National Library of Energy BETA

Sample records for design safety environment

  1. _____________________________ Environment, Health, & Safety _________ __________________ Training Program

    E-Print Network [OSTI]

    _____________________________ Environment, Health, & Safety _________ __________________ Training-based Training Frequency: One Time Course Purpose: This training contains general requirements and information. This training will familiarize you with the hazards of electricity and the requirements for electrical safety

  2. Preliminary Safety Design RM

    Office of Environmental Management (EM)

    Preliminary Safety Design Review Module March 2010 CD-0 O 0 OFFICE OF Pr C CD-1 F ENVIRO Standard R reliminar Rev Critical Decis CD-2 M ONMENTAL Review Plan ry Safety view Module...

  3. Environment, Safety and Health Reporting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-01-01

    To ensure timely collection, reporting, analysis, and dissemination of information on environment, safety, and health issues as required by law or regulations or as needed to ensure that the Department of Energy (DOE) and National Nuclear Security Administration are kept fully informed on a timely basis about events that could adversely affect the health and safety of the public or the workers, the environment, the intended purpose of DOE facilities, or the credibility of the Department. Cancels DOE O 210.1, DOE O 231.1, DOE O 232.1A. Canceled by DOE O 231.1B. DOE O 231.1B cancels all portions pertaining to environment, safety, and health reporting. Occurrence reporting and processing of operations information provisions remain in effect until January 1, 2012.

  4. Environment, Safety, and Health Reporting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-19

    To ensure timely collection, reporting, analysis, and dissemination of information on environment, safety, and health issues as required by law or regulations or as needed to ensure that the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) are kept fully informed on a timely basis about events that could adversely affect the health and safety of the public or the workers, the environment, the intended purpose of DOE facilities, or the credibility of the Department. Cancels DOE O 210.1, DOE O 231.1, and DOE O 232.1A. Canceled by DOE O 232.2.

  5. Environment, Safety and Health Reporting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27

    The order addresses DOE/NNSA receiving timely, accurate information about events that have affected or could adversely affect the health, safety and security of the public or workers, the environment, the operations of DOE facilities, or the credibility of the Department. Admin Chg 1, dated 11-28-12, Supersedes DOE O 231.1B.

  6. Environment/Health/Safety (EHS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S.Engineering Metal(2)Environment, SafetyHealthSafety

  7. Environment Safety and Health Reporting Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-30

    This Manual provides detailed requirements to supplement DOE O 231.1, Environment, Safety and Health Reporting, which establishes management objectives and requirements for reporting environment, safety and health information. Does not cancel other directives.

  8. Environment, Safety, and Health Reporting Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-11-07

    This Manual provides detailed requirements to supplement DOE O 231.1, ENVIRONMENT, SAFETY AND HEALTH REPORTING, which establishes management objectives and requirements for reporting environment, safety and health information. Chg 1, 11-7-96.

  9. Environment, Safety and Health Reporting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27

    The order addresses DOE/NNSA receiving timely, accurate information about events that have affected or could adversely affect the health, safety and security of the public or workers, the environment, the operations of DOE facilities, or the credibility of the Department. Cancels DOE N 234.1. Supersedes DOE O 231.1A Chg 1, DOE M 231.1-1A Chg 2.

  10. HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY

    E-Print Network [OSTI]

    Calgary, University of

    HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY EH&S Hazard Alert - 2010.06.18 HAZARD ALERT ­ Reaction Manual. http://www.ucalgary.ca/safety/files/safety/LaboratoryFumeHoodUserStandard.pdf #12;HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY EH&S Hazard Alert - 2010.06.18 In the recent incident the sash was closed while

  11. Integrating Safety into Design and Construction | Department...

    Office of Environmental Management (EM)

    Integrating Safety into Design and Construction Integrating Safety into Design and Construction DepSecMemoIntegratingSafetyInDesignAndConstruction05Dec2005.pdf More Documents &...

  12. Environment, Health, and Safety | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th, 2010Environment, Health, Safety &

  13. Environment/Health/Safety (EHS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th, 2010Environment, Health, SafetyThis is an example

  14. Environment/Health/Safety (EHS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S.Engineering Metal(2)Environment, Safety andA-Z

  15. Environment/Health/Safety (EHS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S.Engineering Metal(2)Environment, Safety

  16. Environment/Health/Safety (EHS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S.Engineering Metal(2)Environment, SafetyHealth

  17. Design Considerations for Fire Safety 

    E-Print Network [OSTI]

    Wilson, A. Grant; Schmidt, William A.; Degenkolb, John G.; Reilly, Edward J.; Robinson, A. Pitts; Sandvik, Robert G.; Semple, J. Brooks

    1971-01-28

    Papers presented at the Symposium on Design Considerations for Fire Safety at the Semiannual Meeting of The American Society of Heating, Refrigerating and Air-conditioning Engineers

  18. Environment, Safety and Health (ESH) Goals

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-08-02

    The purpose of this Policy is to establish Environment, Safety and Health (ES&H) goals for Department of Energy (DOE) personnel and its contractors. These goals are designed to establish Departmental ES&H expectations for: 1) DOE and contractor personnel ES&H behaviors and attitudes in the conduct of their daily work activities, and 2) operational performance regarding worker injuries and illnesses, regulatory enforcement actions, and environmental releases. Cancels DOE P 450.1, DOE P 450.6. Canceled by DOE O 450.4A

  19. Designing Homes for Function and Safety 

    E-Print Network [OSTI]

    Harris, Janie

    2002-01-31

    and Safety Janie Harris Extension Specialist, Housing and Environment The Texas A&M University System The traditional home is designed for an able-bodied, nonelderly adult. Since that description fits less than 15 percent of our population, many people... communicate information about how to use them, regardless of a person?s sensory abilities. a71 Tolerance for error: The design minimizes both safety hazards and the consequences of accidents or unintended actions. a71 Low physical effort: Activities can be car...

  20. Health, Safety, and Environment Division: Annual progress report 1987

    SciTech Connect (OSTI)

    Rosenthal, M.A. (comp.)

    1988-04-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environment protection. These activities are designed to protect the worker, the public, and the environment. Many disciplines are required to meet the responsibilities, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science, epidemiology, and waste management. New and challenging health and safety problems arise occasionally from the diverse research and development work of the Laboratory. Research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed to study specific problems for the Department of Energy and to help develop better occupational health and safety practices.

  1. Environment, Health, Safety & Security | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environment, Health, Safety & Security U.S. Department of Energy Interim E-QIP Procedures - Status Update U.S. Department of Energy Interim E-QIP Procedures - Status Update As of...

  2. Line Environment, Safety and Health Oversight

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-06-26

    Sets forth the Department's expectations line management environment, safety and health (ES&H) oversight and for the use of contractor self-assessment programs as the cornerstone for this oversight. Canceled by DOE O 226.1.

  3. Environment, Safety, and Health Reporting Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-01-28

    This Manual provides detailed requirements to supplement DOE O 231.1, Environment, Safety and Health Reporting, which establishes management objectives and requirements for reporting environment, safety and health information. (Paragraphs 2a, 2a(1), 2a(2), 2b, 2b(1), 2b(2), and 2i(3)(a) through 2i(3)(d) of Chapter II, and Appendix A canceled by DOE N 231.1; Chapter IV canceled by DOE O 470.2A.)

  4. Conceptual Safety Design RM

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallenges |1-01Concentrating Solar Power ConcentratingConceptual Safety

  5. Inspection of Environment, Safety, and Health Programs at the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inspection of Environment, Safety, and Health Programs at the Savannah River Site, February 2006 Inspection of Environment, Safety, and Health Programs at the Savannah River Site,...

  6. DOE Standard Integration Of Environment,Safety, and Health Into...

    Energy Savers [EERE]

    Standard Integration Of Environment,Safety, and Health Into Facility Disposition Activities DOE Standard Integration Of Environment,Safety, and Health Into Facility Disposition...

  7. Office of Environment, Safety and Health Evaluations Appraisal...

    Energy Savers [EERE]

    Office of Environment, Safety and Health Evaluations Appraisal Process Guide, July 29, 2009 Office of Environment, Safety and Health Evaluations Appraisal Process Guide, July 29,...

  8. Nuclear Reactor Safety Design Criteria

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-01-19

    The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Supersedes DOE 5480.1, dated 1-19-93. Certified 11-18-10.

  9. Safety-Oriented Design of Component Assemblies using Safety Interfaces

    E-Print Network [OSTI]

    FACS 2006 Safety-Oriented Design of Component Assemblies using Safety Interfaces Jonas Elmqvist compositional rules and derived safety interfaces for each component. The derivation of safety interfaces and the automatically generated interfaces. The component model uses reactive modules as the formal notation

  10. Radiological Control Manual Environment, Safety, Health, and Quality Division

    E-Print Network [OSTI]

    Wechsler, Risa H.

    ............................................................................................................................................8 128 Facility Modifications and Radiological Design ConsiderationsRadiological Control Manual Environment, Safety, Health, and Quality Division SLAC-I-720-0A05Z-001 and published by ESHQ Publishing Document Title: Radiological Control Manual Original Publication Date: 1

  11. Environment/Health/Safety (EHS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S.Engineering Metal(2)Environment,

  12. Environment/Health/Safety (EHS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S.Engineering Metal(2)Environment,1. Hazardous Wastes

  13. Environment/Health/Safety (EHS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S.Engineering Metal(2)Environment,1. Hazardous

  14. Environment/Health/Safety (EHS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S.Engineering Metal(2)Environment,1.

  15. ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 24: Training

    E-Print Network [OSTI]

    Wechsler, Risa H.

    ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 24: Training Quick Start Summary Product ID: 520-group.slac.stanford.edu/esh/eshmanual/references/trainingQuickstart.pdf 1 Who needs to know about these requirements The requirements of Training apply to all persons on-site, employees and non-employees, their SLAC

  16. The architecture of safety: hospital design

    E-Print Network [OSTI]

    Joseph, Anjali; Rashid, Mahbub

    2007-12-01

    Purpose of review: This paper reviews recent research literature reporting the effects of hospital design on patient safety. Recent findings: Features of hospital design that are linked to patient safety in the literature include noise, air...

  17. Track 5: Integration of Safety Into Design

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 5: Integration of Safety Into Design

  18. UMTRA Project: Environment, Safety, and Health Plan

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The US Department of Energy has prepared this UMTRA Project Environment, Safety, and Health (ES and H) Plan to establish the policy, implementing requirements, and guidance for the UMTRA Project. The requirements and guidance identified in this plan are designed to provide technical direction to UMTRA Project contractors to assist in the development and implementation of their ES and H plans and programs for UMTRA Project work activities. Specific requirements set forth in this UMTRA Project ES and H Plan are intended to provide uniformity to the UMTRA Project`s ES and H programs for processing sites, disposal sites, and vicinity properties. In all cases, this UMTRA Project ES and H Plan is intended to be consistent with applicable standards and regulations and to provide guidance that is generic in nature and will allow for contractors` evaluation of site or contract-specific ES and H conditions. This plan specifies the basic ES and H requirements applicable to UMTRA Project ES and H programs and delineates responsibilities for carrying out this plan. DOE and contractor ES and H personnel are expected to exercise professional judgment and apply a graded approach when interpreting these guidelines, based on the risk of operations.

  19. Environment/Health/Safety (EHS): JHA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th, 2010Environment, Health, SafetyThis is an

  20. Revised 4/15/2002 _____________________________ Environment, Health, & Safety _________ __________________

    E-Print Network [OSTI]

    Eisen, Michael

    , and the areas for storage of various hazardous, radioactive and mixed wastes. Instructors: Howard Hansen RudyardRevised 4/15/2002 _____________________________ Environment, Health, & Safety at Building 85, the Hazardous Waste Handling Facility (HWHF), regarding the safety, alarm, fire detection

  1. Environment, Safety, and Health Reporting Notice

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-01-15

    To set forth the requirements and responsibilities for Department of Energy (DOE) elements, including the National Nuclear Security Administration (NNSA), for preparation of annual summary reports to the Secretary of Energy on the results of environment, safety, and health (ES&H) assessments conducted in the previous year. To implement the revised requirements of Title 29 Code of Federal Regulations (CFR) Part 1904, "Recording and Reporting Occupational Injuries and Illnesses," within DOE, including NNSA. Cancels Paragraphs 2a, 2a(1), 2a(2), 2b, 2b(1), 2b(2), and 2i(3)(a) through 2i(3)(d) of Chapter II and Appendix A of DOE M 231.1-1. DOE N 231.2 extends this Notice until 1-15-2004. Cancels: DOE M 231.1-1. in part.

  2. Naderi and Raman 1 Design Considerations in Simulating Pedestrian Environments

    E-Print Network [OSTI]

    Naderi and Raman 1 Design Considerations in Simulating Pedestrian Environments Submitted: August 1 ABSTRACT Pedestrian Simulation is a new area of safety and health research employing contemporary these conditions, the simulated environment can be manipulated to further research in many aspects of pedestrian

  3. DOE's Safety Bulletin No. 2011-01, Events Beyond Design Safety...

    Office of Environmental Management (EM)

    DOE's Safety Bulletin No. 2011-01, Events Beyond Design Safety Basis Analysis, March 2011 DOE's Safety Bulletin No. 2011-01, Events Beyond Design Safety Basis Analysis, March 2011...

  4. March 7, 2012, USW Health Safety and Environment Conference Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3-07-12 2012 Health, Safety and Environment Conference 1:30 - 1:35 Introduction of HSS...Carol Landry USW...

  5. Office of Environment, Safety and Health Assessments Protocol...

    Energy Savers [EERE]

    March 2015 (Revision 1) - PROTOCOL - EA-30-01 Office of Environment, Safety and Health Assessments Protocol for the Development and Maintenance of Criteria Review and...

  6. Office of Environment, Safety and Health Assessments Protocol...

    Energy Savers [EERE]

    April 2015 (Revision 1) - PROTOCOL - EA-30-02 Office of Environment, Safety and Health Assessments Protocol for Required Reading, April 2015 (Revision 1) - PROTOCOL -...

  7. AN INTEGRATED ENVIRONMENT OF S/W SPECIFICATION AND V&V FOR SAFETY-CRITICAL SYSTEMS

    E-Print Network [OSTI]

    AN INTEGRATED ENVIRONMENT OF S/W SPECIFICATION AND V&V FOR SAFETY-CRITICAL SYSTEMS Abstract, an integrated environment of S/W specification and V&V is proposed for safety-critical systems. Integrated environment consists of SIS-RT for concept phase, NuSRS for requirement phase, NuSDS for design phase, and Nu

  8. ENVIRONMENT, SAFETY, HEALTH, AND QUALITY DIVISION Chapter 24: Training

    E-Print Network [OSTI]

    Wechsler, Risa H.

    ENVIRONMENT, SAFETY, HEALTH, AND QUALITY DIVISION Chapter 24: Training Badging Procedure Product ID: http://www-group.slac.stanford.edu/esh/eshmanual/references/trainingProcedBadging.pdf 1 Purpose that indicates their minimum environment, safety, and health (ESH) training. It covers obtaining a SLAC

  9. Assessment of Offshore Wind System Design, Safety, and Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind System Design, Safety, and Operation Standards Assessment of Offshore Wind System Design, Safety, and Operation Standards The U.S. Department of Energy's (DOE)...

  10. Occupational health and environment research 1983: Health, Safety, and Environment Division. Progress report

    SciTech Connect (OSTI)

    Voelz, G.L. (comp.)

    1985-05-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the workers, the public, and the environment. Evaluation of respiratory protective equipment included the XM-30 and M17A1 military masks, use of MAG-1 spectacles in respirators, and eight self-contained units. The latter units were used in an evaluation of test procedures used for Bureau of Mines approval of breathing apparatuses. Analyses of air samples from field studies of a modified in situ oil shale retorting facility were performed for total cyclohexane extractables and selected polynuclear aromatic hydrocarbons. Aerosols generation and characterization of effluents from oil shale processing were continued as part of an inhalation toxicology study. Additional data on plutonium excretion in urine are presented and point up problems in using the Langham equation to predict plutonium deposition in the body from long-term excretion data. Environmental surveillance at Los Alamos during 1983 showed the highest estimated radiation dose from Laboratory operations to be about 26% of the natural background radiation dose. Several studies on radionuclides and their transport in the Los Alamos environment are described. The chemical quality of surface and ground water near the geothermal hot dry rock facility is described. Short- and long-term consequences to man from releases of radionuclides into the environment can be simulated by the BIOTRAN computer model, which is discussed brirfly.

  11. Environment, Safety, and Health Program for Department of Energy Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-23

    To establish the Environment, Safety, and Health (ES&H) Program for Department of Energy (DOE) operations. Cancels DOE O 5480.1A. Canceled by DOE N 251.4.

  12. Office of Environment, Safety and Health Assessments Protocol...

    Broader source: Energy.gov (indexed) [DOE]

    April 2015 Office of Environment, Safety and Health Assessments Protocol for Site Leads, April 2015 (Revision 1) - PROTOCOL - EA-31-01 The purpose of this protocol is to establish...

  13. Nuclear Safety Design Principles & the Concept of Independence: Insights from Nuclear Weapon Safety for Other High-Consequence Applications.

    SciTech Connect (OSTI)

    Brewer, Jeffrey D.

    2014-05-01

    Insights developed within the U.S. nuclear weapon system safety community may benefit system safety design, assessment, and management activities in other high consequence domains. The approach of assured nuclear weapon safety has been developed that uses the Nuclear Safety Design Principles (NSDPs) of incompatibility, isolation, and inoperability to design safety features, organized into subsystems such that each subsystem contributes to safe system responses in independent and predictable ways given a wide range of environmental contexts. The central aim of the approach is to provide a robust technical basis for asserting that a system can meet quantitative safety requirements in the widest context of possible adverse or accident environments, while using the most concise arrangement of safety design features and the fewest number of specific adverse or accident environment assumptions. Rigor in understanding and applying the concept of independence is crucial for the success of the approach. This paper provides a basic description of the assured nuclear weapon safety approach, in a manner that illustrates potential application to other domains. There is also a strong emphasis on describing the process for developing a defensible technical basis for the independence assertions between integrated safety subsystems.

  14. Office of Nuclear Safety Basis and Facility Design

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety Basis & Facility Design establishes safety basis and facility design requirements and expectations related to analysis and design of nuclear facilities to ensure protection of workers and the public from the hazards associated with nuclear operations.

  15. Nuclear Power - Operation, Safety and Environment 

    E-Print Network [OSTI]

    2011-01-01

    for Advanced Reactors 47 P. F. Frutuoso e Melo, I. M. S. Oliveira and P. L. Saldanha Chapter 4 Geodetic Terrestrial Observations for the Determination of the Stability in the Kr?ko Nuclear Power Plant Region 71 S. Sav?ek, T. Ambro?i? and D. Kogoj Chapter... Experience in Nuclear Steam Reheat 3 Eugene Saltanov and Igor Pioro Chapter 2 Integrated Approach for Actual Safety Analysis 29 Francesco D?Auria, Walter Giannotti and Marco Cherubini Chapter 3 LWR Safety Analysis and Licensing and Implications...

  16. NREL: Environment, Safety, Health and Quality - Environmental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pink clouds and blue sky. Credit: Steve Wilcox Protecting the environment is at the heart of NREL's mission to develop new renewable energy technologies. Workers have a...

  17. Design and safety analysis of an in-flight, test airfoil 

    E-Print Network [OSTI]

    McKnight, Christopher William

    2006-10-30

    The evaluation of an in-flight airfoil model requires extensive analysis of a variety of structural systems. Determining the safety of the design is a unique task dependant on the aircraft, flight environment, and physical requirements...

  18. The Safety of Sports Grounds (Designation) Order 1992 

    E-Print Network [OSTI]

    Her Majesty's Stationary Office

    1992-03-13

    Article 2 of this Order designates the Sports grounds specified therein as sports grounds requiring safety certificate under the Safety of Sports Ground Act 1975. That Act was amended by Schedule 2 to the Fire Safety and ...

  19. ORISE: Contact Environment, Safety & Health

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer underI REEECNO OFChicago No-Notice ExerciseSafety

  20. Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Documents

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-12-19

    This Standard describes a framework and the criteria to be used for approval of (1) safety basis documents, as required by 10 Code of Federal Regulation (C.F.R.) 830, Nuclear Safety Management, and (2) safety design basis documents, as required by Department of Energy (DOE) Standard (STD)-1189-2008, Integration of Safety into the Design Process.

  1. CRAD, Integrated Safety Basis and Engineering Design Review ...

    Broader source: Energy.gov (indexed) [DOE]

    Integrated Safety Basis and Engineering Design Review - August 20, 2014 (EA CRAD 31-4, Rev. 0) CRAD, Integrated Safety Basis and Engineering Design Review - August 20, 2014 (EA...

  2. Integration of Environment, Safety, and Health into Facility Disposition Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-05-01

    Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part 830, Nuclear Safety Management, Subpart B, Safety Basis Requirements. Volume Two contains the appendices that provide additional environment, safety and health (ES&H) information to complement Volume 1 of this Standard. Volume 2 of the Standard is much broader in scope than Volume 1 and satisfies several purposes. Integrated safety management expectations are provided in accordance with facility disposition requirements contained in DOE O 430.1B, Real Property Asset Management.

  3. Environment/Health/Safety (EHS): Databases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S.Engineering Metal(2)Environment,1.Databases

  4. Events Beyond Design Safety Basis Analysis

    Broader source: Energy.gov [DOE]

    This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis. [Safety Bulletin 2011-01

  5. Teaching Design for Environment in Product Design Classes

    E-Print Network [OSTI]

    Baeriswyl, Michael C.

    The paper presents an approach to teaching design for environment (DFE) in the context of a product design and development course. The teaching method has been applied in our classes for graduate engineering, business, and ...

  6. Identifying, Implementing and Complying with Environment, Safety and Health Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-05-15

    This Policy sets forth the framework for identifying, implementing and complying with environment, safety and health (ES&H) requirements so that work is performed in the DOE complex in a manner that ensures adequate protection of workers, the public and the environment. Ownership of this policy is shared between GC and HS. Cancels DOE P 450.2. Canceled by DOE P 450.4A.

  7. Environment, Safety, and Health Program for Department of Energy Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-23

    This Page Change transmits revised pages of DOE O 5480.1B to renew the authority fo the Assistant Secretary for Environment, Safety and Health to curtail or suspend operations at Department of Energy facilities. Chg 1 dated 5-10-93. Canceled by DOE N 251.4.

  8. ENVIRONMENT, SAFETY, HEALTH, AND QUALITY DIVISION Chapter 24: Training

    E-Print Network [OSTI]

    Wechsler, Risa H.

    ENVIRONMENT, SAFETY, HEALTH, AND QUALITY DIVISION Chapter 24: Training Minimum Training November 2013 URL: http://www-group.slac.stanford.edu/esh/eshmanual/references/trainingReqMinimum.pdf 1 Purpose The purpose of these requirements is to ensure that everyone has the minimum training necessary

  9. Chronic Beryllium Disease Prevention Environment, Safety, Health, and Quality Division

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Chronic Beryllium Disease Prevention Program Environment, Safety, Health, and Quality Division SLAC-I-730-0A09M-001-R003 24 September 2013 #12;Publication Data This document was developed by the Beryllium program and published by ESHQ Publishing. Document Title: Chronic Beryllium Disease Prevention Program

  10. Simplified methodology for indoor environment designs

    E-Print Network [OSTI]

    Srebric, Jelena, 1970-

    2000-01-01

    Current design of the building indoor environment uses averaged single parameters such as air velocity, air temperature or contaminant concentration. This approach gives only general information about thermal comfort and ...

  11. Nonreactor Nuclear Safety Design Criteria and Explosive Safety Criteria Guide for Use with DOE O 420.1, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-03-28

    This Guide provides guidance on the application of requirements for nonreactor nuclear facilities and explosives facilities of Department of Energy (DOE) O 420.1, Facility Safety, Section 4.1, Nuclear and Explosives Safety Design Criteria. No cancellation.

  12. Environment/Health/Safety (EHS): Personal Protective Equipment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EHS Occupational Safety Safety Group Home Electrical Safety Ergonomics ISM Occupational Safety Group Organization Personal Protective Equipment (PPE) Injury Review & Analysis...

  13. NuDE: Development Environment for Safety-Critical Software of

    E-Print Network [OSTI]

    NuDE: Development Environment for Safety-Critical Software of Nuclear Power Plant Jong-Hoon Lee #12;Overview of NuDE NuDE: Development Environment for Safety-Critical Software of Nuclear Power PlantDE: Development Environment for Safety-Critical Software of Nuclear Power Plant 14 #12;· FTA for Requirements

  14. Skinny Streets and Green Neighborhoods: Design for Environment and Community

    E-Print Network [OSTI]

    Piselli, Kathy

    2006-01-01

    Streets and Green Neighborhoods: Design for Environment andStreets and Green Neighborhoods: Design for Environment anddesign. All make decisions about ratio of gray to green. In

  15. Integrating Safety Issues in Optimizing Solvent Selection and Process Design 

    E-Print Network [OSTI]

    Patel, Suhani Jitendra

    2011-10-21

    Incorporating consideration for safety issues while designing solvent processes has become crucial in light of the chemical process incidents involving solvents that have taken place in recent years. The implementation of inherently safer design...

  16. Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  17. Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  18. Safety Design Strategy for the Advanced Test Reactor Primary Coolant Pump and Motor Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  19. AN INTEGRATED ENVIRONMENT FOR CONCEPTUAL DESIGN, SYNTHESIS

    E-Print Network [OSTI]

    Utah, University of

    . Methodology for dynamic analysis of open kinematic chains which is indepen- dent of speci c joint trajectoriesAN INTEGRATED ENVIRONMENT FOR CONCEPTUAL DESIGN, SYNTHESIS AND ANALYSIS OF DYNAMIC FRAME STRUCTURES llment of the requirements for the degree of Doctor of Philosophy Department of Mechanical Engineering

  20. Safety in the Design of Three Burning Plasma Experiments

    SciTech Connect (OSTI)

    Cadwallader, L.C.; Petti, D.A. [Idaho National Engineering and Environmental Laboratory (United States)

    2003-09-15

    The 2002 Snowmass Fusion Energy Sciences Summer Study required a uniform assessment of the safety design goals for three candidate burning plasma experiments: the Fusion Ignition Research Experiment (FIRE), the IGNITOR compact tokamak, and the International Thermonuclear Experimental Reactor (ITER). The main assessment criterion was an objective judgment of each design's ability to obtain a generalized regulatory approval. A brief overview of environmental impact, safety, and health results from the uniform assessment of safety are given in this paper. As safety documentation was reviewed for each design, several issues became apparent. This paper also documents these specific issues. Each of these three designs could obtain a general regulatory approval based on their safety design practices.

  1. March 7, 2012, USW Health Safety and Environment Conference Presentati...

    Office of Environmental Management (EM)

    DOE Worker Safety and Health Regulatory Enforcement Kevin Dressman Director, Office of Worker Safety and Health Enforcement (HS-41) Office of Health, Safety and Security U.S....

  2. Environment, Safety and Health | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th, 2010Environment, Health, Safety &...

  3. Environment, Safety, Health, and Assurance | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th, 2010Environment, Health, Safety

  4. Environment/Health/Safety (EHS): Report an Accident or Incident

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th, 2010Environment, Health, SafetyThis is an

  5. Environment, Safety and Health Progress Assessment of the Hanford Site

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    This report documents the result of the US Department of Energy (DOE) Environment, Safety and Health (ES&H) Progress Assessment of the Hanford Site, in Richland, Washington. The assessment, which was conducted from May 11 through May 22, 1992, included a selective-review of the ES&H management systems and programs of the responsible DOE Headquarters Program Offices the DOE Richland Field Office, and the site contractors. The ES&H Progress Assessments are part of the Secretary of Energy`s continuing effort to institutionalize line management accountability and the self-assessment process throughout DOE and its contractor organizations. The purpose of the Hanford Site ES&H Progress Assessment is to provide the Secretary with an independent assessment of the adequacy and effectiveness of the DOE and contractor management structures, resources, and systems to address ES&H problems and requirements. They are not intended to be comprehensive compliance assessments of ES&H activities. The point of reference for assessing programs at the Hanford Site was, for the most part, the Tiger Team Assessment of the Hanford Site, which was conducted from May 21 through July 18, 1990. A summary of issues and progress in the areas of environment, safety and health, and management is included.

  6. Fusion Engineering and Design 38 (1997) 189218 ARIES-RS safety design and analysis

    E-Print Network [OSTI]

    California at San Diego, University of

    1997-01-01

    Fusion Engineering and Design 38 (1997) 189­218 ARIES-RS safety design and analysis D. Steiner *, L Abstract The ARIES-RS safety design and analysis focused on achieving two objectives: (1) The avoidance. Preliminary analysis of this modified design suggests that the first wall maximum temperature can be kept

  7. Safety problems of water-development works designed for land reclamation

    SciTech Connect (OSTI)

    Shchedrin, V. N.; Kosichenko, Yu. M.

    2011-11-15

    A safety declaration is a fundamental document assuring the safety of water-development works, their correspondence to safety criteria, the design, and active technical regulations and rules.

