National Library of Energy BETA

Sample records for design least-cost hybrid

  1. Least cost options for life extension

    SciTech Connect (OSTI)

    Davis, F.; Bradaric, M.

    1995-12-01

    Rehabilitation of existing electric generating capacity offers one of the most cost-effective ways of meeting near-term power needs in many Eastern and Central European countries. In particular, the uncertainty associated with other supply sources and severe capital constraints tends to favor investments which maximize the utilization of existing fossil-fired equipment. However, it is critical that least-cost planning principles, including the consideration of environmental impacts, be applied to the economic analysis of rehabilitation options. This paper draws on Bechtel`s experience in applying least-cost planning to plant rehabilitation studies in Bulgaria, Romania and Slovakia. The examples provided illustrate the importance of least-cost planning and the effect of the value placed on environmental emissions.

  2. Least-cost utility planning consumer participation manual. [Final report

    SciTech Connect (OSTI)

    Mitchell, C.; Wellinghoff, J.; Goldberg, F.

    1989-12-31

    This manual is designed to provide guidance to state consumer advocates and other state consumer groups interested in either initiating and/or participating in an Least-Cost Utility Planning (LCUP) process in their state. Least cost utility planning examined primarily as a regulatory framework to be implemented by an appropriate state authority -- usually the public utility commission -- for the benefit of the state`s citizens and electric utility customers. LCUP is also a planning process to be used by investor owned and public utilities to select, support and justify future expenditures in resource additions. This manual is designed as a ``How-To`` manual for implementing and participating in a statewide LCUP process. Its goal is to guide the reader through the LCUP maze so that meaningful, forward-looking, and cost minimizing electric utility planning can be initiated and sustained in your state.

  3. Least-cost utility planning consumer participation manual

    SciTech Connect (OSTI)

    Mitchell, C.; Wellinghoff, J.; Goldberg, F.

    1989-01-01

    This manual is designed to provide guidance to state consumer advocates and other state consumer groups interested in either initiating and/or participating in an Least-Cost Utility Planning (LCUP) process in their state. Least cost utility planning examined primarily as a regulatory framework to be implemented by an appropriate state authority -- usually the public utility commission -- for the benefit of the state's citizens and electric utility customers. LCUP is also a planning process to be used by investor owned and public utilities to select, support and justify future expenditures in resource additions. This manual is designed as a How-To'' manual for implementing and participating in a statewide LCUP process. Its goal is to guide the reader through the LCUP maze so that meaningful, forward-looking, and cost minimizing electric utility planning can be initiated and sustained in your state.

  4. Applying electrical utility least-cost approach to transportation planning

    SciTech Connect (OSTI)

    McCoy, G.A.; Growdon, K.; Lagerberg, B.

    1994-09-01

    Members of the energy and environmental communities believe that parallels exist between electrical utility least-cost planning and transportation planning. In particular, the Washington State Energy Strategy Committee believes that an integrated and comprehensive transportation planning process should be developed to fairly evaluate the costs of both demand-side and supply-side transportation options, establish competition between different travel modes, and select the mix of options designed to meet system goals at the lowest cost to society. Comparisons between travel modes are also required under the Intermodal Surface Transportation Efficiency Act (ISTEA). ISTEA calls for the development of procedures to compare demand management against infrastructure investment solutions and requires the consideration of efficiency, socioeconomic and environmental factors in the evaluation process. Several of the techniques and approaches used in energy least-cost planning and utility peak demand management can be incorporated into a least-cost transportation planning methodology. The concepts of avoided plants, expressing avoidable costs in levelized nominal dollars to compare projects with different on-line dates and service lives, the supply curve, and the resource stack can be directly adapted from the energy sector.

  5. Asia Least-Cost Greenhouse Gas Abatement Study | Open Energy...

    Open Energy Info (EERE)

    Gas Abatement Study Jump to: navigation, search Name Asia Least-Cost Greenhouse Gas Abatement Study (ALGAS) AgencyCompany Organization Global Environment Facility,...

  6. Gas option: America's least-cost energy strategy

    SciTech Connect (OSTI)

    Lawrence, G.H.

    1980-05-17

    Public energy policy which acknowledges the gas option as having significant potential will increase supply incentives while decreasing demand restraints. The arguments developed by the Mellon Institute and others confirm the need to reject the Title II incremental pricing and the need to implement the Building Energy Performance Standards (BEPS). Positive evidence that proved reserves are higher than was thought has prompted the gas industry to fight incremental pricing as a barrier to a least-cost national energy strategy. BEPS, on the other hand, encourages more efficient use without eliminating industrial use. (DCK)

  7. A municipal guide to least cost utility planning

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The recent track record of ``traditional`` electricity planning, which entails selection of supply side resources to meet forecasted demand, has not been good. There are numerous examples of utilities incorrectly forecasting demand and over-building generating capacity while others underestimated growth and have had to cut demand and find alternate power sources to avoid outages. A potential solution to this problem is the continuing development of Least Cost Utility Plannning (LCUP). Regulatory commissions, consumer advocates and utilities are increasingly relying an LCUP as the most responsible way to avoid construction of new capacity and alleviate anticipated shortages caused by cancellation of construction projects, load growth, or natural replacement of aging capacity. The purpose of this report is to provide municipalities a starting point for evaluating their servicing utilities or states` least cost plan. This was accomplished by: Identifying key issues in LCUP; reviewing examples of the collaborative and classic approaches to LCUP in Illinois, California, New York State and Michigan; cataloging municipal authorities and strategies which can influence or support LCUP activities. Results of the project indicate that through a basic understanding of LCUP processes and issues, municipalities will be in a better position to influence plans or, if necessary, intervene in regulatory proceedings where plans are adopted. Constraints to municipal involvement in LCUP include statutory limitations, resource constraints, and a lack of knowledge of indirect authorities that support the LCUP process.

  8. A municipal guide to least cost utility planning

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The recent track record of traditional'' electricity planning, which entails selection of supply side resources to meet forecasted demand, has not been good. There are numerous examples of utilities incorrectly forecasting demand and over-building generating capacity while others underestimated growth and have had to cut demand and find alternate power sources to avoid outages. A potential solution to this problem is the continuing development of Least Cost Utility Plannning (LCUP). Regulatory commissions, consumer advocates and utilities are increasingly relying an LCUP as the most responsible way to avoid construction of new capacity and alleviate anticipated shortages caused by cancellation of construction projects, load growth, or natural replacement of aging capacity. The purpose of this report is to provide municipalities a starting point for evaluating their servicing utilities or states' least cost plan. This was accomplished by: Identifying key issues in LCUP; reviewing examples of the collaborative and classic approaches to LCUP in Illinois, California, New York State and Michigan; cataloging municipal authorities and strategies which can influence or support LCUP activities. Results of the project indicate that through a basic understanding of LCUP processes and issues, municipalities will be in a better position to influence plans or, if necessary, intervene in regulatory proceedings where plans are adopted. Constraints to municipal involvement in LCUP include statutory limitations, resource constraints, and a lack of knowledge of indirect authorities that support the LCUP process.

  9. Lagging in least-cost planning: Not as far along as we thought

    SciTech Connect (OSTI)

    Mitchell, C.

    1989-12-01

    A recent survey of least-cost planning among the states reveals a different and less optimistic view than a prior industry effort. Consequences of the difference are important. An Electric Power Research Institute (EPRI) report in December 1988, attempted to identify and rank the status of least-cost utility planning (LCUP) in the U.S. An independent review indicated that the report was not particularly useful for evaluating the current status of LCUP because it failed to identify the key procedural and substantive components of a full featured process. The article exams the ranking systems of the two surveys. The wide divergence between the surveys indicates there is still some confusion and misunderstanding about what LCUP means. 1 fig.

  10. Technology choice in a least-cost expansion analysis framework: Implications for state regulators

    SciTech Connect (OSTI)

    Guziel, K.A.; South, D.W.

    1990-01-01

    It is inevitable that new power plants will need to be constructed in the near future; however, it is unclear which technologies will be selected for these new plants. In a study for the US Department of Energy, the impacts of fuel prices, length of the planning period, and the characteristics of the generating system were examined for their influence on technology choice in 10 representative power pools. It was determined that natural gas combined-cycle technology was generally preferred for base-load and intermediate/cycling capacity when gas prices are low and the planning period is short (10 years). Integrated coal gasification combined-cycle plants were selected to serve most base-load requirements under other conditions. One aspect often overlooked in making a least-cost technology choice is system reliability: nonoptimal technology choices call be made if alternative expansion plans do not have the same level of reliability when discounted system costs are compared. Utilities have become capital averse due to a multitude of regulatory, market, and supply issues. Utilities are looking at natural gas technologies, since they offer rapid construction/deployment, low capital investment, and higher availability than coal-fired technologies. Of concern to state regulators is how to evaluate a least-cost plan. Key parameters studied were based on the following: (1) What is the impact of alternative gas projections on technology choice (2) What influence does the planning horizon (10 versus 30 years) have on technology choice (3) How important are existing system characteristics (e.g., mix of technologies, operating costs, load shape) on technology choice This paper summarizes the analysis framework and presents results for two power pools: Power Pool 1, the American Electric Power (AEP) service territory, and Power Pool 16, with all the utilities in Florida. 7 refs., 17 figs., 2 tabs. (JF)

  11. Geothermal/Solar Hybrid Designs: Use of Geothermal Energy for...

    Office of Scientific and Technical Information (OSTI)

    GeothermalSolar Hybrid Designs: Use of Geothermal Energy for CSP Feedwater Heating Citation Details In-Document Search Title: GeothermalSolar Hybrid Designs: Use of Geothermal ...

  12. COMPLEAT (Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies): A planning tool for publicly owned electric utilities. [Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies (Compleat)

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    COMPLEAT takes its name, as an acronym, from Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies. It is an electric utility planning model designed for use principally by publicly owned electric utilities and agencies serving such utilities. As a model, COMPLEAT is significantly more full-featured and complex than called out in APPA's original plan and proposal to DOE. The additional complexity grew out of a series of discussions early in the development schedule, in which it became clear to APPA staff and advisors that the simplicity characterizing the original plan, while highly desirable in terms of utility applications, was not achievable if practical utility problems were to be addressed. The project teams settled on Energy 20/20, an existing model developed by Dr. George Backus of Policy Assessment Associates, as the best candidate for the kinds of modifications and extensions that would be required. The remainder of the project effort was devoted to designing specific input data files, output files, and user screens and to writing and testing the compute programs that would properly implement the desired features around Energy 20/20 as a core program. This report presents in outline form, the features and user interface of COMPLEAT.

  13. Review of Jamaica Public Service Company, Ltd. least-cost expansion plan.

    SciTech Connect (OSTI)

    Koritarov, V.; Buehring, W.; Cirillo, R.; Decision and Information Sciences

    2008-02-28

    Argonne National Laboratory has been asked to review the least-cost expansion plan (LCEP) of the Jamaica Public Service Company, Ltd. (JPSCo). The material that has been initially provided to Argonne included: (1) An electronic copy of the data and results from JPSCo's running the WASP electric system expansion planning model, (2) Approximately 20 pages of a document 'JPSCo Generation Expansion Plan', marked 'DRAFT 002', date unknown, and (3) The report 'JPSCo Least Cost Generation Expansion Plans, (1999-2009)', January 1999. It was noticed that the 20 pages from the 'DRAFT 002' document were different from the January 1999 report. An explanation was provided to Argonne that the excerpt was from an earlier draft and that the review should focus on the January 1999 report. Further, the electronic copy of the WASP case did not correspond to either the January 1999 report or to the 20-page excerpt. Again, the reason for these discrepancies was that the WASP case provided to Argonne was an earlier case and not the final one that was presented in the report. Based on the review of the available material, Argonne experts have prepared and submitted to the National Investment Bank of Jamaica (NIBJ) a preliminary draft report containing the initial findings, comments, questions and observations. As many of the comments and questions raised in the preliminary review needed to be discussed with the appropriate staff of JPSCo and other Jamaican experts, a 3-day mission to Jamaica was carried out by one Argonne expert (V. Koritarov) in the period July 20-23, 1999. Besides JPSCo experts, the discussions and the review of the LCEP during the mission included several experts from NIBJ, Ministry of Energy, and the Petroleum Corporation of Jamaica. Mr. Koritarov also worked with the JPSCo technical staff to reconstruct the WASP base case that was used as a basis for the January 1999 report. The first step was to verify that the results obtained after the resimulation of this case

  14. Design and Simulation of Hybridization Experiments

    Energy Science and Technology Software Center (OSTI)

    1995-11-28

    DB EXP DESIGN is a suite of three UNIX shell-like programs, DWC which computes oligomer composition of DNA texts using directed acyclic word data structures; DWO, which simulates hybridization experiments; and DMI, which calculates the information contenet of individual probes, their mutual information content, and their joint information content through estimation of Markov trees.

  15. DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES

    SciTech Connect (OSTI)

    Ashish Gupta

    2002-06-01

    A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

  16. Energy Efficiency and Least-Cost Planning: The Best Way to Save Money and Reduce Energy Use in Hawaii

    SciTech Connect (OSTI)

    Mowris, Robert J.

    1990-05-21

    If the 500 MW geothermal project on the Big Island of Hawaii is developed as planned, the Wao Kele O Puna rain forest will be severely damaged or destroyed. If this happens the State will lose one of its most precious resources. It would be tragic for this to happen, since on a least-cost basis, the geothermal project does not make economic sense. Improving energy efficiency in the commercial and residential sectors of Hawaii can save about 500 MW of power at a cost of $700 million.

  17. A Hybrid Design of Project-X

    SciTech Connect (OSTI)

    Chou, W.; /Fermilab

    2009-05-01

    Project-X is a leading candidate of the next major accelerator construction project at Fermilab. The mission need of Project-X is to establish an intensity frontier for particle physics research, or more precisely, to build a multi-MW proton source for neutrino and other particle studies. Coupled with an upgraded Main Injector (MI) and Recycler, an 8 GeV superconducting RF (SRF) H- linac meets this need. However, a more cost effective approach would be a hybrid design, namely, a combination of a 2 GeV SRF linac and an 8 GeV rapid cycling synchrotron (RCS) in lieu of an 8 GeV SRF linac. This alternative design also meets the mission need but at a lower cost since a synchrotron is cheaper than a SRF linac. It retains the ability to use a 2 GeV SRF linac for ILC technology development. It reuses the existing Debuncher enclosure and Booster RF. The transport line of 2 GeV H- particles is shorter than the present 8 GeV design since stronger bending magnets can be used. The blackbody radiation stripping of H- particles will no longer be a problem and the requirement of a cryogenic beam screen can be eliminated. The efficiency of stripping foil is higher and injection loss (kJ) will be reduced by a factor of 4. This paper introduces this alternative design and describes briefly the major components in the design.

  18. Development of Design and Simulation Tool for Hybrid Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Development of Design and Simulation Tool for Hybrid Geothermal Heat Pump System This project will expand Expand eQUEST, a building energy analysis software with latest ...

  19. Technology choice in a least-cost expansion analysis framework: The impact of gas prices, planning horizon, and system characteristics

    SciTech Connect (OSTI)

    Guziel, K.A.; South, D.W.

    1990-01-01

    The current outlook for new capacity addition by electric utilities is uncertain and tenuous. Regardless of the amount, it is inevitable that new capacity will be needed in the 1990s and beyond. The fundamental question about the addition capacity requirements centers on technology choice and the factors influencing the decision process. We examined technology choices in 10 representative power pools with a dynamic optimization expansion model, the Wien Automatic System Planning (WASP) Package. These 10 power pools were determined to be representative on the basis of a cluster analysis conducted on all 26 power pools in the United States. A least-cost expansion plan was determined for each power pool with three candidate technologies--natural gas combustion turbine (CT), natural gas combined cycle (NGCC), and integrated gasification combined cycle (IGCC)--three alternative gas price tracks, and two planning horizons between the years 1995 and 2020. This paper summarizes the analysis framework and presents results for Power Pool 1, the American Electric Power (AEP) service territory. 7 refs., 9 figs., 1 tab.

  20. Technology choice in a least-cost expansion analysis framework: Effects of gas price, planning period, and system characteristics

    SciTech Connect (OSTI)

    Guziel, K.A.; South, D.W.; Bhatarakamol, S.; Poch, L.A.

    1990-04-01

    The current outlook for new capacity additions by electric utilities is uncertain and tenuous. The fundamental question about the additional capacity requirements center on technology choice and the factors influencing the decision process. Instead of building capital-intensive power plants, utilities have begun relying on natural gas technologies, which permit rapid construction and deployment and low capital investment. Of concern to policymakers and utility planners are the following questions: (1) What is the impact of alternative gas price projections on technology choice (2) What influence does the planning horizon have on technology choice (3) How important are existing system characteristics on technology choice (4) What effect does capital cost, when combined with other technology characteristics in a capacity expansion framework, have on technology choice In this study Argonne National Laboratory examined the impact of these concerns on technology choices in 10 representative power pools with a dynamic optimization expansion model, the Wien Automatic System Planning Package (WASP). At least-cost expansion plan was determined for each power pool with three candidate technologies--natural gas combustion turbine technology (GT), natural gas combined-cycle technology (NGCC), and integrated gasification combined-cycle technology (IGCC)--three alternative fuel price tracks, and two planning periods (10-yr versus 30-yr optimization) between the years 1995 and 2025. The three fuel price tracks represented scenarios for low, medium, and high gas prices. Sensitivity analyses were conducted on IGCC capital cost and unserved energy costs. 21 refs., 79 figs., 21 tabs.

  1. Preconceptual design and assessment of a Tokamak Hybrid Reactor

    SciTech Connect (OSTI)

    Teofilo, V.L.; Leonard, B.R. Jr.; Aase, D.T.

    1980-09-01

    The preconceptual design of a commercial Tokamak Hybrid Reactor (THR) power plant has been performed. The tokamak fusion driver for this hybrid is operated in the ignition mode. The D-T fusion plasma, which produces 1140 MW of power, has a major radius of 5.4 m and a minor radius of 1.0 m with an elongation of 2.0. Double null poloidal divertors are assumed for impurity control. The confining toroidal field is maintained by D-shaped Nb/sub 3/Sn superconducting magnets with a maximum field of 12T at the coil. Three blankets with four associated fuel cycle alternatives have been combined with the ignited tokamak fusion driver. The engineering, material, and balance of plant design requirements for the THR are briefly described. Estimates of the capital, operating and maintenance, and fuel cycle costs have been made for the various driver/blanket combinations and an assessment of the market penetrability of hybrid systems is presented. An analysis has been made of the nonproliferation aspects of the hybrid and its associated fuel cycles relative to fission reactors. The current and required level of technology for both the fusion and fission components of the hybrid system has been reviewed. Licensing hybrid systems is also considered.

  2. Analysis of Residential System Strategies Targeting Least-Cost Solutions Leading to Net Zero Energy Homes: Preprint

    SciTech Connect (OSTI)

    Anderson, R.; Christensen, C.; Horowitz, S.

    2006-04-01

    The U. S. Department of Energy's Building America residential systems research project uses an analysis-based system research approach to identify research priorities, identify technology gaps and opportunities, establish a consistent basis to track research progress, and identify system solutions that are most likely to succeed as the initial targets for residential system research projects. This report describes the analysis approach used by the program to determine the most cost-effective pathways to achieve whole-house energy-savings goals. This report also provides an overview of design/technology strategies leading to net zero energy buildings as the basis for analysis of future residential system performance.

