-term (sub-daily) fluctuations in insolation and load, effects that will be extremely small for seasonal solar systems. This approach is useful for examining the major design tradeoffs of concern here. The application considered is winter space heating. The thermal performance of seasonal solar systems that are designed to supply 100% of load without any backup is solved for, under ''reference year'' monthly normal ground temperature and insolation conditions. Unit break-even costs of seasonal storage are estimated by comparing the capital and fuel costs of conventional heating technologies against those of a seasonal solar system. A rough comparison between the alternatives for more severe winters was made by examining statistical variations in winter season conditions over the past several decades. (MHR)

Mueller, R.O.; Asbury, J.G.; Caruso, J.V.; Connor, D.W.; Giese, R.F.

1978-01-01T23:59:59.000Z

17

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

18

Section D: SPACE HEATING  

U.S. Energy Information Administration (EIA)

2005 Residential Energy Consumption Survey Form EIA-457A (2005)--Household Questionnaire OMB No.: 1905-0092, Expiring May 31, 2008 33 Section D: SPACE HEATING

19

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

heating heating Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of solar space heating technology.)[1] Contents 1 Space Heating 2 Passive Solar Space Heating 3 Active Solar Space Heating 4 References Space Heating A solar space-heating system can consist of a passive system, an active system, or a combination of both. Passive systems are typically less costly and less complex than active systems. However, when retrofitting a building, active systems might be the only option for obtaining solar energy. Passive Solar Space Heating Passive solar space heating takes advantage of warmth from the sun through design features, such as large south-facing windows, and materials in the floors or walls that absorb warmth during the day and release that warmth

20

Performance demonstration of a high-power space-reactor heat-pipe design  

SciTech Connect

Performance of a 15.9-mm diam, 2-m long, artery heat pipe has been demonstrated at power levels to 22.6 kW and temperatures to 1500/sup 0/K. The heat pipe employed lithium as a working fluid with distribution wicks and arteries fabricated from 400 mesh Mo-41 wt % Re screen. Molybdenum alloy (TZM) was used for the container. Peak axial power density attained in the testing was 19 kW/cm/sup 2/ at 1465/sup 0/K. The corresponding radial flux density in the evaporator region of the heat pipe was 150 W/cm/sup 2/. The extrapolated limit for the heat pipe at its 1500/sup 0/K design point is 30 kW, corresponding to an axial flux density of 25 kW/cm/sup 2/. Sonic and capillary limits for the design were investigated in the 1100 to 1500/sup 0/K temperature range. Excellent agreement of measured and predicted temperature and power levels was observed.

Merrigan, M.A.; Martinez, E.H.; Keddy, E.S.; Runyan, J.; Kemme, J.E.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Whither design space?  

Science Conference Proceedings (OSTI)

Design space exploration is a long-standing focus in computational design research. Its three main threads are accounts of designer action, development of strategies for amplification of designer action in exploration, and discovery of computational ... Keywords: Design Space Exploration, Knowledge Representation, Search, State Space, Typed Feature Structures

Robert F. Woodbury; Andrew L. Burrow

2006-04-01T23:59:59.000Z

22

Thermal Transport and Heat Exchanger Design for the Space Molten Salt Reactor Concept.  

E-Print Network (OSTI)

??Surface power and nuclear electric propulsion in space necessitate the development of high energy density, long term continuous power sources. Research at The Ohio Stateů (more)

Flanders, Justin M.

2012-01-01T23:59:59.000Z

23

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

24

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

25

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

26

Section D: SPACE HEATING  

U.S. Energy Information Administration (EIA)

Central warm-air furnace with ducts to individual rooms other than a heat pump ..... 03 Steam/Hot water ... REVERSE Heat pump ... Don't have a separate water heater ...

27

Space Heating and Cooling  

Energy.gov (U.S. Department of Energy (DOE))

A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain supporting equipment in common, such as...

28

Passive Solar Space Heat | Open Energy Information  

Open Energy Info (EERE)

Solar Space Heat Jump to: navigation, search TODO: Add description List of Passive Solar Space Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titlePassive...

29

Solar Space Heat | Open Energy Information  

Open Energy Info (EERE)

icon Solar Space Heat Jump to: navigation, search TODO: Add description List of Solar Space Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarS...

30

Building Technologies Office: Space Heating and Cooling Research  

NLE Websites -- All DOE Office Websites (Extended Search)

(HVAC) and refrigeration. DOE is conducting research into integration of optimized heat exchanger designs into new products and space conditioning systems. DOE projects...

31

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ............................. 2,037 1,378 338 159 163 42.0 28.4 7.0 3.3 3.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 156 35 41 18 78.6 49.1 11.0 12.9 5.6 5,001 to 10,000 .......................... 218 147 32 31 7 54.8 37.1 8.1 7.9 1.7 10,001 to 25,000 ........................ 343 265 34 25 18 43.8 33.9 4.4 3.2 2.3 25,001 to 50,000 ........................ 270 196 41 13 Q 40.9 29.7 6.3 2.0 2.9 50,001 to 100,000 ...................... 269 186 45 13 24 35.8 24.8 6.0 1.8 3.2 100,001 to 200,000 .................... 267 182 56 10 19 35.4 24.1 7.4 1.3 2.6 200,001 to 500,000 .................... 204 134 43 11 17 34.7 22.7 7.3 1.8 2.9 Over 500,000 .............................

32

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................... 1,870 1,276 322 138 133 43.0 29.4 7.4 3.2 3.1 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 243 151 34 40 18 78.7 48.9 11.1 13.0 5.7 5,001 to 10,000 .......................... 202 139 31 29 Q 54.8 37.6 8.5 7.9 Q 10,001 to 25,000 ........................ 300 240 31 21 7 42.5 34.1 4.4 3.0 1.1 25,001 to 50,000 ........................ 250 182 40 11 Q 41.5 30.2 6.6 1.9 Q 50,001 to 100,000 ...................... 236 169 41 8 19 35.4 25.2 6.2 1.2 2.8 100,001 to 200,000 .................... 241 165 54 7 16 36.3 24.8 8.1 1.0 2.4 200,001 to 500,000 .................... 199 130 42 11 16 35.0 22.8 7.5 1.9 2.8 Over 500,000 ............................. 198

33

Geothermal Energy: Residential Space Heating  

DOE Green Energy (OSTI)

The purpose of this study, which was carried out under the auspices of the DGRST, was to determine the best way to use geothermal hot water for residential space heating. It quickly became apparent that the type of heating apparatus used in the housing units was most important and that heat pumps could be a valuable asset, making it possible to extract even more geothermal heat and thus substantially improve the cost benefit of the systems. Many factors play a significant role in this problem. Therefore, after a first stage devoted to analyzing the problem through a manual method which proved quite useful, the systematic consideration of all important aspects led us to use a computer to optimize solutions and process a large number of cases. The software used for this general study can also be used to work out particular cases: it is now available to any interested party through DGRST. This program makes it possible to: (1) take climatic conditions into account in a very detailed manner, including temperatures as well as insolation. 864 cases corresponding to 36 typical days divided into 24 hours each were chosen to represent the heating season. They make it possible to define the heating needs of any type of housing unit. (2) simulate and analyze the behavior in practice of a geothermal heating system when heat is extracted from the well by a simple heat exchanger. This simulation makes it possible to evaluate the respective qualities of various types of heating apparatus which can be used in homes. It also makes it possible to define the best control systems for the central system and substations and to assess quite accurately the presence of terminal controls, such as radiators with thermostatically controlled valves. (3) determine to what extent the addition of a heat pump makes it possible to improve the cost benefit of geothermal heating. When its average characteristics and heating use conditions (price, coefficient of performance, length of utilization, electrical rates, etc.) are taken into account, the heat pump should not be scaled for maximum heating power. Consequently, the program considers several possible sizes, with different installation schemes, and selects for each case the value which corresponds to the lowest cost of heating.

None

1977-03-01T23:59:59.000Z

34

Solar air heating system for combined DHW and space heating  

E-Print Network (OSTI)

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating S├Şren ├?stergaard Jensen

35

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon ┬╗ Solar space heating (Redirected from - Solar Ventilation Preheat) Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of solar space heating technology.)[1] Contents 1 Space Heating 2 Passive Solar Space Heating 3 Active Solar Space Heating 4 References Space Heating A solar space-heating system can consist of a passive system, an active system, or a combination of both. Passive systems are typically less costly and less complex than active systems. However, when retrofitting a building, active systems might be the only option for obtaining solar

36

Heat pipe technology development for high temperature space radiator applications  

SciTech Connect

Technology requirements for heat pipe radiators, potentially among the lightest weight systems for space power applications, include flexible elements, and improved specific radiator performance(kg/kW). For these applications a flexible heat pipe capable of continuous operation through an angle of 180/sup 0/ has been demonstrated. The effect of bend angle on the heat pipe temperature distribution is reviewed. An analysis of lightweight membrane heat pipe radiators that use surface tension forces for fluid containment has been conducted. The design analysis of these lightweight heat pipes is described and a potential application in heat rejection systems for space nuclear power plants outlined.

Merrigan, M.A.; Keddy, E.S.; Sena, J.T.; Elder, M.G.

1984-01-01T23:59:59.000Z

37

Solar energy collector for mounting over windows of buildings for space heating thereof  

SciTech Connect

The ornamental design for a solar energy collector for mounting over windows of buildings for space heating thereof, as shown.

Arrington, P.M.

1982-09-07T23:59:59.000Z

38

Design Scenarios: Enabling transparent parametric design spaces  

Science Conference Proceedings (OSTI)

This paper presents a novel methodology called Design Scenarios (DSs) intended for use in conceptual design of buildings. DS enables multidisciplinary design teams to streamline the requirements definition, alternative generation, analysis, and decision-making ... Keywords: Conceptual design, Design spaces, Ontology, Parametric modeling, Process mapping, Requirements modeling

Victor Gane; John Haymaker

2012-08-01T23:59:59.000Z

39

Preliminary conceptual design for geothermal space heating conversion of school district 50 joint facilities at Pagosa Springs, Colorado. GTA Report No. 6  

DOE Green Energy (OSTI)

This feasibility study and preliminary conceptual design effort assesses the conversion of Colorado School District 50 facilities - a high school and gym, and a middle school building - at Pagosa Springs, Colorado to geothermal space heating. A preliminary cost-benefit assessment made on the basis of estimated costs for conversion, system maintenance, debt service, resource development, electricity to power pumps, and savings from reduced natural gas consumption concluded that an economic conversion depended on development of an adequate geothermal resource (approximately 150/sup 0/F, 400 gpm). Material selection assumed that the geothermal water to the main supply system was isolated to minimize effects of corrosion and deposition, and that system-compatible components would be used for the building modifications. Asbestos-cement distribution pipe, a stainless steel heat exchanger, and stainless steel lined valves were recommended for the supply, heat transfer, and disposal mechanisms, respectively. A comparison of the calculated average gas consumption cost, escalated at 10% per year, with conversion project cost, both in 1977 dollars, showed that the project could be amortized over less than 20 years at current interest rates. In view of the favorable economics and the uncertain future availability and escalating cost of natural gas, the conversion appears economicaly feasible and desirable.

Engen, I.A.

1981-11-01T23:59:59.000Z

40

Space Heating & Cooling Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating & Cooling Research Space Heating & Cooling Research Space Heating & Cooling Research The Emerging Technology team conducts research in space heating and cooling technologies, with a goal of realizing aggregate energy savings of 20% relative to a 2010 baseline. In addition to work involving the development of products, the U.S. Department of Energy (DOE), along with industry partners and researchers, develops best practices, tests, and guides designed to reduce market barriers and increase public awareness of these energy saving technologies. Research is currently focusing on: Geothermal Heat Pumps Photo of a home with a geothermal heat pump, showing how it can regulate the temperature of a home using the temperature underground to cool warm air or heat cold air.

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Section D: SPACE HEATING - Energy Information Administration  

U.S. Energy Information Administration (EIA)

2001 Residential Energy Consumption Survey Form EIA-457A (2001)--Household Questionnaire OMB No.: 1905-0092, Expiring February 29, 2004 19 Section D: SPACE HEATING

42

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents (OSTI)

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, P.R.; McLennan, G.A.

1984-08-30T23:59:59.000Z

43

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents (OSTI)

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

1985-01-01T23:59:59.000Z

44

Environmental Design Space model assessment  

E-Print Network (OSTI)

The Environmental Design Space (EDS) is a multi-disciplinary design tool used to explore trade-offs among aircraft fuel burn, emissions, and noise. This thesis uses multiple metrics to assess an EDS model of a Boeing 777 ...

Spindler, Phillip Michael

2007-01-01T23:59:59.000Z

45

Conceptual design of a heat pipe radiator  

SciTech Connect

A conceptual design of a waste heat radiator has been developed for a thermoelectric space nuclear power system. The basic shape of the heat pipe radiator was a frustum of a right circular cone. The design included stringer heat pipes to carry reject heat from the thermoelectric modules to the radiator skin that was composed of small-diameter, thin-walled cross heat pipes. The stringer heat pipes were armored to resist puncture by a meteoroid. The cross heat pipes were designed to provide the necessary unpunctured radiating area at the mission end with a minimum initial system mass. Several design cases were developed in which the individual stringer survival probabilities were varied and the radiator system mass was calculated. Results are presented for system mass as a function of individual stringer survival probability for six candidate container materials, three candidate heat pipe fluids, two radiator operating temperatures, two meteoroid shield types, and two radiating surface cases. Results are also presented for radiator reject heat as a function of system mass, area, and length for three system sizes.

Bennett, G.A.

1977-09-01T23:59:59.000Z

46

Long titanium heat pipes for high-temperature space radiators  

SciTech Connect

Titanium heat pipes are being developed to provide light weight, reliable heat rejection devices as an alternate radiator design for the Space Reactor Power System (SP-100). The radiator design includes 360 heat pipes, each of which is 5.2 m long and dissipates 3 kW of power at 775 K. The radiator heat pipes use potassium as the working fluid, have two screen arteries for fluid return, a roughened surface distributive wicking system, and a D-shaped cross-section container configuration. A prototype titanium heat pipe, 5.5-m long, has been fabricated and tested in space-simulating conditions. Results from startup and isothermal operation tests are presented. These results are also compared to theoretical performance predictions that were used to design the heat pipe initially.

Girrens, S.P.; Ernst, D.M.

1982-01-01T23:59:59.000Z

47

Cold Climates Heat Pump Design Optimization  

SciTech Connect

Heat pumps provide an efficient heating method; however they suffer from sever capacity and performance degradation at low ambient conditions. This has deterred market penetration in cold climates. There is a continuing effort to find an efficient air source cold climate heat pump that maintains acceptable capacity and performance at low ambient conditions. Systematic optimization techniques provide a reliable approach for the design of such systems. This paper presents a step-by-step approach for the design optimization of cold climate heat pumps. We first start by describing the optimization problem: objective function, constraints, and design space. Then we illustrate how to perform this design optimization using an open source publically available optimization toolbox. The response of the heat pump design was evaluated using a validated component based vapor compression model. This model was treated as a black box model within the optimization framework. Optimum designs for different system configurations are presented. These optimum results were further analyzed to understand the performance tradeoff and selection criteria. The paper ends with a discussion on the use of systematic optimization for the cold climate heat pump design.

Abdelaziz, Omar [ORNL; Shen, Bo [ORNL

2012-01-01T23:59:59.000Z

48

Residential space heating cost: geothermal vs conventional systems  

SciTech Connect

The operating characteristics and economies of several representative space heating systems are analyzed. The analysis techniques used may be applied to a larger variety of systems than considered herein, thereby making this document more useful to the residential developer, heating and ventilating contractor, or homeowner considering geothermal space heating. These analyses are based on the use of geothermal water at temperatures as low as 120/sup 0/F in forced air systems and 140/sup 0/F in baseboard convection and radiant floor panel systems. This investigation indicates the baseboard convection system is likely to be the most economical type of geothermal space heating system when geothermal water of at least 140/sup 0/F is available. Heat pumps utilizing water near 70/sup 0/F, with negligible water costs, are economically feasible and they are particularly attractive when space cooling is included in system designs. Generally, procurement and installation costs for similar geothermal and conventional space heating systems are about equal, so geothermal space heating is cost competitive when the unit cost of geothermal energy is less than or equal to the unit cost of conventional energy. Guides are provided for estimating the unit cost of geothermal energy for cases where a geothermal resource is known to exist but has not been developed for use in residential space heating.

Engen, I.A.

1978-02-01T23:59:59.000Z

49

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

Pendergrass, J.C.

1997-05-13T23:59:59.000Z

50

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

Pendergrass, Joseph C. (Gainesville, GA)

1997-01-01T23:59:59.000Z

51

Vibration test plan for a space station heat pipe subassembly  

SciTech Connect

This test plan describes the Sundstrand portion of task two of Los Alamos National Laboratory (LANL) contract 9-x6H-8102L-1. Sundstrand Energy Systems was awarded a contract to investigate the performance capabilities of a potassium liquid metal heat pipe as applied to the Organic Rankine Cycle (ORC) solar dynamic power system for the Space Station. The test objective is to expose the heat pipe subassembly to the random vibration environment which simulates the space shuttle launch condition. The results of the test will then be used to modify as required future designs of the heat pipe.

Parekh, M.B. [Sundstrand Energy Systems, Rockford, IL (United States)

1987-09-29T23:59:59.000Z

52

Warm Springs State Hospital Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal...

53

Klamath Apartment Buildings (13) Space Heating Low Temperature...  

Open Energy Info (EERE)

Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Apartment Buildings (13) Space Heating Low Temperature...

54

Merle West Medical Center Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Merle West Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Merle West Medical Center Space Heating Low Temperature Geothermal...

55

Thulium heat sources for space power applications  

DOE Green Energy (OSTI)

Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems.

Alderman, C.J.

1992-05-01T23:59:59.000Z

56

List of Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 499 Solar Space Heat Incentives. CSV (rows 1 - 499) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat

57

Retrofitting Combined Space and Water Heating Systems: Laboratory Tests  

SciTech Connect

Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

2012-10-01T23:59:59.000Z

58

Heat pipe nuclear reactor for space power  

SciTech Connect

A heat-pipe cooled nuclear reactor has been designed to provide 3.2 MW(t) to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat pipe temperature of 1675/sup 0/K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum, lithium vapor, heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO/sub 2/ pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber and a BeO reflector containing boron loaded control drums.

Koenig, D.R.

1976-01-01T23:59:59.000Z

59

Heat pipe reactors for space power applications  

SciTech Connect

A family of heat pipe reactors design concepts has been developed to provide heat to a variety of electrical conversion systems. Three power plants are described that span the power range 1-500 kW(e) and operate in the temperature range 1200 to 1700/sup 0/K. The reactors are fast, compact, heat-pipe cooled, high-temperature nuclear reactors fueled with fully enriched refractory fuels, UC-ZrC or UO/sub 2/. Each fuel element is cooled by an axially located molybdenum heat pipe containing either sodium or lithium vapor.

Koenig, D.R.; Ranken, W.A.; Salmi, E.W.

1977-01-01T23:59:59.000Z

60

BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.  

DOE Green Energy (OSTI)

Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

KRISHNA,C.R.

2001-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Preliminary SP-100/Stirling heat exchanger designs  

DOE Green Energy (OSTI)

Analytic modeling of several heat exchanger concepts to couple the SP-100 nuclear reactor lithium loop and the Space Stirling Power Convertor (SSPC) was performed. Four 25 kWe SSPC`s are used to produce the required 100 kW of electrical power. This design work focused on the interface between a single SSPC and the primary lithium loop. Manifolding to separate and collect the four channel flow was not modeled. This work modeled two separate types of heat exchanger interfaces (conductive coupling and radiative coupling) to explore their relative advantages and disadvantages. The minimum mass design of the conductively coupled concepts was 18 kg or 0.73 kg/kWe for a single 25 kWe convertor. The minimum mass radiatively coupled concept was 41 kg or 1.64 kg/kWe. The direct conduction heat exchanger provides a lighter weight system because of its ability to operate the Stirling convertor evaporator at higher heat fluxes than those attainable by the radiatively coupled systems. Additionally the conductively coupled concepts had relatively small volumes and provide potentially simpler assembly. Their disadvantages were the tight tolerances and material joining problems associated with this refractory to superalloy interface. The advantages of the radiatively coupled designs were the minimal material interface problems.

Schmitz, P.; Tower, L. [Sverdrup Technology, Inc., Brook Park, OH (United States). Lewis Research Center Group; Dawson, R. [Aerospace Design and Fabrication Inc., Brook Park, OH (United States); Blue, B.; Dunn, P. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center

1994-09-01T23:59:59.000Z

62

List of Passive Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 278 Passive Solar Space Heat Incentives. CSV (rows 1 - 278) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy and Energy Conservation Patent Exemption (Corporate) (Massachusetts) Industry Recruitment/Support Massachusetts Commercial Biomass Fuel Cells Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Municipal Solid Waste Passive Solar Space Heat Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy and Energy Conservation Patent Exemption (Personal) (Massachusetts) Industry Recruitment/Support Massachusetts General Public/Consumer Biomass

63

Consumer thermal energy storage costs for residential hot water, space heating and space cooling systems  

DOE Green Energy (OSTI)

The cost of household thermal energy storage (TES) in four utility service areas that are representative for hot water, space heating, and space cooling systems in the United States is presented. There are two major sections of the report: Section 2.0 is a technology characterization of commercially available and developmental/conceptual TES systems; Section 3.0 is an evaluation of the consumer cost of the three TES systems based on typical designs in four utility service areas.

None

1976-11-30T23:59:59.000Z

64

Design of a heat recovery steam generator  

SciTech Connect

A gas turbine in the size range of 20,000 hp (14.9 MW) was retrofitted with a heat recovery steam generator (HRSG). The HRSG produces high pressure superheated steam for use in a steam turbine. Supplementary firing is used to more than double the steam production over the unfired case. Because of many unusual constraints, an innovative design of the HRSG was formulated. These design constraints included: a wide range of operating conditions was to be accommodated; very limited space in the existing plant; and a desire to limit the field construction work necessary in order to provide a short turnaround time. This paper discusses the design used to satisfy these conditions.

Logeais, D.R.

1984-06-01T23:59:59.000Z

65

Efficient optimal design space characterization methodologies  

Science Conference Proceedings (OSTI)

One of the primary advantages of a high-level synthesis system is its ability to explore the design space. This paper presents several methodologies for design space exploration that compute all optimal tradeoff points for the combined ... Keywords: bounding, clock-length determination, design space exploration, efficient searching, high-level synthesis, module selection, scheduling

Stephen A. Blythe; Robert A. Walker

2000-07-01T23:59:59.000Z

66

Feasibility study for aquaculture and space heating, Ft. Bidwell, California  

DOE Green Energy (OSTI)

Expansion of the aquaculture facilities and geothermal space heating at Ft. Bidwell, California were investigated. The lack of cold water is the limiting factor for aquaculture expansion and is also a problem for the town domestic water supply. A new cold water well approximately 1200 feet deep would provide for the aquaculture expansion and additional domestic water. A 2900 foot test well can be completed to provide additional hot water at approximately 200/sup 0/F and an estimated artesian flow of 500 gpm. If these wells are completed, the aquaculture facility could be expanded to produce 6000 two pound catfish per month on a continuous basis and provide space heating of at least 20 homes. The design provided allows for heating 11 homes initially with possible future expansion. 9 figs.

Culver, G.

1985-10-01T23:59:59.000Z

67

Flat heat pipe design, construction, and analysis  

SciTech Connect

This paper details the design, construction and partial analysis of a low temperature flat heat pipe in order to determine the feasibility of implementing flat heat pipes into thermophotovoltaic (TPV) energy conversion systems.

Voegler, G.; Boughey, B.; Cerza, M.; Lindler, K.W.

1999-08-02T23:59:59.000Z

68

Synergistic diffuser/heat-exchanger design  

E-Print Network (OSTI)

The theoretical and numerical evaluation of synergistic diffusing heat-exchanger design is presented. Motivation for this development is based on current diffuser and heat-exchange technologies in cogeneration plants, which ...

Lazzara, David S. (David Sergio), 1980-

2004-01-01T23:59:59.000Z

69

Table SH7. Average Consumption for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

Fuel Oil (gallons) Main Space Heating Fuel Used (physical units of consumption per household using the fuel as a main heating source) Table SH7.

70

Table SH8. Average Consumption for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

Fuel Oil Main Space Heating Fuel Used (million Btu of consumption per household using the fuel as a main heating source) Any Major Fuel 4 Table SH8.

71

Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems  

SciTech Connect

This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

Rudd, A.

2012-08-01T23:59:59.000Z

72

Design manual for solar heating of buildings and domestic hot water  

SciTech Connect

This manual presents design and cost analysis methods for sizing and payback estimating of solar heat collectors for augmentation of portable water heaters and space heaters. Sufficient information is presented to enable almost anyone to design solar space and water heating systems or conduct basic feasibility studies preparatory to design of large installations. Both retrofit and new installations are considered. (MOW)

Field, R.L.

1977-01-01T23:59:59.000Z

73

Performance predictions and measurements for space-power-system heat pipes  

SciTech Connect

High temperature liquid metal heat pipes designed for space power systems have been analyzed and tested. Three wick designs are discussed and a design rationale for the heat pipe is provided. Test results on a molybdenum, annular wick heat pipe are presented. Performance limitations due to boiling and capillary limits are presented. There is evidence that the vapor flow in the adiabatic section is turbulent and that the transition Reynolds number is 4000.

Prenger, F.C. Jr.

1981-01-01T23:59:59.000Z

74

Solar heating system final design package  

DOE Green Energy (OSTI)

Contemporary Systems has taken its Series V Solar Heating System and developed it to a degree acceptable by local codes and regulatory agencies. The system is composed of the Series V warm air collector, the LCU-110 logic control unit and the USU-A universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The collector can be fabricated in any length from 12 to 24 feet. This provides maximum flexibility in design and installation. The LCU-110 control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic is designed so as to make maximum use of solar energy and minimize use of conventional energy. The USU-A transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit is designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.

Not Available

1979-05-01T23:59:59.000Z

75

Spacing innovation and learning in design organizations  

E-Print Network (OSTI)

The main research question of this thesis is the following: What is the relationship between spaces and innovation in the context of design organizations such as IDEO, the MIT Media Lab and Design Continuum? This thesis ...

GarcÝa Herrera, Cristˇbal, 1974-

2004-01-01T23:59:59.000Z

76

Pagosa Springs Private Wells Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Pagosa Springs Private Wells Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa...

77

Heat-pipe development for the SPAR space-power system. [100 kW(e)  

SciTech Connect

The SPAR space power system design is based on a high temperature fast spectrum nuclear reactor that furnishes heat to a thermoelectric conversion system to generate an electrical power output of 100 kW/sub (e)/. An important feature of this design is the use of alkali metal heat pipes to provide redundant, reliable, and low-loss heat transfer at high temperature. Three sets of heat pipes are used in the system. These include sodium/molybdenum heat pipes to transfer heat from the reactor core to the conversion system, potassium/niobium heat pipes to couple the conversion system to the radiator in a redundant manner, and potassium/titanium heat pipes to distribute rejected heat throughout the radiator surface. The designs of these units are discussed and fabrication methods and testing results are described. 12 figures.

