National Library of Energy BETA

Sample records for design options cost

  1. Design Evolution Study - Aging Options

    SciTech Connect (OSTI)

    P. McDaniel

    2002-04-05

    The purpose of this study is to identify options and issues for aging commercial spent nuclear fuel received for disposal at the Yucca Mountain Mined Geologic Repository. Some early shipments of commercial spent nuclear fuel to the repository may be received with high-heat-output (younger) fuel assemblies that will need to be managed to meet thermal goals for emplacement. The capability to age as much as 40,000 metric tons of heavy metal of commercial spent nuclear he1 would provide more flexibility in the design to manage this younger fuel and to decouple waste receipt and waste emplacement. The following potential aging location options are evaluated: (1) Surface aging at four locations near the North Portal; (2) Subsurface aging in the permanent emplacement drifts; and (3) Subsurface aging in a new subsurface area. The following aging container options are evaluated: (1) Complete Waste Package; (2) Stainless Steel inner liner of the waste package; (3) Dual Purpose Canisters; (4) Multi-Purpose Canisters; and (5) New disposable canister for uncanistered commercial spent nuclear fuel. Each option is compared to a ''Base Case,'' which is the expected normal waste packaging process without aging. A Value Engineering approach is used to score each option against nine technical criteria and rank the options. Open issues with each of the options and suggested future actions are also presented. Costs for aging containers and aging locations are evaluated separately. Capital costs are developed for direct costs and distributable field costs. To the extent practical, unit costs are presented. Indirect costs, operating costs, and total system life cycle costs will be evaluated outside of this study. Three recommendations for aging commercial spent nuclear fuel--subsurface, surface, and combined surface and subsurface are presented for further review in the overall design re-evaluation effort. Options that were evaluated but not recommended are: subsurface aging in a new

  2. Least cost options for life extension

    SciTech Connect (OSTI)

    Davis, F.; Bradaric, M.

    1995-12-01

    Rehabilitation of existing electric generating capacity offers one of the most cost-effective ways of meeting near-term power needs in many Eastern and Central European countries. In particular, the uncertainty associated with other supply sources and severe capital constraints tends to favor investments which maximize the utilization of existing fossil-fired equipment. However, it is critical that least-cost planning principles, including the consideration of environmental impacts, be applied to the economic analysis of rehabilitation options. This paper draws on Bechtel`s experience in applying least-cost planning to plant rehabilitation studies in Bulgaria, Romania and Slovakia. The examples provided illustrate the importance of least-cost planning and the effect of the value placed on environmental emissions.

  3. Lattice Design for ERL Options at SLAC

    SciTech Connect (OSTI)

    Nosochkov, Yuri; Cai, Yunhai; Huang, Xiaobiao; Wang, Min-Huey; /SLAC

    2011-06-02

    SLAC is investigating long-range options for building a high performance light source machine while reusing the existing linac and PEP-II tunnels. One previously studied option is the PEP-X low emittance storage ring. The alternative option is based on a superconducting Energy Recovery Linac (ERL) and the PEP-X design. The ERL advantages are the low beam emittance, short bunch length and small energy spread leading to better qualities of the X-ray beams. Two ERL configurations differed by the location of the linac have been studied. Details of the lattice design and the results of beam transport simulations with the coherent synchrotron radiation effects are presented.

  4. Cost comparison of materials options for hydroprocessing effluent equipment and piping

    SciTech Connect (OSTI)

    Shargay, C.A.; Lewis, K.R.

    1996-08-01

    This paper reviews and compares various materials options for hydroprocessing reactor effluent air coolers and piping. Cost data on piping, fittings and tube materials, and total installed costs for fabrication are included. The economic impact of special materials and design requirements are discussed along with details on welding and nondestructive testing specifications.

  5. Options to reduce the operating costs at fossil power stations

    SciTech Connect (OSTI)

    Mehl, L.; White, T.R.

    1998-12-31

    With the coming of deregulation in the electric power industry, existing power plants will have to evaluate options to reduce their operating costs in methods more commonly used in the industrial sector. Similar to organizations throughout the country, electrical generation companies are looking for ways to reduce their costs. The projected impact of figure deregulation on free enterprise production and trading have further emphasized this need. Historically, the ability to sell or dispatch electrical load based on economic advantages, has existed within local systems. Generating facilities with higher production costs must implement operating cost reductions or expect even lower capacity factors following deregulation. This paper examines various means to reducing operating costs and the methods used in their evaluation.

  6. Gas option: America's least-cost energy strategy

    SciTech Connect (OSTI)

    Lawrence, G.H.

    1980-05-17

    Public energy policy which acknowledges the gas option as having significant potential will increase supply incentives while decreasing demand restraints. The arguments developed by the Mellon Institute and others confirm the need to reject the Title II incremental pricing and the need to implement the Building Energy Performance Standards (BEPS). Positive evidence that proved reserves are higher than was thought has prompted the gas industry to fight incremental pricing as a barrier to a least-cost national energy strategy. BEPS, on the other hand, encourages more efficient use without eliminating industrial use. (DCK)

  7. Design options for a bunsen reactor.

    SciTech Connect (OSTI)

    Moore, Robert Charles

    2013-10-01

    This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project. Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.

  8. Total Estimated Contract Cost: Contract Option Period: Maximum...

    Office of Environmental Management (EM)

    LLC Contract Number: DE-AC30-11CC40015 Contract Type: Cost Plus Award Fee EM Contractor Fee December 2015 Site: Portsmouth Paducah Project Office Contract Name: Operation of DUF6

  9. Total Estimated Contract Cost: Contract Option Period: Maximum...

    Office of Environmental Management (EM)

    & Wilcox Conversion Services, LLC Contract Number: DE-AC30-11CC40015 Contract Type: Cost Plus Award Fee EM Contractor Fee September 2015 Site: Portsmouth Paducah Project Office...

  10. Total Estimated Contract Cost: Contract Option Period: Performance

    Office of Environmental Management (EM)

    Contractor: Bechtel National Inc. Contract Number: DE-AC27-01RV14136 Contract Type: Cost Plus Award Fee NA Maximum Fee 599,588,540 Fee Available 102,622,325 10,868,785,789...

  11. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    SciTech Connect (OSTI)

    Cochran, John R.; Hardin, Ernest

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has

  12. Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers

    SciTech Connect (OSTI)

    Lekov, Alex; Franco, Victor; Meyers, Steve; Thompson, Lisa; Letschert, Virginie

    2010-11-24

    The U.S. Department of Energy (DOE) recently completed a rulemaking process in which it amended the existing energy efficiency standards for residential water heaters. A key factor in DOE?s consideration of new standards is the economic impacts on consumers. Determining such impacts requires a comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This paper describes the method used to conduct the life-cycle cost (LCC) and payback period analysis for gas and electric storage water heaters. It presents the estimated change in LCC associated with more energy-efficient equipment, including heat pump electric water heaters and condensing gas water heaters, for a representative sample of U.S. homes. The study included a detailed accounting of installation costs for the considered design options, with a focus on approaches for accommodating the larger dimensions of more efficient water heaters. For heat pump water heaters, the study also considered airflow requirements, venting issues, and the impact of these products on the indoor environment. The results indicate that efficiency improvement relative to the baseline design reduces the LCC in the majority of homes for both gas and electric storage water heaters, and heat pump electric water heaters and condensing gas water heaters provide a lower LCC for homes with large rated volume water heaters.

  13. Interaction-Region Design Options for a Linac-Ring LHeC (Conference...

    Office of Scientific and Technical Information (OSTI)

    Interaction-Region Design Options for a Linac-Ring LHeC Citation Details In-Document Search Title: Interaction-Region Design Options for a Linac-Ring LHeC The interaction-region ...

  14. Lattice Design for ERL Options at SLAC (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    One previously studied option is the PEP-X low emittance storage ring. The alternative option is based on a superconducting Energy Recovery Linac (ERL) and the PEP-X design. The ...

  15. Cost-Shared Development of Innovative Small Modular Reactor Designs...

    Office of Environmental Management (EM)

    Cost-Shared Development of Innovative Small Modular Reactor Designs Cost-Shared Development of Innovative Small Modular Reactor Designs The Small Modular Reactor (SMR) Licensing ...

  16. Heat Exchanger Design Options and Tritium Transport Study for the VHTR System

    SciTech Connect (OSTI)

    Chang H. Oh; Eung S. Kim

    2008-09-01

    This report presents the results of a study conducted to consider heat exchanger options and tritium transport in a very high temperature reactor (VHTR) system for the Next Generation Nuclear Plant Project. The heat exchanger options include types, arrangements, channel patterns in printed circuit heat exchangers (PCHE), coolant flow direction, and pipe configuration in shell-and-tube designs. Study considerations include: three types of heat exchanger designs (PCHE, shell-and-tube, and helical coil); single- and two-stage unit arrangements; counter-current and cross flow configurations; and straight pipes and U-tube designs in shell-and-tube type heat exchangers. Thermal designs and simple stress analyses were performed to estimate the heat exchanger options, and the Finite Element Method was applied for more detailed calculations, especially for PCHE designs. Results of the options study show that the PCHE design has the smallest volume and heat transfer area, resulting in the least tritium permeation and greatest cost savings. It is theoretically the most reliable mechanically, leading to a longer lifetime. The two-stage heat exchanger arrangement appears to be safer and more cost effective. The recommended separation temperature between first and second stages in a serial configuration is 800oC, at which the high temperature unit is about one-half the size of the total heat exchanger core volume. Based on simplified stress analyses, the high temperature unit will need to be replaced two or three times during the plants lifetime. Stress analysis results recommend the off-set channel pattern configuration for the PCHE because stress reduction was estimated at up to 50% in this configuration, resulting in a longer lifetime. The tritium transport study resulted in the development of a tritium behavior analysis code using the MATLAB Simulink code. In parallel, the THYTAN code, previously performed by Ohashi and Sherman (2007) on the Peach Bottom data, was revived

  17. HVAC Equipment Design Options for Near-Zero-Energy Homes (NZEH) -A Stage 2 Scoping Assessment

    SciTech Connect (OSTI)

    Baxter, Van D

    2005-11-01

    Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Conventional unitary equipment and system designs have matured to a point where cost-effective, dramatic efficiency improvements that meet near-zero-energy housing (NZEH) goals require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. This report describes results of a scoping assessment of HVAC system options for NZEH homes. ORNL has completed a preliminary adaptation, for consideration by The U.S. Department of Energy, Energy Efficiency and Renewable Energy Office, Building Technologies (BT) Program, of Cooper's (2001) stage and gate planning process to the HVAC and Water Heating element of BT's multi-year plan, as illustrated in Figure 1. In order to adapt to R&D the Cooper process, which is focused on product development, and to keep the technology development process consistent with an appropriate role for the federal government, the number and content of the stages and gates needed to be modified. The potential federal role in technology development involves 6 stages and 7 gates, but depending on the nature and status of the concept, some or all of the responsibilities can flow to the private sector for product development beginning as early as Gate 3. In the proposed new technology development stage and gate sequence, the Stage 2 'Scoping Assessment

  18. Integrated Design and Manufacturing of Cost-Effective & Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    Integrated design and manufacture of scalable vehicular TEG zuo.pdf (2.86 MB) More Documents & Publications Integrated Design and Manufacturing of Cost-Effective & ...

  19. New design strategy reduces time and cost of material discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New design strategy New design strategy reduces time and cost of material discovery Iteratively guiding experiments toward finding materials with the desired target properties May ...

  20. Carbon mitigation potential and costs of forestry options in Brazil, China, India, Indonesia, Mexico, the Philippines and Tanzania

    SciTech Connect (OSTI)

    Sathaye, J.; Makundi, W.; Andrasko, K.; Boer, R.; Ravindranath, N.; Sudha, P.; Rao, S.; Lasco, R.; Pulhin, F.; Masera, O.; Ceron, A.; Ordonez, J.; Deying, X.; Zhang, X.; Zuomin, S.

    2001-01-01

    This paper summarizes studies of carbon (C) mitigation potential and costs of about 40 forestry options in seven developing countries. Each study uses the same methodological approach - Comprehensive Mitigation Assessment Process (COMAP) - to estimate the above parameters between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios. Coupled with data on a per ha basis on C sequestration or avoidance, and costs and benefits, it allows the estimation of monetary benefit per Mg C, and the total costs and carbon potential. The results show that about half (3.0 Pg C) the cumulative mitigation potential of 6.2 Petagram (Pg) C between 2000 and 2030 in the seven countries (about 200 x 106 Mg C yr-1) could be achieved at a negative cost and the remainder at costs ranging up to $100 Mg C-1. About 5 Pg C could be achieved, at a cost less than $20 per Mg C. Negative cost potential indicates that non-carbon revenue is sufficient to offset direct costs of these options. The achievable potential is likely to be smaller, however, due to market, institutional, and sociocultural barriers that can delay or prevent the implementation of the analyzed options.

  1. Wind Turbine Design Cost and Scaling Model

    SciTech Connect (OSTI)

    Fingersh, L.; Hand, M.; Laxson, A.

    2006-12-01

    This model intends to provide projections of the impact on cost from changes in economic indicators such as the Gross Domestic Product and Producer Price Index.

  2. Options Study Documenting the Fast Reactor Fuels Innovative Design Activity

    SciTech Connect (OSTI)

    Jon Carmack; Kemal Pasamehmetoglu

    2010-07-01

    This document provides presentation and general analysis of innovative design concepts submitted to the FCRD Advanced Fuels Campaign by nine national laboratory teams as part of the Innovative Transmutation Fuels Concepts Call for Proposals issued on October 15, 2009 (Appendix A). Twenty one whitepapers were received and evaluated by an independent technical review committee.

  3. Life cycle costs for the domestic reactor-based plutonium disposition option

    SciTech Connect (OSTI)

    Williams, K.A.

    1999-10-01

    Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission.

  4. Guidelines for Engineering, Design, and Inspection Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Engineering, design, and inspection (ED&I) activities begin with the preliminary design (Title I). Pre-Title I activities are not considered part of the ED&I activities. Architectural/Engineering (A/E) activities are part of the ED&I activities. A/E activities are services that are an integral part of the production and delivery of the design plans, specifications, and drawings. This chapter defines ED&I and A/E activities and discusses how to estimate and track them.

  5. Innovative Feed-In Tariff Designs that Limit Policy Costs

    SciTech Connect (OSTI)

    Kreycik, Claire; Couture, Toby D.; Cory, Karlynn S.

    2011-06-01

    Feed-in tariffs (FITs) are the most prevalent policy used globally to reduce development risks, cut financing costs, and grow the renewable energy industry. However, concerns over escalating costs in jurisdictions with FIT policies have led to increased attention on cost control. Using case studies and market-focused analysis, this report from the National Renewable Energy Laboratory (NREL) examines strengths and weaknesses of three cost-containment tools: (1) caps, (2) payment level adjustment mechanisms, and (3) auction-based designs. The report provides useful insights on containing costs for policymakers and regulators in the United States and other areas where FIT policies are in development.

  6. Estimating design costs for first-of-a-kind projects

    SciTech Connect (OSTI)

    Banerjee, Bakul; /Fermilab

    2006-03-01

    Modern scientific facilities are often outcomes of projects that are first-of-a-kind, that is, minimal historical data are available for project costs and schedules. However, at Fermilab, there was an opportunity to execute two similar projects consecutively. In this paper, a comparative study of the design costs for these two projects is presented using earned value methodology. This study provides some insights into how to estimate the cost of a replicated project.

  7. Innovative Feed-In Tariff Designs that Limit Policy Costs

    SciTech Connect (OSTI)

    Kreycik, C.; Couture, T. D.; Cory, K. S.

    2011-06-01

    Feed-in tariffs (FITs) are the most prevalent renewable energy policy used globally to date, and there are many benefits to the certainty offered in the marketplace to reduce development risks and associated financing costs and to grow the renewable energy industry. However, concerns over escalating costs in jurisdictions with FIT policies have led to increased attention on cost control in renewable energy policy design. In recent years, policy mechanisms for containing FIT costs have become more refined, allowing policymakers to exert greater control on policy outcomes and on the resulting costs to ratepayers. As policymakers and regulators in the United States begin to explore the use of FITs, careful consideration must be given to the ways in which policy design can be used to balance the policies' advantages while bounding its costs. This report explores mechanisms that policymakers have implemented to limit FIT policy costs. If designed clearly and transparently, such mechanisms can align policymaker and market expectations for project deployment. Three different policy tools are evaluated: (1) caps, (2) payment level adjustment mechanisms, and (3) auction-based designs. The report employs case studies to explore the strengths and weaknesses of these three cost containment tools. These tools are then evaluated with a set of criteria including predictability for policymakers and the marketplace and the potential for unintended consequences.

  8. Optimal shielding design for minimum materials cost or mass

    SciTech Connect (OSTI)

    Woolley, Robert D.

    2015-12-02

    The mathematical underpinnings of cost optimal radiation shielding designs based on an extension of optimal control theory are presented, a heuristic algorithm to iteratively solve the resulting optimal design equations is suggested, and computational results for a simple test case are discussed. A typical radiation shielding design problem can have infinitely many solutions, all satisfying the problem's specified set of radiation attenuation requirements. Each such design has its own total materials cost. For a design to be optimal, no admissible change in its deployment of shielding materials can result in a lower cost. This applies in particular to very small changes, which can be restated using the calculus of variations as the Euler-Lagrange equations. Furthermore, the associated Hamiltonian function and application of Pontryagin's theorem lead to conditions for a shield to be optimal.

  9. Optimal shielding design for minimum materials cost or mass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Woolley, Robert D.