  8. Transcending the Information Given: Designing Learning Environments for Informed

    E-Print Network [OSTI]

    Fischer, Gerhard

    and design environments [Arias et al., 2000]; (2) collaborative knowledge construction [Fischer & OstwaldTranscending the Information Given: Designing Learning Environments for Informed Participation is designed to see humans only as consumers, television being the most obvious medium that promotes

  9. Safety and core design of large liquid-metal cooled fast breeder reactors

    E-Print Network [OSTI]

    Qvist, Staffan Alexander

    2013-01-01

    criteria for FBR/B&B safety systems/designs . . . . . . . . .Safety systems/designs violations of evaluation critera ARC-LL expansion liquid criteria . . . . . . . . . . . .criteria for systems and design-approaches to improve the inherent safety

  10. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01

    Potential Safety Issues – Regulatory Design Criteria3-3 Regulatory design criteria for safety Table 3-4 Input3-4 Regulatory Design Criteria for safety The DRACS system

  11. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01

    protection. SDCs are safety design criteria. For FHRs, thereand on meeting the FHR safety design criteria (SDCs). When9 Proposed FHR Safety Design Criteria (

  12. Applications of Computer Modelling to Fire Safety Design 

    E-Print Network [OSTI]

    Torero, Jose L; Steinhaus, Thomas

    Tools in support of fire safety engineering design have proliferated in the last few years due to the increased performance of computers. These tools are currently being used in a generalized manner in areas such as egress, ...

  13. March 7, 2012, USW Health Safety and Environment Conference Presentati...

    Office of Environmental Management (EM)

    Lessons Learned from Similar Safety Culture Improvement Initiatives (INPO, NRC, NASA, OSHA, and IAEA) * Identified 3 Safety Culture Focus Areas and Associated Attributes: -...

  14. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Boyd D. Chirstensen

    2012-04-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  15. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Boyd D. Chirstensen

    2012-08-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  16. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Gary Mecham

    2010-05-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  17. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Gary Mecham

    2010-10-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  18. Nonreactor Nuclear Safety Design Guide for use with DOE O 420.1C, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    This Guide provides an acceptable approach for safety design of DOE hazard category 1, 2 and 3 nuclear facilities for satisfying the requirements of DOE O 420.1C. Supersedes DOE G 420.1-1.

  19. Design an optimum safety policy for personnel safety management - A system dynamic approach

    SciTech Connect (OSTI)

    Balaji, P.

    2014-10-06

    Personnel safety management (PSM) ensures that employee's work conditions are healthy and safe by various proactive and reactive approaches. Nowadays it is a complex phenomenon because of increasing dynamic nature of organisations which results in an increase of accidents. An important part of accident prevention is to understand the existing system properly and make safety strategies for that system. System dynamics modelling appears to be an appropriate methodology to explore and make strategy for PSM. Many system dynamics models of industrial systems have been built entirely for specific host firms. This thesis illustrates an alternative approach. The generic system dynamics model of Personnel safety management was developed and tested in a host firm. The model was undergone various structural, behavioural and policy tests. The utility and effectiveness of model was further explored through modelling a safety scenario. In order to create effective safety policy under resource constraint, DOE (Design of experiment) was used. DOE uses classic designs, namely, fractional factorials and central composite designs. It used to make second order regression equation which serve as an objective function. That function was optimized under budget constraint and optimum value used for safety policy which shown greatest improvement in overall PSM. The outcome of this research indicates that personnel safety management model has the capability for acting as instruction tool to improve understanding of safety management and also as an aid to policy making.

  20. Design for the Environment E10: Human-Centered

    E-Print Network [OSTI]

    Agogino, Alice M.

    -Power Calculations !! Nike Case Study !! Green Design Rules !! Course Feedback httpDesign for the Environment E10: Human-Centered Sustainable Product Design !! Human-products Design for Environment (DFE) can be defined as: designing to minimize the environmental impacts

  1. LABORATORY SAFETY CHECKLIST Department of Environment, Health and Safety v.1.9 July 2014 Page 1

    E-Print Network [OSTI]

    Machel, Hans

    ) WHMIS Designate SPILL Designate TDG Designate CHEMATIX Designate A. Laboratory Signage and Identification Criteria yes no n/a Comments / Corrective Action Taken Correction Date Initial 1 Main entrance is posted in each lab listed on the permit. i. A copy of the CNSC (Canadian Nuclear Safety Commission) lab

  2. Safety in urban environment and emergency notice boards

    SciTech Connect (OSTI)

    Confortini, Claudia; Tira, Maurizio

    2008-07-08

    Reliable and safe urban system conditions have to be a crucial goal of ordinary planning activities. Among planning goals, priority must be given to indications relating to the safety levels to be achieved and to the amount of resources to be directed towards reducing the vulnerability of urban systems and therefore of the measures to be taken. Uban vulnerability cannot in fact be reduced to the sum of the vulnerability of single buildings or to the physical vulnerability of its various components. This research work consists of identifying those urban sub-areas that are important for safety in relation to natural risks, ambits that should be highlighted by means of permanent emergency notice boards/billboards. What are the hazard notices relating to all natural hazards and related risks? Where are they located? Are they clear and straightforward so that all residents and visitors are able to understand them, as it is already the case for road signs (or at least it should be)? What urban sub-areas are worth highlighting in relation to natural risks, acting for example as escape routes or meeting points? How is information for the public managed in order that people are immediately, easily and regularly notified? What is the relation of such signals to ordinary traffic signals? Research into the state of the art of permanent notice boards/billboards of this type, currently distinguished only by sporadic and local initiatives, aims at carrying out a census of and recognizing urban elements already considered as important for reducing the vulnerability of the urban system to different natural calamities and at providing new highlights as regards the identification of new ones. The next step is to work out a decision and common-language strategy for planning these elements and for their adequate signposting, so as to be able to live in the urban environment with awareness, safety and confidence, including with respect to more remote and therefore often neglected natural risks. The paper deals with literature in the field and shows the results of the few relevant case studies at work.

  3. Inspection of Environment, Safety, and Health Programs at the Savannah River Site, February 2006

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Independent Oversight (Independent Oversight) conducted an inspection of environment, safety, and health (ES&H) programs at the DOE Savannah River Site (SRS) during January and February 2006. The inspection was performed by Independent Oversight’s Office of Environment, Safety and Health Evaluations.

  4. March 7, 2012, USW Health Safety and Environment Conference Presentati...

    Office of Environmental Management (EM)

    Implementation Improvement Efforts Bill McArthur Director, Office of Worker Safety and Health Policy Office of Health, Safety and Security U.S. Department of Energy USW Health,...

  5. Design review report for modifications to RMCS safety class equipment

    SciTech Connect (OSTI)

    Corbett, J.E.

    1997-05-30

    This report documents the completion of the formal design review for modifications to the Rotary Mode Core Sampling (RMCS) safety class equipment. These modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to approve the Engineering Change Notices affecting safety class equipment used in the RMCS system. The conclusion reached by the review committee was that these changes are acceptable.

  6. Design Review Report for formal review of safety class features of exhauster system for rotary mode core sampling

    SciTech Connect (OSTI)

    JANICEK, G.P.

    2000-06-08

    Report documenting Formal Design Review conducted on portable exhausters used to support rotary mode core sampling of Hanford underground radioactive waste tanks with focus on Safety Class design features and control requirements for flammable gas environment operation and air discharge permitting compliance.

  7. CRAD, Facility Safety- Nuclear Facility Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Design.

  8. Designing Smart Environments: A Paradigm Based on Learning and Prediction

    E-Print Network [OSTI]

    Cook, Diane J.

    Designing Smart Environments: A Paradigm Based on Learning and Prediction Sajal K. Das and Diane J This chapter proposes a learning and prediction based paradigm for designing smart home environments and prediction based paradigm optimizes goal functions of smart home environments such as minimizing maintenance

  9. Designing Space in Virtual Environments for Aiding Wayfinding

    E-Print Network [OSTI]

    Bowden, Richard

    Environments for Aiding Wayfinding Behaviour 51 51 VR may be considered as the ultimate medium for producing of being and moving within a designed environment prior to its construction. This paper, howeverDesigning Space in Virtual Environments for Aiding Wayfinding Behaviour Dimitrios Charitos

  10. March 7, 2012, USW Health Safety and Environment Conference Presentati...

    Office of Environmental Management (EM)

    Integrated Approach to Health, Safety and Security Labor Union and Stakeholder Outreach and Collaboration William Eckroade Principal Deputy Chief for Mission Support Operations...

  11. Environment/Health/Safety (EHS): Monthly Accident Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Personal Protective Equipment (PPE) Injury Review & Analysis Worker Safety and Health Program: PUB-3851 Monthly Accident Statistics Latest Accident Statistics Accident...

  12. SP-100 design, safety, and testing

    SciTech Connect (OSTI)

    Smith, G.L.; Cox, C.M.; Mahaffey, M.K.

    1990-07-01

    The SP-100 Program is developing a nuclear reactor power system that can enhance and/or enable future civilian and military space missions. The program is directed to develop space reactor technology to provide electrical power in the range of tens to hundreds of kilowatts. The major nuclear assembly test is to be conducted at the Hanford Site near Richland, Washington, and is designed to validate the performance of the 2.4-MWt nuclear and heat transport assembly. 10 refs., 5 figs.

  13. On Planning and Design of Logistics Systems for Uncertain Environments

    E-Print Network [OSTI]

    Daganzo, Carlos F.

    On Planning and Design of Logistics Systems for Uncertain Environments Carlos F. Daganzo Department and design of logistics systems when the environment in which they are to be operated cannot be modeled introduced by uncertainty in the planning and design of logistics systems, and (ii) to suggest approximate

  14. Deputy Director, Office of Environment, Safety and Health Assessments

    Broader source: Energy.gov [DOE]

    The Office of Enterprise Assessments (EA) is responsible for performance of assessments, on behalf of the Secretary and Deputy Secretary, in the areas of nuclear and industrial safety, cyber and...

  15. Volume II, Environment, Safety, and Health Special Review of...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of Energy (DOE) Office of Independent Oversight, within the office of Health, Safety and Security (HSS), performed a Special Review of Work Practices for Nanoscale...

  16. Environment, Safety, and Health Special Review, Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Secretary of Energy by the DOE Office of Independent Oversight, within the Office of Health, Safety and Security, with the participation of staff from the Office of Science and...

  17. Inspection of Environment, Safety, and Health Management at the Hanford Site, March 2002

    Broader source: Energy.gov [DOE]

    The Secretary of Energy’s Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) management at the Department of Energy (DOE) Hanford Site in January-February 2002.

  18. Developing a comprehensive software environment for passive solar design

    E-Print Network [OSTI]

    Lotz, Steven E

    1985-01-01

    This thesis is a journal which describes the thoughts and decisions leading up to the final design of a comprehensive software environment for passive solar design. The main purpose of this writing is to convey why a ...

  19. Environment Health & Safety Research Program. Organization and 1979-1980 Publications

    SciTech Connect (OSTI)

    1981-01-01

    This document was prepared to assist readers in understanding the organization of Pacific Northwest Laboratory, and the organization and functions of the Environment, Health and Safety Research Program Office. Telephone numbers of the principal management staff are provided. Also included is a list of 1979 and 1980 publications reporting on work performed in the Environment, Health and Safety Research Program, as well as a list of papers submitted for publication.

  20. Environment, Safety and Health Self-Assessment Report Fiscal Year 2010

    SciTech Connect (OSTI)

    Robinson, Scott

    2011-03-23

    The Lawrence Berkeley National Laboratory (LBNL) Environment, Safety, and Health (ES&H) Self-Assessment Program was established to ensure that Integrated Safety Management (ISM) is implemented institutionally and by all divisions. The ES&H Self-Assessment Program, managed by the Office of Contractor Assurance (OCA), provides for an internal evaluation of all ES&H programs and systems at LBNL. The primary objective of the program is to ensure that work is conducted safely and with minimal negative impact to workers, the public, and the environment. Self-assessment follows the five core functions and guiding principles of ISM. Self-assessment is the mechanism used to promote the continuous improvement of the Laboratory's ES&H programs. The process is described in the Environment, Safety, and Health Assurance Plan (PUB-5344) and is composed of three types of self-assessments: Division ES&H Self-Assessment, ES&H Technical Assurance Program Assessment, and Division ES&H Peer Review. The Division ES&H Self-Assessment Manual (PUB-3105) provides the framework by which divisions conduct formal ES&H self-assessments to systematically identify program deficiencies. Issue-specific assessments are designed and implemented by the divisions and focus on areas of interest to division management. They may be conducted by teams and involve advance planning to ensure that appropriate resources are available. The ES&H Technical Assurance Program Manual (PUB-913E) provides the framework for systematic reviews of ES&H programs and processes. The ES&H Technical Assurance Program Assessment is designed to evaluate whether ES&H programs and processes are compliant with guiding regulations, are effective, and are properly implemented by LBNL divisions. The Division ES&H Peer Review Manual provides the framework by which division ISM systems are evaluated and improved. Peer Reviews are conducted by teams under the direction of senior division management and focus on higher-level management issues. Peer Review teams are selected on the basis of members knowledge and experience in the issues of interest to the division director. LBNL periodically requests in-depth independent assessments of selected ES&H programs. Such assessments augment LBNL's established assessment processes and provide an objective view of ES&H program effectiveness. Institutional Findings, Observations, and Noteworthy Practices identified during independent assessments are specifically intended to help LBNL identify opportunities for program improvement. This report includes the results of the Division ES&H Self-Assessment, ES&H Technical Assurance Program Assessment, and Division ES&H Peer Review, respectively.

  1. Environment, Health and Safety http://ehs.ucsd.edu

    E-Print Network [OSTI]

    Aluwihare, Lihini

    ://blink.ucsd.edu/go/lab Chemical Hygiene Plan -· http://blink.ucsd.edu/go/chp Material Safety Data Sheets -· http Hygiene Plan (CHP) Do you know what the LMS and CHP are and how to access them?· Are you familiar with the contents of both?· Do you have shortcuts to the LMS and CHP on your computer desktop?· Chemical Hazard Use

  2. 8/28/2007 page 1 Designing Steel for Construction Safety1

    E-Print Network [OSTI]

    Toole, T. Michael

    criteria underlying our designs and our daily activities--site safety. Structural engineers and steel8/28/2007 page 1 Designing Steel for Construction Safety1 T. Michael Toole, Nicole Hervol professionals explicitly consider the safety of construction workers during the design phase of projects

  3. Radiation Safety – Protecting the Public and the Environment

    Broader source: Energy.gov [DOE]

    The Department of Energy has a stringent program for protecting its workers, the public, and the environment from radiation.  This web area has links to tools and aids for the radiation protection...

  4. Protection of Operators and Environment - the Safety Concept of the Karlsruhe Vitrification Plant VEK

    SciTech Connect (OSTI)

    Fleisch, J.; Kuttruf, H.; Lumpp, W.; Pfeifer, W.; Roth, G.; Weisenburger, S.

    2002-02-26

    The Karlsruhe Vitrification Plant (VEK) plant is a milestone in decommissioning and complete dismantling of the former Karlsruhe Reprocessing Plant WAK, which is in an advanced stage of disassembly. The VEK is scheduled to vitrify approx. 70 m3 of the highly radioactive liquid waste (HLW) resulting from reprocessing. Site preparation, civil work and component manufacturing began in 1999. The building will be finalized by mid of 2002, hot vitrification operation is currently scheduled for 2004/2005. Provisions against damages arising from construction and operation of the VEK had to be made in accordance with the state of the art as laid down in the German Atomic Law and the Radiation Protection Regulations. For this purpose, the appropriate analysis of accidents and their external and internal impacts were investigated. During the detailed design phase, a failure effects analysis was carried out, in which single events were studied with respect to the objectives of protection and ensuring activity containment, limiting radioactive discharges to the environment and protecting of the staff. Parallel to the planning phase of the VEK plant a cold prototype test facility (PVA) covering the main process steps was constructed and operated at the Institut fuer Nukleare Entsorgung (INE) of FZK. This pilot operation served to demonstrate the process technique and its operation with a simulated waste solution, and to test the main items of equipment, but was conducted also to use the experimental data and experience to back the safety concept of the radioactive VEK plant. This paper describes the basis of the safety concept of the VEK plant and results of the failure effect analysis. The experimental simulation of the failure scenarios, their effect on the process behavior, and the controllability of these events as well as the effect of the results on the safety concept of VEK are discussed. Additionally, an overview of the actual status of civil work and manufacturing of the technical equipment is given.

  5. Integrating Safety, Operations, Security, and Safeguards (ISOSS) into the design of small modular reactors : a handbook.

    SciTech Connect (OSTI)

    Middleton, Bobby D.; Mendez, Carmen Margarita [Sociotecnia Solutions] [Sociotecnia Solutions

    2013-10-01

    The existing regulatory environment for nuclear reactors impacts both the facility design and the cost of operations once the facility is built. Delaying the consideration of regulatory requirements until late in the facility design - or worse, until after construction has begun - can result in costly retrofitting as well as increased operational costs to fulfill safety, security, safeguards, and emergency readiness requirements. Considering the scale and scope, as well as the latest design trends in the next generation of nuclear facilities, there is an opportunity to evaluate the regulatory requirements and optimize the design process for Small Modular Reactors (SMRs), as compared to current Light Water Reactors (LWRs). To this end, Sandia has embarked on an initiative to evaluate the interactions of regulations and operations as an approach to optimizing the design of SMR facilities, supporting operational efficiencies, as well as regulatory requirements. The early stages of this initiative consider two focus areas. The first focus area, reported by LaChance, et al. (2007), identifies the regulatory requirements established for the current fleet of LWR facilities regarding Safety, Security, Operations, Safeguards, and Emergency Planning, and evaluates the technical bases for these requirements. The second focus area, developed in this report, documents the foundations for an innovative approach that supports a design framework for SMR facilities that incorporates the regulatory environment, as well as the continued operation of the facility, into the early design stages, eliminating the need for costly retrofitting and additional operating personnel to fulfill regulatory requirements. The work considers a technique known as Integrated Safety, Operations, Security and Safeguards (ISOSS) (Darby, et al., 2007). In coordination with the best practices of industrial operations, the goal of this effort is to develop a design framework that outlines how ISOSS requirements can be incorporated into the pre-conceptual through early facility design stages, seeking a cost-effective design that meets both operational efficiencies and the regulatory environment. The larger scope of the project, i.e., in future stages, includes the identification of potentially conflicting requirements identified by the ISOSS framework, including an analysis of how regulatory requirements may be changed to account for the intrinsic features of SMRs.

  6. Review and Analysis of Development of "Safety by Design" Requirements

    SciTech Connect (OSTI)

    Vance, Scott A.; Hockert, John

    2009-10-20

    This report, the deliverable for Task 4 of the NA-243 Safeguards by Design Work Plan for Fiscal Year 2009, develops the lessons to be learned for the institutionalization of Safeguards By Design (SBD) from the Department of Energy (DOE) experience developing and implementing DOE-STD-1189, Integration of Safety into the Design Process. This experience was selected for study because of the similarity of the challenges of integrating safety and safeguards into the design process. Development of DOE-STD-1189 began in January 2006 and the standard was issued for implementation in March 2008. The process was much more time consuming than originally anticipated and might not have come to fruition had senior DOE management been less committed to its success. Potentially valuable lessons can be learned from both the content and presentation of the integration approach in DOE-STD-1189 and from the DOE experience in developing and implementing DOE-STD-1189. These lessons are important because the instutionalization of SBD does not yet appear to have the level of senior management commitment afforded development and implementation of DOE-STD-1189.

  7. Environment/Health/Safety (EHS): Radiation Protection Group: Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S.EngineeringRadiation Protection Group UnderSafety

  8. Resilient Design: Transitioning to the New Built Environment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Alex Wilson, Founder, BuildingGreen Inc. and Resilient Design Institute, provides context for why we need to be considering resilience in looking at the built environment during the coming decades.

  9. Designing user models in a virtual cave environment

    SciTech Connect (OSTI)

    Brown-VanHoozer, S.; Hudson, R.; Gokhale, N.

    1995-12-31

    In this paper, the results of a first study into the use of virtual reality for human factor studies and design of simple and complex models of control systems, components, and processes are described. The objective was to design a model in a virtual environment that would reflect more characteristics of the user`s mental model of a system and fewer of the designer`s. The technology of a CAVE{trademark} virtual environment and the methodology of Neuro Linguistic Programming were employed in this study.

  10. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  11. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  12. Safety Design Strategy Standard Review Plan (SRP) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridRenoRhode IslandPlanSafety Design Strategy Standard

  13. ARIES-ACT1 Safety Design and Analysis

    SciTech Connect (OSTI)

    Humrickhouse, Paul W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, Brad J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-01-01

    ARIES-ACT1 (Advanced and Conservative Tokamak) is a 1000-MW(electric) tokamak design featuring advanced plasma physics and divertor and blanket engineering. Some relevant features include an advanced SiC blanket with PbLi as coolant and breeder; a helium-cooled steel structural ring and tungsten divertors; a thin-walled, helium-cooled vacuum vessel; and a room-temperature, water-cooled shield outside the vacuum vessel. We consider here some safety aspects of the ARIES-ACT1 design and model a series of design-basis and beyond-design-basis accidents with the MELCOR code modified for fusion. The presence of multiple coolants (PbLi, helium, and water) makes possible a variety of such accidents. We consider here a loss-of-flow accident caused by a long-term station blackout (LTSBO), an ex-vessel helium break into the cryostat, and a beyond-design-basis accident in which a LTSBO is aggravated by a loss-of-coolant accident in ARIES-ACT1's ultimate decay heat removal system, the water-cooled shield. In the design-basis accidents, we find that the secondary confinement boundaries are not challenged, and the structural integrity of in-vessel components is not threatened by high temperatures or pressures; decay heat can be passively removed.

  14. Environment/Health/Safety (EHS): Environmental Restoration Program (ERP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S.Engineering Metal(2)Environment,1.DatabasesERP ESG

  15. Environment/Health/Safety (EHS): JHA Help Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S.Engineering Metal(2)Environment,1.DatabasesERP

  16. Designing SCIT Architecture Pattern in a Cloud-based Environment

    E-Print Network [OSTI]

    Sood, Arun K.

    and storage size. However, Cloud security is a challenge. In this paper, we leverage Cloud services to designDesigning SCIT Architecture Pattern in a Cloud-based Environment Quyen L. Nguyen and Arun Sood {qnguyeng@gmu.edu, asood@gmu.edu} Abstract--Cloud Computing has gained momentum in the IT world, due to its

  17. Final safety analysis report for the Galileo Mission: Volume 1, Reference design document

    SciTech Connect (OSTI)

    Not Available

    1988-05-01

    The Galileo mission uses nuclear power sources called Radioisotope Thermoelectric Generators (RTGs) to provide the spacecraft's primary electrical power. Because these generators contain nuclear material, a Safety Analysis Report (SAR) is required. A preliminary SAR and an updated SAR were previously issued that provided an evolving status report on the safety analysis. As a result of the Challenger accident, the launch dates for both Galileo and Ulysses missions were later rescheduled for November 1989 and October 1990, respectively. The decision was made by agreement between the DOE and the NASA to have a revised safety evaluation and report (FSAR) prepared on the basis of these revised vehicle accidents and environments. The results of this latest revised safety evaluation are presented in this document (Galileo FSAR). Volume I, this document, provides the background design information required to understand the analyses presented in Volumes II and III. It contains descriptions of the RTGs, the Galileo spacecraft, the Space Shuttle, the Inertial Upper Stage (IUS), the trajectory and flight characteristics including flight contingency modes, and the launch site. There are two appendices in Volume I which provide detailed material properties for the RTG.

  18. Sharing tacit design knowledge in a distributed design environment 

    E-Print Network [OSTI]

    Woo, Jeong-Han

    2006-10-30

    , and professional insight formed as a result of experience. Due to its implicit nature, tacit design knowledge is typically shared only among colleagues who work in the same office through face-toface interactions. With emerging Computer-Mediated Communication (CMC...

  19. DOE's Safety Bulletin No. 2011-01, Events Beyond Design Safety Basis Analysis, March 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    PURPOSE This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis.

  20. Facility Disposition Safety Strategy RM

    Office of Environmental Management (EM)

    that address key functional areas of project management, engineering and design, safety, environment, security, and quality assurance, grouped by each specific CD phase. This...

  1. E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division

    E-Print Network [OSTI]

    material areas (work areas where unsealed radioactive material is handled) and radioactive material storage) 75A Old Hazardous Waste Facility 75S Tritium Storage Locker 76 Radioanalytical Laboratory 83 LifeE.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division Environmental

  2. Differing Professional Opinions for Technical Issues Involving Environment, Safety and Health

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-29

    The Order establishes the DOE Differing Professional Opinion process for employees to raise technical concerns related to environment, safety, and health which cannot be resolved using routine processes. Supersedes DOE P 442.1 and DOE M 442.1-1.

  3. Differing Professional Opinions Manual for Technical Issues Involving Environment, Safety, and Health

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-11-16

    This Manual establishes a differing professional opinion (DPO) policy to a Department of Energy (DOE) Differing Professional Opinion (DPO) Process to encourage and facilitate dialogue and resolution on DPOs from employees for technical issues involving environment, safety, and health. Does not cancel other directives. Canceled by DOE O 442.2.

  4. HAZARDOUS DRUG SAFETY AND HEALTH PLAN FOR HANDLING ANTINEOPLASTIC OTHER HAZARDOUS DRUGS IN CLINICAL ENVIRONMENTS

    E-Print Network [OSTI]

    Kim, Duck O.

    HAZARDOUS DRUG SAFETY AND HEALTH PLAN FOR HANDLING ANTINEOPLASTIC AND OTHER HAZARDOUS DRUGS IN CLINICAL ENVIRONMENTS (5/3/2013) Introduction Drugs have a successful history of use in treating diseases and are responsible for many medical advances over the past century. However, virtually every drug has side effects

  5. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01

    safety design criteria separate effects test steam generators small modular reactor San Onofre Nuclear

  6. Environment, safety, and health considerations for a neutrino source based on a muon storage ring

    SciTech Connect (OSTI)

    J. Donald Cossairt

    2000-05-15

    The Neutrino Source presents a number of challenges in the general area of environment, safety, and health. It is the intent of this paper to identify these challenges and make a preliminary, but not detailed assessment of how they might be addressed and of their potential impact on the project. Some of the considerations which must be taken into account are very similar to those that have been encountered and solved during the construction and operation of other facilities at Fermilab and at similar laboratories elsewhere in the US and worldwide. Other considerations have not been encountered previously in connection with the construction and operation of accelerator laboratories. These novel issues will require particular attention as such a project proceeds to assure their timely resolution in a manner that is cost-effective and that meets the approval of the public. In this paper, both the conventional and the novel issues are discussed, with more emphasis on the latter. It is concluded here that with adequate planning in the design stages, these problems can be adequately addressed in a manner that merits the support of the Laboratory, the Department of Energy, and the public. An abbreviated version of this paper appears as Chapter 14 in the report of a recent feasibility study (Ho 00)and the figures have come from that work.

  7. Design, Operations, and Safety Report for the MERIT Target System

    SciTech Connect (OSTI)

    Graves, Van B [ORNL; Spampinato, Philip Thomas [ORNL

    2007-09-01

    The Mercury Intense Target Project (MERIT) is a proof-of-principal experiment to determine the feasibility of using a free-jet of Hg as a spallation target in a Neutrino Factory or a Muon Collider facility. The 1-cm-diameter, 20-m/sec jet will be generated inside a 15-Tesla magnetic field, and high-speed optical diagnostics will be used to photograph the interaction between the Hg jet and a 24-GeV proton beam.The experiment is scheduled to be conducted at CERN in 2007. ORNL is responsible for the design, fabrication, and testing of a system to deliver the Hg jet within the confines of the 15-cm magnet bore. This report documents the functional and safety requirements of the Hg system along with descriptions of its interfaces to the other experimental equipment.

  8. Interface design of VSOP'94 computer code for safety analysis

    SciTech Connect (OSTI)

    Natsir, Khairina, E-mail: yenny@batan.go.id; Andiwijayakusuma, D.; Wahanani, Nursinta Adi [Center for Development of Nuclear Informatics - National Nuclear Energy Agency, PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia); Yazid, Putranto Ilham [Center for Nuclear Technology, Material and Radiometry- National Nuclear Energy Agency, Jl. Tamansari No.71, Bandung 40132 (Indonesia)

    2014-09-30

    Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects.

  9. Department of Energy Environment, Safety and Health Management Plan. Fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    This report describes efforts by the Department of Energy (DOE) to effectively plan for environment, safety and health activities that protect the environment, workers and the public from harm. This document, which covers fiscal year 1996, reflects planning by operating contractors and Program Offices in early 1994, updated to be consistent with the President`s FY 1996 budget submittal to Congress, and subsequent Department of Energy Program refinements. Prior to 1992, only a small number of facilities had a structured process for identifying environment, safety and health (ES and H) needs, reporting the costs (in both direct and indirect budgets) of ES and H requirements, prioritizing and allocating available resources, and efficiently communicating this information to DOE. Planned costs for ES and H activities were usually developed as an afterthought to program budgets. There was no visible, consistently applied mechanism for determining the appropriate amount of resources that should be allocated to ES and H, or for assuring that significant ES and H vulnerabilities were planned to be funded. To address this issue, the Secretary (in November 1991) directed DOE to develop a Safety and Health Five-Year Plan to serve as a line management tool to delineate DOE-wide programs to reduce and manage safety and health risks, and to establish a consistent framework for risk-based resource planning and allocation.

  10. Technology Development, Evaluation, and Application (TDEA) FY 2001 Progress Report Environment, Safety, and Health (ESH) Division

    SciTech Connect (OSTI)

    L.G. Hoffman; K. Alvar; T. Buhl; E. Foltyn; W. Hansen; B. Erdal; P. Fresquez; D. Lee; B. Reinert

    2002-05-01

    This progress report presents the results of 11 projects funded ($500K) in FY01 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division (ESH). Five projects fit into the Health Physics discipline, 5 projects are environmental science and one is industrial hygiene/safety. As a result of their TDEA-funded projects, investigators have published sixteen papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplement funds and in-kind contributions, such as staff time, instrument use, and workspace, were also provided to TDEA-funded projects by organizations external to ESH Divisions.