Ranken, W.A.

1981-01-01T23:59:59.000Z

78

Optimum Design and Selection of Heat Sinks  

E-Print Network (OSTI)

An analytical simulation model has been developed for predicting and optimizing the thermal performance of bidirectional fin heat sinks in a partiaHy confined configuration. Sample calculations are carried out, and parametric plots are provided, illustrating the effect of various design parameters on the performance of a heat sink. It is observed that the actual convection flow velocity through fins is usually unknown to designers, yet, is one of the parameters that greatly affect the overaH thermal performance of a heat sink. In this paper, a simple method of determining the fin flow velocity is presented, and the development of the overall thermai model is described. An overview of different types of heat sinks and associated design parameters is provided. Optimization of heat-sink designs and typical parametric behaviors are discussed based on the sample simulation results.

Seri Lee

1995-01-01T23:59:59.000Z

79

Engineering design aspects of the heat-pipe power system  

SciTech Connect

The Heat-pipe Power System (HPS) is a near-term, low-cost space power system designed at Los Alamos that can provide up to 1,000 kWt for many space nuclear applications. The design of the reactor is simple, modular, and adaptable. The basic design allows for the use of a variety of power conversion systems and reactor materials (including the fuel, clad, and heat pipes). This paper describes a project that was undertaken to develop a database supporting many engineering aspects of the HPS design. The specific tasks discussed in this paper are: the development of an HPS materials database, the creation of finite element models that will allow a wide variety of investigations, and the verification of past calculations.

Capell, B.M.; Houts, M.G.; Poston, D.I.; Berte, M.

1997-10-01T23:59:59.000Z

80

Design of Heat Exchanger for Heat Recovery in CHP Systems  

E-Print Network (OSTI)

The objective of this research is to review issues related to the design of heat recovery unit in Combined Heat and Power (CHP) systems. To meet specific needs of CHP systems, configurations can be altered to affect different factors of the design. Before the design process can begin, product specifications, such as steam or water pressures and temperatures, and equipment, such as absorption chillers and heat exchangers, need to be identified and defined. The Energy Engineering Laboratory of the Mechanical Engineering Department of the University of Louisiana at Lafayette and the Louisiana Industrial Assessment Center has been donated an 800kW diesel turbine and a 100 ton absorption chiller from industries. This equipment needs to be integrated with a heat exchanger to work as a Combined Heat and Power system for the University which will supplement the chilled water supply and electricity. The design constraints of the heat recovery unit are the specifications of the turbine and the chiller which cannot be altered.

Kozman, T. A.; Kaur, B.; Lee, J.

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Maryland Heats Up Student Appliance Design Competition | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maryland Heats Up Student Appliance Design Competition Maryland Heats Up Student Appliance Design Competition Maryland Heats Up Student Appliance Design Competition September 10, 2013 - 11:43am Addthis Students from the University of Maryland won the Max Tech and Beyond Design Competition for their heat pump clothes dryer prototype, which achieved a 59 percent energy savings compared to standard U.S. electric dryers. | Photo courtesy of the University of Maryland. Students from the University of Maryland won the Max Tech and Beyond Design Competition for their heat pump clothes dryer prototype, which achieved a 59 percent energy savings compared to standard U.S. electric dryers. | Photo courtesy of the University of Maryland. Coming in a close second was The Ohio State University team with their design for a combination space cooling and water heating system for homes. The team received venture funding for the state of Ohio to continue developing their prototype, and the team plans to have a consumer-grade appliance ready for testing by summer 2014. | Photo courtesy of James Rowland, Student Team Lead, The Ohio State University

82

Design for Heat Treatment of Steel  

Science Conference Proceedings (OSTI)

...THE PRIMARY DESIGN CRITERIA addressed in this section are the minimization of distortion and undesirable residual stresses. Both theoretical and empirical guidelines to understand sources of common heat-treating defects and how they can be

83

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

84

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

85

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

86

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12.5% of the nation's  

E-Print Network (OSTI)

-acceptable refrigerants. Whether involving design of specific new products or refriger- ants to which the entire industryElectric equipment providing space conditioning, water heating, and refrigeration consumes 12 are the heart of air conditioners, heat pumps, chillers, supermarket refrigeration systems, and more. Global use

Oak Ridge National Laboratory

87

Managing Delegated Search Over Design Spaces  

Science Conference Proceedings (OSTI)

Organizations increasingly seek solutions to their open-ended design problems by employing a contest approach in which search over a solution space is delegated to outside agents. We study this new class of problems, which are costly to specify, pose ... Keywords: clustering, open innovation, product design, research and development, search

Sanjiv Erat; Vish Krishnan

2012-03-01T23:59:59.000Z

88

DESCOMP: a new design space exploration approach  

Science Conference Proceedings (OSTI)

In this paper, we introduce a new approach in Design-Space-Exploration (DSE) for non-clustered VLIW architectures. It differs from existing techniques by using a ôbottom-upö strategy. While other approaches start with the design of an architecture, ...

Mario Sch÷lzel; Peter Bachmann

2005-03-01T23:59:59.000Z

89

Dealing with Uncertainties During Heat Exchanger Design  

E-Print Network (OSTI)

Over the last thirty years much progress has been made in heat exchanger design methodology. Even so, the design engineer still has to deal with a great deal of uncertainty. Whilst the methods used to predict heat transfer coefficients are now quite sophisticated and take account of many physical factors, the results they yield are still inaccurate. Physical property information is required for the estimation of heat transfer coefficients. Available information is often of dubious accuracy. Even given accurate properties modern methods for the predictions of tube-side heat transfer coefficient can be expected to have an accuracy of only ▒ 10%. For the shell-side, higher errors (say, around ▒15%) can be expected. Perhaps worst of all, comes the specification of fouling resistance (the allowance made for the thermal resistance presented by dirt layers deposited on the heat exchanger tubes). In most instances there is little science or understanding behind the specification of these resistances. Traditionally there have been two approaches to dealing with these uncertainties: over-specification of fouling resistance; and, addition of 'design margin' (i.e. addition of extra surface area). There are cases in which both approaches are adopted. The engineer specifying the required duty provides a higher than necessary fouling resistance whilst the exchanger designer adds design margin! Both approaches result in 'over-design'.

Polley, G. T.; Pugh, S. J.

2001-05-01T23:59:59.000Z

90

Energy Basics: Space Heating and Cooling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in common, such as thermostats and ducts, which provide opportunities for saving energy. Learn how these technologies and systems work. Learn about: Cooling Systems Heating...

91

Exploration of the Design Space for the . . .  

E-Print Network (OSTI)

The ABLV-GT is a conceptual design for an advanced reusable launch vehicle based on the current NASA Langley ABLV concept. It is a Vision Vehicle class, horizontal takeoff, horizontal landing single-stage-to-orbit vehicle. Main propulsion is provided by Aerojet's `Strutjet' LOX/LH2 rocket-based combined cycle engine design. The ABLV-GT is designed to deliver 25,000 lbs. to the orbit of the International Space Station from Kennedy Space Center. This paper will report the findings of a conceptual design study on the ABLV-GT performed over the last year by members of the Space Systems Design Lab at Georgia Tech. This work has been sponsored by the Advanced Reusable Transportation Technologies program office at NASA Marshall Space Flight Center. Details of the concept design including external and internal configuration, mass properties, trajectory analysis, aerodynamics, and aeroheating are given. This vehicle study resulted in the closure of 18 different vehicle designs. The trade vari...

J. Bradford; J. Olds; R. Bechtel; T. Cormier; D. Messitt

2004-01-01T23:59:59.000Z

92

Increasing Confidence In Geothermal Heat Pump Design Methods  

SciTech Connect

Sizing the ground heat exchanger is one of the most important tasks in the design of a geothermal heat pump (GHP) system. Undersizing the heat exchanger can result in poor operating efficiency, reduced comfort, and nuisance heat pump lockouts on safety controls, while an oversized heat exchanger increases the installation cost of the system. The cost of ground loop installation may mean the difference between a feasible and an unfeasible project. Thus there are strong incentives to select heat exchanger lengths which allow satisfactory performance under all operating conditions within a feasible project budget. Sizing a ground heat exchanger is not a simple calculation. In the first place, there is usually some uncertainty in the peak block and annual space conditioning loads for the building to be served by the GHPs. The thermal properties of the soil formation may be unknown as well. Drilling logs and core samples can identify the soil type, but handbook values for the thermal properties of soils vary widely. Properly-done short-term on-site tests and data analysis to obtain thermal properties provide more accurate information, but since these tests are expensive they are usually only feasible in large projects. Given the uncertainties inherent in the process, if designers were truly working 'close to the edge' - selecting the absolute minimum heat exchanger length required to meet the predicted loads - one would expect to see more examples of undersized heat exchangers. Indeed there have been a few. However, over the past twenty years GHPs have been installed and successfully operated at thousands of locations all over the world. Conversations with customers and facility managers reveal a high degree of satisfaction with the technology, but studies of projects reveal far more cases of generously sized ground heat exchangers than undersized ones. This indicates that the uncertainties in space conditioning loads and soil properties are covered by a factor of safety. These conservative designs increase the installed cost of GHP systems, limiting their use and applicability. Moreover, as ground heat exchanger sizing methods have improved, they have suggested (and field tests are beginning to verify) that standard bore backfill practices lead to unnecessarily large ground heat exchangers. Growing evidence suggests that in many applications use of sand backfill with a grout plug at the surface, or use of bottom-to-top thermally enhanced grout, may provide groundwater protection equal to current practice at far less cost. Site tests of thermal properties provides more accurate information, but since these tests are expensive they are usually only performed in large projects. Even so, because soil properties can vary over a distance as small as a few feet, the value of these tests is limited. One objective of ongoing research at the Oak Ridge National Laboratory (ORNL) is to increase designers confidence in available ground heat exchanger sizing methods that lead to reliable yet cost-effective designs. To this end we have developed research-grade models that address the interactions between buildings, geothermal heat pump systems and ground heat exchangers The first application of these models was at Fort Polk, Louisiana, where the space conditioning systems of over 4,000 homes were replaced with geothermal heat pumps (Shonder and Hughes, 1997; Hughes et. al., 1997). At Fort Polk, the models were calibrated to detailed data from one of the residences. Data on the energy use of the heat pump, combined with inlet and outlet water temperature and flow rate in the ground heat exchangers, allowed us to determine the thermal properties of the soil formation being experienced by the operating GHP system. Outputs from the models provide all the data required by the various commercially-available ground loop sizing programs. Accurate knowledge of both the building loads and the soil properties eliminated the uncertainty normally associated with the design process, and allowed us to compare the predictions of the commercially-available

Shonder, John A [ORNL; Hughes, Patrick [ORNL

1998-03-01T23:59:59.000Z

93

Burgdorf Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Burgdorf Hot Springs Sector Geothermal energy Type Space Heating Location Burgdorf, Idaho Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

94

Heat Recovery Design Considerations for Cogeneration Systems  

E-Print Network (OSTI)

The design and integration of the heat recovery section, which includes the steam generation, auxiliary firing, and steam turbine modules, is critical to the overall performance and economics of cogeneration, systems. In gas turbine topping cogeneration systems, over two-thirds of the energy is in the exhaust gases leaving the gas turbine. In bottoming cycles, where steam and/or electrical power are generated from heating process exhaust streams, the heat recovery design is of primary concern. John Zink Company, since 1929, has specialized in the development, design, and fabrication of energy efficient equipment for the industrial and commercial markets. The paper outlines the design, installation and performance of recently supplied gas turbine cogeneration heat recovery systems. It also describes; several bottoming cycle thermal system designs applied to incinerators, process heaters, refinery secondary reformers and FCC units. Overall parameters and general trends in the design and application of cogeneration thermal systems are presented. New equipment and system designs to reduce pollution and increase overall system efficiency are also reviewed.

Pasquinelli, D. M.; Burns, E. D.

1985-05-01T23:59:59.000Z

95

A transient heat pipe model for a multimegawatt space power application  

SciTech Connect

The Argonne ''Monolithic Solid Oxide Fuel Cell'' power generation system has been described previously. In a ''burst power'' generation mode, hundreds of megawatts of DC power would be generated for a finite time interval. An accompanying nuclear power generation system would be used to regenerate the spent reactants (hydrogen and oxygen) in this closed system for subsequent re-use. Although the Argonne space power supply was designed to be a closed system in terms of material effluents, it had to reject the waste heat from the fuel cells (which operate with approximately 70% conversion efficiency). The heat rejection method included multiple heat pipes operated in parallel to convey thermal energy from the fuel cell coolant for ultimate radiation-rejection to space. These individual heat pipes featured a convectively heated evaporator section, an adiabatic section leading out from the fuel cell chamber to space, and the condenser section radiating to space. The transient behavior of these heat rejection heat pipes was not considered previously. This paper addresses the problem, showing that the heat pipes as conceptually designed also satisfy the stringent transient power generation---heat rejection requirements of the multimegawatt power generation system. 4 refs., 4 figs.

Carlson, L.W.

1989-01-01T23:59:59.000Z

96

Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used  

U.S. Energy Information Administration (EIA) Indexed Site

0. Space-Heating Energy Sources, Number of Buildings, 1999" 0. Space-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",4657,4016,1880,2380,377,96,307,94 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1982,926,1082,214,"Q",162,"Q" "5,001 to 10,000 ..............",1110,946,379,624,73,"Q",88,"Q" "10,001 to 25,000 .............",708,629,324,389,52,19,42,"Q"

97

Thermal Solar Energy Systems for Space Heating of Buildings  

E-Print Network (OSTI)

In this study, the simulation and the analysis of a solar flat plate collectors combined with a compression heat pump is carried out. The system suggested must ensure the heating of a building without the recourse to an auxiliary energy source in complement of this heating system. The system is used to heat a building using heating floor. The building considered is located in Constantine-East of Algeria (Latitude 36.28 N, Longitude 6.62 E, Altitude 689m). For the calculation, the month of February was chosen, which is considered as the coldest month according to the weather data of Constantine. The performances of this system were compared to the performances of the traditional solar heating system using solar collectors and an auxiliary heating load to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy combined with heat pump improve the thermal performance of the heat pump and the global system. The performances of the heating system combining heat pump and solar collectors are higher than that of solar heating system with solar collectors and storage tank. The heat pump assisted by solar energy can contribute to the conservation of conventional energy and can be competitive with the traditional systems of heating.

Gomri, R.; Boulkamh, M.

2010-01-01T23:59:59.000Z

98

Ft Bidwell Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Ft Bidwell Space Heating Low Temperature Geothermal Facility Ft Bidwell Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ft Bidwell Space Heating Low Temperature Geothermal Facility Facility Ft Bidwell Sector Geothermal energy Type Space Heating Location Ft. Bidwell, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

99

Medical Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Medical Hot Springs Space Heating Low Temperature Geothermal Facility Facility Medical Hot Springs Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122┬░, -118.0410627┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

100

Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature  

Open Energy Info (EERE)

Space Heating Low Temperature Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature Geothermal Facility Facility Roosevelt Warm Springs Institute for Rehab. Sector Geothermal energy Type Space Heating Location Warm Springs, Georgia Coordinates 32.8904081┬░, -84.6810381┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Vichy Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Facility Vichy Hot Springs Sector Geothermal energy Type Space Heating Location Ukiah, California Coordinates 39.1501709┬░, -123.2077831┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

102

Jump Steady Resort Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Jump Steady Resort Space Heating Low Temperature Geothermal Facility Jump Steady Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jump Steady Resort Space Heating Low Temperature Geothermal Facility Facility Jump Steady Resort Sector Geothermal energy Type Space Heating Location Buena Vista, Colorado Coordinates 38.8422178┬░, -106.1311288┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

103

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Facility Summer Lake Hot Springs Sector Geothermal energy Type Space Heating Location Summer Lake, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

104

Stroppel Hotel Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Stroppel Hotel Space Heating Low Temperature Geothermal Facility Facility Stroppel Hotel Sector Geothermal energy Type Space Heating Location Midland, South Dakota Coordinates 44.0716539┬░, -101.1554178┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

105

Van Norman Residences Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Norman Residences Space Heating Low Temperature Geothermal Facility Norman Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Van Norman Residences Space Heating Low Temperature Geothermal Facility Facility Van Norman Residences Sector Geothermal energy Type Space Heating Location Thermopolis, Wyoming Coordinates 43.6460672┬░, -108.2120432┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

106

Desert Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Desert Hot Springs Space Heating Low Temperature Geothermal Facility Facility Desert Hot Springs Sector Geothermal energy Type Space Heating Location Desert Hot Springs, California Coordinates 33.961124┬░, -116.5016784┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

107

Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Facility Ouray Municipal Pool Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716┬░, -107.6714487┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

108

Canon City Area Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Canon City Area Space Heating Low Temperature Geothermal Facility Canon City Area Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Canon City Area Space Heating Low Temperature Geothermal Facility Facility Canon City Area Sector Geothermal energy Type Space Heating Location Canon City, Colorado Coordinates 38.439949┬░, -105.226097┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

109

Chena Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Chena Hot Springs Space Heating Low Temperature Geothermal Facility Facility Chena Hot Springs Sector Geothermal energy Type Space Heating Location Fairbanks, Alaska Coordinates 64.8377778┬░, -147.7163889┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

110

Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

(Poncha Spring) Space Heating Low Temperature Geothermal (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Facility Salida Hot Springs (Poncha Spring) Sector Geothermal energy Type Space Heating Location Salida, Colorado Coordinates 38.5347193┬░, -105.9989022┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

111

Modesto Memorial Hospital Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Memorial Hospital Space Heating Low Temperature Geothermal Facility Memorial Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modesto Memorial Hospital Space Heating Low Temperature Geothermal Facility Facility Modesto Memorial Hospital Sector Geothermal energy Type Space Heating Location Modesto, California Coordinates 37.6390972┬░, -120.9968782┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

112

Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility Facility Peppermill Hotel Casino Sector Geothermal energy Type Space Heating Location Reno, Nevada Coordinates 39.5296329┬░, -119.8138027┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

113

Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Lodge Space Heating Low Temperature Geothermal Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility Glenwood Hot Springs Lodge Sector Geothermal energy Type Space Heating Location Glenwood Springs, Colorado Coordinates 39.5505376┬░, -107.3247762┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

114

St. Mary's Hospital Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Mary's Hospital Space Heating Low Temperature Geothermal Facility Mary's Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name St. Mary's Hospital Space Heating Low Temperature Geothermal Facility Facility St. Mary's Hospital Sector Geothermal energy Type Space Heating Location Pierre, South Dakota Coordinates 44.3683156┬░, -100.3509665┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

115

Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal Facility Facility Steamboat Villa Hot Springs Spa Sector Geothermal energy Type Space Heating Location Reno, Nevada Coordinates 39.5296329┬░, -119.8138027┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

116

YMCA Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

YMCA Space Heating Low Temperature Geothermal Facility YMCA Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name YMCA Space Heating Low Temperature Geothermal Facility Facility YMCA Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

117

Vale Slaughter House Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Vale Slaughter House Space Heating Low Temperature Geothermal Facility Vale Slaughter House Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vale Slaughter House Space Heating Low Temperature Geothermal Facility Facility Vale Slaughter House Sector Geothermal energy Type Space Heating Location Vale, Oregon Coordinates 43.9821055┬░, -117.2382311┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

118

Pagosa Springs Private Wells Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Private Wells Space Heating Low Temperature Geothermal Private Wells Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs Private Wells Space Heating Low Temperature Geothermal Facility Facility Pagosa Springs Private Wells Sector Geothermal energy Type Space Heating Location Pagosa Springs, Colorado Coordinates 37.26945┬░, -107.0097617┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

119

Avila Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Avila Hot Springs Space Heating Low Temperature Geothermal Facility Facility Avila Hot Springs Sector Geothermal energy Type Space Heating Location San Luis Obispo, California Coordinates 35.2827524┬░, -120.6596156┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

120

Hunters Hot Spring Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Facility Hunters Hot Spring Sector Geothermal energy Type Space Heating Location Lakeview, Oregon Coordinates 42.1887721┬░, -120.345792┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Maywood Industries of Oregon Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Maywood Industries of Oregon Space Heating Low Temperature Geothermal Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Facility Maywood Industries of Oregon Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

122

Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Facility Bozeman Hot Springs Sector Geothermal energy Type Space Heating Location Bozeman, Montana Coordinates 45.68346┬░, -111.050499┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

123

Radium Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Radium Hot Springs Space Heating Low Temperature Geothermal Facility Radium Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Radium Hot Springs Space Heating Low Temperature Geothermal Facility Facility Radium Hot Springs Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122┬░, -118.0410627┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

124

Cedarville Elementary & High School Space Heating Low Temperature  

Open Energy Info (EERE)

Cedarville Elementary & High School Space Heating Low Temperature Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Facility Cedarville Elementary & High School Sector Geothermal energy Type Space Heating Location Cedarville, California Coordinates 41.5290606┬░, -120.1732781┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

125

Miracle Hot Spring Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Facility Miracle Hot Spring Sector Geothermal energy Type Space Heating Location Bakersfield, California Coordinates 35.3732921┬░, -119.0187125┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

126

Hot Springs National Park Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility Facility Hot Springs National Park Sector Geothermal energy Type Space Heating Location Hot Springs, Arkansas Coordinates 34.5037004┬░, -93.0551795┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

127

Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Lolo Hot Springs Resort Sector Geothermal energy Type Space Heating Location Missoula County, Montana Coordinates 47.0240503┬░, -113.6869923┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

128

Klamath Schools (7) Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Schools (7) Space Heating Low Temperature Geothermal Facility Schools (7) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Schools (7) Space Heating Low Temperature Geothermal Facility Facility Klamath Schools (7) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

129

Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Facility Shoshone Motel & Trailer Park Sector Geothermal energy Type Space Heating Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

130

Olene Gap Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Olene Gap Space Heating Low Temperature Geothermal Facility Olene Gap Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Olene Gap Space Heating Low Temperature Geothermal Facility Facility Olene Gap Sector Geothermal energy Type Space Heating Location Klamath County, Oregon Coordinates 42.6952767┬░, -121.6142133┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

131

Surprise Valley Hospital Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Hospital Space Heating Low Temperature Geothermal Facility Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Surprise Valley Hospital Space Heating Low Temperature Geothermal Facility Facility Surprise Valley Hospital Sector Geothermal energy Type Space Heating Location Cedarville, California Coordinates 41.5290606┬░, -120.1732781┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

132

Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal Facility Facility Wiesbaden Motel & Health Resort Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716┬░, -107.6714487┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

133

Marlin Hospital Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Marlin Hospital Space Heating Low Temperature Geothermal Facility Marlin Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Marlin Hospital Space Heating Low Temperature Geothermal Facility Facility Marlin Hospital Sector Geothermal energy Type Space Heating Location Marlin, Texas Coordinates 31.3062874┬░, -96.8980439┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

134

White Sulphur Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Sulphur Springs Space Heating Low Temperature Geothermal Facility Sulphur Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name White Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility White Sulphur Springs Sector Geothermal energy Type Space Heating Location White Sulphur Springs, Montana Coordinates 46.548277┬░, -110.9021561┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

135

Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Facility Hillbrook Nursing Home Sector Geothermal energy Type Space Heating Location Clancy, Montana Coordinates 46.4652096┬░, -111.9863826┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

136

Miracle Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Springs Space Heating Low Temperature Geothermal Facility Facility Miracle Hot Springs Sector Geothermal energy Type Space Heating Location Buhl, Idaho Coordinates 42.5990714┬░, -114.7594946┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

137

LDS Wardhouse Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

LDS Wardhouse Space Heating Low Temperature Geothermal Facility LDS Wardhouse Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name LDS Wardhouse Space Heating Low Temperature Geothermal Facility Facility LDS Wardhouse Sector Geothermal energy Type Space Heating Location Newcastle, Utah Coordinates 37.6666413┬░, -113.549406┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

138

LDS Church Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

LDS Church Space Heating Low Temperature Geothermal Facility LDS Church Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name LDS Church Space Heating Low Temperature Geothermal Facility Facility LDS Church Sector Geothermal energy Type Space Heating Location Almo, Idaho Coordinates 42.1001924┬░, -113.6336192┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

139

The Wilderness Lodge Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

The Wilderness Lodge Space Heating Low Temperature Geothermal Facility The Wilderness Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name The Wilderness Lodge Space Heating Low Temperature Geothermal Facility Facility The Wilderness Lodge Sector Geothermal energy Type Space Heating Location Gila Hot Springs, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

140

Senior Citizens' Center Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Senior Citizens' Center Space Heating Low Temperature Geothermal Facility Senior Citizens' Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Senior Citizens' Center Space Heating Low Temperature Geothermal Facility Facility Senior Citizens' Center Sector Geothermal energy Type Space Heating Location Truth or Consequences, New Mexico Coordinates 33.1284047┬░, -107.2528069┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility Facility Schutz's Hot Spring Sector Geothermal energy Type Space Heating Location Crouch, Idaho Coordinates 44.1151717┬░, -115.970954┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

142

Mount Princeton Area Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Area Space Heating Low Temperature Geothermal Facility Area Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Mount Princeton Area Space Heating Low Temperature Geothermal Facility Facility Mount Princeton Area Sector Geothermal energy Type Space Heating Location Mount Princeton, Colorado Coordinates 38.749167┬░, -106.2425┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

143

Baranof Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Baranof Space Heating Low Temperature Geothermal Facility Facility Baranof Sector Geothermal energy Type Space Heating Location Sitka, Alaska Coordinates 57.0530556┬░, -135.33┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

144

Warm Springs State Hospital Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

State Hospital Space Heating Low Temperature Geothermal State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility Facility Warm Springs State Hospital Sector Geothermal energy Type Space Heating Location Warm Springs, Montana Coordinates 46.1813145┬░, -112.78476┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

145

Vale Residences Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Residences Space Heating Low Temperature Geothermal Facility Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vale Residences Space Heating Low Temperature Geothermal Facility Facility Vale Residences Sector Geothermal energy Type Space Heating Location Vale, Oregon Coordinates 43.9821055┬░, -117.2382311┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

146

Cotulla High School Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Cotulla High School Space Heating Low Temperature Geothermal Facility Cotulla High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cotulla High School Space Heating Low Temperature Geothermal Facility Facility Cotulla High School Sector Geothermal energy Type Space Heating Location Cotulla, Texas Coordinates 28.436934┬░, -99.2350322┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

147

Melozi Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Melozi Space Heating Low Temperature Geothermal Facility Facility Melozi Sector Geothermal energy Type Space Heating Location Yukon, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

148

Indian Valley Hospital Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Valley Hospital Space Heating Low Temperature Geothermal Facility Valley Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Valley Hospital Space Heating Low Temperature Geothermal Facility Facility Indian Valley Hospital Sector Geothermal energy Type Space Heating Location Greenville, California Coordinates 40.1396126┬░, -120.9510675┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

149

Lakeview Residences Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Lakeview Residences Space Heating Low Temperature Geothermal Facility Lakeview Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lakeview Residences Space Heating Low Temperature Geothermal Facility Facility Lakeview Residences Sector Geothermal energy Type Space Heating Location Lakeview, Oregon Coordinates 42.1887721┬░, -120.345792┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