    2015-12-02

    The mathematical underpinnings of cost optimal radiation shielding designs based on an extension of optimal control theory are presented, a heuristic algorithm to iteratively solve the resulting optimal design equations is suggested, and computational results for a simple test case are discussed. A typical radiation shielding design problem can have infinitely many solutions, all satisfying the problem's specified set of radiation attenuation requirements. Each such design has its own total materials cost. For a design to be optimal, no admissible change in its deployment of shielding materials can result in a lower cost. This applies in particular to very smallmore » changes, which can be restated using the calculus of variations as the Euler-Lagrange equations. Furthermore, the associated Hamiltonian function and application of Pontryagin's theorem lead to conditions for a shield to be optimal.« less

  10. Design criteria and mitigation options for thermal fatigue effects in ATW blankets.

    SciTech Connect (OSTI)

    Dunn, F. E.

    2000-12-07

    Thermal fatigue due to beam interruptions is an issue that must be addressed in the design of an ATW blanket. Two different approaches can be taken to address this issue. One approach is to analyze current ATW blanket designs in order to set interrupt frequency design limits for the accelerator. The other approach is to assume that accelerator reliability can not be guaranteed before design and construction of the blanket. In this approach the blanket must be designed so as to accommodate an accelerator with a beam interruption frequency significantly higher than current high power accelerators in order to provide a margin of error. Both approaches are considered in this paper. Both a sodium cooled blanket design and a lead-bismuth cooled blanket design are considered. Thermal hydraulic analysis of the blanket for beam interruption transients is carried out with the SASSYS-1 systems analysis code to obtain the time histories of the coolant temperatures in contact with structural components. These coolant temperatures are then used in a detailed structure temperature calculation to obtain structure surface and structure average temperatures. The difference between the average temperature and the surface temperature is used to obtain thermal strains. Low cycle fatigue curves from the American Society of Mechanical Engineers Boiler and Pressure Vessel Code are used to determine the number of cycles that the structural components can endure, based on these strains. Calculations are made for base case designs and for a number of mitigation options. The mitigation options include using two separate accelerators to provide the beam, reducing the thickness of the above core load pads in the subassemblies, increasing the coolant flow rate or reducing power in order to reduce the core temperature rise, and reducing the superheat in the once-through steam generator.

  11. Retrofit costs for SO sub 2 and NOx control options at 200 coal-fired plants

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    This 5-volume report gives the results of site-specific cost estimations for retrofitting six control technologies to coal-fired power plants. The six technologies were: lime/limestone flue gas desulfurization, lime spray drying, coal switching and cleaning, furnace and duct sorbent injection, low NOx combustion or natural gas reburning, and selective catalytic reduction. Volume 1 gives the methodology. The other four volumes each cover 5-7 specific states east of the Mississippi River. Maine, Vermont, Rhode Island, and Connecticut are not included.

  12. Preconceptual design studies and cost data of depleted uranium hexafluoride conversion plants

    SciTech Connect (OSTI)

    Jones, E

    1999-07-26

    One of the more important legacies left with the Department of Energy (DOE) after the privatization of the United States Enrichment Corporation is the large inventory of depleted uranium hexafluoride (DUF6). The DOE Office of Nuclear Energy, Science and Technology (NE) is responsible for the long-term management of some 700,000 metric tons of DUF6 stored at the sites of the two gaseous diffusion plants located at Paducah, Kentucky and Portsmouth, Ohio, and at the East Tennessee Technology Park in Oak Ridge, Tennessee. The DUF6 management program resides in NE's Office of Depleted Uranium Hexafluoride Management. The current DUF6 program has largely focused on the ongoing maintenance of the cylinders containing DUF6. However, the long-term management and eventual disposition of DUF6 is the subject of a Programmatic Environmental Impact Statement (PEIS) and Public Law 105-204. The first step for future use or disposition is to convert the material, which requires construction and long-term operation of one or more conversion plants. To help inform the DUF6 program's planning activities, it was necessary to perform design and cost studies of likely DUF6 conversion plants at the preconceptual level, beyond the PEIS considerations but not as detailed as required for conceptual designs of actual plants. This report contains the final results from such a preconceptual design study project. In this fast track, three month effort, Lawrence Livermore National Laboratory and Bechtel National Incorporated developed and evaluated seven different preconceptual design cases for a single plant. The preconceptual design, schedules, costs, and issues associated with specific DUF6 conversion approaches, operating periods, and ownership options were evaluated based on criteria established by DOE. The single-plant conversion options studied were similar to the dry-conversion process alternatives from the PEIS. For each of the seven cases considered, this report contains information on

  13. Energy and Cost Optimized Technology Options to Meet Energy Needs of Food Processors

    SciTech Connect (OSTI)

    Makhmalbaf, Atefe; Srivastava, Viraj; Hoffman, Michael G.; Wagner, Anne W.; Thornton, John

    2015-04-02

    ABSTRACT Combined cooling, heating and electric power (CCHP) distributed generation (DG) systems can provide electricity, heat, and cooling power to buildings and industrial processes directly onsite, while significantly increasing energy efficiency, security of energy supply, and grid independence. Fruit, vegetable, dairy and meat processing industries with simultaneous requirements for heat, steam, chilling and electricity, are well suited for the use of such systems to supply base-load electrical demand or as peak reducing generators with heat recovery in the forms of hot water, steam and/or chilled water. This paper documents results and analysis from a pilot project to evaluate opportunities for energy, emission, and cost for CCHP-DG and energy storage systems installed onsite at food processing facilities. It was found that a dairy processing plant purchasing 15,000 MWh of electricity will need to purchase 450 MWh with the integration of a 1.1 MW CCHP system. Here, the natural gas to be purchased increased from 190,000 MMBtu to 255,000 MMBtu given the fuel requirements of the CCHP system. CCHP systems lower emissions, however, in the Pacific Northwest the high percentage of hydro-power results in CO2 emissions from CCHP were higher than that attributed to the electric utility/regional energy mix. The value of this paper is in promoting and educating financial decision makers to seriously consider CCHP systems when building or upgrading facilities. The distributed generation aspect can reduce utility costs for industrial facilities and show non-wires solution benefits to delay or eliminate the need for upgrades to local electric transmission and distribution systems.

  14. Rethinking Standby & Fixed Cost Charges: Regulatory & Rate Design Pathways to Deeper Solar PV Cost Reductions

    Office of Energy Efficiency and Renewable Energy (EERE)

    While solar PV's impact on utilities has been frequently discussed the past year, little attention has been paid to the potentially impact posed by solar PV-specific rate designs (often informally referred to as solar "fees" or "taxes") upon non-hardware "soft" cost reductions. In fact, applying some rate designs to solar PV customers could potentially have a large impact on the economics of PV systems.

  15. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    SciTech Connect (OSTI)

    Puder, M. G.; Veil, J. A.

    2006-09-05

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the

  16. Research identifies designs for lowering subsea production cost

    SciTech Connect (OSTI)

    Rothberg, R.H.; Hall, J.E. ); Douglas, L.D. ); Manuel, W.S. ); Kirkland, K.G.

    1993-03-08

    To reduce costs and simplify installation operations for subsea hardware, Amoco Production Co. in 1986 began the development of a diverless subsea production system (DSPS). At present, Amoco has completed the testing phase for selected prototype components and has completed a deepwater system design that incorporates many of these ideas. This program has yielded several configurations suitable for full-field development; however, the emphasis of the research and development program has been to identify, design, and test components of key subsystems. This first of a three-part series describes the design considerations, equipment configuration, and subsea trees.

  17. Energy and Cost Optimized Technology Options to Meet Energy Needs of Food Processors

    SciTech Connect (OSTI)

    Makhmalbaf, Atefe; Srivastava, Viraj; Hoffman, Michael G.; Wagner, Anne W.; Thornton, John

    2015-05-01

    Full Paper Submission for: Combined cooling, heating and electric power (CCHP) distributed generation (DG) systems can provide electric power and, heating and cooling capability to commercial and industrial facilities directly onsite, while increasing energy efficiency, security of energy supply, grid independence and enhancing the environmental and economic situation for the site. Food processing industries often have simultaneous requirements for heat, steam, chilling and electricity making them well suited for the use of such systems to supply base-load or as peak reducing generators enabling reduction of overall energy use intensity. This paper documents analysis from a project evaluating opportunities enabled by CCHPDG for emission and cost reductions and energy storage systems installed onsite at food processing facilities. In addition, this distributed generation coupled with energy storage demonstrates a non-wires solution to delay or eliminate the need for upgrades to electric distribution systems. It was found that a dairy processing plant in the Pacific Northwest currently purchasing 15,000 MWh/yr of electricity and 190,000 MMBtu/yr of gas could be provided with a 1.1 MW CCHP system reducing the amount of electric power purchased to 450 MWh/yr while increasing the gas demand to 255,000 MMBtu/yr. The high percentage of hydro-power in this region resulted in CO2 emissions from CCHP to be higher than that attributed to the electric utility/regional energy mix. The value of this work is in documenting a real-world example demonstrating the value of CCHP to facility owners and financial decision makers to encourage them to more seriously consider CCHP systems when building or upgrading facilities.

  18. Design Option of Heat Exchanger for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Eung Soo Kim; Chang Oh

    2008-09-01

    The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTGRS) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale of a few hundred megawatts electric and hydrogen production. The power conversion system (PCS) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTGRS to provide higher efficiencies than can be achieved in the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. As part of the system integration of the VHTGRS and hydrogen production plant, the intermediate heat exchanger is used to transfer the process heat from VHTGRS to hydrogen plant. Therefore, the design and configuration of the intermediate heat exchanger are very important. This paper will include analysis of one stage versus two stage heat exchanger design configurations and thermal stress analyses of a printed circuit heat exchanger, helical coil heat exchanger, and shell/tube heat exchanger.

  19. Unbundling power products, modifying rate design, and fixed cost coverage

    SciTech Connect (OSTI)

    Procter, R.J.

    1996-03-01

    In this paper, the author provides an overview of efforts currently underway at the Bonneville Power Administration (BPA) to respond to these various challenges to how BPA has traditionally managed the marketing of power at the wholesale level in the Pacific Northwest and to areas outside this region along the West Cast in general. The paper begins with an overview of the role of the BPA in the region, and trends in costs and revenues. The paper provides a general outline of BPA`s efforts to separate its business into three separate product lines (power, energy services, and transmission) as well as providing an overview of how BPA is unbundling power products. In addition, the paper provides an overview of some of the major changes BPA has proposed in its rate design. This is followed by an overview of the approach to the issue of stranded cost. You will see that it is their desire to as much as possible avoid a legislative solution to this issue and rely on marketing and working with customers as a way of dealing with this very contentious issue. The paper wraps up with an assessment of the potential for power product unbundling to significantly reduce potential stranded costs. You will see that at the present time, unbundling power products offers BPA little in the way of substantial reductions in potential stranded costs. Whereas, margins on the delivery of energy and capacity offer the greatest potential for covering fixed costs.

  20. Alloy Design and Method for Processing Low-Cost Refractory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dispersoid-Reinforced Alloys for Harsh Environments - Energy Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Alloy Design and Method for Processing Low-Cost Refractory Dispersoid-Reinforced Alloys for Harsh Environments Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Alloys used in applications such as exhaust valves are increasingly subject to demanding operating environments, such as high temperatures and exposure

  1. Photovoltaic balance-of-system designs and costs at PVUSA

    SciTech Connect (OSTI)

    Reyes, A.B.; Jennings, C.

    1995-05-01

    This report is one in a series of 1994-1995 PVUSA reports that document PVUSA lessons learned at demonstration sites in California and Texas. During the last 7 years (1988 to 1994), 16 PV systems ranging from 20 kW to 500 kW have been installed. Six 20-kW emerging module technology (EMT) arrays and three turnkey (i.e., vendor designed and integrated) utility-scale systems were procured and installed at PVUSA`s main test site in Davis, California. PVUSA host utilities have installed a total of seven EMT arrays and utility-scale systems in their service areas. Additional systems at Davis and host utility sites are planned. One of PVUSA`s key objectives is to evaluate the performance, reliability, and cost of PV balance-of-system (BOS). In the procurement stage PVUSA encouraged innovative design to improve upon present practice by reducing maintenance, improving reliability, or lowering manufacturing or construction costs. The project team worked closely with suppliers during the design stage not only to ensure designs met functional and safety specifications, but to provide suggestions for improvement. This report, intended for the photovoltaic (PV) industry and for utility project managers and engineers considering PV plant construction and ownership, documents PVUSA utility-scale system design and cost lessons learned. Complementary PVUSA topical reports document: construction and safety experience; five-year assessment of EMTs; validation of the Kerman 500-kW grid-support PV plant benefits; PVUSA instrumentation and data analysis techniques; procurement, acceptance, and rating practices for PV power plants; experience with power conditioning units and power quality.

  2. Thermal and Electrical Analysis of MARS Rover RTG, and Performance Comparison of Alternative Design Options.

    SciTech Connect (OSTI)

    Schock, Alfred; Or, Chuen T; Skrabek, Emanuel A

    1989-09-29

    The paper describes the thermal, thermoelectric and electrical analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the MARS Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The work described was part of an RTG design study conducted by Fairchild Space Company for the U.S. Department of Energy, in support of the Jet Propulsion Laboratory's MRSR Project.; A companion paper presented at this conference described a reference mission scenario, al illustrative Rover design and activity pattern on Mars, its power system requirements and environmental constraints, a design approach enabling RTG operation in the Martian atmosphere, and the design and the structural and mass analysis of a conservative baseline RTG employing safety-qualified heat source modules and reliability-proven thermoelectric converter elements.; The present paper presents a detailed description of the baseline RTG's thermal, thermoelectric, and electrical analysis. It examines the effect of different operating conditions (beginning versus end of mission, water-cooled versus radiation-cooled, summer day versus winter night) on the RTG's performance. Finally, the paper describes and analyzes a number of alternative RTG designs, to determine the effect of different power levels (250W versus 125W), different thermoelectric element designs (standard versus short unicouples versus multicouples) and different thermoelectric figures of merit (0.00058K(superscript -1) to 0.000140K (superscript -1) on the RTG's specific power.; The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost.; There is a duplicate copy and also a duplicate copy in the ESD files.

  3. HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS

    SciTech Connect (OSTI)

    Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

    2009-05-12

    This report documents a detailed study to determine the expected efficiency and product costs for producing hydrogen via water-splitting using energy from an advanced nuclear reactor. It was determined that the overall efficiency from nuclear heat to hydrogen is high, and the cost of hydrogen is competitive under a high energy cost scenario. It would require over 40% more nuclear energy to generate an equivalent amount of hydrogen using conventional water-cooled nuclear reactors combined with water electrolysis compared to the proposed plant design described herein. There is a great deal of interest worldwide in reducing dependence on fossil fuels, while also minimizing the impact of the energy sector on global climate change. One potential opportunity to contribute to this effort is to replace the use of fossil fuels for hydrogen production by the use of water-splitting powered by nuclear energy. Hydrogen production is required for fertilizer (e.g. ammonia) production, oil refining, synfuels production, and other important industrial applications. It is typically produced by reacting natural gas, naphtha or coal with steam, which consumes significant amounts of energy and produces carbon dioxide as a byproduct. In the future, hydrogen could also be used as a transportation fuel, replacing petroleum. New processes are being developed that would permit hydrogen to be produced from water using only heat or a combination of heat and electricity produced by advanced, high temperature nuclear reactors. The U.S. Department of Energy (DOE) is developing these processes under a program known as the Nuclear Hydrogen Initiative (NHI). The Republic of South Africa (RSA) also is interested in developing advanced high temperature nuclear reactors and related chemical processes that could produce hydrogen fuel via water-splitting. This report focuses on the analysis of a nuclear hydrogen production system that combines the Pebble Bed Modular Reactor (PBMR), under development by

  4. A Proposed Cost-Benefit Analysis Approach for Evaluating DOE Nuclear Facility Design Options

    Broader source: Energy.gov [DOE]

    Presenter: Dr. Kamiar Jamali, Senior Technical Advisor to the Chief of Defense Nuclear Safety, National Nuclear Security Administration, Office of Nuclear Safety NA-SH

  5. Using Cost-Effectiveness Tests to Design CHP Incentive Programs

    SciTech Connect (OSTI)

    Tidball, Rick

    2014-11-01

    This paper examines the structure of cost-effectiveness tests to illustrate how they can accurately reflect the costs and benefits of CHP systems. This paper begins with a general background discussion on cost-effectiveness analysis of DER and then describes how cost-effectiveness tests can be applied to CHP. Cost-effectiveness results are then calculated and analyzed for CHP projects in five states: Arkansas, Colorado, Iowa, Maryland, and North Carolina. Based on the results obtained for these five states, this paper offers four considerations to inform regulators in the application of cost-effectiveness tests in developing CHP programs.

  6. Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options

    SciTech Connect (OSTI)

    Fricke, Brian A; Abdelaziz, Omar; Vineyard, Edward Allan

    2013-01-01

    In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerants for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.

  7. Effect of Fuel and Design Options on RTG Performance versus PFF Power Demand

    SciTech Connect (OSTI)

    Schock, Alfred; Or, Chuen T

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper confines its attention to the relatively conservative option employing standard thermoelectric unicouples, since that may be the only one flight-ready for the projected PFF launch in 2001. There are four copies in the file; also a copy in the ESD files. Included in the file are two previous documents with the same title dated 4/18/1994.