  11. IDA -A DESIGN ENVIRONMENT FOR ERGONOMIC USER INTERFACES

    E-Print Network [OSTI]

    Reiterer, Harald

    51 IDA - A DESIGN ENVIRONMENT FOR ERGONOMIC USER INTERFACES Harald Reiterer University of Vienna, Heuristic Evaluation, Standards, Style guides, Tools for Working with Guidelines, Usability Engineering not guarantee GUis of high ergonomic quality. To reach high ergonomic qualityGUls, human fac- tors knowledge has

  12. THETIS: AN ANSI C PROGRAMMING ENVIRONMENT DESIGNED FOR INTRODUCTORY USE

    E-Print Network [OSTI]

    Freund, Stephen N.

    THETIS: AN ANSI C PROGRAMMING ENVIRONMENT DESIGNED FOR INTRODUCTORY USE Stephen N. Freund and Eric compilers, particularly those used for languages like ANSI C that have extensive commercial applicability to adopt ANSI C as the language of instruction for its CS l/CS2 sequence, most of the affected

  13. Pacific Northwest Laboratory annual report for 1990 to the Assistant Secretary for Environment, Safety, and Health

    SciTech Connect (OSTI)

    Faust, L.G.; Moraski, R.V.; Selby, J.M.

    1991-05-01

    Part 5 of the 1990 Annual Report to the US Department of Energy's Assistant Secretary for Environment, Safety, and Health presents Pacific Northwest Laboratory's progress on work performed for the Office of Environmental Guidance, the Office of Environmental Compliance, the Office of Environmental Audit, the Office of National Environmental Policy Act Project Assistance, the Office of Nuclear Safety, the Office of Safety Compliance, and the Office of Policy and Standards. For each project, as identified by the Field Work Proposal, there is an article describing progress made during fiscal year 1990. Authors of these articles represent a broad spectrum of capabilities derived from five of the seven technical centers of the Laboratory, reflecting the interdisciplinary nature of the work.

  14. US Department of Energy Environment, Safety and Health Progress Assessment of the Nevada Test Site

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This report documents the result of the US Department of Energy (DOE) Environment, Safety, and Health (ES&H) Progress Assessment of the Nevada Test Site (NTS), Nye County, Nevada. The assessment, which was conducted from July 20 through August 4, 1992, included a selective review of the ES&H management systems and progress of the responsible DOE Headquarters Program Offices; the DOE Nevada Field Office (NV); and the site contractors. The ES&H Progress Assessments are part of the Secretary of Energy`s continuing effort to institutionalize line management accountability and the self-assessment process throughout DOE and its contractor organizations. This report presents a summary of issues and progress in the areas of environment, safety and health, and management.

  15. Designing Integrated Engineering Environments: BlackboardBased Integration of Design and

    E-Print Network [OSTI]

    Corkill, Daniel

    /MD 2122­SRL Dearborn, MI 48121­2053 staley@carnap.srl.ford.com Abstract In the automotive industry and platforms. Use of integrated environments, such as the RRM environ­ ment, is expected to result in increased, the organization. This fragmentation of expertise and information is typical of automotive and other design

  16. Environment, Safety and Health Self-Assessment Report Fiscal Year 2010

    E-Print Network [OSTI]

    Robinson, Scott

    2011-01-01

    Accreditation Program Nuclear Safety Management (Inventory)Exposure Nuclear Science Division Ergonomics Safety Physical

  17. Impact of the University Environment and VLSI Fabrication Services on Mixed-Signal Design in a University Environment

    E-Print Network [OSTI]

    Bibyk, Steven B.

    environments, design libraries, technology process information and VLSI fabrication service will impact library for a specific technology, an FGPA environment, or sometimes the process technology informationImpact of the University Environment and VLSI Fabrication Services on Mixed-Signal Design

  18. SAFETY ASSESSMENT OF THE ARIES COMPACT STELLARATOR DESIGN

    E-Print Network [OSTI]

    California at San Diego, University of

    -CS by report- ing radiological inventories, decay heat, and radioactive waste management optionsARIES-CS and the facility can meet the no-evacuation requirement. KEYWORDS: ARIES-CS, safety assessment, stellarator Note In this paper we examine the safety and environmen- tal performance of ARIES-CS by reporting radiological

  19. Task Group report to the Assistant Secretary for Environment, Safety and Health on oversight of chemical safety at the Department of Energy. Volume 2, Appendices

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    This report presents the results of a preliminary review of chemical safety within the Department of Energy (DOE). The review was conducted by Chemical Safety Oversight Review (CSOR) Teams composed of Office of Environment, Safety and Health (EH) staff members and contractors. The primary objective of the CSOR was to assess, the safety status of DOE chemical operations and identify any significant deficiencies associated with such operations. Significant was defined as any situation posing unacceptable risk, that is, imminent danger or threat to workers, co-located workers, the general public, or the environment, that requires prompt action by EH or the line organizations. A secondary objective of the CSOR was to gather and analyze technical and programmatic information related to chemical safety to be used in conjunction with the longer-range EH Workplace Chemical Accident Risk Review (WCARR) Program. The WCARR Program is part of the ongoing EH oversight of nonnuclear safety at all DOE facilities. `` The program objective is to analyze DOE and industry chemical safety programs and performance and determine the need for additional or improved safety guidance for DOE. During the period June 6, 1992, through July 31, 1992, EH conducted CSORs at five DOE sites. The sites visited were Los Alamos National Laboratory (LANL), Savannah River Site (SRS), the Y-12 Plant (Y-12), Oak Ridge National Laboratory (ORNL), and Lawrence Livermore National Laboratory (LLNL).

  20. Environment, Safety, and Health Self-Assessment Report, Fiscal Year 2008

    SciTech Connect (OSTI)

    Chernowski, John

    2009-02-27

    Lawrence Berkeley National Laboratory's Environment, Safety, and Health (ES&H) Self-Assessment Program ensures that Integrated Safety Management (ISM) is implemented institutionally and by all divisions. The Self-Assessment Program, managed by the Office of Contract Assurance (OCA), provides for an internal evaluation of all ES&H programs and systems at LBNL. The functions of the program are to ensure that work is conducted safely, and with minimal negative impact to workers, the public, and the environment. The Self-Assessment Program is also the mechanism used to institute continuous improvements to the Laboratory's ES&H programs. The program is described in LBNL/PUB 5344, Environment, Safety, and Health Self-Assessment Program and is composed of four distinct assessments: the Division Self-Assessment, the Management of Environment, Safety, and Health (MESH) review, ES&H Technical Assurance, and the Appendix B Self-Assessment. The Division Self-Assessment uses the five core functions and seven guiding principles of ISM as the basis of evaluation. Metrics are created to measure performance in fulfilling ISM core functions and guiding principles, as well as promoting compliance with applicable regulations. The five core functions of ISM are as follows: (1) Define the Scope of Work; (2) Identify and Analyze Hazards; (3) Control the Hazards; (4) Perform the Work; and (5) Feedback and Improvement. The seven guiding principles of ISM are as follows: (1) Line Management Responsibility for ES&H; (2) Clear Roles and Responsibilities; (3) Competence Commensurate with Responsibilities; (4) Balanced Priorities; (5) Identification of ES&H Standards and Requirements; (6) Hazard Controls Tailored to the Work Performed; and (7) Operations Authorization. Performance indicators are developed by consensus with OCA, representatives from each division, and Environment, Health, and Safety (EH&S) Division program managers. Line management of each division performs the Division Self-Assessment annually. The primary focus of the review is workplace safety. The MESH review is an evaluation of division management of ES&H in its research and operations, focusing on implementation and effectiveness of the division's ISM plan. It is a peer review performed by members of the LBNL Safety Review Committee (SRC), with staff support from OCA. Each division receives a MESH review every two to four years, depending on the results of the previous review. The ES&H Technical Assurance Program (TAP) provides the framework for systematic reviews of ES&H programs and processes. The intent of ES&H Technical Assurance assessments is to provide assurance that ES&H programs and processes comply with their guiding regulations, are effective, and are properly implemented by LBNL divisions. The Appendix B Performance Evaluation and Measurement Plan (PEMP) requires that LBNL sustain and enhance the effectiveness of integrated safety, health, and environmental protection through a strong and well-deployed system. Information required for Appendix B is provided by EH&S Division functional managers. The annual Appendix B report is submitted at the close of the fiscal year. This assessment is the Department of Energy's (DOE) primary mechanism for evaluating LBNL's contract performance in ISM.

  1. A safety program design for state highway departments 

    E-Print Network [OSTI]

    Hudlow, Chester Dow

    1973-01-01

    , Accidents, and Organiza- tional Efficiency 2 A Rating Form for Analyzing Management Style [22] 3 The Managerial Grid [23] 4 Highway Department Organizational Chart 5 Occupational Safety and Health Division Organizational Chart 6 Network Diagram... responsibility for accident control [273 . This seems so obvious it is hardly worth mentioning, but too often in the past management has felt their responsibility was over when the safety specialist...

  2. TOWARDS INTEGRATED SAFETY ANALYSIS AND DESIGN P Fenelon, J A McDermid, M Nicholson, D J Pumfrey

    E-Print Network [OSTI]

    Pumfrey, David

    TOWARDS INTEGRATED SAFETY ANALYSIS AND DESIGN P Fenelon, J A McDermid, M Nicholson, D J Pumfrey analytical to synthetic approaches, using safety criteria and evidence as a fitness function for comparing alternative automatically-generated designs. Keywords safety assessment, architectural design, goal structures

  3. Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division

    SciTech Connect (OSTI)

    Larry G. Hoffman

    2000-12-01

    This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division.

  4. Environment, Safety and Health (ES&H) | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S.Engineering Metal(2)Environment, Safety and Health

  5. The Design and Evaluation of a Wireless Sensor Network for Mine Safety Monitoring

    E-Print Network [OSTI]

    Huang, Changcheng

    The Design and Evaluation of a Wireless Sensor Network for Mine Safety Monitoring Xiaoguang Niu12 sensor network for mine safety monitoring. Based on the characteristics of underground mine gallery overhead with a well-bounded offset error for large-scale sensor networks. This mechanism is easy

  6. Created: July, 2014 Laboratory Safety Design Guide Section 3 Laboratory Ventilation

    E-Print Network [OSTI]

    ...........................................................................3-2 C. Fume Hood Exhaust System Design Criteria (FHES) ........................................3-3 D Criteria (FHES) 1. Design to incorporate user needs, room configuration and general ventilation. 2Created: July, 2014 Laboratory Safety Design Guide Section 3 ­ Laboratory Ventilation 3-1 Section 3

  7. Design and implimentation of a supervisory safety controller for a 3DOF helicopter

    E-Print Network [OSTI]

    Ishutkina, Mariya A. (Mariya Aleksandrovna)

    2004-01-01

    This research effort presents the design and implementation of a supervisory controller for a 3DOF helicopter. This safety critical system is used in undergraduate laboratories in the Department of Aeronautics and Astronautics ...

  8. Fault tree synthesis for software design analysis of PLC based safety-critical systems

    SciTech Connect (OSTI)

    Koo, S. R.; Cho, C. H. [Corporate R and D Inst., Doosan Heavy Industries and Construction Co., Ltd., 39-3, Seongbok-Dong, Yongin-Si, Gyeonggi-Do 449-795 (Korea, Republic of); Seong, P. H. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-3 Guseong-dong, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2006-07-01

    As a software verification and validation should be performed for the development of PLC based safety-critical systems, a software safety analysis is also considered in line with entire software life cycle. In this paper, we propose a technique of software safety analysis in the design phase. Among various software hazard analysis techniques, fault tree analysis is most widely used for the safety analysis of nuclear power plant systems. Fault tree analysis also has the most intuitive notation and makes both qualitative and quantitative analyses possible. To analyze the design phase more effectively, we propose a technique of fault tree synthesis, along with a universal fault tree template for the architecture modules of nuclear software. Consequently, we can analyze the safety of software on the basis of fault tree synthesis. (authors)

  9. Independent Oversight Inspection of Environment, Safety, and Health Programs at the Savannah River Operations Office and Savannah River Site, January 2010

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), inspected environment, safety, and health (ES&H) programs at the DOE Savannah River Site.

  10. Impact of Passive Safety on FHR Instrumentation Systems Design and Classification

    SciTech Connect (OSTI)

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled high-temperature reactors (FHRs) will rely more extensively on passive safety than earlier reactor classes. 10CFR50 Appendix A, General Design Criteria for Nuclear Power Plants, establishes minimum design requirements to provide reasonable assurance of adequate safety. 10CFR50.69, Risk-Informed Categorization and Treatment of Structures, Systems and Components for Nuclear Power Reactors, provides guidance on how the safety significance of systems, structures, and components (SSCs) should be reflected in their regulatory treatment. The Nuclear Energy Institute (NEI) has provided 10 CFR 50.69 SSC Categorization Guideline (NEI-00-04) that factors in probabilistic risk assessment (PRA) model insights, as well as deterministic insights, through an integrated decision-making panel. Employing the PRA to inform deterministic requirements enables an appropriately balanced, technically sound categorization to be established. No FHR currently has an adequate PRA or set of design basis accidents to enable establishing the safety classification of its SSCs. While all SSCs used to comply with the general design criteria (GDCs) will be safety related, the intent is to limit the instrumentation risk significance through effective design and reliance on inherent passive safety characteristics. For example, FHRs have no safety-significant temperature threshold phenomena, thus, enabling the primary and reserve reactivity control systems required by GDC 26 to be passively, thermally triggered at temperatures well below those for which core or primary coolant boundary damage would occur. Moreover, the passive thermal triggering of the primary and reserve shutdown systems may relegate the control rod drive motors to the control system, substantially decreasing the amount of safety-significant wiring needed. Similarly, FHR decay heat removal systems are intended to be running continuously to minimize the amount of safety-significant instrumentation needed to initiate operation of systems and components important to safety as required in GDC 20. This paper provides an overview of the design process employed to develop a pre-conceptual FHR instrumentation architecture intended to lower plant capital and operational costs by minimizing reliance on expensive, safety related, safety-significant instrumentation through the use of inherent passive features of FHRs.

  11. Independent Oversight Inspection of Environment, Safety, and Health Programs at the Argonne National Laboratory, Technical Appendices, Volume II, May 2005

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA) inspected environment, safety, and health (ES&H) programs at the DOE Argonne National Laboratory (ANL) during April and May 2005. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. This volume of the report provides four technical appendices (C through F) containing detailed results of the OA review. Appendix C provides the results of the review of the application of the core functions of ISM for ANL work activities. Appendix D presents the results of the review of SC, ASO, and ANL feedback and continuous improvement processes and management systems. Appendix E presents the results of the review of essential safety system functionality, and Appendix F presents the results of the review of safety management of the selected focus areas.

  12. Independent Oversight Inspection of Environment, Safety, and Health Programs at the Sandia National Laboratories, Technical Appendices, Volume II, May 2005

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA) inspected environment, safety, and health (ES&H) programs at DOE Sandia National Laboratories (SNL) during March and April 2005. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. This volume of the report provides four technical appendices (C through F) containing detailed results of the OA review. Appendix C provides the results of the review of the application of the core functions of ISM for SNL work activities. Appendix D presents the results of the review of NNSA, SSO, and SNL feedback and continuous improvement processes and management systems. Appendix E presents the results of the review of essential safety system functionality, and Appendix F presents the results of the review of safety management of the selected focus areas.

  13. Automated design synthesis of robotic/human workcells for improved manufacturing system design in hazardous environments

    SciTech Connect (OSTI)

    Williams, Joshua M.

    2012-06-12

    Manufacturing tasks that are deemed too hazardous for workers require the use of automation, robotics, and/or other remote handling tools. The associated hazards may be radiological or nonradiological, and based on the characteristics of the environment and processing, a design may necessitate robotic labor, human labor, or both. There are also other factors such as cost, ergonomics, maintenance, and efficiency that also effect task allocation and other design choices. Handling the tradeoffs of these factors can be complex, and lack of experience can be an issue when trying to determine if and what feasible automation/robotics options exist. To address this problem, we utilize common engineering design approaches adapted more for manufacturing system design in hazardous environments. We limit our scope to the conceptual and embodiment design stages, specifically a computational algorithm for concept generation and early design evaluation. In regard to concept generation, we first develop the functional model or function structure for the process, using the common 'verb-noun' format for describing function. A common language or functional basis for manufacturing was developed and utilized to formalize function descriptions and guide rules for function decomposition. Potential components for embodiment are also grouped in terms of this functional language and are stored in a database. The properties of each component are given as quantitative and qualitative criteria. Operators are also rated for task-relevant criteria which are used to address task compatibility. Through the gathering of process requirements/constraints, construction of the component database, and development of the manufacturing basis and rule set, design knowledge is stored and available for computer use. Thus, once the higher level process functions are defined, the computer can automate the synthesis of new design concepts through alternating steps of embodiment and function structure updates/decomposition. In the process, criteria guide function allocation of components/operators and help ensure compatibility and feasibility. Through multiple function assignment options and varied function structures, multiple design concepts are created. All of the generated designs are then evaluated based on a number of relevant evaluation criteria: cost, dose, ergonomics, hazards, efficiency, etc. These criteria are computed using physical properties/parameters of each system based on the qualities an engineer would use to make evaluations. Nuclear processes such as oxide conversion and electrorefining are utilized to aid algorithm development and provide test cases for the completed program. Through our approach, we capture design knowledge related to manufacturing and other operations in hazardous environments to enable a computational program to automatically generate and evaluate system design concepts.

  14. Exascale Co-design for Modeling Materials in Extreme Environments

    SciTech Connect (OSTI)

    Germann, Timothy C.

    2014-07-08

    Computational materials science has provided great insight into the response of materials under extreme conditions that are difficult to probe experimentally. For example, shock-induced plasticity and phase transformation processes in single-crystal and nanocrystalline metals have been widely studied via large-scale molecular dynamics simulations, and many of these predictions are beginning to be tested at advanced 4th generation light sources such as the Advanced Photon Source (APS) and Linac Coherent Light Source (LCLS). I will describe our simulation predictions and their recent verification at LCLS, outstanding challenges in modeling the response of materials to extreme mechanical and radiation environments, and our efforts to tackle these as part of the multi-institutional, multi-disciplinary Exascale Co-design Center for Materials in Extreme Environments (ExMatEx). ExMatEx has initiated an early and deep collaboration between domain (computational materials) scientists, applied mathematicians, computer scientists, and hardware architects, in order to establish the relationships between algorithms, software stacks, and architectures needed to enable exascale-ready materials science application codes within the next decade. We anticipate that we will be able to exploit hierarchical, heterogeneous architectures to achieve more realistic large-scale simulations with adaptive physics refinement, and are using tractable application scale-bridging proxy application testbeds to assess new approaches and requirements. Such current scale-bridging strategies accumulate (or recompute) a distributed response database from fine-scale calculations, in a top-down rather than bottom-up multiscale approach.

  15. UPF: Safety in Design | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPP UPDATE:AdministrationfollowingReportsUPF: Safety in

  16. Environment, safety and health compliance assessment, Feed Materials Production Center, Fernald, Ohio

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    The Secretary of Energy established independent Tiger Teams to conduct environment, safety, and health (ES H) compliance assessments at US Department of Energy (DOE) facilities. This report presents the assessment of the Feed Materials Production Center (FMPC) at Fernald, Ohio. The purpose of the assessment at FMPC is to provide the Secretary with information regarding current ES H compliance status, specific ES H noncompliance items, evaluation of the adequacy of the ES H organizations and resources (DOE and contractor), and root causes for noncompliance items. Areas reviewed included performance under Federal, state, and local agreements and permits; compliance with Federal, state and DOE orders and requirements; adequacy of operations and other site activities, such as training, procedures, document control, quality assurance, and emergency preparedness; and management and staff, including resources, planning, and interactions with outside agencies.

  17. Environment, safety and health progress assessment of the Fernald Environmental Management Project (FEMP)

    SciTech Connect (OSTI)

    Not Available

    1991-11-01

    This report documents the results of the Environment, Safety, and Health (ES&H) Progress Assessment of the Fernald Environmental Management Project (FEMP), Fernald, Ohio, conducted from October 15 through October 25, 1991. The Secretary of Energy directed that small, focused, ES&H Progress Assessments be performed as part of the continuing effort to institutionalize line management accountability and the self-assessment process in the areas of ES&H. The FEMP assessment is the pilot assessment for this new program. The objectives for the FEMP ES&H Progress Assessment were to assess: (1) how the FEMP has progressed since the 1989 Tiger Assessment; (2) how effectively the FEMP has corrected specific deficiencies and associated root causes identified by that team; and (3) whether the current organization, resources, and systems are sufficient to proactively manage ES&H issues.

  18. Technology Development, Evaluation, and Application (TDEA) FY 1998 Progress Report Environment, Safety, and Health (ESH) Division

    SciTech Connect (OSTI)

    Larry G. Hoffman; Kenneth Alvar; Thomas Buhl; Bruce Erdal; Philip Fresquez; Elizabeth Foltyn; Wayne Hansen; Bruce Reinert

    1999-06-01

    This progress report presents the results of 10 projects funded ($504K) in FY98 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Nine projects are new for this year; two projects were completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published 19 papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space were also provided to the TDEA-funded projects by organizations external to ESH Division. Products generated from the projects funded in FY98 included a new extremity dosimeter that replaced the previously used finger-ring dosimeters, a light and easy-to-use detector to measure energy deposited by neutron interactions, and a device that will allow workers to determine the severity of a hazard.

  19. Formal Verification of Safety I&C System Designs: Two Nuclear Power Plant Related Applications

    E-Print Network [OSTI]

    Heljanko, Keijo

    and control (I&C) systems play a crucial role in the operation of nuclear power plants (NPP) and other safety of the environment is covered. The reactor emergency cooling system is in use in an operating nuclear power plant is a reactor emergency cooling system in an operating nuclear power plant. 2. MODEL CHECKING METHODOLOGY

  20. Assessment of Offshore Wind System Design, Safety, and Operation Standards

    SciTech Connect (OSTI)

    Sirnivas, S.; Musial, W.; Bailey, B.; Filippelli, M.

    2014-01-01

    This report is a deliverable for a project sponsored by the U.S. Department of Energy (DOE) entitled National Offshore Wind Energy Resource and Design Data Campaign -- Analysis and Collaboration (contract number DE-EE0005372; prime contractor -- AWS Truepower). The project objective is to supplement, facilitate, and enhance ongoing multiagency efforts to develop an integrated national offshore wind energy data network. The results of this initiative are intended to 1) produce a comprehensive definition of relevant met-ocean resource assets and needs and design standards, and 2) provide a basis for recommendations for meeting offshore wind energy industry data and design certification requirements.

  1. LMFBR conceptual design study: an overview of environmental and safety concerns

    SciTech Connect (OSTI)

    Brenchley, D.L.

    1981-06-01

    The US Department of Energy (DOE) initiated the Liquid Metal Fast Breeder (LMFBR) Conceptual Design Study (CDS) with the objective of maintaining a viable breeder option. The project is scheduled to be completed in FY-1981 but decisions regarding plant construction will be delayed until at least 1985. This report provides a review of the potential environmental and safety engineering concerns for the CDS and recommends specific action for the Environmental and Safety Engineering Division of DOE.

  2. A design tool architecture for the rapid evaluation of product design tradeoffs in an Inernet-based system modeling environment

    E-Print Network [OSTI]

    Wronski, Jacob (Jacob Andrzej)

    2005-01-01

    This thesis presents a computer-aided design tool for the rapid evaluation of design tradeoffs in an integrated product modeling environment. The goal of this work is to provide product development organizations with better ...

  3. Environment, Safety and Health Self-Assessment Report Fiscal Year 2010

    E-Print Network [OSTI]

    Robinson, Scott

    2011-01-01

    Ergonomics New Projects Hazards Analysis Line Management Safety Walkthrough Program Job Hazards Evaluations

  4. Understanding IV&V in a Safety Critical and Complex Evolutionary Environment: The NASA Space Shuttle Program1

    E-Print Network [OSTI]

    Zelkowitz, Marvin V.

    Understanding IV&V in a Safety Critical and Complex Evolutionary Environment: The NASA Space, Maryland 20740, USA +1-301-403-8971 irus@fc-md.umd.edu 1 This work has been performed as NASA Subcontract No. 93-393B-FUSA from the NASA/IVV facility in Fairmont, WV to the Fraunhofer Center, Maryland

  5. Inspection of Environment, Safety, and Health and Emergency Management at the Nevada Test Site- Summary Report, October 2002

    Broader source: Energy.gov [DOE]

    The Secretary of Energy’s Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) and emergency management programs at the National Nuclear Security Administration (NNSA) Nevada Test Site (NTS) in September and October

  6. Program desk manual for occupational safety and health -- U.S. Department of Energy Richland Operations, Office of Environment Safety and Health

    SciTech Connect (OSTI)

    Musen, L.G.

    1998-08-27

    The format of this manual is designed to make this valuable information easily accessible to the user as well as enjoyable to read. Each chapter contains common information such as Purpose, Scope, Policy and References, as well as information unique to the topic at hand. This manual can also be provided on a CD or Hanford Internet. Major topics include: Organization and program for operational safety; Occupational medicine; Construction and demolition; Material handling and storage; Hoisting and rigging; Explosives; Chemical hazards; Gas cylinders; Electrical; Boiler and pressure vessels; Industrial fire protection; Industrial hygiene; and Safety inspection checklist.

  7. Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Employee Radiological HS4240-W Chemical Safety HS4680-W PPE To access these training modules link here LTRAIN from inside LLNL, or here from anywhere. All JLF...

  8. Introduction to the Special Issue on Interface Issues and Designs for Safety-

    E-Print Network [OSTI]

    Gray, Wayne

    -computer interaction community. This special issue addresses the challenge of analyzing, designing, and building--air traffic control. When compared to office automation systems, human-computer interac- tion for safety," that can be seen as a usability issue in an office automation system, can become a critical functionality

  9. Combining Functional and Structural Reasoning for Safety Analysis of Electrical Designs

    E-Print Network [OSTI]

    Snooke, Neal

    in detail. FLAME has been developed over several years, and is capable of composing an FMEA report for many Failure mode effects analysis (FMEA) of a design involves the investigation and assessment of the effects, electronic and mechanical systems are being combined in safety-critical applications. Automation of FMEA

  10. K Basin sludge packaging design criteria (PDC) and safety analysis report for packaging (SARP) approval plan

    SciTech Connect (OSTI)

    Brisbin, S.A.

    1996-03-06

    This document delineates the plan for preparation, review, and approval of the Packaging Design Crieteria for the K Basin Sludge Transportation System and the Associated on-site Safety Analysis Report for Packaging. The transportation system addressed in the subject documents will be used to transport sludge from the K Basins using bulk packaging.

  11. Independent Oversight Inspection of Environment, Safety, and Health Programs at the Pantex Plant, Technical Appendices, Volume II, February 2005

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) programs at the DOE Pantex Plant during January and February 2005. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. OA reports to the Director of the Office of Security and Safety Performance Assurance, who reports directly to the Secretary of Energy. This volume of the report provides four technical appendices (C through F) containing detailed results of the OA review. Appendix C provides the results of the review of the application of the core functions of ISM for Pantex Plant work activities. Appendix D presents the results of the review of NNSA, PXSO, and BWXT feedback and continuous improvement processes and management systems. Appendix E presents the results of the review of essential safety system functionality, and Appendix F presents the results of the review of safety management of the selected focus areas.

  12. Environment, Safety and Health Progress Assessment of the Argonne Illinois Site

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This report documents the results of the US Department of Energy (DOE) Environment, Safety and Health (ES&H) Progress Assessment of the Argonne Illinois Site (AIS), near Chicago, Illinois, conducted from October 25 through November 9, 1993. During the Progress Assessment, activities included a selective review of the ES&H management systems and programs with principal focus on the DOE Office of Energy Research (ER); CH, which includes the Argonne Area Office; the University of Chicago; and the contractor`s organization responsible for operation of Argonne National Laboratory (ANL). The ES&H Progress Assessments are part of DOE`s continuing effort to institutionalize line management accountability and the self-assessment process throughout DOE and its contractor organizations. The purpose of the AIS ES&H Progress Assessment was to provide the Secretary of Energy, senior DOE managers, and contractor management with concise independent information on the following: change in culture and attitude related to ES&H activities; progress and effectiveness of the ES&H corrective actions resulting from the previous Tiger Team Assessment; adequacy and effectiveness of the ES&H self-assessment process of the DOE line organizations, the site management, and the operating contractor; and effectiveness of DOE and contractor management structures, resources, and systems to effectively address ES&H problems and new ES&H initiatives.

  13. Site Environmental Report for 2004. Volume 1, Environment, Health, and Safety Division

    SciTech Connect (OSTI)

    none,

    2005-09-30

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2004 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2004. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as “Berkeley Lab,” “the Laboratory,” “Lawrence Berkeley National Laboratory,” and “LBNL.”) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from these activities. This year, the Site Environmental Report was distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request.

  14. Environment, safety and Health Progress Assessment of the Rocky Flats Plant

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This report documents the result of the US Department of Energy`s (DOE) Environment, Safety and Health (ES&H) Progress Assessment of the DOE Rocky Flats Plant (RFP) in Golden, Colorado. The assessment, which was conducted during the period of May 17 through May 28, 1993, included a selective review of the ES&H management systems and programs of the responsible DOE Headquarters Program Offices (Defense Programs (DP) and Environmental Restoration and Waste Management (EM)), the DOE Rocky Flats Office (RFO), and the site contractor, EG&G Rocky Flats, Inc. (EG&G). Despite the near constant state of flux under which RFP has been required to operate, the Progress Assessment Team has concluded that significant progress has been made in correcting the deficiencies identified in the 1989 Assessment and in responding responsibly to regulations, and DOE directives and guidance that have been issued since that time. The Team concluded that the improvements have been concentrated in the activities associated with plutonium facilities and in regulatory driven programs. Much remains to be done with respect to implementing on a sitewide basis those management systems that anchor an organization`s pursuit of continuous ES&H improvement. Furthermore the Team concluded that the pace of improvement has been constrained by a combination of factors that have limited the site`s ability to manage change in the pursuit of sitewide ES&H excellence.