150

Boulder Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boulder Hot Springs Space Heating Low Temperature Geothermal Facility Facility Boulder Hot Springs Sector Geothermal energy Type Space Heating Location Boulder, Montana Coordinates 46.2365947┬░, -112.1208336┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

151

Langel Valley Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Langel Valley Space Heating Low Temperature Geothermal Facility Langel Valley Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Langel Valley Space Heating Low Temperature Geothermal Facility Facility Langel Valley Sector Geothermal energy Type Space Heating Location Bonanza, Oregon Coordinates 42.1987607┬░, -121.4061076┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

152

Henley High School Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Henley High School Space Heating Low Temperature Geothermal Facility Henley High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Henley High School Space Heating Low Temperature Geothermal Facility Facility Henley High School Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

153

Broadwater Athletic Club & Hot Springs Space Heating Low Temperature  

Open Energy Info (EERE)

Athletic Club & Hot Springs Space Heating Low Temperature Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Facility Broadwater Athletic Club & Hot Springs Sector Geothermal energy Type Space Heating Location Helena, Montana Coordinates 46.6002123┬░, -112.0147188┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

154

Homestead Resort Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Resort Space Heating Low Temperature Geothermal Facility Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Homestead Resort Space Heating Low Temperature Geothermal Facility Facility Homestead Resort Sector Geothermal energy Type Space Heating Location Hot Springs, Virginia Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

155

Cottonwood Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cottonwood Hot Springs Space Heating Low Temperature Geothermal Facility Facility Cottonwood Hot Springs Sector Geothermal energy Type Space Heating Location Buena Vista, Colorado Coordinates 38.8422178┬░, -106.1311288┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

156

Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility Jackson Hot Springs Lodge Sector Geothermal energy Type Space Heating Location Jackson, Montana Coordinates 45.3679793┬░, -113.4089438┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

157

Box Canyon Motel Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Motel Space Heating Low Temperature Geothermal Facility Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Box Canyon Motel Space Heating Low Temperature Geothermal Facility Facility Box Canyon Motel Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716┬░, -107.6714487┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

158

Ophir Creek Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Ophir Creek Space Heating Low Temperature Geothermal Facility Ophir Creek Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ophir Creek Space Heating Low Temperature Geothermal Facility Facility Ophir Creek Sector Geothermal energy Type Space Heating Location SW, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

159

Modoc High School Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Modoc High School Space Heating Low Temperature Geothermal Facility Modoc High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modoc High School Space Heating Low Temperature Geothermal Facility Facility Modoc High School Sector Geothermal energy Type Space Heating Location Alturas, California Coordinates 41.4871146┬░, -120.5424555┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

160

East Middle School and Cayuga Community College Space Heating Low  

Open Energy Info (EERE)

Middle School and Cayuga Community College Space Heating Low Middle School and Cayuga Community College Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name East Middle School and Cayuga Community College Space Heating Low Temperature Geothermal Facility Facility East Middle School and Cayuga Community College Sector Geothermal energy Type Space Heating Location Auburn, New York Coordinates 42.9317335┬░, -76.5660529┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Indian Springs School Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

School Space Heating Low Temperature Geothermal Facility School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Springs School Space Heating Low Temperature Geothermal Facility Facility Indian Springs School Sector Geothermal energy Type Space Heating Location Big Bend, California Coordinates 39.6982182┬░, -121.4608015┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

162

Manley Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Space Heating Low Temperature Geothermal Facility Facility Manley Hot Springs Sector Geothermal energy Type Space Heating Location Manley Hot Springs, Alaska Coordinates 65.0011111┬░, -150.6338889┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

163

Klamath Residence (500) Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Residence (500) Space Heating Low Temperature Geothermal Facility Residence (500) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Residence (500) Space Heating Low Temperature Geothermal Facility Facility Klamath Residence (500) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

164

Klamath Apartment Buildings (13) Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Apartment Buildings (13) Space Heating Low Temperature Geothermal Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Facility Klamath Apartment Buildings (13) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

165

Klamath Churches (5) Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Churches (5) Space Heating Low Temperature Geothermal Facility Churches (5) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Churches (5) Space Heating Low Temperature Geothermal Facility Facility Klamath Churches (5) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

166

Klamath County Jail Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

County Jail Space Heating Low Temperature Geothermal Facility County Jail Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath County Jail Space Heating Low Temperature Geothermal Facility Facility Klamath County Jail Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

167

Merle West Medical Center Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Merle West Medical Center Space Heating Low Temperature Geothermal Facility Merle West Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Merle West Medical Center Space Heating Low Temperature Geothermal Facility Facility Merle West Medical Center Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

168

Lava Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lava Hot Springs Space Heating Low Temperature Geothermal Facility Facility Lava Hot Springs Sector Geothermal energy Type Space Heating Location Lava Hot Springs, Idaho Coordinates 42.6193625┬░, -112.0110712┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

169

Del Rio Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Rio Hot Springs Space Heating Low Temperature Geothermal Facility Rio Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Del Rio Hot Springs Space Heating Low Temperature Geothermal Facility Facility Del Rio Hot Springs Sector Geothermal energy Type Space Heating Location Preston, Idaho Coordinates 42.0963133┬░, -111.8766173┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

170

Walley's Hot Springs Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Walley's Hot Springs Resort Sector Geothermal energy Type Space Heating Location Genoa, Nevada Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

171

Utah State Prison Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Prison Space Heating Low Temperature Geothermal Facility Prison Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Utah State Prison Space Heating Low Temperature Geothermal Facility Facility Utah State Prison Sector Geothermal energy Type Space Heating Location Salt Lake City, Utah Coordinates 40.7607793┬░, -111.8910474┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

172

Twin Springs Resort Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Springs Resort Space Heating Low Temperature Geothermal Facility Springs Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Twin Springs Resort Space Heating Low Temperature Geothermal Facility Facility Twin Springs Resort Sector Geothermal energy Type Space Heating Location Boise, Idaho Coordinates 43.6135002┬░, -116.2034505┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

173

Twin Peaks Motel Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Peaks Motel Space Heating Low Temperature Geothermal Facility Peaks Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Twin Peaks Motel Space Heating Low Temperature Geothermal Facility Facility Twin Peaks Motel Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716┬░, -107.6714487┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

174

Health Spa Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Health Spa Space Heating Low Temperature Geothermal Facility Health Spa Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Health Spa Space Heating Low Temperature Geothermal Facility Facility Glenwood Springs Health Spa Sector Geothermal energy Type Space Heating Location Glenwood Springs, Colorado Coordinates 39.5505376┬░, -107.3247762┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

175

Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility Facility Geronimo Springs Museum Sector Geothermal energy Type Space Heating Location Truth or Consequences, New Mexico Coordinates 33.1284047┬░, -107.2528069┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

176

Arrowhead Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Arrowhead Hot Springs Space Heating Low Temperature Geothermal Facility Facility Arrowhead Hot Springs Sector Geothermal energy Type Space Heating Location San Bernardino, California Coordinates 34.1083449┬░, -117.2897652┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

177

Medical Center Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Medical Center Space Heating Low Temperature Geothermal Facility Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Medical Center Space Heating Low Temperature Geothermal Facility Facility Medical Center Sector Geothermal energy Type Space Heating Location Caliente, Nevada Coordinates 37.6149648┬░, -114.5119378┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

178

Hot Sulphur Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility Hot Sulphur Springs Sector Geothermal energy Type Space Heating Location Hot Sulphur Springs, Colorado Coordinates 40.0730411┬░, -106.1027991┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

179

Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Facility Tecopa Hot Springs Sector Geothermal energy Type Space Heating Location Inyo County, California Coordinates 36.3091865┬░, -117.5495846┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

180

Saratoga Springs Resort Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Saratoga Springs Resort Space Heating Low Temperature Geothermal Facility Facility Saratoga Springs Resort Sector Geothermal energy Type Space Heating Location Lehi, Utah Coordinates 40.3916172┬░, -111.8507662┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Bell Island Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bell Island Space Heating Low Temperature Geothermal Facility Facility Bell Island Sector Geothermal energy Type Space Heating Location Ketchikan, Alaska Coordinates 55.3422222┬░, -131.6461111┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

182

Warner Springs Ranch Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Facility Warner Springs Ranch Resort Sector Geothermal energy Type Space Heating Location San Diego, California Coordinates 32.7153292┬░, -117.1572551┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

183

Jackson Well Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Well Springs Space Heating Low Temperature Geothermal Facility Well Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Well Springs Space Heating Low Temperature Geothermal Facility Facility Jackson Well Springs Sector Geothermal energy Type Space Heating Location Ashland, Oregon Coordinates 42.1853257┬░, -122.6980457┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

184

Banbury Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Banbury Hot Springs Space Heating Low Temperature Geothermal Facility Facility Banbury Hot Springs Sector Geothermal energy Type Space Heating Location Buhl, Idaho Coordinates 42.5990714┬░, -114.7594946┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

185

Handbook of experiences in the design and installation of solar heating and cooling systems  

DOE Green Energy (OSTI)

A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

Ward, D.S.; Oberoi, H.S.

1980-07-01T23:59:59.000Z

186

The effect of fan and heat sink design on heat removal from microprocessor chips.  

E-Print Network (OSTI)

??Air flow and heat removal characteristics for fan/heat sink designs used to cool Pentium class processors were analyzed. Five designs were tested for fan speed,ů (more)

Baltrip, Kedra G

2012-01-01T23:59:59.000Z

187

Biodiesel Blends in Space Heating Equipment: January 31, 2001 -- September 28, 2001  

DOE Green Energy (OSTI)

This report documents an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications.

Krishna, C. R.

2004-05-01T23:59:59.000Z

188

Table HC3-1a. Space Heating by Climate Zone, Million U.S ...  

U.S. Energy Information Administration (EIA)

Table HC3-1a. Space Heating by Climate Zone, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Climate Zone1 RSE

189

Table CE2-5.1u. Space-Heating Energy Consumption and Expenditures ...  

U.S. Energy Information Administration (EIA)

Space-Heating Energy Consumption and Expenditures by Household Member and Demographics, 2001 Household ... Total Households Using a Major Space-Heating

190

Table SH1. Total Households Using a Space Heating Fuel, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households Using a Space Heating Fuel, 2005 Million U.S. Households Using a Non-Major Fuel 5 ... Space Heating (millions) Energy Information Administration

191

Table CE2-3c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household4,a Physical Units of Space-Heating Consumption per Household,3 Where the Main Space-Heating Fuel Is:

192

Table CE2-7c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

193

Table CE2-12c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

194

Table CE2-4c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

195

Table CE2-7c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3 Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

196

Membrane heat pipe development for space radiator applications  

SciTech Connect

A self-deploying membrane heat pipe (SMHP) is being designed and fabricated to operate in an in-cabin experiment aboard a STS flight. The heat pipe comprises a mylar membrane with a woven fabric arterial wick and R-11 as the working fluid. Preliminary results indicate that this SMHP design will successfully expand and retract in response to an applied heat load; the retraction force is provided by a constant force spring.

Woloshun, K.; Merrigan, M.

1986-01-01T23:59:59.000Z

197

A discrete, stochastic simulation model for the analysis and design of solar energy heating systems  

Science Conference Proceedings (OSTI)

This paper presents a stochastic simulation approach to the generalized solar energy space heating performance analysis and design problem. Specifically, Markov chain models are developed to represent ambient temperature, insolation, hot water load and ...

Gerard F. Lameiro; Robert A. Rademacher

1978-03-01T23:59:59.000Z

198

Neutronic and thermal design considerations for heat-pipe reactors  

SciTech Connect

SABRE (Space-Arena Baseline Reactor) is a 100-kW/sub e/, heat-pipe-cooled, beryllium-reflected, fast reactor that produces heat at a temperature of 1500/sup 0/K and radiatively transmits it to high-temperature thermoelectric (TE) conversion elements. The use of heat pipes for core heat removal eliminates single-point failure mechanisms in the reactor cooling system, and provides minimal temperature drop radiative coupling to the TE array, as well as automatic, self-actuating removal of reactor afterheat. The question of how the failure of a fuel module heat pipe will affect neighboring fuel modules in the core is discussed, as is fission density peaking that occurs at the core/reflector interface. Results of neutronic calculations of the control margin available are described. Another issue that is addressed is that of helium generation in the heat pipes from neutron reactions in the core with the heat pipe fluid. Finally, the growth potential of the SABRE design to much higher powers is examined.

Ranken, W.A.; Koenig, D.R.

1983-01-01T23:59:59.000Z

199

Total U.S. Main Space Heating Fuel Used U.S. Using Any Households ...  

U.S. Energy Information Administration (EIA)

Average Heating Degree Days by Main Space Heating Fuel Used, ... 2005 Residential Energy Consumption Survey: ... Any Fuel Natural Gas Fuel Oil Age of Main Heating ...

200

Determining the temperature field for cylinder symmetrical heat conduction problems in unsteady heat conduction in finite space  

Science Conference Proceedings (OSTI)

This paper proposes to present a new method to calculate unsteady heat conduction for cylinder symmetrical geometry. We will investigate the situation where the temperature field and heat flux created around a heat source placed in finite space are determined. ... Keywords: Garbai's integral equation, Laplace transformation, determining the temperate field, district heating pipes, geothermal producing pipe, heat flux density, heat loss, heat pump

Lßszlˇ Garbai; Szabolcs MÚhes

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hybrid space heating/cooling system with Trombe wall, underground venting, and assisted heat pump  

DOE Green Energy (OSTI)

Our goal was to design and monitor a hybrid solar system/ground loop which automatically assists the standard, thermostatically controlled home heating/cooling system. The input from the homeowner was limited to normal thermostat operations. During the course of the project it was determined that to effectively gather data and control the various component interactions, a micro-computer based control system would also allow the HVAC system to be optimized by simple changes to software. This flexibility in an untested concept helped us to achieve optimum system performance. Control ranged from direct solar heating and direct ground loop cooling modes, to assistance of the heat pump by both solar space and ground loop. Sensors were strategically placed to provide data on response of the Trombe wall (surface, 4 in. deep, 8 in. deep), and the ground loop (inlet, 3/4 length, outlet). Micro-computer hardware and computer programs were developed to make cost effective decisions between the various modes of operation. Although recent advances in micro-computer hardware make similar control systems more readily achievable utilizing standard components, attention to the decision making criteria will always be required.

Shirley, J.W.; James, L.C.; Stevens, S.; Autry, A.N.; Nussbaum, M.; MacQueen, S.V.

1983-06-22T23:59:59.000Z

202

Circle Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Circle Hot Springs Sector Geothermal energy Type Space Heating Location Fairbanks, Alaska Coordinates 64.8377778┬░, -147.7163889┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

203

Buckhorn Mineral Wells Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Buckhorn Mineral Wells Sector Geothermal energy Type Space Heating Location Mesa, Arizona Coordinates 33.4222685┬░, -111.8226402┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

204

Chico Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Chico Hot Springs Sector Geothermal energy Type Space Heating Location Pray, Montana Coordinates 45.3802143┬░, -110.6815999┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

205

Jemez Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Jemez Springs Sector Geothermal energy Type Space Heating Location Jemez Springs, New Mexico Coordinates 35.7686356┬░, -106.692258┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

206

Breitenbush Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Breitenbush Hot Springs Sector Geothermal energy Type Space Heating Location Marion County, Oregon Coordinates 44.8446393┬░, -122.5927411┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

207

Solar space and water heating system at Stanford University Central Food Services Building. Final report  

DOE Green Energy (OSTI)

This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

Not Available

1980-05-01T23:59:59.000Z

208

Utah State Prison Space Heating with Geothermal Heat - Resource Assessment Report Crystal Hot Springs Geothermal Area  

DOE Green Energy (OSTI)

Reported herein is a summary of work conducted under the Resource Assessment Program-Task 2, for the Utah State Prison Geothermal Space Heating Project at Crystal Hot Springs, Draper, Utah. Assessment of the geothermal resource in and around the Utah State Prison property began in october of 1979 with an aeromagnetic and gravity survey. These tasks were designed to provide detailed subsurface structural information in the vicinity of the thermal springs so that an informed decision as to the locations of test and production holes could be made. The geophysical reconnaissance program provided the structural details needed to focus the test drilling program on the most promising production targets available to the State Prison. The subsequent drilling and well testing program was conducted to provide information to aid fin the siting and design of a production well and preliminary design activities. As part of the resource assessment portion of the Utah State Prison Geothermal Project, a program for periodic geophysical monitoring of the Crystal Hot Springs resource was developed. The program was designed to enable determination of baseline thermal, hydraulic, and chemical characteristics in the vicinity of Crystal Hot Springs prior to production and to provide a history of these characteristics during resource development.

None

1981-12-01T23:59:59.000Z

209

Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Facility Facility Jump to: navigation, search Name Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Fairmont Hot Springs Resort Sector Geothermal energy Type Space Heating Location Fairmont, Montana Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

210

Low Temperature Direct Use Space Heating Geothermal Facilities | Open  

Open Energy Info (EERE)

Low Temperature Direct Use Space Heating Geothermal Facilities Low Temperature Direct Use Space Heating Geothermal Facilities Jump to: navigation, search Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":800,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":"Geothermal

211

Passive space heating with a self-pumping vapor system  

DOE Green Energy (OSTI)

In this system, which should be useful for space or water heating, a refrigerant is evaporated in a solar collector and condensed within thermal storage located in the building below the collector. The vapor pressure generated in the collector periodically forces the condensed liquid upward to the location of the collector. This paper reports results of an operational test, in which this system provided passive space heating for an outdoor test cell during a winter season. The daily average energy yield and the elevation of collector temperature caused by self-pumping are reported, as well as observations on failure modes, system reliability, and suggestions for a practical configuration.

Hedstrom, J.C.; Neeper, D.A.

1986-01-01T23:59:59.000Z

212

Design and technology of heat pipes for cooling and heat exchange  

SciTech Connect

This new book presents a comprehensive account of heat pipe design, technology, and operation. It is based on insights and techniques developed by the author during more than twenty years of investigating high-performance heat pipe systems. The book provides information on a unique device with the capability to transport heat isothermally at high rates with no external power input. Emphasis is on high-performance liquid metal heat pipes, although nonliquid metal heat pipes are treated, as well. The first three chapters deal with the nonmathematical background for understanding heat pipe operation and heat transport capability. Remaining chapters detail heat pipe characteristics and design methods. Of special interest are simplified equations for obtaining heat pipe heat transport limits, heat pipe heat exchangers, heat pipe transient behavior, and inverted (nonwetting) heat pipes. Operational boundaries on heat pipe temperature and heat transport rate are described, and step-by-step procedures are given for involved calculations.

Silverstein, C.C.

1992-01-01T23:59:59.000Z

213

Transient performance investigation of a space power system heat pipe  

SciTech Connect

Start-up, shut-down, and peak power tests have been conducted with a molybdenum-lithium heat pipe at temperatures to 1500 K. The heat pipe was radiation coupled to a water cooled calorimeter for the tests with rf induction heating used for the input to the evaporator region. Maximum power throughput in the tests was 36.8 kw corresponding to a power density of 23 kw/cm/sup 2/ for the 1.4 cm diameter vapor space of the annular wick heat pipe. The corresponding evaporator flux density was approximately 150 w/cm/sup 2/ over an evaporator length of 40 cm at peak power. Condenser length for the tests was approximately 3.0 m. A variable geometry radiation shield was used to vary the load on the heat pipe during the tests. Results of the tests showed that liquid depletion in the evaporator region of the heat pipe could occur in shut-down and prevent restart of the heat pipe. Changes in surface emissivity of the heat pipe condenser surface were shown to affect the shut-down and re-start limits. 12 figs.

Merrigan, M.A.; Keddy, E.S.; Sena, J.T.

1986-01-01T23:59:59.000Z

214

ISHED1: Applying the LEM Methodology to Heat Exchanger Design  

E-Print Network (OSTI)

ISHED1: Applying the LEM Methodology to Heat Exchanger Design Kenneth A. Kaufman Ryszard S. Michalski MLI 00-2 #12;2 ISHED1: APPLYING THE LEM METHODOLOGY TO HEAT EXCHANGER DESIGN Kenneth A. Kaufman-2 January 2000 #12;ISHED1: APPLYING THE LEM METHODOLOGY TO HEAT EXCHANGER DESIGN Abstract Evolutionary

Michalski, Ryszard S.

215

DESIGN OF A COMPACT HEAT EXCHANGER FOR HEAT RECUPERATION FROM A HIGH TEMPERATURE ELECTROLYSIS SYSTEM  

Science Conference Proceedings (OSTI)

Design details of a compact heat exchanger and supporting hardware for heat recuperation in a high-temperature electrolysis application are presented. The recuperative heat exchanger uses a vacuum-brazed plate-fin design and operates between 300 and 800░C. It includes corrugated inserts for enhancement of heat transfer coefficients and extended heat transfer surface area. Two recuperative heat exchangers are required per each four-stack electrolysis module. The heat exchangers are mated to a base manifold unit that distributes the inlet and outlet flows to and from the four electrolysis stacks. Results of heat exchanger design calculations and assembly details are also presented.

G. K. Housley; J.E. O'Brien; G.L. Hawkes

2008-11-01T23:59:59.000Z

216

Transient heat pipe investigations for space power systems  

SciTech Connect

A 4-meter long, high temperature, high power, molybdenum-lithium heat pipe has been fabricated and tested in transient and steady state operation at temperatures to 1500 K. Maximum power throughput during the tests was approximately 37 kW/cm/sup 2/ for the 1.4 cm diameter vapor space of the annular wick heat pipe. The evaporator flux density for the tests was 150.0 W/cm/sup 2/ over a length of 40 cm. Condenser length was approximately 3.0 m with radiant heat rejection from the condenser to a coaxial, water cooled radiation calorimeter. A variable radiation shield, controllable from the outside of the vacuum enclosure, was used to vary the load on the heat pipe during the tests. 1 ref., 9 figs.

Merrigan, M.A.; Keddy, E.S.; Sena, J.T.

1985-01-01T23:59:59.000Z

217

Space heating for office building at Glenwood Springs, Colorado  

DOE Green Energy (OSTI)

Technical assistance in a preliminary design and economic evaluation of a geothermal heating system was provided. The use of a downhole heat exchanger was evaluated, with the objective of reducing costs in this first stage of the project, but was abandoned. The low resource temperature and lack of sufficient aquifer data were the reasons for abandonment of the downhole heat exchanger concept. The use of surface plate heat exchangers was selected as the preferred approach for utilizing the geothermal resource. Brine will be passed through three plate heat exchangers in the building basement. Separate loops of clean circulating fluid will be used to extract heat from the brine in three heat exchangers, with the loops providing heat to the building, a hot tub, and a deicing system. The cooled geothermal fluid from the heat exchangers will be injected to an isolated injection zone at the bottom of the production well. Aquifer tests are required to develop final pump sizes and process flows. The information developed from the work tasks of this project is presented.

Garing, K.L.; Coury, G.E.

1982-03-01T23:59:59.000Z

218

Heat pipe cooled reactors for multi-kilowatt space power supplies  

SciTech Connect

Three nuclear reactor space power system designs are described that demonstrate how the use of high temperature heat pipes for reactor heat transport, combined with direct conversion of heat to electricity, can result in eliminating pumped heat transport loops for both primary reactor cooling and heat rejection. The result is a significant reduction in system complexity that leads to very low mass systems with high reliability, especially in the power range of 1 to 20 kWe. In addition to removing heat exchangers, electromagnetic pumps, and coolant expansion chambers, the heat pipe/direct conversion combination provides such capabilities as startup from the frozen state, automatic rejection of reactor decay heat in the event of emergency or accidental reactor shutdown, and the elimination of single point failures in the reactor cooling system. The power system designs described include a thermoelectric system that can produce 1 to 2 kWe, a bimodal modification of this system to increase its power level to 5 kWe and incorporate high temperature hydrogen propulsion capability, and a moderated thermionic reactor concept with 5 to 20 kWe power output that is based on beryllium modules that thermally couple cylindrical thermionic fuel elements (TFEs) to radiator heat pipes.

Ranken, W.A.; Houts, M.G.

1995-01-01T23:59:59.000Z

219

Maryvale Terrace: geothermal residential district space heating and cooling  

DOE Green Energy (OSTI)

A preliminary study of the technical and economic feasibility of installing a geothermal district heating and cooling system is analyzed for the Maryvale Terrace residential subdevelopment in Phoenix, Arizona, consisting of 557 residential houses. The design heating load was estimated to be 16.77 million Btu/h and the design cooling load was estimated to be 14.65 million Btu/h. Average annual energy use for the development was estimated to be 5870 million Btu/y and 14,650 million Btu/y for heating and cooling, respectively. Competing fuels are natural gas for heating and electricity for cooling. A geothermal resource is assumed to exist beneath the site at a depth of 6000 feet. Five production wells producing 1000 gpm each of 220/sup 0/F geothermal fluid are required. Total estimated cost for installing the system is $5,079,300. First year system operations cost (including debt service) is $974,361. The average annual geothermal heating and cooling cost per home is estimated to be $1750 as compared to a conventional system annual cost of $1145. Further, the cost of geothermal heating and cooling is estimated to be $47.50 per million Btu when debt service is included and $6.14 per million Btu when only operating costs are included. Operating (or fuel) costs for conventional heating and cooling are estimated to be $15.55 per million Btu.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

220

Active space heating and hot water supply with solar energy  

DOE Green Energy (OSTI)

Technical and economic assessments are given of solar water heaters, both circulating, and of air-based and liquid-based solar space heating systems. Both new and retrofit systems are considered. The technical status of flat-plate and evacuated tube collectors and of thermal storage is also covered. Non-technical factors are also briefly discussed, including the participants in the use of solar heat, incentives and deterrents. Policy implications are considered as regards acceleration of solar use, goals for solar use, means for achieving goals, and interaction of governments, suppliers, and users. Government actions are recommended. (LEW)

Karaki, S.; Loef, G. O.G.

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Liquid-fluidized-bed heat exchanger design parameters  

SciTech Connect

Liquid-fluidized-bed heat exchangers prevent scale accumulation on heat transfer surfaces and reduce the required heat transfer surface when scaling fluids, such as geothermal water, are used as the primary or working fluid. Liquid-fluidized-bed heat exchangers, principles of operation, and design parameters are described. Horizontal and vertical assemblies are discussed, including problems encountered with both designs. Bed-side heat transfer coefficients are given for limited cases, and a correlation is provided for calculating heat transfer coefficients for horizontal assemblies. A design example for a 60 kW/sub (e)/ (60 kW/sub (electric)/ preheater is included.

Allen, C.A.; Grimmett, E.S.

1978-04-01T23:59:59.000Z

222

Designing and troubleshooting plate heat exchangers  

Science Conference Proceedings (OSTI)

Since they were introduced in the 1930s, plate heat exchangers (PHE) have improved considerably, becoming both cost-effective and versatile. PHE models offer an economical alternative to the more-traditional shell-and-tube models, in a more compact size. However, to allow PHEs to achieve top efficiency and to minimize maintenance costs and downtime, design engineers must carefully consider operating conditions and potential maintenance requirements. Process engineers, in turn, must be aware of simple, but critical, troubleshooting techniques. This article will outline both specification and operating tips. The paper discusses plate depth and patterns, materials selection, gasket material, temperature and gasket life, glued or gluefree gaskets, opening the PHE, replacing the gaskets, plate inspection, closing the PHE, corrosion and erosion.