  8. Step 2: Project Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Project Options 2 2 Design 1 Potential 3 Refinement 4 Implementation 2 Options 5 Operations & Maintenance 1/28/2016 2 Presentation Agenda * Step 2: Project Options * Project members and roles * Activity * Project ownership options - Interconnection, net metering, permitting, and considerations * Tools * Case in Point 3 Potential Options Refinement Implementation Operations & Maintenance 4 Step 2: Roles, Business Structures, & Regulatory Considerations Purpose: Determine ownership

  9. The Reference Design for the ILC, Costs, and What's Next

    SciTech Connect (OSTI)

    Barish, Barry

    2007-03-26

    A Reference Design for the International Linear Collider was recently released. The scale of the ILC is such that it must be built by an international collaboration and the design is the culmination of a unique global effort. Through ICFA, a decision was made to base the design on superconducting RF technology and then the Global Design Effort (GDE) was created to coordinate the actual accelerator design toward a construction proposal. The reference design establishes all the features of the machine, and defines both the R&D program and engineering design that will now follow over the next few years.

  10. Best Practices and Design Options for Feed-in Tariffs | Open...

    Open Energy Info (EERE)

    Area: Renewable Energy Topics: Policiesdeployment programs Resource Type: Publications, Lessons learnedbest practices References: Evaluation of different feed-in tariff design...

  11. Atmospheric nitrogen deposition loadings to the Chesapeake Bay: An initial analysis of the cost effectiveness of control options

    SciTech Connect (OSTI)

    1996-12-31

    The purpose of this project was to examine whether programs to control regional airborne oxides of nitrogen (NOx) are cost-effective ways to reduce nitrogen loads to the Bay compared with other management scenarios. Regional control programs considered in this analysis include: the Low Emission Vehicle (LEV) program of the Ozone Transport Commission (OTC), and a 0.15 pounds (lbs) per million British thermal unit (MMBtu) NOx emission limit applied to large fuel combustors in the Northeast Ozone Transport Region (OTC) States. The effect of extending the OTR programs to wider areas of the country - whose emissions also influence the Bay - was also examined.

  12. Retrieval options study

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    This Retrieval Options Study is part of the systems analysis activities of the Office of Nuclear Waste Isolation to develop the scientific and technological bases for radioactive waste repositories in various geologic media. The study considers two waste forms, high level waste and spent fuel, and defines various classes of waste retrieval and recovery. A methodology and data base are developed which allow the relative evaluation of retrieval and recovery costs and the following technical criteria: safety; technical feasibility; ease of retrieval; probable intact retrieval time; safeguards; monitoring; criticality; and licensability. A total of 505 repository options are defined and the cost and technical criteria evaluated utilizing a combination of facts and engineering judgments. The repositories evaluated are selected combinations of the following parameters: Geologic Media (salt, granite, basalt, shale); Retrieval Time after Emplacement (5 and 25 years); Emplacement Design (nominal hole, large hole, carbon steel canister, corrosion resistant canister, backfill in hole, nominal sleeves, thick wall sleeves); Emplacement Configuration (single vertical, multiple vertical, single horizontal, multiple horizontal, vaults; Thermal Considerations; (normal design, reduced density, once-through ventilation, recirculated ventilation); Room Backfill; (none, run-of-mine, early, 5 year delay, 25 year delay, decommissioned); and Rate of Retrieval; (same as emplacement, variably slower depending on repository/canister condition).

  13. Cooling the greenhouse effect: Options and costs for reducing CO{sub 2} emissions from the American Electric Power Company

    SciTech Connect (OSTI)

    Helme, N.; Popovich, M.G.; Gille, J.

    1993-05-01

    A recent report from the National Academy of Sciences concludes that the earth is likely to face a doubling of preindustrial greenhouse gases in the next half century. This doubling could be expected to push average global temperatures. up from between 1.8 to 9 degrees Fahrenheit. Much of the potential for human impacts on the global climate is linked to fossil fuel consumption. Carbon dioxide emissions from energy consumption in the US totals about one-quarter of the world`s total emissions from energy consumption. Global warming is different from other environmental problems because CO{sub 2} emissions can be captured naturally by trees, grasses, soil, and other plants. In contrast, acid rain emissions reductions can only be accomplished through switching to lower-polluting fuels, conserving energy, or installing costly retrofit technologies. Terrestrial biota, such as trees, plants, grasses and soils, directly affect the CO{sub 2} concentrations in the atmosphere. A number of reports have concluded that forestry and land-use practices can increase CO{sub 2} sequestration and can help reduce or delay the threat of global warming.

  14. Composite turbine blade design options for Claude (open) cycle OTEC power systems

    SciTech Connect (OSTI)

    Penney, T.R.

    1985-11-01

    Small-scale turbine rotors made from composites offer several technical advantages for a Claude (open) cycle ocean thermal energy conversion (OTEC) power system. Westinghouse Electric Corporation has designed a composite turbine rotor/disk using state-of-the-art analysis methods for large-scale (100-MW/sub e/) open cycle OTEC applications. Near-term demonstrations using conventional low-pressure turbine blade shapes with composite material would achieve feasibility and modern credibility of the open cycle OTEC power system. Application of composite blades for low-pressure turbo-machinery potentially improves the reliability of conventional metal blades affected by stress corrosion.

  15. Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect (OSTI)

    Krstulovich, S.F.

    1986-11-12

    This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

  16. Design of a low-cost thermoacoustic electricity generator and its experimental verification

    SciTech Connect (OSTI)

    Backhaus, Scott N; Yu, Z; Jaworski, A J

    2010-01-01

    This paper describes the design and testing of a low cost thermoacoustic generator. A travelling-wave thermoacoustic engine with a configuration of a looped-tube resonator is designed and constructed to convert heat to acoustic power. A commercially available, low-cost loudspeaker is adopted as the alternator to convert the engine's acoustic power to electricity. The whole system is designed using linear thermoacoustic theory. The optimization of different parts of the thermoacoustic generator, as well as the matching between the thermoacoustic engine and the alternator are discussed in detail. A detailed comparison between the preliminary test results and linear thermoacoustic predictions is provided.

  17. IFMIF, International Fusion Materials Irradiation Facility conceptual design activity cost report

    SciTech Connect (OSTI)

    Rennich, M.J. [comp.

    1996-12-01

    This report documents the cost estimate for the International Fusion Materials Irradiation Facility (IFMIF) at the completion of the Conceptual Design Activity (CDA). The estimate corresponds to the design documented in the Final IFMIF CDA Report. In order to effectively involve all the collaborating parties in the development of the estimate, a preparatory meeting was held at Oak Ridge National Laboratory in March 1996 to jointly establish guidelines to insure that the estimate was uniformly prepared while still permitting each country to use customary costing techniques. These guidelines are described in Section 4. A preliminary cost estimate was issued in July 1996 based on the results of the Second Design Integration Meeting, May 20--27, 1996 at JAERI, Tokai, Japan. This document served as the basis for the final costing and review efforts culminating in a final review during the Third IFMIF Design Integration Meeting, October 14--25, 1996, ENEA, Frascati, Italy. The present estimate is a baseline cost estimate which does not apply to a specific site. A revised cost estimate will be prepared following the assignment of both the site and all the facility responsibilities.

  18. Integrated Design and Manufacturing of Cost-Effective & Industrial-Scalable

    Broader source: Energy.gov (indexed) [DOE]

    TEG for Vehicle Applications | Department of Energy Integrated design and manufacture of scalable vehicular TEG zuo.pdf (2.86 MB) More Documents & Publications Integrated Design and Manufacturing of Cost-Effective & Industrial-Scalable TEG for Vehicle Applications Integrated Design and Manufacturing of Thermoelectric Generator Using Thermal Spray Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion

  19. Hot Electron Photovoltaics Using Low Cost Materials and Simple Cell Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Hot Electron Photovoltaics Using Low Cost Materials and Simple Cell Design Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary"Third-generation" PV technologies are being actively pursued in academic research labs. These include nano-optics, multi-junction architectures, multi-exciton, plasmonics, and lower cost tandem cells. The

  20. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are

  1. A magnetically coupled Stirling engine driven heat pump: Design optimization and operating cost analysis

    SciTech Connect (OSTI)

    Vincent, R.J.; Waldron, W.D.

    1990-01-01

    A preliminary design for a 2nd generation, gas-fired free-piston Stirling engine driven heat pump has been developed which incorporates a linear magnetic coupling to drive the refrigerant compressor piston. The Mark 2 machine is intended for the residential heat pump market and has 3 Ton cooling capacity. The new heat pump is an evolutionary design based on the Mark 1 free-piston machine which was successfully developed and independently tested by a major heat pump/air conditioning manufacturer. This paper briefly describes test results that were obtained with the Mark 1 machine and then presents the design and operating cost analysis for the Mark 2 heat pump. Operating costs by month are given for both Chicago and Atlanta. A summary of the manufacturing cost estimates obtained from Pioneer Engineering and Manufacturing Company (PEM) are also given. 9 figs., 3 tabs.

  2. NREL: News - New Design Tool Analyzes Cost of Operating a Building Over its

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lifetime Design Tool Analyzes Cost of Operating a Building Over its Lifetime Golden, Colo., August 2, 2002 Imagine being able to estimate the energy life-cycle costs of a new building by simply entering numbers into a software program. Thanks to the new Energy-10 design tool, this is now possible. The new software - Energy-10 Version 1.5 - is an upgrade to the original program developed at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL). The new Energy-10

  3. Getting the Biggest Bang for the Buck: Exploring the Rationales and Design Options for Energy Efficiency Financing Programs

    Broader source: Energy.gov [DOE]

    Many state policymakers and utility regulators have established aggressive energy efficiency (EE) savings targets which will necessitate investing billions of dollars . Given this challenge, some EE program administrators are exploring ways to increase their reliance on financing with the aim of amplifying the impact of limited program monies. While financing is potentially an attractive tool, administrators can face difficult choices between allocating funds to financing or to other approaches designed to overcome a broader set of barriers to consumer investment in EE. Robust assessments of financing's role in reducing energy use in buildings are necessary to help policymakers and program administrators make better choices about how to allocate limited resources to achieve cost effective energy savings at scale.

  4. Lignin Process Design Confirmation and Capitol Cost Evaluation: Report 42002/02 -- Review of Design

    SciTech Connect (OSTI)

    Montague, L.

    2003-10-01

    Harris Group prepared this report on NREL's conceptual design for a process that converts lignin into a hydrocarbon that can be used as a high-octane automobile fuel additive.

  5. Development and Design of Cost-Effective, Real-Time Implementable Sediment and Contaminant Release Controls

    SciTech Connect (OSTI)

    Hampson, Steve

    2007-08-01

    Alternative design options for integrated storm water and sediment control systems were developed and evaluated for Outfalls 008, 011 and 015 of the Paducah Gaseous Diffusion Plant. The remedial options were required to be cost effective and implementable in a relatively short timeframe. Additionally, construction activities were to minimize earth disturbance, especially with respect to excavation. The current database for storm water and effluent sediment oncentration was assessed for the three outfalls. It was concluded that there was a significant lack of data and recommendations for monitoring equipment were provided to initiate a comprehensive surface water and sediment data acquisition system. Modeling was completed for current conditions. Peak flow, runoff volume, peak sediment concentration and storm sediment load were modeled for storm events, ranging from 0.5 inches (12.7mm) to 3.0 inches (6.2mm). Predicted peak flows ranged from 2.5 cfs (0.071 m3/s) for Outfall 011 and a 0.5 inches (12.7mm) storm to 210 cfs (5.95 m3/s) for Outfall 008 and a 3.0 inches (76.2mm) storm. Additionally, the 100-yr 24-hr NRCS Type II storm was modeled. Storm sediment loads, for the corresponding outfalls and storm events, ranged from 0.1 to 9.0 tons (8.18 tonnes). Retention ponds were designed and evaluated for each of the three outfalls. The ponds had a dual function; 1) contain the storm runoff volume for smaller storm events and 2) passively treat and discharge runoff that was in excess of the ponds storage capacity. Stored runoff was transferred to alternative secondary treatment systems. The expected performance of these treatment systems was evaluated. The performance of the outfall ponds was evaluated for storm events ranging from 0.5 inches (12.7mm) to 4.0 inches (101.6mm). Outfall 011 has a watershed of 33.3 acres. Pond 011 (Outfall 011) has the largest storage capacity of the three outfalls, and therefore the highest potential for effective treatment. The predicted

  6. Design of cascaded low cost solar cell with CuO substrate

    SciTech Connect (OSTI)

    Samson, Mil'shtein; Anup, Pillai; Shiv, Sharma; Garo, Yessayan

    2013-12-04

    For many years the main focus of R and D in solar cells was the development of high-efficiency solar convertors. However with solar technology beginning to be a part of national grids and stand-alone power supplies for variety of individual customers, the emphasis has changed, namely, the cost per kilowatt- hour (kW-hr) started to be an important figure of merit. Although Si does dominate the market of solar convertors, this material has total cost of kilowatt-hour much higher than what the power grid is providing presently to customers. It is well known that the cost of raw semiconductor material is a major factor in formulation of the final cost of a solar cell. That motivated us to search and design a novel solar cell using cheap materials. The new p-i-n solar cell consists of hetero-structure cascade of materials with step by step decreasing energy gap. Since the lattice constant of these three materials do differ not more than 2%, the more expensive epitaxial fabrication methods can be used as well. It should be emphasized that designed solar cell is not a cascade of three solar cells connected in series. Our market study shows that Si solar panel which costs $250400 / m{sup 2} leads to a cost of $0.120.30 / kW-hr. To the contrary, CuO based solar cells with Cadmium compounds on top, would cost $100 / m{sup 2}. This will allow the novel solar cell to produce electricity at a cost of $0.060.08 / kW-hr.

  7. Assessing Renewable Energy Options

    Broader source: Energy.gov [DOE]

    Federal agencies should assess renewable energy options for each specific project when integrating renewable energy in new building construction or major renovations. This section covers the preliminary screening, screening, feasibility study, and sizing and designing systems phases.

  8. PEM fuel cell cost minimization using ``Design For Manufacture and Assembly`` techniques

    SciTech Connect (OSTI)

    Lomax, F.D. Jr.; James, B.D.; Mooradian, R.P.

    1997-12-31

    Polymer Electrolyte Membrane (PEM) fuel cells fueled with direct hydrogen have demonstrated substantial technical potential to replace Internal Combustion Engines (ICE`s) in light duty vehicles. Such a transition to a hydrogen economy offers the potential of substantial benefits from reduced criteria and greenhouse emissions as well as reduced foreign fuel dependence. Research conducted for the Ford Motor Co. under a US Department of Energy contract suggests that hydrogen fuel, when used in a fuel cell vehicle (FCV), can achieve a cost per vehicle mile less than or equal to the gasoline cost per mile when used in an ICE vehicle. However, fuel cost parity is not sufficient to ensure overall economic success: the PEM fuel cell power system itself must be of comparable cost to the ICE. To ascertain if low cost production of PEM fuel cells is feasible, a powerful set of mechanical engineering tools collectively referred to as Design for Manufacture and Assembly (DFMA) has been applied to several representative PEM fuel cell designs. The preliminary results of this work are encouraging, as presented.

  9. Fuel Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Market Transformation Fuel Cells Predictive Simulation of Engines ... Twitter Google + Vimeo Newsletter Signup SlideShare Fuel Options HomeCapabilitiesFuel ...

  10. Innovative grinding wheel design for cost-effective machining of advanced ceramics

    SciTech Connect (OSTI)

    Licht, R.H.; Kuo, P.; Liu, S.; Murphy, D.; Picone, J.W.; Ramanath, S.

    2000-05-01

    This Final Report covers the Phase II Innovative Grinding Wheel (IGW) program in which Norton Company successfully developed a novel grinding wheel for cost-effective cylindrical grinding of advanced ceramics. In 1995, Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics using small prototype wheels. The Phase II program was initiated to scale-up the new superabrasive wheel specification to larger diameters, 305-mm to 406-mm, required for most production grinding of cylindrical ceramic parts, and to perform in-house and independent validation grinding tests.

  11. Fermilab D-0 Experimental Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect (OSTI)

    Krstulovich, S.F.

    1987-10-31

    This report is developed as part of the Fermilab D-0 Experimental Facility Project Title II Design Documentation Update. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis.

  12. Approximate option pricing

    SciTech Connect (OSTI)

    Chalasani, P.; Saias, I.; Jha, S.

    1996-04-08

    As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.

  13. LWR design decision methodology: Phase II. Final report

    SciTech Connect (OSTI)

    None

    1981-01-01

    Techniques were identified to augment existing design process at the component and system level in order to optimize cost and safety between alternative system designs. The method was demonstrated using the Surry Low Pressure Injection System (LPIS). Three possible backfit options were analyzed for the Surry LPIS, assessing the safety level of each option and estimating the acquisition and installation costs for each. (DLC)

  14. Financing Options

    Broader source: Energy.gov [DOE]

    A growing variety of options are available for financing an LED street lighting replacement program. One or another approach may be preferable based on the system ownership and maintenance model in...

  15. Career Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Career Options Explore the multiple dimensions of a career at Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in...

  16. Experiments, conceptual design, preliminary cost estimates and schedules for an underground research facility

    SciTech Connect (OSTI)

    Korbin, G.; Wollenberg, H.; Wilson, C.; Strisower, B.; Chan, T.; Wedge, D.

    1981-09-01

    Plans for an underground research facility are presented, incorporating techniques to assess the hydrological and thermomechanical response of a rock mass to the introduction and long-term isolation of radioactive waste, and to assess the effects of excavation on the hydrologic integrity of a repository and its subsequent backfill, plugging, and sealing. The project is designed to utilize existing mine or civil works for access to experimental areas and is estimated to last 8 years at a total cost for contruction and operation of $39.0 million (1981 dollars). Performing the same experiments in an existing underground research facility would reduce the duration to 7-1/2 years and cost $27.7 million as a lower-bound estimate. These preliminary plans and estimates should be revised after specific sites are identified which would accommodate the facility.