  3. Series hybrid vehicles and optimized hydrogen engine design

    SciTech Connect (OSTI)

    Smith, J.R.; Aceves, S.; Van Blarigan, P.

    1995-05-10

    Lawrence Livermore, Sandia Livermore and Los Alamos National Laboratories have a joint project to develop an optimized hydrogen fueled engine for series hybrid automobiles. The major divisions of responsibility are: system analysis, engine design and kinetics modeling by LLNL; performance and emission testing, and friction reduction by SNL; computational fluid mechanics and combustion modeling by LANL. This project is a component of the Department of Energy, Office of Utility Technology, National Hydrogen Program. We report here on the progress on system analysis and preliminary engine testing. We have done system studies of series hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. The impact of various on-board storage options on fuel economy are evaluated. Experiments with an available engine at the Sandia Combustion Research Facility demonstrated NO{sub x} emissions of 10 to 20 ppm at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid vehicle simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppm to meet the 0.2 g/mile California Air Resources Board ULEV or Federal Tier II emissions regulations. We have designed and fabricated a first generation optimized hydrogen engine head for use on an existing single cylinder Onan engine. This head currently features 14.8:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses.

  4. Lower hybrid system design for the Tokamak physics experiment

    SciTech Connect (OSTI)

    Goranson, P.L.; Conner, D.L.; Swain, D.W.; Yugo, J.J.; Bernabei, S.; Greenough, N.

    1995-12-31

    The lower hybrid (LH) launcher configuration has been redesigned to integrate the functions of the vertical four-way power splitter and the front waveguide array (front array). This permits 256 waveguide channels to be fed by only 64 waveguides at the vacuum window interface. The resulting configuration is a more compact coupler, which incorporates the simplicity of a multijunction coupler while preserving the spectral flexibility of a conventional lower hybrid launcher. Other spin-offs of the redesign are reduction in thermal incompatibility between the front array and vacuum windows, improved maintainability, in situ vacuum window replacement, a reduced number of radio frequency (rf) connections, and a weight reduction of 7300 kg. There should be a significant cost reduction as well. Issues associated with the launcher design and fabrication have been addressed by a research and development program that includes brazing of the front array and testing of the power splitter configuration to confirm that phase errors due to reflections in the shorted splitter legs will not significantly impact the rf spectrum. The Conceptual Design Review requires that radiation levels at the torus radial port mounting flange and outer surface of the toroidal field coils should be sufficiently low to permit hands-on maintenance. Low activation materials and neutron shielding are incorporated in the launcher design to meet these requirements. The launcher is configured to couple 3 MW of steady state LH heating/LH current drive power at 3.7 GHz to the Tokamak Physics Experiment plasma.

  5. Mechanical Design of Hybrid Densitometer for Laboratory Applications

    SciTech Connect (OSTI)

    G. Walton; P. J. Polk; S. -T. Hsue

    1999-01-01

    The hybrid K-edge densitometry (KED) and x-ray fluorescence (XRF) densitometer is a unique nondestructive assay (NDA) technique to determine the concentrations of nuclear material (SNM) in solutions. The technique is ideally suited to assay the dissolver solutions as well as the uranium and plutonium product solutions from reprocessing It is an important instrument for safeguarding reprocessing; it is also a useful tool in analytical laboratories because of its capability of analyzing mixed solutions of SNM without chemical separation. Figure 1 shows the hardware of an hybrid system developed at Los Alamos. The hybrid densitometer employs a combination of two complimentary techniques: absorption KED and XRF. The KED technique measures the transmission of a tightly collimated photon beam through the sample; it is therefore quite insensitive to the radiation emitted by the sample material. Fission product level of {approximately}1 Ci/mL can be tolerated. The technique is insensitive to matrix variation. XRF measures the fluorescent x-rays from the same sample and can be used to determine the ratios of SNM. The technique can be applied to thorium, uranium, neptunium, plutonium, and americium concentration determination. The technique can also be applied to mixed solutions found in nuclear fuel cycle without separation: thorium-uranium, uranium-plutoniun neptunium-plutonium-americium. The design of the hybrid densitometer is shown schematically in Figs. 1 and 2; Fig. 1 shows the top view; Fig. 2 shows the side view. The heart of the design is the changer. The sample changer can accommodate a sample tray, which holds up to six samples. The samples can be a 2-cm path length cell, 4-cm path length cell, or a mixture of both sizes. The sample tray is controlled by a "Compumotor" which in turn is controlled by a computer. The absolute position of the sample cell can be reproduced to a standard deviation of 0.02 mm. The sample changer is housed inside square stainless steel

  6. Plug-In Hybrid Electric Vehicle Energy Storage System Design: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2006-05-01

    This paper discusses the design options for a plug-in hybrid electric vehicle, including power, energy, and operating strategy as they relate to the energy storage system.

  7. Hybrid vehicle system studies and optimized hydrogen engine design

    SciTech Connect (OSTI)

    Smith, J.R.; Aceves, S.

    1995-04-26

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO{sub x} emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO{sub x}. Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today`s gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  8. A least-cost optimisation model of CO{sub 2} capture applied to major UK power plants within the EU-ETS framework

    SciTech Connect (OSTI)

    Kemp, A.G.; Kasim, A.S.

    2008-02-15

    Concerns about the cost of CO{sub 2} capture and sequestration, and the effectiveness of carbon abatement policies loom large in discussions on climate change mitigation. Several writers address the issue from various perspectives. This paper attempts to add relative realism to discussions on CO{sub 2} capture costs and the deployment of carbon capture technology in the UK by using publicly available company data on the long term capacity expansion and CO{sub 2} capture investment programmes of selected power plants in the UK. With an estimated 8 billion plan to install a generation capacity of GW and capture capability of 44 Mt CO{sub 2}/year, it is imperative to optimise this huge potential investment. A least-cost optimisation model was formulated and solved with the LP algorithm available in GAMS. The model was then applied to address a number of issues, including the choice of an optimal carbon abatement policy within the EU-ETS framework. The major findings of the study include (a) the long term total cost curve of CO{sub 2} capture has three phases rising, plateau, rising; (b) alternative capture technologies do not have permanent relative cost advantages or disadvantages; (c) Government incentives encourage carbon capture and the avoidance of emission penalty charges; and (d) the goals of EU-ETS are more effectively realised with deeper cuts in the EUA ratios than merely hiking the emission penalty, as proposed in EU-ETS Phase II.

  9. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  10. CAES/UPH hybrid plant design study. Phase I

    SciTech Connect (OSTI)

    1980-12-01

    In spite of the technical and economic feasibility of Compressed Air Energy Storage (CAES) and Underground Pumped Storage (UPH), there appears to be several barriers to their implementation and commercialization. These potential barriers include: large installed capacity is required to bring UPH plant economics into a favorable position and CAES requires consumption of petroleum distillate or natural gas. This study was undertaken to investigate means to remove these barriers by: identifying and evaluating the potential benefits that might be achieved by combining UPH, CAES and other related processes, and developing potential combination designs incorporating these benefits to determine their technical and economical feasibility. The development of specific UPH, CAES, and hybrid UPH/CAES concepts are discussed and evaluated. The results of the work performed to date show that development of conventional CAES and UPH design configurations is proceeding rapidly. The direction of this development will probably eventually result in a range of large scale energy storage plant types that will be attractive to electric utilities. However, the rate of development may be unacceptably slow for some of these variants to assist in effective reduction of distillate oil consumption for peaking power. It is recommended that an acceleration of the development rate of coal-fired CAES and adiabatic CAES concepts be organized. These two concepts, if adopted by electric utilities, could make a substantial contribution to the nation's effort to reduce oil imports. (LCL)

  11. Development of Design and Simulation Tool for Hybrid Geothermal...

    Open Energy Info (EERE)

    of common hybrid GHP system configurations eQUEST Location of Project Oklahoma City, OK Impacts Enables prospective GHP system customers to analyze the costperformance of a...

  12. Design and evaluation of hybrid wind/PV/diesel power systems for Brazilian applications

    SciTech Connect (OSTI)

    McGowan, J.G.; Manwell, J.F.; Avelar, C.; Warner, C.

    1996-12-31

    This paper presents a summary of a study centered on the design and evaluation of hybrid wind/PV/diesel systems for remote locations in Brazil. The objective of this work was to evaluate high reliability hybrid power systems that have been designed for the lowest life cycle costs. The technical and economic analysis of the hybrid wind/PV/diesel systems was carried out using HYBRID2, a computational code developed at the University of Massachusetts in conjunction with the National Renewable Energy Laboratory (NREL). After a summary of a generalized design procedure for such systems based on the use of this code, a systematic parametric evaluation of a representative design case for a village power system in Brazil is presented. As summarized in the paper, the performance and economic effects of key design parameters are illustrated. 8 refs., 10 figs.

  13. Geothermal/Solar Hybrid Designs: Use of Geothermal Energy for CSP Feedwater

    Office of Scientific and Technical Information (OSTI)

    Heating (Conference) | SciTech Connect Geothermal/Solar Hybrid Designs: Use of Geothermal Energy for CSP Feedwater Heating Citation Details In-Document Search Title: Geothermal/Solar Hybrid Designs: Use of Geothermal Energy for CSP Feedwater Heating Authors: Turchi, Craig ; Zhu, Guangdong ; Wagner, Michael ; Williams, Tom ; Wendt, Daniel Publication Date: 2014-10-01 OSTI Identifier: 1214998 Report Number(s): NREL/CP-5G00-61994 Resource Type: Conference Resource Relation: Journal Name:

  14. HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS

    SciTech Connect (OSTI)

    Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

    2009-05-12

    PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.

  15. Thermal Response of the Hybrid Loop-Pool Design for Sodium Cooled Faster Reactors

    SciTech Connect (OSTI)

    Zhang, Hongbin; Zhao, Haihua; Davis, Cliff

    2008-09-01

    An innovative hybrid loop-pool design for the sodium cooled fast reactor (SFR) has been recently proposed with the primary objective of achieving cost reduction and safety enhancement. With the hybrid loop-pool design, closed primary loops are immersed in a secondary buffer tank. This design takes advantage of features from conventional both pool and loop designs to further improve economics and safety. This paper will briefly introduce the hybrid loop-pool design concept and present the calculated thermal responses for unproctected (without reactor scram) loss of forced circulation (ULOF) transients using RELAP5-3D. The analyses examine both the inherent reactivity shutdown capability and decay heat removal performance by passive safety systems.

  16. Optimal design of hybrid separation systems for in-plant waste reduction

    SciTech Connect (OSTI)

    Hamad, A.A.; Crabtree, E.W.; El-Halwagi, M.M.; Garrison, G.W.

    1996-12-31

    A general procedure for using hybrid separation systems to prevent pollution is presented. The design procedure integrates segregation, interception, and recycle. A systematic method developed to identify the optimal design combination is illustrated through a case study. The case study presented is the removal of cresol from aqueous wastes in a tricresyl phosphate plant. 21 refs., 4 figs.

  17. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    SciTech Connect (OSTI)

    Craig Turchi; Guangdong Zhu; Michael Wagner; Tom Williams; Dan Wendt

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant using the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.

  18. Design, Implementation, and Evaluation of a Hybrid DS/FFH Spread-Spectrum Radio Transceiver

    SciTech Connect (OSTI)

    Olama, Mohammed M; Killough, Stephen M; Kuruganti, Teja; Carroll, Thomas E.

    2014-01-01

    In recent years there has been great interest in using hybrid spread-spectrum (HSS) techniques for commercial applications, particularly in the Smart Grid, in addition to their inherent uses in military communications. This is because HSS can accommodate high data rates with high link integrity, even in the presence of significant multipath effects and interfering signals. A highly useful form of this transmission technique for many types of command, control, and sensing applications is the specific code-related combination of standard direct-sequence modulation with "fast" frequency-hopping, denoted hybrid DS/FFH, wherein multiple frequency hops occur within a single data-bit time. In this paper, we present the efforts carried out at Oak Ridge National Laboratory toward exploring the design, implementation, and evaluation of a hybrid DS/FFH spread-spectrum radio transceiver using a single Field Programmable Gate Array (FPGA). The FPGA allows the various subsystems to quickly communicate with each other and thereby maintain tight synchronization. We also investigate various hopping sequences against robustness to interference and jamming. Experimental results are presented that show the receiver sensitivity, radio data-rate/bit-error evaluations, and jamming and interference rejection capabilities of the implemented hybrid DS/FFH spread-spectrum system under widely varying design parameters.

  19. Design, Implementation, and Evaluation of a Hybrid DS/FFH Spread-Spectrum Radio Transceiver

    SciTech Connect (OSTI)

    Olama, Mohammed M.; Killough, Stephen M.; Kuruganti, Teja; Carroll, Thomas E.

    2014-10-06

    In recent years there has been great interest in using hybrid spread-spectrum (HSS) techniques for commercial applications, particularly in the Smart Grid, in addition to their inherent uses in military communications. This is because HSS can accommodate high data rates with high link integrity, even in the presence of significant multipath effects and interfering signals. A highly useful form of this transmission technique for many types of command, control, and sensing applications is the specific code-related combination of standard direct-sequence modulation with "fast" frequency-hopping, denoted hybrid DS/FFH, wherein multiple frequency hops occur within a single data-bit time. In this paper, we present the efforts carried out at Oak Ridge National Laboratory toward exploring the design, implementation, and evaluation of a hardware prototypic hybrid DS/FFH spread-spectrum radio transceiver using a single Field Programmable Gate Array (FPGA). The high integration within a single FPGA allows the various subsystems to easily communicate with each other and thereby maintain tight synchronization. We investigate various hopping sequences against robustness to interference and jamming. Experimental results are presented to show the receiver sensitivity, radio data rate evaluation, and jamming-rejection capability of the implemented hybrid DS/FFH spread-spectrum system under widely varying design parameters.

  20. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  1. Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) ceramic design manual

    SciTech Connect (OSTI)

    1997-10-01

    This ceramic component design manual was an element of the Advanced Turbine Technology Applications Project (ATTAP). The ATTAP was intended to advance the technological readiness of the ceramic automotive gas turbine engine as a primary power plant. Of the several technologies requiring development before such an engine could become a commercial reality, structural ceramic components represented the greatest technical challenge, and was the prime focus of the program. HVTE-TS, which was created to support the Hybrid Electric Vehicle (HEV) program, continued the efforts begun in ATTAP to develop ceramic components for an automotive gas turbine engine. In HVTE-TS, the program focus was extended to make this technology applicable to the automotive gas turbine engines that form the basis of hybrid automotive propulsion systems consisting of combined batteries, electric drives, and on-board power generators as well as a primary power source. The purpose of the ceramic design manual is to document the process by which ceramic components are designed, analyzed, fabricated, assembled, and tested in a gas turbine engine. Interaction with ceramic component vendors is also emphasized. The main elements of the ceramic design manual are: an overview of design methodology; design process for the AGT-5 ceramic gasifier turbine rotor; and references. Some reference also is made to the design of turbine static structure components to show methods of attaching static hot section ceramic components to supporting metallic structures.

  2. Dish/Stirling Hybrid-Receiver Sub-Scale Tests and Full-Scale Design

    SciTech Connect (OSTI)

    Andraka, Charles; Bohn, Mark S.; Corey, John; Mehos, Mark; Moreno, James; Rawlinson, Scott

    1999-05-24

    We have designed and tested a prototype dish/Stirling hybrid-receiver combustion system. The system consists of a pre-mixed natural-gas burner heating a pin-finned sodium heat pipe. The design emphasizes simplicity, low cost, and ruggedness. Our test was on a 1/6th -scale device, with a nominal firing rate of 18kWt, a power throughput of 13kWt, and a sodium vapor temperature of 750°C. The air/fuel mixture was electrically preheated to 640°C to simulate recuperation. The test rig was instrumented for temperatures, pressures, flow rates, overall leak rate, and exhaust emissions. The data verify our burner and heat-transfer models. Performance and post-test examinations validate our choice of materials and fabrication methods. Based on the 1/6th -scale results, we are designing a till-scale hybrid receiver. This is a fully-integrated system, including burner, pin-fin primary heat exchanger, recuperator (in place of the electrical pre-heater used in the prototype system), solar absorber, and sodium heat pipe. The major challenges of the design are to avoid pre-ignition, achieve robust heat-pipe performance, and attain long life of the burner matrix, recuperator, and flue-gas seals. We have used computational fluid dynamics extensively in designing to avoid pre-ignition and for designing the heat-pipe wick, and we have used individual component tests and results of the 1/6th -scale test to optimize for long life. In this paper, we present our design philosophy and basic details of our design. We describe the sub-scale test rig and compare test results with predictions. Finally, we outline the evolution of our full-scale design, and present its current status.

  3. Design of Hybrid Steam-In Situ Combustion Bitumen Recovery Processes

    SciTech Connect (OSTI)

    Yang Xiaomeng; Gates, Ian D.

    2009-09-15

    Given enormous capital costs, operating expenses, flue gas emissions, water treatment and handling costs of thermal in situ bitumen recovery processes, improving the overall efficiency by lowering energy requirements, environmental impact, and costs of these production techniques is a priority. Steam-assisted gravity drainage (SAGD) is the most widely used in situ recovery technique in Athabasca reservoirs. Steam generation is done on surface and consequently, because of heat losses, the energy efficiency of SAGD can never be ideal with respect to the energy delivered to the sandface. An alternative to surface steam generation is in situ combustion (ISC) where heat is generated within the formation through injection of oxygen at a sufficiently high pressure to initiate combustion of bitumen. In this manner, the heat from the combustion reactions can be used directly to mobilize the bitumen. As an alternative, the heat can be used to generate steam within the formation which then is the agent to move heat in the reservoir. In this research, alternative hybrid techniques with simultaneous and sequential steam-oxygen injection processes are examined to maximize the thermal efficiency of the recovery process. These hybrid processes have the advantage that during ISC, steam is generated within the reservoir from injected and formation water and as a product of oxidation. This implies that ex situ steam generation requirements are reduced and if there is in situ storage of combustion gases, that overall gas emissions are reduced. In this research, detailed reservoir simulations are done to examine the dynamics of hybrid processes to enable design of these processes. The results reveal that hybrid processes can lower emitted carbon dioxide-to-oil ratio by about 46%, decrease the consumed natural gas-to-oil ratio by about 73%, reduce the cumulative energy-to-oil ratio by between 40% and 70% compared to conventional SAGD, and drop water consumption per unit oil produced

  4. RELAP5 Analysis of the Hybrid Loop-Pool Design for Sodium Cooled Fast Reactors

    SciTech Connect (OSTI)

    Hongbin Zhang; Haihua Zhao; Cliff Davis

    2008-06-01

    An innovative hybrid loop-pool design for sodium cooled fast reactors (SFR-Hybrid) has been recently proposed. This design takes advantage of the inherent safety of a pool design and the compactness of a loop design to improve economics and safety of SFRs. In the hybrid loop-pool design, primary loops are formed by connecting the reactor outlet plenum (hot pool), intermediate heat exchangers (IHX), primary pumps and the reactor inlet plenum with pipes. The primary loops are immersed in the cold pool (buffer pool). Passive safety systems -- modular Pool Reactor Auxiliary Cooling Systems (PRACS) – are added to transfer decay heat from the primary system to the buffer pool during loss of forced circulation (LOFC) transients. The primary systems and the buffer pool are thermally coupled by the PRACS, which is composed of PRACS heat exchangers (PHX), fluidic diodes and connecting pipes. Fluidic diodes are simple, passive devices that provide large flow resistance in one direction and small flow resistance in reverse direction. Direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) are immersed in the cold pool to transfer decay heat to the environment by natural circulation. To prove the design concepts, especially how the passive safety systems behave during transients such as LOFC with scram, a RELAP5-3D model for the hybrid loop-pool design was developed. The simulations were done for both steady-state and transient conditions. This paper presents the details of RELAP5-3D analysis as well as the calculated thermal response during LOFC with scram. The 250 MW thermal power conventional pool type design of GNEP’s Advanced Burner Test Reactor (ABTR) developed by Argonne National Laboratory was used as the reference reactor core and primary loop design. The reactor inlet temperature is 355 °C and the outlet temperature is 510 °C. The core design is the same as that for ABTR. The steady state buffer pool temperature is the same as the reactor inlet

  5. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the

  6. Preliminary conceptual design study of a suppressed-fission tokamak hybrid

    SciTech Connect (OSTI)

    Grady, D.; Berwald, D.; Garner, J.; Jassby, D.; Karbowski, J.; DeVan, J.; Lee, J.D.; Moir, R.W.