  15. A Dimension Space for the Design of Interactive Systems within their Physical Environments

    E-Print Network [OSTI]

    Nigay, Laurence

    A Dimension Space for the Design of Interactive Systems within their Physical Environments T their systems are built, and the tradeoffs involved in both the design of the entities themselves at Grenoble, exposing design tradeoffs and design rules for richly interactive systems. Keywords Dimension

  16. Photonic Device Layout Within the Foundry CMOS Design Environment

    E-Print Network [OSTI]

    Orcutt, Jason Scott

    A design methodology to layout photonic devices within standard electronic complementary metal-oxide-semiconductor (CMOS) foundry data preparation flows is described. This platform has enabled the fabrication of designs ...

  17. Designing aesthetically pleasing freeform surfaces in a computer environment

    E-Print Network [OSTI]

    Smyth, Evan P. (Evan Patrick), 1967-

    2001-01-01

    Statement: If computational tools are to be employed in the aesthetic design of freeform surfaces, these tools must better reflect the ways in which creative designers conceive of and develop such shapes. In this thesis, ...

  18. AC 2010-343: NASA SENIOR DESIGN: MISSION ASSURANCE MANAGEMENT ENVIRONMENT

    E-Print Network [OSTI]

    Conrad, James M.

    AC 2010-343: NASA SENIOR DESIGN: MISSION ASSURANCE MANAGEMENT ENVIRONMENT Jiang Guo, California University Los Angeles © American Society for Engineering Education, 2010 #12;NASA Senior Design: Mission Assurance Management Environment Abstract This paper discusses the implementation experience of our NASA

  19. Data mining in an engineering design environment: OR applications from graph matching1

    E-Print Network [OSTI]

    Nagi, Rakesh

    1 Data mining in an engineering design environment: OR applications from graph matching1 Carol J York 14623 Abstract Data mining has been making inroads into the engineering design environment ­ an area that generates large amounts of heterogeneous data for which suitable mining methods

  20. Hybrid Powertrain Design Using a Domain-Specific Modeling Environment

    E-Print Network [OSTI]

    Gray, Jeffrey G.

    of design tools that are used in the electronics industry. Widely accepted automotive powertrain design industry has demonstrated that similar tools in the automotive domain still lack the power, sophistication--State of the art design tools in automotive engineering still lack the power, sophistication, and automation

  1. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    E-Print Network [OSTI]

    Zhou, Ao

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, ...

  2. Safety design approach for external events in Japan sodium-cooled fast reactor

    SciTech Connect (OSTI)

    Yamano, H.; Kubo, S. [Japan Atomic Energy Agency, 4002 Narita-cho, O-arai, Ibaraki, 311-1393 (Japan); Tani, A. [Mitsubishi FBR Systems, Inc., 2-34-17, Jingumae, Shibuya-ku, Tokyo, 150-0001 (Japan); Nishino, H.; Sakai, T. [Japan Atomic Energy Agency, 4002 Narita-cho, O-arai, Ibaraki, 311-1393 (Japan)

    2012-07-01

    This paper describes a safety design approach for external events in the design study of Japan sodium-cooled fast reactor. An emphasis is introduction of a design extension external condition (DEEC). In addition to seismic design, other external events such as tsunami, strong wind, abnormal temperature, etc. were addressed in this study. From a wide variety of external events consisting of natural hazards and human-induced ones, a screening method was developed in terms of siting, consequence, frequency to select representative events. Design approaches for these events were categorized on the probabilistic, statistical and deterministic basis. External hazard conditions were considered mainly for DEECs. In the probabilistic approach, the DEECs of earthquake, tsunami and strong wind were defined as 1/10 of exceedance probability of the external design bases. The other representative DEECs were also defined based on statistical or deterministic approaches. (authors)

  3. Environment, Safety and Health Self-Assessment Report Fiscal Year 2010

    E-Print Network [OSTI]

    Robinson, Scott

    2011-01-01

    of Satellite Hazardous Waste Accumulation Areas On-the-JobArea Inspection Job Hazards Analysis Field Observations Work Outside Normal Hours Accelerator Safety Hazardous

  4. Environment, Safety and Health Self-Assessment Report Fiscal Year 2010

    E-Print Network [OSTI]

    Robinson, Scott

    2011-01-01

    Environmental Restoration Industrial Hygiene Group Asbestosand train work leads in Industrial Hygiene (IH) notificationIndustrial Hygienist or Industrial Hygiene Integrated Safety

  5. Hanford Site Environment Safety and Health (ES and H) FY 1999 and FY 2000 Execution Commitment Summary

    SciTech Connect (OSTI)

    REEP, I.E.

    1999-12-01

    All sites in the U.S. Department of Energy (DOE) Complex prepare this report annually for the DOE Office of Environment, Safety and Health (EH). The purpose of this report is to provide a summary of the previous and current year's Environment, Safety and Health (ES&H) execution commitments and the S&H resources that support these activities. The fiscal year (FY) 1999 and 2000 information (Sieracki 1999) and data contained in the ''Hanford Site Environment, Safety and Health Fiscal Year 2001 Budget-Risk Management Summary'' (RL 1999) were the basis for preparing this report. Fiscal year 2000 finding of Office of Environmental Management (EM) and Office of Nuclear Energy, Science and Technology (NE) activities is based on the President's budget of $1,065.1 million and $28.0 million, plus $2.7 million carryover finding, respectively, as of October 31, 1999. Any funding changes as a result of the Congressional appropriation process will be reflected in the Fiscal Year 2002 ES&H Budget-Risk Management Summary to be issued in May 2000. This report provides the end-of-year status of FY 1999 ES&H execution commitments, including actual S&H expenditures, and describes planned FY 2000 ES&H execution commitments and the S&H resources needed to support those activities. This requirement is included in the ES&H ''Guidance for FY200l Budget Formulations and Execution'' (DOE 1999).

  6. A Design Methodology and Environment for Interactive Behavioral Synthesis

    E-Print Network [OSTI]

    California at Irvine, University of

    ­ tant area of research and company interest. However, there has been market resistance to the automatic designer fine­grain control over synthesis tasks, and continually supplies feedback in the form of quality of the proposed design methodology and to demonstrate its power and flexibility, we also present the Interactive

  7. Design and Evaluation of Proxemics-Aware Environments to Support

    E-Print Network [OSTI]

    Reiterer, Harald

    . In addition, I am affiliated with the Blended Library2 project, which is funded by the Ministry for Science explicit and implicit interaction with knowledge work environments for literature review, reading & writing, or discussion. This paper proposes the employment of proxemics for different tasks in knowledge work

  8. FireGrid: Integrated emergency response and fire safety engineering for the future built environment 

    E-Print Network [OSTI]

    Berry, Dave; Usmani, Asif; Torero, Jose L; Tate, Austin; McLaughlin, Stephen; Potter, Stephen; Trew, Arthur; Baxter, Rob; Bull, Mark; Atkinson, Malcolm

    FireGrid is researching the development and integration of modelling, sensors, Grid, HPC, and C/C technologies. It will stimulate further research, in new safety systems and strategies, in new sensor technologies, in ...

  9. UCSD POLICY AND PROCEDURE MANUAL Index What's New Alphabetical Guide ENVIRONMENT, HEALTH & SAFETY

    E-Print Network [OSTI]

    Aluwihare, Lihini

    Devices (UWED) Universal Waste Electronic Devices are hazardous waste and includes: batteries, cell phones-10.7, Environmental Sanitation Waste Disposal, and PPM 516-22, Radiation Safety. c. Animal Waste Disposal Animal

  10. Integrated design environment for human performance and human reliability analysis

    SciTech Connect (OSTI)

    Nelson, W.R.

    1997-05-01

    Work over the last few years at the Idaho National Engineering and Environmental Laboratory (INEEL) has included a major focus on applying human performance and human reliability knowledge and methods as an integral element of system design and development. This work has been pursued in programs in a wide variety of technical domains, beginning with nuclear power plant operations. Since the mid-1980`s the laboratory has transferred the methods and tools developed in the nuclear domain to military weapons systems and aircraft, offshore oil and shipping operations, and commercial aviation operations and aircraft design. Through these diverse applications the laboratory has developed an integrated approach and framework for application of human performance analysis, human reliability analysis (HRA), operational data analysis, and simulation studies of human performance to the design and development of complex systems. This approach was recently tested in the NASA Advanced Concepts Program {open_quotes}Structured Human Error Analysis for Aircraft Design.{close_quotes} This program resulted in the prototype software tool THEA (Tool for Human Error Analysis) for incorporating human error analysis in the design of commercial aircraft, focusing on airplane maintenance tasks. Current effort is directed toward applying this framework to the development of advanced Air Traffic Management (ATM) systems as part of NASA`s Advanced Air Transportation Technologies (AATT) program. This paper summarizes the approach, describes recent and current applications in commercial aviation, and provides perspectives on how the approach could be utilized in the nuclear power industry.

  11. Environment, Safety, and Health Policy for the Department of Energy Complex

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-06-15

    The Vision and Principles for the Protection of the Worker, Public, and Environment. Canceled by DOE P 450.7.

  12. MODULAR AND FULL SIZE SIMPLIFIED BOILING WATER REACTOR DESIGN WITH FULLY PASSIVE SAFETY SYSTEMS

    SciTech Connect (OSTI)

    M. Ishii; S. T. Revankar; T. Downar; Y. Xu, H. J. Yoon; D. Tinkler; U. S. Rohatgi

    2003-06-16

    OAK B204 The overall goal of this three-year research project was to develop a new scientific design of a compact modular 200 MWe and a full size 1200 MWe simplified boiling water reactors (SBWR). Specific objectives of this research were: (1) to perform scientific designs of the core neutronics and core thermal-hydraulics for a small capacity and full size simplified boiling water reactor, (2) to develop a passive safety system design, (3) improve and validate safety analysis code, (4) demonstrate experimentally and analytically all design functions of the safety systems for the design basis accidents (DBA) and (5) to develop the final scientific design of both SBWR systems, 200 MWe (SBWR-200) and 1200 MWe (SBWR-1200). The SBWR combines the advantages of design simplicity and completely passive safety systems. These advantages fit well within the objectives of NERI and the Department of Energy's focus on the development of Generation III and IV nuclear power. The 3-year research program was structured around seven tasks. Task 1 was to perform the preliminary thermal-hydraulic design. Task 2 was to perform the core neutronic design analysis. Task 3 was to perform a detailed scaling study and obtain corresponding PUMA conditions from an integral test. Task 4 was to perform integral tests and code evaluation for the DBA. Task 5 was to perform a safety analysis for the DBA. Task 6 was to perform a BWR stability analysis. Task 7 was to perform a final scientific design of the compact modular SBWR-200 and the full size SBWR-1200. A no cost extension for the third year was requested and the request was granted and all the project tasks were completed by April 2003. The design activities in tasks 1, 2, and 3 were completed as planned. The existing thermal-hydraulic information, core physics, and fuel lattice information was collected on the existing design of the simplified boiling water reactor. The thermal-hydraulic design were developed. Based on a detailed integral system scaling analysis, design parameters were obtained and designs of the compact modular 200 MWe SBWR and the full size 1200 MWe SBWR were developed. These reactors are provided with passive safety systems. A new passive vacuum breaker check valve was designed to replace the mechanical vacuum beaker check valve. The new vacuum breaker check valve was based on a hydrostatic head, and was fail safe. The performance of this new valve was evaluated both by the thermal-hydraulic code RELAP5 and by the experiments in a scaled SBWR facility, PUMA. In the core neutronic design a core depletion model was implemented to PARCS code. A lattice design for the SBWR fuel assemblies was performed. Design improvements were made to the neutronics/thermal-hydraulics models of SBWR-200 and SBWR-1200, and design analyses of these reactors were performed. The design base accident analysis and evaluation of all the passive safety systems were completed as scheduled in tasks 4 and 5. Initial conditions for the small break loss of coolant accidents (LOCA) and large break LOCA using REALP5 code were obtained. Small and large break LOCA tests were performed and the data was analyzed. An anticipated transient with scram was simulated using the RELAP5 code for SBWR-200. The transient considered was an accidental closure of the main steam isolation valve (MSIV), which was considered to be the most significant transient. The evaluation of the RELAP5 code against experimental data for SBWR-1200 was completed. In task 6, the instability analysis for the three SBWR designs (SBWR-1200, SBWR-600 and SBWR-200) were simulated for start-up transients and the results were similar. Neither the geysering instability, nor the loop type instability was predicted by RAMONA-4B in the startup simulation following the recommended procedure by GE. The density wave oscillation was not observed at all because the power level used in the simulation was not high enough. A study was made of the potential instabilities by imposing an unrealistically high power ramp in a short time period, as suggested by GE. RAMON

  13. Inspection of Environment, Safety, and Health and Emergency Management at the Oak Ridge Operations Office and East Tennessee Technology Park, Summary Report, May 2003

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report provides the results of an inspection of environment, safety, and health and emergency management programs at the U.S. Department of Energy's (DOE) East Tennessee Technology Park (ETTP).

  14. SAFETY GUIDED DESIGN OF CREW RETURN VEHICLE IN CONCEPT DESIGN PHASE USING STAMP/STPA

    E-Print Network [OSTI]

    Leveson, Nancy

    safe space systems. During system design, component failure based analyses, such as FTA and FMEA that are not related to component failures using FTA/FMEA, which can lead to inadequate investigation for hazards

  15. PNNL-SA-??? 1 Market Design Test Environments

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    are implementing versions of a Wholesale Power Market Platform (WPMP) in response to U.S. Federal Energy Regulatory and regulatory pressures are driving the exploration of new market designs at the wholesale and retail levels can be tested and sensitivities to power system and market rule changes can be explored. This paper

  16. COURSES AND CURRICULUM FOR MASTERS STUDENTS Design for Environment Focus

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    . Design concepts for solar homes are covered. Solar photovoltaic (PV) provides for direct generation is out of mechanical equilibrium and the third is out of chemical equilibrium. Simple formulas allow trends are introduced and used to determine how effectively renewable energy systems generate power

  17. Enhancing North Texas' built environment : improvements to design review in Dallas and Fort Worth

    E-Print Network [OSTI]

    Cullum, Belton Allen

    2007-01-01

    Design review is a government-supported process through which individuals representing the public interest critique, commend and advise proposed development projects' potential impacts on the built environment. These ...

  18. Designing a Software Environment for Visual Learning in Introductory Chemical Engineering Classes

    E-Print Network [OSTI]

    Hundhausen, Chris

    Designing a Software Environment for Visual Learning in Introductory Chemical Engineering Classes The material and energy balance class is frequently the "gateway" class in chemical engineering. Statistics%) never complete their chemical engineering degree. The students who fail to successfully complete

  19. Energy Conservation and the Environment - Designing for Cost Savings and Minimum Emissions 

    E-Print Network [OSTI]

    Johnnie, D. H., Jr.; Klooster, H. J.; Nagy, J. F.

    1984-01-01

    AND THE ENVIRONMENT DESIGNING FOR COST SAVINGS AND MINIMUM EMISSIONS Daniel H. Johnnie, Jr. H. J. Klooster John F. Nagy Fluor Engineers, Inc. Advanced Tec'hnology Division Irvine, California ABSTRACT Upgrading existing facilities for is offering technical...

  20. Design of a Low Cost Multiple User Virtual Environment for Rehabilitation

    E-Print Network [OSTI]

    Mavroidis, Constantinos

    Design of a Low Cost Multiple User Virtual Environment for Rehabilitation (MUVER) of Patients Virtual Environment for Rehabilitation (MUVER). The MUVER has three components: the low cost P5 Glove been created and tested with six healthy subjects. Keywords. Stroke, Rehabilitation, Virtual Reality

  1. Design Framework of Compute Power Market for Peer-to-Peer and Grid Environments

    E-Print Network [OSTI]

    Melbourne, University of

    ) is a market-based resource management on Internet-wide computational resources. It transforms computers Market was first proposed in [7]. Compute Power Market transforms the grid computing environmentDesign Framework of Compute Power Market for Peer-to-Peer and Grid Environments Gian Chand Sodhy

  2. Geometric Design of Spherical Serial Chains with Curvature Constraints in the Environment 

    E-Print Network [OSTI]

    Tolety, Anurag Bharadwaj

    2012-10-19

    2011 Major Subject: Electrical Engineering GEOMETRIC DESIGN OF SPHERICAL SERIAL CHAINS WITH CURVATURE CONSTRAINTS IN THE ENVIRONMENT A Thesis by ANURAG BHARADWAJ TOLETY Submitted to the O ce of Graduate Studies of Texas A&M University in partial... Georghiades August 2011 Major Subject: Electrical Engineering iii ABSTRACT Geometric Design of Spherical Serial Chains with Curvature Constraints in the Environment. (August 2011) Anurag Bharadwaj Tolety, B. Tech., Indian Institute of Technology...

  3. Design Environment for Low-Amplitude Thermoacoustic Engines

    SciTech Connect (OSTI)

    Ward, William C.; Swift, Gregory W.

    2002-01-07

    DeltaE is a computer program that can preduct how a given thermoacoustic apparatus will perform, or can allow the user to design an apparatus to achieve desired performance. It is substantially menu-oriented. Input data can be modified or entered bia DeltaE's menu or using any text editor. Results can be examined via the menus, the operating systems text utilities, or any spreadsheet or graphics software.

  4. Fusion Engineering and Design 80 (2006) 111137 ARIES-AT safety design and analysis

    E-Print Network [OSTI]

    2006-01-01

    , and chemical energy control. In the area of waste management, both the volume of the component and its hazard are used to classify the waste. In comparison to previous ARIES designs, the overall waste volume is less at a fusion facility are no greater than those to which they would be exposed at a comparable industrial

  5. UCSD POLICY AND PROCEDURE MANUAL Index What's New Alphabetical Guide ENVIRONMENT, HEALTH & SAFETY

    E-Print Network [OSTI]

    Aluwihare, Lihini

    in such a manner as to protect health, maintain radiation doses As Low As Reasonably Achievable (ALARA of legitimate research and inquiry. IV. RESPONSIBILITY A. Ionizing Radiation 1. Radiation Safety/her control. Use is deemed appropriate when within all applicable rules and regulations and radiation doses

  6. Safety Verification of Reactive Controllers for UAV Flight in Cluttered Environments using Barrier Certificates

    E-Print Network [OSTI]

    Tedrake, Russ

    computation of barrier functions, we search for global certificates of safety for the closed-loop system, since onboard cameras have distinct ad- vantages in terms of range, update rate, and power require ensure that the systems will not enter any "unsafe" regions in state space. II. RELATED WORK Our approach

  7. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  8. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  9. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-05-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  10. School of Architecture, Design and the Built Environment Delta T optimisation of district heating network

    E-Print Network [OSTI]

    Evans, Paul

    School of Architecture, Design and the Built Environment Delta T optimisation of district heating of any network. Most existing district heating systems work at small (10-15 C) delta T. Although for the conventional and optimised design of the district heating network. The network operation will be simulated

  11. DELTAE. Design Environment for Low-Amplitude Thermoacoustic Engines

    SciTech Connect (OSTI)

    Ward, W.C.

    1993-10-10

    In thermoacoustic engines and refrigerators, and in many simple acoustic systems, a one dimensional wave equation determines the spatial dependence of the acoustic pressure and velocity. DELTAE numerically integrates such wave equations in the acoustic approximation, in gases or liquids, in user-defined geometries. Boundary conditions can include conventional acoustic boundary conditions of geometry and impedance, as well as temperature and thermal power in thermoacoustic systems. DELTAE can be used easily for apparatus ranging from simple duct networks and resonators to thermoacoustic engines refrigerators and combinations thereof. It can predict how a given apparatus will perform, or can allow the user to design an apparatus to achieve desired performance. DELTAE views systems as a series of segments; twenty segment types are supported. The purely acoustic segments include ducts and cones, and lumped impedances including compliances, series impedances, and endcaps. Electroacoustics tranducer segments can be defined using either frequency-independent coefficients or the conventional parameters of loudspeaker-style drivers: mass, spring constant, magnetic field strength, etc. Tranducers can be current driven, voltage driven, or connected to an electrical load impedance. Thermoacoustic segment geometries include parallel plates, circular and rectangular pores, and pin arrays. Side branches can be defined with fixed impedances, frequency-dependent radiation impedances, or as an auxiliary series of segments of any types. The user can select working fluids from among air, helium, neon, argon, hydrogen, deuterium, carbon dioxide, nitrogen, helium-argon mixtures, helium-xenon mixtures, liquid sodium, and eutectic sodium-potassium. Additional fluids and solids can be defined by the user.

  12. DELTAE. Design Environment for Low-Amplitude Thermoacoustic Engines

    SciTech Connect (OSTI)

    Ward, W.C.; Swift, G.W.

    1993-10-01

    In thermoacoustic engines and refrigerators, and in many simple acoustic systems, a one dimensional wave equation determines the spatial dependence of the acoustic pressure and velocity. DELTAE numerically integrates such wave equations in the acoustic approximation, in gases or liquids, in user-defined geometries. Boundary conditions can include conventional acoustic boundary conditions of geometry and impedance, as well as temperature and thermal power in thermoacoustic systems. DELTAE can be used easily for apparatus ranging from simple duct networks and resonators to thermoacoustic engines refrigerators and combinations thereof. It can predict how a given apparatus will perform, or can allow the user to design an apparatus to achieve desired performance. DELTAE views systems as a series of segments; twenty segment types are supported. The purely acoustic segments include ducts and cones, and lumped impedances including compliances, series impedances, and endcaps. Electroacoustics tranducer segments can be defined using either frequency-independent coefficients or the conventional parameters of loudspeaker-style drivers: mass, spring constant, magnetic field strength, etc. Tranducers can be current driven, voltage driven, or connected to an electrical load impedance. Thermoacoustic segment geometries include parallel plates, circular and rectangular pores, and pin arrays. Side branches can be defined with fixed impedances, frequency-dependent radiation impedances, or as an auxiliary series of segments of any types. The user can select working fluids from among air, helium, neon, argon, hydrogen, deuterium, carbon dioxide, nitrogen, helium-argon mixtures, helium-xenon mixtures, liquid sodium, and eutectic sodium-potassium. Additional fluids and solids can be defined by the user.

  13. DELTAE+. Design Environment for Low-Amplitude Thermoacoustic Engines

    SciTech Connect (OSTI)

    Ward, W.C; Swift, G.W.

    1993-10-01

    In thermoacoustic engines and refrigerators, and in many simple acoustic systems, a one dimensional wave equation determines the spatial dependence of the acoustic pressure and velocity. DELTAE numerically integrates such wave equations in the acoustic approximation, in gases or liquids, in user-defined geometries. Boundary conditions can include conventional acoustic boundary conditions of geometry and impedance, as well as temperature and thermal power in thermoacoustic systems. DELTAE can be used easily for apparatus ranging from simple duct networks and resonators to thermoacoustic engines refrigerators and combinations thereof. It can predict how a given apparatus will perform, or can allow the user to design an apparatus to achieve desired performance. DELTAE views systems as a series of segments; twenty segment types are supported. The purely acoustic segments include ducts and cones, and lumped impedances including compliances, series impedances, and endcaps. Electroacoustics tranducer segments can be defined using either frequency-independent coefficients or the conventional parameters of loudspeaker-style drivers: mass, spring constant, magnetic field strength, etc. Tranducers can be current driven, voltage driven, or connected to an electrical load impedance. Thermoacoustic segment geometries include parallel plates, circular and rectangular pores, and pin arrays. Side branches can be defined with fixed impedances, frequency-dependent radiation impedances, or as an auxiliary series of segments of any types. The user can select working fluids from among air, helium, neon, argon, hydrogen, deuterium, carbon dioxide, nitrogen, helium-argon mixtures, helium-xenon mixtures, liquid sodium, and eutectic sodium-potassium. Additional fluids and solids can be defined by the user.

  14. Evaluating safety protocols for manned-unmanned environments through agent-based simulation

    E-Print Network [OSTI]

    Ryan, Jason C. (Jason Christopher)

    2014-01-01

    Recent advances in autonomous system capabilities have improved their performance sufficiently to make the integration of unmanned and autonomous vehicles systems into human-centered civilian environments a realistic ...

  15. Inspection of Environment, Safety, and Health Management at the Waste Isolation Pilot Plant- Volume I, August 2002

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Secretary of Energy’s Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) and emergency management programs at the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) in July and August 2002. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management Oversight. This volume discusses the results of the review of the WIPP ES&H programs. The results of the review of the WIPP emergency management program are discussed in Volume II of this report, and the combined results are discussed in a summary report. As discussed throughout this report, the ISM program at WIPP is generally effective. Although improvements are warranted in some areas, the current programs have contributed to overall effective ES&H performance and a good safety record at WIPP. Section 2 of this volume provides an overall discussion of the results of the review of the WIPP ES&H programs, including positive aspects and weaknesses. Section 3 provides OA’s conclusions regarding the overall effectiveness of CBFO and WTS management of the ES&H programs. Section 4 presents the ratings assigned as a result of this review. Appendix A provides supplemental information, including team composition. Appendix B identifies the specific finding that requires corrective action and follow-up. Appendix C presents the results of the review of selected guiding principles of ISM. Appendix D presents the results of the review of the CBFO and WTS feedback and continuous improvement processes. The results of the review of the application of the core functions of ISM for the selected WIPP activities are discussed in Appendix E.

  16. Assessment of the safety of spent fuel transportation in urban environs

    SciTech Connect (OSTI)

    Sandoval, R.P.; Weber, J.P.; Levine, H.S.; Romig, A.D.; Johnson, J.D.; Luna, R.E.; Newton, G.J.; Wong, B.A.; Marshall, R.W. Jr.; Alvarez, J.L.

    1983-06-01

    The results of a program to provide an experimental data base for estimating the radiological consequences from a hypothetical sabotage attack on a light-water-reactor spent fuel shipping cask in a densely populated area are presented. The results of subscale and full-scale experiments in conjunction with an analytical modeling study are described. The experimental data were used as input to a reactor-safety consequence model to predict radiological health consequences resulting from a hypothetical sabotage attack on a spent-fuel shipping cask in the Manhattan borough of New York City. The results of these calculations are presented.

  17. Impact of the Geo-synchronous Orbit Radiation Environment on the Design of Astronomical Observatories

    E-Print Network [OSTI]

    Kruk, Jeffrey W; Armani, Nerses; Stauffer, Craig; Hirata, Christopher M

    2015-01-01

    Geo-Synchronous orbits are appealing for Solar or astrophysical observatories because they permit continuous data downlink at high rates. The radiation environment in these orbits presents unique challenges, however. This paper describes the characteristics of the radiation environment in Geo-Synchronous orbit and the implications for instrument design. Radiation-induced background event rates are given for some simplified shielding models, and for a detailed model of the proposed Wide-Field InfraRed Survey Telescope observatory.

  18. Inspection of Environment, Safety, and Health Management at the Argonne National Laboratory- East, Volume I, May 2002

    Broader source: Energy.gov [DOE]

    The Secretary of Energy’s Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) programs and emergency management programs at the U. S. Department of Energy (DOE) Argonne National Laboratory (ANL) in April and May 2002. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management Oversight. This volume discusses the results of the review of ANL ES&H programs. The results of the review of the ANL emergency management programs are discussed in Volume II of this report and the combined results are discussed in a summary report. As discussed in this report, some aspects of ISM are effectively implemented at ANL, including institutional roles and responsibilities, training and qualification programs, and processes for incorporating ES&H needs into the planning and budgeting processes. In addition, CH/AAO and ANL have been effective in establishing rigorous processes for reviewing experiment safety. However, performance weaknesses are evident in several areas, including work planning and control processes, radiation protection, and some aspects of management of the AGHCF (including nuclear safety requirements). Weaknesses in management systems, such as CH/AAO and ANL feedback and continuous improvement systems and requirements management systems, contribute to the observed performance deficiencies. Section 2 of this volume provides an overall discussion of the results of the review of the ANL ISM program, including positive aspects, findings, and other items requiring management attention. Section 3 provides OA’s conclusions regarding the overall effectiveness of CH and ANL management of the ES&H programs. Section 4 presents the ratings assigned as a result of this review. Appendix A provides supplemental information, including team member composition. Appendix B identifies the specific findings that require corrective actions and follow-up. Appendix C presents the results of the review of the guiding principles of ISM. Appendix D presents the results of the review of the CH and ANL feedback and continuous improvement processes. The results of the review of the application of the core functions of ISM at the selected ANL facilities are discussed in Appendix E.

  19. Pacific Northwest Laboratory annual report for 1980 to the DOE Assistant Secretary for Environment. Part 5. Environmental assessment, control, health and safety

    SciTech Connect (OSTI)

    Baalman, R.W.; Hays, I.D. (eds.)