Sloan, M.D. [Alfa Laval Thermal, Inc., Richmond, VA (United States). Service Div.

1998-05-01T23:59:59.000Z

223

Ground and Water Source Heat Pump Performance and Design for Southern Climates  

E-Print Network (OSTI)

Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical or horizontal ground-coupling, an open groundwater loop, or a surface water loop. This paper discusses system performance characteristics, component selection procedures presently being used, improvements currently being considered and future possibilities for improved efficiency and reliability. Optimum designs require proper matching of the heat pump unit to the water circulation system, the building space heating/cooling load and water heating requirements. General trends resulting from system and component choices will be discussed. Water heating methods with these heat pumps will be considered.

Kavanaugh, S.

1988-01-01T23:59:59.000Z

224

On Variations of Space-heating Energy Use in Office Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

On Variations of Space-heating Energy Use in Office Buildings Title On Variations of Space-heating Energy Use in Office Buildings Publication Type Journal Article LBNL Report...

225

On the design of potential collaboration spaces  

Science Conference Proceedings (OSTI)

In this paper, we introduce the concepts of Potential and Actual Collaboration Spaces. The former applies to the initial space where opportunities for collaboration are identified and an initial interaction is established, while the latter relates to ... Keywords: Doc2U, casual and informal interactions, potential collaboration awareness, potential collaboration spaces

Alberto L. Moran; Jesus Favela; Ana M. Martinez Enriquez; Dominique Decouchant

2004-05-01T23:59:59.000Z

226

Designing, selecting and installing a residential ground-source heat pump system  

Science Conference Proceedings (OSTI)

It's a compelling proposition: Use the near-constant-temperature heat underground to heat and cool your home and heat domestic water, slashing your energy bills. Yet despite studies demonstrating significant energy savings from ground-source heat pump (GSHP) systems, their adoption has been hindered by high upfront costs. Fewer than 1% of US homes use a GSHP system. However, compared to a minimum-code-compliant conventional space-conditioning system, when properly designed and installed, a GSHP retrofit at current market prices offers simple payback of 4.3 years on national average, considering existing federal tax credits. Most people understand how air-source heat pumps work: they move heat from indoor air to outdoor air when cooling and from outdoor air to indoor air when heating. The ground-source heat pump operates on the same principle, except that it moves heat to or from the ground source instead of outdoor air. The ground source is usually a vertical or horiontal ground heat exchanger. Because the ground usually has a more favorable temperature than ambient air for the heating and cooling operation of the vapor-compression refrigeration cycle, GSHP sysems can operate with much higher energy efficiencies than air-source heat pump systems when properly designed and installed. A GSHP system used in a residual building typically provides space conditioning and hot water and comprises three major components: a water-source heat pump unit designed to operate at a wider range of entering fluid temperatures (typically from 30 F to 110 F, or 1 C to 43 C) than a conventional water-source heat pump unit; a ground heat exchanger (GHX); and distribution systems to deliver hot water to the storage tank and heating or cooling to the conditioned rooms. In most residual GSHP systems, the circulation pumps and associated valves are integrated with the heat pump to circulate the heat-carrier fluid (water or aqueous antifreeze solution) through the heat pump and the GHX. A recent assessment indicates that if 20% of US homes replaced their existing space-conditioning and water-heating systems with properly designed, installed and operated state-of-the-art GSHP systems, it would yield significant benefits each year. These include 0.8 quad British thermal units (Btu) of primary energy savings, 54.3 million metric tons of CO{sub 2} emission reductions, $10.4 billion in energy cost savings and 43.2 gigawatts of reduction in summer peak electrical demand.

Hughes, Patrick [ORNL; Liu, Xiaobing [ORNL; Munk, Jeffrey D [ORNL

2010-01-01T23:59:59.000Z

227

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Science Conference Proceedings (OSTI)

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

2012-07-01T23:59:59.000Z

228

Space Heating Trends in Prince Edward Island and Nova Scotia1 Mandeep Dhaliwal and Larry Hughes  

E-Print Network (OSTI)

in energy intensity. The residential sector uses energy for space heating, water heating, appliances Heating 60% Water Heating 21% Appliances 13% Lighting 5% Space Cooling 1% Figure 1: Residential Sector Scotia's energy policy goes one step further and supports R-2000 and Energuide for new houses (NSDOE

Hughes, Larry

229

Optimal Ground-Source Heat Pump System Design Geothermal Project...  

Open Energy Info (EERE)

design tool with a groundwater flow and heat transport modeling software allowing the modeling of vertical and pondlake loops in different climate zones and building types in the...

230

Designing, testing, and analyzing coupled, flux transformer heat.  

E-Print Network (OSTI)

??The proposed research involves designing, testing, and ics. analyzing a coupled, flux transformer heat pipe system following the patent of Oktay and Peterson (1997). Experimentsů (more)

Renzi, Kimberly Irene

2012-01-01T23:59:59.000Z

231

Space Reactor Radiation Shield Design Summary, for Information  

SciTech Connect

The purpose of this letter is to provide a summary of the Prometheus space reactor radiation shield design status at the time of program restructuring.

EC Pheil

2006-02-17T23:59:59.000Z

232

Design principles for the development of space technology maturation laboratories aboard the International Space Station  

E-Print Network (OSTI)

This thesis formulates seven design principles for the development of laboratories which utilize the International Space Station (ISS) to demonstrate the maturation of space technologies. The principles are derived from ...

Saenz Otero, Alvar, 1975-

2005-01-01T23:59:59.000Z

233

INTEGRATED DESIGN AND CONTROL OF HEAT EXCHANGER NETWORKS  

E-Print Network (OSTI)

INTEGRATED DESIGN AND CONTROL OF HEAT EXCHANGER NETWORKS #12; by Knut Wiig Mathisen A Thesis examples in their research attitudes. Truls also introduced me to heat exchanger networks, and has been have worked closely together with John Ulv├Şy on a paper on heat exchanger network synthesis

Skogestad, Sigurd

234

Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System  

E-Print Network (OSTI)

A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different outdoor temperatures are obtained, and the heating load of the manufactured space is analyzed. The relationship between the envelope internal surface temperature and the workspace temperature is also analyzed in this paper. CFD simulation software is used to simulate the temperature field and the envelope's internal surface temperature of the manufacture space with hot-air heating system. Comparison and analysis of heating loads are done between the manufactured spaces with convection heating and radiant heating systems.

Zheng, X.; Dong, Z.

2006-01-01T23:59:59.000Z

235

1-MWE heat exchangers for OTEC. Final design report  

DOE Green Energy (OSTI)

The design of a 1 MWe OTEC heat exchanger is documented, including the designs of the evaporator and associated systems, condenser, instrumentation, and materials for corrosion/erosion control and fabrication processes. (LEW)

Sprouse, A.M.

1980-06-19T23:59:59.000Z

236

Feasibility of geothermal space/water heating for Mammoth Lakes Village, California. Final report, September 1976--September 1977  

DOE Green Energy (OSTI)

Results of a study to determine the technical, economic, and environmental feasibility of geothermal district heating for Mammoth Lakes Village, California are reported. The geothermal district heating system selected is technically feasible and will use existing technology in its design and operation. District heating can provide space and water heating energy for typical customers at lower cost than alternative sources of energy. If the district heating system is investor owned, lower costs are realized after five to six years of operation, and if owned by a nonprofit organization, after zero to three years. District heating offers lower costs than alternatives much sooner in time if co-generation and/or DOE participation in system construction are included in the analysis. During a preliminary environmental assessment, no potential adverse environmental impacts could be identified of sufficient consequence to preclude the construction and operation of the proposed district heating system. A follow-on program aimed at implementing district heating in Mammoth is outlined.

Sims, A.V.; Racine, W.C.

1977-12-01T23:59:59.000Z

237

A model for improvement of water heating heat exchanger designs for residential heat pump water heaters.  

E-Print Network (OSTI)

??Heat pump water heaters are a promising technology to reduce energy use and greenhouse gas emissions. A key component is the water heating heat exchanger.ů (more)

Weerawoot, Arunwattana

2010-01-01T23:59:59.000Z

238

Preliminary design package for prototype solar heating system  

DOE Green Energy (OSTI)

A summary is given of the preliminary analysis and design activity on solar heating systems. The analysis was made without site specific ata other than weather; therefore, the results indicate performance expected under these special conditions. Major items in this report include systeem candidates, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and coolin systems for installation and operational test. Two-heating and six heating and cooling units will be delivered for Single Family Residences (SFR), Multi-Family Residences (MFR) and commercial applications.

Not Available

1978-12-01T23:59:59.000Z

239

Preliminary design package for prototype solar heating and cooling systems  

DOE Green Energy (OSTI)

A summary is presented of the preliminary analysis and design activity on solar heating and cooling systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items in this report include a market analysis, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for Single Family Residences (SFR), Multiple-Family Residences (MFR), and commerical applications.

Not Available

1978-12-01T23:59:59.000Z

240

Evaluation and demonstration of decentralized space and water heating versus centralized services for new and rehabilitated multifamily buildings. Final report  

SciTech Connect

The general objective of this research was aimed at developing sufficient technical and economic know-how to convince the building and design communities of the appropriateness and energy advantages of decentralized space and water heating for multifamily buildings. Two main goals were established to guide this research. First, the research sought to determine the cost-benefit advantages of decentralized space and water heating versus centralized systems for multifamily applications based on innovative gas piping and appliance technologies. The second goal was to ensure that this information is made available to the design community.

Belkus, P. [Foster-Miller, Inc., Waltham, MA (US); Tuluca, A. [Steven Winter Associates, Inc., Norwalk, CT (US)

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Use of hot-dry-rock geothermal resources for space heating: a case study  

DOE Green Energy (OSTI)

This study shows that a hot dry rock (HDR) geothermal space heat system proposed for the National Aeronautics and Space Administrations's Wallops Flight Center (WFC) will cost $10.9 million, saving $4.1 million over the existing oil heating system over a 30-yr lifetime. The minimal, economically feasible plan for HDR at WFC is shown to be the design of a single-fracture reservoir using a combined HDR preheat and a final oil burner after the first 4 years of operation. The WFC cost savings generalize and range from $3.1 million to $7.2 million for other HDR sites having geothermal temperature gradients ranging from 25/sup 0/C/km to 40/sup 0/C/km and depths to basement rock of 2400 ft or 5700 ft compared to the 30/sup 0/C/km and 9000 ft to basement rock at WFC.

Cummings, R.G.; Arundale, C.J.; Bivins, R.L.; Burness, H.S.; Drake, R.H.; Norton, R.D.

1982-09-01T23:59:59.000Z

242

Body-centric design space for multi-surface interaction  

Science Conference Proceedings (OSTI)

We introduce BodyScape, a body-centric design space that allows us to describe, classify and systematically compare multi-surface interaction techniques, both individually and in combination. BodyScape reflects the relationship between users and their ... Keywords: body-centric design space, multi-surface interaction

Julie Wagner; Mathieu Nancel; Sean G. Gustafson; Stephane Huot; Wendy E. Mackay

2013-04-01T23:59:59.000Z

243

Optimal Design for a Hybrid Ground-Source Heat Pump  

E-Print Network (OSTI)

Although the advantages of ground-source heat pumps over their conventional alternatives make these systems a very attractive choice for air conditioning, not only for residential buildings but increasingly also for institutional and commercial buildings, a significant barrier to wider application of this technology is a high first cost. When used in cooling-dominated buildings, ground-source heat pumps that utilize vertical, closed-loop ground heat exchangers can experience performance degradation as the entering fluid temperature to the heat pump increases over time due to heat buildup in the borefield. In these cases, it is possible to displace a large portion of the system cost by installing a supplemental heat rejecter to balance the annual heat extraction from the ground. The paper presented has shown that the heat rejection of the GLHEs and the system energy consumption are approached to discuss the ground heat balance with different design procedures and control strategies though the system simulation.

Yu, Z.; Yuan, X.; Wang, B.

2006-01-01T23:59:59.000Z

244

Space Heating and Cooling Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Supporting Equipment for Heating and Cooling Systems Addthis Related Articles Glossary of Energy-Related Terms Water Heating Basics Heating and Cooling System Support...

245

Design and operation of solar thermal heat transfer systems  

Science Conference Proceedings (OSTI)

The importance of heat transfer systems in the collection and use of solar energy is discussed. The success or failure of many solar energy systems has been determined by the design of the heat transfer system. This report includes a short summary of some of the DOE sponsored solar industrial process heat sites. From the design, construction, and operation of these systems many lessons were learned which will be important to designers and potential users of solar thermal systems. Also included is a discussion of solar collector foundation over-design that has increased the collector system costs.

Rush, E.E.

1985-01-01T23:59:59.000Z

246

"Table HC14.4 Space Heating Characteristics by West Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by West Census Region, 2005" 4 Space Heating Characteristics by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Space Heating Characteristics",,,"Mountain","Pacific" "Total",111.1,24.2,7.6,16.6 "Do Not Have Space Heating Equipment",1.2,0.7,"Q",0.7 "Have Main Space Heating Equipment",109.8,23.4,7.5,16 "Use Main Space Heating Equipment",109.1,22.9,7.4,15.4 "Have Equipment But Do Not Use It",0.8,0.6,"Q",0.5 "Main Heating Fuel and Equipment" "Natural Gas",58.2,14.7,4.6,10.1 "Central Warm-Air Furnace",44.7,11.4,4,7.4

247

"Table HC12.4 Space Heating Characteristics by Midwest Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Midwest Census Region, 2005" 4 Space Heating Characteristics by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Space Heating Characteristics",,,"East North Central","West North Central" "Total",111.1,25.6,17.7,7.9 "Do Not Have Space Heating Equipment",1.2,"Q","Q","N" "Have Main Space Heating Equipment",109.8,25.6,17.7,7.9 "Use Main Space Heating Equipment",109.1,25.6,17.7,7.9 "Have Equipment But Do Not Use It",0.8,"N","N","N" "Main Heating Fuel and Equipment"

248

Energy manager design for microgrids  

E-Print Network (OSTI)

refrigeration, space heating, water heating, and loads that can only be met by combustible Energy Manager Design

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

249

Modeling And Optimal Design Of A Central Solar Heating Plant With Heat Storage In The Ground Using Modelica  

E-Print Network (OSTI)

The paper discusses the modeling of a central solar heating plant with seasonal storage in the ground using the new object-oriented physical systems modeling language Modelica. Main emphasis is put on the hierarchical decomposition of the system model and on the re-engineering of an existing Fortran code for the ground store model. The object-oriented physical system model is compiled to a mathematical description in the form of ordinary di#erential equations #ODE#. The ODE model is used to formulate and solve nonlinear optimization problems. We show design optimization results obtained for given weather conditions in Switzerland. The heating system is designed to cover the annual load of a housing area for space heating of about 500 MWh to 95# by solar. The optimization results have been validated with the help of initial-value simulations using TRNSYS, a special-purpose simulation software for thermal energy systems.

R. Franke

1998-01-01T23:59:59.000Z

250

Building Energy Software Tools Directory: Heat Pump Design Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Pump Design Model Heat Pump Design Model Heat Pump Design Model logo. Research tool for use in the steady-state simulation and design analysis of air-to-air heat pumps and air conditioners. The program can be used with most of the newer HFC refrigerants as well as with HCFCs and CFCs. The standard vapor-compression cycle is modeled with empirical representations for compressor performance and first-principle region-by-region modeling of the heat exchangers. An online Web version is available that can be used with default configurations or with user-specified component and operating parameters for analyzing the performance of single-speed, air-to-air equipment. User configurations can be saved for later use. Parametric analyses can be made and performance trends plotted online.

251

Survey of advanced-heat-pump developments for space conditioning  

SciTech Connect

A survey of heat pump projects with special emphasis on those supported by DOE, EPRI, and the Gas Research Institute is presented. Some historical notes on heat pump development are discussed. Market and equipment trends, well water and ground-coupled heat pumps, heat-actuated heat pump development, and international interest in heat pumps are also discussed. 30 references.

Fairchild, P.D.

1981-01-01T23:59:59.000Z

252

Development and test of a space-reactor-core heat pipe  

SciTech Connect

A heat pipe designed to meet the heat transfer requirements of a 100-kW/sub e/ space nuclear power system has been developed and tested. General design requirements for the device included an operating temperature of 1500/sup 0/K with an evaporator radial flux density of 100 w/cm/sup 2/. The total heat-pipe length of 2 m comprised an evaporator length of 0.3 m, a 1.2-m adiabatic section, and a condenser length of 0.5 m. A four-artery design employing screen arteries and distribution wicks was used with lithium serving as the working fluid. Molybdenum alloys were used for the screen materials and tube shell. Hafnium and zirconium gettering materials were used in connection with a pre-purified distilled lithium charge to ensure internal chemical compatibility. After initial performance verification, the 14.1-mm i.d. heat pipe was operated at 15 kW throughput at 1500/sup 0/K for 100 hours. No performance degradation was observed during the test.

Merrigan, M.A.; Runyan, J.E.; Martinez, H.E.; Keddy, E.S.

1983-01-01T23:59:59.000Z

253

Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating  

SciTech Connect

Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

Kingston, T.; Scott, S.

2013-03-01T23:59:59.000Z

254

Introduction to solar heating and cooling design and sizing  

DOE Green Energy (OSTI)

This manual is designed to introduce the practical aspects of solar heating/cooling systems to HVAC contractors, architects, engineers, and other interested individuals. It is intended to enable readers to assess potential solar heating/cooling applications in specific geographical areas, and includes tools necessary to do a preliminary design of the system and to analyze its economic benefits. The following are included: the case for solar energy; solar radiation and weather; passive solar design; system characteristics and selection; component performance criteria; determining solar system thermal performance and economic feasibility; requirements, availability, and applications of solar heating systems; and sources of additional information. (MHR)

Not Available

1978-08-01T23:59:59.000Z

255

"Table HC13.4 Space Heating Characteristics by South Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by South Census Region, 2005" 4 Space Heating Characteristics by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Space Heating Characteristics",,,"South Atlantic","East South Central","West South Central" "Total",111.1,40.7,21.7,6.9,12.1 "Do Not Have Space Heating Equipment",1.2,"Q","Q","N","Q" "Have Main Space Heating Equipment",109.8,40.3,21.4,6.9,12 "Use Main Space Heating Equipment",109.1,40.1,21.2,6.9,12 "Have Equipment But Do Not Use It",0.8,"Q","Q","N","N"

256

INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING  

E-Print Network (OSTI)

to a typical h"ydronic solar heating system for differentlarger by the active solar heating system. its, Schiller,Klein, and J, A. Duffie, "Solar Heating Design", (New York:

Vilmer, Christian

2013-01-01T23:59:59.000Z

257

Optimal Design of Shell-and-Tube Heat Exchangers by Different Strategies of Differential Evolution  

E-Print Network (OSTI)

This paper presents the application of Differential Evolution (DE) for the optimal design of shell-and-tube heat exchangers. The main objective in any heat exchanger design is the estimation of the minimum heat transfer area required for a given heat duty, as it governs the overall cost of the heat exchanger. Lakhs of configurations are possible with various design variables such as outer diameter, pitch, and length of the tubes; tube passes; baffle spacing; baffle cut etc. Hence the design engineer needs an efficient strategy in searching for the global minimum. In the present study for the first time DE, an improved version of Genetic Algorithms (GAs), has been successfully applied with different strategies for 1,61,280 design configurations using Bells method to find the heat transfer area. In the application of DE 9680 combinations of the key parameters are considered. For comparison, GAs are also applied for the same case study with 1080 combinations of its parameters. For this optimal design problem, it is found that DE, an exceptionally simple evolution strategy, is significantly faster compared to GA and yields the global optimum for a wide range of the key parameters.

B. V. Babu; S. A. Munawar

2001-01-01T23:59:59.000Z

258

Expanded microchannel heat exchanger: design, fabrication and preliminary experimental test  

E-Print Network (OSTI)

This paper first reviews non-traditional heat exchanger geometry, laser welding, practical issues with microchannel heat exchangers, and high effectiveness heat exchangers. Existing microchannel heat exchangers have low material costs, but high manufacturing costs. This paper presents a new expanded microchannel heat exchanger design and accompanying continuous manufacturing technique for potential low-cost production. Polymer heat exchangers have the potential for high effectiveness. The paper discusses one possible joining method - a new type of laser welding named "forward conduction welding," used to fabricate the prototype. The expanded heat exchanger has the potential to have counter-flow, cross-flow, or parallel-flow configurations, be used for all types of fluids, and be made of polymers, metals, or polymer-ceramic precursors. The cost and ineffectiveness reduction may be an order of magnitude or more, saving a large fraction of primary energy. The measured effectiveness of the prototype with 28 micro...

Denkenberger, David C; Pearce, Joshua M; Zhai, John; 10.1177/0957650912442781

2012-01-01T23:59:59.000Z

259

The feasibility of retrieving nuclear heat sources from orbit with the space shuttle  

SciTech Connect

Spacecraft launched for orbital missions have a finite orbital lifetime. Current estimates for the lifetime of the nine nuclear powered U.S. satellites now in orbit range from 150 years to 10{sup 6} years. Orbital lifetime is determined primarily by altitude, solar activity, and the satellite ballistic coefficient. There is also the potential of collision with other satellites or space debris, which would reduce the lifetime in orbit. These orbiting power sources contain primarily Pu-238 and Pu-239 as the fuel material. Pu-238 has an approximate 87-year half life and so considerable amounts of daughter products are present after a few tens of years. In addition, there are minor but possibly significant amounts of impurity isotopes present with their own decay chains. Radioisotopic heat sources have been designed to evolving criteria since the first launches. Early models were designed to burn up upon reentry. Later designs were designed to reenter intact. After tens or hundreds of years in orbit, the ability of any orbiting heat source to reenter intact and impact while maintaining containment integrity is in doubt. Such ability could only be verified by design to provide protection in the case of early mission failures such as launch aborts, failure to achieve orbit, or the attainment of only a short orbit. With the development of the Space Shuttle there exists the potential ability to recover heat sources in orbit after their missions are completed. Such retrieval could allow the risk of eventual reentry burnup or impact with atmospheric dispersion and subsequent radiation doses to the public to be avoided.

Pyatt, D.W.; Englehart, R.W.

1980-01-01T23:59:59.000Z

260

Design and demonstration of heat pipe cooling for NASP and evaluation of heating methods at high heating rates  

SciTech Connect

An evaluation of two heating methods for demonstration of NASP leading edge heat pipe technology was conducted. The heating methods were and rf induction heated plasma jet and direct rf induction. Tests were conducted to determine coupling from the argon plasma jet on a surface physically similar to a heat pipe. A molybdenum tipped calorimeter was fabricated and installed in an rf induction heated plasma jet for the test. The calorimetric measurements indicated a maximum power coupling of approximately 500 W/cm{sup 2} with the rf plasma jet. The effect of change in gas composition on the heating rate was investigated using helium. An alternative to the plasma heating of a heat pipe tip, an rf concentrator was evaluated for coupling to the hemispherical tip of a heat pipe. A refractory metal heat pipe was designed, fabricated, and tested for the evaluation. The heat pipe was designed for operation at 1400 to 1900 K with power input to 1000 W/cm{sup 2} over a hemispherical nose tip. Power input of 800 W/cm{sup 2} was demonstrated using the rf concentrator. 2 refs., 13 figs.

Merrigan, M.A.; Sena, J.T.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

How to solve materials and design problems in solar heating and cooling. Energy technology review No. 77  

SciTech Connect

A broad range of difficulties encountered in active and passive solar space heating systems and active solar space cooling systems is covered. The problems include design errors, installation mistakes, inadequate durability of materials, unacceptable reliability of components, and wide variations in performance and operation of different solar systems. Feedback from designers and manufacturers involved in the solar market is summarized. The designers' experiences with and criticisms of solar components are presented, followed by the manufacturers' replies to the various problems encountered. Information is presented on the performance and operation of solar heating and cooling systems so as to enable future designs to maximize performance and eliminate costly errors. (LEW)

Ward, D.S.; Oberoi, H.S.; Weinstein, S.D.

1982-01-01T23:59:59.000Z

262

How to solve materials and design problems in solar heating and cooling. Energy technology review No. 77  

DOE Green Energy (OSTI)

A broad range of difficulties encountered in active and passive solar space heating systems and active solar space cooling systems is covered. The problems include design errors, installation mistakes, inadequate durability of materials, unacceptable reliability of components, and wide variations in performance and operation of different solar systems. Feedback from designers and manufacturers involved in the solar market is summarized. The designers' experiences with and criticisms of solar components are presented, followed by the manufacturers' replies to the various problems encountered. Information is presented on the performance and operation of solar heating and cooling systems so as to enable future designs to maximize performance and eliminate costly errors. (LEW)

Ward, D.S.; Oberoi, H.S.; Weinstein, S.D.

1982-01-01T23:59:59.000Z

263

Air-Source Heat Pumps for Residential and Light Commercial Space Conditioning Applications  

Science Conference Proceedings (OSTI)

This technology brief provides the latest information on current and emerging air-source heat pump technologies for space heating and space cooling of residential and light commercial buildings. Air-source heat pumps provide important options that can reduce ownership costs while reducing noise and enhancing reliability and customer comfort. The tech brief also describes new air-source heat pumps with an important load shaping and demand response option.

2008-12-15T23:59:59.000Z

264

Focus on Energy - Commercial Solar Space-Heating Grant (WPS Customers...  

Open Energy Info (EERE)

Summary Focus on Energy (FOE) and Wisconsin Public Service (WPS) are partnering to offer solar space-heating grants for feasibility studies and installations. Commercial projects...

265

Modeling Space Heating Demand in Massachusettsĺ Housing Stock and the Implications for Climate Change Mitigation Policy.  

E-Print Network (OSTI)

??This research examines variation in average household energy consumption for space heating in municipalities in Massachusetts in order to explore the magnitude of variation amongů (more)

Robinson, Nathan H.

2011-01-01T23:59:59.000Z

266

Table SH2. Total Households by Space Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Space Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: ... Electricity Natural Gas Fuel Oil Kerosene LPG Other

267

Table SH5. Total Expenditures for Space Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Space Heating Fuel 4 (millions) Fuel Oil U.S. Households ... 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Natural Gas

268

"Table HC4.4 Space Heating Characteristics by Renter-Occupied...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption Survey. " " Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables" "Table HC4.4 Space Heating...

269

Table SH3. Total Consumption for Space Heating by Major Fuels Used ...  

U.S. Energy Information Administration (EIA)

Natural Gas (billion cf) Major Fuels Used 4 (physical units) Table SH3. Total Consumption for Space Heating by Major Fuels Used, 2005 Physical Units

270

"Table HC11.4 Space Heating Characteristics by Northeast Census...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption Survey. " " Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables" "Table HC11.4 Space Heating...

271

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents (OSTI)

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

Jardine, D.M.