    1983-01-01

    A preliminary design concept for a commercial-size tokamak fusion breeder with a suppressed fission blanket and emphasis on /sup 233/U breeding has been formulated. The design is based upon a similar tandem mirror hybrid concept and addresses particular concerns relating to the use of a tokamak for the suppressed fission blanket application. The single most important departure from the tandem mirror reference blanket concept is the substitution of FLIBE for the liquid lithium used for cooling and in-situ tritium breeding. A concern for excessive MHD-related problems drove the decision to replace the more highly conductive lithium. As a result of the new coolant selection, material compatibility issues mandated changes in the composition of the mobile fuel pellets. In addition, the higher operating temperatures associated with the FLIBE placed more stringent constraints on structural requirements and reduced several design margins. Neutronics analyses predicted relatively poor blanket performance with tritium breeding of 1.02 and fissile /sup 233/U breeding of 0.34.

  7. CONCEPTUAL DESIGN AND ECONOMICS OF THE ADVANCED CO2 HYBRID POWER CYCLE

    SciTech Connect (OSTI)

    A. Nehrozoglu

    2004-12-01

    also becomes the oxidant in the gasification and combustion processes. As a result, the plant provides CO{sub 2} for sequestration without the performance and economic penalties associated with water gas shifting and separating CO{sub 2} from gas streams containing nitrogen. The cost estimate of the reference plant (the Foster Wheeler combustion hybrid) was based on a detailed prior study of a nominal 300 MWe demonstration plant with a 6F turbine. Therefore, the reference plant capital costs were found to be 30% higher than an estimate for a 425 MW fully commercial IGCC with an H class turbine (1438 $/kW vs. 1111 $/kW). Consequently, the capital cost of the CO{sub 2} hybrid plant was found to be 25% higher than that of the IGCC with pre-combustion CO{sub 2} removal (1892 $/kW vs. 1510 $/kW), and the levelized cost of electricity (COE) was found to be 20% higher (7.53 c/kWh vs. 6.26 c/kWh). Although the final costs for the CO{sub 2} hybrid are higher, the study confirms that the relative change in cost (or mitigation cost) will be lower. The conceptual design of the plant and its performance and cost, including losses due to CO{sub 2} sequestration, is reported. Comparison with other proposed power plant CO{sub 2} removal techniques reported by a December 2000 EPRI report is shown. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

  8. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets

  9. Thomson scattering diagnostic system design for the Compact Toroidal Hybrid experiment

    SciTech Connect (OSTI)

    Traverso, P. J. Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.; Goforth, M. M.; Loch, S. D.; Pearce, A. J.; Cianciosa, M. R.

    2014-11-15

    A new Thomson scattering system using standard commercially available components has been designed for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH). The beam, generated by a frequency doubled Continuum PL DLS 2 J Nd:YAG laser, is passed vertically through an entrance Brewster window and an aperturing baffle system to minimize the stray laser light that could enter the collection optics. The beam line has been designed with an 8 m propagation distance to the mid-plane of the CTH device with the beam diameter kept less than 3 mm inside the plasma volume. The beam exits the vacuum system through another Brewster window and enters a beam dump, again to minimize the stray light in the vacuum chamber. Light collection, spectral processing, and signal detection are accomplished with an f/#∌ 1 aspheric lens, a commercially available Holospec f/1.8 spectrometer, and an Andor iStar DH740-18U-C3 image intensified camera. Spectral rejection of stray laser light, if needed, can be performed with the use of an optional interference filter at the spectrometer input. The system has been developed for initial single point measurements of plasmas with core electron temperatures of approximately 20–300 eV and densities of 5 × 10{sup 18} to 5 × 10{sup 19} m{sup −3} dependent upon operational scenario.

  10. PHY and MAC Layer Design of Hybrid Spread Spectrum Based Smart Meter Network

    SciTech Connect (OSTI)

    Kuruganti, Phani Teja

    2012-01-01

    The smart grid is a combined process of revitalizing the traditional power grid applications and introducing new applications to improve the efficiency of power generation, transmission and distribution. This can be achieved by leveraging advanced communication and networking technologies. Therefore the selection of the appropriate communication technology for different smart grid applications has been debated a lot in the recent past. After comparing different possible technologies, a recent research study has arrived at a conclusion that the 3G cellular technology is the right choice for distribution side smart grid applications like smart metering, advanced distribution automation and demand response management system. In this paper, we argue that the current 3G/4G cellular technologies are not an appropriate choice for smart grid distribution applications and propose a Hybrid Spread Spectrum (HSS) based Advanced Metering Infrastructure (AMI) as one of the alternatives to 3G/4G technologies. We present a preliminary PHY and MAC layer design of a HSS based AMI network and evaluate their performance using matlab and NS2 simulations. Also, we propose a time hierarchical scheme that can significantly reduce the volume of random access traffic generated during blackouts and the delay in power outage reporting.

  11. Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Seo, Hosung; Govoni, Marco; Galli, Giulia

    2016-02-15

    Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states maymore » be harnessed for the realization of qubits. As a result, the strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.« less

  12. Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives

    SciTech Connect (OSTI)

    Giorgio Rizzoni

    2005-09-30

    Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a

  13. Significance of Dynamic and Transient Analysis in the Design and Operation of Hybrid Energy Systems

    SciTech Connect (OSTI)

    Panwar, Mayank; Mohanpurkar, Manish; Hovsapian, Rob; Osorio, Julian D.

    2015-02-01

    Energy systems were historically designed and operated with a specific energy conversion objective, while managing loads and resources. In the recent years, the increased utilization of non-dispatchable renewable sources such as wind and solar has played a role in power quality and the reliability of power systems. In order to mitigate the risk associated with the non-dispatchable resources an integrated approach, such as Hybrid Energy Systems (HES), has to be taken, integrating the loads and resource management between the traditional thermal power plants and the non-dispatchable resources. As our electric energy becomes more diverse in its generation resources, the HES with its operational control system, its real-time view and its dynamic decisions making will become an essential part of the integrated energy systems and improve the overall grid reliability. The operational constraints of the energy sources on both the thermal power plants and the non-dispatchable resources in HES, plays a vital role in the planning and design stage. It is an established fact that the choice of energy source depends on the available natural resources and possible infrastructure. A critical component of decision-making depends on the complementary nature and controllability of the energy sources to supply the load demands with high reliability. Controllability of complex HES to achieve desired performance and flexibility is implemented via coordinated control systems while simultaneously generating electricity and other useful products such as useful heat or hydrogen. These systems are based on instrumentation, signal processing, control theory, and engineering system design. The entire HES along with the control systems are characterized by widely varying time constants. Hence, for a well-coordinated control and operation, we propose physics based modeling of the subsystems to assist in a dynamic and transient analysis. Dynamic and transient analysis in real and non-real time

  14. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect (OSTI)

    Kramer, Kevin James

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 ÎŒm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  15. Recovery act. Development of design and simulation tool for hybrid geothermal heat pump system

    SciTech Connect (OSTI)

    Wang, Shaojie; Ellis, Dan

    2014-05-29

    The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixed setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7[1]. The simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the undersized well field.

  16. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    SciTech Connect (OSTI)

    Kılıç, Bayram E-mail: kbayramkilic@gmail.com; Telli, Hakan; BaƟaran, Ali; Pirge, Gursev; TĂŒzemen, Sebahattin

    2015-04-07

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO{sub 2} structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO{sub 2} nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO{sub 2} owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO{sub 2} structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO{sub 2}, and TiO{sub 2}/ZnO hybrid structures are compared. The VA TiO{sub 2}/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO{sub 2} is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO{sub 2}/ZnO hybrid photoanode prepared with 15.8 wt. % TiO{sub 2} showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO{sub 2}, pure TiO{sub 2}, and pure ZnO photoanodes, respectively.

  17. Secured electrical supply at least cost: Coal, gas, nuclear, hydro

    SciTech Connect (OSTI)

    Gavor, J.; Stary, O.; Vasicek, J.

    1995-12-01

    Electric power sector in East Central European countries finds in a difficult period. In the situation of demand stagnation, enormous investments must be realized in a very short time. Today`s decisions in the development strategy will influence the long term future of the industry. The optimal structure of the sources is one of the most important problem to be solved. Paper describes the current structure of the sources in electric power sector in the Czech Republic. The importance of coal, oil and gas, nuclear and hydro in electric power generation is compared. Taking into account the different position in the load coverage, economy of individual sources is evaluated and basic results of discounted cash flow calculations are presented. Information on specific investment programs and projects are included and further trends are estimated.

  18. Bioenergy Feedstock Library and Least-Cost Formulation

    Broader source: Energy.gov (indexed) [DOE]

    Garold Gresham Victor Walker (CoPI) Jeff Lacey (CoPI) Idaho National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted ...

  19. An Innovative Hybrid Loop-Pool Design for Sodium Cooled Fast Reactor

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang

    2007-11-01

    The existing sodium cooled fast reactors (SFR) have two types of designs – loop type and pool type. In the loop type design, such as JOYO (Japan) [1] and MONJU (Japan), the primary coolant is circulated through intermediate heat exchangers (IHX) external to the reactor tank. The major advantages of loop design include compactness and easy maintenance. The disadvantage is higher possibility of sodium leakage. In the pool type design such as EBR-II (USA), BN-600M(Russia), SuperphĂ©nix (France) and European Fast Reactor [2], the reactor core, primary pumps, IHXs and direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) all are immersed in a pool of sodium coolant within the reactor vessel, making a loss of primary coolant extremely unlikely. However, the pool type design makes primary system large. In the latest ANL’s Advanced Burner Test Reactor (ABTR) design [3], the primary system is configured in a pool-type arrangement. The hot sodium at core outlet temperature in hot pool is separated from the cold sodium at core inlet temperature in cold pool by a single integrated structure called Redan. Redan provides the exchange of the hot sodium from hot pool to cold pool through IHXs. The IHXs were chosen as the traditional tube-shell design. This type of IHXs is large in size and hence large reactor vessel is needed.

  20. Multiscale Design of Advanced Materials based on Hybrid Ab Initio and Quasicontinuum Methods

    SciTech Connect (OSTI)

    Luskin, Mitchell

    2014-03-12

    This project united researchers from mathematics, chemistry, computer science, and engineering for the development of new multiscale methods for the design of materials. Our approach was highly interdisciplinary, but it had two unifying themes: first, we utilized modern mathematical ideas about change-of-scale and state-of-the-art numerical analysis to develop computational methods and codes to solve real multiscale problems of DOE interest; and, second, we took very seriously the need for quantum mechanics-based atomistic forces, and based our methods on fast solvers of chemically accurate methods.

  1. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 2. Conceptual design, Sections 5 and 6

    SciTech Connect (OSTI)

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains the detailed conceptual design and cost/performance estimates and an assessment of the commercial scale solar central receiver hybrid power system. (WHK)

  2. Characterization of a Solid Oxide Fuel Cell Gas Turbine Hybrid System Based on a Factorial Design of Experiments Using Hardware Simulation

    SciTech Connect (OSTI)

    Restrepo, Bernardo; Banta, Larry E.; Tucker, David

    2012-10-01

    A full factorial experimental design and a replicated fractional factorial design were carried out using the Hybrid Performance (HyPer) project facility installed at the National Energy Technology Laboratory (NETL), U.S. Department of Energy to simulate gasifer/fuel cell/turbine hybrid power systems. The HyPer facility uses hardware in the loop (HIL) technology that couples a modified recuperated gas turbine cycle with hardware driven by a solid oxide fuel cell model. A 34 full factorial design (FFD) was selected to study the effects of four factors: cold-air, hot-air, bleed-air bypass valves, and the electric load on different parameters such as cathode and turbine inlet temperatures, pressure and mass flow. The results obtained, compared with former results where the experiments were made using one-factor-at-a-time (OFAT), show that no strong interactions between the factors are present in the different parameters of the system. This work also presents a fractional factorial design (ffd) 34-2 in order to analyze replication of the experiments. In addition, a new envelope is described based on the results of the design of experiments (DoE), compared with OFAT experiments, and analyzed in an off-design integrated fuel cell/gas turbine framework. This paper describes the methodology, strategy, and results of these experiments that bring new knowledge concerning the operating state space for this kind of power generation system.

  3. A hybrid magnetic/complementary metal oxide semiconductor three-context memory bit cell for non-volatile circuit design

    SciTech Connect (OSTI)

    Jovanović, B. E-mail: lionel.torres@lirmm.fr; Brum, R. M.; Torres, L.

    2014-04-07

    After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45 nm × 45 nm round MTJs for the magnetic part and 28 nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption.

  4. Design Features of a Planar Hybrid/Permanent Magnet Strong Focusing Undulator for Free Electron Laser (FEL) And Synchrotron Radiation (SR) Applications

    SciTech Connect (OSTI)

    Tatchyn, Roman; /SLAC

    2011-09-09

    Insertion devices for Angstrom-wavelength Free Electron Laser (FEL) amplifiers driven by multi-GeV electron beams generally require distributed focusing substantially stronger than their own natural focusing fields. Over the last several years a wide variety of focusing schemes and configurations have been proposed for undulators of this class, ranging from conventional current-driven quadrupoles external to the undulator magnets to permanent magnet (PM) lattices inserted into the insertion device gap. In this paper we present design studies of a flexible high-field hybrid/PM undulator with strong superimposed planar PM focusing proposed for a 1.5 Angstrom Linac Coherent Light Source (LCLS) driven by an electron beam with a 1 mm-mr normalized emittance. Attainable field parameters, tuning modes, and potential applications of the proposed structure are discussed.

  5. Preliminary design studies for a (D-D) or (D-T) driven cold fusion-fission (hybrid) reactor with metallic uranium

    SciTech Connect (OSTI)

    Sahin, S. ); Baltacioglu, E.; Yapici, H. )

    1991-01-01

    Based on the possibility of (D,D) fusion at room temperature in a heavy metal (palladium) matrix, a cold fusion-fission (hybrid) reactor design has been evaluated in this paper. The reactor is composed of a number of modular and uniform fuel lattices. The cold fusion neutrons induce fission reactions in the natural metallic uranium fuel, imbedded in the lattice. The neutron spectrum, and consequently the fission power density are nearly constant in the reactor core so that the rector performance becomes almost independent on the reactor size. The energy multiplication for each fusion neutron production in the (D,T) and (D,D) reactors are about 3.3 and 7.0, respectively. The (D,T) reactor mode is self-sufficient in respect to tritium breeding ratio (TBR = 1.2).

  6. TRNSYS HYBRID wind diesel PV simulator

    SciTech Connect (OSTI)

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J.

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  7. Field errors in hybrid insertion devices

    SciTech Connect (OSTI)

    Schlueter, R.D.

    1995-02-01

    Hybrid magnet theory as applied to the error analyses used in the design of Advanced Light Source (ALS) insertion devices is reviewed. Sources of field errors in hybrid insertion devices are discussed.

  8. Hybrid Solar GHP Simulator

    Energy Science and Technology Software Center (OSTI)

    2012-12-11

    This project provides an easy-to-use, menu-driven, software tool for designing hybrid solar-geothermal heat pump systems (GHP) for both heating- and cooling-dominated buildings. No such design tool currently exists. In heating-dominated buildings, the design approach takes advantage of glazed solar collectors to effectively balance the annual thermal loads on the ground with renewable solar energy. In cooling-dominated climates, the design approach takes advantage of relatively low-cost, unglazed solar collectors as the heat rejecting component. The primarymore » benefit of hybrid GHPs is the reduced initial cost of the ground heat exchanger (GHX). Furthermore, solar thermal collectors can be used to balance the ground loads over the annual cycle, thus making the GHX fully sustainable; in heating-dominated buildings, the hybrid energy source (i.e., solar) is renewable, in contrast to a typical fossil fuel boiler or electric resistance as the hybrid component; in cooling-dominated buildings, use of unglazed solar collectors as a heat rejecter allows for passive heat rejection, in contrast to a cooling tower that consumes a significant amount of energy to operate, and hybrid GHPs can expand the market by allowing reduced GHX footprint in both heating- and cooling-dominated climates. The design tool allows for the straight-forward design of innovative GHP systems that currently pose a significant design challenge. The project lays the foundations for proper and reliable design of hybrid GHP systems, overcoming a series of difficult and cumbersome steps without the use of a system simulation approach, and without an automated optimization scheme. As new technologies and design concepts emerge, sophisticated design tools and methodologies must accompany them and be made usable for practitioners. Lack of reliable design tools results in reluctance of practitioners to implement more complex systems. A menu-driven software tool for the design of hybrid solar GHP systems

  9. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    SciTech Connect (OSTI)

    Powers, Jeffrey James

    2011-11-30

    This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated

  10. Optimal Ground-Source Heat Pump System Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimal Ground-Source Heat Pump System Design Optimal Ground-Source Heat Pump System Design Project objectives: Develop a least-cost design tool (OptGSHP) that will enable GSHP developers to analyze system cost and performance in a variety of building applications to support both design, operational and purchase decisions. Integrate groundwater flow and heat transport into OptGSHP. Demonstrate the usefulness of OptGSHP and the significance of a systems approach to the design of GSHP systems.

  11. Hybrid Fuel Cell Technology Overview

    SciTech Connect (OSTI)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  12. Hybrid Vehicle Program. Final report

    SciTech Connect (OSTI)

    1984-06-01

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  13. Hybrid: Overview

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar OVERVIEW Hybrid-electric vehicles combine the benefits of gasoline engines and electric motors to provide improved fuel economy. The engine provides most of the vehicle's power, and the electric motor provides additional power when needed, such as for accelerating and passing. This allows a smaller, more-efficient engine to be used. The electric power for the motor is

  14. Hybrid and Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  15. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 1. Conceptual design, Sections 1 through 4

    SciTech Connect (OSTI)

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume presents in detail the market analysis, parametric analysis, and the selection process for the preferred system. (WHK)

  16. NETL's Hybrid Performance, or Hyper, facility

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.

  17. NETL's Hybrid Performance, or Hyper, facility

    SciTech Connect (OSTI)

    2013-06-12

    NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.