  17. Hydrogen Delivery Infrastructure Options Analysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report, by the Nexant team, documents an in-depth analysis of seven hydrogen delivery options to identify the most cost-effective hydrogen infrastructure for the transition and long term. The pro

  18. Design of Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    SciTech Connect (OSTI)

    Wood, Benjamin

    2012-06-30

    The major goal of the project is to design and optimize a bench-scale process for novel silicone CO{sub 2}-capture solvents and establish scalability and potential for commercialization of post-combustion capture of CO{sub 2} from coal-fired power plants. This system should be capable of 90% capture efficiency and demonstrate that less than 35% increase in the cost of energy services can be achieved upon scale-up. Experiments were conducted to obtain data required for design of the major unit operations. The bench-scale system design has been completed, including sizing of major unit operations and the development of a detailed Process and Instrument Diagram (P&ID). The system has been designed to be able to operate over a wide range of process conditions so that the effect of various process variables on performance can be determined. To facilitate flexibility in operation, the absorption column has been designed in a modular manner, so that the height of the column can be varied. The desorber has also been designed to allow for a range of residence times, temperatures, and pressures. The system will be fabricated at Techniserv Inc.

  19. Design and cost study of critical OC-OTEC plant components: Final subcontract report

    SciTech Connect (OSTI)

    Valenzuela, J.A.; Jasinski, T.; Stacey, W.D.; Patel, B.R.; Dolan, F.Y.

    1988-06-01

    During the FY 1983-84, system analysis studies were performed by the Florida Solar Energy Center and Creare Inc. to assess the economic and technological viability of the OC-OTEC concept for producing both electricity and fresh water on a small scale. A major conclusion of the study was that land-based OC-OTEC plants as small as 10 MWe may be economically feasible in island communities if cost credits are taken for the fresh water produced. The present study builds upon and extends the results of that work. Assess the effect of the seasonal variation in the ocean surface water temperature on the performance of OC-OTEC plants; evaluate the technical feasibility of building small scale OC-OTEC plants using existing low pressure steam turbine rotor designs; refine the plant structure model developed during the Phase I study; and develop background information and analyses to evaluate the various alternative strategies for handling noncondensible gases in OC-OTEC plants. Refinements in OC-OTEC plant performance and cost models performed during the present study have reduced the estimated cost of a 10 MW baseline plant from 99 to 72M$. Further cost reduction of 5 to 10M$ is anticipated from the revised structure cost model and the implementation of barometric leg deaeration and hydraulic compression. Therefore, the results from this study reinforce the earlier conclusion that small-scale OC-OTEC plants are competitive at present for the production of electricity and fresh water in the Caribbean and Pacific Islands. OC-OTEC represents a technology with significant potential. We recommend that it be aggressively pursued. 33 refs., 67 figs., 20 tabs.

  20. Design Strategies and Preliminary Prototype for a Low-Cost Arsenic Removal System for Rural Bangladesh

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin; Qazi, Shefah; Agogino, Alice M.

    2009-09-14

    Researchers have invented a material called ARUBA -- Arsenic Removal Using Bottom Ash -- that effectively and affordably removes arsenic from Bangladesh groundwater. Through analysis of studies across a range of disciplines, observations, and informal interviews conducted over three trips to Bangladesh, we have applied mechanical engineering design methodology to develop eight key design strategies, which were used in the development of a low-cost, community-scale water treatment system that uses ARUBA to removearsenic from drinking water. We have constructed, tested, and analysed a scale version of the system. Experiments have shown that the system is capable of reducing high levels of arsenic (nearly 600 ppb) to below the Bangladesh standard of 50 ppb, while remaining affordable to people living on less than US$2/day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.

  1. Designing optimal greenhouse gas observing networks that consider performance and cost

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T. P.; Weiss, R.; Keeling, R.

    2014-12-23

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototypemore » network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.« less

  2. Designing optimal greenhouse gas observing networks that consider performance and cost

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; Graven, H.; Bergmann, D.; Guilderson, T. P.; Weiss, R.; Keeling, R.

    2015-06-16

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototypemore » network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.« less

  3. Final Report- Hydrogen Delivery Infrastructure Options Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report provides in-depth analysis of various hydrogen delivery options to determine the most cost effective infrastructure and R&D efforts for the long term.

  4. Innovative grinding wheel design for cost-effective machining of advanced ceramics. Phase I, final report

    SciTech Connect (OSTI)

    Licht, R.H.; Ramanath, S.; Simpson, M.; Lilley, E.

    1996-02-01

    Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics. This program was a cooperative effort involving three Norton groups representing a superabrasive grinding wheel manufacturer, a diamond film manufacturing division and a ceramic research center. The program was divided into two technical tasks, Task 1, Analysis of Required Grinding Wheel Characteristics, and Task 2, Design and Prototype Development. In Task 1 we performed a parallel path approach with Superabrasive metal-bond development and the higher technical risk, CVD diamond wheel development. For the Superabrasive approach, Task 1 included bond wear and strength tests to engineer bond-wear characteristics. This task culminated in a small-wheel screening test plunge grinding sialon disks. In Task 2, an improved Superabrasive metal-bond specification for low-cost machining of ceramics in external cylindrical grinding mode was identified. The experimental wheel successfully ground three types of advanced ceramics without the need for wheel dressing. The spindle power consumed by this wheel during test grinding of NC-520 sialon is as much as to 30% lower compared to a standard resin bonded wheel with 100 diamond concentration. The wheel wear with this improved metal bond was an order of magnitude lower than the resin-bonded wheel, which would significantly reduce ceramic grinding costs through fewer wheel changes for retruing and replacements. Evaluation of ceramic specimens from both Tasks 1 and 2 tests for all three ceramic materials did not show evidence of unusual grinding damage. The novel CVD-diamond-wheel approach was incorporated in this program as part of Task 1. The important factors affecting the grinding performance of diamond wheels made by CVD coating preforms were determined.

  5. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2013-11-21

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  6. Fuel Cell Financing Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UTC Power Corporation 195 Governor's Highway South Windsor, CT Fuel Cell Financing Options (CESA/DOE Webinar - August 30, 2011) Paul J. Rescsanski, Manager, Business Finance Paul J. Rescsanski, Manager, Business Finance The UTC Power Advantage Strained Utility Grid, unreliable power * Significant Energy savings through: - 80 - 90% system efficiency - Combined heat and power * Payback in 3-5 years Sustainability and carbon reduction Rising energy costs * Assured power generated on-site: -

  7. TRANSPORTATION OPTIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRANSPORTATION OPTIONS The Pittsburgh Airport Marriott provides complimentary shuttle service. The hotel asks all guests arriving at the Pittsburgh International Airport to collect luggage in the baggage claim area of the airport and then call for the shuttle at 412-788- 8800. Let the Hotel Operator know that you have collected your luggage and have a reservation at the Marriott and need transportation from the airport. The Hotel Operator will instruct the guest which door to exit, which curb to

  8. Cost analysis guidelines

    SciTech Connect (OSTI)

    Strait, R.S.

    1996-01-10

    The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

  9. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 4: Project cost estimate

    SciTech Connect (OSTI)

    1995-09-01

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. This volume represents the total estimated costs for the W113 facility. Operating Contractor Management costs have been incorporated as received from WHC. The W113 Facility TEC is $19.7 million. This includes an overall project contingency of 14.4% and escalation of 17.4%. A January 2001 construction contract procurement start date is assumed.

  10. Design and installation of an ultra deepwater subsea system: How to minimize risks and costs

    SciTech Connect (OSTI)

    Izetti, R.G.; Moreira, J.R.F.

    1994-12-31

    The world`s deepest Subsea Tree was successfully installed offshore Brazil at a water depth of 1,027 m. The psychological barrier of 1,000 m was finally broken. Actually, subsea completion technology reached a point where the fundamental question is no longer whether fields located at water depths beyond 1,000 m can be profitably completed. The key issue now is: is there a better and safer way to do it? PETROBRAS has pursued an aggressive strategy in research and development concept evaluations and various field studies aiming at a continuous decrease in both CAPEX and OPEX. This paper primarily describes the major subsea completion achievements, resulting from this great effort, which among other topics include: implementation of a standardization program; sharp reduction of both subsea completion and drilling time; a new flowline connection method which combines the advantages of both lay-away and pull-in methods; design and future installation of the world first subsea electrical submersible pump; completion equipment simplification and resulting cost reduction. Also addressed are the key safety aspects related to deepwater completions and the equipment design improvement necessary to safely conduct those operations.

  11. Design and installation of an ultra-deepwater subsea system: How to minimize risks and costs

    SciTech Connect (OSTI)

    Izetti, R.G.; Moreira, J.R.F.

    1995-04-01

    The world`s deepest subsea tree was successfully installed offshore Brazil at a water depth of 1,027 m, finally breaking the psychological barrier of 1,000 m. Actually, subsea completion technology has reached a point where the fundamental question no linger is whether fields located at water depths > 1,000 m can be profitably completed; is there a better and safer way to do it is now the key issue. Petrobras has pursued an aggressive strategy in R and D concept evaluations and various field studies aiming at a continuous decrease in both capital and operational expenditures. This paper describes the major subsea completion achievements resulting from this great effort, which include implementation of a standardization program; sharp reduction of subsea completion and drilling time; a new flowline connection method that combines the advantages of lay-away and pull-in methods; design and future installation of the world`s first subsea electrical submersible pump; and completion equipment simplification and resulting cost reduction. Also addressed are the key safety aspects related to deepwater completions and the equipment design improvement necessary to conduct those operations safely.

  12. A preliminary design and BOP cost analysis of M-C Power`s MCFC commerical unit

    SciTech Connect (OSTI)

    Chen, T.P.

    1996-12-31

    M-C Power Corporation plans to introduce its molten carbonate fuel cell (MCFC) market entry unit in the year 2000 for distributed and on-site power generation. Extensive efforts have been made to analyze the cell stack manufacturing costs. The major objective of this study is to conduct a detailed analysis of BOP costs based on an initial design of the market entry unit.

  13. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2012-04-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

  14. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2013-02-01

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

  15. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  16. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Wood Feedstock

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for treatment of wood-derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the gasifier, and a high-pressure, direct system using gasification technology were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  17. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Black Liquor Gasification

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for removal of acid gases from black liquor-derived syngas for use in both power and liquid fuels synthesis. Two 3,200 metric tonne per day gasification schemes, both low-temperature/low-pressure (1100 deg F, 40 psi) and high-temperature/high-pressure (1800 deg F, 500 psi) were used for syngas production. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory and Princeton University. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  18. Innovative Feed-In Tariff Designs that Limit Policy Costs (Technical...

    Office of Scientific and Technical Information (OSTI)

    Feed-in tariffs (FITs) are the most prevalent policy used globally to reduce development risks, cut financing costs, and grow the renewable energy industry. However, concerns over ...

  19. The Five-Step Development Process Step 2: Project Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Project Options 2 2 Design 1 Potential 3 Refinement 4 Implementation 2 Options 5 Operations & Maintenance Presentation Agenda * Step 2: Project Options * Project members and roles * Activity * Project ownership options - Interconnection, net metering, permitting, and considerations * Tools * Case in Point 3 Potential Options Refinement Implementation Operations & Maintenance 4 Step 2: Roles, Business Structures, & Regulatory Considerations Purpose: Determine ownership structure

  20. OPTIONS FOR ABATING GREENHOUSE GASES FROM EXHAUST STREAMS.

    SciTech Connect (OSTI)

    FTHENAKIS,V.

    2001-12-01

    This report examines different alternatives for replacing, treating, and recycling greenhouse gases. It is concluded that treatment (abatement) is the only viable short-term option. Three options for abatement that were tested for use in semiconductor facilities are reviewed, and their performance and costs compared. This study shows that effective abatement options are available to the photovoltaic (PV) industry, at reasonable cost.

  1. Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    There is mounting evidence that zero energy can, in many cases, be achieved within typical construction budgets. To ensure that the momentum behind zero energy buildings and other low-energy buildings will continue to grow, this guide assembles recommendations for replicating specific successes of early adopters who have met their energy goals while controlling costs. Contents include: discussion of recommended cost control strategies, which are grouped by project phase (acquisition and delivery, design, and construction) and accompanied by industry examples; recommendations for balancing key decision-making factors; and quick reference tables that can help teams apply strategies to specific projects.

  2. Tool to Compare Solar Energy Program Financing Options

    Broader source: Energy.gov [DOE]

    This model is intended to be used for internal discussion purposes and should be used only as a guideline for evaluating the options. The costs for the three options are automatically updated when changes are made to the Key Assumptions.

  3. Waste management facilities cost information for hazardous waste. Revision 1

    SciTech Connect (OSTI)

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  4. Introduction to Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    Momentum behind zero energy building design and construction is increasing, presenting a tremendous opportunity for advancing energy performance in the commercial building industry. At the same time, there is a lingering perception that zero energy buildings must be cost prohibitive or limited to showcase projects. Fortunately, an increasing number of projects are demonstrating that high performance can be achieved within typical budgets. This factsheet highlights replicable, recommended strategies for achieving high performance on a budget, based on experiences from past projects.

  5. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    SciTech Connect (OSTI)

    DiNunzio, Camillo A.; Gupta, Abhinav; Golay, Michael; Luk, Vincent; Turk, Rich; Morrow, Charles; Jin, Geum-Taek

    2002-11-30

    This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  6. Programming Tuning Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning Options Programming Tuning Options Using Huge Pages Hugepages are virtual memory pages which are bigger than the default base page size of 4KB. Some applications may...

  7. Implications of access hole size on tank waste retrieval system design and cost

    SciTech Connect (OSTI)

    Babcock, S.M.; Kwon, D.S.; Burks, B.L.; Stoughton, R.S.; Evans, M.S.

    1994-05-01

    The DOE Environmental Restoration and Waste Management Robotics Technology Development Program has been investigating the application of robotics technology to the retrieval of waste from single-shell storage tanks for several years. The use of a large, ``long-reach`` manipulator to position and orient a variety of tools and other equipment has been recommended. The objective of this study is to determine the appropriate access hole size for the tank waste retrieval system installation. Previous reports on the impact of access hole size on manipulator performance are summarized. In addition, the practical limitation for access hole size based on structural limitations of the waste storage tanks, the state-of-the-art size limitations for the installation of new risers, the radiation safety implications of various access hole sizes, and overall system cost implications are considered. Basic conclusions include: (1) overall cost of remediation will; be dominated by the costs of the balance of plant and time required to perform the task rather than the cost of manipulator hardware or the cost of installing a riser, (2) the most desirable solution from a manipulator controls point of view is to make the manipulator as stiff as possible and have as high as possible a natural frequency, which implies a large access hole diameter, (3) beyond some diameter; simple, uniform cross-section elements become less advantageous from a weight standpoint and alternative structures should be considered, and (4) additional shielding and contamination control measures would be required for larger holes. Parametric studies summarized in this report considered 3,790,000 1 (1,000,000 gal) tanks, while initial applications are likely to be for 2,840,000 1 (750,000 gal) tanks. Therefore, the calculations should be somewhat conservative, recognizing the limitations of the specific conditions considered.

  8. Power supply subsystem for MHD generator superconducting magnet, baseline power supply designs and costs

    SciTech Connect (OSTI)

    Kusko, A.; Peeran, S.M.

    1981-04-10

    An analysis of the dc power supply requirements for superconducting magnets used in MHD generators of ratings 250 MW/sub e//sup -/ 1000 MW/sub e/ is presented. The power supplies considered are rated for a peak power of 10 MW and for currents of 20 kA to 100 kA. The various aspects discussed include: rectifier configurations and specifications, control requirements, dumping the magnet energy, and rectifier size, arrangement and cost. (WHK)

  9. STEP Participant Financing Options

    Broader source: Energy.gov [DOE]

    STEP Participant Financing Options, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  10. Maryland Efficiency Program Options

    Office of Energy Efficiency and Renewable Energy (EERE)

    Maryland Efficiency Program Options, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  11. Wind Turbine Control Design to Reduce Capital Costs: 7 January 2009 - 31 August 2009

    SciTech Connect (OSTI)

    Darrow, P. J.

    2010-01-01

    This report first discusses and identifies which wind turbine components can benefit from advanced control algorithms and also presents results from a preliminary loads case analysis using a baseline controller. Next, it describes the design, implementation, and simulation-based testing of an advanced controller to reduce loads on those components. The case-by-case loads analysis and advanced controller design will help guide future control research.

  12. UNDP-Climate Finance Options Platform | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Topics: Finance Website: www.climatefinanceoptions.orgcfo Cost: Free UNDP-Climate Finance Options Platform Screenshot References: UNDP-Climate Finance...

  13. MRS/IS facility co-located with a repository: preconceptual design and life-cycle cost estimates

    SciTech Connect (OSTI)

    Smith, R.I.; Nesbitt, J.F.

    1982-11-01

    A program is described to examine the various alternatives for monitored retrievable storage (MRS) and interim storage (IS) of spent nuclear fuel, solidified high-level waste (HLW), and transuranic (TRU) waste until appropriate geologic repository/repositories are available. The objectives of this study are: (1) to develop a preconceptual design for an MRS/IS facility that would become the principal surface facility for a deep geologic repository when the repository is opened, (2) to examine various issues such as transportation of wastes, licensing of the facility, and environmental concerns associated with operation of such a facility, and (3) to estimate the life cycle costs of the facility when operated in response to a set of scenarios which define the quantities and types of waste requiring storage in specific time periods, which generally span the years from 1990 until 2016. The life cycle costs estimated in this study include: the capital expenditures for structures, casks and/or drywells, storage areas and pads, and transfer equipment; the cost of staff labor, supplies, and services; and the incremental cost of transporting the waste materials from the site of origin to the MRS/IS facility. Three scenarios are examined to develop estimates of life cycle costs of the MRS/IS facility. In the first scenario, HLW canisters are stored, starting in 1990, until the co-located repository is opened in the year 1998. Additional reprocessing plants and repositories are placed in service at various intervals. In the second scenario, spent fuel is stored, starting in 1990, because the reprocessing plants are delayed in starting operations by 10 years, but no HLW is stored because the repositories open on schedule. In the third scenario, HLW is stored, starting in 1990, because the repositories are delayed 10 years, but the reprocessing plants open on schedule.