1983-03-22T23:59:59.000Z

272

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents (OSTI)

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

Jardine, Douglas M. (Colorado Springs, CO)

1983-01-01T23:59:59.000Z

273

"Table HC7.5 Space Heating Usage Indicators by Household Income, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Household Income, 2005" 5 Space Heating Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Space Heating Usage Indicators" "Total U.S. Housing Units",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Do Not Have Heating Equipment",1.2,0.5,0.3,0.2,"Q",0.2,0.3,0.6 "Have Space Heating Equipment",109.8,26.2,28.5,20.4,13,21.8,16.3,37.9 "Use Space Heating Equipment",109.1,25.9,28.1,20.3,12.9,21.8,16,37.3

274

Design and demonstration of a high-temperature, deployable, membrane heat-pipe radiator element  

SciTech Connect

Demonstration of a high-temperature, deployable, membrane heat-pipe radiator element has been conducted. Membrane heat pipes offer the potential for compact storage, ease of transportation, self-deployment, and a high specific radiator performance (kg/kW) for use in thermal reflection systems of space nuclear power plants. A demonstration heat pipe 8-cm wide and 100-cm long was fabricated. The heat pipe containment and wick structure were made of stainless steel and sodium used as the working fluid. The tests demonstrated passive deployment of the high-temperature membrane radiator, simulating a single segment in a flat array, at a temperature of 800 K. Details of test procedures and results of the tests are presented in this paper together with a discussion of the design and development of a full-scale, segmented high-temperature, deployable membrane heat pipe. 5 refs., 7 figs.

Trujillo, V.L.; Keddy, E.S.; Merrigan, M.A.

1989-01-01T23:59:59.000Z

275

Solar heating and cooling of residential buildings: design of systems, 1980 edition  

SciTech Connect

This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

None

1980-09-01T23:59:59.000Z

276

Performance Analysis of Potassium Heat Pipes Radiator for HP-STMCs Space Reactor Power System  

SciTech Connect

A detailed design and performance results of C-C finned, and armored potassium heat pipes radiator for a 110 kWe Heat Pipes-Segmented Thermoelectric Module Converters (HP-STMCs) Space Reactor Power system (SRPS) are presented. The radiator consists of two sections; each serves an equal number of STMCs and has 162 longitudinal potassium heat pipes with 0.508 mm thick C-C fins. The width of the C-C fins at the minor diameter of the radiator is almost zero, but increases with distance along the radiator to reach 3.7 cm at the radiator's major diameter. The radiator's heat pipes (OD = 2.42 cm in front and 3.03 cm in rear) have thin titanium (0.0762 mm thick) liners and wicks (0.20 mm thick with an effective pore radius of 12-16 {mu}m) and a 1.016 mm thick C-C wall. The wick is separated from the titanium liner by a 0.4 mm annulus filled with liquid potassium to increase the capillary limit. The outer surfaces of the heat pipes in the front and rear sections of the radiator are protected with a C-C armor that is 2.17 mm and 1.70 mm thick, respectively. The inside surface of the heat pipes in the front radiator is thermally insulated while the C-C finned condensers of the rear heat pipes are exposed, radiating into space through the rear opening of the radiator cavity. The heat pipes in both the front and the rear radiators have a 1.5 m long evaporator section and each dissipates 4.47 kW while operating at 43.6% of the prevailing sonic limit. The front and rear radiator sections are 5.29 m and 2.61 m long with outer surface area and mass of 47.1 m2 and 314.3 kg, and 39.9 m2 and 243.2 kg, respectively. The total radiator is 7.63 m long and has minor and major diameters of 1.48 m and 5.57 m, respectively, and a total surface area of 87 m2; however, the effective radiator area, after accounting for heat rejection through the rear of the radiator cavity, is 98.8 m2. The radiator's total mass including the C-C armor is 557.5 kg and the specific area and specific mass are 6.41 kg/m2 and 5.07 kg/kWe, respectively.

El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM, 87131 (United States); Chemical and Nuclear Engineering Dept., University of New Mexico, Albuquerque, NM, 87131 (United States)

2004-02-04T23:59:59.000Z

277

Informing the practice of ground heat exchanger design through numerical simulations.  

E-Print Network (OSTI)

??Closed-loop ground source heat pumps (GSHPs) are used to transfer thermal energy between the subsurface and conditioned spaces for heating and cooling applications. A basiců (more)

Haslam, Simon R.

2013-01-01T23:59:59.000Z

278

Energy Model Development and Heating Energy Investigation of the Nested Thermal Envelope Design (NTED (tm)).  

E-Print Network (OSTI)

??Space heating accounts for approximately 60% of residential energy use in Canada. Minimizing envelope heat losses is one approach to reducing this percentage. Preliminary researchů (more)

DIxon, Erin Elizabeth

2010-01-01T23:59:59.000Z

279

Utah State Prison Space Heating with Geothermal Heat Third Semi-Annual Report for the Period January 1981 - July 1981  

DOE Green Energy (OSTI)

Facing certain cost overruns and lacking information about the long term productivity of the Crystal Hot Springs geothermal resource, costs of construction for the geothermal retrofit, and the method of disposal of geothermal waste water, the Energy Office embarked on a strategy that would enable the project participants to develop accurate cost information on the State Prison Space Heating Program through the completion of Task 5-Construction. The strategy called for: (1) Completion of the resource assessment to determine whether test well USP/TH-1 could be used as a production well. If well USP/TH-1 was found to have sufficient production capacity, money would not have to be expended on drilling another production well. (2) Evaluation of disposal alternatives and estimation of the cost of each alternative. There was no contingency in the original budget to provide for a reinjection disposal system. Cooperative agreement DE EC07-ET27027 indicated that if a disposal system requiring reinjection was selected for funding that task would be negotiated with DOE and the budget amended accordingly. (3) Completion of the preliminary engineering and design work. Included in this task was a thorough net present value cash flow analysis and an assessment of the technical feasibility of a system retrofit given the production characteristics of well USP/TH-1 . In addition, completion of the preliminary design would provide cost estimates for the construction and commissioning of the minimum security geothermal space heating system. With this information accurate costs for each task would be available, allowing the Energy Office to develop strategies to optimize the use of money in the existing budget to ensure completion of the program. Reported herein is a summary of the work towards the completion of these three objectives conducted during the period of January 1981 through June 1981.

None

1981-11-01T23:59:59.000Z

280

Interactive design of urban spaces using geometrical and behavioral modeling  

Science Conference Proceedings (OSTI)

The main contribution of our work is in closing the loop between behavioral and geometrical modeling of cities. Editing of urban design variables is performed intuitively and visually using a graphical user interface. Any design variable can be constrained ... Keywords: 3D models, editing, interactive, urban spaces

Carlos A. Vanegas; Daniel G. Aliaga; Bed?ich BeneÜ; Paul A. Waddell

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Aesthetic intelligence: designing smart and beautiful architectural spaces  

Science Conference Proceedings (OSTI)

This paper reports on the first international workshop on Aesthetic Intelligence. The focus of the workshop is on the relevance of beauty and aesthetic values for Ambient Intelligence and the meaning of aesthetically pleasing design for usability, technology ... Keywords: aesthetics, ambient intelligence, architecture, design, smart spaces, ubiquitous computing, urban informatics

Kai Kasugai; Carsten R÷cker; Bert Bongers; Daniela Plewe; Christian Dimmer

2011-11-01T23:59:59.000Z

282

An exact methodology for scheduling in a 3D design space  

Science Conference Proceedings (OSTI)

Abstract: This paper describes an exact solution methodology, implemented in Rensselaer's Voyager design space exploration system, for solving the scheduling problem in a 3-dimensional (3D) design space: the usual 2D design space (which trades off area ... Keywords: 2D design space, 3D design space, 3D scheduling problem, Voyager design space exploration system, candidate clock lengths, clock length, clocks, globally optimal solution, high level synthesis, network synthesis, optimisation, schedule length, scheduling, search problems, search space pruning, three dimensional scheduling, three-dimensional design space, tight bounds, two dimensional design space

Samit Chaudhuri; Stephen A. Blythe; Robert A. Walker

1995-09-01T23:59:59.000Z

283

Development of a coal fired pulse combustor for residential space heating. Phase I, Final report  

SciTech Connect

This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

NONE

1988-04-01T23:59:59.000Z

284

Space heating systems in the Northwest: energy usage and cost analysis  

DOE Green Energy (OSTI)

The question of energy usage and cost of providing space heat in the Northwest is discussed. Though space heating needs represents only 18% of the U.S.'s total energy consumption, it nevertheless appears to offer the greatest potential for conservation and near term applications of alternate energy sources. Efficiency and economic feasibility factors are considered in providing for space heating demands. These criteria are presented to establish energy usage, cost effectiveness and beneficial conservation practices for space heating of residential, commercial, and industrial buildings. Four Northwestern cities have been chosen whose wide range of climate conditions are used to formulate the seasonal fuel and capital cost and hence the annual heating cost covering a broad spectrum of heating applications, both the traditional methods, the newer alternate forms of energy, and various methods to achieve more efficient utilization of all types.

Keller, J.G.; Kunze, J.F.

1976-01-01T23:59:59.000Z

285

Space heating systems in the Northwest: energy usage and cost analysis  

SciTech Connect

The question of energy usage and cost of providing space heat in the Northwest is discussed. Though space heating needs represents only 18% of the U.S.'s total energy consumption, it nevertheless appears to offer the greatest potential for conservation and near term applications of alternate energy sources. Efficiency and economic feasibility factors are considered in providing for space heating demands. These criteria are presented to establish energy usage, cost effectiveness and beneficial conservation practices for space heating of residential, commercial, and industrial buildings. Four Northwestern cities have been chosen whose wide range of climate conditions are used to formulate the seasonal fuel and capital cost and hence the annual heating cost covering a broad spectrum of heating applications, both the traditional methods, the newer alternate forms of energy, and various methods to achieve more efficient utilization of all types.

Keller, J.G.; Kunze, J.F.

1976-01-01T23:59:59.000Z

286

Irregular spacing of heat sources for treating hydrocarbon containing formations  

SciTech Connect

A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

Miller, David Scott (Katy, TX); Uwechue, Uzo Philip (Houston, TX)

2012-06-12T23:59:59.000Z

287

Direct utilization of geothermal energy for space and water heating at Marlin, Texas. Final report  

DOE Green Energy (OSTI)

The Torbett-Hutchings-Smith Memorial Hospital geothermal heating project, which is one of nineteen direct-use geothermal projects funded principally by DOE, is documented. The five-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessments; well drilling and completion; system design, construction, and monitoring; economic analyses; public awareness programs; materials testing; and environmental monitoring. Some of the project conclusions are that: (1) the 155/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private-sector economic incentives currently exist, especially for profit-making organizations, to develop and use this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, poultry dressing, natural cheese making, fruit and vegetable dehydrating, soft-drink bottling, synthetic-rubber manufacturing, and furniture manufacturing; (4) high maintenance costs arising from the geofluid's scaling and corrosion tendencies can be avoided through proper analysis and design; (5) a production system which uses a variable-frequency drive system to control production rate is an attractive means of conserving parasitic pumping power, controlling production rate to match heating demand, conserving the geothermal resource, and minimizing environmental impacts.

Conover, M.F.; Green, T.F.; Keeney, R.C.; Ellis, P.F. II; Davis, R.J.; Wallace, R.C.; Blood, F.B.

1983-05-01T23:59:59.000Z

288

Analysis of the performance and space-conditioning impacts of dedicated heat-pump water heaters  

SciTech Connect

A description is given of the development and testing of the newly-marketed dedicated heat pump water heater (HPWH), and an analysis is presented of its performance and space conditioning impacts. This system utilizes an air-to-water heat pump, costs about $1000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests. Since a HPWH is usually installed indoors and extracts heat from the air, its operation is a space conditioning benefit if an air conditioning load exists and a penalty if a space heating load exists. To investigate HPWH performance and a space conditioning impacts, a simulation has been developed to model the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics are adapted for three US geographical areas (Madison, Wisconsin; Washington, DC; and Ft. Worth, Texas), and the system is simulated for a year with typical weather data. For each city, HPWH COPs are calculated monthly and yearly. In addition, the water heating and space conditioning energy requirements of HPWH operation are compared with those of resistance water heater operation to determine the relative performance ratio (RPR) of the HPWH. The annual simulated RPRs range from 1.5 to 1.7, which indicate a substantial space heating penalty of HPWH operation in these cities.

Morrison, L.; Swisher, J.

1980-12-01T23:59:59.000Z

289

An Aerodynamic Design Technique For Optimizing Fan Blade Spacing  

E-Print Network (OSTI)

INTRODUCTION Aerodynamic shape optimization involves designing the most efficient shapes of bodies that move through fluids. An optimization algorithm perturbs the shape of an airfoil until it finds the shape which best exhibits a given design objective. For an inverse design technique, this objective is a prescribed aerodynamic distribution, usually the surface pressure distribution. Liebeck pressure distributions [1], for example, have been demonstrated to generate airfoils with high lift to drag ratios. When designing fans, consideration must be given not only to the shape of the fan blades, but also to the distance separating the fan blades. This spacing is defined by the pitch/chord ratio t/l, where the pitch, t, is the distance between fan blades, and the chord, l, is the length of each fan blade. In this work, an inverse algorithm is developed, then used to design fan blade shapes and to find the optimal blade spacing.

T. Rogalsky; R.W. Derksen; Rt N; Rt N; S. Kocabiyik

1999-01-01T23:59:59.000Z

290

Space Nuclear Power Plant Pre-Conceptual Design Report, For Information  

Science Conference Proceedings (OSTI)

This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

B. Levine

2006-01-27T23:59:59.000Z

291

Integrated heat pipe-thermal storage design for a solar receiver. [Constant power source with heat from sun or from storage  

SciTech Connect

Light-weight heat pipe wall elements that incorporate a thermal storage subassembly within the vapor space are being developed as part of the Organic Rankine Cycle Solar Dynamic Power Systems (ORC-SDPS) receiver for the space station application. The operating temperature of he heat pipe elements is in the 770 to 810/sup 0/K range with a design power throughput of 4.8 kW per pipe. The total heat pipe length is 1.9 M. The Rankine cycle boiler heat transfer surfaces are positioned within the heat pipe vapor space, providing a relatively constant temperature input to the vaporizer. The heat pipe design employs axial arteries and distribution wicked thermal storage units with potassium as the working fluid. Stainless steel is used as the containment tube and screen material. Performance predictions for this configuration have been conducted and the design characterized as a function of artery geometry, distribution wick thickness, porosity, pore size, and permeability. Details of the analysis and of fabrication and assembly procedures are presented. 2 refs., 8 figs.

Keddy, E.S.; Sena, J.T.; Woloshun, K.; Merrigan, M.A.; Heidenreich, G.

1986-01-01T23:59:59.000Z

292

Design Approach and Performance Analysis of a Small Integrated Heat Pump (IHP) for Net Zero Energy Homes (ZEH)  

SciTech Connect

This paper describes the design and performance analysis of a variable-capacity heat pump system developed for a small [1800ft2 (167 m2)] prototype net ZEH with an average design cooling load of 1.25 tons (4.4 kW) in five selected US climates. The heat pump integrates space heating and cooling, water heating, ventilation, and humidity control (humidification and dehumidification) functions into a single integrated heat pump (IHP) unit. The design approach uses one small variable-capacity compressor to meet all the above functions in an energy efficient manner. Modal performance comparisons to an earlier IHP product are shown relative to the proposed new design for net ZEH application. The annual performance analysis approach using TRNSYS in conjunction with the ORNL Heat Pump Design Model is discussed. Annual performance projections for a range of locations are compared to those of a base system consisting of separate pieces of equipment to perform the same functions. The ZEH IHP is projected to reduce energy use for space heating & cooling, water heating, dehumidification, and ventilation for a net ZEH by about 50% compared to that of the base system.

Rice, C Keith [ORNL; Murphy, Richard W [ORNL; Baxter, Van D [ORNL

2008-01-01T23:59:59.000Z

293

Assessment of next generation nuclear plant intermediate heat exchanger design.  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP), which is an advanced high temperature gas reactor (HTGR) concept with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 900-1000 C. In the indirect cycle system, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, nitrogen/helium mixture, or a molten salt. The system concept for the vary high temperature reactor (VHTR) can be a reactor based on the prismatic block of the GT-MHR developed by a consortium led by General Atomics in the U.S. or based on the PBMR design developed by ESKOM of South Africa and British Nuclear Fuels of U.K. This report has made an assessment on the issues pertaining to the intermediate heat exchanger (IHX) for the NGNP. A detailed thermal hydraulic analysis, using models developed at ANL, was performed to calculate heat transfer, temperature distribution, and pressure drop. Two IHX designs namely, shell and straight tube and compact heat exchangers were considered in an earlier assessment. Helical coil heat exchangers were analyzed in the current report and the results were compared with the performance features of designs from industry. In addition, a comparative analysis is presented between the shell and straight tube, helical, and printed circuit heat exchangers from the standpoint of heat exchanger volume, primary and secondary sides pressure drop, and number of tubes. The IHX being a high temperature component, probably needs to be designed using ASME Code Section III, Subsection NH, assuming that the IHX will be classified as a class 1 component. With input from thermal hydraulic calculations performed at ANL, thermal conduction and stress analyses were performed for the helical heat exchanger design and the results were compared with earlier-developed results on shell and straight tube and printed circuit heat exchangers.

Majumdar, S.; Moisseytsev, A.; Natesan, K.; Nuclear Engineering Division

2008-10-17T23:59:59.000Z

294

Energy Basics: Solar Air Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes & Buildings Printable Version Share this resource Lighting & Daylighting Passive Solar Design Space Heating & Cooling Cooling Systems Heating Systems Furnaces & Boilers Wood...

295

Energy Basics: Solar Liquid Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes & Buildings Printable Version Share this resource Lighting & Daylighting Passive Solar Design Space Heating & Cooling Cooling Systems Heating Systems Furnaces & Boilers Wood...

296

"Table B21. Space-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Space-Heating Energy Sources, Floorspace, 1999" 1. Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",67338,61612,32291,37902,5611,5534,2728,945 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,2651,3250,598,"Q",469,"Q" "5,001 to 10,000 ..............",8238,7090,2808,4613,573,"Q",688,"Q" "10,001 to 25,000 .............",11153,9865,5079,6069,773,307,682,"Q"

297

"Table B23. Primary Space-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Primary Space-Heating Energy Sources, Floorspace, 1999" 3. Primary Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Primary Space-Heating Energy Source Useda" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ................",67338,61602,17627,32729,3719,5077 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,1567,3080,482,"Q" "5,001 to 10,000 ..............",8238,7090,1496,4292,557,"Q" "10,001 to 25,000 .............",11153,9865,3035,5320,597,232 "25,001 to 50,000 .............",9311,8565,2866,4416,486,577

298

Heat exchanger design: why guess a design fouling factor when it can be optimized  

DOE Green Energy (OSTI)

A new general surface heat exchanger design relationship is derived that uniquely relates the optimum design fouling resistance and the optimum design heat transfer coefficient with the ratio of cleaning cost to capital plus operating costs, at the optimum design condition. Implementation of this simple result to practical problems in design, however, requires numerical techniques. A new shell and tube heat exchanger design program, SIZEHX, is applied to a problem of current interest to confirm the derivation. SIZEHX can cost effectively perform single-step, multiparameter cost optimizations on single phase or supercritical exchanger arrays with variable fluid properties and arbitrary linear fouling for single-pass, segmentally baffled shell-and-tube configurations for a variety of fluid pairs, including hydrocarbon mixtures. The economic influence of several general design parameters on a geothermal exchanger are presented in the form of 3-D computer generated plots.

Pope, W.L.; Pines, H.S.; Fulton, R.L.; Doyle, P.A.

1978-06-01T23:59:59.000Z

299

Optimization as a Driver for Design Space Exploration  

E-Print Network (OSTI)

This paper describes an approach toward the use of optimization which is a departure from the traditional role optimization plays in the design process. Traditionally, optimization is used to improve point solutions in the latter phases of design. In this work, optimization is used as an aid for design space exploration, through the integration of optimization and iterative design. Two applications of the concept of optimization-driven design are given: CAD tools for HVAC layout and an assembly design framework. 1 INTRODUCTION The use of optimization in design is becoming increasingly prevalent in industry today. This is due to a variety of factors, including a marketplace that imposes greater competitive pressures to produce higher-quality products at lower costs while reducing product development times, as well as more powerful computer hardware and new optimization techniques, both of which allow the application of optimization to problems where it was not previously possible. Whi...

Simon Szykman Manufacturing; Simon Szykman

1997-01-01T23:59:59.000Z

300

Analysis of space heating and domestic hot water systems for energy-efficient residential buildings  

DOE Green Energy (OSTI)

An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

Dennehy, G

1983-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Design of Crude Oil Pre-Heat Trains  

E-Print Network (OSTI)

Pre-heat trains differ from most other heat recovery networks in a number of important ways. Combination of factors gives rise to the need for a design procedure specific to pre-heat trains. Outlining these factors, we first observe that one cold stream (the incoming crude) dominates the heat demand. We next observe that the heat recovery comes from streams a number of streams having similar temperature spans. Looking at typical Composite Curves (Figure 1) we observe that rather than the presence of a distinct and clear 'pinch point', the curves are close together over quite a large temperature region. Consideration of the process leads to the observation that the heating is undertaking in three distinct stages: storage to desalter, desalter to preflash and preflash to column. The operating temperature of both desalter and preflash can only be varied over a relatively small temperature span. Finally, we see that fouling is an important consideration. At the hot end of the train, this fouling is affected by velocity and by exchanger wall temperature. Consideration of fouling must be incorporated into the design procedure.

Polley, G. T.; Yeap, B. L.; Wilson, D. I.; Panjeh Shahi, M. H.

2002-04-01T23:59:59.000Z

302

Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool  

Science Conference Proceedings (OSTI)

Geothermal heat pumps, sometimes called ground-source heat pumps (GSHPs), have been proven capable of significantly reducing energy use and peak demand in buildings. Conventional equipment for controlling the temperature and humidity of a building, or supplying hot water and fresh outdoor air, must exchange energy (or heat) with the building's outdoor environment. Equipment using the ground as a heat source and heat sink consumes less non-renewable energy (electricity and fossil fuels) because the earth is cooler than outdoor air in summer and warmer in winter. The most important barrier to rapid growth of the GSHP industry is high first cost of GSHP systems to consumers. The most common GSHP system utilizes a closed-loop ground heat exchanger. This type of GSHP system can be used almost anywhere. There is reason to believe that reducing the cost of closed-loop systems is the strategy that would achieve the greatest energy savings with GSHP technology. The cost premium of closed-loop GSHP systems over conventional space conditioning and water heating systems is primarily associated with drilling boreholes or excavating trenches, installing vertical or horizontal ground heat exchangers, and backfilling the excavations. This project investigates reducing the cost of horizontal closed-loop ground heat exchangers by installing them in the construction excavations, augmented when necessary with additional trenches. This approach applies only to new construction of residential and light commercial buildings or additions to such buildings. In the business-as-usual scenario, construction excavations are not used for the horizontal ground heat exchanger (HGHX); instead the HGHX is installed entirely in trenches dug specifically for that purpose. The potential cost savings comes from using the construction excavations for the installation of ground heat exchangers, thereby minimizing the need and expense of digging additional trenches. The term foundation heat exchanger (FHX) has been coined to refer exclusively to ground heat exchangers installed in the overcut around the basement walls. The primary technical challenge undertaken by this project was the development and validation of energy performance models and design tools for FHX. In terms of performance modeling and design, ground heat exchangers in other construction excavations (e.g., utility trenches) are no different from conventional HGHX, and models and design tools for HGHX already exist. This project successfully developed and validated energy performance models and design tools so that FHX or hybrid FHX/HGHX systems can be engineered with confidence, enabling this technology to be applied in residential and light commercial buildings. The validated energy performance model also addresses and solves another problem, the longstanding inadequacy in the way ground-building thermal interaction is represented in building energy models, whether or not there is a ground heat exchanger nearby. Two side-by-side, three-level, unoccupied research houses with walkout basements, identical 3,700 ft{sup 2} floor plans, and hybrid FHX/HGHX systems were constructed to provide validation data sets for the energy performance model and design tool. The envelopes of both houses are very energy efficient and airtight, and the HERS ratings of the homes are 44 and 45 respectively. Both houses are mechanically ventilated with energy recovery ventilators, with space conditioning provided by water-to-air heat pumps with 2 ton nominal capacities. Separate water-to-water heat pumps with 1.5 ton nominal capacities were used for water heating. In these unoccupied research houses, human impact on energy use (hot water draw, etc.) is simulated to match the national average. At House 1 the hybrid FHX/HGHX system was installed in 300 linear feet of excavation, and 60% of that was construction excavation (needed to construct the home). At House 2 the hybrid FHX/HGHX system was installed in 360 feet of excavation, 50% of which was construction excavation. There are six pipes in all excavations (three par

Hughes, Patrick [ORNL; Im, Piljae [ORNL

2012-01-01T23:59:59.000Z

303

INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING  

E-Print Network (OSTI)

and Duffie [17], the fan give 185 % of the design heat loadfan coil heating system sized at 130 % of design load tofan coil output power of 32 kW (110 kBtu/hr), or about three times the design

Vilmer, Christian

2013-01-01T23:59:59.000Z

304

Lodging Industry Solutions: Heating and Cooling Space Conditioning Technology Guidebook  

Science Conference Proceedings (OSTI)

This guidebook provides utility representatives with a tool to help understand the lodging industry and its space conditioning needs and options. It also provides information to help build and maintain customer loyalty. The guidebook will enable utility personnel to provide additional services to their lodging clients by informing them of space conditioning choices and solutions for their facilities.

1998-12-18T23:59:59.000Z

305

Horizontal Heat Exchanger Design and Analysis for Passive Heat Removal Systems  

Science Conference Proceedings (OSTI)

This report describes a three-year project to investigate the major factors of horizontal heat exchanger performance in passive containment heat removal from a light water reactor following a design basis accident LOCA (Loss of Coolant Accident). The heat exchanger studied in this work may be used in advanced and innovative reactors, in which passive heat removal systems are adopted to improve safety and reliability The application of horizontal tube-bundle condensers to passive containment heat removal is new. In order to show the feasibility of horizontal heat exchangers for passive containment cooling, the following aspects were investigated: 1. the condensation heat transfer characteristics when the incoming fluid contains noncondensable gases 2. the effectiveness of condensate draining in the horizontal orientation 3. the conditions that may lead to unstable condenser operation or highly degraded performance 4. multi-tube behavior with the associated secondary-side effects This project consisted of two experimental investigations and analytical model development for incorporation into industry safety codes such as TRAC and RELAP. A physical understanding of the flow and heat transfer phenomena was obtained and reflected in the analysis models. Two gradute students (one funded by the program) and seven undergraduate students obtained research experience as a part of this program.

Vierow, Karen

2005-08-29T23:59:59.000Z

306

Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility Facility Hi-Tech Fisheries Sector Geothermal energy Type Space Heating Location Bluffdale, Utah Coordinates 40.4896711┬░, -111.9388244┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

307

City of Twenty-Nine Palms Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Twenty-Nine Palms Space Heating Low Temperature Geothermal Facility Facility City of Twenty-Nine Palms Sector Geothermal energy Type Space Heating Location Twenty-Nine Palms, California Coordinates 34.1355582┬░, -116.0541689┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

308

Hot Lake RV Park Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Park Space Heating Low Temperature Geothermal Facility Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Lake RV Park Space Heating Low Temperature Geothermal Facility Facility Hot Lake RV Park Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122┬░, -118.0410627┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

309

Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility Facility Reno-Moana Area (300) Sector Geothermal energy Type Space Heating Location Reno, Nevada Coordinates 39.5296329┬░, -119.8138027┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

310

Analysis and numerical optimization of gas turbine space power systems with nuclear fission reactor heat sources  

Science Conference Proceedings (OSTI)

A new three objective optimization technique is developed and applied to find the operating conditions for fission reactor heated Closed Cycle Gas Turbine (CCGT) space power systems at which maximum efficiency, minimum radiator area, and minimum total ...