  18. Hybrid Simulator

    Energy Science and Technology Software Center (OSTI)

    2005-10-15

    HybSim (short for Hybrid Simulator) is a flexible, easy to use screening tool that allows the user to quanti the technical and economic benefits of installing a village hybrid generating system and simulates systems with any combination of —Diesel generator sets —Photovoltaic arrays -Wind Turbines and -Battery energy storage systems Most village systems (or small population sites such as villages, remote military bases, small communities, independent or isolated buildings or centers) depend on diesel generationmore » systems for their source of energy. HybSim allows the user to determine other "sources" of energy that can greatly reduce the dollar to kilo-watt hour ratio. Supported by the DOE, Energy Storage Program, HybSim was initially developed to help analyze the benefits of energy storage systems in Alaskan villages. Soon after its development, other sources of energy were added providing the user with a greater range of analysis opportunities and providing the village with potentially added savings. In addition to village systems, HybSim has generated interest for use from military institutions in energy provisions and USAID for international village analysis.« less

  19. Asymmetric Hybrid Nanoparticles

    SciTech Connect (OSTI)

    Chumanov, George

    2015-11-05

    Hybrid Nanoparticles (AHNs) are rationally-designed multifunctional nanostructures and novel building blocks for the next generation of advanced materials and devices. Nanoscale materials attract considerable interest because of their unusual properties and potential for practical applications. Most of the activity in this field is focused on the synthesis of homogeneous nanoparticles from metals, metal oxides, semiconductors, and polymers. It is well recognized that properties of nanoparticles can be further enhanced if they are made as hybrid structures. This program is concerned with the synthesis, characterization, and application of such hybrid structures termed AHNs. AHNs are composed of a homogeneous core and several caps of different materials deposited on its surface (Fig. 1). Combined properties of the core and the caps as well as new properties that arise from core-cap and cap-cap interactions render AHNs multifunctional. In addition, specific chemical reactivity of the caps enables directional self-assembly of AHNs into complex architectures that are not possible with only spherical nanoparticles.

  20. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  1. Los Alamos explores hybrid ultrasmall gold nanocluster for enzymatic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos explores hybrid ultrasmall gold nanocluster for enzymatic fuel cells With fossil-fuel sources dwindling, better biofuel cell design is a strong candidate in the energy ...

  2. Advanced Methods Approach to Hybrid Powertrain Systems Optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Methods Approach to Hybrid Powertrain Systems Optimization of a Transit Bus Application Design refinements of the GTB-40 mass-transit bus include new optimization ...

  3. Mesoscale hybrid calibration artifact

    DOE Patents [OSTI]

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  4. Hybrid armature projectile

    DOE Patents [OSTI]

    Hawke, Ronald S. (Livermore, CA); Asay, James R. (Los Lunas, NM); Hall, Clint A. (Albuquerque, NM); Konrad, Carl H. (Albuquerque, NM); Sauve, Gerald L. (Berthoud, CO); Shahinpoor, Mohsen (Albuquerque, NM); Susoeff, Allan R. (Pleasanton, CA)

    1993-01-01

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

  5. Hybrid armature projectile

    DOE Patents [OSTI]

    Hawke, R.S.; Asay, J.R.; Hall, C.A.; Konrad, C.H.; Sauve, G.L.; Shahinpoor, M.; Susoeff, A.R.

    1993-03-02

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasma blowby.

  6. PROJECT PROFILE: Mechanically Stacked Hybrid Photovoltaic Tandems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Mechanically Stacked Hybrid Photovoltaic Tandems PROJECT PROFILE: Mechanically Stacked Hybrid Photovoltaic Tandems Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $999,999 Tandem cell architectures present a path toward higher module efficiencies over single junction designs. This project will develop a gallium indium phosphide (GaInP) on silicon mechanically stacked voltage-matched

  7. HOPSPACK: Hybrid Optimization Parallel Search Package.

    SciTech Connect (OSTI)

    Gray, Genetha A.; Kolda, Tamara G.; Griffin, Joshua; Taddy, Matt; Martinez-Canales, Monica

    2008-12-01

    In this paper, we describe the technical details of HOPSPACK (Hybrid Optimization Parallel SearchPackage), a new software platform which facilitates combining multiple optimization routines into asingle, tightly-coupled, hybrid algorithm that supports parallel function evaluations. The frameworkis designed such that existing optimization source code can be easily incorporated with minimalcode modification. By maintaining the integrity of each individual solver, the strengths and codesophistication of the original optimization package are retained and exploited.4

  8. The hydrogen hybrid option

    SciTech Connect (OSTI)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  9. Hybrid radiator cooling system

    DOE Patents [OSTI]

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  10. Hybrid Poplar Research

    SciTech Connect (OSTI)

    2006-09-01

    This Congressionally-mandated project focuses on characterizing and improving hybrid poplar plantation forestry systems with the ultimate goal of using poplars as a dedicated energy crop.

  11. Hybrid Ground Source System Analysis and Tool Development

    Broader source: Energy.gov [DOE]

    Project objectives: 1. Compile filtered hourly data for three monitored hybrid installations. 2.Validate existing HyGCHP model. 3.Refine and enhance the HyGCHP model (usability / capability). 4. Demonstrate impact of actual hybrid installations. 5. Report lessons learned and impacts of HyGSHPs to design/engineering community.

  12. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Compositional Variation Within Hybrid Nanostructures Print Wednesday, 29 September 2010 00:00 The inherently high surface area...

  13. Hybrid Ventilation Optimization and Control Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that come with it. The long-term goal is to reach the 1.6 billion market that includes design and architecture firms, hybrid ventilation equipment companies, and building...

  14. Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    This project discusses preliminary experimental results to find how thermoelectrics can be applied ot future hybrid vehicles and the optimum design of such equipment using heat pipes

  15. Artificial mismatch hybridization

    DOE Patents [OSTI]

    Guo, Zhen; Smith, Lloyd M.

    1998-01-01

    An improved nucleic acid hybridization process is provided which employs a modified oligonucleotide and improves the ability to discriminate a control nucleic acid target from a variant nucleic acid target containing a sequence variation. The modified probe contains at least one artificial mismatch relative to the control nucleic acid target in addition to any mismatch(es) arising from the sequence variation. The invention has direct and advantageous application to numerous existing hybridization methods, including, applications that employ, for example, the Polymerase Chain Reaction, allele-specific nucleic acid sequencing methods, and diagnostic hybridization methods.

  16. Hybrid matrix fiber composites

    DOE Patents [OSTI]

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  17. INL Hybrid Shuttle Buses

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INL Hybrid Shuttle Buses Four 28 to 36 passenger hybrid-electric shuttle buses, operated at the Idaho National Laboratory, were equipped with data loggers. The shuttle buses were delivered in 2010 with MaxxForce DT engines configured for 620 ft-lb of torque, and Eaton City-Delivery hybrid-electric systems, each containing a lithium-ion battery pack, electric motor, and Fuller six-speed automated manual transmission. Road speed, engine speed, and fueling data were gathered from the diagnostic

  18. Hydrogen hybrid vehicle engine development: Experimental program

    SciTech Connect (OSTI)

    Van Blarigan, P.

    1995-09-01

    A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueled operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.

  19. Hybrid adsorptive membrane reactor

    DOE Patents [OSTI]

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  20. Hybrid plasmachemical reactor

    SciTech Connect (OSTI)

    Lelevkin, V. M. Smirnova, Yu. G.; Tokarev, A. V.

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  1. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  2. SolarHybrid AG | Open Energy Information

    Open Energy Info (EERE)

    SolarHybrid AG Jump to: navigation, search Name: SolarHybrid AG Place: Germany Sector: Solar Product: Germany-based solar thermal hybrid product manufacturer References:...

  3. Hybrid baryons in QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dudek, Jozef J.; Edwards, Robert G.

    2012-03-21

    In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less

  4. Lower Hybrid Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lower Hybrid Experiments on MST M.C. Kaufman, J.A. Goetz, M.A. Thomas, D.R. Burke and D.J. Clayton Department of Physics, University of Wisconsin, Madision, WI 53706 Abstract. Current drive using RF waves has been proposed as a means to reduce the tearing fluctuations responsible for anomalous energy transport in the RFP. A traveling wave antenna op- erating at 800 MHz is being used to launch lower hybrid waves into MST to assess the feasibility of this approach. Parameter studies show that edge

  5. Full Hybrid: Overview

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    highlighted Starting button Low Speed button Cruising button Passing button Braking button Stopped button OVERVIEW Full hybrids use a gasoline engine as the primary source of power, and an electric motor provides additional power when needed. In addition, full hybrids can use the electric motor as the sole source of propulsion for low-speed, low-acceleration driving, such as in stop-and-go traffic or for backing up. This electric-only driving mode can further increase fuel efficiency under some

  6. hybrid | OpenEI Community

    Open Energy Info (EERE)

    Submitted by Dc(266) Contributor 19 February, 2015 - 15:08 2016 Toyota Mirai Fuel Cell Car First Drive - HybridCars.com Review 2016 car fuel cell hybrid mirai toyota vehicle...

  7. Hybrid and Advanced Air Cooling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hybrid and Advanced Air Cooling presentation at the April 2013 peer review meeting held in Denver, Colorado.

  8. Quantum photonics hybrid integration platform

    SciTech Connect (OSTI)

    Murray, E.; Floether, F. F.; Ellis, D. J. P.; Meany, T.; Bennett, A. J. Shields, A. J.; Lee, J. P.; Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A.

    2015-10-26

    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using the on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.

  9. Hybrid Band effects program (Lockheed Martin shared vision CRADA)

    SciTech Connect (OSTI)

    Bacon, L. D.

    2012-03-01

    Hybrid Band{trademark} (H-band) is a Lockheed Martin Missiles and Fire Control (LMMFC) designation for a specific RF modulation that causes disruption of select electronic components and circuits. H-Band enables conventional high-power microwave (HPM) effects (with a center frequency of 1 to 2 GHz, for example) using a higher frequency carrier signal. The primary technical objective of this project was to understand the fundamental physics of Hybrid Band{trademark} Radio Frequency effects on electronic systems. The follow-on objective was to develop and validate a Hybrid Band{trademark} effects analysis process.

  10. Hybrid function projective synchronization in complex dynamical networks

    SciTech Connect (OSTI)

    Wei, Qiang; Wang, Xing-yuan, E-mail: wangxy@dlut.edu.cn; Hu, Xiao-peng [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024 (China)] [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024 (China)

    2014-02-15

    This paper investigates hybrid function projective synchronization in complex dynamical networks. When the complex dynamical networks could be synchronized up to an equilibrium or periodic orbit, a hybrid feedback controller is designed to realize the different component of vector of node could be synchronized up to different desired scaling function in complex dynamical networks with time delay. Hybrid function projective synchronization (HFPS) in complex dynamical networks with constant delay and HFPS in complex dynamical networks with time-varying coupling delay are researched, respectively. Finally, the numerical simulations show the effectiveness of theoretical analysis.

  11. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect (OSTI)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  12. Nuclear hybrid energy infrastructure

    SciTech Connect (OSTI)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  13. A Hybrid Catalytic Route to Fuels from Biomass Syngas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 21, 2013 Gasification Mike Schultz, PhD., Project PI A Hybrid Catalytic Route to Fuels from Biomass Syngas Project Goal A hybrid biorefinery design that enables the production of jet fuel and other hydrocarbon fuels from waste biomass System Integration, Optimization and Analysis Integration Gasification & Syngas Conditioning Fermentation & Alcohol Recovery Catalysis Catalysis Gasoline Jet Fuel Diesel Butadiene MEK EtOH 2,3BD Wood Stover Switchgrass Improve Economics and Process

  14. Ultrathin sheets of hybrid perovskite opens new possibililties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrathin sheets of hybrid perovskite opens new possibililties Click to share on Facebook (Opens in new window) Click to share on Twitter (Opens in new window) Click to share on Reddit (Opens in new window) Click to share on Pinterest (Opens in new window) Ultrathin sheets of a new 2-D hybrid perovskite are square-shaped and relatively large in area, properties that should facilitate their integration into future electronic devices. This will open up new possibilities for the design of materials

  15. Los Alamos explores hybrid ultrasmall gold nanocluster for enzymatic fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells Hybrid ultrasmall gold nanocluster for enzymatic fuel cells Los Alamos explores hybrid ultrasmall gold nanocluster for enzymatic fuel cells With fossil-fuel sources dwindling, better biofuel cell design is a strong candidate in the energy field. September 24, 2015 Gold nanoclusters (~1 nm) are efficient mediators of electron transfer between co-self-assembled enzymes and carbon nanotubes in an enzyme fuel cell. The efficient electron transfer from this quantized nano material minimizes

  16. Hybrid sodium heat pipe receivers for dish/Stirling systems

    SciTech Connect (OSTI)

    Laing, D.; Reusch, M.

    1997-12-31

    The design of a hybrid solar/gas heat pipe receiver for the SBP 9 kW dish/Stirling system using a United Stirling AB V160 Stirling engine and the results of on-sun testing in alternative and parallel mode will be reported. The receiver is designed to transfer a thermal power of 35 kW. The heat pipe operates at around 800 C, working fluid is sodium. Operational options are solar-only, gas augmented and gas-only mode. Also the design of a second generation hybrid heat pipe receiver currently developed under a EU-funded project, based on the experience gained with the first hybrid receiver, will be reported. This receiver is designed for the improved SPB/L. and C.-10 kW dish/Stirling system with the reworked SOLO V161 Stirling engine.

  17. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect (OSTI)

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  18. Dueco Plug-In Hybrid Engines

    SciTech Connect (OSTI)

    Phillip Eidler

    2011-09-30

    Dueco, a final stage manufacture of utility trucks, was awarded a congressionally directed cost shared contract to develop, test, validate, and deploy several PHEV utility trucks. Odyne will be the primary subcontractor responsible for all aspects of the hybrid system including its design and installation on a truck chassis. Key objectives in this program include developing a better understanding of the storage device and system capability; improve aspects of the existing design, optimization of system and power train components, and prototype evaluation. This two year project will culminate in the delivery of at least five vehicles for field evaluation.

  19. Pulsed hybrid field emitter

    DOE Patents [OSTI]

    Sampayan, S.E.

    1998-03-03

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.

  20. Pulsed hybrid field emitter

    DOE Patents [OSTI]

    Sampayan, Stephen E.

    1998-01-01

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

  1. Full Hybrid: Starting

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    highlighted Low Speed button Cruising button Passing button Braking button Stopped button STARTING When a full hybrid vehicle is initially started, the battery typically powers all accessories. The gasoline engine only starts if the battery needs to be charged or the accessories require more power than available from the battery. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. the car is stopped at an

  2. Hybrid electroluminescent devices

    DOE Patents [OSTI]

    Shiang, Joseph John; Duggal, Anil Raj; Michael, Joseph Darryl

    2010-08-03

    A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

  3. Cold Hybrid Star Properties

    SciTech Connect (OSTI)

    Moshfegh, H. R.; Darehmoradi, M.; Mojarrad, M. Ghazanfari

    2011-10-28

    Properties of neutron stars with quark core are investigated. The equation of state of hadronic matter is calculated using Myers and Swiatecki two nucleon interaction within Thomas-Fermi semiclassical approximation (TF). For quark matter we employ The MIT bag model with constant and density dependent bag parameter. With use of the obtained equation of states we have calculated mass-radius relation of such hybrid stars.

  4. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    SciTech Connect (OSTI)

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.

  5. HybridPlan: A Capacity Planning Technique for Projecting Storage Requirements in Hybrid Storage Systems

    SciTech Connect (OSTI)

    Kim, Youngjae; Gupta, Aayush; Urgaonkar, Bhuvan; Piotr, Berman; Sivasubramaniam, Anand

    2014-01-01

    Economic forces, driven by the desire to introduce flash into the high-end storage market without changing existing software-base, have resulted in the emergence of solid-state drives (SSDs), flash packaged in HDD form factors and capable of working with device drivers and I/O buses designed for HDDs. Unlike the use of DRAM for caching or buffering, however, certain idiosyncrasies of NAND Flash-based solid-state drives (SSDs) make their integration into hard disk drive (HDD)-based storage systems nontrivial. Flash memory suffers from limits on its reliability, is an order of magnitude more expensive than the magnetic hard disk drives (HDDs), and can sometimes be as slow as the HDD (due to excessive garbage collection (GC) induced by high intensity of random writes). Given the complementary properties of HDDs and SSDs in terms of cost, performance, and lifetime, the current consensus among several storage experts is to view SSDs not as a replacement for HDD, but rather as a complementary device within the high-performance storage hierarchy. Thus, we design and evaluate such a hybrid storage system with HybridPlan that is an improved capacity planning technique to administrators with the overall goal of operating within cost-budgets. HybridPlan is able to find the most cost-effective hybrid storage configuration with different types of SSDs and HDDs

  6. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric

  7. Hybrid Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Honda Accord Hybrid 2013 Chevrolet Malibu Eco 2013 Ford Cmax Hybrid 2013 Honda CIvic Hybrid 2013 Volkswagen Jetta Hybrid 2011 Hyundai Sonata 2010 Ford Fusion Hybrid 2010 Honda CR-Z 2010 Honda Insight 2010 Mercedes S400h BlueHybrid 2010 Toyota Prius Plug-In Hybrid Electric Vehicles Electric Vehicles Conventional Vehicles Conventional Start-Stop Vehicles Alternative Fuel Vehicles Facilities Publications News About Us For ES Employees Staff Directory About Us For ES Employees Staff Directory

  8. Hybrid2 - The hybrid power system simulation model

    SciTech Connect (OSTI)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van; Manwell, J.F.

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  9. Hybrid and Plug-In Electric Vehicles (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: * Hybrid electric vehicles (HEVs) * Plug-in hybrid electric vehicles (PHEVs) * All-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions. Hybrid Electric Vehicles HEVs are powered by an internal combustion engine (ICE) and by an electric motor that uses energy stored

  10. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  11. Fusion-fission hybrid studies in the United States

    SciTech Connect (OSTI)

    Moir, R.W.; Lee, J.D.; Berwald, D.H.; Cheng, E.T.; Delene, J.G.; Jassby, D.L.

    1986-05-20

    Systems and conceptual design studies have been carried out on the following three hybrid types: (1) The fission-suppressed hybrid, which maximizes fissile material produced (Pu or /sup 233/U) per unit of total nuclear power by suppressing the fission process and multiplying neutrons by (n,2n) reactions in materials like beryllium. (2) The fast-fission hybrid, which maximizes fissile material produced per unit of fusion power by maximizing fission of /sup 238/U (Pu is produced) in which twice the fissile atoms per unit of fusion power (but only a third per unit of nuclear power) are made. (3) The power hybrid, which amplifies power in the blanket for power production but does not produce fuel to sell. All three types must sell electrical power to be economical.

  12. Hybrid solar lighting distribution systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  13. Hybrid solar lighting systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2007-06-12

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  14. Design of defect spins in piezoelectric aluminum nitride for...

    Office of Scientific and Technical Information (OSTI)

    Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum ... To date, defect qubits have only been realized in materials with strong covalent bonds. ...

  15. Design, Installation, and Field Verification of Integrated Active...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cogeneration Package, 2008 Design, Installation, and Field Verification of Integrated Active Desiccant Hybrid Rooftop Systems Combined with a Natural Gas Driven Cogeneration ...