  14. Strategic supply system design - a holistic evaluation of operational and production cost for a biorefinery supply chain

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lamers, Patrick; Tan, Eric C.D.; Searcy, Erin M.; Scarlata, Christopher J.; Cafferty, Kara G.; Jacobson, Jacob J.

    2015-08-20

    Pioneer cellulosic biorefineries across the United States rely on a conventional feedstock supply system based on one-year contracts with local growers, who harvest, locally store, and deliver feed-stock in low-density format to the conversion facility. While the conventional system is designed for high biomass yield areas, pilot scale operations have experienced feedstock supply shortages and price volatilities due to reduced harvests and competition from other industries. Regional supply dependency and the inability to actively manage feedstock stability and quality, provide operational risks to the biorefinery, which translate into higher investment risk. The advanced feedstock supply system based on a networkmore » of depots can mitigate many of these risks and enable wider supply system benefits. This paper compares the two concepts from a system-level perspective beyond mere logistic costs. It shows that while processing operations at the depot increase feedstock supply costs initially, they enable wider system benefits including supply risk reduction (leading to lower interest rates on loans), industry scale-up, conversion yield improvements, and reduced handling equipment and storage costs at the biorefinery. When translating these benefits into cost reductions per liter of gasoline equivalent (LGE), we find that total cost reductions between -$0.46 to -$0.21 per LGE for biochemical and -$0.32 to -$0.12 per LGE for thermochemical conversion pathways are possible. Naturally, these system level benefits will differ between individual actors along the feedstock supply chain. Further research is required with respect to depot sizing, location, and ownership structures.« less

  15. Strategic supply system design - a holistic evaluation of operational and production cost for a biorefinery supply chain

    SciTech Connect (OSTI)

    Lamers, Patrick; Tan, Eric C.D.; Searcy, Erin M.; Scarlata, Christopher J.; Cafferty, Kara G.; Jacobson, Jacob J.

    2015-08-20

    Pioneer cellulosic biorefineries across the United States rely on a conventional feedstock supply system based on one-year contracts with local growers, who harvest, locally store, and deliver feed-stock in low-density format to the conversion facility. While the conventional system is designed for high biomass yield areas, pilot scale operations have experienced feedstock supply shortages and price volatilities due to reduced harvests and competition from other industries. Regional supply dependency and the inability to actively manage feedstock stability and quality, provide operational risks to the biorefinery, which translate into higher investment risk. The advanced feedstock supply system based on a network of depots can mitigate many of these risks and enable wider supply system benefits. This paper compares the two concepts from a system-level perspective beyond mere logistic costs. It shows that while processing operations at the depot increase feedstock supply costs initially, they enable wider system benefits including supply risk reduction (leading to lower interest rates on loans), industry scale-up, conversion yield improvements, and reduced handling equipment and storage costs at the biorefinery. When translating these benefits into cost reductions per liter of gasoline equivalent (LGE), we find that total cost reductions between -$0.46 to -$0.21 per LGE for biochemical and -$0.32 to -$0.12 per LGE for thermochemical conversion pathways are possible. Naturally, these system level benefits will differ between individual actors along the feedstock supply chain. Further research is required with respect to depot sizing, location, and ownership structures.

  16. The Development of Low-Cost Integrated Composite Seal for SOFC: Materials and Design Methodologies

    SciTech Connect (OSTI)

    Xinyu Huang; Kristoffer Ridgeway; Srivatsan Narasimhan; Serg Timin; Wei Huang; Didem Ozevin; Ken Reifsnider

    2006-07-31

    This report summarizes the work conducted by UConn SOFC seal development team during the Phase I program and no cost extension. The work included composite seal sample fabrication, materials characterizations, leak testing, mechanical strength testing, chemical stability study and acoustic-based diagnostic methods. Materials characterization work revealed a set of attractive material properties including low bulk permeability, high electrical resistivity, good mechanical robustness. Composite seal samples made of a number of glasses and metallic fillers were tested for sealing performance under steady state and thermal cycling conditions. Mechanical testing included static strength (pull out) and interfacial fracture toughness measurements. Chemically stability study evaluated composite seal material stability after aging at 800 C for 168 hrs. Acoustic based diagnostic test was conducted to help detect and understand the micro-cracking processes during thermal cycling test. The composite seal concept was successfully demonstrated and a set of material (coating composition & fillers) were identified to have excellent thermal cycling performance.

  17. Forecourt Storage and Compression Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecourt Storage and Compression Options DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop DOE Headquarters 25 January 2006 Mark E. Richards Gas Technology Institute 2 Overview > Project objectives > Gaseous delivery configurations > Analysis tool: CASCADE H2 Pro > Station demand profiles > Operational analysis results - Compressor-storage relationships - Vehicle fueling times - Temperature effects > Cost profiles >

  18. Hydrogen cooling options for MgB{sub 2}-based superconducting systems

    SciTech Connect (OSTI)

    Stautner, W.; Xu, M.; Mine, S.; Amm, K.

    2014-01-29

    With the arrival of MgB{sub 2} for low-cost superconducting magnets, hydrogen cooling has become an interesting alternative to costly liquid helium. Hydrogen is generally regarded as the most efficient coolant in cryogenics and, in particular, is well suited for cooling superconducting magnets. Cooling methods need to take into account the specific quench propagation in the MgB{sub 2} magnet winding and facilitate a cryogenically reliable and safe cooling environment. The authors propose three different multi-coolant options for MRI scanners using helium or hydrogen within the same design framework. Furthermore, a design option for whole-body scanners which employs technology, components, fueling techniques and safety devices from the hydrogen automotive industry is presented, continuing the trend towards replacing helium with hydrogen as a safe and cost efficient coolant.

  19. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    SciTech Connect (OSTI)

    Michael D. Durham

    2003-05-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic

  20. Finding the cheapest Clean power options

    SciTech Connect (OSTI)

    Casten, Thomas R.; Smith, Jeffrey A.

    2009-12-15

    Speculation about why policies favor high-cost low-carbon generation options could fill a book. Vested interests? Lack of knowledge? Industry lobbying? Cost-plus regulatory mentality? Regardless of reasons, the data show that efficient generation that uses energy twice is largely ignored. While all other generation, both clean and dirty, receives large subsidies, energy recycling is ignored. (author)

  1. FutureGen 2.0 Oxy-Coal Combustion Carbon Capture Plant Pre-FEED Design and Cost

    SciTech Connect (OSTI)

    Flanigan, Tom; Pybus, Craig; Roy, Sonya; Lockwood, Frederick; McDonald, Denny; Maclnnis, Jim

    2011-09-30

    This report summarizes the results of the Pre-Front End Engineering Design (pre-FEED) phase of a proposed advanced oxy-combustion power generation plant to repower the existing 200 MWe Unit 4 at Ameren Energy Resources’ (AER) Meredosia Power Plant. AER has formed an alliance with Air Liquide Process and Construction, Inc. (ALPC) and Babcock & Wilcox Power Generation Group (B&W PGG) for the design, construction, and testing of the facility, and has contracted with URS Corporation (URS) for preliminary design and Owner’s engineering services. The Project employs oxy-combustion technology – combustion of coal with nearly pure oxygen and recycled flue gas (instead of air) – to capture approximately 90% of the flue gas CO2 for transport and sequestration by another Project. Plant capacity and configuration has been developed based on the B&W PGG-ALPC cool recycle process firing high-sulfur bituminous coal fuel, assuming baseload plant operation to maximize existing steam turbine capability, with limited consideration for plant redundancy and performance optimization in order to keep plant costs as low as practical. Activities and preliminary results from the pre-FEED phase addressed in this report include the following: Overall plant thermal performance; Equipment sizing and system configuration; Plant operation and control philosophy; Plant emissions and effluents; CO2 production and recovery characteristics; Project cost estimate and economic evaluation; Integrated project engineering and construction schedule; Project risk and opportunity assessment; Development of Project permitting strategy and requirements During the Phase 2 of the Project, additional design details will be developed and the Phase 1 work products updated to support actual construction and operation of the facility in Phase 3. Additional information will be provided early in Phase 2 to support Ameren-Environmental in finalizing the appropriate permitting strategies and permit

  2. Silo Storage Preconceptual Design

    SciTech Connect (OSTI)

    Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

    2012-09-01

    The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

  3. 401(k) Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    401(k) Options 401(k) Options Tax-deferred and after-tax savings and retirement plans. Contact Fidelity Investments 401(k) savings and retirement plans Fidelity Investments is the...

  4. Employee Benefit Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Benefit Options Employee Benefit Options A comprehensive benefits package with plan options for health care and retirement to take care of our employees today and tomorrow. December 14, 2012 TA-3 in the winter Contact Benefits Office 667-1806 Email Employee Benefit Options On behalf of the LANS Benefits Team, welcome to the Los Alamos National Laboratory! Our employees are our greatest asset, which is why we provide a comprehensive benefits package that offers health coverage for you and your

  5. TANK SPACE OPTIONS REPORT

    SciTech Connect (OSTI)

    WILLIS WL; AHRENDT MR

    2009-08-11

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  6. Energy options: Cogen V and retail wheeling alternatives technical conference

    SciTech Connect (OSTI)

    1996-12-31

    The Energy Options technical conference proceedings contains 265 papers, of which 17 were selected for the database. The conference was split into two primary topics: cogeneration and retail wheeling. Subtopics under cogeneration included: the state of cogeneration in the United States, case studies in facility ownership, fuels considerations for tomorrow, and plant design considerations for cogeneration systems. Retail wheeling alternatives subtopics included U.S. Federal Energy Regulatory Commission rulings, end-user options for retail wheeling, deregulation issues, and forecasting of electricity generating costs. Papers not selected for the database, while clearly pertinent topics of interest, consisted of viewgraphs which were judged not to have sufficient technical information and coherence without the corresponding presentation. However, some papers which did consist of viewgraphs were included.

  7. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    SciTech Connect (OSTI)

    Michael D. Durham

    2004-10-01

    PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its

  8. Hanford 300 Area steam transition preliminary utility options study

    SciTech Connect (OSTI)

    Olson, N.J.; Weakley, S.A.; Berman, M.J.

    1995-06-01

    The cost of steam in the Hanford 300 Area is approaching $60 per million Btu; the cost in industry is {approx} $10 per million Btu. The cost of steam in the 300 Area is expected to continue to increase because of the age of the central steam system, load decreases, safety requirements, and environmental regulations. The intent of this report is to evaluate options that would more cost-effectively met the future heating needs of the buildings in the 300 Area. In general, the options fall into two categories: central systems and distributed systems. A representative option from each category was analyzed using the life-cycle cost analysis (LCCA) techniques mandated by the federal government. The central plant option chosen for evaluation was the existing central steam plant modified to allow continued operation. The distributed option chosen was a dedicated heating system for each building.

  9. FGD system capital and operating cost reductions based on improved thiosorbic scrubber system design and latest process innovations

    SciTech Connect (OSTI)

    Smith, K.; Tseng, S.; Babu, M.

    1994-12-31

    Dravo Lime Company has operated the Miami Fort wet scrubber FGD pilot test unit since late 1989 and has continued in-house R&D to improve the economics of the magnesium-enhanced scrubbing process. Areas investigated include the scrubber configuration, flue gas velocity, spray nozzle type, droplet size, mist eliminator design, additives to inhibit oxidation, improved solids dewatering, etc. Also tested was the forced oxidation Thioclear process. The data gathered from the pilot plant and in-house programs were used to evaluate the capital and operating costs for the improved systems. These evaluations were made with eye towards the choices electric utilities will need to make in the near future to meet the Phase II emission limits mandated by the 1990 Clean Air Act. Some of the process modifications investigated, for example, the dewatering improvements apply to potential beneficial retrofit of existing FGD systems today.

  10. Ultra-Deep Drilling Cost Reduction; Design and Fabrication of an Ultra-Deep Drilling Simulator (UDS)

    SciTech Connect (OSTI)

    Lindstrom, Jason

    2010-01-31

    Ultra-deep drilling, below about 20,000 ft (6,096 m), is extremely expensive and limits the recovery of hydrocarbons at these depths. Unfortunately, rock breakage and cuttings removal under these conditions is not understood. To better understand and thus reduce cost at these conditions an ultra-deep single cutter drilling simulator (UDS) capable of drill cutter and mud tests to sustained pressure and temperature of 30,000 psi (207 MPa) and 482 °F (250 °C), respectively, was designed and manufactured at TerraTek, a Schlumberger company, in cooperation with the Department of Energy’s National Energy Technology Laboratory. UDS testing under ultra-deep drilling conditions offers an economical alternative to high day rates and can prove or disprove the viability of a particular drilling technique or fluid to provide opportunity for future domestic energy needs.

  11. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    SciTech Connect (OSTI)

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S.

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

  12. Solar Financing Options | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Financing Options Solar Financing Options Addthis Description Below is the text version for the "Solar Financing Options" video. The video pans over an image of a neighborhood, before focusing on a home with solar panels on its roof. Text appears: Going solar? Great! Now... how do you pay for it? Dr. Elaine Ulrich Soft Costs Program Manager, SunShot Initiative Typically when someone is interested in going solar, they go online, they try and do a little background research, and

  13. Waste Management Facilities cost information for mixed low-level waste. Revision 1

    SciTech Connect (OSTI)

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing mixed low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  14. Optional Residential Program Benchmarking

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Data and Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking, Call Slides and Discussion Summary, January 23, 2014.

  15. System Cost Model

    Energy Science and Technology Software Center (OSTI)

    1996-03-27

    SCM is used for estimation of the life-cycle impacts (costs, health and safety risks) of waste management facilities for mixed low-level, low-level, and transuranic waste. SCM uses parametric cost functions to estimate life-cycle costs for various treatment, storage, and disposal modules which reflect planned and existing waste management facilities at Department of Energy (DOE) installations. SCM also provides transportation costs for intersite transfer of DOE wastes. SCM covers the entire DOE waste management complex tomore » allow system sensitivity analysis including: treatment, storage, and disposal configuration options; treatment technology selection; scheduling options; transportation options; waste stream and volume changes; and site specific conditions.« less

  16. Renewable Energy Cost Modeling. A Toolkit for Establishing Cost-Based Incentives in the United States

    SciTech Connect (OSTI)

    Gifford, Jason S.; Grace, Robert C.; Rickerson, Wilson H.

    2011-05-01

    This report serves as a resource for policymakers who wish to learn more about levelized cost of energy (LCOE) calculations, including cost-based incentives. The report identifies key renewable energy cost modeling options, highlights the policy implications of choosing one approach over the other, and presents recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, FITs, or similar policies. These recommendations shaped the design of NREL's Cost of Renewable Energy Spreadsheet Tool (CREST), which is used by state policymakers, regulators, utilities, developers, and other stakeholders to assist with analyses of policy and renewable energy incentive payment structures. Authored by Jason S. Gifford and Robert C. Grace of Sustainable Energy Advantage LLC and Wilson H. Rickerson of Meister Consultants Group, Inc.

  17. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

  18. Pawnee Nation Energy Option Analyses

    SciTech Connect (OSTI)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-31

    In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Based on the request of Pawnee Nation’s Energy Task Force the research team, consisting Tribal personnel and Summit Blue Consulting, focused on a review of renewable energy resource development potential, funding sources and utility organizational along with energy savings options. Elements of the energy demand forecasting and characterization and demand side options review remained in the scope of work, but were only addressed at a high level. Description of Activities Performed Renewable Energy Resource Development Potential The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Energy Efficiency Options While this was not a major focus of the project, the research team highlighted common strategies for reducing energy use in buildings. The team also discussed the benefits of adopting a building energy code and

  19. Tanker spills: Prevention by design

    SciTech Connect (OSTI)

    Not Available

    1991-02-12

    The study, prompted by the March 1989 grounding of the EXXON VALDEZ in Prince William Sound, Alaska, focused on how alternative tank vessel (tanker and barge) designs might influence the safety of personnel, property, and the environment, and at what cost. In selecting designs to be considered, the committee included certain operational options that might minimize the oil spilled in an accident. The study did not consider means of averting accidents, altering the form of cargo, or responding to oil spills.

  20. PowerOptions RFP

    Broader source: Energy.gov [DOE]

    PowerOptions seeks proposals from qualified and experienced renewable energy project developers interested in providing renewable energy and Renewable Energy Credit (RECs) generated from renewable energy projects located in or deliverable to the ISO-NE.

  1. Lending Program Administration Options

    Broader source: Energy.gov [DOE]

    Lending program options and brief profiles of different approaches to clean energy lending are presented here. Each profile describes a different way to structure the various elements of a lending...

  2. Runtime Tuning Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Runtime Tuning Options Runtime Tuning Options Cray MPI Environment Variables Cray and NERSC attempt to set MPI environment variable to the best defaults for the majority of applications; however, adjusting the environment variables may in some cases improve application performance or may be necessary to enable an application to run. Environment Variable Name Description Default Range Recommendations MPICH_GNI_MAX_EAGER_MSG_SIZE Controls the threshold for switching from eager to rendezvous

  3. Framework for Unified Systems Engineering and Design of Wind Plants (FUSED-Wind) cost models and case analyzer

    Energy Science and Technology Software Center (OSTI)

    2014-09-10

    Cost and case analyzer components of the FUSED-Wind software. These are small pieces of code which define interfaces between software in order to do wind plant cost of energy on the one hand and analysis of load cases for an aeroelastic code on the other.