    1981-02-01

    Pacific Northwest Laboratory's (PNL) 1980 annual report to the DOE Assistant Secretary for Environment describes research in environment, health, and safety conducted during fiscal year 1980. Part 5 includes technology assessments for natural gas, enhanced oil recovery, oil shale, uranium mining, magnetic fusion energy, solar energy, uranium enrichment and industrial energy utilization; regional analysis studies of environmental transport and community impacts; environmental and safety engineering for LNG, oil spills, LPG, shale oil waste waters, geothermal liquid waste disposal, compressed air energy storage, and nuclear/fusion fuel cycles; operational and environmental safety studies of decommissioning, environmental monitoring, personnel dosimetry, and analysis of criticality safety; health physics studies; and epidemiological studies. Also included are an author index, organization of PNL charts and distribution lists of the annual report, along with lists of presentations and publications. (DLS)

  20. SheetEnvironment, Health and Safety Information for the Berkeley Campus Please post or circulate

    E-Print Network [OSTI]

    Budker, Dmitry

    below which work in heat is not a risk. As a general rule, actions to prevent heat illness should) 642-3073 Revised 9/3/2013 Work in hot environments can result in heat illness, i.e. a group of medical cramps, heat exhaustion, fainting, and heat stroke. All University employees who work outdoors may

  1. environmental-safety-and-health | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mathematics Physics Environment Safety and Health More Science Home | Science & Discovery | More Science | Environment Safety and Health SHARE Environment Safety and Health The...

  2. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  3. Design of the EURISOL multi-MW target assembly radiation and safety issues

    E-Print Network [OSTI]

    Felcini, Marta; Kadi, Yacine; Otto, Thomas; Tecchio, L

    2006-01-01

    The multi-MW target proposed for the EURISOL facility will be based on fission of uranium (or thorium) compounds to produce rare isotopes far from stability. A two-step process is used for the isotope production. First, neutrons are generated in a liquid mercury target, irradiated by the 1 GeV proton or deuteron beam, provided by the EURISOL linac driver. Then, the neutrons induce fission in a surrounding assembly of uranium carbide. R&D projects on several aspects of the target assembly are ongoing. Key criteria for the target design are a maximum beam power capability of 4 MW, a remote handling system with minimum downtime and maximum reliability, as well as radiation safety, minimization of hazards and the classification of the facility. In the framework of the ongoing radiation characterization and safety studies, radiation transport simulations have been performed to calculate the prompt radiation dose in the target and surrounding materials, as well as to determine shielding material and angle-depen...

  4. Design of the EURISOL multi-MW target assembly: radiation and safety issues

    E-Print Network [OSTI]

    Felcini, M; Kadi, Y; Otto, T; Tecchio, L; Otto, Th.

    2006-01-01

    The multi-MW target proposed for the EURISOL facility will be based on fission of uranium (or thorium) compounds to produce rare isotopes far from stability. A two-step process is used for the isotope production. First, neutrons are generated in a liquid mercury target, irradiated by the 1 GeV proton or deuteron beam, provided by the EURISOL linac driver. Then, the neutrons induce fission in a surrounding assembly of uranium carbide. R&D projects on several aspects of the target assembly are ongoing. Key criteria for the target design are a maximum beam power capability of 4 MW, a remote handling system with minimum downtime and maximum reliability, as well as radiation safety, minimization of hazards and the classification of the facility. In the framework of the ongoing radiation characterization and safety studies, radiation transport simulations have been performed to calculate the prompt radiation dose in the target and surrounding materials, as well as to determine shielding material and angle-depen...

  5. Inspection Of Environment, Safety, And Health Management At The Y-12 National Security Complex

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelBConservationEnergy Innovative SoftwareLetter Report:of Environment,

  6. Inventory of Federal energy-related environment and safety research for FY 1979. Volume II. Project listings and indexes

    SciTech Connect (OSTI)

    1980-12-01

    This volume contains summaries of FY 1979 government-sponsored environment and safety research related to energy arranged by log number, which groups the projects by reporting agency. The log number is a unique number assigned to each project from a block of numbers set aside for each contributing agency. Information elements included in the summary listings are project title, principal investigators, research organization, project number, contract number, supporting organization, funding level, related energy sources with numbers indicating percentages of effort devoted to each, and R and D categories. A brief description of each project is given, and this is followed by subject index terms that were assigned for computer searching and for generating the printed subject index in the back of this volume.

  7. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  8. From Consumers to Owners: Using Meta-Design Environments to Motivate Changes in Energy

    E-Print Network [OSTI]

    Fischer, Gerhard

    From Consumers to Owners: Using Meta-Design Environments to Motivate Changes in Energy Consumption setting, and tailored information are useful in motivating people to change their energy behavior [5 for these requirements are currently created with smart grids (http://www.oe.energy.gov/smartgrid.htm), the software

  9. UAV Design Activities in a University Environment Dr K.C. Wong

    E-Print Network [OSTI]

    Wong, K. C.

    UAV Design Activities in a University Environment Dr K.C. Wong School of Aerospace, Mechanical and Mechatronic Engineering University of Sydney NSW 2006 Abstract Unmanned Aerial Vehicle (UAV) activities have remotely piloted aircraft being developed and operated over its 62 year history. More recently, a UAV

  10. Design and Implementation of a Process Migration System for the Linux Environment

    E-Print Network [OSTI]

    . The primary aim of this paper is to build a user space process migration tool which would obviate the needDesign and Implementation of a Process Migration System for the Linux Environment Nalini Vasudevan Prasanna Venkatesh Abstract This paper reviews the field of process migration by summarizing the key

  11. CUSHOP: A SIMULATED SHOPPING ENVIRONMENT FOSTERING CONSUMER-CENTRIC PACKAGING DESIGN &

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    CUSHOP: A SIMULATED SHOPPING ENVIRONMENT FOSTERING CONSUMER-CENTRIC PACKAGING DESIGN & TESTING Consumer product packaging provides product damage protection, extends prod- uct shelf life-8 seconds), and do not appear to adhere to strong brand loyalty as was once more common, packaging (and more

  12. Designing Lightweight Software Architectures for Smart Environments James Kusznir and Diane J. Cook

    E-Print Network [OSTI]

    Cook, Diane J.

    extensive use as part of the CASAS smart home system. Keywords-SmartHome Middleware, XMPP I. INTRODUCTION Modern smart environments use a collection of sensors, processors, and control devices to allow a home for some time, yet designing well-integrated smart homes that are easy to use and deploy still eludes

  13. A Heterogeneous Environment for Computational Prototyping and Simulation Based Design of

    E-Print Network [OSTI]

    Dutton, Robert W.

    process simulation. 1. Introduction Micro-Electro-Mechanical Systems MEMS o er dramatic new functional1 A Heterogeneous Environment for Computational Prototyping and Simulation Based Design of MEMS 94305-4075 Abstract This paper gives an overview of MEMS simulation and the computational re- quirements

  14. A Heterogeneous Environment for Computational Prototyping and Simulation Based Design of

    E-Print Network [OSTI]

    Dutton, Robert W.

    process simulation. 1. Introduction Micro­Electro­Mechanical Systems (MEMS) offer dramatic new functional1 A Heterogeneous Environment for Computational Prototyping and Simulation Based Design of MEMS 94305­4075 Abstract This paper gives an overview of MEMS simulation and the computational re­ quirements

  15. Designing an on-line multimedia maintenance manual for a production environment

    E-Print Network [OSTI]

    Brinkman, Willem-Paul

    - would better express the complex spatial and dynamic operations on hardware. Finally, maintenance36 Designing an on-line multimedia maintenance manual for a production environment W.P. Brinkman, V.P. Buil, R. Cullen1 , R. Gobits2 and F.L. van Nes e-mail: w.p.brinkman@tue.nl Abstract Maintenance

  16. Barcelona: A design & runtime environment for declarative artifact-centric BPM

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    -sourced [2] ArtiFact system supports both design-time and run-time environments for GSM. Both be triggered by an external event (in which case a yellow "lightening bolt" is included), or by internal events. The Barcelona engine can support GSM schemas with multiple artifact types, and can support large numbers

  17. VIRTUAL TRAINING CENTRE FOR SHOE DESIGN: A SAMPLE VIRTUAL TRAINING ENVIRONMENT

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    for training modules to respond to the continuous evolution in the workplace so as to confront the problemVIRTUAL TRAINING CENTRE FOR SHOE DESIGN: A SAMPLE VIRTUAL TRAINING ENVIRONMENT Aura Mihai1 , Mehmet@tex.tuiasi.ro Abstract It is a fact that virtual training has become a key issue in training. There are numerous virtual

  18. Environment and Planning b: Planning and Design Fringe-belt analysis in France

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Environment and Planning b: Planning and Design Fringe-belt analysis in France : A Conzenian University Estelle.ducom@paris4.sorbonne.fr - 1 - halshs-00203109,version1-9Jan2008 #12;Fringe-belt analysis in France : A Conzenian approach to urban renewal Abstract : This study is based on the fringe-belt model

  19. FLEX AND PINCH: A CASE STUDY OF WHOLE HAND INPUT DESIGN FOR VIRTUAL ENVIRONMENT INTERACTION

    E-Print Network [OSTI]

    Pattanaik, Sumanta N.

    FLEX AND PINCH: A CASE STUDY OF WHOLE HAND INPUT DESIGN FOR VIRTUAL ENVIRONMENT INTERACTION JOSEPH J. LAVIOLA JR. and ROBERT C. ZELEZNIK Brown University Site of the NSF Science and Technology Center. In this paper, we describe our Pinch Glove like input device which is used as a tool to augment bend

  20. High-altitude-nuclear electromagnetic pulse (HEMP) environment simulation public health and safety considerations. Technical report, 1 Oct 89-31 May 91

    SciTech Connect (OSTI)

    Casey, K.

    1992-03-01

    The existence of electromagnetic fields external to the working volumes of high-altitude nuclear electromagnetic pulse (HEMP) environment simulators has raised both environmental and public-health concerns regarding the safety of HEMP environment simulator operations. This report contains a review of what HEMP is, what its effects on defense systems are, and why and how HEMP environment simulation testing is conducted. The state of present knowledge concerning the external simulator fields and their possible effects on biological and electronic systems is summarized. Research initiatives are identified to aid in answering the most important questions regarding the continued environmental safety of HEMP simulator operations. These initiatives are intended to support (1) development of options for modification and/or relocation of HEMP environment simulator facilities and (2) determination of safe exposure levels for biological and electronic systems. Recommendations for specific DoD actions are given.

  1. Inverse design of the thermal environment in an airliner cabin by use of the1 CFD-based adjoint method2

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Inverse design of the thermal environment in an airliner cabin by use of the1 CFD of thermal environment19 The design method is innovative for thermal environment20 The design used variables in less than 10 design cycles22 23 Abstract24 25 The current thermal environments in airliner

  2. Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels

    SciTech Connect (OSTI)

    Chopra, O.K.; Shack, W.J. [Argonne National Lab., IL (United States)

    1998-03-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the code specify fatigue design curves for structural materials. While effects of reactor coolant environments are not explicitly addressed by the design curves, test data indicate that the Code fatigue curves may not always be adequate in coolant environments. This report summarizes work performed by Argonne National Laboratory on fatigue of carbon and low-alloy steels in light water reactor (LWR) environments. The existing fatigue S-N data have been evaluated to establish the effects of various material and loading variables such as steel type, dissolved oxygen level, strain range, strain rate, temperature, orientation, and sulfur content on the fatigue life of these steels. Statistical models have been developed for estimating the fatigue S-N curves as a function of material, loading, and environmental variables. The results have been used to estimate the probability of fatigue cracking of reactor components. The different methods for incorporating the effects of LWR coolant environments on the ASME Code fatigue design curves are presented.

  3. DESIGN OF FOAM COVERING FOR ROBOTIC ARMS TO ENSURE HUMAN SAFETY Lingqi Zeng and Gary M. Bone

    E-Print Network [OSTI]

    Bone, Gary

    , and robot and human velocities. The impact experiments are performed with an apparatus simulating the humanDESIGN OF FOAM COVERING FOR ROBOTIC ARMS TO ENSURE HUMAN SAFETY Lingqi Zeng and Gary M. Bone@mcmaster.ca ABSTRACT Unintentional physical human-robot contact is becoming more common as robots operate in closer

  4. Design and Analysis of Highway Safety Communication Protocol in 5.9 GHz Dedicated Short Range Communication Spectrum

    E-Print Network [OSTI]

    Sengupta, Raja

    Design and Analysis of Highway Safety Communication Protocol in 5.9 GHz Dedicated Short Range among high- way vehicles in the newly-assigned 5.9 GHz Dedicated Short Range Communication (DSRC parameters are found for certain requirements on protocol performance. I. INTRODUCTION DSRC (Dedicated Short

  5. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    SciTech Connect (OSTI)

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  6. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  7. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  9. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 1: Main report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  10. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 2: Appendices

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  11. Initial Requirements for Gas-Cooled Fast Reactor (GFR) System Design, Performance, and Safety Analysis Models

    SciTech Connect (OSTI)

    Kevan D. Weaver; Thomas Y. C. Wei

    2004-08-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection.

  12. Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th, 2010 ThanksProgramEnricoEnvironment Environment

  13. Experimental Study and Computational Simulations of Key Pebble Bed Thermo-mechanics Issues for Design and Safety

    SciTech Connect (OSTI)

    Tokuhiro, Akira; Potirniche, Gabriel; Cogliati, Joshua; Ougouag, Abderrafi

    2014-07-08

    An experimental and computational study, consisting of modeling and simulation (M&S), of key thermal-mechanical issues affecting the design and safety of pebble-bed (PB) reactors was conducted. The objective was to broaden understanding and experimentally validate thermal-mechanic phenomena of nuclear grade graphite, specifically, spheres in frictional contact as anticipated in the bed under reactor relevant pressures and temperatures. The contact generates graphite dust particulates that can subsequently be transported into the flowing gaseous coolent. Under postulated depressurization transients and with the potential for leaked fission products to be adsorbed onto graphite 'dust', there is the potential for fission products to escape from the primary volume. This is a design safety concern. Furthermore, earlier safety assessment identified the distinct possibility for the dispersed dust to combust in contact with air if sufficient conditions are met. Both of these phenomena were noted as important to design review and containing uncertainty to warrant study. The team designed and conducted two separate effects tests to study and benchmark the potential dust-generation rate, as well as study the conditions under which a dust explosion may occure in a standardized, instrumented explosion chamber.

  14. Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th, 2010 ThanksProgramEnricoEnvironment

  15. Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th, 2010 ThanksProgramEnricoEnvironmentVideo News Room

  16. Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th, 2010 ThanksProgramEnricoEnvironmentVideo News

  17. Examining factors affecting the safety performance and design of exclusive truck facilities 

    E-Print Network [OSTI]

    Iragavarapu, Vichika

    2008-10-10

    Many state agencies consider exclusive truck facilities to be an alternative to handle the safety and operational issues due to the increasing truck volumes. No such facilities exist, and there are no standard tools or procedures for measuring...

  18. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01

    safety limits for fuel and metallic structures in contactfuel temperature profile along the core (left) and DHX transient average metallicfuel temperature profile along the core (left) and DHX transient average metallic

  19. Antiterrorism design and public safety : reconciling CPTED with the post-9/11 city

    E-Print Network [OSTI]

    Rothrock, Sara E. (Sara Elizabeth)

    2010-01-01

    Urban downtowns have changed since September 1 1, 2001, sprouting bollards, planters, and barriers installed on the pretense of improved safety and security. While these interventions protect buildings from vehicle bombs, ...

  20. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01

    1986, 10 CFR Part 50. ). Defence in Depth in Nuclear Safety.Report by the International Nuclear Safety Advisory Group. (Ministerial Conference on Nuclear Safety. The Accident at

  1. uWaterloo Annual Department Health, Safety and Environment (HSE) Report (Workwell Version) Reporting Year: 2012 Department: ______________________________________________

    E-Print Network [OSTI]

    Czarnecki, Krzysztof

    ) Occupational Health and Safety Act (OHSA) Poster with names and locations of Faculty/Dept. Health and Safety Co (JHSC) membership. j) Location of Department HSE Board? Building) Classroom Emergency Procedures Poster? (April 11) e) In chemical labs and areas with hazardous materials

  2. Safety provisions for UF{sub 6} handling in the design of a new UF{sub 6} conversion plant

    SciTech Connect (OSTI)

    Bannister, S.P. [British Nuclear Fuels plc, Preston (United Kingdom)

    1991-12-31

    British Nuclear Fuels plc (BNFL) Fuel Division is currently undertaking the final design and construction of a new UF{sub 6} conversion plant at its production site at Springfields near Preston in the north of England. The Company has gained much experience in the handling of UF{sub 6} during operation of plants on site since 1961. The major hazard occurs during the liquefication cycle and the basis of the maximum credible incident scenario adopted for safety assessment and design purposes is discussed. This paper considers the design features which have been incorporated in the new plant to counter the hazards presented by the presence of UF{sub 6} in gaseous and liquid form and explains current thinking on operational procedures in areas of potential risk such as cylinder filling. The plant emergency response philosophy and systems are described and specific design provisions which have been included to satisfy the UK regulatory bodies are outlined in some detail.

  3. 22.39 Integration of Reactor Design, Operations, and Safety, Fall 2005

    E-Print Network [OSTI]

    Todreas, Neil E.

    This course integrates studies of reactor physics and engineering sciences into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and ...

  4. CRAD, Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities

    Broader source: Energy.gov [DOE]

    These guidelines and criteria provide a consistent overall framework for assessment of the processes that are currently in place to ensure that the software being used in the safety analysis and design of the SSCs in defense nuclear facilities is adequate. These reviews will be conducted only on software that is currently in use, not on software that was previously used as part of a safety analysis and design process.

  5. Developing Scales to Evaluate Staff Perception of the Effects of the Physical Environment on Patient Comfort, Patient Safety, Patient Privacy, Family Integration With Patient Care, and Staff Working Conditions in Adult Intensive Care Units: A Pilot Study

    E-Print Network [OSTI]

    Rashid, Mahbub

    2007-07-01

    Studies suggest that the physical environment can be important for patient comfort, patient safety, patient privacy, family integration with patient care, and staff working condition in adult intensive care units (ICUs). In the absence of any...

  6. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 4. Saudi Engineering Solar Energy Applications System Design Study

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Literature summarizing a study on the Saudi Arabian solar controlled environment agriculture system is presented. Specifications and performance requirements for the system components are revealed. Detailed performance and cost analyses are used to determine the optimum design. A preliminary design of an engineering field test is included. Some weather data are provided for Riyadh, Saudi Arabia. (BCS)

  7. Formal Methods for the Specification and Design of RealTime Safety Critical

    E-Print Network [OSTI]

    Ostroff, Jonathan S.

    and control safety critical sys­ tems. Real­time software controls aircraft, shuts down nuclear power reac of computers in such systems offers considerable benefits, but also poses serious risks to life­time constraints: if the temperature of a nuclear reactor core is too high an alarm must be generated within some

  8. SaCS: A Method and a Pattern Language for the Development of Conceptual Safety Designs

    E-Print Network [OSTI]

    Střlen, Ketil

    , and nuclear reactor protection systems are examples of safety critical systems from different industrial.D.) in Computer Science June 2014 #12;ii #12;Abstract Flight control systems, railway interlocking systems. In this thesis we present a method and a pattern language called Safe Control Systems (SaCS) for development

  9. Risk and Performance Based Fire Safety Design of Steel and Composite Structures 

    E-Print Network [OSTI]

    Lange, David

    2009-01-01

    For the development of performance based design on a proper scientific basis the use of the concept of risk is inevitable. However, the application of this concept to actual structural design is not simple because of the ...

  10. Improvement design study on steam generator of MHR-50/100 aiming higher safety level after water ingress accident

    SciTech Connect (OSTI)

    Oyama, S.; Minatsuki, I.; Shimizu, K.

    2012-07-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has been studying on MHI original High Temperature Gas cooled Reactor (HTGR), namely MHR-50/100, for commercialization with supported by JAEA. In the heat transfer system, steam generator (SG) is one of the most important components because it should be imposed a function of heat transfer from reactor power to steam turbine system and maintaining a nuclear grade boundary. Then we especially focused an effort of a design study on the SG having robustness against water ingress accident based on our design experience of PWR, FBR and HTGR. In this study, we carried out a sensitivity analysis from the view point of economic and plant efficiency. As a result, the SG design parameter of helium inlet/outlet temperature of 750 deg. C/300 deg. C, a side-by-side layout and one unit of SG attached to a reactor were selected. In the next, a design improvement of SG was carried out from the view point of securing the level of inherent safety without reliance on active steam dump system during water ingress accident considering the situation of the Fukushima nuclear power plant disaster on March 11, 2011. Finally, according to above basic design requirement to SG, we performed a conceptual design on adapting themes of SG structure improvement. (authors)

  11. A systems theoretic application to design for the safety of medical diagnostic devices

    E-Print Network [OSTI]

    Balgos, Vincent H

    2012-01-01

    In today's environment, medical technology is rapidly advancing to deliver tremendous value to physicians, nurses, and medical staff in order to support them to ultimately serve a common goal: provide safe and effective ...

  12. Corporate Analysis of DOE Safety Performance

    Broader source: Energy.gov [DOE]

    The Office of Environment, Health, Safety and Security (EHSS), Office of Analysis develops analysis tools and performance dashboards, and conducts analysis of DOE safety performance corporately and on a variety of specific environment, safety and health topics.

  13. Frequently Asked Questions Regarding DOE-STD-1195-2011, Design of Safety

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report toDepartmentSignificant Safety Instrumented Systems Used

  14. Toward resilient communities: A performance-based engineering framework for design and evaluation of the built environment

    E-Print Network [OSTI]

    Mieler, Michael

    2012-01-01

    risk analysis. ” Nuclear Safety, 22(1), 28–42. Paton, D. andglossary: Terminology used in nuclear safety and radiationIL. International Nuclear Safety Advisory Group (INSAG) (

  15. ATCLAB : a laboratory environment for research in advanced ATC automation conceptual design

    E-Print Network [OSTI]

    Elias, Antonio L.

    1986-01-01

    Introduction: A large number of ideas and schemes have been proposed and are constantly being suggested to enhance the Air Traffic Control system's safety, reliability, and efficiency by means of automation. The capability ...

  16. Analysis, design, and control for robots in temperature-restricted environments

    E-Print Network [OSTI]

    Heller, Ethan B

    2013-01-01

    In this thesis, the problem of controlling the internal and external temperatures of a robot operating within a temperature-restricted environment was addressed. One example of a temperature-restricted environment is the ...

  17. Acoustic chase : designing an interactive audio environment to stimulate human body movement

    E-Print Network [OSTI]

    Schiessl, Simon Karl Josef, 1972-

    2004-01-01

    An immersive audio environment was created that explores how humans react to commands imposed by a machine generating its acoustic stimuli on the basis of tracked body movement. In this environment, different states of ...

  18. Coiled Tubing Safety Manual

    SciTech Connect (OSTI)

    Crow, W.

    1999-04-06

    This document addresses safety concerns regarding the use of coiled tubing as it pertains to the preservation of personnel, environment and the wellbore.

  19. that minimizes vehicle emissions during design of routes in congested environments with time-dependent travel speeds, hard time windows,

    E-Print Network [OSTI]

    Bertini, Robert L.

    that minimizes vehicle emissions during design of routes in congested environments with time emissions, and several laboratory and field methods are available for estimating vehicle emissions rates (1 and then begins to increase again (2); hence, the relationship between emission rates and travel speed

  20. Farmers' Market Audit Tool These measures are designed to rate the nutrition environments of farmers' markets and produce

    E-Print Network [OSTI]

    Bushman, Frederic

    Farmers' Market Audit Tool These measures are designed to rate the nutrition environments of farmers' markets and produce stands across a variety of geographic and income settings. There are other exclusion criteria. For our purposes, a farmers' market is a common facility or area where several farmers

  1. Los Alamos national Laboratory overview of the SAVY-4000 design: meeting the challenge for worker safety

    SciTech Connect (OSTI)

    Stone, Timothy Amos

    2012-06-12

    Incidents involving release of nuclear materials stored in containers of convenience such as food pack cans, slip lid taped cans, paint cans, etc. has resulted in defense board concerns over the lack of prescriptive performance requirements for interim storage of nuclear materials. Los Alamos National Laboratory (LANL) has shared in these incidents and in response proactively moved into developing a performance based storage container design, the SAVY-4000. The SAVY-4000 is the first vented general use nuclear material container demonstrated to meet the requirements of DOE M 441.1-1, Nuclear Material Packaging Manual. The SAVY-4000 is an innovative and creative design demonstrated by the fact that it can be opened and closed in a few seconds without torque wrenches or other tools; has a built-in, fire-rated filter that prevents the build-up of hydrogen gas, yet retains 99.97% of plutonium particulates, and prevents release of material even in a 12 foot drop. Finally, it has been tested to 500C for 2 hours, and will reduce the risk to the public in the event of an earthquake/fire scenario. This will allow major nuclear facilities to credit the container towards source term Material at Risk (MAR) reduction. The container was approved for nuclear material storage in theTA-55 Plutonium Facility on March 15, 2011, and the first order of 79 containers was received at LANL on March 21, 2011. The first four SAVY-4000 containers were packaged with plutonium on August 2, 2011. Key aspects ofthe SAVY-4000 vented storage container design will be discussed which include design qualification and testing, implementation plan development and status, risk ranking methodology for re-packaging, in use implementation with interface to LANMAS, surveillance strategy, the design life extension program as enhanced by surveillance activities and production status with the intent to extend well beyond the current five year design life.

  2. Two new design tools maximize safety and efficiency for coiled tubing pumping treatments

    SciTech Connect (OSTI)

    Gary, S.C.; Walton, I.C.; Gu, H.

    1995-10-01

    This paper describes the use of two new computer tools to assist the engineer in the design and evaluation of coiled tubing (CT) pumping treatments. Sand fill cleanouts and nitrogen kickoffs continue to comprise the majority of the operations performed by CT; however, the ability to design and evaluate jobs of this type has been limited for many years to simple steady-state calculations and general rules of thumb, both strictly applicable to vertical wells. Using these tools and an engineering design methodology, these treatments can be performed in the most efficient manner possible. The tools optimize the fluids, rates and penetration schedules by considering the effect of deviation on particle transport, reservoir influx or leakoff or both, mixing of gases in the wellbore, and other aspects of the operation. Additionally, by optimizing the required movement of the CT, pipe fatigue can be held to a minimum, providing safer and more cost-effective treatments. Examples that use these tools to design CT treatments are presented.

  3. Safety and core design of large liquid-metal cooled fast breeder reactors

    E-Print Network [OSTI]

    Qvist, Staffan Alexander

    2013-01-01

    A. W. HUNE. “Accelerator Driven Systems for Transmutation:for use in accelerator-driven systems (ADS) as they can beAccelerator-driven B&Bs Terrapower LLC Commercial sodium-cooled SWR designs Figure 2.2: The research history of B&B systems

  4. HEALTH, SAFETY AND ENVIRONMENTAL MANAGEMENT SYSTEM Safety Regulations and Policies for Offices

    E-Print Network [OSTI]

    Saskatchewan, University of

    HEALTH, SAFETY AND ENVIRONMENTAL MANAGEMENT SYSTEM Safety Regulations and Policies for Offices #12 Table of Contents University of Saskatchewan Policies Relating to Health, Safety and Environment) ............................................................ 15 The Saskatchewan Occupational Health and Safety Act and Regulations............................ 17

  5. DOE Handbook: Supplementary guidance and design experience for the fusion safety standards DOE-STD-6002-96 and DOE-STD-6003-96

    SciTech Connect (OSTI)

    1999-01-01

    Two standards have been developed that pertain to the safety of fusion facilities. These are DOE- STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements, and DOE-STD-6003-96, Safety of Magnetic Fusion Facilities: Guidance. The first of these standards identifies requirements that subscribers to that standard must meet to achieve safety in fusion facilities. The second standard contains guidance to assist in meeting the requirements identified in the first This handbook provides additional documentation on good operations and design practices as well as lessons learned from the experiences of designers and operators of previous fusion facilities and related systems. It is intended to capture the experience gained in the various fields and pass it on to designers of future fusion facilities as a means of enhancing success and safety. The sections of this document are presented according to the physical location of the major systems of a fusion facility, beginning with the vacuum vessel and proceeding to those systems and components outside the vacuum vessel (the "Ex-vessel Systems"). The last section describes administrative procedures that cannot be localized to specific components. It has been tacitly assumed that the general structure of the fusion facilities addressed is that of a tokamak though the same principles would apply to other magnetic confinement options.

  6. Design, Adoption, and Assessment of a Socio-Technical Environment Supporting Independence for Persons with

    E-Print Network [OSTI]

    Fischer, Gerhard

    in their social environment. The Memory Aiding Prompting System (MAPS) provides an environment in which caregivers, assistive technology, ethnographic methods ACM Classification Keywords H.5.2 [Information Interfaces digital or hard copies of all or part of this work for personal or classroom use is granted without fee

  7. Inspection of Environment, Safety, and Health Management at the Oak Ridge Operations Office and East Tennessee Technology Park- Volume I, May 2003

    Broader source: Energy.gov [DOE]

    The Secretary of Energy’s Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) and emergency management programs at the U.S. Department of Energy (DOE) East Tennessee Technology Park (ETTP) site in April-May 2003. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management Oversight. This volume discusses the results of the review of the ETTP ES&H programs. The results of this OA inspection indicate that work remains to address a number of deficiencies in ISM processes and implementation of those processes. However, the results of this inspection also indicate that ETTP has made significant progress in the past three years in addressing systemic deficiencies. Section 2 of this volume provides an overall discussion of the results of the review of the ETTP ES&H programs, including positive aspects and weaknesses. Section 3 provides OA’s conclusions regarding the overall effectiveness of OR and ETTP management of the ES&H programs. Section 4 presents the ratings assigned during this review. Appendix A provides supplemental information, including team composition. Appendix B identifies the specific findings that require corrective action and follow-up. Appendix C presents the results of the review of selected guiding principles of ISM. Appendix D presents the results of the review of the OR and contractor feedback and continuous improvement processes. Appendices E and F provide the results of the review of the application of the core functions of ISM for the selected BJC and BNFL activities, respectively.