  16. Design of defect spins in piezoelectric aluminum nitride for...

    Office of Scientific and Technical Information (OSTI)

    Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum ... Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS electronic ...

  17. Hybrids Plus | Open Energy Information

    Open Energy Info (EERE)

    Area Sector: Vehicles Product: Plug in Electric Hybrid Vehicle conversions, chargers, battery systems Website: www.eetrex.com Coordinates: 40.022143, -105.250981 Show Map...

  18. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    might be used to perform various functions, including device integration and assembly, chemical and biological sensing, and photocatalysis. For example, a hybrid nanostructure...

  19. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized...

  20. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The...

  1. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous...

  2. Simultaneous production of desalinated water and power using a hybrid-cycle OTEC plant

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1987-05-01

    A systems study for simultaneous production of desalinated water and electric power using the hybrid-cycle OTEC system was carried out. The hybrid cycle is a combination of open and closed-cycle OTEC systems. A 10 MWe shore-based hybrid-cycle OTEC plant is discussed and corresponding operating parameters are presented. Design and plant operating criteria for adjusting the ratio of water production to power generation are described and their effects on the total system were evaluated. The systems study showed technical advantages of the hybrid-cycle power system as compared to other leading OTEC systems for simultaneous production of desalinated water and electric power generation.

  3. Hybrid Braking System for Non-Drive Axles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Braking System for Non-Drive Axles Hybrid Braking System for Non-Drive Axles A hybrid braking system is designed to conserve diesel fuel (or alternative fuels) by using regenerative braking, which extends hybrid technology to non-drive axles. p-17_rini.pdf (124.05 KB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer AVTA: Full-Size Electric Vehicle Specifications and Test Procedures SuperTruck … Development

  4. Hybrid spread spectrum radio system

    DOE Patents [OSTI]

    Smith, Stephen F. [London, TN; Dress, William B. [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  5. Economic analysis of PV hybrid power system: Pinnacles National Monument

    SciTech Connect (OSTI)

    Rosenthal, A.; Durand, S.; Thomas, M.; Post, H.

    1997-11-01

    PV hybrid electric power systems can offer an economically competitive alternative to engine generator (genset) systems in many off-grid applications. Besides the obvious `green` advantages of producing less noise and emissions, the PV hybrid can, in some cases, offer a lower life-cycle cost (LCC) then the genset. This paper evaluates the LCC of the 9.6 kWp PV hybrid power system installed by the National Park Services (NPS) at Pinnacles National Monument, CA. NPS motivation for installation of this hybrid was not based on economics, but rather the need to replace two aging diesel gensets with an alternative that would be quieter, fuel efficient, and more in keeping with new NPS emphasis on sustainable design and operations. In fact, economic analysis shows a lower 20-year LCC for the installed PV hybrid than for simple replacement of the two gensets. The analysis projects are net savings by the PV hybrid system of $83,561 and over 162,000 gallons of propane when compared with the genset-only system. This net savings is independent of the costs associated with environmental emissions. The effects of including emissions costs, according to NPS guidelines, is also discussed. 5 refs., 2 figs., 3 tabs.

  6. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Wednesday, 26 August 2009 00:00 Rotaxanes are...

  7. Hydraulic Hybrid Systems | Open Energy Information

    Open Energy Info (EERE)

    Hydraulic Hybrid Systems Retrieved from "http:en.openei.orgwindex.php?titleHydraulicHybridSystems&oldid768560" Categories: Organizations Companies Energy...

  8. Highline Hydrogen Hybrids | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Hybrids Jump to: navigation, search Name: Highline Hydrogen Hybrids Place: farmington, Arkansas Zip: 72730-1500 Sector: Hydro, Hydrogen, Vehicles Product: US-based...

  9. US Hybrid Corp | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: US Hybrid Corp Place: California Sector: Renewable Energy, Vehicles Product: US Hybrid Corporation is a California-based company specializing in...

  10. Mesoscale hybrid calibration artifact (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact ...

  11. INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION

    SciTech Connect (OSTI)

    Todd Kollross; Mike Connolly

    2004-06-30

    Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, but low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy

  12. Measure Guideline: Hybrid Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  13. Measure Guideline. Hybrid Foundation Insulation Retrofits

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a “partial drainage” detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  14. Hybrid emitter all back contact solar cell

    DOE Patents [OSTI]

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  15. Hybrid powertrain system

    DOE Patents [OSTI]

    Grillo, Ricardo C.; O'Neil, Walter K.; Preston, David M.

    2005-09-20

    A hybrid powertrain system is provided that includes a first prime mover having a rotational output, a second prime mover having a rotational output, and a transmission having a main shaft supporting at least two main shaft gears thereon. The transmission includes a first independent countershaft drivingly connected to the first prime mover and including at least one ratio gear supported thereon that meshes with a respective main shaft gear. A second independent countershaft is drivingly connected to the second prime mover and includes at least one ratio gear supported thereon that meshes with a respective main shaft gear. The ratio gears on the first and second countershafts cooperate with the main shaft gears to provide at least one gear ratio between the first and second countershafts and the main shaft. A shift control mechanism selectively engages and disengages the first and second countershafts for rotation with the main shaft.

  16. Hybrid powertrain controller

    DOE Patents [OSTI]

    Jankovic, Miroslava; Powell, Barry Kay

    2000-12-26

    A hybrid powertrain for a vehicle comprising a diesel engine and an electric motor in a parallel arrangement with a multiple ratio transmission located on the torque output side of the diesel engine, final drive gearing connecting drivably the output shaft of transmission to traction wheels of the vehicle, and an electric motor drivably coupled to the final drive gearing. A powertrain controller schedules fuel delivered to the diesel engine and effects a split of the total power available, a portion of the power being delivered by the diesel and the balance of the power being delivered by the motor. A shifting schedule for the multiple ratio transmission makes it possible for establishing a proportional relationship between accelerator pedal movement and torque desired at the wheels. The control strategy for the powertrain maintains drivability of the vehicle that resembles drivability of a conventional spark ignition vehicle engine powertrain while achieving improved fuel efficiency and low exhaust gas emissions.

  17. Hybrid vehicle control

    SciTech Connect (OSTI)

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  18. Environmentally responsive optical microstructured hybrid actuator assemblies and applications thereof

    DOE Patents [OSTI]

    Aizenberg, Joanna; Aizenberg, Michael; Kim, Philseok

    2016-01-05

    Microstructured hybrid actuator assemblies in which microactuators carrying designed surface properties to be revealed upon actuation are embedded in a layer of responsive materials. The microactuators in a microactuator array reversibly change their configuration in response to a change in the environment without requiring an external power source to switch their optical properties.

  19. Wankel engine for hybrid powertrain

    SciTech Connect (OSTI)

    Butti, A.; Site, V.D.

    1995-12-31

    The Wankel engine is suited to be used to drive hybrid propulsion systems. The main disadvantage of hybrid propulsion systems is the complexity that causes a high weight and large dimensions. For these reason hybrid systems are more suitable for large size vehicle (buses, vans) rather than for small passenger cars. A considerable reduction of hybrid systems weight and dimensions can be obtained using a Wankel rotary engine instead of a conventional engine. The Wankel engine is light, compact, simple, and produces low noise and low vibrations. Therefore a Wankel engine powered hybrid system is suited to be used on small cars. In this paper a 1,000 kg parallel hybrid car with continuously variable transmission and a 6,000 kg series hybrid minibus both equipped with Wankel engines are considered. The Wankel engine works at steady state to minimize fuel consumption and exhaust emissions. The simulation of the behavior of these two vehicles during a ECE + EUDC test cycle is presented in order to evaluate the performances of the systems.

  20. Triplex in-situ hybridization

    DOE Patents [OSTI]

    Fresco, Jacques R.; Johnson, Marion D.

    2002-01-01

    Disclosed are methods for detecting in situ the presence of a target sequence in a substantially double-stranded nucleic acid segment, which comprises: a) contacting in situ under conditions suitable for hybridization a substantially double-stranded nucleic acid segment with a detectable third strand, said third strand being capable of hybridizing to at least a portion of the target sequence to form a triple-stranded structure, if said target sequence is present; and b) detecting whether hybridization between the third strand and the target sequence has occured.

  1. Development of Integrated Motor Assist Hybrid System: Development of the 'Insight', a Personal Hybrid Coupe

    SciTech Connect (OSTI)

    Kaoru Aoki; Shigetaka Kuroda; Shigemasa Kajiwara; Hiromitsu Sato; Yoshio Yamamoto

    2000-06-19

    This paper presents the technical approach used to design and develop the powerplant for the Honda Insight, a new motor assist hybrid vehicle with an overall development objective of just half the fuel consumption of the current Civic over a wide range of driving conditions. Fuel consumption of 35km/L (Japanese 10-15 mode), and 3.4L/100km (98/69/EC) was realized. To achieve this, a new Integrated Motor Assist (IMA) hybrid power plant system was developed, incorporating many new technologies for packaging and integrating the motor assist system and for improving engine thermal efficiency. This was developed in combination with a new lightweight aluminum body with low aerodynamic resistance. Environmental performance goals also included the simultaneous achievement of low emissions (half the Japanese year 2000 standards, and half the EU2000 standards), high efficiency, and recyclability. Full consideration was also given to key consumer attributes, including crash safety performance, handling, and driving performance.

  2. Advanced hybrid vehicle propulsion system study

    SciTech Connect (OSTI)

    Schwarz, R.

    1982-05-01

    Results of a study of an advanced heat engine/electric automotive hybrid propulsion system are presented. The system uses a rotary stratified charge engine and an ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system parameters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 l/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  3. MASSIVE HYBRID PARALLELISM FOR FULLY IMPLICIT MULTIPHYSICS

    SciTech Connect (OSTI)

    Cody J. Permann; David Andrs; John W. Peterson; Derek R. Gaston

    2013-05-01

    As hardware advances continue to modify the supercomputing landscape, traditional scientific software development practices will become more outdated, ineffective, and inefficient. The process of rewriting/retooling existing software for new architectures is a Sisyphean task, and results in substantial hours of development time, effort, and money. Software libraries which provide an abstraction of the resources provided by such architectures are therefore essential if the computational engineering and science communities are to continue to flourish in this modern computing environment. The Multiphysics Object Oriented Simulation Environment (MOOSE) framework enables complex multiphysics analysis tools to be built rapidly by scientists, engineers, and domain specialists, while also allowing them to both take advantage of current HPC architectures, and efficiently prepare for future supercomputer designs. MOOSE employs a hybrid shared-memory and distributed-memory parallel model and provides a complete and consistent interface for creating multiphysics analysis tools. In this paper, a brief discussion of the mathematical algorithms underlying the framework and the internal object-oriented hybrid parallel design are given. Representative massively parallel results from several applications areas are presented, and a brief discussion of future areas of research for the framework are provided.

  4. Hybrid vehicle assessment. Phase I. Petroleum savings analysis

    SciTech Connect (OSTI)

    Levin, R.; Liddle, S.; Deshpande, G.; Trummel, M.; Vivian, H.

    1984-03-01

    This report presents the results of a comprehensive analysis of near-term electric-hybrid vehicles. Its purpose was to estimate their potential to save significant amounts of petroleum on a national scale in the 1990s. Performance requirements and expected annual usage patterns of these vehicles were first modeled. The projected US fleet composition was estimated, and conceptual hybrid vehicle designs were conceived and analyzed for petroleum use when driven in the expected annual patterns. These petroleum consumption estimates were then compared to similar estimates for projected 1990 conventional vehicles having the same performance and driven in the same patterns. Results are presented in the form of three utility functions and comparisons of several conceptual designs are made. The Hybrid Vehicle (HV) design and assessment techniques are discussed and a general method is explained for selecting the optimum energy management strategy for any vehicle-mission-battery combination. A discussion of lessons learned during the construction and test of the General Electric Hybrid Test Vehicle is also presented. Conclusions and recommendations are presented, and development recommendations are identified.

  5. Hybrid particles and associated methods

    DOE Patents [OSTI]

    Fox, Robert V; Rodriguez, Rene; Pak, Joshua J; Sun, Chivin

    2015-02-10

    Hybrid particles that comprise a coating surrounding a chalcopyrite material, the coating comprising a metal, a semiconductive material, or a polymer; a core comprising a chalcopyrite material and a shell comprising a functionalized chalcopyrite material, the shell enveloping the core; or a reaction product of a chalcopyrite material and at least one of a reagent, heat, and radiation. Methods of forming the hybrid particles are also disclosed.

  6. LANL debuts hybrid garbage truck

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid garbage truck LANL debuts hybrid garbage truck The truck employs a system that stores energy from braking and uses that pressure to help the truck accelerate after each stop. November 19, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits

  7. Hybrid Electric Vehicle Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Electric Vehicle Basics Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look just like conventional vehicles, HEVs usually include an electric motor as well as a small internal combustion engine (ICE). This combination provides greater fuel economy and fewer emissions than most conventional ICE vehicles do. Photo of the front and part of the side of a bus parked at the curb of a city street with

  8. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Compositional Variation Within Hybrid Nanostructures Print Wednesday, 29 September 2010 00:00 The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles

  9. Hybrid power source

    DOE Patents [OSTI]

    Singh, Harmohan N.

    2012-06-05

    A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.

  10. Nuclear waste actinides as fissile fuel in hybrid blankets

    SciTech Connect (OSTI)

    Sahin, S.; Al-Kusayer, T.A.

    1983-12-01

    The widespread use of the present LWRs produces substantial quantities of nuclear waste materials. Among those, actinide nuclear waste poses a serious problem of stockage because the associated half life times for actinides is measured in terms of geological time periods (several millions of years) so that no waste disposal guarantee over such time intervals can be given, except for space disposal. On the other hand, these nuclear waste actinides are very good fissionable materials for high energetic (D,T) fusion neutrons. It is therefore worthwhile to investigate their quality as potential nuclear fuel in hybrid blankets. The present study investigates the neutronic performance of hybrid blankets containing Np/sup 237/ and Cm/sup 244/ as fissile materials. The isotopic composition of Americium has been adjusted to the spent fuel isotope composition of a LWR. The geometrical design has been made, according to the AYMAN fussion-fission (hybrid) experimental facility, now in the very early phase of planning.

  11. Hybrid energy system cost analysis: San Nicolas Island, California

    SciTech Connect (OSTI)

    Olsen, T.L.; McKenna, E.

    1996-07-01

    This report analyzes the local wind resource and evaluates the costs and benefits of supplementing the current diesel-powered energy system on San Nicolas Island, California (SNI), with wind turbines. In Section 2.0 the SNI site, naval operations, and current energy system are described, as are the data collection and analysis procedures. Section 3.0 summarizes the wind resource data and analyses that were presented in NREL/TP 442-20231. Sections 4.0 and 5.0 present the conceptual design and cost analysis of a hybrid wind and diesel energy system on SNI, with conclusions following in Section 6. Appendix A presents summary pages of the hybrid system spreadsheet model, and Appendix B contains input and output files for the HYBRID2 program.

  12. Kentucky Hybrid Electric School Bus Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    icon tiarravt062settle2010p.pdf More Documents & Publications Kentucky Hybrid Electric School Bus Program Kentucky Hybrid Electric School Bus Program Plug IN Hybrid Vehicle Bus...

  13. System Simulations of Hybrid Electric Vehicles with Focus on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid ...

  14. Hybrid switch for resonant power converters (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Patent: Hybrid switch for resonant power converters Citation Details In-Document Search Title: Hybrid switch for resonant power converters A hybrid switch comprising two ...

  15. JV between Hybrid Electric and Mullen Motors | Open Energy Information

    Open Energy Info (EERE)

    Name: JV between Hybrid Electric and Mullen Motors Product: Joint Venture to develop a vehicle fitted with hybrid and lithium technologies References: JV between Hybrid Electric...

  16. Adhesion in flexible organic and hybrid organic/inorganic light emitting device and solar cells

    SciTech Connect (OSTI)

    Yu, D.; Kwabi, D.; Akogwu, O.; Du, J.; Oyewole, O. K.; Tong, T.; Anye, V. C.; Rwenyagila, E.; Asare, J.; Fashina, A.; Soboyejo, W. O.

    2014-08-21

    This paper presents the results of an experimental study of the adhesion between bi-material pairs that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and hybrid organic/inorganic solar cells on flexible substrates. Adhesion between the possible bi-material pairs is measured using force microscopy (AFM) techniques. These include: interfaces that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, bulk heterojunction solar cells, and hybrid combinations of titanium dioxide (TiO{sub 2}) and poly(3-hexylthiophene). The results of AFM measurements are incorporated into the Derjaguin-Muller-Toporov model for the determination of adhesion energies. The implications of the results are then discussed for the design of robust organic and hybrid organic/inorganic electronic devices.

  17. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect (OSTI)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  18. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO2 emission reduction in the U.S, China, and India’s iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO2 emission reduction targets for the iron and steel sector under different strategies such as simple CO2 emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.

  19. Helping HAN for hybrid rockets

    SciTech Connect (OSTI)

    Ramohalli, K.; Dowler, W.

    1995-01-01

    Hydroxyl amine nitrate (HAN) is a powerful oxidizer for hybrid rocket flight motors. Miscible with water up to 95% by mass, it also has high density and has been extensively characterized for materials compatibility, safety, transportation, storage and handling. Before any serious attempt to use the proposed oxidizer in hybrids, though, the usual performance figures must first be obtained. The simplest are time-independent, equilibrium rocket performance numbers that include chamber temperature, temperature at the nozzle throat, and key species in the exhaust. These numbers must be followed by several other important performance evaluation, including burning rates, pressure dependence, susceptibility to instabilities and temperature sensitivity.

  20. Using Hybrid MPI/OpenMP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Hybrid MPIOpenMP Using Hybrid MPIOpenMP Using OpenMP Franklin has 4 cores sharing the memory on each node. OpenMP is supported within the node. To use OpenMP, a specific...

  1. Multi-scale framework for the accelerated design of high-efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multi-scale framework for the accelerated design of high-efficiency organic photovoltaic cells Organic and hybrid organicinorganic solar cells (OSC) offer a promising low-cost...

  2. ITP Chemicals: Hybrid Separations/Distillation Technology. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybrid SeparationsDistillation Technology. Research ...

  3. The importance of hybrid PV-building integration

    SciTech Connect (OSTI)

    Posnansky, M.; Gnos, S.; Coonen, S.

    1994-12-31

    An extensive utilization of photovoltaics for future electricity generation and for hybrid generation of electricity and thermal energy is possible, when PV-panels are designed to become a part of the building envelope itself. Large areas are available, since roofs and facades are perfectly suited for solar energy conversion. Atlantis Energy Ltd. has developed special PV-generators which fulfill at the same time the functions and requirements of conventional building elements. In the context of different R and D projects funded by the Swiss government to implement a series of typical building integrated photovoltaic systems, Atlantis Energy Ltd was entrusted to design and build various hybrid building integrated PV-power plants, four of which are described in this paper.