  4. Do-it-yourself low-cost solar-hot-air-collector design book. Final report, April 1983-September 1985

    SciTech Connect (OSTI)

    Bumpus, P.; Croteau, R.

    1985-12-01

    The book contains a detailed step-by-step instruction manual on how to assemble a 4' X 8' wood collector with a domestic hot-water option. A complete material list of all components necessary to fabricate a solar hot-air-collector are included in the text. The book also contains actual performance and computer-simulated performance of a site-built solar hot-air collector.

  5. Load Leveling Battery System Costs

    Energy Science and Technology Software Center (OSTI)

    1994-10-12

    SYSPLAN evaluates capital investment in customer side of the meter load leveling battery systems. Such systems reduce the customer's monthly electrical demand charge by reducing the maximum power load supplied by the utility during the customer's peak demand. System equipment consists of a large array of batteries, a current converter, and balance of plant equipment and facilities required to support the battery and converter system. The system is installed on the customer's side of themore » meter and controlled and operated by the customer. Its economic feasibility depends largely on the customer's load profile. Load shape requirements, utility rate structures, and battery equipment cost and performance data serve as bases for determining whether a load leveling battery system is economically feasible for a particular installation. Life-cycle costs for system hardware include all costs associated with the purchase, installation, and operation of battery, converter, and balance of plant facilities and equipment. The SYSPLAN spreadsheet software is specifically designed to evaluate these costs and the reduced demand charge benefits; it completes a 20 year period life cycle cost analysis based on the battery system description and cost data. A built-in sensitivity analysis routine is also included for key battery cost parameters. The life cycle cost analysis spreadsheet is augmented by a system sizing routine to help users identify load leveling system size requirements for their facilities. The optional XSIZE system sizing spreadsheet which is included can be used to identify a range of battery system sizes that might be economically attractive. XSIZE output consisting of system operating requirements can then be passed by the temporary file SIZE to the main SYSPLAN spreadsheet.« less

  6. Central receiver solar thermal power system, Phase 1: CDRL Item 2, pilot plant preliminary design report. Volume VII. Pilot plant cost and commercial plant cost and performance

    SciTech Connect (OSTI)

    Hallet, Jr., R. W.; Gervais, R. L.

    1980-05-01

    Detailed cost and performance data for the proposed tower focus pilot plant and commercial plant are given. The baseline central receiver concept defined by the MDAC team consists of the following features: (A) an external receiver mounted on a tower, and located in a 360/sup 0/ array of sun-tracking heliostats which comprise the collector subsystem. (B) feedwater from the electrical power generation subsystem is pumped through a riser to the receiver, where the feedwater is converted to superheated steam in a single pass through the tubes of the receiver panels. (C) The steam from the receiver is routed through a downcomer to the ground and introduced to a turbine directly for expansion and generation of electricity, and/or to a thermal storage subsystem, where the steam is condensed in charging heat exchangers to heat a dual-medium oil and rock thermal storage unit (TSU). (D) Extended operation after daylight hours is facilitated by discharging the TSU to generate steam for feeding the admission port of the turbine. (E) Overall control of the system is provided by a master control unit, which handles the interactions between subsystems that take place during startup, shutdown, and transitions between operating modes. (WHK)

  7. 2016 Plan Options for Retirees

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Options 2016 Plan Options for Retirees Information for LANS retirees Contacts Retiree Insurance Providers Non-Medicare retirees HDHP plan highlights (pdf) HDHP summary of benefits...

  8. Best Practices for Controlling Capital Costs in Net Zero Energy Design and Construction- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Shanti Pless, National Renewable Energy Laboratory For net zero energy (NZE) building performance to become the norm in new commercial construction, it is necessary to demonstrate that NZE can be achieved cost effectively.

  9. Photovoltaic subsystem optimization and design tradeoff study. Final report

    SciTech Connect (OSTI)

    Stolte, W.J.

    1982-03-01

    Tradeoffs and subsystem choices are examined in photovoltaic array subfield design, power-conditioning sizing and selection, roof- and ground-mounted structure installation, energy loss, operating voltage, power conditioning cost, and subfield size. Line- and self-commutated power conditioning options are analyzed to determine the most cost-effective technology in the megawatt power range. Methods for reducing field installation of flat panels and roof mounting of intermediate load centers are discussed, including the cost of retrofit installations.

  10. Pawnee Nation Energy Option Analyses

    SciTech Connect (OSTI)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-21

    Pawnee Nation of Oklahoma Energy Option Analyses In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Description of Activities Performed The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Findings and Recommendations Due to a lack of financial incentives for renewable energy, particularly at the state level, combined mediocre renewable energy resources, renewable energy development opportunities are limited for Pawnee Nation. However, near-term potential exists for development of solar hot water at the gym, and an exterior wood-fired boiler system at the tribe’s main administrative building. Pawnee Nation should also explore options for developing LFGTE resources in collaboration with the City of Pawnee. Significant potential may also exist for development of bio-energy resources within the next decade. Pawnee Nation representatives should closely monitor

  11. Evaluation of passive solar retrofit options

    SciTech Connect (OSTI)

    Ben-David, S.; Kirchemen, C.; Martin, S.; Noll, S.; Roach, F.

    1980-01-01

    An evaluation framework has been developed which allows for the assessment of the role of passive solar retrofit in the nationwide reduction of conventional fuel use. Three types of analysis are proposed within this framework: the physical/technical capability of the present housing stock to incorporate passive solar retrofit; the economic feasibility of the application of retrofit designs; and the actual market potential or acceptance of these alternative retrofit options. Each type of analysis has specific data requirements and a series of evaluation procedures to help establish estimates of the potential for passive solar retrofit in the present housing stock. The data requirements with their respective sources and evaluation procedures for the first two types of analysis-physical/technical setting and economic feasibility, are examined. A distinction is drawn between community specific case studies and more generalized national assessments. Information derived from these three types of analysis, whether case specific or national in scope, can then be used in an evaluation of potential economic impacts. The establishment of regional economic benefits and costs werve as a measure of the merit or attractiveness of the implementation of a passive solar retrofit program.

  12. Fact #879: June 29, 2015 Greenhouse Gas Abatement Costs for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Employer-Subsidized Commuting Options - Dataset | Department of Energy 9: June 29, 2015 Greenhouse Gas Abatement Costs for Employer-Subsidized Commuting Options - Dataset Fact #879: June 29, 2015 Greenhouse Gas Abatement Costs for Employer-Subsidized Commuting Options - Dataset Excel file and dataset for Greenhouse Gas Abatement Costs for Employer-Subsidized Commuting Options fotw#879_web.xlsx (18.59 KB) More Documents & Publications Vehicle Technologies Office Fall 2015 Quarterly

  13. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    SciTech Connect (OSTI)

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  14. The hydrogen hybrid option

    SciTech Connect (OSTI)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  15. Runtime Tuning Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Runtime Tuning Options Runtime Tuning Options MPI Task Distribution on Nodes The distribution of MPI tasks on the nodes can be written to the standard output file by setting environment variable MPICH_RANK_REORDER_DISPLAY to 1. Users can control the distribution of MPI tasks on the nodes using the environment variable MPICH_RANK_REORDER_METHOD. The default task distribution in quad core mode is SMP-style placement, when the environment variable MPICH_RANK_REORDER_METHOD is set to 1. For example,

  16. Chemical, mechanical treatment options reduce hydroprocessor fouling

    SciTech Connect (OSTI)

    Groce, B.C.

    1996-01-29

    The processing of opportunity crudes and the need to meet stricter environmental regulations in the production of distillates and finished fuels have increased the benefit of the hydroprocessing unit to the refiner. With this potential for increased margins and more environmentally friendly fuel products comes increased risk of fouling in hydroprocessing units. Increased fouling can reduce unit reliability and increase maintenance and operating costs. The refiner has several options available to help minimize the fouling and maximize the unit`s profitability and flexibility. One of the two commonly selected options is to allocate capital for a mechanical solution to address a specific cause of fouling. The other option is the use of a chemical treatment program. This paper reviews the efficiency and implementation procedures for these two processes.

  17. Critical Question #3: What are the Best Options for All-Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Analysis of Air-Source Variable Speed Heat Pumps and Various Electric Water Heating Options Utilizing Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles ...

  18. Idaho's Energy Options

    SciTech Connect (OSTI)

    Robert M. Neilson

    2006-03-01

    This report, developed by the Idaho National Laboratory, is provided as an introduction to and an update of the status of technologies for the generation and use of energy. Its purpose is to provide information useful for identifying and evaluating Idaho’s energy options, and for developing and implementing Idaho’s energy direction and policies.

  19. Pathways to Low-Cost Electrochemical Energy Storage: A Comparison of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aqueous and Nonaqueous Flow Batteries - Joint Center for Energy Storage Research September 16, 2014, Research Highlights Pathways to Low-Cost Electrochemical Energy Storage: A Comparison of Aqueous and Nonaqueous Flow Batteries Comparison of available design space for aqueous and nonaqueous flow batteries to meet long term stationary storage cost goals. The nonaqueous redox flow battery technology has a potentially wider range of chemistry options but takes on new constraints of active

  20. Interim report: Waste management facilities cost information for mixed low-level waste

    SciTech Connect (OSTI)

    Feizollahi, F.; Shropshire, D.

    1994-03-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for treating alpha and nonalpha mixed low-level radioactive waste. This report contains information on twenty-seven treatment, storage, and disposal modules that can be integrated to develop total life cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of estimating data is also summarized in this report.

  1. POLICY OPTIONS FOR FCV MARKET INTRODUCTION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    K.G. Duleep Energy and Environmental Analysis, Inc. www.eea-inc.com POLICY OPTIONS FOR FCV MARKET INTRODUCTION Prepared for: Hydrogen 2010-2025 Scenario Analysis Meeting Introduction Phases Phase 1 - sales of few hundred FCVs per year. Cost of vehicles will be 5 x over average vehicle and refueling infrastructure will be in an urban area. Phase 2 - ten to twenty thousand FCVs per model and one/two models per major manufacturer. Cost of vehicles will be 2 x over average vehicle, and urban and

  2. Renewable Energy Cost Modeling: A Toolkit for Establishing Cost-Based Incentives in the United States; March 2010 -- March 2011

    SciTech Connect (OSTI)

    Gifford, J. S.; Grace, R. C.; Rickerson, W. H.

    2011-05-01

    This report is intended to serve as a resource for policymakers who wish to learn more about establishing cost-based incentives. The report will identify key renewable energy cost modeling options, highlight the policy implications of choosing one approach over the other, and present recommendations on the optimal characteristics of a model to calculate rates for cost-based incentives, feed-in tariffs (FITs), or similar policies. These recommendations will be utilized in designing the Cost of Renewable Energy Spreadsheet Tool (CREST). Three CREST models will be publicly available and capable of analyzing the cost of energy associated with solar, wind, and geothermal electricity generators. The CREST models will be developed for use by state policymakers, regulators, utilities, developers, and other stakeholders to assist them in current and future rate-setting processes for both FIT and other renewable energy incentive payment structures and policy analyses.

  3. Startup Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

  4. BOXED LUNCH OPTIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BOXED LUNCH OPTIONS Price: $12 - Sandwich Boxed Lunches (includes sandwich, pickle, kettle-cooked chips, and cookie) 1. The Cheat Lake Ham, Turkey, Bacon and Pepper Jack cheese piled high on artisan bread 2. The Suncrest Oven roasted Turkey Breast on artisan bread with smoked Gouda cheese 3. The Pierpont Bacon, Gouda Cheese, Lettuce, Tomato, Roasted Red Pepper Mayo 4. The Mylan Park Natural hickory smoked Ham, Swiss cheese on artisan bread 5. The Star City Ham, Turkey, Salami, Provolone cheese

  5. The safeguards options study

    SciTech Connect (OSTI)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D.; Olsen, A.P.; Roche, C.T.; Rudolph, R.R.; Bieber, A.M.; Lemley, J.; Filby, E.

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq`s obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state.

  6. RTGs Options for Pluto Fast Flyby Mission

    SciTech Connect (OSTI)

    Schock, Alfred

    1993-10-01

    A small spacecraft design for the Pluto Fast Flyby (PFF) Mission is under study by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration (NASA), for a possible launch as early as 1998. JPL's 1992 baseline design calls for a power source able to furnish an energy output of 3963 kWh and a power output of 69 watts(e) at the end of the 9.2-year mission. Satisfying those demands is made difficult because NASA management has set a goal of reducing the spacecraft mass from a baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for the power source. To support the ongoing NASA/JPL studies, the Department of Energy's Office of Special Applications (DOE/OSA) commissioned Fairchild Space to prepare and analyze conceptual designs of radioisotope power systems for the PFF mission. Thus far, a total of eight options employing essentially the same radioisotope heat source modules were designed and subjected to thermal, electrical, structural, and mass analyses by Fairchild. Five of these - employing thermoelectric converters - are described in the present paper, and three - employing free-piston Stirling converters - are described in the companion paper presented next. The system masses of the thermoelectric options ranged from 19.3 kg to 10.2 kg. In general, the options requiring least development are the heaviest, and the lighter options require more development with greater programmatic risk. There are four duplicate copies

  7. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    SciTech Connect (OSTI)

    Drewmark Communications; Sartor, Dale; Wilson, Mark

    2010-07-01

    High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

  8. Attachment C: Optional AIP Provisions

    Broader source: Energy.gov [DOE]

    This attachment contains sample language for a number of optional provisions that sites may choose to include or not to include in their AIPs. Optional AIP provisions are not mandatory and the...

  9. Electric Utility Rate Design Study: economic theory of marginal-cost pricing and its application by electric utilities in France and Great Britain

    SciTech Connect (OSTI)

    Westfield, F.M.

    1980-08-12

    This report (1) reviews economic theory of marginal-cost pricing; and (2) examines its applications, going back to the 1960s and before, by electric utilities in France and Great Britain. An ideal pricing system for an economy is first reviewed to clarify fairly complicated ideas of economic theory for noneconomists - the industry specialist and state regulator. The concept of ideal marginal-cost pricing as applied to electricity is then developed. Next, an overview is provided of practical issues that need to be faced when the theory is implemented. Finally, the study turns to examine how the theory has actually been interpreted and applied to electricity rate design by the French and the British. Their methods of transforming theory into practice are reviewed, illustrative tariffs that incorporate their interpretation are provided.

  10. Advanced radioisotope power source options for Pluto Express

    SciTech Connect (OSTI)

    Underwood, M.L.

    1995-12-31

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors.

  11. Final Report Providing the Design for Low-Cost Wireless Current Transducer and Electric Power Sensor Prototype

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Burghard, Brion J.; Reid, Larry D.

    2005-01-31

    This report describes the design and development of a wireless current transducer and electric power sensor prototype. The report includes annotated schematics of the power sensor circuitry and the printed circuit board. The application program used to illustrate the functionality of the wireless sensors is described in this document as well.

  12. Microsoft PowerPoint - Cost Escalation.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydroelectric Design Center Hydroelectric Design Center " " Cost Trends for Cost Trends for Hydropower Capital Hydropower Capital Replacements" Replacements" Presentation Outline ...

  13. High-Power Options for LANSCE

    SciTech Connect (OSTI)

    Garnett, Robert W.

    2011-01-01

    The LANSCE linear accelerator at Los Alamos National Laboratory has a long history of successful beam operations at 800 kW. We have recently studied options for restoration of high-power operations including approaches for increasing the performance to multi-MW levels. In this paper we will discuss the results of this study including the present limitations of the existing accelerating structures at LANSCE, and the high-voltage and RF systems that drive them. Several options will be discussed and a preferred option will be presented that will enable the first in a new generation of scientific facilities for the materials community. The emphasis of this new facility is 'Matter-Radiation Interactions in Extremes' (MaRIE) which will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges.

  14. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  15. Applying electrical utility least-cost approach to transportation planning

    SciTech Connect (OSTI)

    McCoy, G.A.; Growdon, K.; Lagerberg, B.

    1994-09-01

    Members of the energy and environmental communities believe that parallels exist between electrical utility least-cost planning and transportation planning. In particular, the Washington State Energy Strategy Committee believes that an integrated and comprehensive transportation planning process should be developed to fairly evaluate the costs of both demand-side and supply-side transportation options, establish competition between different travel modes, and select the mix of options designed to meet system goals at the lowest cost to society. Comparisons between travel modes are also required under the Intermodal Surface Transportation Efficiency Act (ISTEA). ISTEA calls for the development of procedures to compare demand management against infrastructure investment solutions and requires the consideration of efficiency, socioeconomic and environmental factors in the evaluation process. Several of the techniques and approaches used in energy least-cost planning and utility peak demand management can be incorporated into a least-cost transportation planning methodology. The concepts of avoided plants, expressing avoidable costs in levelized nominal dollars to compare projects with different on-line dates and service lives, the supply curve, and the resource stack can be directly adapted from the energy sector.

  16. Helping Policymakers Evaluate Distributed Wind Options | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Helping Policymakers Evaluate Distributed Wind Options Helping Policymakers Evaluate Distributed Wind Options April 18, 2013 - 12:00am Addthis With EERE support, eFormative Options...

  17. Fact #879: June 29, 2015 Greenhouse Gas Abatement Costs forEmployer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: June 29, 2015 Greenhouse Gas Abatement Costs for Employer-Subsidized Commuting Options Fact 879: June 29, 2015 Greenhouse Gas Abatement Costs for Employer-Subsidized Commuting ...