  8. Los Alamos National Laboratory (LANL) Safety Conscious Work Environmen...

    Office of Environmental Management (EM)

    Safety Conscious Work Environment (SCWE) Self-Assessment Los Alamos National Laboratory (LANL) Safety Conscious Work Environment (SCWE) Self-Assessment The documents included in...

  9. Aviation safety analysis

    E-Print Network [OSTI]

    Ausrotas, Raymond A.

    1984-01-01

    Introduction: Just as the aviation system is complex and interrelated, so is aviation safety. Aviation safety involves design of aircraft and airports, training of ground personnel and flight crew members' maintenance of ...

  10. Cost-benefit analysis of aircraft design for environment using a fleet perspective and real options

    E-Print Network [OSTI]

    Hynes, Christopher Dennis

    2005-01-01

    Traditional multidisciplinary design optimization (MDO) approaches do not examine the costs associated with damage due to environmental factors and are usually implemented to examine one aircraft. The Environmental Design ...

  11. Functional design of mechanical products based on behavior-driven function-environment-structure modeling framework

    E-Print Network [OSTI]

    Zhang, W.Y.

    The relative significance of upstream design activity to downstream design activity is widely recognized, due to its critical role in determining the final product’s functionality. Although there are now some general ...

  12. Supporting Design of Safety-Critical Systems Dr Mark Nicholson, MATISSE Project (GR/R70590/01), University of York, UK

    E-Print Network [OSTI]

    Nicholson, Mark

    1, is likely to be a more appropriate development life cycle. Units Systems Platform ImplementationSupporting Design of Safety-Critical Systems Dr Mark Nicholson, MATISSE Project (GR/R70590 application areas, they may also lead to large economic losses, and even loss of human life. A computing

  13. Outcome 7. Graduates will understand the safety and environmental consequences of their work as chemical engineers and be able to design safe processes.

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    as chemical engineers and be able to design safe processes. This outcome maps to ABET Criterion 3 i Course with chemical process safety, HAZOP, life-cycle analysis, the environmental impact of chemical engineering-depth explanations Apply chemistry, math, physics, life science, engineering science Apply engineering science

  14. Safety and Environment Assessment of ARIES-AT D. A. Petti, B. J. Merrill, R.L. Moore, G. R.

    E-Print Network [OSTI]

    California at San Diego, University of

    that the facility can meet the no-evacuation requirement. We also provide a systematic assessment of the design fusion facilities. Two fusion-specific requirements that were developed are: § The need for an off. II. RADIOLOGICAL INVENTORIES AND RELEASE LIMITS The major radiological inventories in the ARIES

  15. Designing an error resolution checklist for a shared manned-unmanned environment

    E-Print Network [OSTI]

    Tappan, Jacqueline M. (Jacqueline Marie)

    2010-01-01

    The role of unmanned vehicles in military and commercial environments continues to expand, resulting in Shared Manned-Unmanned (SMU) domains. While the introduction of unmanned vehicles can have many benefits, humans ...

  16. Teaching in the Collaborative Virtual Learning Environment of Second Life: Design Considerations For Virtual World Developers 

    E-Print Network [OSTI]

    Pogue, Daniel Lee

    2012-02-14

    Educators are seeking ways to better engage their students including the use of collaborative virtual learning environments (CVLEs). Some virtual worlds can serve as CVLEs as the advent of Second Life has created particular interest within...

  17. Energy Conservation in the Clean Environment: A Design for All Seasons 

    E-Print Network [OSTI]

    Cook, E. H.

    1984-01-01

    Clean rooms for microelectronic manufacturing are becoming increasingly complex. As the space between the lines on the mask of the silicon chip approaches one and one-half microns, the need for ultra clean and precision controlled environments...

  18. LABORATORY SAFETY October 2012

    E-Print Network [OSTI]

    Chan, Hue Sun

    of the program are: 1) the adherence to appropriate design criteria when designing and constructing a laboratoryLABORATORY SAFETY PROGRAM October 2012 #12;OUTLINE 1.0 INTRODUCTION AND SCOPE ...................................................................................................................................6 4.0 LABORATORY DESIGN, CONSTRUCTION, DECOMMISSIONING

  19. Autoclave nuclear criticality safety analysis

    SciTech Connect (OSTI)

    D`Aquila, D.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Tayloe, R.W. Jr. [Battelle, Columbus, OH (United States)

    1991-12-31

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  20. To create a Virtual Design Environment, leveraging tools from musculoskeletal analysis, optimization, simulation-based design, that

    E-Print Network [OSTI]

    Krovi, Venkat

    Systems. How to evaluate the effects of ergonomics & regimen for a rehabilitation program? How to refine, optimization, simulation-based design, that will permit a therapist to systematically and rapidly evaluate of such functional interactions are geometric placementgeometric placement of useruser-- device (ergonomics

  1. Electrical safety guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  2. DOE handbook electrical safety

    SciTech Connect (OSTI)

    1998-01-01

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  3. Final safety evaluation report related to the certification of the System 80{sup +} design (Docket No. 52-002). Volume 1, Chapters 1--14

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This final safety evaluation report (FSER) documents the technical review of the System 80+ standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the System 80+ design was submitted by Combustion Engineering, Inc., now Asea Brown Boveri-Combustion Engineering (ABB-CE) as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. System 80+ is a pressurized water reactor with a rated power of 3914 megawatts thermal (MWt) and a design power of 3992 MWt at which accidents are analyzed. Many features of the System 80+ are similar to those of Abb-CE`s System 80 design from which it evolved. Unique features of the System 80+ design included: a large spherical, steel containment; an in-containment refueling water storage tank; a reactor cavity flooding system, hydrogen ignitors, and a safety depressurization system for severe accident mitigation; a combustion gas turbine for an alternate ac source; and an advanced digitally based control room. On the basis of its evaluation and independent analyses, the NRC staff concludes that ABB-CE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the System 80+ standard design. This document, Volume 1, contains Chapters 1 through 14 of this report.

  4. Final safety evaluation report related to the certification of the System 80{sup +} design (Docket No. 52-002). Volume 2, Chapters 15--22 and appendices

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This final safety evaluation report (FSER) documents the technical review of the System 80+ standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the system 80+ design was submitted by Combustion Engineering, Inc., now Asea Brown Boveri-Combustion Engineering (ABB-CE) as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. System 80+ is a pressurized water reactor with a rated power of 3914 megawatts thermal (MWt) and a design power of 3992 MWt at which accidents are analyzed. Many features of the System 80+ are similar to those of ABB-CE`s System 80 design from which it evolved. Unique features of the System 80+ design include: a large spherical, steel containment; an in-containment refueling water storage tank; a reactor cavity flooding system, hydrogen ignitors and a safety depressurization system for severe accident mitigation; a combustion gas turbine for an alternate ac source; and an advanced digitally based control room. On the basis of its evaluation and independent analyses, the NRC staff concludes that ABB-CE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the System 80+ standard design. This document, Volume 2, contains Chapters 15 through 22 and Appendices A through E.

  5. Environment/Health/Safety (EHS): Laser Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S.Engineering

  6. Waste Isolation Pilot Plant Safety Analysis Report

    SciTech Connect (OSTI)

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  7. Fuel Storage Facility Final Safety Analysis Report. Revision 1

    SciTech Connect (OSTI)

    Linderoth, C.E.

    1984-03-01

    The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

  8. Office of Environment, Health and Safety (EH&S) -Sanitary Sewer Overflow Incident Form (rev. 12/2014) STEP 1 Immediately call EH&S at (510) 642-3073 with the following details of the incident

    E-Print Network [OSTI]

    Yaghi, Omar M.

    Office of Environment, Health and Safety (EH&S) - Sanitary Sewer Overflow Incident Form (rev. 12 a drainage channel that flows to a surface water body gallons Estimated spill volume recovered from a drainage channel that flows to a surface water body gallons Estimated spill volume discharged directly

  9. Design and Manufacturing for the Environment Gutowski@mit.edu Dec 6, 2004 1

    E-Print Network [OSTI]

    Gutowski, Timothy

    are directly related to our use of fossil fuels to generate energy. These include: CO2 and NOx emissions from as interacting with the environment in two ways: as a source for natural resources, and as a sink for emissions and wastes. The environmental problems addressed here are all related to overuse at both sources and sinks

  10. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  11. Environment Environment

    E-Print Network [OSTI]

    the sustainable management of forests and woodlands #12;Applicant's Guidance Strategic Forest Plans - applicant EnvironmentEconomy Strategic Forest Plans applicant's guidance #12;Strategic Forest Plans 2 | Strategic Forest Plans - applicant's guidance A Forest Plan is a strategic long term plan that aims to encourage

  12. The design and construction of interactive architectural environments : the digital mile, Zaragoza, Spain

    E-Print Network [OSTI]

    Chai, Shutsu K. (Shutsu Kindness)

    2006-01-01

    As a part of a master plan for the Digital Mile, a park in Zaragoza, Spain, this thesis will undertake the mechanical design and construction of a responsive and rearrangeable system of walls and doors for increasing the ...

  13. Design of a wireless power transmission system for sensors in a household environment

    E-Print Network [OSTI]

    Zaini, Hesham Marwan

    2015-01-01

    Application of computing and communication systems towards monitoring physical devices enables the Industrial Internet, a smart system of sensors integrated within physical objects. A major challenge associated with designing ...

  14. Impact of prototyping resource environments on idea generation in product design

    E-Print Network [OSTI]

    Schlecht, Lisa (Lisa Anne)

    2013-01-01

    Some of the world's most challenging problems will require distributed innovation capacity in order to create high-quality and sustainable solutions. However, access to prototyping resources varies and design strategies ...

  15. The aesthetic principles of soundscape in architectural design and built environment 

    E-Print Network [OSTI]

    Wang, Keda

    2004-09-30

    This thesis is an attempt to establish a practical way for architectural designers to take advantage of the relationship between soundscape and architectural aesthetics. The whole study aides in providing a structural ...

  16. Generating Programming Environments with Integrated Text and Graphics for VLSI Design Systems 

    E-Print Network [OSTI]

    McCaskill, George Alexander

    1987-01-01

    The constant improvements in device integration, the development of new technologies and the emergence of new design techniques call for flexible, maintainable and robust software tools. The generic nature of compiler-compiler ...

  17. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01

    radioactive waste and hazardous material handling and disposal Protect the environment Provide for spent fuel storage

  18. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of the Assistant Secretary for Environment, Safety and Health. Part 5. Overview and assessment

    SciTech Connect (OSTI)

    Faust, L.G.

    1986-02-01

    This volume is progress on work performed for the Office of Nuclear Safety, the Office of Operational Safety, and for the Office of Environmental Analysis for each project. Separate abstracts have been prepared for individual projects. ACR

  19. Integrating digital human modeling into virtual environment for ergonomic oriented design

    E-Print Network [OSTI]

    Ma, Liang; Bennis, Fouad; Hu, Bo; Zhang, Wei

    2010-01-01

    Virtual human simulation integrated into virtual reality applications is mainly used for virtual representation of the user in virtual environment or for interactions between the user and the virtual avatar for cognitive tasks. In this paper, in order to prevent musculoskeletal disorders, the integration of virtual human simulation and VR application is presented to facilitate physical ergonomic evaluation, especially for physical fatigue evaluation of a given population. Immersive working environments are created to avoid expensive physical mock-up in conventional evaluation methods. Peripheral motion capture systems are used to capture natural movements and then to simulate the physical operations in virtual human simulation. Physical aspects of human's movement are then analyzed to determine the effort level of each key joint using inverse kinematics. The physical fatigue level of each joint is further analyzed by integrating a fatigue and recovery model on the basis of physical task parameters. All the pr...

  20. Cognitive models applied to human effectiveness in national security environments (ergonomics of augmented cognition system design and application).

    SciTech Connect (OSTI)

    Ntuen, Celestine; Winchester, Woodrow III

    2004-06-01

    In complex simulation systems where humans interact with computer-generated agents, information display and the interplay of virtual agents have become dominant media and modalities of interface design. This design strategy is reflected in augmented reality (AR), an environment where humans interact with computer-generated agents in real-time. AR systems can generate large amount of information, multiple solutions in less time, and perform far better in time-constrained problem solving. The capabilities of AR have been leveraged to augment cognition in human information processing. In this sort of augmented cognition (AC) work system, while technology has become the main source for information acquisition from the environment, the human sensory and memory capacities have failed to cope with the magnitude and scale of information they encounter. This situation generates opportunity for excessive cognitive workloads, a major factor in degraded human performance. From the human effectiveness point of view, research is needed to develop, model, and validate simulation tools that can measure the effectiveness of an AR technology used to support the amplification of human cognition. These tools will allow us to predict human performance for tasks executed under an AC tool construct. This paper presents an exploration of ergonomics issues relevant to AR and AC systems design. Additionally, proposed research to investigate those ergonomic issues is discussed.

  1. Radiation physics and shielding codes and analyses applied to design-assist and safety analyses of CANDU{sup R} and ACR{sup TM} reactors

    SciTech Connect (OSTI)

    Aydogdu, K.; Boss, C. R. [Atomic Energy of Canada Limited, Sheridan Science and Technology Park, Mississauga, Ont. L5K 1B2 (Canada)

    2006-07-01

    This paper discusses the radiation physics and shielding codes and analyses applied in the design of CANDU and ACR reactors. The focus is on the types of analyses undertaken rather than the inputs supplied to the engineering disciplines. Nevertheless, the discussion does show how these analyses contribute to the engineering design. Analyses in radiation physics and shielding can be categorized as either design-assist or safety and licensing (accident) analyses. Many of the analyses undertaken are designated 'design-assist' where the analyses are used to generate recommendations that directly influence plant design. These recommendations are directed at mitigating or reducing the radiation hazard of the nuclear power plant with engineered systems and components. Thus the analyses serve a primary safety function by ensuring the plant can be operated with acceptable radiation hazards to the workers and public. In addition to this role of design assist, radiation physics and shielding codes are also deployed in safety and licensing assessments of the consequences of radioactive releases of gaseous and liquid effluents during normal operation and gaseous effluents following accidents. In the latter category, the final consequences of accident sequences, expressed in terms of radiation dose to members of the public, and inputs to accident analysis, e.g., decay heat in fuel following a loss-of-coolant accident, are also calculated. Another role of the analyses is to demonstrate that the design of the plant satisfies the principle of ALARA (as low as reasonably achievable) radiation doses. This principle is applied throughout the design process to minimize worker and public doses. The principle of ALARA is an inherent part of all design-assist recommendations and safety and licensing assessments. The main focus of an ALARA exercise at the design stage is to minimize the radiation hazards at the source. This exploits material selection and impurity specifications and relies heavily on experience and engineering judgement, consistent with the ALARA philosophy. Special care is taken to ensure that the best estimate dose rates are used to the extent possible when applying ALARA. Provisions for safeguards equipment are made throughout the fuel-handling route in CANDU and ACR reactors. For example, the fuel bundle counters rely on the decay gammas from the fission products in spent-fuel bundles to record the number of fuel movements. The International Atomic Energy Agency (IAEA) Safeguards system for CANDU and ACR reactors is based on item (fuel bundle) accounting. It involves a combination of IAEA inspection with containment and surveillance, and continuous unattended monitoring. The spent fuel bundle counter monitors spent fuel bundles as they are transferred from the fuelling machine to the spent fuel bay. The shielding and dose-rate analysis need to be carried out so that the bundle counter functions properly. This paper includes two codes used in criticality safety analyses. Criticality safety is a unique phenomenon and codes that address criticality issues will demand specific validations. However, it is recognised that some of the codes used in radiation physics will also be used in criticality safety assessments. (authors)

  2. Safety Controller Synthesis Using Human Generated Trajectories

    E-Print Network [OSTI]

    Julius, Anak Agung

    applications such as the safety analysis of air traffic systems [1], design verification for electronic

  3. Synthetic environments as design tool -A case study Jan Miedema1

    E-Print Network [OSTI]

    Theune, Mariët

    .miedema,m.c.vandervoort}@utwente.nl 2 University of Twente, Cognitive Psychology and Ergonomics, Enschede, The Netherlands, {f of haptic and visual simulation only, was sufficient for a realistic evaluation of a product and to provide realistically to perform real-world design tasks (e.g. brainstorming, concept assessment or end-user evaluations

  4. ON THE DESIGN OF AN IMMERSIVE ENVIRONMENT FOR SECURITY-RELATED STUDIES

    E-Print Network [OSTI]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.1 Internet Worm History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 iii #12 The Internet has become an essential part of normal operations of both public and private sectors. Many security issues are not addressed in the original Internet design, and security now has become a large

  5. The use of daylight in the design of a controlled environment for food production in the Caribbean and other equatorial climates

    E-Print Network [OSTI]

    Charles, Curtis B

    1989-01-01

    This thesis addresses the use of daylight in the design of a controlled environment for food production in the Caribbean and other Equatorial climates. An expanding population has put a tremendous burden on the food ...

  6. System design and algorithmic development for computational steering in distributed environments

    SciTech Connect (OSTI)

    Wu, Qishi; Zhu, Mengxia; Gu, Yi; Rao, Nageswara S

    2010-03-01

    Supporting visualization pipelines over wide-area networks is critical to enabling large-scale scientific applications that require visual feedback to interactively steer online computations. We propose a remote computational steering system that employs analytical models to estimate the cost of computing and communication components and optimizes the overall system performance in distributed environments with heterogeneous resources. We formulate and categorize the visualization pipeline configuration problems for maximum frame rate into three classes according to the constraints on node reuse or resource sharing, namely no, contiguous, and arbitrary reuse. We prove all three problems to be NP-complete and present heuristic approaches based on a dynamic programming strategy. The superior performance of the proposed solution is demonstrated with extensive simulation results in comparison with existing algorithms and is further evidenced by experimental results collected on a prototype implementation deployed over the Internet.

  7. Foundations and Trends R Electronic Design Automation

    E-Print Network [OSTI]

    Carloni, Luca

    between environment (plant to be controlled) and design (digital controller) into consideration electronics is bringing information and control systems of increasing complexity to every aspects of our lives. The most challenging designs are safety-critical systems, such as transportation systems (e.g., airplanes

  8. Environment, Health, & Safety Training Program

    E-Print Network [OSTI]

    Eisen, Michael

    Radiological Training (GERT) Course Syllabus Subject Category: Radiation Protection Course or facility. Participant Evaluation: No Written Exam: No Practical Exam: No Retraining

  9. _____________________________ Environment, Health, & Safety _________ __________________ Training Program

    E-Print Network [OSTI]

    Eisen, Michael

    of a hazardous chemical in a work area. It will also include the physical and health hazards associated with chemicals in a work area, along with the steps employees can take to protect themselves from such hazards practices 11. Recall the posting requirements for work areas containing hazardous chemicals 12. Identify how

  10. __________________________________ Environment, Health, & Safety ________________________________ Training Program

    E-Print Network [OSTI]

    Eisen, Michael

    commercial drivers license endorsement to transport radioactive or hazardous waste. Course Objectives: After to transport Radioactive materials to an offsite location. Recall who is allowed to prepare and package radioactive materials for delivery to an offsite locations Select an appropriate vehicle for transporting

  11. The Environment, Health and Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hazardous chemicals * SPCC Training records and material are kept on in an online data base at the PSFC. *MIT will begin using centralized training record data base summer...

  12. Fire Safety, Education, Multicultural Environments,

    E-Print Network [OSTI]

    -Urban Interface #12;A Qualitative Study of Factors Influencing Racial Diversity in Environmental Education with people of color working in environmental education and interpretation throughout the United States education; (2) How does each individual define environmentalism? and (3) What are the primary issues

  13. _____________________________ Environment, Health, & Safety _________ __________________ Training Program

    E-Print Network [OSTI]

    _________ __________________ Training Program EHS 370 Lockout/Tagout for Authorized Persons Course Syllabus Subject Category: Electrical participants with training on Lockout/Tagout responsibilities, acceptable practices, and procedures, and line management and supervision responsibilities. Course Objectives: After completing this training

  14. Environment/Health/Safety Concerns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S.EngineeringRadiation Protection GroupEHS

  15. Safety harness

    DOE Patents [OSTI]

    Gunter, Larry W. (615 Sand Pit Rd., Leesville, SC 29070)

    1993-01-01

    A safety harness to be worn by a worker, especially a worker wearing a plastic suit thereunder for protection in a radioactive or chemically hostile environment, which safety harness comprises a torso surrounding portion with at least one horizontal strap for adjustably securing the harness about the torso, two vertical shoulder straps with rings just forward of the of the peak of the shoulders for attaching a life-line and a pair of adjustable leg supporting straps releasibly attachable to the torso surrounding portion. In the event of a fall, the weight of the worker, when his fall is broken and he is suspended from the rings with his body angled slightly back and chest up, will be borne by the portion of the leg straps behind his buttocks rather than between his legs. Furthermore, the supporting straps do not restrict the air supplied through hoses into his suit when so suspended.

  16. HEALTH AND SAFETY INDUCTION Introduction

    E-Print Network [OSTI]

    Mucina, Ladislav

    HEALTH AND SAFETY INDUCTION Introduction Welcome to Curtin's online health and safety induction University is committed to providing and maintaining high standards of health and safety so we can prevent with staff, and by continually improving our health and safety management system. This course is designed

  17. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Supersedes DOE O 420.2B.

  18. International Journal of Performability Engineering Vol. 1, No. 2, October 2005, pp. 105-120 Beyond Tools: A Design for Environment Process

    E-Print Network [OSTI]

    Sandborn, Peter

    the environmental impact of a new product occurs during the design phase of its life cycle. Design for Environment development (ERPD), also known as environmentally benign manufacturing, considers both environmental impacts environmental impacts throughout all stages (i.e. raw material extraction, manufacturing, assembly, distribution

  19. Job Safety

    Broader source: Energy.gov (indexed) [DOE]

    Job Safety and Health It's the law EMPLOYEES: Must have access to: DOE safety and health publications; The worker safety and health program for their location; This...

  20. Safety program of the Oak Ridge National Laboratory: a different approach

    SciTech Connect (OSTI)

    Burger, G.H.

    1981-01-01

    The uniqueness and therefore different approach to Oak Ridge National Laboratory's safety program is not a result of elimination of the usual industrial safety organization, but results from the three organizations which supplement it and the areas of safety concerns that they cover. While industrial safety is primarily concerned with day-to-day routine worker activities (wearing of safety glasses and hard hats, adherence to electrical safety work procedures, proper safety lockout and tagout of equipment for maintenance activities, etc.), the other organizations, the Office of Operational Safety, Division Safety Officers and Radiation Control Officers, and the Laboratory director's Review Committees, are concerned with themuch broader spectrum of the total work environment. These organizations are concerned not only with the day-to-day worker activities but the design and conduction of all operations from a process viewpoint. The emphasis of these groups is assuring first that operations, experiments, facilities, etc., are designed properly and then secondly operated properly to assure safety of the operators, Laboratory population, and the public. Responsibilities of the three safety organizations constituting operational or process safety are described and discussed.

  1. Approved Module Information for BHM356, 2014/5 Module Title/Name: Workplace Design & Health Module Code: BHM356

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    of design of work environments, ergonomics and the importance of health and safety. The module aims work design, ergonomics and health and safety * Will develop a deeper understanding of how the study;Indicative Module Content: Week 1: Key principles Week 2: Anthropometry and ergonomics methods Week 3: Human

  2. Safety-Critical Universit at

    E-Print Network [OSTI]

    Peleska, Jan - Fachbereich 3

    . Hazard Analysis and Risk Assessment 5. Design Criteria for Safety-Critical Systems 6. Validation, Veri#12. Hazard Analysis and Risk Assessment 5. Design Criteria for Safety-Critical Systems 6. Validation, Veri#12Safety-Critical Systems Prof. Dr. Jan Peleska Universit at Bremen | TZI Dr. Ing. Cornelia Zahlten

  3. Superconducting Magnet Safety Nuclear Magnetic Resonance (NMR) facilities present unique hazards not found in most

    E-Print Network [OSTI]

    Maroncelli, Mark

    Superconducting Magnet Safety Nuclear Magnetic Resonance (NMR) facilities present unique hazards not found in most laboratory environments. The NMR facilities maintain superconducting magnets which have the units. Facility design and installation: Design and installation of a new NMR facility requires a number

  4. Regulatory Safety Issues in the Structural Design Criteria of ASME Section III Subsection NH and for Very High Temperatures for VHTR & GEN IV

    SciTech Connect (OSTI)

    William J. O’Donnell; Donald S. Griffin

    2007-05-07

    The objective of this task is to identify issues relevant to ASME Section III, Subsection NH [1], and related Code Cases that must be resolved for licensing purposes for VHTGRs (Very High Temperature Gas Reactor concepts such as those of PBMR, Areva, and GA); and to identify the material models, design criteria, and analysis methods that need to be added to the ASME Code to cover the unresolved safety issues. Subsection NH was originally developed to provide structural design criteria and limits for elevated-temperature design of Liquid Metal Fast Breeder Reactor (LMFBR) systems and some gas-cooled systems. The U.S. Nuclear Regulatory Commission (NRC) and its Advisory Committee for Reactor Safeguards (ACRS) reviewed the design limits and procedures in the process of reviewing the Clinch River Breeder Reactor (CRBR) for a construction permit in the late 1970s and early 1980s, and identified issues that needed resolution. In the years since then, the NRC and various contractors have evaluated the applicability of the ASME Code and Code Cases to high-temperature reactor designs such as the VHTGRs, and identified issues that need to be resolved to provide a regulatory basis for licensing. This Report describes: (1) NRC and ACRS safety concerns raised during the licensing process of CRBR , (2) how some of these issues are addressed by the current Subsection NH of the ASME Code; and (3) the material models, design criteria, and analysis methods that need to be added to the ASME Code and Code Cases to cover unresolved regulatory issues for very high temperature service.

  5. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01

    reprocessing to recover fissionable material, FHR fuel handling systems must be designed to facilitate the application of IAEA safeguards.

  6. Independent Oversight Follow-up Assessment of Safety Culture...

    Office of Environmental Management (EM)

    Follow-up Assessment of Safety Culture at the Waste Treatment and Immobilization Plant May 2011 June 2014 Office of Environment, Safety and Health Assessments Office of...

  7. Enterprise Assessments Follow-up Assessment of Safety Culture...

    Office of Environmental Management (EM)

    Follow-up Assessment of Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant June 2015 Office of Worker Safety and Health Assessments Office of Environment,...

  8. Nuclear Safety Information Agreement Between the U.S. Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    Environment, Health, Safety and Security (EHSS DOE), Cathy Haney (Director, Office of Nuclear Materials Safety and Safeguards (NRC)), Marissa Bailey (Director, Division of Fuel...

  9. Seismic Design Expectations Report

    Office of Environmental Management (EM)

    flood, and lightning. This report only focuses on the seismic design expectations. NPH safety requirements are described in 10 CFR Part 830, Nuclear Safety Management, DOE O...

  10. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01

    Design. (U.S. Nuclear Regulatory Commission, NUREG-1793,analysis. (U.S. Nuclear Regulatory Commission, 1991, NUREG/Main Report. (Nuclear Regulatory Commission, 2007, NUREG/CR-

  11. Uninterruptible Power Supplies Designed to meet or exceed the safety standards established by UL, CSA, CE and VDE. The Alpha CFR UPS is one of the safest, most reliable and versatile Uninterruptible Power Systems

    E-Print Network [OSTI]

    Berns, Hans-Gerd

    Uninterruptible Power Supplies Designed to meet or exceed the safety standards established by ULKVA available. Uninterruptible Power Supply > The CFR's microprocessor design provides efficiency, CSA, CE and VDE. The Alpha CFR UPS is one of the safest, most reliable and versatile Uninterruptible

  12. CRITICALITY SAFETY CONTROLS AND THE SAFETY BASIS AT PFP

    SciTech Connect (OSTI)

    Kessler, S

    2009-04-21

    With the implementation of DOE Order 420.1B, Facility Safety, and DOE-STD-3007-2007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities', a new requirement was imposed that all criticality safety controls be evaluated for inclusion in the facility Documented Safety Analysis (DSA) and that the evaluation process be documented in the site Criticality Safety Program Description Document (CSPDD). At the Hanford site in Washington State the CSPDD, HNF-31695, 'General Description of the FH Criticality Safety Program', requires each facility develop a linking document called a Criticality Control Review (CCR) to document performance of these evaluations. Chapter 5, Appendix 5B of HNF-7098, Criticality Safety Program, provided an example of a format for a CCR that could be used in lieu of each facility developing its own CCR. Since the Plutonium Finishing Plant (PFP) is presently undergoing Deactivation and Decommissioning (D&D), new procedures are being developed for cleanout of equipment and systems that have not been operated in years. Existing Criticality Safety Evaluations (CSE) are revised, or new ones written, to develop the controls required to support D&D activities. Other Hanford facilities, including PFP, had difficulty using the basic CCR out of HNF-7098 when first implemented. Interpretation of the new guidelines indicated that many of the controls needed to be elevated to TSR level controls. Criterion 2 of the standard, requiring that the consequence of a criticality be examined for establishing the classification of a control, was not addressed. Upon in-depth review by PFP Criticality Safety staff, it was not clear that the programmatic interpretation of criterion 8C could be applied at PFP. Therefore, the PFP Criticality Safety staff decided to write their own CCR. The PFP CCR provides additional guidance for the evaluation team to use by clarifying the evaluation criteria in DOE-STD-3007-2007. In reviewing documents used in classifying controls for Nuclear Safety, it was noted that DOE-HDBK-1188, 'Glossary of Environment, Health, and Safety Terms', defines an Administrative Control (AC) in terms that are different than typically used in Criticality Safety. As part of this CCR, a new term, Criticality Administrative Control (CAC) was defined to clarify the difference between an AC used for criticality safety and an AC used for nuclear safety. In Nuclear Safety terms, an AC is a provision relating to organization and management, procedures, recordkeeping, assessment, and reporting necessary to ensure safe operation of a facility. A CAC was defined as an administrative control derived in a criticality safety analysis that is implemented to ensure double contingency. According to criterion 2 of Section IV, 'Linkage to the Documented Safety Analysis', of DOESTD-3007-2007, the consequence of a criticality should be examined for the purposes of classifying the significance of a control or component. HNF-PRO-700, 'Safety Basis Development', provides control selection criteria based on consequence and risk that may be used in the development of a Criticality Safety Evaluation (CSE) to establish the classification of a component as a design feature, as safety class or safety significant, i.e., an Engineered Safety Feature (ESF), or as equipment important to safety; or merely provides defense-in-depth. Similar logic is applied to the CACs. Criterion 8C of DOE-STD-3007-2007, as written, added to the confusion of using the basic CCR from HNF-7098. The PFP CCR attempts to clarify this criterion by revising it to say 'Programmatic commitments or general references to control philosophy (e.g., mass control or spacing control or concentration control as an overall control strategy for the process without specific quantification of individual limits) is included in the PFP DSA'. Table 1 shows the PFP methodology for evaluating CACs. This evaluation process has been in use since February of 2008 and has proven to be simple and effective. Each control identified i

  13. 8 July 2011 SLAC-I-730-0A21J-040-R000 1 of 1 ENVIRONMENT, SAFETY & HEALTH DIVISION

    E-Print Network [OSTI]

    Wechsler, Risa H.