  4. hybrid vehicle systems | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicles systems perspective to the technology research and development (R&D) activities of the U.S. Department of Energy's vehicle research programs, and identifies major opportunities for improving vehicle efficiencies. Hybrid and Vehicle Systems: http://www1.eere.energy.gov/vehiclesandfuels/technologies/systems

  5. Silicon bulk micromachined hybrid dimensional artifact.

    SciTech Connect (OSTI)

    Claudet, Andre A.; Tran, Hy D.; Bauer, Todd Marks; Shilling, Katherine Meghan; Oliver, Andrew David

    2010-03-01

    A mesoscale dimensional artifact based on silicon bulk micromachining fabrication has been developed and manufactured with the intention of evaluating the artifact both on a high precision coordinate measuring machine (CMM) and video-probe based measuring systems. This hybrid artifact has features that can be located by both a touch probe and a video probe system with a k=2 uncertainty of 0.4 {micro}m, more than twice as good as a glass reference artifact. We also present evidence that this uncertainty could be lowered to as little as 50 nm (k=2). While video-probe based systems are commonly used to inspect mesoscale mechanical components, a video-probe system's certified accuracy is generally much worse than its repeatability. To solve this problem, an artifact has been developed which can be calibrated using a commercially available high-accuracy tactile system and then be used to calibrate typical production vision-based measurement systems. This allows for error mapping to a higher degree of accuracy than is possible with a glass reference artifact. Details of the designed features and manufacturing process of the hybrid dimensional artifact are given and a comparison of the designed features to the measured features of the manufactured artifact is presented and discussed. Measurement results from vision and touch probe systems are compared and evaluated to determine the capability of the manufactured artifact to serve as a calibration tool for video-probe systems. An uncertainty analysis for calibration of the artifact using a CMM is presented.

  6. 1997 hybrid electric vehicle specifications

    SciTech Connect (OSTI)

    Sluder, S.; Larsen, R.; Duoba, M.

    1996-10-01

    The US DOE sponsors Advanced Vehicle Technology competitions to help educate the public and advance new vehicle technologies. For several years, DOE has provided financial and technical support for the American Tour de Sol. This event showcases electric and hybrid electric vehicles in a road rally across portions of the northeastern United States. The specifications contained in this technical memorandum apply to vehicles that will be entered in the 1997 American Tour de Sol. However, the specifications were prepared to be general enough for use by other teams and individuals interested in developing hybrid electric vehicles. The purpose of the specifications is to ensure that the vehicles developed do not present a safety hazard to the teams that build and drive them or to the judges, sponsors, or public who attend the competitions. The specifications are by no means the definitive sources of information on constructing hybrid electric vehicles - as electric and hybrid vehicles technologies advance, so will the standards and practices for their construction. In some cases, the new standards and practices will make portions of these specifications obsolete.

  7. Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion can be enabled by a micro-variable circular orifice, dual mode PCCI, dew film combustion, and a novel combustion chamber design deer09_hou.pdf (158.26 KB) More Documents & Publications Adaptive PCCI with Variable Orifice Injector for Low Cost High Efficiency Clean Diesels Enabling

  8. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    SciTech Connect (OSTI)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrix composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing

  9. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    SciTech Connect (OSTI)

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in the critical reactors

  10. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses

    SciTech Connect (OSTI)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-10-19

    This study evaluates the costs and benefits associated with the use of a stationary-wireless- power-transfer-enabled plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep was performed over many different battery sizes, charging power levels, and number/location of bus stop charging stations. The net present cost was calculated for each vehicle design and provided the basis for design evaluation. In all cases, given the assumed economic conditions, the conventional bus achieved the lowest net present cost while the optimal plug-in hybrid electric bus scenario beat out the hybrid electric comparison scenario. The study also performed parameter sensitivity analysis under favorable and high unfavorable market penetration assumptions. The analysis identifies fuel saving opportunities with plug-in hybrid electric bus scenarios at cumulative net present costs not too dissimilar from those for conventional buses.

  11. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses: Preprint

    SciTech Connect (OSTI)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-11-11

    This study evaluates the costs and benefits associated with the use of a plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep analysis was performed over a number of a different battery sizes, charging powers, and charging stations. The net present value was calculated for each vehicle design and provided the basis for the design evaluation. In all cases, given present day economic assumptions, the conventional bus achieved the lowest net present value while the optimal plug-in hybrid electric bus scenario reached lower lifetime costs than the hybrid electric bus. The study also performed parameter sensitivity analysis under low market potential assumptions and high market potential assumptions. The net present value of plug-in hybrid electric bus is close to that of conventional bus.

  12. Data Analysis for Sequencing by Hybridization (SBH) Experiments

    Energy Science and Technology Software Center (OSTI)

    1995-11-28

    SCORES is user friendly software designed to analyze data from SBH (Sequencing By Hybridization) experiments. In these ANL experiments DNA samples are spotted on a nylon membrane and hybridized with radioactivity labeled oligonucleotide probes. An image analysis program (DOTS) calculates a raw value for each DNA dot from images generated by the Molecular Dynamics Phosphorimager. SCORES reads in the DOTS output for each hybridization done for a particular filter. The data for each probe ismore » normalized against a mass probe and scaled properly. These values from 100 or more probes are then used to compute the distance (i.e., degree of similarity) between any two clones on the filter. These calculated distances define clusters of similar clones (cDNA)or contigs (genomic DNA). Histograms of the data at each stage of analysis to establish thresholds for further steps. SCORES generates various statistical tables to evaluate the quality of spotting, hybridization of filters, and of individual dots.« less

  13. Predicts the Long Term Performance and Economic Feasibility of Hybrid Power Sys

    Energy Science and Technology Software Center (OSTI)

    1996-12-01

    HYBRID2 is a combined probalistic/time series model designed to study a wide variety of hybrid power systems. Hybrid power systems combine a number of sources of power generation and, usually, a form of energy storage to supply an electrical load. Hybrid power systems are mainly used in areas such as islands or remote communities that are removed from a power distribution network. These power systems can range from large, multi-megawatt systems to those supplying singlemore » family dwellings. HYBRID2 simulates systems that include diesel generators, wind turbines, battery storage, different power conversion devices and a photovoltaic array. Systems can be modeled with components on the AC, DC or multiple buses. A variety of different operating strategies have been allowed as well as an economic analysis tool. The HYBRID2 code has a user-friendly Graphical User Interface (GUI) as well as a glossary of terms commonly associated with hybrid power systems. HYBRID2 is also packaged with an extensive library of equipment to assist the user in designing hybrid power systems. Each piece of equipment is commercially available and uses manufacturer''s specifications. In addition the library includes resource data and some sample power systems and projects that can be used as templates. Two levels of output are provided, a summary as well as a detailed time step by time step description of power flows. A Graphical Results Interface (GRI) allows for easy and in-depth review of the detailed simulation results.« less

  14. Planar slot coupled microwave hybrid

    DOE Patents [OSTI]

    Petter, Jeffrey K.

    1991-01-01

    A symmetrical 180.degree. microwave hybrid is constructed by opening a slot line in a ground plane below a conducting strip disposed on a dielectric substrate, creating a slot coupled conductor. Difference signals propagating on the slot coupled conductor are isolated on the slot line leaving sum signals to propagate on the microstrip. The difference signal is coupled from the slot line onto a second microstrip line for transmission to a desired location. The microstrip branches in a symmetrical fashion to provide the input/output ports of the 180.degree. hybrid. The symmetry of the device provides for balance and isolation between sum and difference signals, and provides an advantageous balance between the power handling capabilities and the bandwidth of the device.

  15. Hybrid chirped pulse amplification system

    DOE Patents [OSTI]

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  16. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in

  17. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in

  18. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in

  19. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in

  20. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in

  1. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in

  2. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in

  3. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in

  4. Additive manufacturing of hybrid circuits

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David M.; Hirschfeld, Deidre; Hall, Aaron Christopher

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less

  5. Suppressed-fission ICF hybrid reactor

    SciTech Connect (OSTI)

    Hogan, W.J.; Meier, W.R.

    1986-05-20

    A suppressed-fission ICF hybrid reactor has been designed to maximize the production of /sup 233/U. In this design, Be is used as a neutron multiplier. An annular array of Be columns surrounds the fusion pulse inside the reaction chember. The Be columns consist of short cylinders of Be joined together with steel snap rings. Vertical holes in the Be carry liquid lithium coolant and steel-clad thorium fuel pins. The lithium coolant is supplied at the top of the chamber, traverses through the Be columns and exits at the bottom. The columns are attached to top and bottom plates in such a way as to tolerate radiation-induced swelling and the vibrations resulting from each fusion pulse. A thin (10 cm) liquid Li fall region protects the Be columns from direct exposure to the X-rays and debris emitted by the fuel capsule. A neutronics study of this design indicates that the specific production of /sup 233/U fuel is increased by operating at relatively large thorium volume fractions. A design at a fertile fuel fraction of 30 vol % produces a total breeding ratio of over 2.1. The /sup 6/Li to /sup 7/Li ratio is adjusted to keep the tritium breeding ratio at about 1.0. In such a reactor, about 3400 kg of /sup 233/U can be produced per full power year at a fusion power level of 800 MW. Reactor support ratios greater than 13 can be achieved, leading to beneficial results even if the fusion reactor cost is significantly greater than that of a fission reactor.

  6. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  7. Understanding Interfaces in Metal-Graphitic Hybrid Nanostructures”

    SciTech Connect (OSTI)

    Ding, Mengning; Tang, Yifan; Star, Alexander

    2013-01-03

    Metal–graphitic interfaces formed between metal nanoparticles (MNPs) and carbon nanotubes (CNTs) or graphene play an important role in the properties of such hybrid nanostructures. This Perspective summarizes different types of interfaces that exist within the metal–carbon nanoassemblies and discusses current efforts on understanding and modeling the interfacial conditions and interactions. Characterization of the metal–graphitic interfaces is described here, including microscopy, spectroscopy, electrochemical techniques, and electrical measurements. Recent studies on these nanohybrids have shown that the metal–graphitic interfaces play critical roles in both controlled assembly of nanoparticles and practical applications of nanohybrids in chemical sensors and fuel cells. Better understanding, design, and manipulation of metal–graphitic interfaces could therefore become the new frontier in the research of MNP/CNT or MNP/graphene hybrid systems.

  8. Multipolar Coupling in Hybrid Metal–Dielectric Metasurfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Rui; Rusak, Evgenia; Staude, Isabelle; Dominguez, Jason; Decker, Manuel; Rockstuhl, Carsten; Brener, Igal; Neshev, Dragomir N.; Kivshar, Yuri S.

    2016-03-02

    In this paper, we study functional hybrid metasurfaces consisting of metal–dielectric nanoantennas that direct light from an incident plane wave or from localized light sources into a preferential direction. The directionality is obtained by carefully balancing the multipolar contributions to the scattering response from the constituents of the metasurface. The hybrid nanoantennas are composed of a plasmonic gold nanorod acting as a feed element and a silicon nanodisk acting as a director element. In order to experimentally realize this design, we have developed a two-step electron-beam lithography process in combination with a precision alignment step. Finally, the optical response ofmore » the fabricated sample is measured and reveals distinct signatures of coupling between the plasmonic and the dielectric nanoantenna elements that ultimately leads to unidirectional radiation of light.« less

  9. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the...

  10. PROJECT PROFILE: Opportunistic Hybrid Communications Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    distributed solar power is added to the electric power grid and becomes an increasing proportion of total energy generation... a hybrid communications system to meet the needs of ...

  11. Ultracapacitors and Batteries in Hybrid Vehicles

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.

    2005-08-01

    Using an ultracapacitor in conjunction with a battery in a hybrid vehicle combines the power performance of the former with the greater energy storage capability of the latter.

  12. Plug-In Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2006-05-08

    Provides an overview on the current status, long-term prospects, and key challenges in the development of plug-in hybrid electric vehicle technology.

  13. Hybrid Radiator Cooling System | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiator Cooling System Technology available for licensing: Hybrid radiator cooling system uses conventional finned air cooling under most driving conditions that would be...

  14. Hybrid Microwave Energy - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    undesirable environmental consequences.Description The hybrid microwave system provides a simple processing method for the reduction of waste volume, immobilization of hazardous...

  15. Hybrid slab-microchannel gel electrophoresis system

    DOE Patents [OSTI]

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  16. Poulsen Hybrid, LLC | Open Energy Information

    Open Energy Info (EERE)

    6 Waterview Drive Place: Shelton, Connecticut Zip: 06615 Region: Northeast - NY NJ CT PA Area Sector: Vehicles Product: Poulsen Hybrid Year Founded: 2007 Phone Number:...

  17. Hybrid Discrete - Continuum Algorithms for Stochastic Reaction...

    Office of Scientific and Technical Information (OSTI)

    for Stochastic Reaction Networks. Citation Details In-Document Search Title: Hybrid Discrete - Continuum Algorithms for Stochastic Reaction Networks. Abstract not provided. ...

  18. Hybrid spread spectrum radio system

    DOE Patents [OSTI]

    Smith, Stephen F.; Dress, William B.

    2010-02-02

    Systems and methods are described for hybrid spread spectrum radio systems. A method includes modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control an amplification circuit that provides a gain to the signal. Another method includes: modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control a fast hopping frequency synthesizer; and fast frequency hopping the signal with the fast hopping frequency synthesizer, wherein multiple frequency hops occur within a single data-bit time.

  19. Kit for detecting nucleic acid sequences using competitive hybridization probes

    DOE Patents [OSTI]

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2001-01-01

    A kit is provided for detecting a target nucleic acid sequence in a sample, the kit comprising: a first hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the first hybridization probe including a first complexing agent for forming a binding pair with a second complexing agent; and a second hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the first hybridization probe does not selectively hybridize, the second hybridization probe including a detectable marker; a third hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the third hybridization probe including the same detectable marker as the second hybridization probe; and a fourth hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the third hybridization probe does not selectively hybridize, the fourth hybridization probe including the first complexing agent for forming a binding pair with the second complexing agent; wherein the first and second hybridization probes are capable of simultaneously hybridizing to the target sequence and the third and fourth hybridization probes are capable of simultaneously hybridizing to the target sequence, the detectable marker is not present on the first or fourth hybridization probes and the first, second, third, and fourth hybridization probes each include a competitive nucleic acid sequence which is sufficiently complementary to a third portion of the target sequence that the competitive sequences of the first, second, third, and fourth hybridization probes compete with each other to hybridize to the third portion of the

  20. Phase I of the Near-Term Hybrid Passenger-Vehicle Development Program. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Under contract to the Jet Propulsion Laboratory of the California Institute of Technology, Minicars conducted Phase I of the Near-Term Hybrid Passenger Vehicle (NTHV) Development Program. This program led to the preliminary design of a hybrid (electric and internal combustion engine powered) vehicle and fulfilled the objectives set by JPL. JPL requested that the report address certain specific topics. A brief summary of all Phase I activities is given initially; the hybrid vehicle preliminary design is described in Sections 4, 5, and 6. Table 2 of the Summary lists performance projections for the overall vehicle and some of its subsystems. Section 4.5 gives references to the more-detailed design information found in the Preliminary Design Data Package (Appendix C). Alternative hybrid-vehicle design options are discussed in Sections 3 through 6. A listing of the tradeoff study alternatives is included in Section 3. Computer simulations are discussed in Section 9. Section 8 describes the supporting economic analyses. Reliability and safety considerations are discussed specifically in Section 7 and are mentioned in Sections 4, 5, and 6. Section 10 lists conclusions and recommendations arrived at during the performance of Phase I. A complete bibliography follows the list of references.

  1. Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51%...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014 Fact 849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better ...

  2. Wathen-Castanos Hybrid Homes | Open Energy Information

    Open Energy Info (EERE)

    Wathen-Castanos Hybrid Homes Jump to: navigation, search Name: Wathen-Castanos Hybrid Homes Place: Clovis, CA Website: www.wathen-castanos.com References: Wathen-Castanos Hybrid...

  3. DOE Hybrid and Electric Vehicle Test Platform

    SciTech Connect (OSTI)

    Gao, Yimin

    2012-03-31

    Based on the contract NT-42790 to the Department of Energy, “Plug-in Hybrid Ethanol Research Platform”, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS

  4. hybridTalk1.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Centers and Vendors are Responding with New Designs * Virtually all upcoming systems have various forms of heterogeneous parallelism * NERSC6 with its multicore design TBA * Blue Waters with its Power7 hardware threaded design 8 cores, 12 execution units/core, 4-way SMT/core * ASC Sequoia (follow-on to BlueGene design) with anticipated support for transactional memory * Experts everywhere are preparing for this architecture revolution with new languages, extensions to old languages,

  5. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Digg Find More places to share

  6. Performance of a hybrid ground-coupled heat pump system

    SciTech Connect (OSTI)

    Phetteplace, G.; Sullivan, W.

    1998-10-01

    In climates dominated by air conditioning, a few so-called hybrid ground-coupled heat pump (GCHP) systems have been built. The hybrid system uses both a ground-coupled heat exchanger and a cooling tower, thereby reducing the amount of ground-coupling heat exchanger necessary. Although this concept has been shown to be feasible, the performance of such a system has not been measured in detail. Since it may be possible to achieve significant performance improvements in such systems by modifying the design and operational practices, detailed performance monitoring of such systems is needed. This paper describes a project that has been undertaken to collect performance data from a hybrid GCHP system at Fort Polk, LA. This paper presents performance data for a period of about 22 months, including data from portions of two heating and cooling seasons. The energy input to the GCHPs themselves will be presented, as well as the energy rejected to the ground in the cooling mode and that extracted from the ground in the heating mode. Energy flows in the cooling tower also will be addressed, along with the power consumption of the circulating pumps and the cooling tower.

  7. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  8. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence

    SciTech Connect (OSTI)

    Erickson, Paul

    2012-05-31

    This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programs from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davis's existing GATE centers have become the campus's research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.

  9. Energy minimization of separation processes using conventional/membrane hybrid systems

    SciTech Connect (OSTI)

    Gottschlich, D.E.; Roberts, D.L. )

    1990-09-28

    The purpose of this study was to identify the general principles governing the choice of hybrid separation systems over straight membrane or straight nonmembrane systems and to do so by examining practical applications (process design and economics). Our focus was to examine the energy consumption characteristics and overall cost factors of the membrane and nonmembrane technologies that cause hybrid systems to be preferred over nonhybrid systems. We evaluated four cases studies, chosen on the basis of likelihood of commercial viability of a hybrid system and magnitude of energy savings: (1) propane/propylene separation; (2) removal of nitrogen from natural gas; (3) concentration of Kraft black liquor; and (4)solvent deasphalting. For propane/propylene splitting, the membrane proved to be superior to distillation in both thermodynamic efficiency and processing cost (PC) when the product was 95% pure propylene. However, to produce higher purity products, the membrane alone could not perform the separation, and a membrane/distillation hybrid was required. In these cases, there is an optimum amount of separation to be accomplished by the membrane (expressed as the fraction of the total availability change of the membrane/distillation hybrid that takes place in the membrane and defined as {phi}{sub m}, the thermodynamic extent of separation). Qualitative and quantitative guidelines are discussed with regard to choosing a hybrid system. 54 refs., 66 figs., 36 tabs.