  18. Fact #879: June 29, 2015 Greenhouse Gas Abatement Costs forEmployer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: June 29, 2015 Greenhouse Gas Abatement Costs for Employer-Subsidized Commuting Options - Dataset Fact 879: June 29, 2015 Greenhouse Gas Abatement Costs for Employer-Subsidized ...

  19. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    SciTech Connect (OSTI)

    Sulaeman, M. Y.; Widita, R.

    2014-09-30

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of ?1.5 kV with falltime 3 ns and risetime 15 ns into a 50? load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  20. Fact #879: June 29, 2015 Greenhouse Gas Abatement Costs for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Employer-Subsidized Commuting Options | Department of Energy 9: June 29, 2015 Greenhouse Gas Abatement Costs for Employer-Subsidized Commuting Options Fact #879: June 29, 2015 Greenhouse Gas Abatement Costs for Employer-Subsidized Commuting Options Providing workplace charging is one of the more effective ways for businesses to reduce the greenhouse gas emissions of their employees' daily commute. Offering a bike purchase subsidy can be even more cost effective but may not be suitable for

  1. Study Compares Floating-Platform Options for Offshore Vertical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... deep-water vertical-axis wind turbines (VAWTs). This analysis uses a 5 MW VAWT topside design envelope created by Sandia to compare floating platform options for each turbine in ...

  2. Village power options

    SciTech Connect (OSTI)

    Lilienthal, P.

    1997-12-01

    This paper describes three different computer codes which have been written to model village power applications. The reasons which have driven the development of these codes include: the existance of limited field data; diverse applications can be modeled; models allow cost and performance comparisons; simulations generate insights into cost structures. The models which are discussed are: Hybrid2, a public code which provides detailed engineering simulations to analyze the performance of a particular configuration; HOMER - the hybrid optimization model for electric renewables - which provides economic screening for sensitivity analyses; and VIPOR the village power model - which is a network optimization model for comparing mini-grids to individual systems. Examples of the output of these codes are presented for specific applications.

  3. Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Market Transformation Fuel Cells Predictive Simulation of Engines ... Twitter Google + Vimeo Newsletter Signup SlideShare Nuclear Fuel Cycle Options Catalog ...

  4. Cost of Renewable Energy Technology Options | Open Energy Information

    Open Energy Info (EERE)

    available for the following renewable energy sources: biomass, geothermal, concentrated solar, photovoltaics and wind power. References Retrieved from "http:en.openei.orgw...

  5. Total Estimated Contract Cost: Contract Option Period: Maximum Fee

    Office of Environmental Management (EM)

    Definition and Scope Answer/Comment 1 What significant policy challenges are likely to remain unaddressed if we employ Title XIII's definition? The following points are not referencedd in EISA 1301. ・Power provider should also control the output fluctuation of renewable resources. ・The end user should have the choice of which form of power storage to be used. Certain types of energy conservation and storage could work better in different applications (e.g. not only electricity power but also

  6. Total Estimated Contract Cost: Contract Option Period: Performance

    Office of Environmental Management (EM)

    Performance Period Fee Earned FY2000 thru 2008 $102,622,325 FY2009 $12,259,719 FY2010 $35,789,418 FY2011 $24,126,240 FY2012 $24,995,209 FY2013 $6,340,762 FY2014 $16,285,867 FY2015 $35,931,000 $8,595,000 FY2016 $20,891,000 $9,310,000 FY2017 $24,849,000 FY2018 $99,100,000 FY2019 $129,700,000 Cumulative Fee $240,324,540 $595,298,540 $12,259,719 $35,789,418 $38,554,240 $41,785,209 $16,698,762 $37,117,867 Maximum Fee $595,298,540 Fee Available $102,622,325 $10,921,302,346 Completion Contract:

  7. Fast Spectrum Molten Salt Reactor Options

    SciTech Connect (OSTI)

    Gehin, Jess C; Holcomb, David Eugene; Flanagan, George F; Patton, Bruce W; Howard, Rob L; Harrison, Thomas J

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  8. A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study.

    SciTech Connect (OSTI)

    Bull, Diana L; Fowler, Matthew; Goupee, Andrew

    2014-08-01

    This analysis utilizes a 5 - MW VAWT topside design envelope created by Sandia National Laborator ies to compare floating platform options fo r each turbine in the design space. The platform designs are based on two existing designs, the OC3 Hywind spar - buoy and Principal Power's WindFloat semi - submersible. These designs are scaled using Froude - scaling relationships to determine an appropriately sized spar - buoy and semi - submersible design for each topside. Both the physical size of the required platform as well as mooring configurations are considered. Results are compared with a comparable 5 - MW HAWT in order to identify potential differences in the platform and mooring sizing between the VAWT and HAWT . The study shows that there is potential for cost savings due to reduced platform size requirements for the VAWT.

  9. AFCI Options Study

    SciTech Connect (OSTI)

    R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

    2009-09-01

    This report describes the background and framework for both organizing the discussion and providing information on the potential for nuclear energy R&D to develop alternative nuclear fuel cycles that would address the issues with the current implementations of nuclear power, including nuclear waste disposal, proliferation risk, safety, security, economics, and sustainability. The disposition of used fuel is the cause of many of the concerns, and the possible approaches to used fuel management identify a number of basic technology areas that need to be considered. The basic science in each of the technology areas is discussed, emphasizing what science is currently available, where scientific knowledge may be insufficient, and especially to identify specific areas where transformational discoveries may allow achievement of performance goals not currently attainable. These discussions lead to the wide range of technical options that have been the basis for past and current research and development on advanced nuclear fuel cycles in the United States. The results of this work are then briefly reviewed to show the extent to which such approaches are capable of addressing the issues with nuclear power, the potential for moving further, and the inherent limitations.

  10. DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS

    SciTech Connect (OSTI)

    Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

    2003-02-27

    The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost.

  11. Validation and Comparison of Carbon Sequestration Project Cost Models with Project Cost Data Obtained from the Southwest Partnership

    SciTech Connect (OSTI)

    Robert Lee; Reid Grigg; Brian McPherson

    2011-04-15

    Obtaining formal quotes and engineering conceptual designs for carbon dioxide (CO{sub 2}) sequestration sites and facilities is costly and time-consuming. Frequently, when looking at potential locations, managers, engineers and scientists are confronted with multiple options, but do not have the expertise or the information required to quickly obtain a general estimate of what the costs will be without employing an engineering firm. Several models for carbon compression, transport and/or injection have been published that are designed to aid in determining the cost of sequestration projects. A number of these models are used in this study, including models by J. Ogden, MIT's Carbon Capture and Sequestration Technologies Program Model, the Environmental Protection Agency and others. This report uses the information and data available from several projects either completed, in progress, or conceptualized by the Southwest Regional Carbon Sequestration Partnership on Carbon Sequestration (SWP) to determine the best approach to estimate a project's cost. The data presented highlights calculated versus actual costs. This data is compared to the results obtained by applying several models for each of the individual projects with actual cost. It also offers methods to systematically apply the models to future projects of a similar scale. Last, the cost risks associated with a project of this scope are discussed, along with ways that have been and could be used to mitigate these risks.

  12. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

    2001-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

  13. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo

    2002-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

  14. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect (OSTI)

    Samuel S. Tam

    2002-05-01

    The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the

  15. Design Considerations for Economically Competitive Sodium Cooled Fast Reactors

    SciTech Connect (OSTI)

    Hongbin Zhang; Haihua Zhao

    2009-05-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phénix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design.

  16. BEopt: Software for Identifying Optimal Building Designs on the Path to Zero Net Energy; Preprint

    SciTech Connect (OSTI)

    Christensen, C.; Horowitz, S.; Givler, T.; Courtney, A.; Barker, G.

    2005-04-01

    A zero net energy (ZNE) building produces as much energy on-site as it uses on an annual basis--using a grid-tied, net-metered photovoltaic (PV) system and active solar. The optimal path to ZNE extends from a base case to the ZNE building through a series of energy-saving building designs with minimal energy-related owning and operating costs. BEopt is a computer program designed to find optimal building designs along the path to ZNE. A user selects from among predefined options in various categories to specify options to be considered in the optimization. Energy savings are calculated relative to a reference. The reference can be either a user-defined base-case building or a climate-specific Building America Benchmark building automatically generated by BEopt. The user can also review and modify detailed information on all available options and the Building America Benchmark in a linked options library spreadsheet.

  17. Advanced Nuclear Fuel Cycle Options

    SciTech Connect (OSTI)

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  18. RTP as an Optional Service: It's Alive, But Is It Well?

    SciTech Connect (OSTI)

    Goldman, Charles; Barbose, Galen; Neenan, Bernie

    2006-03-10

    Economists have advocated for real-time pricing (RTP) of electricity on the basis of the gains in economic efficiency that would result from charging customers the contemporaneous marginal cost of supplying electricity instead of the average cost. In recent years, RTP has also become the subject of interest in a variety of policy contexts, including integrated resource planning initiatives, ongoing efforts to improve efficiency and reliability in competitive electricity markets, and implementation of default service in states with retail choice. Most experience with RTP has been as an optional service, that is, a self-selecting alternative to the standard utility service. By our count, approximately 70 utilities in the U.S. offered an optional RTP program at some point over the past 20 years. However, many programs are now defunct. In 2003, 47 utilities in the U.S. were still offering an optional RTP program, on either a pilot or permanent basis (see Figure 1). In addition, 10 utilities in states with retail choice currently offer RTP as the default service for large customers that are not under contract with a competitive supplier. Another two utilities have received regulatory approval to do so in the next few years. Although the results of a few optional RTP programs have been publicized, the vast majority of programs have operated in relative obscurity. To provide a wider perspective on utility and customer experience with RTP, we surveyed 43 optional RTP programs offered in 2003. We interviewed RTP program managers and other utility staff, and reviewed publicly available sources, including key regulatory documents and program evaluations. Based on this research, we identified trends related to RTP program history and outlook, program design and implementation, customer participation, and participant price response. The results are both surprising and instructive. We conclude that RTP is indeed alive but is not prospering as well it could. Thus, we offer a

  19. Urban Options Solar Greenhouse Project. Semi-annual technical progress report

    SciTech Connect (OSTI)

    Cipparone, L.

    1980-03-13

    The design changes and construction of the Urban Options Solar Greenhouse are described. The greenhouse performance and horticultural and educational activities are discussed. (MHR)

  20. Mitigation Options in Forestry, Land-Use, Change and Biomass Burning in Africa

    SciTech Connect (OSTI)

    Makundi, Willy R.

    1998-06-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are describe in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct a baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land and in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those, which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries .

  1. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    In 2015, H.B. 2941 expanded this requirement to include a rate option with a specific renewable energy resource, such as solar photovoltaics, if the Public Utilities Commission finds there is...

  2. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    Beginning January 1, 2002, each electric utility must inform its customers on a quarterly basis of the voluntary option to purchase green power. The details of each utility's program must be...

  3. FS65 Disposition Option Report

    SciTech Connect (OSTI)

    Wenz, Tracy R.

    2015-09-25

    This report outlines the options for dispositioning the MOX fuel stored in FS65 containers at LANL. Additional discussion regarding the support equipment for loading and unloading the FS65 transport containers is included at the end of the report.

  4. Low-Cost Illumination-Grade LEDs

    SciTech Connect (OSTI)

    Epler, John

    2013-08-31

    Solid State Lighting is a cost-effective, energy-conserving technology serving a rapidly expand- ing multi-billion dollar market. This program was designed to accelerate this lighting revolution by reducing the manufacturing cost of Illumination-Grade LEDs. The technical strategy was to investigate growth substrate alternatives to standard planar sapphire, select the most effective and compatible option, and demonstrate a significant increase in Lumen/$ with a marketable LED. The most obvious alternate substrate, silicon, was extensively studied in the first two years of the program. The superior thermal and mechanical properties of Si were expected to improve wavelength uniformity and hence color yield in the manufacture of high-power illumination- grade LEDs. However, improvements in efficiency and epitaxy uniformity on standard c-plane sapphire diminished the advantages of switching to Si. Furthermore, the cost of sapphire decreased significantly and the cost of processing Si devices using our thin film process was higher than expected. We concluded that GaN on Si was a viable technology but not a practical option for Philips Lumileds. Therefore in 2012 and 2013, we sought and received amendments which broadened the scope to include other substrates and extended the time of execution. Proprietary engineered substrates, off-axis (non-c-plane) sapphire, and c-plane patterned sapphire substrates (PSS) were all investigated in the final 18 months of this program. Excellent epitaxy quality was achieved on all three candidates; however we eliminated engineered substrates and non-c-plane sapphire because of their higher combined cost of substrate, device fabrication and packaging. Ultimately, by fabricating a flip-chip (FC) LED based upon c-plane PSS we attained a 42% reduction in LED manufacturing cost relative to our LUXEON Rebel product (Q1-2012). Combined with a flux gain from 85 to 102 Lm, the LUXEON Q delivered a 210% increase in Lm/$ over this time period. The

  5. Hydrogen Delivery Infrastructure Option Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery Infrastructure Option Analysis Option Analysis DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop January 25, 2005 Washington DC This presentation does not contain any proprietary or confidential information Tan-Ping Chen Nexant Jim Campbell Bhadra Grover Air Liquide Stefan Unnasch TIAX Glyn Hazelden GTI Graham Moore Chevron Matt Ringer NREL Ray Hobbs Pinnacle West 2 Presentation Outline Project Background Knowledge Collected and

  6. Factors Impacting Decommissioning Costs - 13576

    SciTech Connect (OSTI)

    Kim, Karen; McGrath, Richard

    2013-07-01

    The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

  7. Nuclear processing - a simple cost equation or a complex problem?

    SciTech Connect (OSTI)

    Banfield, Z.; Banford, A.W.; Hanson, B.C.; Scully, P.J.

    2007-07-01

    BNFL has extensive experience of nuclear processing plant from concept through to decommissioning, at all stages of the fuel cycle. Nexia Solutions (formerly BNFL's R and D Division) has always supported BNFL in development of concept plant, including the development of costed plant designs for the purpose of economic evaluation and technology selection. Having undertaken such studies over a number of years, this has enabled Nexia Solutions to develop a portfolio of costed plant designs for a broad range of nuclear processes, throughputs and technologies. This work has led to an extensive understanding of the relationship of the cost of nuclear processing plant, and how this can be impacted by scale of process, and the selection of design philosophy. The relationship has been seen to be non linear and so simplistic equations do not apply, the relationship is complex due to the variety of contributory factors. This is particularly evident when considering the scale of a process, for example how step changes in design occurs with increasing scale, how the applicability of technology options can vary with scale etc... This paper will explore the contributory factor of scale to nuclear processing plant costs. (authors)

  8. Uranium enrichment: investment options for the long term

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    The US government supplies a major portion of the enriched uranium used to fuel most of the nuclear power plants that furnish electricity in the free world. As manager of the US uranium enrichment concern, the Department of Energy (DOE) is investigating a number of technological choices to improve enrichment service and remain a significant world supplier. The Congress will ultimately select a strategy for federal investment in the uranium enrichment enterprise. A fundamental policy choice between possible future roles - that of the free world's main supplier of enrichment services, and that of a mainly domestic supplier - will underlie any investment decision the Congress makes. The technological choices are gaseous diffusion, gas centrifuge, and atomic vapor laser isotope separation (AVLIS). A base plan and four alternatives were examined by DOE and the Congressional Budget Office. In terms of total enterprise costs, Option IV, ultimately relying on advanced gas centrifuges for enrichment services, would offer the most economic approach, with costs over the full projection period totaling $123.5 billion. Option III, ultimately relying on AVLIS without gas centrifuge enrichment or gaseous diffusion, falls next in the sequence, with costs of $128.2 billion. Options I and II, involving combinations of the gas centrifuge and AVLIS technologies, follow closely with costs of $128.7 and $129.6 billion. The base plan has costs of $136.8 billion over the projection period. 1 figure, 22 tables.

  9. ECONOMIC EVALUATION OF CO2 STORAGE AND SINK ENHANCEMENT OPTIONS

    SciTech Connect (OSTI)

    Bert Bock; Richard Rhudy; Howard Herzog; Michael Klett; John Davison; Danial G. De La Torre Ugarte; Dale Simbeck

    2003-02-01

    This project developed life-cycle costs for the major technologies and practices under development for CO{sub 2} storage and sink enhancement. The technologies evaluated included options for storing captured CO{sub 2} in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of carbon sequestration in forests and croplands. The capture costs for a nominal 500 MW{sub e} integrated gasification combined cycle plant from an earlier study were combined with the storage costs from this study to allow comparison among capture and storage approaches as well as sink enhancements.

  10. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  11. Alternative Fuels Data Center: Biodiesel Equipment Options

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Equipment Options to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Equipment Options on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Equipment Options on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Equipment Options on Google Bookmark Alternative Fuels Data Center: Biodiesel Equipment Options on Delicious Rank Alternative Fuels Data Center: Biodiesel Equipment Options on Digg Find More places to share Alternative Fuels Data Center: Biodiesel

  12. NREL: State and Local Governments - Value of Solar: Program Design and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementation Considerations Value of Solar: Program Design and Implementation Considerations In the report, Value of Solar: Program Design and Implementation Considerations, policy analysts from NREL and the Solar Electric Power Association (SEPA) present the variety of value of solar (VOS) program design options and their implications within different solar market types. The study assesses the current cost competitiveness of residential solar projects in each U.S. state, under several

  13. Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Design Design Earth-sheltered homes, like the one pictured, are a unique option for efficiently designed homes. No matter the type of home you choose, energy efficient design strategies will save you money and energy. | Photo courtesy of Pamm McFadden/NREL. Earth-sheltered homes, like the one pictured, are a unique option for efficiently designed homes. No matter the type of home you choose, energy efficient design strategies will save you money and energy. | Photo courtesy of Pamm

  14. Designated Team Leader

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Design Earth-sheltered homes, like the one pictured, are a unique option for efficiently designed homes. No matter the type of home you choose, energy efficient design strategies will save you money and energy. | Photo courtesy of Pamm McFadden/NREL. Earth-sheltered homes, like the one pictured, are a unique option for efficiently designed homes. No matter the type of home you choose, energy efficient design strategies will save you money and energy. | Photo courtesy of Pamm

  15. Final Report - Hydrogen Delivery Infrastructure Options Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Hydrogen Delivery Infrastructure Options Analysis Final Report - Hydrogen Delivery Infrastructure Options Analysis This report, by the Nexant team, documents an in-depth analysis ...