    ASME Coded System Design: Stamping: Certification: ASME data reports: Manufacturer: National Board number: Non-ASME Coded System Design: Manufacturer: SL number: Materials inspection: Fabrication

  14. Toward resilient communities: A performance-based engineering framework for design and evaluation of the built environment

    E-Print Network [OSTI]

    Mieler, Michael

    2012-01-01

    risk assessments for nuclear power plants (NUREG/CR-2300).safety principles for nuclear power plants 75-INSAG-12 Rev.the operations of nuclear power plants; Policy statement. ”

  15. Examination of Process Implementation of Evidence-based Design Initiatives on United States Army Medical Construction 

    E-Print Network [OSTI]

    Marsh, Glenn Edward

    2011-08-08

    Facilities Design and Construction Criteria NO Environment of Care ? US 2007 PARTIAL Design & Implementation Guide 2007 PARTIAL NFPA 99: Standard for Health Care Facilities PARTIAL NFPA 101?: Life Safety Code PARTIAL NFPA 101A: Guide on Alternative... Approaches to Life Safety PARTIAL Federal LEED program NO UFC 4-010-01 Unified Facilities Criteria (UFC) DoD Minimum Antiterrorism Standards for Buildings NO UFC 4-023-03 Unified Facilities Criteria (UFC) Design of Buildings to Resist Progressive...

  16. Electrostatically charged spraying of a plant-an industrial and environmental flow problem (choice of flow process, design of device, dispersion in the environment, and impaction on

    E-Print Network [OSTI]

    Hunt, Julian

    Electrostatically charged spraying of a plant-an industrial and environmental flow problem (choice of flow process, design of device, dispersion in the environment, and impaction on the plant surface). wwwReviews Inc. All rights reserved INDUSTRIAL AND ENVIRONMENTAL FLUID MECHANICS J. C. R. Hunt Department

  17. Health & Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health & Safety Health & Safety1354608000000Health & SafetySome of these resources are LANL-only and will require Remote Access.NoQuestions? 667-5809library@lanl.gov Health &...

  18. ENVIRONMENT, SAFETY & HEALTH DIVISION 4 August 2011 SLAC-I-730-0A21L-006-R001 1 of 1

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Code (BPVC) and ASME Pressure Piping Code) Cryogenic systems not open to the atmosphere at all times comply with Title 10, Code of Federal Regulations, "Energy", Chapter 3, "Department of Energy", Part 851, "Worker Safety and Health Program" (10 CFR 851 Appendix A.4) and all applicable codes and standards

  19. Nuclear safety analyses and core design calculations to convert the Texas A & M University Nuclear Science Center reactor to low enrichment uranium fuel. Final report

    SciTech Connect (OSTI)

    Parish, T.A.

    1995-03-02

    This project involved performing the nuclear design and safety analyses needed to modify the license issued by the Nuclear Regulatory Commission to allow operation of the Texas A& M University Nuclear Science Center Reactor (NSCR) with a core containing low enrichment uranium (LEU) fuel. The specific type of LEU fuel to be considered was the TRIGA 20-20 fuel produced by General Atomic. Computer codes for the neutronic analyses were provided by Argonne National Laboratory (ANL) and the assistance of William Woodruff of ANL in helping the NSCR staff to learn the proper use of the codes is gratefully acknowledged. The codes applied in the LEU analyses were WIMSd4/m, DIF3D, NCTRIGA and PARET. These codes allowed full three dimensional, temperature and burnup dependent calculations modelling the NSCR core to be performed for the first time. In addition, temperature coefficients of reactivity and pulsing calculations were carried out in-house, whereas in the past this modelling had been performed at General Atomic. In order to benchmark the newly acquired codes, modelling of the current NSCR core with highly enriched uranium fuel was also carried out. Calculated results were compared to both earlier licensing calculations and experimental data and the new methods were found to achieve excellent agreement with both. Therefore, even if an LEU core is never loaded at the NSCR, this project has resulted in a significant improvement in the nuclear safety analysis capabilities established and maintained at the NSCR.

  20. Office of Enforcement and Oversight's Office of Safety and Emergency...

    Broader source: Energy.gov (indexed) [DOE]

    protection; fire protection; safety basis; quality assurance; civil, structural, and seismic design requirements; engineering design; configuration management; and...

  1. SSC Safety Review Document

    SciTech Connect (OSTI)

    Toohig, T.E. [ed.

    1988-11-01

    The safety strategy of the Superconducting Super Collider (SSC) Central Design Group (CDG) is to mitigate potential hazards to personnel, as far as possible, through appropriate measures in the design and engineering of the facility. The Safety Review Document identifies, on the basis of the Conceptual Design Report (CDR) and related studies, potential hazards inherent in the SSC project independent of its site. Mitigative measures in the design of facilities and in the structuring of laboratory operations are described for each of the hazards identified.

  2. Safety of magnetic fusion facilities: Guidance

    SciTech Connect (OSTI)

    NONE

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities.

  3. NEW - DOE O 420.1 Chg 1, Facility Safety - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena...

  4. Light-Weight Radioisotope Heater Unit Safety Analysis Report (LWRHU-SAR). Volume I. A. Introduction and executive summary. B. Reference Design Document (RDD)

    SciTech Connect (OSTI)

    Johnson, E.W.

    1985-10-01

    The orbiter and probe portions of the NASA Galileo spacecraft contain components which require auxiliary heat during the mission. To meet these needs, the Department of Energy's (DOE's) Office of Special Nuclear Projects (OSNP) has sponsored the design, fabrication, and testing of a one-watt encapsulated plutonium dioxide-fueled thermal heater named the Light-Weight Radioisotope Heater Unit (LWRHU). This report addresses the radiological risks which might be encountered by people both at the launch area and worldwide should postulate mission failures or malfunctions occur, which would result in the release of the LWRHUs to the environment. Included are data from the design, mission descriptions, postulated accidents with their consequences, test data, and the derived source terms and personnel exposures for the various events.

  5. Integrated Safety Management in QA Program Planning

    Broader source: Energy.gov [DOE]

    Presenter: Sonya Barnette, Office of Quality Assurance Policy and Assistance, Office of Nuclear Safety, Quality Assurance and Environment Track 9-8

  6. Software Safety Tutorial Status Update 1 Software Safety Tutorial

    E-Print Network [OSTI]

    Tian, Jeff

    ? · Software safety: The property of being accident- free for (embedded) software systems. Accident: failures with severe consequences Hazard: condition for accident Specialized techniques · Software safety engineering./property/environment damage excess energy/dangerous substance computers relatively safe but computer control accidents

  7. 2.017J / 1.015J Design of Systems Operating in Random Environments, Spring 2006

    E-Print Network [OSTI]

    Hover, Franz

    This class covers the principles for optimal performance and survival of extreme events in a random environment; linear time invariant systems and Fourier transform; random processes, autocorrelation function, and power ...

  8. Nuclear Safety. Technical Progress Journal, October--December 1991: Volume 32, No. 4

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  9. Safety & Environmental Protection Services

    E-Print Network [OSTI]

    Glasgow, University of

    of care in waste storage and disposal is available on Safety and Environmental Protection Service's (SEPS sustainably and to protect the environment and, in line with this, recycles waste wherever practicable to biological properties). In addition some activities produce radioactive waste. Radioactive waste

  10. Integrated Safety Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25

    The order ensures that DOE/NNSA, systematically integrates safety into management and work practices at all levels, so that missions are accomplished efficiently while protecting the workers, the public, and the environment. Supersedes DOE M 450.4-1 and DOE M 411.1-1C

  11. Nuclear explosive safety study process

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    Nuclear explosives by their design and intended use require collocation of high explosives and fissile material. The design agencies are responsible for designing safety into the nuclear explosive and processes involving the nuclear explosive. The methodology for ensuring safety consists of independent review processes that include the national laboratories, Operations Offices, Headquarters, and responsible Area Offices and operating contractors with expertise in nuclear explosive safety. A NES Study is an evaluation of the adequacy of positive measures to minimize the possibility of an inadvertent or deliberate unauthorized nuclear detonation, high explosive detonation or deflagration, fire, or fissile material dispersal from the pit. The Nuclear Explosive Safety Study Group (NESSG) evaluates nuclear explosive operations against the Nuclear Explosive Safety Standards specified in DOE O 452.2 using systematic evaluation techniques. These Safety Standards must be satisfied for nuclear explosive operations.

  12. Toward resilient communities: A performance-based engineering framework for design and evaluation of the built environment

    E-Print Network [OSTI]

    Mieler, Michael

    2012-01-01

    wind, snow earthquake ELECTRIC POWER SYSTEMS GUIDE/STANDARD 1 DESIGNwind, snow earthquake ELECTRIC POWER SYSTEMS GUIDE/STANDARD 1 DESIGN

  13. Risk Level Based Management System: a control banding model for occupational health and safety risk management in a highly regulated environment

    SciTech Connect (OSTI)

    Zalk, D; Kamerzell, R; Paik, S; Kapp, J; Harrington, D; Swuste, P

    2009-05-27

    The Risk Level Based Management System (RLBMS) is an occupational risk management (ORM) model that focuses occupational safety, hygeiene, and health (OSHH) resources on the highest risk procedures at work. This article demonstrates the model's simplicity through an implementation within a heavily regulated research institution. The model utilizes control banding strategies with a stratification of four risk levels (RLs) for many commonly performed maintenance and support activities, characterizing risk consistently for comparable tasks. RLBMS creates an auditable tracking of activities, maximizes OSHH professional field time, and standardizes documentation and control commensurate to a given task's RL. Validation of RLs and their exposure control effectiveness is collected in a traditional quantitative collection regime for regulatory auditing. However, qualitative risk assessment methods are also used within this validation process. Participatory approaches are used throughout the RLBMS process. Workers are involved in all phases of building, maintaining, and improving this model. This work participation also improves the implementation of established controls.

  14. Pacific Northwest Laboratory annual report for 1979 to the DOE Assistant Secretary for Environment. Part 5. Environmental assessment, control, health, and safety

    SciTech Connect (OSTI)

    Baalman, R.W.; Dotson, C.W. (eds.)

    1980-02-01

    Part 5 of the 1979 Annual Report to the Department of Energy Assistant Secretary for the Environment presents Pacific Northwest Laboratory's progress on work performed for the Office of Technology Impacts, the Office of Environmental Compliance and Overview, and the Office of Health and Environmental Research. The report is in four sections, corresponding to the program elements: technology impacts, environmental control engineering, operational and environmental compliance, and human health studies. In each section, articles describe progress made during FY 1979 on individual projects.

  15. Sandia Energy - Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Safety Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Safety Technologies Risk and Safety Assessment Transportation Safety Transportation SafetyTara...

  16. Biological Safety

    Broader source: Energy.gov [DOE]

    The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions to issues identified.

  17. ENVIRONMENT, SAFETY & HEALTH DIVISION 8 July 2011 SLAC-I-730-0A21C-030-R000 1 of 3

    E-Print Network [OSTI]

    Wechsler, Risa H.

    Society of Mechanical Engineering (ASME) coded boilers and pressure vessels; non-ASME coded vessels by the pressure systems program manager. 1.1 Exemptions The following components must meet code requirements. Design calculations in accordance with the applicable codes, standards, or sound engineering principles c

  18. Experimental Validation of Passive Safety System Models: Application to Design and Optimization of Fluoride-Salt-Cooled, High-Temperature Reactors

    E-Print Network [OSTI]

    Zweibaum, Nicolas

    2015-01-01

    Systems for Advanced Nuclear Reactors,” Ph.D. Dissertation,Handbook for Nuclear Reactor Safety,” Luxembourg: Commissiondevelopment of advanced nuclear reactor technology requires

  19. Design and Implementation of a Hypervisor-Based Platform for Dynamic Information Flow Tracking in a Distributed Environment

    E-Print Network [OSTI]

    Ermolinskiy, Andrey

    2011-01-01

    A. Ermolin- skiy, R. Tewari. Proceedings of NSDM’09 (JuneErmolinskiy and Renu Tewari. C2Cfs: A collective cachingAjay Gulati, Manoj Naik, and Renu Tewari. Nache: design and

  20. German Federal Ministry for the Environment, Nature Conservation...

    Open Energy Info (EERE)

    German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety Jump to: navigation, search Logo: German Federal Ministry for the Environment, Nature...

  1. Chapter 23 - Environment, Energy and Water Efficiency, Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 - Environment, Energy and Water Efficiency, Renewable Energy Technologies, Occupational Safety, and Drug-free Workplace. Chapter 23 - Environment, Energy and Water Efficiency,...

  2. Seismic Safety Guide

    SciTech Connect (OSTI)

    Eagling, D.G.

    1983-09-01

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls.

  3. METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    with applicable safety design criteria. Two generic areasSAFETY DESIGN Stage 3 would determine compliance with applicable safety criteria,design and operating criteria and to show the adequacy of the site characteristics from a safety

  4. Audit Report The Procurement of Safety Class/Safety-Significant Items at the Savannah River Site

    SciTech Connect (OSTI)

    None

    2009-04-01

    The Department of Energy operates several nuclear facilities at its Savannah River Site, and several additional facilities are under construction. This includes the National Nuclear Security Administration's Tritium Extraction Facility (TEF) which is designated to help maintain the reliability of the U.S. nuclear stockpile. The Mixed Oxide Fuel Fabrication Facility (MOX Facility) is being constructed to manufacture commercial nuclear reactor fuel assemblies from weapon-grade plutonium oxide and depleted uranium. The Interim Salt Processing (ISP) project, managed by the Office of Environmental Management, will treat radioactive waste. The Department has committed to procuring products and services for nuclear-related activities that meet or exceed recognized quality assurance standards. Such standards help to ensure the safety and performance of these facilities. To that end, it issued Departmental Order 414.1C, Quality Assurance (QA Order). The QA Order requires the application of Quality Assurance Requirements for Nuclear Facility Applications (NQA-1) for nuclear-related activities. The NQA-1 standard provides requirements and guidelines for the establishment and execution of quality assurance programs during the siting, design, construction, operation, and decommissioning of nuclear facilities. These requirements, promulgated by the American Society of Mechanical Engineers, must be applied to 'safety-class' and 'safety-significant' structures, systems and components (SSCs). Safety-class SSCs are defined as those necessary to prevent exposure off site and to protect the public. Safety-significant SSCs are those whose failure could irreversibly impact worker safety such as a fatality, serious injury, or significant radiological or chemical exposure. Due to the importance of protecting the public, workers, and environment, we initiated an audit to determine whether the Department of Energy procured safety-class and safety-significant SSCs that met NQA-1 standards at the Savannah River Site. Our review disclosed that the Department had procured and installed safety-class and safety-significant SSCs that did not meet NQA-1 quality standards. Specifically, we identified multiple instances in which critical components did not meet required quality and safety standards. For example: (1) Three structural components were procured and installed by the prime contractor at Savannah River during construction of the MOX Facility that did not meet the technical specifications for items relied on for safety. These substandard items necessitated costly and time consuming remedial action to, among other things, ensure that nonconforming materials and equipment would function within safety margins; (2) In six instances, items used in the construction of TEF failed to satisfy quality standards. In one of these situations, operating procedures had to be modified to ensure that the problem item did not compromise safety; and (3) Finally, at the ISP, one component that did not meet quality standards was procured. The failure of the item could have resulted in a spill of up to 15,000 gallons of high-level radioactive waste. Based on an extensive examination of relevant internal controls and procurement practices, we concluded that these failures were attributable to inadequate attention to quality assurance at Savannah River. Simply put, Departmental controls were not adequate to prevent and/or detect quality assurance problems. For example, Federal and prime contractor officials did not expressly require that subcontractors or lower-tiered vendors comply with quality assurance requirements. Additionally, management did not effectively communicate quality assurance concerns between the several Departmental program elements operating at Savannah River. The procurement and installation of these nonconforming components resulted in cost increases. For example, as of October 2008, the MOX Facility had incurred costs of more than $680,000 due to problems associated with the procurement of $11 million of nonconforming safety-class reinforcing steel.

  5. Safety Engineer

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will ensure DOE Federal personnel and contractors develop effective safety programs and continuously evaluates those activities to ensure compliance with DOE...

  6. Radiation Safety System

    SciTech Connect (OSTI)

    Vylet, Vaclav; Liu, James C.; Walker, Lawrence S.; /Los Alamos

    2012-04-04

    The goal of this work is to provide an overview of a Radiation safety system (RSS) designed for protection from prompt radiation hazard at accelerator facilities. RSS design parameters, functional requirements and constraints are derived from hazard analysis and risk assessment undertaken in the design phase of the facility. The two main subsystems of a RSS are access control system (ACS) and radiation control system (RCS). In this text, a common approach to risk assessment, typical components of ACS and RCS, desirable features and general design principles applied to RSS are described.

  7. 13.10 Health and Safety Page 1 of 3 Health and Safety

    E-Print Network [OSTI]

    Hung, I-Kuai

    13.10 Health and Safety Page 1 of 3 Health and Safety Original Implementation: February 11, 1977 of a safe and healthful environment complementary to the university's needs and the accomplishment of its reduction of accidents and risk. III. ENVIRONMENTAL HEALTH, SAFETY, & RISK MANAGEMENT Responsibility

  8. Vadcard L., Luengo V., Embedding knowledge in the design of an orthopaedic surgery learning environment, In : CALIE04, International Conference on Computer Aided Learning in Engineering education, Grenoble: 16-18 fvrier 2004

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Vadcard L., Luengo V., Embedding knowledge in the design of an orthopaedic surgery learning environment, In : CALIE04, International Conference on Computer Aided Learning in Engineering education, Grenoble: 16-18 février 2004 1 Embedding knowledge in the design of an orthopaedic surgery learning

  9. Safety Requirements and Fault Trees using Retrenchment

    E-Print Network [OSTI]

    Banach, Richard

    this initial model has been created, the elicitation of safety requirements yields a fresh set of criteria are applied, the information linking the design and the safety assessment phases is often carried outSafety Requirements and Fault Trees using Retrenchment R. Banach and R. Cross Computer Science

  10. Measuring Process Safety Management

    SciTech Connect (OSTI)

    Sweeney, J.C. (ARCO Chemical Co., Newtown Square, PA (United States))

    1992-04-01

    Many companies are developing and implementing Process Safety Management (PSM) systems. Various PSM models, including those by the Center for Chemical Process Safety (CCPS), the American Petroleum Institute (API), the Chemical Manufacturers Association (CMA) and OSHA have emerged to guide the design, development and installation of these systems. These models represent distillations of the practices, methods and procedures successfully used by those who believed that a strong correlation exists between sound PSM practices and achieving reductions in the frequency and severity of process incidents. This paper describes the progress of CCPS research toward developing a PSM performance measurement model. It also provides a vision for future CCPS research to define effectiveness indices.

  11. Safety, Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni > The2/01/12University SafetyHealthSafetySafety,

  12. Health, Safety & Environment System Description and Worker Safety...

    National Nuclear Security Administration (NNSA)

    to operate issued by the City of Kansas City, Missouri. This permit applies to existing air pollution sources at the KC. A KC Title V Air Operating Permit Application has been...

  13. UNIVERSITY OF WASHINGTON General Requirements Environmental Health and Safety

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    UNIVERSITY OF WASHINGTON General Requirements Environmental Health and Safety Design Guide Safe · This design guide addresses the safety of University occupants and maintenance personnel. The safety personnel are supported on a swing stage, bosons chair, etc. Design Criteria · Provide fixed stairs

  14. New rocket propellant and motor design offer high-performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New rocket propellant and motor design offer high-performance and safety New rocket propellant and motor design offer high-performance and safety Scientists recently flight tested...

  15. Path to development of quantitative safety goals

    SciTech Connect (OSTI)

    Joksimovic, V.; Houghton, W.J.

    1980-04-01

    There is a growing interest in defining numerical safety goals for nuclear power plants as exemplified by an ACRS recommendation. This paper proposes a lower frequency limit of approximately 10/sup -4//reactor-year for design basis events. Below this frequency, down, to a small frequency such as 10/sup -5//reactor-year, safety margin can be provided by, say, site emergency plans. Accident sequences below 10/sup -5/ should not impact public safety, but it is prudent that safety research programs examine sequences with significant consequences. Once tentatively agreed upon, quantitative safety goals together with associated implementation tools would be factored into regulatory and design processes.

  16. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  17. Design study of an air-Cherenkov telescope for harsh environments with efficient air-shower detection at 100 TeV

    E-Print Network [OSTI]

    Auffenberg, Jan; Middendorf, Lukas; Niggemann, Tim; Rädel, Leif; Schaufel, Merlin; Schoenen, Sebastian; Schumacher, Johannes; Wiebusch, Christopher

    2015-01-01

    Telescopes, designed with semi-conductor based photo sensors, have the potential to detect Cherenkov or fluorescence light emitted by cosmic-rays in the atmosphere. Such telescopes promise a high duty cycle and efficiency in remote harsh environments. Given the relatively low costs and robustness of these instruments, this technology could prove interesting especially if deployed in large numbers with existing and future extended cosmic-ray and gamma ray detectors, including the Pierre Auger observatory, HAWC, IceCube and CTA. They may have the potential to enhance the sensitivity of these instruments for the detection of high-energy gamma rays and cosmic-ray air showers. In addition, for neutrino telescopes such a technology could prove to be an efficient cosmic-ray veto on the surface. In this contribution the current motivation, design, and development of a prototype SiPM based air Cherenkov telescope is described. The results of initial sensitivity studies, and the readiness of the system for first tests,...

  18. Environment, Safety and Health Reporting Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-03-19

    This Manual supplements DOE O 231.1A and provides detailed requirement for implementing Department of Energy reporting requirements, including time schedules for reporting and data elements to be reported. The page change modifies policy previously established that requires recording and reporting occupational injuries and illnesses of subcontractors employees. Change 1 dated 9-9-04. Change 2 dated 6-12-07. Canceled by DOE O 231.1B

  19. Environment, Safety, and Health Reporting Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-03-19

    This Manual supplements DOE O 231.1A and provides detailed requirements for implementing Department of Energy reporting requirements, including time schedules for reporting and data elements to be reported. Cancels DOE M 231.1-1, DOE N 231.1.

  20. Environment, Safety and Health Reporting Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-09-09

    This Manual supplements DOE O 231.1A and provides detailed requirement for implementing Department of Energy reporting requirements, including time schedules for reporting and data elements to be reported. The Page Change clarifies responsibilities pertaining to occupational injury and illness recordkeeping and recording; requires quarterly reconciliation of occupational injury and illness data; and provides clarification on data elements that must be reported and reconciled with local data records. Cancels DOE M 231.1-1c1, DOE N 231.1. Chg 1, 9-9-04.

  1. NREL: Environment, Safety, Health and Quality - Environmental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management System Photo of wild sunflowers in green grass. Credit: Bob Fiehweg NREL's Environmental Management System (EMS) supports the laboratory's commitment to its...

  2. NREL: Environment, Health, and Safety - Construction Subcontractors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatial

  3. PNNL: About PNNL: Environment, Health and Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| Department ofStephen P rice Los A lamosTony

  4. Environment/Health/Safety (EHS): Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S.EngineeringRadiation Protection Group

  5. Environment/Health/Safety Division: News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunities EnergyU.S.EngineeringRadiation Protection GroupEHSEHS A-Z

  6. Module Safety Issues (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2012-02-01

    Description of how to make PV modules so that they are less likely to turn into safety hazards. Making modules inherently safer with minimum additional cost is the preferred approach for PV. Safety starts with module design to ensure redundancy within the electrical circuitry to minimize open circuits and proper mounting instructions to prevent installation related ground faults. Module manufacturers must control the raw materials and processes to ensure that that every module is built like those qualified through the safety tests. This is the reason behind the QA task force effort to develop a 'Guideline for PV Module Manufacturing QA'. Periodic accelerated stress testing of production products is critical to validate the safety of the product. Combining safer PV modules with better systems designs is the ultimate goal. This should be especially true for PV arrays on buildings. Use of lower voltage dc circuits - AC modules, DC-DC converters. Use of arc detectors and interrupters to detect arcs and open the circuits to extinguish the arcs.

  7. DOE Cites Fluor Fernald Inc. for Nuclear Safety Violations |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary for Environment, Safety and Health The Price-Anderson Amendments Act of 1988 authorizes the Energy Department to undertake regulatory actions against contractors...

  8. Striving for Environmental, Security, Safety and Health and Sustainabi...

    Broader source: Energy.gov (indexed) [DOE]

    FE's FY 2011 Environment, Security, Safety and Health Annual Report. FE's FY 2011 ESS&H Annual Report More Documents & Publications Fossil Energy Today - Fourth Quarter, 2012...

  9. Cesium legacy safety project management work plan

    SciTech Connect (OSTI)

    Durham, J.S.

    1998-04-21

    This Management Work Plan (MWP) describes the process flow, quality assurance controls, and the Environment, Safety, and Health requirements of the Cesium Legacy Safety Project. This MWP provides an overview of the project goals and methods for repackaging the non-conforming Type W overpacks and packaging the CsCl powder and pellets. This MWP is not intended to apply to other activities associated with the CsCl Legacy Safety Program (i.e., clean out of South Cell).

  10. Vol 2, Integrated Safety Management System Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-05-27

    This Department of Energy (DOE) Integrated Safety Management System (ISMS) Guide is approved for use by the Office of Environment, Safety and Health (EH) and is available for use by all DOE components and their contractors. This Guide is a consensus document coordinated by EH and prepared under the direction of the DOE Safety Management Implementation Team (SMIT). Canceled by DOE G 450.4-1B.

  11. Radiation Safety Manual August 1999 UW Environmental Health and Safety

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    principle of keeping radiation doses and releases of radioactive material to the environment as low as can - An acronym formed from the phrase "As Low as Reasonably Achievable." The phrase refers to a radiation safety it into another type of atom and resulting in the emission of radiation. dose (absorbed dose) - Radiation dose

  12. Definition and means of maintaining the ventilation system confinement portion of the PFP safety envelope

    SciTech Connect (OSTI)

    Dick, J.D.; Grover, G.A.; O`Brien, P.M., Fluor Daniel Hanford

    1997-03-05

    The Plutonium Finishing Plant Heating Ventilation and Cooling system provides for the confinement of radioactive releases to the environment and provides for the confinement of radioactive contamination within designated zones inside the facility. This document identifies the components and procedures necessary to ensure the HVAC system provides these functions. Appendices E through J provide a snapshot of non-safety class HVAC equipment and need not be updated when the remainder of the document and Appendices A through D are updated.

  13. Safety and performance enhancement circuit for primary explosive detonators

    DOE Patents [OSTI]

    Davis, Ronald W. (Tracy, CA)

    2006-04-04

    A safety and performance enhancement arrangement for primary explosive detonators. This arrangement involves a circuit containing an energy storage capacitor and preset self-trigger to protect the primary explosive detonator from electrostatic discharge (ESD). The circuit does not discharge into the detonator until a sufficient level of charge is acquired on the capacitor. The circuit parameters are designed so that normal ESD environments cannot charge the protection circuit to a level to achieve discharge. When functioned, the performance of the detonator is also improved because of the close coupling of the stored energy.