Albert J. Juhasz / Jerzy Sawicki

2005-01-01T23:59:59.000Z

311

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households by Household Income, 2001 RSE Column Factor: Total 2001 Household Income Below Poverty

312

Table CE2-7e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-7e. Space-Heating Energy Expenditures in U.S. Households by Four Most Populated States, 2001 RSE Column Factor: Total U.S. Four Most Populated States

313

Applying Learnable Evolution Model to Heat Exchanger Design  

E-Print Network (OSTI)

A new approach to evolutionary computation, called Learnable Evolution Model (LEM), has been applied to the problem of optimizing tube structures of heat exchangers. In contrast to conventional Darwiniantype evolutionary computation algorithms that use various forms of mutation and/or recombination operators, LEM employs machine learning to guide the process of generating new individuals. A system, ISHED1, based on LEM, automatically searches for the highest capacity heat exchangers under given technical and environmental constraints. The results of experiments have been highly promising, often producing solutions exceeding the best human designs.

Kenneth A. Kaufman; Ryszard S. Michalski

2000-01-01T23:59:59.000Z

314

Solar space- and water-heating system at Stanford University. Final report  

DOE Green Energy (OSTI)

Application of an active hydronic domestic hot water and space heating solar system for the Central Food Services Building is discussed. The closed-loop drain-back system is described as offering dependability of gravity drain-back freeze protection, low maintenance, minimal costs, and simplicity. The system features an 840 square-foot collector and storage capacity of 1550 gallons. The acceptance testing and the predicted system performance data are briefly described. Solar performance calculations were performed using a computer design program (FCHART). Bidding, costs, and economics of the system are reviewed. Problems are discussed and solutions and recommendations given. An operation and maintenance manual is given in Appendix A, and Appendix B presents As-built Drawings. (MCW)

Not Available

1980-05-01T23:59:59.000Z

315

Table HC6.5 Space Heating Usage Indicators by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Number of Household Members, 2005 5 Space Heating Usage Indicators by Number of Household Members, 2005 Total U.S. Housing Units.................................. 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Heating Equipment..................... 1.2 0.3 0.3 Q 0.2 0.2 Have Space Heating Equipment....................... 109.8 29.7 34.5 18.2 15.6 11.8 Use Space Heating Equipment........................ 109.1 29.5 34.4 18.1 15.5 11.6 Have But Do Not Use Equipment.................... 0.8 Q Q Q Q Q Space Heating Usage During 2005 Heated Floorspace (Square Feet) None............................................................ 3.6 1.0 0.8 0.5 0.5 0.7 1 to 499........................................................ 6.1 3.0 1.6 0.6 0.6 0.3 500 to 999.................................................... 27.7 11.6 8.3 3.6 2.7 1.6 1,000 to 1,499..............................................

316

Modeling and analysis of a heat transport transient test facility for space nuclear systems.  

E-Print Network (OSTI)

??The purpose of this thesis is to design a robust test facility for a small space nuclear power system and model its physical behavior underů (more)

[No author

2013-01-01T23:59:59.000Z

317

Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools  

E-Print Network (OSTI)

internal cavities the heat transfer process is more complex,heat transfer in these ôinsulatedö zones could be used in the design process

Gustavsen, Arild

2009-01-01T23:59:59.000Z

318

Design goals for advanced heat pumps: Engineering economics methodology: Final report  

SciTech Connect

An advanced heat pump (AHP) could make significant improvements in both the seasonal efficiency and peak power demand characteristics of all-electric equipment for space heating and cooling and water heating in residential and small commercial buildings. At the same time, however, the initial cost premium of an AHP must be low enough to make it a competitive offering in the heating and cooling marketplace of the 1990's. An essential step in the research and development process is the evaluation of the economic benefits of alternative AHP candidates. A present, residential electric rates do not provide an adequate basis for measuring such benefits in terms of actual resource utilization, especially with regard to power demand. For this reason, incremental electricity supply costs are developed in this report for typical utilities in different regions of the United States. These costs include both energy and demand charges on an hourly basis. A methodology is established to estimate the hourly kWh consumption of air-source heat pump systems with and without integrated water heating capability and to determine the annual operating cost of these systems based on the incremental electricity supply costs. Alternative design approaches for an AHP are evaluated in this analytical framework in order to determine the cost effectiveness of each approach in each region. Based on a preliminary analysis of a limited number of design alternatives, an air-source heat pump with an Energy Efficiency Ratio at 95/sup 0/F of 11.0 Btu/Wh, with integrated water heating, and in some regions, an adjustable-speed compressor, appears to be the most economic candidate for an AHP.

Petersen, S.R.

1987-06-01T23:59:59.000Z

319

"Table HC10.5 Space Heating Usage Indicators by U.S. Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by U.S. Census Region, 2005" 5 Space Heating Usage Indicators by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Space Heating Usage Indicators",,"Northeast","Midwest","South","West" "Total U.S. Housing Units",111.1,20.6,25.6,40.7,24.2 "Do Not Have Heating Equipment",1.2,"Q","Q","Q",0.7 "Have Space Heating Equipment",109.8,20.5,25.6,40.3,23.4 "Use Space Heating Equipment",109.1,20.5,25.6,40.1,22.9 "Have But Do Not Use Equipment",0.8,"N","N","Q",0.6 "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

320

"Table HC8.5 Space Heating Usage Indicators by Urban/Rural Location, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Urban/Rural Location, 2005" 5 Space Heating Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Space Heating Usage Indicators",,"City","Town","Suburbs","Rural" "Total U.S. Housing Units",111.1,47.1,19,22.7,22.3 "Do Not Have Heating Equipment",1.2,0.7,"Q",0.2,"Q" "Have Space Heating Equipment",109.8,46.3,18.9,22.5,22.1 "Use Space Heating Equipment",109.1,45.6,18.8,22.5,22.1 "Have But Do Not Use Equipment",0.8,0.7,"Q","N","N" "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

"Table HC15.5 Space Heating Usage Indicators by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Four Most Populated States, 2005" 5 Space Heating Usage Indicators by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"U.S. Housing Units (millions)","Four Most Populated States" "Space Heating Usage Indicators",,"New York","Florida","Texas","California" "Total U.S. Housing Units",111.1,7.1,7,8,12.1 "Do Not Have Heating Equipment",1.2,"Q","Q","Q",0.2 "Have Space Heating Equipment",109.8,7.1,6.8,7.9,11.9 "Use Space Heating Equipment",109.1,7.1,6.6,7.9,11.4 "Have But Do Not Use Equipment",0.8,"N","Q","N",0.5 "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

322

Operation and design of selected industrial process heat field tests  

DOE Green Energy (OSTI)

The DOE program of solar industrial process heat field tests has shown solar energy to be compatible with numerous industrial needs. Both the operational projects and the detailed designs of systems that are not yet operational have resulted in valuable insights into design and hardware practice. Typical of these insights are the experiences discussed for the four projects reviewed. Future solar IPH systems should benefit greatly not only from the availability of present information, but also from the wealth of operating experience from projects due to start up in 1981.

Kearney, D. W.

1981-02-01T23:59:59.000Z

323

Design of a tube bank waste heat reclaimer for residential heating systems  

SciTech Connect

Forced convection tube bank heat reclaimers are analyzed in detail for residential natural gas and oil-fired furnaces that are controlled by natural draft. Optimum reclaimer designs are obtained based on improved system efficiency, and considerations regarding manufacturing costs. Each reclaimer meets safety restrictions regarding allowable system pressure losses and minimum chimney gas temperatures. Reclaimer size and overall weight are also considered. Computer-generated solutions aid in determining heat recovery as a function of furnace fuel, furnace efficiency, ambient temperature, flue pipe size, and chimney height. The analysis considers a range of furnace efficiencies from 50 to 80%, and ambient temperatures from 0 to 60/sup 0/F, which are values considered typical for most domestic combustion heating equipment. Flue pipe sizes range from 4 to 6 inches in diameter and are 2 to 4 feet long. Chimney sizes range from 5 to 7 inches in equivalent diameter and include draft heights from 15 to 35 feet. The piping sizes correspond to furnace input capacities ranging from 50,000 to 170,000 Btu/h. For many domestic heating systems, the potential exists to recover the lost heat by as much as 30%, and to reduce fuel costs by as much as 15% by installing a flue pipe heat reclaimer.

Gretsinger, K.M.; Elias, T.I.

1987-01-01T23:59:59.000Z

324

A Prototype Roof Deck Designed to Self-Regulate Deck Temperature and Reduce Heat Transfer  

SciTech Connect

A prototype roof and attic assembly exploits the use of radiation, convection and insulation controls to reduce the heat transfer penetrating its roof deck by almost 85% of the heat transfer crossing a conventional roof and attic assembly. The assembly exhibited attic air temperatures that did not exceed the peak day outdoor ambient temperature. The design includes a passive ventilation scheme that pulls air from the soffit and attic into an inclined air space above the deck. The design complies with fire protection codes because the air intake is internal and closed to the elements. Field data were benchmarked against an attic computer tool and simulations made for new and retrofit home constructions in hot, moderate and cold climates to access economics for the assembly.

Miller, William A [ORNL

2011-01-01T23:59:59.000Z

325

A Prototype Roof Deck Designed to Self-Regulate Deck Temperature and Reduce Heat Transfer  

Science Conference Proceedings (OSTI)

A prototype roof and attic assembly exploits the use of radiation, convection and insulation controls to reduce its peak day heat transfer by almost 85 percent of the heat transfer crossing a conventional roof and attic assembly. The assembly exhibits attic air temperatures that do not exceed the maximum daily outdoor ambient temperature. The design includes a passive ventilation scheme that pulls air from the soffit and attic into an inclined air space above the roof deck. The design complies with fire protection codes because the air intake is internal and closed to the elements. Field data were benchmarked against an attic computer tool and simulations made for new and retrofit constructions in hot, moderate and cold climates to gauge the cost of energy savings and potential payback.

Miller, William A [ORNL

2011-01-01T23:59:59.000Z

326

Table HC4.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005 .4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Space Heating Equipment....... 1.2 0.6 Q Q Q 0.3 Q Have Main Space Heating Equipment.......... 109.8 32.3 8.0 3.3 5.8 14.1 1.1 Use Main Space Heating Equipment............ 109.1 31.8 8.0 3.2 5.6 13.9 1.1 Have Equipment But Do Not Use It.............. 0.8 0.5 N Q Q Q Q Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 16.4 4.5 2.1 3.2 6.2 0.3 Central Warm-Air Furnace........................ 44.7 10.0 3.3 1.4 1.6 3.3 0.3 For One Housing Unit........................... 42.9 8.6 3.3 1.2 1.4 2.4 0.3 For Two Housing Units..........................

327

Table HC6.4 Space Heating Characteristics by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Number of Household Members, 2005 4 Space Heating Characteristics by Number of Household Members, 2005 Total..................................................................... 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Space Heating Equipment............ 1.2 0.3 0.3 Q 0.2 0.2 Have Main Space Heating Equipment............... 109.8 29.7 34.5 18.2 15.6 11.8 Use Main Space Heating Equipment................. 109.1 29.5 34.4 18.1 15.5 11.6 Have Equipment But Do Not Use It................... 0.8 Q Q Q Q Q Main Heating Fuel and Equipment Natural Gas....................................................... 58.2 15.6 18.0 9.5 8.4 6.7 Central Warm-Air Furnace............................. 44.7 10.7 14.3 7.6 6.9 5.2 For One Housing Unit................................ 42.9 10.1 13.8 7.3 6.5 5.2 For Two Housing Units...............................

328

Estimation of heat load in waste tanks using average vapor space temperatures  

SciTech Connect

This report describes a method for estimating the total heat load in a high-level waste tank with passive ventilation. This method relates the total heat load in the tank to the vapor space temperature and the depth of waste in the tank. Q{sub total} = C{sub f} (T{sub vapor space {minus}} T{sub air}) where: C{sub f} = Conversion factor = (R{sub o}k{sub soil}{sup *}area)/(z{sub tank} {minus} z{sub surface}); R{sub o} = Ratio of total heat load to heat out the top of the tank (function of waste height); Area = cross sectional area of the tank; k{sub soil} = thermal conductivity of soil; (z{sub tank} {minus} z{sub surface}) = effective depth of soil covering the top of tank; and (T{sub vapor space} {minus} T{sub air}) = mean temperature difference between vapor space and the ambient air at the surface. Three terms -- depth, area and ratio -- can be developed from geometrical considerations. The temperature difference is measured for each individual tank. The remaining term, the thermal conductivity, is estimated from the time-dependent component of the temperature signals coming from the periodic oscillations in the vapor space temperatures. Finally, using this equation, the total heat load for each of the ferrocyanide Watch List tanks is estimated. This provides a consistent way to rank ferrocyanide tanks according to heat load.

Crowe, R.D.; Kummerer, M.; Postma, A.K.

1993-12-01T23:59:59.000Z

329

Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 .4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Space Heating Equipment....... 1.2 0.6 0.3 N Q Q Q Have Main Space Heating Equipment.......... 109.8 77.5 63.7 4.2 1.8 2.2 5.6 Use Main Space Heating Equipment............ 109.1 77.2 63.6 4.2 1.8 2.1 5.6 Have Equipment But Do Not Use It.............. 0.8 0.3 Q N Q Q Q Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 41.8 35.3 2.8 1.2 1.0 1.6 Central Warm-Air Furnace........................ 44.7 34.8 29.7 2.3 0.7 0.6 1.4 For One Housing Unit........................... 42.9 34.3 29.5 2.3 0.6 0.6 1.4 For Two Housing Units..........................

330

Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions  

Science Conference Proceedings (OSTI)

In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

331

System for thermal energy storage, space heating and cooling and power conversion  

DOE Patents (OSTI)

An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

Gruen, Dieter M. (Downers Grove, IL); Fields, Paul R. (Chicago, IL)

1981-04-21T23:59:59.000Z

332

Problems with specifying Tmin in design of processes with heat exchangers  

E-Print Network (OSTI)

Problems with specifying Tmin in design of processes with heat exchangers J├Şrgen Bauck Jensen case studies. Keywords: Tmin, vapour compression cycle, heat exchanger, design. 1 Introduction simple and common approach for design of processes with heat exchangers, especially at an early design

Skogestad, Sigurd

333

"Table HC12.5 Space Heating Usage Indicators by Midwest Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Midwest Census Region, 2005" 5 Space Heating Usage Indicators by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Space Heating Usage Indicators",,,"East North Central","West North Central" "Total U.S. Housing Units",111.1,25.6,17.7,7.9 "Do Not Have Heating Equipment",1.2,"Q","Q","N" "Have Space Heating Equipment",109.8,25.6,17.7,7.9 "Use Space Heating Equipment",109.1,25.6,17.7,7.9 "Have But Do Not Use Equipment",0.8,"N","N","N" "Space Heating Usage During 2005"

334

"Table HC15.4 Space Heating Characteristics by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Four Most Populated States, 2005" 4 Space Heating Characteristics by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Space Heating Characteristics",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Do Not Have Space Heating Equipment",1.2,"Q","Q","Q",0.2 "Have Main Space Heating Equipment",109.8,7.1,6.8,7.9,11.9 "Use Main Space Heating Equipment",109.1,7.1,6.6,7.9,11.4 "Have Equipment But Do Not Use It",0.8,"N","Q","N",0.5 "Main Heating Fuel and Equipment" "Natural Gas",58.2,3.8,0.4,3.8,8.4

335

"Table HC11.5 Space Heating Usage Indicators by Northeast Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Northeast Census Region, 2005" 5 Space Heating Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Space Heating Usage Indicators",,,"Middle Atlantic","New England" "Total U.S. Housing Units",111.1,20.6,15.1,5.5 "Do Not Have Heating Equipment",1.2,"Q","Q","Q" "Have Space Heating Equipment",109.8,20.5,15.1,5.4 "Use Space Heating Equipment",109.1,20.5,15.1,5.4 "Have But Do Not Use Equipment",0.8,"N","N","N" "Space Heating Usage During 2005"

336

"Table HC10.4 Space Heating Characteristics by U.S. Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by U.S. Census Region, 2005" 4 Space Heating Characteristics by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Space Heating Characteristics",,"Northeast","Midwest","South","West" "Total",111.1,20.6,25.6,40.7,24.2 "Do Not Have Space Heating Equipment",1.2,"Q","Q","Q",0.7 "Have Main Space Heating Equipment",109.8,20.5,25.6,40.3,23.4 "Use Main Space Heating Equipment",109.1,20.5,25.6,40.1,22.9 "Have Equipment But Do Not Use It",0.8,"N","N","Q",0.6 "Main Heating Fuel and Equipment" "Natural Gas",58.2,11.4,18.4,13.6,14.7

337

Analysis of community solar systems for combined space and domestic hot water heating using annual cycle thermal energy storage  

DOE Green Energy (OSTI)

A simplified design procedure is examined for estimating the storage capacity and collector area for annual-cycle-storage, community solar heating systems in which 100% of the annual space heating energy demand is provided from the solar source for the typical meteorological year. Hourly computer simulations of the performance of these systems were carried out for 10 cities in the United States for 3 different building types and 4 community sizes. These permitted the use of design values for evaluation of a more simplified system sizing method. Results of this study show a strong correlation between annual collector efficiency and two major, location-specific, annual weather parameters: the mean air temperature during daylignt hours and the total global insolation on the collector surface. Storage capacity correlates well with the net winter load, which is a measure of the seasonal variation in the total load, a correlation which appears to be independent of collector type.

Hooper, F.C.; McClenahan, J.D.; Cook, J.D.; Baylin, F.; Monte, R.; Sillman, S.

1980-01-01T23:59:59.000Z

338

SPACE-R Thermionic Space Nuclear Power System: Design and Technology Demonstration Program. Semiannual technical progress report for period ending March 1993  

Science Conference Proceedings (OSTI)

This Semiannual Technical Progress Report summarizes the technical progress and accomplishments for the Thermionic Space Nuclear Power System (TI-SNPS) Design and Technology Demonstration Program of the Prime Contractor, Space Power Incorporated (SPI), its subcontractors and supporting National Laboratories during the first half of the Government Fiscal Year (GFY) 1993. SPI`s subcontractors and supporting National Laboratories include: Babcock & Wilcox for the reactor core and externals; Space Systems/Loral for the spacecraft integration; Thermocore for the radiator heat pipes and the heat exchanger; INERTEK of CIS for the TFE, core elements and nuclear tests; Argonne National Laboratories for nuclear safety, physics and control verification; and Oak Ridge National laboratories for materials testing. Parametric trade studies are near completion. However, technical input from INERTEK has yet to be provided to determine some of the baseline design configurations. The INERTEK subcontract is expected to be initiated soon. The Point Design task has been initiated. The thermionic fuel element (TFE) is undergoing several design iterations. The reactor core vessel analysis and design has also been started.

Not Available

1993-05-01T23:59:59.000Z

339

Solar-assisted heat pump system for cost-effective space heating and cooling  

DOE Green Energy (OSTI)

The use of heat pumps for the utilization of solar energy is studied. Two requirements for a cost-effective system are identified: (1) a special heat pump whose coefficient of performance continues to rise with source temperature over the entire range appropriate for solar assist, and (2) a low-cost collection and storage subsystem able to supply solar energy to the heat pump efficiently at low temperatures. Programs leading to the development of these components are discussed. A solar assisted heat pump system using these components is simulated via a computer, and the results of the simulation are used as the basis for a cost comparison of the proposed system with other solar and conventional systems.

Andrews, J W; Kush, E A; Metz, P D

1978-03-01T23:59:59.000Z

340

Design, fabrication, and characterization of a multi-condenser loop heat pipe  

E-Print Network (OSTI)

A condenser design was characterized for a multi-condenser loop heat pipe (LHP) capable of dissipating 1000 W. The LHP was designed for integration into a high performance aircooled heat sink to address thermal management ...

Hanks, Daniel Frank

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Thermal performance and economics of solar space and hot water heating system on Long Island, New York. [F-chart method  

DOE Green Energy (OSTI)

A practical method for designing solar space and water heating systems, called the ''f-chart'' method, is described with the results calculated for Long Island, New York. The solar heating systems to be considered consist of a solar collector which uses either liquid or air, an energy storage which can be either a water tank or a pebble bed, and an auxiliary energy source which supplies heat when solar energy is not available. Solar heated water from storage can be used either for space heating or for preheating the domestic hot water. The results of the ''f-chart'' analysis can simply be expressed as follows. For the thermal performance, Annual Load Fraction Supplied by Solar Energy versus Collector Area, and for the economic performance, Life Cycle Cost Savings versus Collector Area.

Auh, P C

1978-06-01T23:59:59.000Z

342

HECDOR: a heat exchanger cost and design optimization routine  

DOE Green Energy (OSTI)

An update is presented on a series of four computer codes developed by the Bureau of Mines. The programs were developed to evaluate design parameters and cost of heat exchangers. The major differences in three of the programs were concerned with pumping costs; the first (N = 1) used both fluids, the second (N = 2) used tube side fluid, and the third (N = 3) used shell side fluid as a base for prime parameters. All three assumed no change in phase. The fourth program (N = 4) assumed a change of phase on the shell side.

Turner, S.E.; Madsen, W.W.

1977-04-01T23:59:59.000Z

343

Performance of active solar space-heating systems, 1980-1981 heating season  

DOE Green Energy (OSTI)

Data are provided on 32 solar heating sites in the National Solar Data Network (NSDN). Of these, comprehensive data are included for 14 sites which cover a range of system types and solar applications. A brief description of the remaining sites is included along with system problems experienced which prevented comprehensive seasonal analyses. Tables and discussions of individual site parameters such as collector areas, storage tank sizes, manufacturers, building dimensions, etc. are provided. Tables and summaries of 1980-1981 heating season data are also provided. Analysis results are presented in graphic form to highlight key summary information. Performance indices are graphed for two major groups of collectors - liquid and air. Comparative results of multiple NSDN systems' operation for the 1980-1981 heating season are summarized with discussions of specific cases and conclusions which may be drawn from the data. (LEW)

Welch, K.; Kendall, P.; Pakkala, P.; Cramer, M.

1981-01-01T23:59:59.000Z

344

Heat conductivity in small quantum systems: Kubo formula in Liouville space  

E-Print Network (OSTI)

We consider chains consisting of several identical subsystems weakly coupled by various types of next neighbor interactions. At both ends the chain is coupled to a respective heat bath with different temperature modeled by a Lindblad formalism. The temperature gradient introduced by this environment is then treated as an external perturbation. We propose a method to evaluate the heat current and the local temperature profile of the resulting stationary state as well as the heat conductivity in such systems. This method is similar to Kubo techniques used e.g. for electrical transport but extended here to the Liouville space.

Mathias Michel; Jochen Gemmer; Guenter Mahler

2005-03-22T23:59:59.000Z

345

Foundation Heat Exchanger Model and Design Tool Development and Validation  

E-Print Network (OSTI)

. Feasibility of foundation heat exchangers in ground source heat pump systems in the United States. ASHRAE systems, with an estimated 1.7 million installed units with total installed heating capacity on the order Heat Exchangers for Residential Ground Source Heat Pump Systems - Numerical Modeling and Experimental

346

Interaction of a solar space heating system with the thermal behavior of a building  

DOE Green Energy (OSTI)

The thermal behavior of a building in response to heat input from an active solar space heating system is analyzed to determine the effect of the variable storage tank temperature on the cycling rate, on-time, and off-time of a heating cycle and on the comfort characteristics of room air temperature swing and of offset of the average air temperature from the setpoint (droop). A simple model of a residential building, a fan coil heat-delivery system, and a bimetal thermostat are used to describe the system. A computer simulation of the system behavior has been developed and verified by comparisons with predictions from previous studies. The system model and simulation are then applied to determine the building response to a typical hydronic solar heating system for different solar storage temperatures, outdoor temperatures, and fan coil sizes. The simulations were run only for those cases where there was sufficient energy from storage to meet the building load requirements.

Vilmer, C.; Warren, M.L.; Auslander, D.

1980-12-01T23:59:59.000Z

347

Geothermal space/water heating for City of Mammoth Lakes, California. Draft final report  

DOE Green Energy (OSTI)

The results of a study to determine the technical, economic and environmental feasibility of geothermal district heating for Mammoth Lakes Village, California are presented. The geothermal district heating system selected is technically feasible and uses existing technology in its design and operation. During a preliminary environmental assessment, no potential adverse environmental impacts could be identified of sufficient consequence to preclude the construction and operation of the proposed district heating system. A follow-on program aimed at implementing district heating in Mammoth is outlined.

Sims, A.V.; Racine, W.C.

1977-09-01T23:59:59.000Z

348

Heat Exchanger Design for Solar Gas-Turbine Power Plant.  

E-Print Network (OSTI)

?? The aim of this project is to select appropriate heat exchangers out of available gas-gas heat exchangers for used in a proposed power plant.ů (more)

Yakah, Noah

2012-01-01T23:59:59.000Z

349

A solar thermal cooling and heating system for a building: Experimental and model based performance analysis and design  

Science Conference Proceedings (OSTI)

A solar thermal cooling and heating system at Carnegie Mellon University was studied through its design, installation, modeling, and evaluation to deal with the question of how solar energy might most effectively be used in supplying energy for the operation of a building. This solar cooling and heating system incorporates 52 m{sup 2} of linear parabolic trough solar collectors; a 16 kW double effect, water-lithium bromide (LiBr) absorption chiller, and a heat recovery heat exchanger with their circulation pumps and control valves. It generates chilled and heated water, dependent on the season, for space cooling and heating. This system is the smallest high temperature solar cooling system in the world. Till now, only this system of the kind has been successfully operated for more than one year. Performance of the system has been tested and the measured data were used to verify system performance models developed in the TRaNsient SYstem Simulation program (TRNSYS). On the basis of the installed solar system, base case performance models were programmed; and then they were modified and extended to investigate measures for improving system performance. The measures included changes in the area and orientation of the solar collectors, the inclusion of thermal storage in the system, changes in the pipe diameter and length, and various system operational control strategies. It was found that this solar thermal system could potentially supply 39% of cooling and 20% of heating energy for this building space in Pittsburgh, PA, if it included a properly sized storage tank and short, low diameter connecting pipes. Guidelines for the design and operation of an efficient and effective solar cooling and heating system for a given building space have been provided. (author)

Qu, Ming [School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051 (United States); Yin, Hongxi [School of Engineering Education, Purdue University, 701 W. Stadium Ave., West Lafayette, IN 47907-2061 (United States); Archer, David H. [Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 (United States)

2010-02-15T23:59:59.000Z

350

Analysis of selected surface characteristics and latent heat storage for passive solar space heating  

DOE Green Energy (OSTI)

Results are presented of an analysis of the value of various technical improvements in the solar collector and thermal storage subsystems of passive solar residential, agricultural, and industrial systems for two regions of the country. The evaluated improvements are: decreased emissivity and increased absorptivity of absorbing surfaces, decreased reflectivity, and decreased emissivity of glazing surface, and the substitution of sensible heat storage media with phase change materials. The value of each improvement is estimated by the additional energy savings resulting from the improvement.