  16. Energy Options Solutions | Open Energy Information

    Open Energy Info (EERE)

    Energy Options & Solutions Place: Ann Arbor, Michigan Zip: 48103 Product: Michigan-based alternative energy consultant. References: Energy Options & Solutions1 This article is a...

  17. IAAP. However, Pantex Plant Option 2

    Office of Legacy Management (LM)

    relocation to IAAP. However, Pantex Plant Option 2 provided a greater degree of ... attained for all facilities at the Pantex Plant by implementation of Option 2. Therefore, ...

  18. Memorandum, Enhanced Career Longevity and Retirement Options...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Career Longevity and Retirement Options - June 30, 2009 Memorandum, Enhanced Career Longevity and Retirement Options - June 30, 2009 June 30, 2009 On March 31, 2009 , the...

  19. Payment Options - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Payment Options Payment Options Payment by Check: Pay To: The Trustees of Princeton University Mail Checks To: Princeton University Attn: Abhishek Saha EQUAD D334 Olden Street ...

  20. Costs of Storing and Transporting Hydrogen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Costs of Storing and Transporting Hydrogen Costs of Storing and Transporting Hydrogen An analysis was performed to estimate the costs associated with storing and transporting hydrogen. These costs can be added to a hydrogen production cost to determine the total delivered cost of hydrogen. 25106.pdf (1.34 MB) More Documents & Publications Survey of the Economics of Hydrogen Technologies H2A Hydrogen Delivery Infrastructure Analysis Models and Conventional Pathway Options Analysis Results -

  1. Greenhouse gas mitigation options for Washington State

    SciTech Connect (OSTI)

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  2. 327 Building liquid waste handling options modification project plan

    SciTech Connect (OSTI)

    Ham, J.E.

    1998-03-28

    This report evaluates the modification options for handling radiological liquid waste (RLW) generated during decontamination and cleanout of the 327 Building. The overall objective of the 327 Facility Stabilization Project is to establish a passively safe and environmentally secure configuration of the 327 Facility. The issue of handling of RLW from the 327 Facility (assuming the 34O Facility is not available to accept the RLW) has been conceptually examined in at least two earlier engineering studies (Parsons 1997a and Hobart l997). Each study identified a similar preferred alternative that included modifying the 327 Facility RLWS handling systems to provide a truck load-out station, either within the confines of the facility or exterior to the facility. The alternatives also maximized the use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes. An issue discussed in each study involved the anticipated volume of the RLW stream. Estimates ranged between 113,550 and 387,500 liters in the earlier studies. During the development of the 324/327 Building Stabilization/Deactivation Project Management Plan, the lower estimate of approximately 113,550 liters was confirmed and has been adopted as the baseline for the 327 Facility RLW stream. The goal of this engineering study is to reevaluate the existing preferred alternative and select a new preferred alternative, if appropriate. Based on the new or confirmed preferred alternative, this study will also provide a conceptual design and cost estimate for required modifications to the 327 Facility to allow removal of RLWS and treatment of the RLW generated during deactivation.

  3. Hydrogen production: Overview of technology options

    SciTech Connect (OSTI)

    None, None

    2009-01-15

    Overview of technology options for hydrogen production, its challenges and research needs and next steps

  4. BPA's Costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings and Workshops Customer...

  5. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  6. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  7. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  8. Capital and operating cost estimates. Volume I. Preliminary design and assessment of a 12,500 BPD coal-to-methanol-to-gasoline plant. [Grace C-M-G Plant, Henderson County, Kentucky

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    This Deliverable No. 18b - Capital and Operating Cost Estimates includes a detailed presentation of the 12,500 BPD coal-to-methanol-to-gasoline plant from the standpoint of capital, preoperations, start-up and operations cost estimation. The base capital cost estimate in June 1982 dollars was prepared by the Ralph M. Parsons Company under the direction of Grace. The escalated capital cost estimate as well as separate estimates for preoperations, startup and operations activities were developed by Grace. The deliverable consists of four volumes. Volume I contains details of methodology used in developing the capital cost estimate, summary information on a base June 1982 capital cost, details of the escalated capital cost estimate and separate sections devoted to preoperations, start-up, and operations cost. The base estimate is supported by detailed information in Volumes II, III and IV. The degree of detail for some units was constrained due to proprietary data. Attempts have been made to exhibit the estimating methodology by including data on individual equipment pricing. Proprietary details are available for inspection upon execution of nondisclosure and/or secrecy agreements with the licensors to whom the data is proprietary. Details of factoring certain pieces of equipment and/or entire modules or units from the 50,000 BPD capital estimate are also included. In the case of the escalated capital estimate, Grace has chosen to include a sensitivity analysis which allows for ready assessment of impacts of escalation rates (inflation), contingency allowances and the construction interest financing rates on the escalated capital cost. Each of the estimates associated with bringing the plant to commercial production rates has as a basis the schedule and engineering documentation found in Deliverable No. 14b - Process Engineering and Mechanical Design Report, No. 28b - Staffing Plans, No. 31b - Construction Plan, and No. 33b - Startup and Operation Plan.

  9. Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint 34851.pdf (366.26 KB) More ...

  10. Design of Electric Drive Vehicle Batteries for Long Life and Low Cost: Robustness to Geographic and Consumer-Usage Variation (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Markel, T.; Kim, G. H.; Pesaran, A.

    2010-10-01

    This presentation describes a battery optimization and trade-off analysis for Li-ion batteries used in EVs and PHEVs to extend their life and/or reduce cost.

  11. A review of nuclear fuel cycle options for developing nations

    SciTech Connect (OSTI)

    Harrison, R.K.; Scopatz, A.M.; Ernesti, M.

    2007-07-01

    A study of several nuclear reactor and fuel cycle options for developing nations was performed. All reactor choices were considered under a GNEP framework. Two advanced alternative reactor types, a nuclear battery-type reactor and a fuel reprocessing fast reactor were examined and compared with a conventional Generation III+ LWR reactor. The burn of nuclear fuel was simulated using ORIGEN 2.2 for each reactor type and the resulting information was used to compare the options in terms of waste produced, waste quality and repository impact. The ORIGEN data was also used to evaluate the economics of the fuel cycles using unit costs, discount rates and present value functions with the material balances. The comparison of the fuel cycles and reactors developed in this work provides a basis for the evaluation of subsidy programs and cost-benefit comparisons for various reactor parameters such as repository impact and proliferation risk versus economic considerations. (authors)

  12. Transmission line capital costs

    SciTech Connect (OSTI)

    Hughes, K.R.; Brown, D.R.

    1995-05-01

    The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

  13. Wastewater and sludge control-technology options for synfuels industries

    SciTech Connect (OSTI)

    Castaldi, F.J.; Harrison, W.; Ford, D.L.

    1981-02-01

    The options examined were those of zero discharge, partial water reuse with restricted discharge of treated effluents, and unrestricted discharge of treated effluents. Analysis of cost data and performance-analyses data for several candidate secondary-wastewater-treatment unit processes indicated that combined activated-sludge/powdered-activated-carbon (AS/PAC) treatment incorporating wet-air-oxidation carbon regeneration is the most cost-effective control technology available for the removal of organic material from slagging, fixed-bed process wastewaters. Bench-scale treatability and organic-constituent removal studies conducted on process quench waters from a pilot-scale, slagging, fixed-bed gasifer using lignite as feedstock indicated that solvent extraction followed by AS/PAC treatment reduces levels of extractable and chromatographable organics to less than 1 ..mu..g/L in the final effluent. Levels of conventional pollutants also were effectively reduced by AS/PAC to the minimum water-quality standards for most receiving waters. The most favored and most cost-effective treatment option is unrestricted discharge of treated effluents with ultimate disposal of biosludges and landfilling of gasifier ash and slag. This option requires a capital expenditure of $8,260,000 and an annual net operating cost of $2,869,000 in 1978 dollars, exclusive of slag disposal. The net energy requirement of 19.6 x 10/sup 6/ kWh/year, or 15.3 kWh/1000 gal treated, is less than 6% of the equivalent energy demand associated with the zero-discharge option.

  14. Depleted uranium disposal options evaluation

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  15. Pawnee Nation - Energy Options Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE First Steps Project DOE Tribal Program Review November 8, 2007 Kevin Cooney Summit Blue Consulting, LLC kcooney@summitblue.com 720-564-1130 Kelton Kersey Pawnee Nation kkersey@pawneenation.org (918) 762-3621 Carolyn Stewart Red Mountain Tribal Energy cstewart@redmtntribalenergy.com (602) 516-7540 1 Overview of Presentation * Background * Project Objectives * Activities Performed * Renewable Energy Resource Development Opportunities * Electric Utility Options * Energy Efficiency

  16. Pawnee Nation - Energy Options Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Oklahoma DOE First Steps Project DOE Tribal Program Review November 20, 2008 Overview of Presentation  Background  Project Objectives  Activities Performed  Renewable Energy Resource Development Opportunities  Electric Utility Options  Energy Efficiency Opportunities  Key Findings and Recommendations Background  Land:  Tribe-owned lands checker-board within the boundaries  Existing Buildings:  Limited housing exists on tribal lands. Housing was built in 1950s.

  17. Urban Options Solar Greenhouse Demonstration Project. Final report

    SciTech Connect (OSTI)

    Cipparone, L.

    1980-10-15

    The following are included: the design process, construction, thermal performance, horticulture, educational activities, and future plans. Included in appendices are: greenhouse blueprints, insulating curtain details, workshop schedules, sample data forms, summary of performance calculations on the Urban Options Solar Greenhouse, data on vegetable production, publications, news articles on th Solar Greenhouse Project, and the financial statement. (MHR)

  18. SOLCOST - Version 3. 0. Solar energy design program for non-thermal specialists

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The SOLCOST solar energy design program is a public domain computerized design tool intended for use by non-thermal specialists to size solar systems with a methodology based on life cycle cost. An overview of SOLCOST capabilities and options is presented. A detailed guide to the SOLCOST input parameters is included. Sample problems showing typical imput decks and resulting SOLCOST output sheets are given. Details of different parts of the analysis are appended. (MHR)

  19. Electricity Generation Cost Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration ofmore » a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax

  20. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    SciTech Connect (OSTI)

    Schock, Alfred

    2012-01-19

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 2 copies in the file.

  1. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    SciTech Connect (OSTI)

    Schock, Alfred

    1993-10-01

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 5 copies in the file.

  2. Yearly Energy Costs for Buildings

    Energy Science and Technology Software Center (OSTI)

    1991-03-20

    COSTSAFR3.0 generates a set of compliance forms which will be attached to housing Requests for Proposals (RFPs) issued by Departments or Agencies of the Federal Government. The compliance forms provide a uniform method for estimating the total yearly energy cost for each proposal. COSTSAFR3.0 analyzes specific housing projects at a given site, using alternative fuel types, and considering alternative housing types. The program is designed around the concept of minimizing overall costs through energy conservationmore » design, including first cost and future utility costs, and estabilishes a standard design to which proposed housing designs are compared. It provides a point table for each housing type that can be used to determine whether a proposed design meets the standard and how a design can be modified to meet the standard.« less

  3. Climate Financing Options | Open Energy Information

    Open Energy Info (EERE)

    Guidemanual, Training materials Website: www.climatefinanceoptions.orgcfo Language: English References: Climate Finance Options1 New climate finance tool for...

  4. Pilot Application to Nuclear Fuel Cycle Options

    Office of Energy Efficiency and Renewable Energy (EERE)

    A Screening Method for Guiding R&D Decisions: Pilot Application to Screen Nuclear Fuel Cycle Options

  5. SRF cavities for CW option of Project X Linac

    SciTech Connect (OSTI)

    Solyak, N.; Gonin, I.; Khabiboulline, T.; Lunin, A.; Perunov, N.; Yakovlev, V.; /Fermilab

    2009-09-01

    Alternative option of Project X is based on the CW SC 2GeV Linac with the average current 1mA. Possible option of the CW Linac considered in the paper includes low energy part consisted of a few families SC Spoke cavities (from 2.5 MeV to 466 MeV) and high energy part consisted of 2 types of elliptical cavities (v/c=0.81 and v/c=1). Requirements and designed parameters of cavities are considered.

  6. Hydrogen Production Infrastructure Options Analysis

    Broader source: Energy.gov (indexed) [DOE]

    Presentation on hydrogen pathway cost distributions presented January 25, 2006. wkshp_storage_uihlein.pdf (189.04 KB) More Documents & Publications Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Natural Gas Imports and Exports First Quarter Report 2016 Pathway and Resource Overview Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios | Department of Energy

    This document reports the

  7. Options To Cleanup Site-wide Vadose Zone Contamination At The Hanford Site, WA, State

    SciTech Connect (OSTI)

    Goswami, D. [Ph.D, and John Price, Nuclear Waste Program, Washington State Department of Ecology, Richland, WA (United States)

    2008-07-01

    The U.S. Department of Energy (DOE) Hanford Site in south central Washington State lies along the Columbia River and is one of DOE's largest legacy waste management sites. Enormous radionuclide and chemical inventories exist below-ground. These include Resource Conservation and Recovery Act (RCRA) storage facilities where hazardous and radioactive contaminants were discharged and leaked to the soil surface and to the deep vadose zone and groundwater. The vadose zone is also contaminated from facilities regulated by the RCRA and Comprehensive Environmental Response Compensation and Liability Act (CERCLA) Act. Hanford now contains as much as 28,300 cubic meters of soil contaminated with radionuclides from liquid wastes released near processing facilities. The Hanford Federal Facility Agreement and Consent Order, Tri-Party Agreement (TPA) has set the completion of the cleanup of these sites by 2024. There are numerous technical and regulatory challenges to cleanup of the vadose zone at the Hanford site. This paper attempts to identify the categories of deep vadose zone problem and identifies a few possible regulatory options to clean up the site under the mix of state and federal regulatory authorities. There are four major categories of vadose contamination areas at the Hanford Site. The first is laterally extensive with intermediate depth (ground surface to about 45 meters depth) mostly related to high volume effluent discharge into cribs, ponds and ditches of designated CERCLA facilities. The second is dominated by laterally less extensive mostly related to leaks from RCRA tank farms. The later contamination is often commingled at depth with wastes from adjacent CERCLA facilities. The third category is from the high volume CERCLA facilities extending from the surface to more than 60 meters below ground. Contamination from the later category crosses the entire thickness of the vadose zone and reached groundwater. The fourth category is the lower volume waste sites

  8. Hydrogen Delivery Options and Issues

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Options and Issues Mark Paster DOE August, 2006 Scope * From the end point of central or distributed production (300 psi H2) to and including the dispenser at a refueling station or stationary power site - GH2 Pipelines and Trucks, LH2 Trucks, Carriers <$1.00/kg of Hydrogen by 2017 Hydrogen Delivery H2 Delivery Current Status * Technology - GH2 Tube Trailers: ~340 kg, ~2600 psi - LH2 Trucks: ~3900 kg - Pipelines: up to 1500 psi (~630 miles in the U.S.) - Refueling Site Operations

  9. Characterization of options and their analysis requirements for the long-term management of depleted uranium hexafluoride

    SciTech Connect (OSTI)

    Dubrin, J.W.; Rosen, R.S.; Zoller, J.N.; Harri, J.W.; Schwertz, N.L.

    1995-12-01

    The Department of Energy (DOE) is examining alternative strategies for the long-term management of depleted uranium hexafluoride (UF{sub 6}) currently stored at the gaseous diffusion plants at Portsmouth, Ohio, and Paducah, Kentucky, and on the Oak Ridge Reservation in Oak Ridge, Tennessee. This paper describes the methodology for the comprehensive and ongoing technical analysis of the options being considered. An overview of these options, along with several of the suboptions being considered, is presented. The long-term management strategy alternatives fall into three broad categories: use, storage, or disposal. Conversion of the depleted UF6 to another form such as oxide or metal is needed to implement most of these alternatives. Likewise, transportation of materials is an integral part of constructing the complete pathway between the current storage condition and ultimate disposition. The analysis of options includes development of pre-conceptual designs; estimates of effluents, wastes, and emissions; specification of resource requirements; and preliminary hazards assessments. The results of this analysis will assist DOE in selecting a strategy by providing the engineering information necessary to evaluate the environmental impacts and costs of implementing the management strategy alternatives.

  10. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    SciTech Connect (OSTI)

    Sheldon Kramer

    2003-09-01

    This project developed optimized designs and cost estimates for several coal and petroleum coke IGCC coproduction projects that produced hydrogen, industrial grade steam, and hydrocarbon liquid fuel precursors in addition to power. The as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project was the starting point for this study that was performed by Bechtel, Global Energy and Nexant under Department of Energy contract DE-AC26-99FT40342. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This non-optimized plant has a thermal efficiency to power of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW.1 This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for