  14. Road Safety in the Context of Urban Development in Sweden and California

    E-Print Network [OSTI]

    McAndrews, Carolyn

    2010-01-01

    The main safety message in the design criteria is consistentdesign criteria. The illustration from the document that captures the key safety

  15. Solid waste burial grounds interim safety analysis

    SciTech Connect (OSTI)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  16. Reactor operation safety information document

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  17. Integrated deterministic and probabilistic safety analysis for safety assessment of nuclear power plants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Di Maio, Francesco; Zio, Enrico; Smith, Curtis; Rychkov, Valentin

    2015-07-06

    The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these “safety-related” SSCs andmore »activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA).« less

  18. Using multicriteria decision analysis to assess the sustainable safety performance

    E-Print Network [OSTI]

    Libre de Bruxelles, Université

    the sustainable safety performance of road projects at the design stage Renaud Sarrazin1 2 , Yves De Smet1 1 of sustainable road safety and we address the multicriteria problem by detailing the set of considered criteria, road design, safety, sustainability. 1. Introduction For many years, considering sustainable

  19. OCCUPATIONAL HEALTH AND SAFETY

    E-Print Network [OSTI]

    OCCUPATIONAL HEALTH AND SAFETY MANAGEMENT SYSTEM Department of Occupational Health and Safety Revised December 2009 #12;Occupational Health and Safety (OHS) Management System 1. Introduction.............................................................................................................. 3 2.2 Management of Health and Safety

  20. Health and Safety Plan for NSTX Upgrade Project Tasks

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Health and Safety Plan for NSTX Upgrade Project Tasks in the NSTX Test Cell PRINCETON PLASMA....~_____...L....,L....q..l:::::.......:.J Larry Dudek, NSTX Center Stack Manager Reviewed by: I( Jer evine, Environment, Safety, Health and S This document describes the structure and implementation of the Health and Safety Plan for the NSTX Upgrade

  1. Health and Safety Plan for NSTX Upgrade Project Tasks

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Draft 0 6/17/11 1 Health and Safety Plan for NSTX Upgrade Project Tasks in the NSTX Test Cell: _____________________________________________________________ Jerry Levine, Environment, Safety, Health and Security Head Reviewed by describes the structure and implementation of the Health and Safety Plan for the NSTX Upgrade Project work

  2. Safety valve

    DOE Patents [OSTI]

    Bergman, Ulf C. (Malmoe, SE)

    1984-01-01

    The safety valve contains a resilient gland to be held between a valve seat and a valve member and is secured to the valve member by a sleeve surrounding the end of the valve member adjacent to the valve seat. The sleeve is movable relative to the valve member through a limited axial distance and a gap exists between said valve member and said sleeve.

  3. NIMSAQ: A novel system for autonomous sensing of aquatic environments

    E-Print Network [OSTI]

    Stealey M.; Singh A.; Batalin M.; Jordan B.; Kaiser W.

    2008-01-01

    designed for lake environment monitoring,” Ad- vancedhigh-resolution monitoring in the real environment. Thesemonitoring applications require sensing an environment that

  4. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    DESIGN, TESTING, AND MAINTENANCE CRITERIA FOR ENGINEERED-SAFETY-design and operating criteria and to show the adequacy of the site characteristics from a safety

  5. Incorporating safety risk in early system architecture trade studies

    E-Print Network [OSTI]

    Dulac, Nicholas

    Ideally, safety should be a part of the early decision making used in conceptual system design. However, effectively evaluating safety risk3 early enough to inform the early trade studies is not possible with current ...

  6. Health and Safety Policy Statement The Governing Body regards Health and Safety matters to be a priority and an

    E-Print Network [OSTI]

    Health and Safety Policy Statement The Governing Body regards Health and Safety matters. The Governing Body considers Health and Safety to be a management responsibility equal to that of any other environment that is, so far as is reasonably practicable, safe and without risks to health, adequate

  7. Safety Share from National Safety Council

    Broader source: Energy.gov [DOE]

    Slide Presentation by Joe Yanek, Fluor Government Group. National Safety Council Safety Share. The Campbell Institute is the “Environmental, Health and Safety (EHS) Center of Excellence” at the National Safety Council and provides a Forum for Leaders in EHS to exchange ideas and collaborate across industry sectors and organizational types.

  8. NEW - DOE O 420.1 Chg 1, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, cancels DOE O 420.1C, dated 12-4-12.

  9. Delivering safety

    SciTech Connect (OSTI)

    Baldwin, N.D.; Spooner, K.G.; Walkden, P.

    2007-07-01

    In the United Kingdom there have been significant recent changes to the management of civil nuclear liabilities. With the formation in April 2005 of the Nuclear Decommissioning Authority (NDA), ownership of the civil nuclear licensed sites in the UK, including the Magnox Reactor Stations, passed to this new organisation. The NDAs mission is to seek acceleration of the nuclear clean up programme and deliver increased value for money and, consequently, are driving their contractors to seek more innovative ways of performing work. British Nuclear Group manages the UK Magnox stations under contract to the NDA. This paper summarises the approach being taken within its Reactor Sites business to work with suppliers to enhance working arrangements at sites, improve the delivery of decommissioning programmes and deliver improvements in safety and environmental performance. The UK Magnox stations are 1. generation gas-graphite reactors, constructed in the 1950's and 1960's. Two stations are currently still operating, three are shut-down undergoing defueling and the other five are being decommissioned. Despite the distractions of industry restructuring, an uncompromising policy of demanding improved performance in conjunction with improved safety and environmental standards has been adopted. Over the past 5 years, this policy has resulted in step-changes in performance at Reactor Sites, with increased electrical output and accelerated defueling and decommissioning. The improvements in performance have been mirrored by improvements in safety (DACR of 0 at 5 sites); environmental standards (reductions in energy and water consumption, increased waste recycling) and the overall health of the workforce (20% reduction in sickness absence). These achievements have, in turn, been recognised by external bodies, resulting in several awards, including: the world's first ISRS and IERS level 10 awards (Sizewell, 2006), the NUMEX plant maintenance award (Bradwell, 2006), numerous RoSPA awards at site and sector level and nomination, at Company level, for the RoSPA George Earle trophy for outstanding performance in Health and Safety (Reactor Sites, 2006). After 'setting the scene' and describing the challenges that the company has had to respond to, the paper explains how these improvements have been delivered. Specifically it explains the process that has been followed and the parts played by sites and suppliers to deliver improved performance. With the experience of already having transitioned several Magnox stations from operations to defueling and then to decommissioning, the paper describes the valuable experience that has been gained in achieving an optimum change process and maintaining momentum. (authors)

  10. Safety Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845*RV6STATDecember29/2011 Page 1 of 6Site Safety

  11. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel Ruggirello RachelRadiation DrySafety Home

  12. Job Safety

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guidephysics_today_article.pdf MoreEnergy JulyTemansonupdatedJob Safety

  13. Y-12 Sustainable Design Principles for Building Design and Construction

    SciTech Connect (OSTI)

    Jackson, J. G.

    2008-11-01

    B&W Y-12 is committed to modernizing the Y-12 complex to meet future needs with a sustainable and responsive infrastructure and to integrating sustainability principles and practices into Y-12 work (Y72-001, B&W Y-12 Environmental, Safety and Health Policy). This commitment to sustainability and specifically sustainable design of buildings is also incorporated into Presidential Executive Orders (EO), DOE Orders (DOE O), and goals. Sustainable building design is an approach to design, construct, and operate facilities in an efficient and environmentally sound manner that will produce a healthful, resource-efficient and productive working environment that is inherently protective of the environment. The DOE has established the following 5 Guiding Principles for High Performance Sustainable Building (HPSB), and has issued directives that require Y-12 to incorporate the principles and a number of supporting specific practices and techniques into building design, construction and renovation projects: (1) Employ Integrated Design Principles; (2) Optimize Energy Performance; (3) Protect and Conserve Water; (4) Enhance Indoor Environmental Quality; and (5) Reduce Environmental Impact of Materials. The purpose of this document is to present the required sustainable building principles, practices and techniques, summarize the key drivers for incorporating them into Y-12 projects, and present additional recommendations and resources that can be used to support sustainable buildings to enhance the environmental and economic performance of the Y-12 Complex.

  14. Perspectives on reactor safety

    SciTech Connect (OSTI)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  15. Food Safety Policy General Policy Statement

    E-Print Network [OSTI]

    Food Safety Policy General Policy Statement St. Anne's College has a commitment to food safety. The College takes all reasonable precaution and exercises all due diligence to ensure that food which and maintain these standards, the College: Designates managers who have a special responsibility for food

  16. Passivity-Based Control Design for Cyber-Physical Xenofon Koutsoukos, Nicholas Kottenstette, Joe Hall, Panos Antsaklis, Janos Sztipanovits

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    networks. This work is motivated by the rapidly increasing use of network control system archictures is that a passive system cannot apply an infinite amount of energy to its environment. The inherent safety uncertainties. Passive systems have been exploited for the design of diverse systems such as smart exercise

  17. Passivity-Based Control Design for Cyber-Physical Xenofon Koutsoukos, Nicholas Kottenstette, Joe Hall, Panos Antsaklis, Janos Sztipanovits

    E-Print Network [OSTI]

    Antsaklis, Panos

    . This work is motivated by the rapidly increasing use of net- work control system architectures is that a passive system cannot apply an infinite amount of energy to its environment. The inherent safety uncertainties. Passive systems have been exploited for the design of diverse systems such as smart exercise

  18. ENVIRONMENTAL, HEALTH AND SAFETY

    E-Print Network [OSTI]

    California at Davis, University of

    ENVIRONMENTAL, HEALTH AND SAFETY PROGRAMS SPRING 2012 Including: Free Information Session New Program in Health and Safety CONTINUING AND PROFESSIONAL EDUCATION #12;2 Our Health and Safety Programs Workplace Health and Safety Certificate Program For every dollar invested in workplace safety, organizations

  19. On the quantification of safety margins

    E-Print Network [OSTI]

    Pagani, Lorenzo P

    2004-01-01

    The nuclear industry has relied on the concept of Defense in Depth (DID) and traditional safety margins to deal with the uncertainties associated with the design and operation of nuclear facilities. These concepts were ...

  20. Nuclear Safety | Department of Energy

    Office of Environmental Management (EM)

    Nuclear Safety Nuclear Safety The Office of Nuclear Safety establishes and maintains nuclear safety policy, requirements, and guidance including policy and requirements relating to...

  1. Designing a Complex Fragmentation Block for Simulating the Galactic Environment by Using a Single Accelerator Beam in PHITS (Practicle and Heavy Ion Transport Code System) 

    E-Print Network [OSTI]

    Chen, Gary

    2011-10-21

    Radiation risks to humans in space will be better understood if ground-based mixed field irradiations are developed and used to measure the overall effectiveness of proposed space radiation shielding. The space environment is composed of wide range...

  2. Facility Safety (9-23-10)--Withdrawn

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-09-23

    Withdrawn, 5-19-2014--This approval includes revision of the three implementing Guides: DOE G 420.1-1, Nonreactor Nuclear Safety Design Criteria and Explosive Safety Criteria Guide for Use with DOE O 420.1, Facility Safety; DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and NonNuclear Facilities; and DOE G 420.1-3, Implementation Guide for DOE Fire Protection and Emergency Services Programs for Use with DOE O 420.1B, Facility Safety

  3. The impact of passive safety systems on desirability of advanced light water reactors

    E-Print Network [OSTI]

    Eul, Ryan C

    2006-01-01

    This work investigates whether the advanced light water reactor designs with passive safety systems are more desirable than advanced reactor designs with active safety systems from the point of view of uncertainty in the ...

  4. Independent Oversight Assessment of the Nuclear Safety Culture...

    Office of Environmental Management (EM)

    the safety basis documents containing no mitigated accident scenarios. There are no criteriarequirements for addressing beyond design basis events. Accident binning is...

  5. Ultrasonic cleaner cuts costs, enhances safety | Y-12 National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrasonic cleaner cuts ... Ultrasonic cleaner cuts costs, enhances safety Posted: August 27, 2013 - 1:42pm System engineers, Facility Design engineers, Production personnel and...

  6. Safety Planning for the H-Prize Competition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are essential to establish public confidence and for reducing barriers to widespread acceptance of hydrogen technologies. Safety Planning * As part of the design submission...

  7. AWEA Wind Project Operations and Maintenance and Safety Seminar

    Office of Energy Efficiency and Renewable Energy (EERE)

    The AWEA Wind Project O&M and Safety Seminar is designed for owners, operators, turbine manufactures, material suppliers, wind technicians, managers, supervisors, engineers, and occupational...

  8. SHIPBOARD LABORATORY SAFETY PROGRAM

    E-Print Network [OSTI]

    SHIPBOARD LABORATORY SAFETY PROGRAM INTEGRATED OCEAN DRILLING PROGRAM U.S. IMPLEMENTING ORGANIZATION AUGUST 2013 #12;IODP Shipboard Laboratory Safety: Introduction 2 CONTENTS Introduction ................................................................................................................................6 TAMU EHSD: Laboratory Safety Manual

  9. Status of Safety and Environmental Activities in the US Fusion Program

    SciTech Connect (OSTI)

    David A. Petti; Susana Reyes; Lee C. Cadwallader; Jeffery F. Latkowski

    2004-09-01

    This paper presents an overview of recent safety efforts in both magnetic and inertial fusion energy. Safety has been a part of fusion design and operations since the inception of fusion research. Safety research and safety design support have been provided for a variety of experiments in both the magnetic and inertial fusion programs. The main safety issues are reviewed, some recent safety highlights are discussed and the programmatic impacts that safety research has had are presented. Future directions in the safety and environmental area are proposed.

  10. The Integration of On-Line Monitoring and Reconfiguration Functions using EDAA - European design and Automation Association1149.4 Into a Safety Critical Automotive Electronic Control Unit

    E-Print Network [OSTI]

    Jeffrey, C; Prosser, S; Lickess, M; Richardson, A; Riches, S

    2011-01-01

    This paper presents an innovative application of EDAA - European design and Automation Association 1149.4 and the Integrated Diagnostic Reconfiguration (IDR) as tools for the implementation of an embedded test solution for an Automotive Electronic Control Unit implemented as a fully integrated mixed signal system. The paper described how the test architecture can be used for fault avoidance with results from a hardware prototype presented. The paper concludes that fault avoidance can be integrated into mixed signal electronic systems to handle key failure modes.

  11. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    SciTech Connect (OSTI)

    E.N. Lindner

    2004-12-03

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly evaluated and identified. This document supersedes the seismic classifications, assignments, and computations in ''Seismic Analysis for Preclosure Safety'' (BSC 2004a).

  12. Floating LNG plant will stress reliability and safety

    SciTech Connect (OSTI)

    Kinney, C.D.; Schulz, H.R.; Spring, W.

    1997-07-01

    Mobil has developed a unique floating LNG plant design after extensive studies that set safety as the highest priority. The result is a production, storage and offloading platform designed to produce 6 million tons per year of LNG and up to 55,000 bpd of condensate from 1 Bcfd of feed gas. All production and off-loading equipment is supported by a square donut-shaped concrete hull, which is spread-moored. The hull contains storage tanks for 250,000 m{sup 3} of LNG, 6540,000 bbl of condensate and ballast water. Both LNG and condensate can be directly offloaded to shuttle tankers. Since the plant may be moved to produce from several different gas fields during its life, the plant and barge were designed to be generic. It can be used at any location in the Pacific Rim, with up to 15% CO{sub 2}, 100 ppm H{sub 2}S, 55 bbl/MMcf condensate and 650 ft water depth. It can be modified to handle other water depths, depending upon the environment. In addition, it is much more economical than an onshore grassroots LNG plant, with potential capital savings of 25% or more. The paper describes the machinery, meteorology and oceanography, and safety engineering.

  13. Commercial Vehicle Safety Alliance Commercial Vehicle Safety...

    Office of Environmental Management (EM)

    Program Update: Ensuring Safe Transportation of Radioactive Material Carlisle Smith Director, Hazardous Materials Programs Commercial Vehicle Safety Alliance Email:...

  14. Hydrogen Safety Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or otherwise restricted information. Project ID: scs07weiner PNNL-SA-65397 2 IEA HIA Task 19 Working Group Hydrogen Safety Training Props Hydrogen Safety Panel Incident...

  15. August 2012 Safety Forecast

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    During the month of August, the focus safety areas be ramp safety and seat belt awareness. Heat continues to be a factor during the month of August. Continue...

  16. FIRE SAFETY REPORT ENVIRONMENTAL HEALTH & SAFETY SERVICES

    E-Print Network [OSTI]

    Hong, Don

    FIRE SAFETY REPORT 2014 ENVIRONMENTAL HEALTH & SAFETY SERVICES #12;1 | M T S U F I R E S A F E T Y R E P O R T FIRE SAFETY REPORT TABLE OF CONTENTS INTRODUCTION 2 RESPONSIBILITIES AND DUTIES OF THE MTSU FIRE MARSHAL 2 GENERAL 3 SMOKING POLICY 3 CLASS A COMBUSTIBLES 4 CLASS B COMBUSTIBLES 4 FIRE

  17. Sealed source and device design safety testing: Technical report on the findings of task 4 -- Investigation of failed Nitinol brachytherapy wire. Volume 2

    SciTech Connect (OSTI)

    Benac, D.J.; Burghard, H.C. [Southwest Research Inst., San Antonio, TX (United States)

    1996-03-01

    This report covers an investigation of the nature and cause of failure in Nitinol brachytherapy sourcewires. The investigation was initiated after two clinical incidents in which sourcewires failed during or immediately after a treatment. The investigation determined that the two clinical Nitinol sourcewires failed in a brittle manner, which is atypical for Nitinol. There were no material anomalies or subcritical flaws to explain the brittle failures. The bend tests also demonstrated that neither moist environment, radiation, nor low-temperature structural transformation was a likely root cause of the failures. However, degradation of the PTFE was consistently evident, and those sourcewires shipped or stored with PTFE sleeves consistently failed in laboratory bend tests. On the basis of the results of this study, it was concluded that the root cause of the in-service failures of the sourcewires was environmentally induced embrittlement due to the breakdown of the PTFE protective sleeves in the presence of the high-radiation field and subsequent reaction or interaction of the breakdown products with the Nitinol alloy.

  18. Atmospheric Environment ] (

    E-Print Network [OSTI]

    Raman, Sethu

    that the influence of the urban region on wind patterns and atmospheric stability could be studied. HeightAtmospheric Environment ] (

  19. Use of DRACS to Enhance HTGRs Passive Safety and Economy

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Ling Zou

    2011-06-01

    This paper discusses the use of DRACS to Enhance HTGRs Passive Safety and Economy. One of the important requirements for Gen. IV High Temperature Gas Cooled Reactors (HTGR) is passive safety. Currently all the HTGR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. [1] The decay heat first is transferred to core barrel by conduction and radiation, and then to reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. Similar concepts have been widely used in sodium cooled fast reactor (SFR) designs, advanced light water reactors like AP1000. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area. RVACS tends to be less expensive. However, it limits the largest achievable power level for modular HTGRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface). When the relative decay heat removal capability is reduced, the peak fuel temperature increases, even close to the design limit. Annual designs with internal reflector can mitigate this effect therefore further increase the power. Another way to increase power is to increase power density. However, it is also limited by the decay heat removal capability. Besides safety, HTGRs also need to be economical in order to compete with other reactor designs. The limit of decay heat removal capability set by using RVACS has affected the economy of HTGRs. Forsberg [2] pointed out other disadvantages of using RVACS such as conflicting functional requirements for the reactor vessel and scaling distortion for integral effect test of the system performance. A potential alternative solution is to use a volume based passive decay removal system, call Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS has been widely used in SFR designs and in liquid salt cooled high temperature reactors. The containment cooling system in BWR is another example of volume based decay removal systems. DRACS composes of natural circulation loops with two sets of heat exchangers, one in reactor side and another is in environment side. DRACS has the benefits of increasing the power as needed (scalability) and modularity. This paper introduces the concept of using DRACS to enhance HTGRs passive safety and economy.

  20. Measuring and mapping the relationships between urban environment and urban health : how New York City's Active Design policies can be targeted to address the obesity epidemic

    E-Print Network [OSTI]

    Drummond, Jocelyn Pak

    2013-01-01

    The fields of urban planning and public health both emerged in the 19th century and were united in an effort to address poor health conditions that were linked to the urban environment of cities. By the end of the 20th ...

  1. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  2. Topsides equipment, operating flexibility key floating LNG design

    SciTech Connect (OSTI)

    Yost, K.; Lopez, R.; Mok, J.

    1998-03-09

    Use of a large-scale floating liquefied natural gas (LNG) plant is an economical alternative to an onshore plant for producing from an offshore field. Mobil Technology Co., Dallas, has advanced a design for such a plant that is technically feasible, economical, safe, and reliable. Presented were descriptions of the general design basis, hull modeling and testing, topsides and storage layouts, and LNG offloading. But such a design also presents challenges for designing topsides equipment in an offshore environment and for including flexibility and safety. These are covered in this second article. Mobil`s floating LNG plant design calls for a square concrete barge with a moon-pool in the center. It is designed to produce 6 million tons/year of LNG with up to 55,000 b/d of condensate from 1 bcfd of raw feed gas.

  3. Fast reactor safety: proceedings of the international topical meeting. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1985-07-01

    The emphasis of this meeting was on the safety-related aspects of fast reactor design, analysis, licensing, construction, and operation. Relative to past meetings, there was less emphasis on the scientific and technological basis for accident assessment. Because of its broad scope, the meeting attracted 217 attendees from a wide cross section of the design, safety analysis, and safety technology communities. Eight countries and two international organizations were represented. A total of 126 papers were presented, with contributions from the United States, France, Japan, the United Kingdom, Germany, and Italy. Sessions covered in Volume 1 include: impact of safety and licensing considerations on fast reactor design; safety aspects of innovative designs; intra-subassembly behavior; operational safety; design accommodation of seismic and other external events; natural circulation; safety design concepts; safety implications derived from operational plant data; decay heat removal; and assessment of HCDA consequences.

  4. HANFORD SAFETY ANALYSIS & RISK ASSESSMENT HANDBOOK (SARAH)

    SciTech Connect (OSTI)

    EVANS, C B

    2004-12-21

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S&M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard.

  5. TWRS safety program plan

    SciTech Connect (OSTI)

    Calderon, L.M., Westinghouse Hanford

    1996-08-01

    Management of Nuclear Safety, Industrial Safety, Industrial Hygiene, and Fire Protection programs, functions, and field support resources for Tank Waste Remediation Systems (TWRS) has, until recently, been centralized in TWRS Safety, under the Emergency, Safety, and Quality organization. Industrial hygiene technician services were also provided to support operational needs related to safety basis compliance. Due to WHC decentralization of safety and reengineering efforts in West Tank Farms, staffing and safety responsibilities have been transferred to the facilities. Under the new structure, safety personnel for TWRS are assigned directly to East Tank Farms, West Tank Farms, and a core Safety Group in TWRS Engineering. The Characterization Project Operations (CPO) safety organization will remain in tact as it currently exists. Personnel assigned to East Tank Farms, West Tank Farms, and CPO will perform facility-specific or project-specific duties and provide field implementation of programs. Those assigned to the core group will focus on activities having a TWRS-wide or programmatic focus. Hanford-wide activities will be the responsibility of the Safety Center of Expertise. In order to ensure an effective and consistent safety program for TWRS under the new organization program functions, goals, organizational structure, roles, responsibilities, and path forward must be clearly established. The purpose of the TWRS Safety Program Plan is to define the overall safety program, responsibilities, relationships, and communication linkages for safety personnel under the new structure. In addition, issues associated with reorganization transition are addressed, including training, project ownership, records management, and dissemination of equipment. For the purpose of this document ``TWRS Safety`` refers to all safety professionals and technicians (Industrial Safety, Industrial Hygiene, Fire Protection, and Nuclear Safety) within the TWRS organization, regardless of their location in the organization.

  6. Improving Design with Agents, Improving Agents by Design

    E-Print Network [OSTI]

    Brown, David C.

    DCB 1 WPI Improving Design with Agents, or, Improving Agents by Design David C. Brown AI in Design ASSUMPTION Ă? Assume that the design environment is built using agents. i.e., situated, autonomous, flexible Ă?'s future design and synthesis environment will be built as a real multi-agent system. In what follows, we

  7. Safety analysis report for the Waste Storage Facility. Revision 2

    SciTech Connect (OSTI)

    Bengston, S.J.

    1994-05-01

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  8. Office of Heath, Safety and Security Now Two New Offices

    Office of Energy Efficiency and Renewable Energy (EERE)

    To serve you better, DOE has structured the former HSS into to new organizations: the Office Independent Enterprise Assessment (IEA); and Office of Environment, Health, Safety and Security (EHSS).

  9. Ensuring Safety in Human Robot Collaboration in Assembly

    E-Print Network [OSTI]

    Gupta, Satyandra K.

    into anthropic environments High inertia High power actuation Electrical threats Human errors · TraditionalEnsuring Safety in Human Robot Collaboration in Assembly Applications Satyandra K. Gupta, Krishnanand Kaipa, Carlos Morato, and Boxuan Zhao #12;Human Robot Collaboration · Robots welding, bolting

  10. Street typology and bicyclist safety : a systems approach

    E-Print Network [OSTI]

    Minikel, Eric Vallabh

    2010-01-01

    Cycling is an attractive transportation mode but has not attained a large mode share in the United States, in part because it is correctly perceived as dangerous. Much literature on cyclist safety and the built environment ...

  11. Automatic safety rod for reactors

    DOE Patents [OSTI]

    Germer, John H. (San Jose, CA)

    1988-01-01

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  12. Environmental Health and Safety -Safety Manual Table of Contents

    E-Print Network [OSTI]

    Li, X. Rong

    1 Environmental Health and Safety - Safety Manual Table of Contents I. Assignment of Responsibility Management Program..................................81 XIX. Water Vessel Safety Program

  13. Environmental Health and Safety Department

    E-Print Network [OSTI]

    . Fire Safety, Radiation Safety and Hazardous Materials Facility are at other locations on campus://www.ehs.gatech.edu/EHS_Policy_Statement.pdf #12;EHS The main Georgia Tech Environmental Health and Safety Office is located at 490 Tenth Street: Radiation Safety Fire SafetyHazardous Materials #12;SAFETY RESPONSIBILITY Safety is a shared responsibility

  14. Seismic Safety Study

    SciTech Connect (OSTI)

    Tokarz, F J; Coats, D W

    2006-05-16

    During the past three decades, the Laboratory has been proactive in providing a seismically safe working environment for its employees and the general public. Completed seismic upgrades during this period have exceeded $30M with over 24 buildings structurally upgraded. Nevertheless, seismic questions still frequently arise regarding the safety of existing buildings. To address these issues, a comprehensive study was undertaken to develop an improved understanding of the seismic integrity of the Laboratory's entire building inventory at the Livermore Main Site and Site 300. The completed study of February 2005 extended the results from the 1998 seismic safety study per Presidential Executive Order 12941, which required each federal agency to develop an inventory of its buildings and to estimate the cost of mitigating unacceptable seismic risks. Degenkolb Engineers, who performed the first study, was recontracted to perform structural evaluations, rank order the buildings based on their level of seismic deficiencies, and to develop conceptual rehabilitation schemes for the most seriously deficient buildings. Their evaluation is based on screening procedures and guidelines as established by the Interagency Committee on Seismic Safety in Construction (ICSSC). Currently, there is an inventory of 635 buildings in the Laboratory's Facility Information Management System's (FIMS's) database, out of which 58 buildings were identified by Degenkolb Engineers that require seismic rehabilitation. The remaining 577 buildings were judged to be adequate from a seismic safety viewpoint. The basis for these evaluations followed the seismic safety performance objectives of DOE standard (DOE STD 1020) Performance Category 1 (PC1). The 58 buildings were ranked according to three risk-based priority classifications (A, B, and C) as shown in Figure 1-1 (all 58 buildings have structural deficiencies). Table 1-1 provides a brief description of their expected performance and damage state following a major earthquake, rating the seismic vulnerability (1-10) where the number 10 represents the highest and worst. Buildings in classifications A and B were judged to require the Laboratory's highest attention towards rehabilitation, classification C buildings could defer rehabilitation until a major remodel is undertaken. Strengthening schemes were developed by Degenkolb Engineers for the most seriously deficient A and B classifications (15 total), which the Laboratory's Plant Engineering Department used as its basis for rehabilitation construction cost estimates. A detailed evaluation of Building 2580, a strengthening scheme, and a construction cost estimate are pending. Specific details of the total estimated rehabilitation costs, a proposed 10-year seismic rehabilitation plan, exemption categories by building, DOE performance guidelines, cost comparisons for rehabilitation, and LLNL reports by Degenkolb Engineers are provided in Appendix A. Based on the results of Degenkolb Engineers evaluations, along with the prevailing practice for the disposition of seismically deficient buildings and risk-based evaluations, it is concluded that there is no need to evacuate occupants from these 58 buildings prior to their rehabilitation.

  15. Chemical Safety Why are you here

    E-Print Network [OSTI]

    Krovi, Venkat

    Chemical Safety in the Laboratory #12;Why are you here · Work with Chemicals · Generate Hazardous Wastes · May have to respond to Chemical Spills #12;Goals Reduce injuries and illnesses related to chemical use Protect the environment Safely manage chemical wastes Comply with local, state and federal

  16. Employee Safety Handbook Table of Contents

    E-Print Network [OSTI]

    Karsai, Istvan

    . The skills and talents you bring to ETSU are vital to our mission of teaching, research and service and healthy campus environment. This Employee Safety Handbook is intended for ETSU employees, full time and part time, regular and temporary, and all other ETSU employment categories, i.e., student workers, etc

  17. Secretarial Policy Statement on Nanoscale Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-09-15

    The safety of its employees, the public, and the environment is the Department's number one priority. This policy statement is issued to establish a framework for working safely with nanomaterials. Does not cancel/supersede other directives. Certified 10-2-14

  18. Georgia Institute of Laboratory Safety

    E-Print Network [OSTI]

    ENVIRONMENTAL HEALTH AND SAFETY POLICY.......................................10 Purpose Institute Council for Environmental Health and Safety (IC.........................................................................................12 Chemical and Environmental Safety Committee (CESC

  19. Criticality Safety | Department of Energy

    Office of Environmental Management (EM)

    Nuclear Safety Management American Nuclear Society, Nuclear Criticality Safety Division ANSIANS-8 Standards U.S. Department of Energy Nuclear Criticality Safety Program Orders,...

  20. Occupational Health and Safety Manual

    E-Print Network [OSTI]

    Occupational Health and Safety Manual #12;1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 York University Occupational Health and Safety Policy and Programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Occupational Health and Safety Legislation