Fthenakis, V.; Leigh, R.

1981-12-01T23:59:59.000Z

351

Heat Exchanger Network Targeting, Design and Analysis: The MIDAS Package  

E-Print Network (OSTI)

Recent work to consolidate pinch-based procedures for targeting, design and analysis of heat exchanger networks (HENs) has focused on the production of powerful, user-friendly software. Advanced optimization techniques, such as mixed integer non-linear programming, have been added to established pinch procedures to increase the power of these techniques, enabling users to generate optimized HENs in an interactive computational environment. Additional procedures for improved HEN area targeting and retrofit network modifications have also been developed. Within ICI these developments (along with several others) have been incorporated in the MIDAS software package. This paper outlines some of the technical developments that have taken place to make this possible and illustrates some of the capabilities of the new software.

Barton, I.; Jones, D. H.; Smith, G. J.

1987-09-01T23:59:59.000Z

352

Development of a Software Design Tool for Hybrid Solar-Geothermal Heat Pump  

Open Energy Info (EERE)

Software Design Tool for Hybrid Solar-Geothermal Heat Pump Software Design Tool for Hybrid Solar-Geothermal Heat Pump Systems in Heating- and Cooling-Dominated Buildings Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of a Software Design Tool for Hybrid Solar-Geothermal Heat Pump Systems in Heating- and Cooling-Dominated Buildings Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 2: Data Gathering and Analysis Project Description In heating-dominated buildings, the proposed design approach takes advantage of glazed solar collectors to effectively balance the annual thermal loads on the ground with renewable solar energy. In cooling-dominated climates, the design approach takes advantage of relatively low-cost, unglazed solar collectors as the heat rejecting component.

353

TF Inner Leg Space Allocation for Pilot Plant Design Studies  

SciTech Connect

A critical design feature of any tokamak is the space taken up by the inner leg of the toroidal field (TF) coil. The radial build needed for the TF inner leg, along with shield thickness , size of the central solenoid and plasma minor radius set the major radius of the machine. The cost of the tokamak core roughly scales with the cube of the major radius. Small reductions in the TF build can have a big impact on the overall cost of the reactor. The cross section of the TF inner leg must structurally support the centering force and that portion of the vertical separating force that is not supported by the outer structures. In this paper, the TF inner leg equatorial plane cross sections are considered. Out-of- Plane (OOP) forces must also be supported, but these are largest away from the equatorial plane, in the inner upper and lower corners and outboard sections of the TF coil. OOP forces are taken by structures that are not closely coupled with the radial build of the central column at the equatorial plane. The "Vertical Access AT Pilot Plant" currently under consideration at PPPL is used as a starting point for the structural, field and current requirements. Other TF structural concepts are considered. Most are drawn from existing designs such as ITER's circular conduits in radial plates bearing on a heavy nose section, and TPX's square conduits in a case, Each of these concepts can rely on full wedging, or partial wedging. Vaulted TF coils are considered as are those with some component of bucking against a central solenoid or bucking post. With the expectation that the pilot plant will be a steady state machine, a static stress criteria is used for all the concepts. The coils are assumed to be superconducting, with the superconductor not contributing to the structural strength. Limit analysis is employed to assess the degree of conservatism in the static criteria as it is applied to a linear elastic stress analysis. TF concepts, and in particular the PPPL AT PILOT plate concept are evaluated based on amount of space needed for structure and the amount of space left for superconductor.

Peter H. Titus and Ali Zolfaghari

2012-09-06T23:59:59.000Z

354

Non-Space Heating Electrical Consumption in Manufactured Homes: Residential Construction Demonstration Project Cycle II : Final Report.  

SciTech Connect

This report summarizes submeter data of the non-space heating electrical energy use in a sample of manufactured homes. These homes were built to Super Good Cents insulation standards in 1988 and 1989 under the auspices of RCDP Cycle 2 of the Bonneville Power Administration. They were designed to incorporate innovations in insulation and manufacturing techniques developed to encourage energy conservation in this important housing type. Domestic water heating (DWH) and other non-space heat energy consumption, however, were not generally affected by RCDP specifications. The purpose of this study is to establish a baseline for energy conservation in these areas and to present a method for estimating total energy saving benefits associated with these end uses. The information used in this summary was drawn from occupant-read submeters and manufacturersupplied specifications of building shell components, appliances and water heaters. Information was also drawn from a field review of ventilation systems and building characteristics. The occupant survey included a census of appliances and occupant behavior in these manufactured homes. A total of 150 manufactured homes were built under this program by eight manufacturers. An additional 35 homes were recruited as a control group. Of the original 185 houses, approximately 150 had some usable submeter data for domestic hot water and 126 had usable submeter data for all other nonheating consumption. These samples were used as the basis for all consumption analysis. The energy use characteristics of these manufactured homes were compared with that of a similar sample of RCDP site-built homes. In general, the manufactured homes were somewhat smaller and had fewer occupants than the site-built homes. The degree to which seasonal variations were present in non-space heat uses was reviewed.

Onisko, Stephen A.; Roos, Carolyn; Baylon, David

1993-06-01T23:59:59.000Z

355

School of Architecture, Design and the Built Environment Delta T optimisation of district heating network  

E-Print Network (OSTI)

School of Architecture, Design and the Built Environment Delta T optimisation of district heating of any network. Most existing district heating systems work at small (10-15 C) delta T. Although for the conventional and optimised design of the district heating network. The network operation will be simulated

Evans, Paul

356

"Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005" 4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Space Heating Equipment",1.2,0.6,0.3,"N","Q","Q","Q" "Have Main Space Heating Equipment",109.8,77.5,63.7,4.2,1.8,2.2,5.6

357

Effects of Pin Detached Space on Heat Transfer and Pin-Fin Arrays  

Science Conference Proceedings (OSTI)

Heat transfer and pressure characteristics in a rectangular channel with pin-fin arrays of partial detachment from one of the endwalls have been experimentally studied. The overall channel geometry (W?=?76.2 mm, E?=?25.4 mm) simulates an internal cooling passage of wide aspect ratio (3:1) in a gas turbine airfoil. With a given pin diameter, D?=?6.35 mm?=?╝E, three different pin-fin height-to-diameter ratios, H/D?=?4, 3, and 2, were examined. Each of these three cases corresponds to a specific pin array geometry of detachment spacing (C) between the pin tip and one of the endwalls, i.e., C/D?=?0, 1, 2, respectively. The Reynolds number, based on the hydraulic diameter of the unobstructed cross-section and the mean bulk velocity, ranges from 10,000 to 25,000. The experiment employs a hybrid technique based on transient liquid crystal imaging to obtain the distributions of the local heat transfer coefficient over all of the participating surfaces, including the endwalls and all the pin elements. Experimental results reveal that the presence of a detached space between the pin tip and the endwall has a significant effect on the convective heat transfer and pressure loss in the channel. The presence of pin-to-endwall spacing promotes wall-flow interaction, generates additional separated shear layers, and augments turbulent transport. In general, an increase in detached spacing, or C/D, leads to lower heat transfer enhancement and pressure drop. However, C/D?=?1, i.e., H/D?=?3, of a staggered array configuration exhibits the highest heat transfer enhancement, followed by the cases of C/D?=?0 and C/D?=?2, i.e., H/D?=?4 or 2, respectively.

Siw, Sin C.; Chyu, Minking K.; Shih, Tom I-P.; Alvin, Mary Anne

2012-08-01T23:59:59.000Z

358

Design of compact intermediate heat exchangers for gas cooled fast reactors  

E-Print Network (OSTI)

Two aspects of an intermediate heat exchanger (IHX) for GFR service have been investigated: (1) the intrinsic characteristics of the proposed compact printed circuit heat exchanger (PCHE); and (2) a specific design optimizing ...

Gezelius, Knut, 1978-

2004-01-01T23:59:59.000Z

359

Design and construction of the NMSU Geothermally Heated Greenhouse Research Facility: Final technical report  

SciTech Connect

This report describes the design, construction, and performance of the New Mexico State University (NMSU) Geothermal Greenhouse Research Facility. Two 6000-square-foot greenhouses were built on the NMSU campus and supplied with geothermal energy for heating. The geothermal water is pumped from one of three wells producing water at temperatures from 141/degree/F to 148/degree/F. Heat is delivered to the greenhouse space by means of overhead fan-coil unit heaters. The two greenhouses are double-glazed on roof and wall surfaces employing a total of four different film materials: Tedlar/Reg Sign/, Melinex/Reg Sign/, Softglass/Reg Sign/, and Agrifilm/Reg Sign/. One greenhouse is cooled using a traditional fan and pad cooling system. The second greenhouse is cooled with a high-pressure fog system and natural ventilation through roof and side vents. A 2400-square-foot metal building next to the greenhouses provides office, work, and storage space for the facility. The greenhouse facility was leased to two commerical tenants who produced a variety of crops. The performance of the greenhouses was monitored and reported both qualitatively and quantitatively. Results from the tenant's pilot-scale studies in the NMSU greenhouse facility were transferred and applied to two commercial greenhouse ranges that were built in southern New Mexico during 1986/87. 9 figs., 5 tabs.

Schoenmackers, R.

1988-11-01T23:59:59.000Z

360

Design and construction of the NMSU Geothermally Heated Greenhouse Research Facility: Final technical report  

DOE Green Energy (OSTI)

This report describes the design, construction, and performance of the New Mexico State University (NMSU) Geothermal Greenhouse Research Facility. Two 6000-square-foot greenhouses were built on the NMSU campus and supplied with geothermal energy for heating. The geothermal water is pumped from one of three wells producing water at temperatures from 141/degree/F to 148/degree/F. Heat is delivered to the greenhouse space by means of overhead fan-coil unit heaters. The two greenhouses are double-glazed on roof and wall surfaces employing a total of four different film materials: Tedlar/Reg Sign/, Melinex/Reg Sign/, Softglass/Reg Sign/, and Agrifilm/Reg Sign/. One greenhouse is cooled using a traditional fan and pad cooling system. The second greenhouse is cooled with a high-pressure fog system and natural ventilation through roof and side vents. A 2400-square-foot metal building next to the greenhouses provides office, work, and storage space for the facility. The greenhouse facility was leased to two commerical tenants who produced a variety of crops. The performance of the greenhouses was monitored and reported both qualitatively and quantitatively. Results from the tenant's pilot-scale studies in the NMSU greenhouse facility were transferred and applied to two commercial greenhouse ranges that were built in southern New Mexico during 1986/87. 9 figs., 5 tabs.

Schoenmackers, R.

1988-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application  

E-Print Network (OSTI)

Based on an experimental residential retrofit incorporating thermal storage, and extensive subsequent modeling, a commercial design was developed and implemented to use hot thermal storage to significantly reduce electric demand and utility energy costs during the cooling season as well as the heating season. To achieve air conditioning savings, the system separates dehumidification from sensible cooling; dehumidifies by desiccant absorption, using heat from storage to dry the desiccant; and then cools at an elevated temperature improving overall system efficiency. Efficient heat for desiccant regeneration is provided by a selective-energy system coupled with thermal storage. The selective-energy system incorporates diesel cogeneration, solar energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility energy for refrigeration; 10 to 20% in refrigeration equipment; and space savings due to smaller ductwork and equipment.

Meckler, G.

1985-01-01T23:59:59.000Z

362

Restaurateur designs and installs passive solar heating/cooling system  

SciTech Connect

An example of the use of passive solar heating and cooling systems by a Wisconsin restaurateur is discussed. The greenhouse effect is used on three sides of the restaurant's exterior walls. A dozen water-to-air electric heat pumps handle the restaurant's heating and cooling chores. The system doesn't require any fossil fuel for heating or cooling.

1983-04-01T23:59:59.000Z

363

Modelling and computation for designs of multistage heat exchanger systems  

Science Conference Proceedings (OSTI)

A multistage heat exchanger system is formed when it is desired to heat a single cold fluid stream with the help of several available hot streams. Usually only one specific size combination will lead to total minimum cost. The determination of these ... Keywords: Heat Exchangers, multistage, optimisation

A. Malhotra; S. B. Muhaddin

1990-12-01T23:59:59.000Z

364

Solar heating and cooling systems design and development: quarterly report  

DOE Green Energy (OSTI)

This program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for single-family residences, multiple-family residences and commercial applications. This document describes the progress of the program during the fifth program quarter, 1 July 1977 to 30 September 1977.

Not Available

1977-11-11T23:59:59.000Z

365

Solar heating and cooling systems design and development: quarterly report  

DOE Green Energy (OSTI)

The progress of the program for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test is described for the period, 1 January 1978 through 31 March 1978. Two heating and six heating and cooling units will be delivered for single-family residences, multiple-family residences, and commercial applications.

Not Available

1978-07-01T23:59:59.000Z

366

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System Callaway Spring 2011 #12;Abstract A Better Steam Engine: Designing a Distributed Concentrating Solar of analysis of Distributed Concentrating Solar Combined Heat and Power (DCS-CHP) systems is a design

California at Berkeley, University of

367

Potential of thermal insulation and solar thermal energy in domestic hot water and space heating and cooling sectors in Lebanon in the period 2010 - 2030.  

E-Print Network (OSTI)

??The potential of thermal insulation and solar thermal energy in domestic water heating, space heating and cooling in residential and commercial buildings Lebanon is studiedů (more)

Zaatari, Z.A.R.

2012-01-01T23:59:59.000Z

368

System design package for solar heating and cooling system installed at Akron, Ohio  

DOE Green Energy (OSTI)

This package contains information used to evaluate the design of Solaron's solar heating, cooling, and domestic hot water system. A conventional heat pump provides summer cooling and back-up heating (when solar energy is not available). Included in the package are such items as the design data brochure, system performance specification, system hazard analysis, spare parts list, and detailed design drawings. A Solaron solar system is installed in a single-family dwelling at Akron, Ohio, and at Duffield, Virginia.

Not Available

1979-04-01T23:59:59.000Z

369

Simplified solar fraction estimation for space and water heating at DOD installations. Final report  

SciTech Connect

A set of nomographs is provided which can be used to estimate the average annual solar fraction for solar space and water heating at a large number of DOD facilities. The solar fraction estimated from the nomograph is in close agreement with F-Chart 3.0 and allows for variation of the following parameters: annual load, collector area, collector transmittance-absorption coefficient, and collector overall loss coefficient.

Pacheco, N.S.; Kniola, D.G.; Sheedy, J.F.; Scari, R.J.

1982-09-01T23:59:59.000Z

370

The Impact of Social Space Design on Studentsĺ Behavioral Problems in Middle Schools  

E-Print Network (OSTI)

This study examined the impact of social space design on student behavioral problems in middle schools. A mixed-method approach was used in the form of focus groups and surveys with teachers and students from four central Texas middle schools (7th and 8th grade). Social space was defined as any space that students use while not in the classroom (e.g., hallways, cafeteria and outdoor spaces). Negative behavioral patterns were defined by the schools themselves but typically were any act that is physically or emotionally harmful to another student, oneself, or school property (e.g., stealing, fighting and name-calling). For each space, design elements that were analyzed included seating, privacy, equipment, structure, and open space. Within one school, four key spaces were identified and students were surveyed regarding their opinions of the design and behavioral patterns within each space. Comparisons across spaces within and among the four schools showed areas that are overcrowded or lack supervision exhibit higher accounts of negative behavior. Structured social spaces and outdoor spaces have less instances of problematic behavior but only when overcrowding is not a problem. This study also uncovered design factors that were important to the students but were not originally considered such as their desire for safety. This result highlights the importance of student voice in design. Overcrowding, supervision and the balance of privacy and safety emerged as the main issues regarding social space design and behavioral patterns in middle schools.

Schneider, Raechel

2011-05-01T23:59:59.000Z

371

Design and evaluation of heat transfer fluids for direct immersion cooling of electronic systems .  

E-Print Network (OSTI)

??Comprehensive molecular design was used to identify new heat transfer fluids for direct immersion phase change cooling of electronic systems. Four group contribution methods forů (more)

Harikumar Warrier, Pramod Kumar Warrier

2012-01-01T23:59:59.000Z

372

Design of shell and tube heat exchanger using specified pressure drop.  

E-Print Network (OSTI)

??The pressure drops used in heat exchange of shell and tube type, the situations are particular and put ahead of the design exercise. In suchů (more)

Bilimoria, Vimalkumar B.

2010-01-01T23:59:59.000Z

373

Econometric model of the joint production and consumption of residential space heat  

Science Conference Proceedings (OSTI)

This study models the production and comsumption of residential space heat, a nonmarket good. Production reflects capital investment decisions of households; consumption reflects final demand decisions given the existing capital stock. In the model, the production relationship is represented by a translog cost equation and an anergy factor share equation. Consumption is represented by a log-linear demand equation. This system of three equations - cost, fuel share, and final demand - is estimated simultaneously. Results are presented for two cross-sections of households surveyed in 1973 and 1981. Estimates of own-price and cross-price elasticities of factor demand are of the correct sign, and less than one in magnitude. The price elasticity of final demand is about -0.4; the income elasticity of final demand is less than 0.1. Short-run and long-run elasticities of demand for energy are about -0.3 and -0.6, respectively. These results suggest that price-induced decreases in the use of energy for space heat are attributable equally to changes in final demand and to energy conservation, the substitution of capital for energy in the production of space heat. The model is used to simulate the behavior of poor and nonpoor households during a period of rising energy prices. This simulation illustrates the greater impact of rising prices on poor households.

Klein, Y.L.

1985-12-01T23:59:59.000Z

374

"Table HC4.5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" 5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,33,8,3.4,5.9,14.4,1.2 "Do Not Have Heating Equipment",1.2,0.6,"Q","Q","Q",0.3,"Q" "Have Space Heating Equipment",109.8,32.3,8,3.3,5.8,14.1,1.1

375

"Table HC3.5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" 5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Heating Equipment",1.2,0.6,0.3,"N","Q","Q","Q" "Have Space Heating Equipment",109.8,77.5,63.7,4.2,1.8,2.2,5.6

376

"Table B27. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",64783,60028,28600,36959,5988,5198,3204,842 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,2367,2829,557,"Q",665,183 "5,001 to 10,000 ..............",6585,5786,2560,3358,626,"Q",529,"Q" "10,001 to 25,000 .............",11535,10387,4872,6407,730,289,597,"Q"

377

"Table B29. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" 9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",64783,60028,15996,32970,3818,4907 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,1779,2672,484,"Q" "5,001 to 10,000 ..............",6585,5786,1686,3068,428,"Q" "10,001 to 25,000 .............",11535,10387,3366,5807,536,"Q" "25,001 to 50,000 .............",8668,8060,2264,4974,300,325

378

Solar heating and cooling systems design and development quarterly report  

DOE Green Energy (OSTI)

The program calls for the development and delivery of eight (was 12) prototype solar heating and cooling systems for installation and operational test. Two (was 6) heating and six heating and cooling units will be delivered for single-family residences (SFR), multiple-family residences (MFR) and commercial applications. This document describes the progress of the program during the eighth program quarter, 1 April 1978 to 30 June 1978.

Not Available

1978-07-01T23:59:59.000Z

379

Design with Constructal Theory: Steam Generators, Turbines and Heat Exchangers.  

E-Print Network (OSTI)

?? This dissertation shows that the architecture of steam generators, steam turbines and heat exchangers for power plants can be predicted on the basis ofů (more)

Kim, Yong Sung

2010-01-01T23:59:59.000Z

380

Thermal design of heat exchanger for a swimming pool.  

E-Print Network (OSTI)

??This paper tells about what is a heat exchanger made of in terms of thermal analysis and the important tools and factors which play vitalů (more)

Teka, Addisu

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Design Principle and Strengthening of Advanced Austenitic Heat ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Unprecedented austenitic heat resistant steels strengthened by ... for application to tubes and pipes of advanced thermal power plants (A-USC).

382

Active Solar Heating | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Solar Heating Active Solar Heating June 24, 2012 - 5:58pm Addthis This North Carolina home gets most of its space heating from the passive solar design, but the solar...

383

Applying Learnable Evolution Model to Heat Exchanger Design Kenneth A. Kaufman and Ryszard S. Michalski*  

E-Print Network (OSTI)

Applying Learnable Evolution Model to Heat Exchanger Design Kenneth A. Kaufman and Ryszard S), has been applied to the problem of optimizing tube structures of heat exchangers. In contrast. A system, ISHED1, based on LEM, automatically searches for the highest capacity heat exchangers under given

Michalski, Ryszard S.

384

Geothermal groundwater heat pump. Equipment selection procedures for architects, designers and contractors  

SciTech Connect

This brochure covers the following: the way the heat pump works, why use groundwater, groundwater availability and disposal, regulations, the coefficient of performance, heat pump maintenance and reliability, heating and cooling load calculations, fuel requirement calculations, choice of equipment, calculation of water flow requirement, well pump and supply/return pipes, and design examples. (MHR)

1981-01-01T23:59:59.000Z

385

Integrated design space exploration based on power-performance trade-off using genetic algorithm  

Science Conference Proceedings (OSTI)

This paper presents a novel approach for Design Space Exploration (DSE) of integrated scheduling, allocation and binding in High Level Synthesis based on user specified power consumption and execution time constraints using multi structure Genetic Algorithm ... Keywords: algorithms, design, performance

Anirban Sengupta; Reza Sedaghat; Pallabi Sarkar

2011-07-01T23:59:59.000Z

386

Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report  

DOE Green Energy (OSTI)

A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

1980-05-01T23:59:59.000Z

387

A Scalable Methodology for Cost Estimation in a Transformational High-Level Design Space Exploration Environment  

E-Print Network (OSTI)

Objective of the methodology presented in this paper is to perform design space exploration on a high level of abstraction by applying high-level transformations. To realize a design loop which is close and settled on upper design levels, a high-level estimation step is integrated. In this paper, several estimation methodologies fixed on different states of the high-level synthesis process are examined with respect to their aptitude on controlling the transformational design space exploration process.

Gerlach

1998-01-01T23:59:59.000Z

388

Low-cost site-assembled solar collector designs for use with heat pumps  

DOE Green Energy (OSTI)

Four low cost solar collector designs have been produced for use in solar assisted heat pump systems. Three principles guided the design: the use of air as the heat transfer medium, the use of on-site easy-to-install construction rather than modularized prefabricated construction, and the collection of solar energy at reduced temperatures.

Andrews, J W; Wilhelm, W

1977-05-01T23:59:59.000Z

389

Design and analysis of a radiatively-cooled, inertially-driven nuclear generator system for space-based applications  

Science Conference Proceedings (OSTI)

The RING (Radiatively-Cooled, Inertially-Driven Nuclear Generator) radiator is proposed as a novel heat rejection system for advanced space reactor power applications in the 1 to 25 MW(t) range. The RING radiator system employs four counter-rotating, hollow, cylindrical, ring-shaped tubes filled with liquid lithium. The rings pass through a cavity heat exchanger, absorb heat, and then re-radiate that absorbed heat to space. Each ring is made of thin-walled, corrugated Nb-1%Zr tubing with external fins, segmented to minimize the consequence of coolant loss. To examine both the system transient and steady-state thermal hydraulic response, a set of detailed, analytical computer codes was developed (RINGSYS-System Thermal Hydraulics and Power Rating/RINGDYN-System Dynamics/RINGRAD-Radiation Damage and Void Gas Formation/RINGDATG-Data Handling). An additional code (TEMPEST) was obtained to examine the impact of augmented, internal ring convective heat transfer on overall system performance. Performance results and a cumulative uncertainty analysis including analytical, computational, property, and environmental condition errors are presented. The optimized radiator configuration at a cavity temperature of 1500 K results in a 3.3 MW(t) heat removal capacity at a minimum radiator weight ratio of 2.1 kg/kW(t); or a radiator weight ratio of 4.0 kg/kW(t) at a maximum achievable capacity of 5.6 MW(t). Despite a higher kg/kW(t) ratio than reported for other comparable temperature radiator designs, the concept is an attractive option for use with high-temperature reactors in high or geosynchronous earth orbit, specifically where the essential design criteria emphasize reliability, safety, and repairability. This dissertation also describes the confirmatory research, especially related to the material and thermal characteristics of key components, necessary to ensure successful RING radiator system deployment.

Apley, W.J.

1989-01-01T23:59:59.000Z

390

Comparative economics of passive and active systems: residential space heating applications  

SciTech Connect

The economic performance of alternative designs are evaluated. One passive design is emphasized, the thermal mass storage wall. The economic performance of this design is examined and subsequently contrasted with one active design, the air collector/rock storage system. Architectural design criteria, solar performance characteristics, and the incremental solar cost of each design is briefly reviewed. Projections of conventional energy prices are discussed, along with the optimal sizing/feasibility criterion employed in the economic performance analysis. In addition, the effects of two incentive proposals, income tax credits and low interest loans, upon each design are examined. Results are reported on a state-by-state basis, with major conclusions summarized for each design. It is generally the case that incentives greatly enhance the economics of both system designs, although the contrast is greater for the passive design. Also, against the less expensive conventional fuels (natural gas and heating oil) the passive design was shown to offer a more cost effective alternative than the active system for most states.

Roach, F.; Noll, S.; Ben-David, S.

1978-01-01T23:59:59.000Z

391

The language of privacy: Learning from video media space analysis and design  

Science Conference Proceedings (OSTI)

Video media spaces are an excellent crucible for the study of privacy. Their design affords opportunities for misuse, prompts ethical questions, and engenders grave concerns from both users and nonusers. Despite considerable discussion of the privacy ... Keywords: Human-computer interaction, autonomy, computer-supported cooperative work (CSCW), confidentiality, environmental psychology, privacy, social interaction, solitude, user interface design, video media spaces

Michael Boyle; Saul Greenberg

2005-06-01T23:59:59.000Z

392

A quantitative design and analysis of magnetic nanoparticle heating systems  

E-Print Network (OSTI)

Magnetic particles under the influence of an alternating magnetic field act as localized heating sources due to various loss mechanisms. This effect has been extensively investigated in hypothermia studies over the past ...

Khushrushahi, Shahriar Rohinton

2006-01-01T23:59:59.000Z

393

Design and fabrication of heat transfer surfaces from superplastic material  

Science Conference Proceedings (OSTI)

The production of complex heat transfer surfaces (i.e., those without straight fins) is restricted by available fabrication techniques, materials, geometries, and cost. Based on the superplastic sheet thermoforming process, a new technique for fabricating ...

J. B. Randolph; F. K. King

1972-05-01T23:59:59.000Z

394

Investigation of new heat exchanger design performance for solar thermal chemical heat pump.  