  10. Dish/stirling hybrid-receiver

    DOE Patents [OSTI]

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2002-01-01

    A hybrid high-temperature solar receiver is provided which comprises a solar heat-pipe-receiver including a front dome having a solar absorber surface for receiving concentrated solar energy, a heat pipe wick, a rear dome, a sidewall joining the front and the rear dome, and a vapor and a return liquid tube connecting to an engine, and a fossil fuel fired combustion system in radial integration with the sidewall for simultaneous operation with the solar heat pipe receiver, the combustion system comprising an air and fuel pre-mixer, an outer cooling jacket for tangentially introducing and cooling the mixture, a recuperator for preheating the mixture, a burner plenum having an inner and an outer wall, a porous cylindrical metal matrix burner firing radially inward facing a sodium vapor sink, the mixture ignited downstream of the matrix forming combustion products, an exhaust plenum, a fossil-fuel heat-input surface having an outer surface covered with a pin-fin array, the combustion products flowing through the array to give up additional heat to the receiver, and an inner surface covered with an extension of the heat-pipe wick, a pin-fin shroud sealed to the burner and exhaust plenums, an end seal, a flue-gas diversion tube and a flue-gas valve for use at off-design conditions to limit the temperature of the pre-heated air and fuel mixture, preventing pre-ignition.

  11. Space and power efficient hybrid counters array

    DOE Patents [OSTI]

    Gara, Alan G.; Salapura, Valentina

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  12. Space and power efficient hybrid counters array

    DOE Patents [OSTI]

    Gara, Alan G.; Salapura, Valentina

    2010-03-30

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  13. Ultra-thin microporous/hybrid materials

    DOE Patents [OSTI]

    Jiang, Ying-Bing; Cecchi, Joseph L.; Brinker, C. Jeffrey

    2012-05-29

    Ultra-thin hybrid and/or microporous materials and methods for their fabrication are provided. In one embodiment, the exemplary hybrid membranes can be formed including successive surface activation and reaction steps on a porous support that is patterned or non-patterned. The surface activation can be performed using remote plasma exposure to locally activate the exterior surfaces of porous support. Organic/inorganic hybrid precursors such as organometallic silane precursors can be condensed on the locally activated exterior surfaces, whereby ALD reactions can then take place between the condensed hybrid precursors and a reactant. Various embodiments can also include an intermittent replacement of ALD precursors during the membrane formation so as to enhance the hybrid molecular network of the membranes.

  14. Low Cost Injection Mold Creation via Hybrid Additive and Conventional...

    Office of Scientific and Technical Information (OSTI)

    Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing Citation Details In-Document Search Title: Low Cost Injection Mold Creation via Hybrid Additive ...

  15. Polyacrylonitrile-Chalcogel Hybrid Sorbents for Radioiodine Capture...

    Office of Scientific and Technical Information (OSTI)

    Polyacrylonitrile-Chalcogel Hybrid Sorbents for Radioiodine Capture Citation Details In-Document Search Title: Polyacrylonitrile-Chalcogel Hybrid Sorbents for Radioiodine Capture ...

  16. Inorganic-Organic Hybrid Thermoelectrics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inorganic-Organic Hybrid Thermoelectrics Inorganic-Organic Hybrid Thermoelectrics Large-scale synthesis of inorganic and organic nanomaterials (single-crystalline nanowires and ...

  17. Shanghai Maple Tongji University hybrid automobile research partnershi...

    Open Energy Info (EERE)

    An agreement between Shanghai Maple and Tongji University to produce hybrid cars for marketing by 2008. References: Shanghai Maple - Tongji University hybrid automobile research...

  18. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buying & Making Electricity Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and solar systems occur at...

  19. Hybrid fs/ps Rotational CARS Temperature and Concentration Measurement...

    Office of Scientific and Technical Information (OSTI)

    Hybrid fsps Rotational CARS Temperature and Concentration Measurements Using Two Different ps-Duration Probe Beams. Citation Details In-Document Search Title: Hybrid fsps ...

  20. Overview of Fusion-Fission Hybrid Blankets for Laser Inertial...

    Office of Scientific and Technical Information (OSTI)

    Conference: Overview of Fusion-Fission Hybrid Blankets for Laser Inertial Fusion Energy (LIFE) Engine Citation Details In-Document Search Title: Overview of Fusion-Fission Hybrid ...

  1. 2011 Annual Merit Review Results Report - Hybrid and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid and Vehicle Systems Technologies 2011 Annual Merit Review Results Report - Hybrid and Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research ...

  2. 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report - Hybrid Vehicle Systems Technologies 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research ...

  3. 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities ...

  4. 2011 Annual Merit Review Results Report - Hybrid and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Annual Merit Review Results Report - Hybrid and Vehicle Systems Technologies 2011 Annual Merit Review Results Report - Hybrid and Vehicle Systems Technologies Merit review of DOE ...

  5. 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities ...

  6. Building America Webinar: New Construction Hybrid-Ductless Heat...

    Energy Savers [EERE]

    New Construction Hybrid-Ductless Heat Pumps Study: Resistance is Futile Building America Webinar: New Construction Hybrid-Ductless Heat Pumps Study: Resistance is Futile This ...

  7. User-Oriented Modeling Tools for Advanced Hybrid and Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    User-Oriented Modeling Tools for Advanced Hybrid and Climate-Appropriate Rooftop Air Conditioners User-Oriented Modeling Tools for Advanced Hybrid and Climate-Appropriate Rooftop ...

  8. AVTA: Hybrid Electric Vehicle Specifications and Test Procedures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Electric Vehicle Specifications and Test Procedures AVTA: Hybrid Electric Vehicle Specifications and Test Procedures Fleet Test and Evaluation Procedure (231.85 KB) ...

  9. Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    However, in recent years, hybrid vehicle technology has expanded throughout the automotive industry and now the list is dominated by hybrid vehicles, many of which are midsized ...

  10. Hybrid Electric Systems: Goals, Strategies, and Top Accomplishments (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes the work EERE is doing in the areas of hybrid, plug-in hybrid, and all-electric vehicles.

  11. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses...

    Office of Scientific and Technical Information (OSTI)

    The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV ...

  12. Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Micropower and Fuel CellGas Turbine Hybrid Systems in Industrial Applications - Volume II (Appendices), January 2000 Opportunities for Micropower and Fuel CellGas Turbine Hybrid ...

  13. Washington, D.C. and Indiana: Allison Hybrid Technology Achieves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington, D.C. and Indiana: Allison Hybrid Technology Achieves Commercial Success Washington, D.C. and Indiana: Allison Hybrid Technology Achieves Commercial Success August 21,...

  14. GE Hybrid Power Generation Systems | Open Energy Information

    Open Energy Info (EERE)

    Name: GE Hybrid Power Generation Systems Place: Georgia Zip: Atlanta Product: Focused on fuel cell stack and system development. References: GE Hybrid Power Generation Systems1...

  15. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  16. Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles...

    Open Energy Info (EERE)

    Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric...

  17. ADVANCED, ENERGY-EFFICIENT HYBRID MEMBRANE SYSTEM FOR INDUSTRIAL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED, ENERGY-EFFICIENT HYBRID MEMBRANE SYSTEM FOR INDUSTRIAL WATER REUSE ADVANCED, ENERGY-EFFICIENT HYBRID MEMBRANE SYSTEM FOR INDUSTRIAL WATER REUSE Research Triangle ...

  18. Microfluidics: Kinetics of Hybridized DNA With Fluid Flow Variations...

    Office of Scientific and Technical Information (OSTI)

    Microfluidics: Kinetics of Hybridized DNA With Fluid Flow Variations. Citation Details In-Document Search Title: Microfluidics: Kinetics of Hybridized DNA With Fluid Flow ...

  19. NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inorganic-Organic Hybrid Thermoelectrics NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle ...

  20. New Cost Tool Helps Fleet Managers Evaluate Hybrid Vehicles ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Cost Tool Helps Fleet Managers Evaluate Hybrid Vehicles August 3, 2005 Golden, Colo. - A new software tool that compares the costs and emissions of hybrid electric vehicles ...

  1. Self-Regulation Mechanism for Charged Point Defects in Hybrid...

    Office of Scientific and Technical Information (OSTI)

    Accepted Manuscript: Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites Title: Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide ...

  2. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation Vehicle ...

  3. CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus DOE Hydrogen Program (Fact Sheet) PDF icon 42407.pdf More ...

  4. Ford Motor Co Sustainable Technologies and Hybrid Programme ...

    Open Energy Info (EERE)

    Motor Co Sustainable Technologies and Hybrid Programme Jump to: navigation, search Name: Ford Motor Co - Sustainable Technologies and Hybrid Programme Place: Allen Park, Michigan...

  5. Fact #883 July 27, 2015 Hybrid Powertrains are More Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 July 27, 2015 Hybrid Powertrains are More Efficient than Conventional Counterparts Fact 883 July 27, 2015 Hybrid Powertrains are More Efficient than Conventional Counterparts ...

  6. Fact #883: July 27, 2015 Hybrid Powertrains are More Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: July 27, 2015 Hybrid Powertrains are More Efficient than Conventional Counterparts - Dataset Fact 883: July 27, 2015 Hybrid Powertrains are More Efficient than Conventional ...

  7. Overview of Fusion-Fission Hybrid Blankets for Laser Inertial...

    Office of Scientific and Technical Information (OSTI)

    Hybrid Blankets for Laser Inertial Fusion Energy (LIFE) Engine Citation Details In-Document Search Title: Overview of Fusion-Fission Hybrid Blankets for Laser Inertial Fusion ...

  8. Building America Webinar: New Construction Hybrid-Ductless Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: New Construction Hybrid-Ductless Heat Pumps Study: Resistance is Futile Building America Webinar: New Construction Hybrid-Ductless Heat Pumps Study:...

  9. Fusion-Fission Hybrid for Fissile Fuel Production without Processing...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Fusion-Fission Hybrid for Fissile Fuel Production without Processing Citation Details In-Document Search Title: Fusion-Fission Hybrid for Fissile Fuel Production ...

  10. Advanced, Energy-Efficient Hybrid Membrane System for Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced, Energy- Efficient Hybrid Membrane System for Industrial Water Reuse New Hybrid Membrane System Utilizes Industrial Waste Heat to Power Water Purification Process As...

  11. Electric and Hybrid Electric Vehicle Sales: December 2010 - June...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. ...

  12. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  13. MHK Technologies/SMART Hybrid System | Open Energy Information

    Open Energy Info (EERE)

    Type Click here Hybrid Technology Readiness Level Click here TRL 9: Commercial-Scale Production Application Technology Description Smart Hydro Power's hybrid system combines a...

  14. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Citation Details In-Document Search Title: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Authors: Moir, R ...

  15. Applicability of a Hybrid Retorting Technology in the Green River...

    Broader source: Energy.gov (indexed) [DOE]

    in the Green River Formation that is amenable to commercial development using such hybrid technology. Applicability of a Hybrid Retorting Technology in the Green River ...

  16. Hybrid Wall Construction and Quality Control Issues in Wyandotte, Michigan

    SciTech Connect (OSTI)

    Lukachko, A.; Grin, A.; Bergey, D.

    2013-12-01

    This report is the second report on the Wyandotte Neighborhood Stabilization Program 2 project in Wyandotte, MI, and documents refinements to the design, construction, and quality control for the high R-value enclosure. The report will be of interest to designers and builders of production housing in Cold Climates. The focus of the second round of research was on using the hybrid insulation approach to develop a reliable method of achieving consistently low airtightness numbers. There are two primary outcomes from this research. First, the airtightness measurements demonstrate that with a shallow learning curve, even new builders entering the program having little experience with the technology package are able to achieve consistent results that are less than 1.5 ACH50. Second, the process changes implemented to help secure these results were straightforward and ended up encouraging better communication between designer, builder, and the city officials supervising the project.

  17. Hybrid Wall Construction and Quality Control Issues in Wyandotte, Michigan

    SciTech Connect (OSTI)

    Lukachko, A.; Grin, A.; Bergey, D.

    2013-12-01

    This report is the second report on the Wyandotte NSP2 project in Wyandotte, MI and documents refinements to the design, construction, and quality control for the High R-value enclosure. The report will be of interest to designers and builders of production housing in Cold Climates. The focus of the second round of research was on using the hybrid insulation approach to develop a reliable methodof achieving consistently low airtightness numbers. There are two primary outcomes from this research. First, the airtightness measurements demonstrate that with a shallow learning curve, even new builders entering the program having little experience with the technology package are able to achieve consistent results that are less than 1.5 ACH50. Second, the process changes implemented to helpsecure these results were straightforward and ended up encouraging better communication between designer, builder, and the City officials supervising the project.

  18. Hybridization and Selective Release of DNA Microarrays

    SciTech Connect (OSTI)

    Beer, N R; Baker, B; Piggott, T; Maberry, S; Hara, C M; DeOtte, J; Benett, W; Mukerjee, E; Dzenitis, J; Wheeler, E K

    2011-11-29

    DNA microarrays contain sequence specific probes arrayed in distinct spots numbering from 10,000 to over 1,000,000, depending on the platform. This tremendous degree of multiplexing gives microarrays great potential for environmental background sampling, broad-spectrum clinical monitoring, and continuous biological threat detection. In practice, their use in these applications is not common due to limited information content, long processing times, and high cost. The work focused on characterizing the phenomena of microarray hybridization and selective release that will allow these limitations to be addressed. This will revolutionize the ways that microarrays can be used for LLNL's Global Security missions. The goals of this project were two-fold: automated faster hybridizations and selective release of hybridized features. The first study area involves hybridization kinetics and mass-transfer effects. the standard hybridization protocol uses an overnight incubation to achieve the best possible signal for any sample type, as well as for convenience in manual processing. There is potential to significantly shorten this time based on better understanding and control of the rate-limiting processes and knowledge of the progress of the hybridization. In the hybridization work, a custom microarray flow cell was used to manipulate the chemical and thermal environment of the array and autonomously image the changes over time during hybridization. The second study area is selective release. Microarrays easily generate hybridization patterns and signatures, but there is still an unmet need for methodologies enabling rapid and selective analysis of these patterns and signatures. Detailed analysis of individual spots by subsequent sequencing could potentially yield significant information for rapidly mutating and emerging (or deliberately engineered) pathogens. In the selective release work, optical energy deposition with coherent light quickly provides the thermal energy to

  19. Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.

    SciTech Connect (OSTI)

    Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

    1999-06-18

    This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

  20. Scalable and Power Efficient Data Analytics for Hybrid Exascale Systems

    SciTech Connect (OSTI)

    Choudhary, Alok; Samatova, Nagiza; Wu, Kesheng; Liao, Wei-keng

    2015-03-19

    This project developed a generic and optimized set of core data analytics functions. These functions organically consolidate a broad constellation of high performance analytical pipelines. As the architectures of emerging HPC systems become inherently heterogeneous, there is a need to design algorithms for data analysis kernels accelerated on hybrid multi-node, multi-core HPC architectures comprised of a mix of CPUs, GPUs, and SSDs. Furthermore, the power-aware trend drives the advances in our performance-energy tradeoff analysis framework which enables our data analysis kernels algorithms and software to be parameterized so that users can choose the right power-performance optimizations.

  1. Stellarmak a hybrid stellarator: Spheromak

    SciTech Connect (OSTI)

    Hartman, C.W.

    1980-01-04

    This paper discusses hybridization of modified Stellarator-like transform windings (T-windings) with a Spheromak or Field-Reversed-Mirror configuration. This configuration, Stellarmak, retains the important topological advantage of the Spheromak or FRM of having no plasma linking conductors or blankets. The T-windings provide rotational transformation in toroidal angle of the outer poloidal field lines, in effect creating a reversed B/sub Toroidal/ Spheromak or adding average B/sub T/ to the FRM producing higher shear, increased limiting ..beta.., and possibly greater stability to kinks and tilt. The presence of field ripple in the toroidal direction may be sufficient to inhibit cancellation of directed ion current by electron drag to allow steady state operation with the toroidal as well as poloidal current maintained by neutral beams.

  2. Low cost, compact, and high efficiency traction motor for electric and hybrid electric vehicles

    SciTech Connect (OSTI)

    Ehsani, Mark

    2002-10-07

    A new motor drive, the switched reluctance motor drive, has been developed for hybrid-electric vehicles. The motor drive has been designed, built and tested in the test bed at a near vehicle scale. It has been shown that the switched reluctance motor drive is more suitable for traction application than any other motor drive.

  3. Interim Human Factors Guidance for Hybrid and Digital I&C System

    SciTech Connect (OSTI)

    J.Naser, G.Morris

    2003-08-15

    OAK- B135 To help nuclear power plant operators and suppliers plan, specify, design and implement the modernization of control rooms and other HSI in a way that takes advantage of digital systems and HSI technologies, reflects practical constraints associated with modernizing existing control rooms and I&C systems, and addresses issues associated with hybrid control room HSI.

  4. Computer simulation of lower-hybrid heating in tokamaks. Final report

    SciTech Connect (OSTI)

    Ogden, J. M.

    1981-04-29

    A simple quasilinear model was added of lower hybrid heating to the BALDUR 1-D tokamak transport code. The program was used to simulate PLT and the INTOR reactor design. For PLT a temperature increase of approx. = 2 keV/kW of RF input power was predicted. Quasilinear theory gave slightly less heating than linear theory, because of greater electron edge losses.

  5. Hybrid options for light-duty vehicles.

    SciTech Connect (OSTI)

    An, F., Stodolsky, F.; Santini, D.

    1999-07-19

    Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

  6. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  7. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  8. A vent sizing program with particular reference to hybrid runaway reaction systems

    SciTech Connect (OSTI)

    Leung, J.C.; Noronha, J.A.; Torres, A.J.

    1995-12-31

    VSSPH (Vent Sizing Software Program for Hybrid System) is a software program designed to yield rapid evaluation of emergency requirements requirements for a general class of hybrid system runaway reaction - a system which generate both condensable vapor and noncondensable gases. The calculational method is based on transient numerical solutions as well as analytical solutions. This program only requires a few key input parameters as well as physical properties. The program also incorporates the latest two-phase pipe flow model based on the {omega} methodology. This paper describes the model construction and summarizes the results of sample runs. 5 refs., 5 figs.

  9. Hybrid Back Surface Reflector GaInAsSb Thermophotovoltaic Devices

    SciTech Connect (OSTI)

    RK Huang; CA Wang; MK Connors; GW Turner; M Dashiell

    2004-05-11

    Back surface reflectors have the potential to improve thermophotovoltaic (TPV) device performance though the recirculation of infrared photons. The ''hybrid'' back-surface reflector (BSR) TPV cell approach allows one to construct BSRs for TPV devices using conventional, high efficiency, GaInAsSb-based TPV material. The design, fabrication, and measurements of hybrid BSR-TPV cells are described. The BSR was shown to provide a 4 mV improvement in open-circuit voltage under a constant shortcircuit current, which is comparable to the 5 mV improvement theoretically predicted. Larger improvements in open-circuit voltage are expected in the future with materials improvements.

  10. Testing and Development of a 30-kVA Hybrid Inverter: Lessons Learned and Reliability Implications

    SciTech Connect (OSTI)

    Ginn, J.W.

    1998-12-21

    A 30-kVA Trace Technologies hybrid power processor was specified and tested at the Sandia inverter test facility. Trace Technologies involving the control system, in response to suggestions made modifications, primarily by Sandia and Arizona Public Service (APS) personnel. The modifications should make the inverter more universally applicable and less site-specific so that it can be applied in various sites with minimal field interaction required from the design engineer. The project emphasized the importance of battery management, generator selection, and site load management to the performance and reliability of hybrid power systems.