E-Print Network (OSTI)

?? The emergence of Thermally Driven Cooling system has received more attention recently due to its ability to utilize low grade heat from engine, incineratorů (more)

Cordova, Cordova

2013-01-01T23:59:59.000Z

395

Design, development and testing of a solar-powered multi-family residential-size prototype turbocompressor heat pump  

DOE Green Energy (OSTI)

An experimental program was conducted to further define, improve and demonstrate the performance characteristics and operational features of an existing 18-ton solar-powered prototype heat pump. The prototype heat pump is nominally sized for multi-family residential applications and provides both space heating and cooling. It incorporates a turbocompressor specially designed to operate at peak temperatures consistent with medium concentration collectors. The major efforts in this program phase included modification and improvement of the instrumentation sensors, the laboratory simulation equipment and selected heat pump components. After implementing these modifications, performance testing was conducted for a total operating time of approximately 250 hours. Experimental test results compared favorably with performance data calculated using the UTRC computer prediction program for the same boundary conditions. A series of tests was conducted continuously over a 12-h period to simulate operation (in the cooling mode) of the prototype heat pump under conditions typical of an actual installation. The test demonstrated that the heat pump could match the cooling load profile of a multi-family residential building. During the system performance testing, sufficient data were taken to identify the performance of each of the major components (e.g. turbine, compressor, heat exchangers, R11 pump). Component performance is compared with that calculated using the UTRC computer predict program and with data supplied by their manufacturers. The performance capabilities of the prototype heat pump system have been documented and recommendations are made for further design improvements which could be included in a MOD-2 configuration. The MOD-2 configuration would incorporate features that would improve system performance, reduce capital cost and most importantly improve system reliability.

Not Available

1982-10-01T23:59:59.000Z

396

A computer program to analyze cogeneration plant heat balances and equipment design  

Science Conference Proceedings (OSTI)

This paper describes a computer program designed to calculate and analyze cogeneration plant heat balances and equipment and to plot heat balance diagrams. For normal design point conditions, the program calculates gas turbine performance, designs a heat recovery boiler to suit the process requirements, calculates a steam turbine performance and deaerator balance to complete the cycle. In addition, the program will calculate off-design performance for a supplementary firing option or for changes in ambient conditions, gas turbine part load or process conditions.

Stewart, J.C.; Hsun, C.F.

1987-01-01T23:59:59.000Z

397

High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing  

SciTech Connect

Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

Henry DeLima; Joe Akin; Joseph Pietsch

2008-09-14T23:59:59.000Z

398

Geothermal space heating for the Senior Citizens Center at Truth or Consequences, New Mexico. Final report  

SciTech Connect

A demonstration project to heat the Senior Citizens Center at Truth or Consequences, New Mexico with geothermal waters is described. There were three phases to the project: Phase I - design and permitting; Phase II - installation of the heating system and well drilling; and Phase III - operation of the system. All three phases went well and there was only one major problem encountered. This was that the well which was drilled to serve as the geothermal source was dry. This could not have been anticipated and there was, as a contingency plan, the option of using an existing sump in the Teen Center adjacent to the Senior Citizens Center as the geothermal source. The system was made operational in August of 1981 and has virtually supplied all of the heat to the Senior Citizens Center during this winter.

Mancini, T.R.; Chaturvedi, L.N.; Gebhard, T.G.

1982-03-01T23:59:59.000Z

399

Application Analysis of Ground Source Heat Pumps in Building Space Conditioning  

NLE Websites -- All DOE Office Websites (Extended Search)

Application Analysis of Ground Source Heat Application Analysis of Ground Source Heat Pumps in Building Space Conditioning Hua Qian 1,2 , Yungang Wang 2 1 School of Energy and Environment Southeast University Nanjing, 210096, China 2 Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA July 2013 The project was supported by National Key Technology Supported Program of China (2011BAJ03B10-1) and by the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the

400

Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration  

Science Conference Proceedings (OSTI)

This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

Bansal, Pradeep [ORNL; Vineyard, Edward Allan [ORNL; Abdelaziz, Omar [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Design and Testing of Metal and Silicon Heat Spreaders with Embedded Micromachined Heat Pipes  

Science Conference Proceedings (OSTI)

The authors have developed a new type of heat spreader based on the integration of heat pipes directly within a thin planar structure suitable for use as a heat spreader or as the base layer in a substrate. The process uses micromachining methods to produce micron scale patterns that act as a wick in these small scale heat pipes. By using silicon or a low expansion metal as the wall material of these spreaders, they achieve a good match to the thermal coefficient of expansion of the die. The match allows the use of a thin high performance die attachment even on large size die. The embedded heat pipes result in high effective thermal conductivity for the new spreader technology.

Benson, D.A.; Robino, C.V.

1999-02-22T23:59:59.000Z

402

Green Design and the Market for Commercial Office Space | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

Science + Business Media answers the question by exploring the relationship between green building design and leasing, as well as sales markets for commercial real estate....

403

GIS spatial analysis for the design of urban open space.  

E-Print Network (OSTI)

??Urban design in the landscape architectural tradition has a unique set of users and uses due to the nature of urban sites in densely developedů (more)

Howard, Michael Isaac

2008-01-01T23:59:59.000Z

404

Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign  

DOE Green Energy (OSTI)

This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

Not Available

1978-12-01T23:59:59.000Z

405

Design and simulation of latent heat storage units  

DOE Green Energy (OSTI)

This report presents the results of two years of research and development on passive latent heat storage systems. Analytical models have been developed and extended, and a computer code for simulating the performance of a latent heat storage has been developed. The code is intended to be merged into a larger solar energy system simulation code and used for making realistic system studies. Simulation studies using a code which has a flexible and accurate routine for handling the storage subsystem should lead to the development of better systems than those in which storage is added on after the rest of the system has already been selected and optimized.

Shamsundar, N.; Stein, E.; Rooz, E.; Bascaran, E.; Lee, T.C. (Houston Univ., TX (United States))

1992-04-01T23:59:59.000Z

406

Design and simulation of latent heat storage units. Final report  

DOE Green Energy (OSTI)

This report presents the results of two years of research and development on passive latent heat storage systems. Analytical models have been developed and extended, and a computer code for simulating the performance of a latent heat storage has been developed. The code is intended to be merged into a larger solar energy system simulation code and used for making realistic system studies. Simulation studies using a code which has a flexible and accurate routine for handling the storage subsystem should lead to the development of better systems than those in which storage is added on after the rest of the system has already been selected and optimized.

Shamsundar, N.; Stein, E.; Rooz, E.; Bascaran, E.; Lee, T.C. [Houston Univ., TX (United States)

1992-04-01T23:59:59.000Z

407

Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler  

Science Conference Proceedings (OSTI)

The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

Andrew Seltzer

2005-01-01T23:59:59.000Z

408

DOE/ORNL heat pump design model, overview and application to R-22 alternatives  

SciTech Connect

This computer program is a public-domain system design tool for application to air-to-air heat pumps. The main aspects of the program are reviewed with emphasis on the newest features of the current fifth-generation version (Mark V) and an upcoming more fully HFC-capable release (Mark VI). Current model predictions are compared to test data for a leading HFC alternative to HCFC-22 in heat pumps. Examples are shown of some user interfaces that have been recently developed for the program. To demonstrate the design capabilities of the model for R-22 alternatives, a refrigerant-side optimization was conducted to find the best balance of heat transfer versus pressure drop for HCFC R-22, HFCs R-134a and R-410A, and the natural refrigerant propane. COP was maximized while refrigerant charge and tube size were minimized. Independent design parameters were fraction of total area in the outdoor coil, tube diameter and number of circuits for each heat exchanger, and condenser subcooling. Heat exchanger design tradeoffs are discussed for a heat pump relative to air conditioners and heating-only units. A design optimized for heating-only operation is presented.

Rice, C.K.

1997-12-01T23:59:59.000Z

409

District space heating potential of low temperature hydrothermal geothermal resources in the southwestern United States. Technical report  

DOE Green Energy (OSTI)

A computer simulation model (GIRORA-Nonelectric) is developed to study the economics of district space heating using geothermal energy. GIRORA-Nonelectric is a discounted cashflow investment model which evaluates the financial return on investment for space heating. This model consists of two major submodels: the exploration for and development of a geothermal anomaly by a geothermal producer, and the purchase of geothermal fluid by a district heating unit. The primary output of the model is a calculated rate of return on investment earned by the geothermal producer. The results of the sensitivity analysis of the model subject to changes in physical and economic parameters are given in this report. Using the results of the economic analysis and technological screening criteria, all the low temperature geothermal sites in Southwestern United States are examined for economic viability for space heating application. The methodology adopted and the results are given.

McDevitt, P.K.; Rao, C.R.

1978-10-01T23:59:59.000Z

410

Design and Development of an Intelligent Energy Controller for Home Energy Saving in Heating/Cooling System .  

E-Print Network (OSTI)

??Energy is consumed every day at home as we perform simple tasks, such as watching television, washing dishes and heating/cooling home spaces during season ofů (more)

Abaalkhail, Rana

2012-01-01T23:59:59.000Z

411

Hierarchical Modeling for Population-Based Heat Exchanger Design  

E-Print Network (OSTI)

Characteristics of the Stirling Engine Regenerator in anapproach to the design of Stirling engine regenerator matrixFoil Regenerator for Stirling Engines." [48] Ibrahim, M. ,

Geb, David

2013-01-01T23:59:59.000Z

412

Organism of options : a design strategy for flexible space  

E-Print Network (OSTI)

The need for "flexibility" of architecture has been increasing as recent social demands are rapidly changing. However, many buildings designed in the name of flexibility are blocky, boring, and actually quite inflexible ...

Kim, Young-Ju, M. Arch. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

413

Guidelines for selecting a solar heating, cooling or hot water design  

SciTech Connect

Guidelines are presented for the professional who may have to choose between competing solar heating and cooling designs for buildings. The experience of the National Solar Data Network in monitoring over 100 solar installations are drawn upon. Three basic principles and a design selection checklist are developed which will aid in choosing the most cost effective design.

Kelly, C.J. Jr.

1981-12-01T23:59:59.000Z

414

Design considerations for solar industrial process heat systems: nontracking and line focus collector technologies  

DOE Green Energy (OSTI)

Items are listed that should be considered in each aspect of the design of a solar industrial process heat system. The collector technologies covered are flat-plate, evacuated tube, and line focus. Qualitative design considerations are stressed rather than specific design recommendations. (LEW)

Kutscher, C.F. (ed.)

1981-03-01T23:59:59.000Z

415

PASES: An energy-aware design space exploration framework for wireless sensor networks  

Science Conference Proceedings (OSTI)

Energy consumption is one of the most constraining requirements for the development and implementation of wireless sensor networks. Many design aspects affect energy consumption, ranging from the hardware components, operations of the sensors, the communication ... Keywords: Design space exploration, Embedded systems, Energy aware, Platform based design, Wireless sensor networks

Ivan Minakov, Roberto Passerone

2013-09-01T23:59:59.000Z

416

Thermal and cost goal analysis for passive solar heating designs  

DOE Green Energy (OSTI)

Economic methodologies developed over the past several years for the design of residential solar systems have been based on life cycle cost (LCC) minimization. Because of uncertainties involving future economic conditions and the varied decision making processes of home designers, builders, and owners, LCC design approaches are not always appropriate. To deal with some of the constraints that enter the design process, and to narrow the number of variables to those that do not depend on future economic conditions, a simplified thermal and cost goal approach for passive designs is presented. Arithmetic and graphical approaches are presented with examples given for each. Goals discussed include simple payback, solar savings fraction, collection area, maximum allowable construction budget, variable cost goals, and Btu savings.

Noll, S.A.; Kirschner, C.

1980-01-01T23:59:59.000Z

417

Results from evaporation tests to support the MWTF heat removal system design  

Science Conference Proceedings (OSTI)

An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system.

Crea, B.A.

1994-12-22T23:59:59.000Z

418

Design and development of eco-friendly alcohol engine fitted with waste heat recovery system  

Science Conference Proceedings (OSTI)

The present paper discusses the design and development of an eco-friendly alcohol engine fitted with the waste heat recovery system as a remedial alternative to the existing commonly used internal combustion engine. With the present trends in Internal ...

G. Vijayan Iyer; Nikos E. Mastorakis

2006-06-01T23:59:59.000Z

419

Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs  

SciTech Connect

This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

Yoder, G.L.

2005-10-03T23:59:59.000Z

420

Design Option of Heat Exchanger for the Next Generation Nuclear Plant  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTGRS) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale of a few hundred megawatts electric and hydrogen production. The power conversion system (PCS) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTGRS to provide higher efficiencies than can be achieved in the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. As part of the system integration of the VHTGRS and hydrogen production plant, the intermediate heat exchanger is used to transfer the process heat from VHTGRS to hydrogen plant. Therefore, the design and configuration of the intermediate heat exchanger are very important. This paper will include analysis of one stage versus two stage heat exchanger design configurations and thermal stress analyses of a printed circuit heat exchanger, helical coil heat exchanger, and shell/tube heat exchanger.

Eung Soo Kim; Chang Oh

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Electricity displacement by wood used for space heating in PNWRES (Pacific Northwest Residential Energy Survey) (1983) households  

DOE Green Energy (OSTI)

This report evaluates the amount of electricity for residential space heating displaced by the use of wood in a sample of single-family households that completed the 1983 Pacific Northwest Residential Energy Survey. Using electricity bills and daily weather data from the period of July 1981 to July 1982, it was determined that the average household used 21,800 kWh per year, normalized with respect to weather. If no households had used any wood, electricity use would have increased 9%, to 23,700 kWh; space heating electricity use would also have increased, by 21%, to 47% of total electricity use. In the unlikely event that all households had used a great deal of wood for space heating, electricity use could have dropped by 23.5% from the average use, to 16,700 kWh; space heating electricity use would have dropped by 56%, to 24% of total electricity use. Indications concerning future trends regarding the displacement of electricity by wood use are mixed. On one hand, continuing to weatherize homes in the Pacific Northwest may result in less wood use as households find using electricity more economical. On the other hand, historical trends in replacement decisions regarding old space heating systems show a decided preference for wood. 11 refs., 6 figs., 8 tabs.

White, D.L.; Tonn, B.E.

1988-12-01T23:59:59.000Z

422

System level optimization and design space exploration for low power  

Science Conference Proceedings (OSTI)

We present a software tool for power dissipation analysis and optimization on the algorithmic abstraction level from C/C++ and VHDL descriptions. An analysis is most efficient on such a high level since the influence of design decisions on the power ...

Ansgar Stammermann; Lars Kruse; Wolfgang Nebel; Alexander Pratsch; Eike Schmidt; Milan Schulte; Arne Schulz

2001-09-01T23:59:59.000Z

423

Measured Impact on Space Conditioning Energy Use in a Residence Due to Operating a Heat Pump Water Heater inside the Conditioned Space  

Science Conference Proceedings (OSTI)

The impact on space conditioning energy use due to operating a heat pump water heater (HPWH) inside the conditioned space is analyzed based on 2010-2011 data from a research house with simulated occupancy and hot water use controls. The 2700 ft2 (345 m2) house is located in Oak Ridge, TN (mixed-humid climate) and is equipped with a 50 gallon (189 l) HPWH that provided approximately 55 gallons/d (208 l/d) of hot water at 120 F (46 C) to the house during the test period. The HPWH has been operated every other week from December 2010 through November 2011 in two modes; a heat pump only mode, and a standard mode that utilizes 15355 Btu/hr (4500 W) resistance heating elements. The energy consumption of the air-source heat pump (ASHP) that provides space conditioning for the house is compared for the two HPWH operating modes with weather effects taken into account. Impacts during the heating and cooling seasons are compared.

Munk, Jeffrey D [ORNL; Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL

2012-01-01T23:59:59.000Z

424

SparkInfo : designing a social space for co-creation of multimedia contents  

E-Print Network (OSTI)

People can have more insights and social experiences when they collaborate on collecting, revisiting, and utilizing their contents, such as images and videos; however, designing a social space that offers rich co-creation ...

Hwang, Jee Yeon

2013-01-01T23:59:59.000Z

425

Environmental design guidelines for a second generation, LEO, permanently manned space station  

E-Print Network (OSTI)

This thesis is a continuation of the thoughts and efforts of the author's participation and co-organization of the Space Station Design Workshop (SSDW). The SSDW was a student run event whose inception surfaced in the ...

Johnson, David Michael, 1960-

1987-01-01T23:59:59.000Z

426

Green Design and the Market for Commercial Office Space | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Design and the Market for Commercial Office Space Design and the Market for Commercial Office Space Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

427

Development of Design Criteria for Fluid Induced Structural Vibrations in Steam Generators and Heat Exchangers  

SciTech Connect

Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers.

Uvan Catton; Vijay K. Dhir; Deepanjan Mitra; Omar Alquaddoomi; Pierangelo Adinolfi

2004-04-06T23:59:59.000Z

428

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recommendations for Applying Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems A. Rudd, K. Ueno, D. Bergey, R. Osser Building Science Corporation June 2012 i This report received minimal editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

429

Geothermal space/water heating for Mammoth Lakes Village, California. Quarterly technical progress report, 13 December 1976-12 March 1977  

DOE Green Energy (OSTI)

During the second three months of this feasibility study to determine the technical, economic and environmental feasibility of heating Mammoth Lakes Village, California using geothermal energy, the following work was accomplished. A saturation survey of the number and types of space and water heaters currently in use in the Village was completed. Electric energy and ambient temperature metering equipment was installed. Peak heating demand for Mammoth Lakes was estimated for the years 1985, 1990 and 2000. Buildings were selected which are considered typical of Mammoth Lakes in terms of their heating systems to be used in estimating the cost of installing hydronic heating systems in Mammoth. Block diagrams and an order of magnitude cost comparison were prepared for high-temperature and low-temperature geothermal district heating systems. Models depicting a geothermal district heating system and a geothermal-electric power plant were designed, built and delivered to ERDA in Washington. Local input to the feasibility study was obtained from representatives of the State of California Departments of Transportation and Fish and Game, US Forest Service, and Mono County Planning Department.

Sims, A.V.; Racine, W.C.

1977-01-01T23:59:59.000Z

430

Active solar thermal design manual  

SciTech Connect

This manual is aimed at systems design engineers, architects, system supplier/installers, and contractor/builders. Practical information for both skilled and inexperienced designers. Solar thermal applications focuses on residential and commercial space heating, potable hot water heating, process water heating, and space cooling.

1985-01-01T23:59:59.000Z

431

Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Supercritical O2-Based PC Boiler  

Science Conference Proceedings (OSTI)

The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Supercritical Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE, Siemens, and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by forced circulation to the waterwalls at the periphery and divisional wall panels within the furnace. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) with cryogenic air separation unit (ASU) and (2) with oxygen ion transport membrane (OITM). The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from T2 to T92. Compared to the air-fired heat recovery area (HRA), the oxygen-fired HRA total heat transfer surface is 35% less for the cryogenic design and 13% less for the OITM design due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are nearly the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are similar.

Andrew Seltzer

2006-05-01T23:59:59.000Z

432

Annual fuel usage charts for oil-fired boilers. [Building space heating and hot water supplies  

SciTech Connect

On the basis of laboratory-determined boiler efficiency data, one may calculate the annual fuel usage (AFU) for any oil-fired boiler, serving a structure of a given design heat load, for any specified hourly weather pattern. Further, where data are available regarding the energy recapture rates of the strucutre due to direct gain solar energy (windows), lighting, cooking, electrical appliances, metabolic processes, etc., the annual fuel usage savings due to such (re) capture are straightforwardly determinable. Employing the Brookhaven National Laboratory annual fuel usage formulation, along with efficiency data determined in the BNL Boiler Laboratory, computer-drawn annual fuel usage charts can be generated for any selected boiler for a wide range of operating conditions. For two selected boilers operating in any one of the hour-by-hour weather patterns which characterize each of six cities over a wide range of firing rates, domestic hot water consumption rates, design heat loads, and energy (re) capture rates, annual fuel usages are determined and graphically presented. Figures 1 to 98, inclusive, relate to installations for which energy recapture rates are taken to be zero. Figures 97 to 130, inclusive, apply to a range of cases for which energy recapture rates are nonzero and determinable. In all cases, simple, direct and reliable annual fuel usage values can be determined by use of charts and methods such as those illustrated.

Berlad, A.L.; Yeh, Y.J.; Salzano, F.J.; Hoppe, R.J.; Batey, J.

1978-07-01T23:59:59.000Z

433

Heat Recovery Steam Generators for Combined Cycle Applications: HRSG Procurement, Design, Construction, and Operation Update  

Science Conference Proceedings (OSTI)

Design alternatives and procurement approaches for heat recovery steam generators, supplemental firing duct burners, and ancillary steam systems are addressed in this report. Power engineers and project developers will find an up-to-date, comprehensive resource for planning, specification and preliminary design in support of combined cycle plant development.

2005-03-29T23:59:59.000Z

434

Design of heat-recovery and seed-recovery units in MHD power generation  

DOE Green Energy (OSTI)

Crucial and limiting engineering and materials problems associated with the design of an MHD steam bottoming plant are discussed. Existing experimental and theoretical results on corrosion, fouling and deposits, potassium seed recovery and regeneration, are reviewed. The state of knowledge regarding the design of heat recovery and seed recovery units for coal-fired MHD plants is inadequate at the present time.

Bergman, P.D.; Joubert, J.I.; Demski, R.J.; Bienstock, D.

1974-01-01T23:59:59.000Z

435

Elastic experiences: designing adaptive interaction for individuals and crowds in the public space  

Science Conference Proceedings (OSTI)

This paper presents insights into the design process acquired during the implementation and evaluation of an interactive art installation for two very distinct public environments. Issues of scalability, robustness and performance became progressively ... Keywords: crowd interaction, large displays, public space, user experience design

Luke Hespanhol; Maria Carmela Sogono; Ge Wu; Rob Saunders; Martin Tomitsch

2011-11-01T23:59:59.000Z

436

A Space-Based Point Design for Global Coherent Doppler Wind Lidar  

E-Print Network (OSTI)

An end-to-end point design, including lidar, orbit, scanning, atmospheric, and data processing parameters, for space-based global profiling of atmospheric wind will be presented. The point design attempts to match the recent NASA/NOAA draft science requirements for wind measurement.

Profiling Matched To; Michael J. Kavaya; G. David Emmitt; Rod G. Frehlich; Farzin Amzajerdian; Upendra N. Singh

2002-01-01T23:59:59.000Z

437

Geothermal space heating applications for the Fort Peck Indian Reservation in the vicinity of Poplar, Montana. Final report, August 20, 1979-May 31, 1980  

DOE Green Energy (OSTI)

The results of a first-stage evaluation of the overall feasibility of utilizing geothermal waters from the Madison aquifer in the vicinity of Poplar, Montana for space heating are reported. A preliminary assessment of the resource characteristics, a preliminary design and economic evaluation of a geothermal heating district and an analysis of environmental and institutional issues are included. Preliminary investigations were also made into possible additional uses of the geothermal resource, including ethanol production. The results of the resource analysis showed that the depth to the top of the Madison occurs at approximately 5,500 feet at Poplar, and the Madison Group is characterized by low average porosity (about 5 percent) and permeability (about 0.004 gal/day-ft), and by hot water production rates of a few tens of gallons per minute from intervals a few feet thick. The preliminary heating district system effort for the town of Poplar included design heat load estimates, a field development concept, and preliminary design of heat extraction and hot water distribution systems. The environmental analysis, based on current data, indicated that resource development is not expected to result in undue impacts. The institutional analysis concluded that a Tribal geothermal utility could be established, but no clear-cut procedure can be identified without a more comprehensive evaluation of legal and jurisdistional issues. The economic evaluation found that, if the current trend of rapidly increasing prices for fossil fuels continues, a geothermal heating district within Poplar could be a long-term, economically attractive alternative to current energy sources.

Birman, J.H.; Cohen, J.; Spencer, G.J.

1980-10-01T23:59:59.000Z

438

DESIGN STUDY OF SMALL BOILING REACTORS FOR POWER AND HEAT PRODUCTION  

SciTech Connect

A design study has been made of a small "Package" nuclear power plant for the production of electric power and heat in remotely located, inaccessible areas devoid of natural fuels. The design utilizes a horizontal boiling reactor as a steam generator consistent with safe and simple equipment and a minimum building height. A reactor design of 51/2 Mw capacity, with a combined net electric power output of 750 kw and a heat plant output of 4500 kw, was studied in detail. Tertative cost estimates are presented on the basis of this combination. General comparisons have been made between different systems designed for either independent or combined production of 425 kw net electric power and 2500 kw available heat. (auth)

Treshow, M.

1954-11-01T23:59:59.000Z

439

Geothermal space/water heating for Mammoth Lakes Village, California. Quarterly technical progress report, September 13-December 12, 1976  

SciTech Connect

During the first three months of this one-year study to determine the technical, economic and environmental feasibility of heating the town of Mammoth Lakes, California using geothermal energy, the following work was completed. Literature concerning both geothermal and conventional hydronic heating systems was reviewed and put on file. Estimates were prepared for the monthly electrical energy consumption and peak electrical demand for space and water heating in Mammoth Lakes Village in 1980. An analysis of the energy potential of the Casa Diablo geothermal reservoir was completed. Discussions were held with US Forest Service and Mammoth County Water District employees, to obtain their input to the feasibility study.

Sims, A.V.; Racine, W.C.

1976-12-12T23:59:59.000Z

440

INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING  

E-Print Network (OSTI)

determine the building response to the solar heating system.on building comfort of an active solar heating system wherethe building response to a typical h"ydronic solar heating

Vilmer, Christian

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "design space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING  

E-Print Network (OSTI)

Pant Rfict Fan coil heat exchanger effectiveness. c min Fanis modeled as a fan-coil heat exchanger. The fan coil outputsystem with a fan-coil heat exchanger sized for a solar

Vilmer, Christian

2013-01-01T23:59:59.000Z

442

"Table B22. Primary Space-Heating Energy Sources, Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

.....",894,894,213,498,79,5 "District Heat ...",96,96,"Q",2,"Q",77 "Boilers ...",581,581,40,364,136,"Q" "Packaged Heating Units...

443

Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint  

DOE Green Energy (OSTI)

Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

Turchi, C. S.; Ma, Z.

2011-08-01T23:59:59.000Z

444

Problems with Specifying Tmin in the Design of Processes with Heat Exchangers Jrgen Bauck Jensen and Sigurd Skogestad*  

E-Print Network (OSTI)

Problems with Specifying Tmin in the Design of Processes with Heat Exchangers J├Şrgen Bauck Jensen exchangers may lead to wrong decisions and should be used with care when designing heat exchanger systems the resulting areas are installed. In addition, different U values for the heat exchangers are not easily

Skogestad, Sigurd

445

Sonoma State Hospital, Eldridge, California, geothermal-heating system: conceptual design and economic feasibility report  

DOE Green Energy (OSTI)

The Sonoma State Mental Hospital, located in Eldridge, California, is presently equipped with a central gas-fired steam system that meets the space heating, domestic hot water, and other heating needs of the hospital. This system is a major consumer of natural gas - estimated at 259,994,000 cubic feet per year under average conditions. At the 1981 unit gas rate of $0.4608 per therm, an average of $1,258,000 per year is required to operate the steam heating system. The hospital is located in an area with considerable geothermal resources as evidenced by a number of nearby hot springs resorts. A private