  11. Alternative Fuels Data Center: Texas Taxis Go Hybrid

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Texas Taxis Go Hybrid to someone by E-mail Share Alternative Fuels Data Center: Texas Taxis Go Hybrid on Facebook Tweet about Alternative Fuels Data Center: Texas Taxis Go Hybrid on Twitter Bookmark Alternative Fuels Data Center: Texas Taxis Go Hybrid on Google Bookmark Alternative Fuels Data Center: Texas Taxis Go Hybrid on Delicious Rank Alternative Fuels Data Center: Texas Taxis Go Hybrid on Digg Find More places to share Alternative Fuels Data Center: Texas Taxis Go Hybrid on AddThis.com...

  12. Knoxville Area Transit: Propane Hybrid Electric Trolleys

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

  13. Hybrid staging of geothermal energy conversion process

    SciTech Connect (OSTI)

    Steidel, R.F. Jr.

    1984-05-07

    Progress in the demonstration of the feasibility of hybrid staging in geothermal energy conversion is described, particularly processes involving the Lysholm engine. The performance limitations of the Lysholm engine were studied. (MHR)

  14. Control system for a hybrid powertrain system

    DOE Patents [OSTI]

    Naqvi, Ali K.; Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.

    2014-09-09

    A vehicle includes a powertrain with an engine, first and second torque machines, and a hybrid transmission. A method for operating the vehicle includes operating the engine in an unfueled state, releasing an off-going clutch which when engaged effects operation of the hybrid transmission in a first continuously variable mode, and applying a friction braking torque to a wheel of the vehicle to compensate for an increase in an output torque of the hybrid transmission resulting from releasing the off-going clutch. Subsequent to releasing the off-going clutch, an oncoming clutch which when engaged effects operation of the hybrid transmission in a second continuously variable mode is synchronized. Subsequent to synchronization of the oncoming clutch, the oncoming clutch is engaged.

  15. Hybrid slab-microchannel gel electrophoresis system

    DOE Patents [OSTI]

    Balch, J.W.; Carrano, A.V.; Davidson, J.C.; Koo, J.C.

    1998-05-05

    A hybrid slab-microchannel gel electrophoresis system is described. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate. 4 figs.

  16. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  17. NREL: Transportation Research - Hydraulic Hybrid Fleet Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a ...

  18. Do You Drive a Hybrid Electric Vehicle?

    Broader source: Energy.gov [DOE]

    In Tuesday's entry, Francis X. Vogel from the Wisconsin Clean Cities coalition told us about his plug-in hybrid electric vehicle (PHEV). He's one of the lucky few in the United States to drive one...

  19. Analysis of Hybrid Hydrogen Systems: Final Report

    SciTech Connect (OSTI)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  20. PROJECT PROFILE: Opportunistic Hybrid Communications Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed PV Coordination (SuNLaMP) | Department of Energy PROJECT PROFILE: Opportunistic Hybrid Communications Systems for Distributed PV Coordination (SuNLaMP) PROJECT PROFILE: Opportunistic Hybrid Communications Systems for Distributed PV Coordination (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: Systems Integration Location: National Renewable Energy Laboratory, Golden, CO SunShot Award Amount: $2,709,398 As more distributed solar power is added to the electric power grid and

  1. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Wednesday, 26 August 2009 00:00 Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely

  2. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

    2013-04-01

    The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

  3. Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Schools Hybrid Electric Horsepower for Kentucky Schools to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Delicious Rank Alternative

  4. Alternative Fuels Data Center: Hydraulic Hybrid Pressed into Service in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Refuse Collection Hydraulic Hybrid Pressed into Service in Refuse Collection to someone by E-mail Share Alternative Fuels Data Center: Hydraulic Hybrid Pressed into Service in Refuse Collection on Facebook Tweet about Alternative Fuels Data Center: Hydraulic Hybrid Pressed into Service in Refuse Collection on Twitter Bookmark Alternative Fuels Data Center: Hydraulic Hybrid Pressed into Service in Refuse Collection on Google Bookmark Alternative Fuels Data Center: Hydraulic Hybrid Pressed

  5. An Optimization Framework for Dynamic Hybrid Energy Systems

    SciTech Connect (OSTI)

    Wenbo Du; Humberto E Garcia; Christiaan J.J. Paredis

    2014-03-01

    A computational framework for the efficient analysis and optimization of dynamic hybrid energy systems (HES) is developed. A microgrid system with multiple inputs and multiple outputs (MIMO) is modeled using the Modelica language in the Dymola environment. The optimization loop is implemented in MATLAB, with the FMI Toolbox serving as the interface between the computational platforms. Two characteristic optimization problems are selected to demonstrate the methodology and gain insight into the system performance. The first is an unconstrained optimization problem that optimizes the dynamic properties of the battery, reactor and generator to minimize variability in the HES. The second problem takes operating and capital costs into consideration by imposing linear and nonlinear constraints on the design variables. The preliminary optimization results obtained in this study provide an essential step towards the development of a comprehensive framework for designing HES.

  6. Hybrid systems process mixed wastes

    SciTech Connect (OSTI)

    Chertow, M.R.

    1989-10-01

    Some technologies, developed recently in Europe, combine several processes to separate and reuse materials from solid waste. These plants have in common, generally, that they are reasonably small, have a composting component for the organic portion, and often have a refuse-derived fuel component for combustible waste. Many European communities also have very effective drop-off center programs for recyclables such as bottles and cans. By maintaining the integrity of several different fractions of the waste, there is a less to landfill and less to burn. The importance of these hybrid systems is that they introduce in one plant an approach that encompasses the key concept of today's solid waste planning; recover as much as possible and landfill as little as possible. The plants also introduce various risks, particularly of finding secure markets. There are a number of companies offering various combinations of materials recovery, composting, and waste combustion. Four examples are included: multiple materials recovery and refuse-derived fuel production in Eden Prairie, Minnesota; multiple materials recovery, composting and refuse-derived fuel production in Perugia, Italy; composting, refuse-derived fuel, and gasification in Tolmezzo, Italy; and a front-end system on a mass burning waste-to-energy plant in Neuchatel, Switzerland.

  7. Parker Hybrid Hydraulic Drivetrain Demonstration

    SciTech Connect (OSTI)

    Collett, Raymond; Howland, James; Venkiteswaran, Prasad

    2014-03-31

    This report examines the benefits of Parker Hannifin hydraulic hybrid brake energy recovery systems used in commercial applications for vocational purposes. A detailed background on the problem statement being addressed as well as the solution set specific for parcel delivery will be provided. Objectives of the demonstration performed in high start & stop applications included opportunities in fuel usage reduction, emissions reduction, vehicle productivity, and vehicle maintenance. Completed findings during the demonstration period and parallel investigations with NREL, CALSTART, along with a literature review will be provided herein on this research area. Lastly, results identified in the study by third parties validated the savings potential in fuel reduction of on average of 19% to 52% over the baseline in terms of mpg (Lammert, 2014, p11), Parker data for parcel delivery vehicles in the field parallels this at a range of 35% - 50%, emissions reduction of 17.4% lower CO2 per mile and 30.4% lower NOx per mile (Gallo, 2014, p15), with maintenance improvement in the areas of brake and starter replacement, while leaving room for further study in the area of productivity in terms of specific metrics that can be applied and studied.

  8. Lower hybrid wavepacket stochasticity revisited

    SciTech Connect (OSTI)

    Fuchs, V.; Krlín, L.; Pánek, R.; Preinhaelter, J.; Seidl, J.; Urban, J.

    2014-02-12

    Analysis is presented in support of the explanation in Ref. [1] for the observation of relativistic electrons during Lower Hybrid (LH) operation in EC pre-heated plasma at the WEGA stellarator [1,2]. LH power from the WEGA TE11 circular waveguide, 9 cm diameter, un-phased, 2.45 GHz antenna, is radiated into a B?0.5 T, М„n{sub e}?5Ś10{sup 17} 1/m{sup 3} plasma at T{sub e}?10 eV bulk temperature with an EC generated 50 keV component [1]. The fast electrons cycle around flux or drift surfaces with few collisions, sufficient for randomizing phases but insufficient for slowing fast electrons down, and thus repeatedly interact with the rf field close to the antenna mouth, gaining energy in the process. Our antenna calculations reveal a standing electric field pattern at the antenna mouth, with which we formulate the electron dynamics via a relativistic Hamiltonian. A simple approximation of the equations of motion leads to a relativistic generalization of the area-preserving Fermi-Ulam (F-U) map [3], allowing phase-space global stochasticity analysis. At typical WEGA plasma and antenna conditions, the F-U map predicts an LH driven current of about 230 A, at about 225 W of dissipated power, in good agreement with the measurements and analysis reported in [1].

  9. Coherent hybrid electromagnetic field imaging

    DOE Patents [OSTI]

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  10. Commercial viability of hybrid vehicles : best household use and cross national considerations.

    SciTech Connect (OSTI)

    Santini, D. J.; Vyas, A. D.

    1999-07-16

    Japanese automakers have introduced hybrid passenger cars in Japan and will soon do so in the US. In this paper, we report how we used early computer simulation model results to compare the commercial viability of a hypothetical near-term (next decade) hybrid mid-size passenger car configuration under varying fuel price and driving patterns. The fuel prices and driving patterns evaluated are designed to span likely values for major OECD nations. Two types of models are used. One allows the ''design'' of a hybrid to a specified set of performance requirements and the prediction of fuel economy under a number of possible driving patterns (called driving cycles). Another provides an estimate of the incremental cost of the hybrid in comparison to a comparably performing conventional vehicle. In this paper, the models are applied to predict the NPV cost of conventional gasoline-fueled vehicles vs. parallel hybrid vehicles. The parallel hybrids are assumed to (1) be produced at high volume, (2) use nickel metal hydride battery packs, and (3) have high-strength steel bodies. The conventional vehicle also is assumed to have a high-strength steel body. The simulated vehicles are held constant in many respects, including 0-60 time, engine type, aerodynamic drag coefficient, tire rolling resistance, and frontal area. The hybrids analyzed use the minimum size battery pack and motor to meet specified 0-60 times. A key characteristic affecting commercial viability is noted and quantified: that hybrids achieve the most pronounced fuel economy increase (best use) in slow, average-speed, stop-and-go driving, but when households consistently drive these vehicles under these conditions, they tend to travel fewer miles than average vehicles. We find that hours driven is a more valuable measure than miles. Estimates are developed concerning hours of use of household vehicles versus driving cycle, and the pattern of minimum NPV incremental cost (or benefit) of selecting the hybrid over

  11. Advanced Hybrid Particulate Collector Project Management Plan

    SciTech Connect (OSTI)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  12. Hybrid Locomotive | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Over the last decade, the U.S. government has enacted a number of rules designed to reduce smog and air pollution in cities and towns. For locomotive makers, like GE, that means ...

  13. HybridStore: A Cost-Efficient, High-Performance Storage System Combining SSDs and HDDs

    SciTech Connect (OSTI)

    Kim, Youngjae; Gupta, Aayush; Urgaonkar, Bhuvan; Piotr, Berman; Sivasubramaniam, Anand

    2011-01-01

    Unlike the use of DRAM for caching or buffering, certain idiosyncrasies of NAND Flash-based solid-state drives (SSDs) make their integration into existing systems non-trivial. Flash memory suffers from limits on its reliability, is an order of magnitude more expensive than the magnetic hard disk drives (HDDs), and can sometimes be as slow as the HDD (due to excessive garbage collection (GC) induced by high intensity of random writes). Given these trade-offs between HDDs and SSDs in terms of cost, performance, and lifetime, the current consensus among several storage experts is to view SSDs not as a replacement for HDD but rather as a complementary device within the high-performance storage hierarchy. We design and evaluate such a hybrid system called HybridStore to provide: (a) HybridPlan: improved capacity planning technique to administrators with the overall goal of operating within cost-budgets and (b) HybridDyn: improved performance/lifetime guarantees during episodes of deviations from expected workloads through two novel mechanisms: write-regulation and fragmentation busting. As an illustrative example of HybridStore s ef cacy, HybridPlan is able to nd the most cost-effective storage con guration for a large scale workload of Microsoft Research and suggest one MLC SSD with ten 7.2K RPM HDDs instead of fourteen 7.2K RPM HDDs only. HybridDyn is able to reduce the average response time for an enterprise scale random-write dominant workload by about 71% as compared to a HDD-based system.

  14. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures

    SciTech Connect (OSTI)

    Huang, C; Xiao, J; Shao, YY; Zheng, JM; Bennett, WD; Lu, DP; Saraf, LV; Engelhard, M; Ji, LW; Zhang, J; Li, XL; Graff, GL; Liu, J

    2014-01-09

    Lithium-sulphur batteries have high theoretical energy density and potentially low cost, but significant challenges such as severe capacity degradation prevent its widespread adoption. Here we report a new design of lithium-sulphur battery using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on lithium. Lithiated graphite placed in front of the lithium metal functions as an artificial, self-regulated solid electrolyte interface layer to actively control the electrochemical reactions and minimize the deleterious side reactions, leading to significant performance improvements. Lithium-sulphur cells incorporating this hybrid anodes deliver capacities of >800 mAhg(-1) for 400 cycles at a high rate of 1,737mAg(-1), with only 11% capacity fade and a Coulombic efficiency >99%. This simple hybrid concept may also provide scientific strategies for protecting metal anodes in other energy-storage devices.

  15. Development and Demonstration of a Low Cost Hybrid Drive Train for Medium and Heavy Duty Vehicles

    SciTech Connect (OSTI)

    Strangas, Elias; Schock, Harold; Zhu, Guoming; Moran, Kevin; Ruckle, Trevor; Foster, Shanelle; Cintron-Rivera, Jorge; Tariq, Abdul; Nino-Baron, Carlos

    2011-04-30

    The DOE sponsored effort is part of a larger effort to quantify the efficiency of hybrid powertrain systems through testing and modeling. The focus of the DOE sponsored activity was the design, development and testing of hardware to evaluate the efficiency of the electrical motors relevant to medium duty vehicles. Medium duty hybrid powertrain motors and generators were designed, fabricated, setup and tested. The motors were a permanent magnet configuration, constructed at Electric Apparatus Corporation in Howell, Michigan. The purpose of this was to identify the potential gains in terms of fuel cost savings that could be realized by implementation of such a configuration. As the electric motors constructed were prototype designs, the scope of the project did not include calculation of the costs of mass production of the subject electrical motors or generator.

  16. Wind/Hybrid Electricity Applications

    SciTech Connect (OSTI)

    McDaniel, Lori

    2001-03-31

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  17. Impact of SiC Devices on Hybrid Electric and Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Zhang, Hui; Tolbert, Leon M; Ozpineci, Burak

    2008-01-01

    The application of SiC devices (as battery interface, motor controller, etc.) in a hybrid electric vehicle (HEV) will benefit from their high-temperature capability, high-power density, and high efficiency. Moreover, the light weight and small volume will affect the whole power train system in a HEV, and thus performance and cost. In this work, the performance of HEVs is analyzed using PSAT (powertrain system analysis tool, vehicle simulation software). Power loss models of a SiC inverter are incorporated into PSAT powertrain models in order to study the impact of SiC devices on HEVs. Two types of HEVs are considered. One is the 2004 Toyota Prius HEV, the other is a plug-in HEV (PHEV), whose powertrain architecture is the same as that of the 2004 Toyota Prius HEV. The vehicle-level benefits from the introduction of the SiC devices are demonstrated by simulations. Not only the power loss in the motor controller but also those in other components in the vehicle powertrain are reduced. As a result, the system efficiency is improved and the vehicles consume less energy and emit less harmful gases. It also makes it possible to improve the system compactness with simplified thermal management system. For the PHEV, the benefits are more distinct. Especially, the size of battery bank can be reduced for optimum design.

  18. Analysis, optimization, and implementation of a hybrid DS/FFH spread-spectrum technique for smart grid communications

    SciTech Connect (OSTI)

    Olama, Mohammed M.; Ma, Xiao; Killough, Stephen M.; Kuruganti, Teja; Smith, Stephen F.; Djouadi, Seddik M.

    2015-03-12

    In recent years, there has been great interest in using hybrid spread-spectrum (HSS) techniques for commercial applications, particularly in the Smart Grid, in addition to their inherent uses in military communications. This is because HSS can accommodate high data rates with high link integrity, even in the presence of significant multipath effects and interfering signals. A highly useful form of this transmission technique for many types of command, control, and sensing applications is the specific code-related combination of standard direct sequence modulation with fast frequency hopping, denoted hybrid DS/FFH, wherein multiple frequency hops occur within a single data-bit time. In this paper, error-probability analyses are performed for a hybrid DS/FFH system over standard Gaussian and fading-type channels, progressively including the effects from wide- and partial-band jamming, multi-user interference, and varying degrees of Rayleigh and Rician fading. In addition, an optimization approach is formulated that minimizes the bit-error performance of a hybrid DS/FFH communication system and solves for the resulting system design parameters. The optimization objective function is non-convex and can be solved by applying the Karush-Kuhn-Tucker conditions. We also present our efforts toward exploring the design, implementation, and evaluation of a hybrid DS/FFH radio transceiver using a single FPGA. Numerical and experimental results are presented under widely varying design parameters to demonstrate the adaptability of the waveform for varied harsh smart grid RF signal environments.

  19. Hyundai Avante LPi hybrid level 1 testing report.

    SciTech Connect (OSTI)

    Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H.

    2012-02-07

    In collaboration with the Korea Automotive Technology Institute (KATECH), the Korean market only Hyundai Avante LPi Hybrid was purchased and imported to ANL's Advanced Powertrain Research Facility for vehicle-level testing. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. To assess the impacts of more aggressive driving, the LA92 cycle and a UDDS scaled by a factor 1.2x cycles were also included in the testing plan. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed. The following sections will seek to explain some of the basic operating characteristics of the Avante LPi Hybrid and provide insight into unique features of its operation and design. Figure 1 shows the test vehicle in Argonne's soak room.

  20. Autonomic Management of Application Workflows on Hybrid Computing Infrastructure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Hyunjoo; el-Khamra, Yaakoub; Rodero, Ivan; Jha, Shantenu; Parashar, Manish

    2011-01-01

    In this paper, we present a programming and runtime framework that enables the autonomic management of complex application workflows on hybrid computing infrastructures. The framework is designed to address system and application heterogeneity and dynamics to ensure that application objectives and constraints are satisfied. The need for such autonomic system and application management is becoming critical as computing infrastructures become increasingly heterogeneous, integrating different classes of resources from high-end HPC systems to commodity clusters and clouds. For example, the framework presented in this paper can be used to provision the appropriate mix of resources based on application requirements and constraints.more » The framework also monitors the system/application state and adapts the application and/or resources to respond to changing requirements or environment. To demonstrate the operation of the framework and to evaluate its ability, we employ a workflow used to characterize an oil reservoir executing on a hybrid infrastructure composed of TeraGrid nodes and Amazon EC2 instances of various types. Specifically, we show how different applications objectives such as acceleration, conservation and resilience can be effectively achieved while satisfying deadline and budget constraints, using an appropriate mix of dynamically provisioned resources. Our evaluations also demonstrate that public clouds can be used to complement and reinforce the scheduling and usage of traditional high performance computing infrastructure.« less

  1. Hybrid Radiator-Cooling System (ANL-IN-11-096) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Hybrid Radiator-Cooling System (ANL-IN-11-096) Argonne National Laboratory Contact ANL About This Technology Technology Marketing Summary Coolant radiators in highway trucks are designed to transfer maximum heat at a "design condition." The current standard design condition is a fully-loaded truck climbing up Baker Grade on the hottest summer day. The coolant system, including radiator, is sized to remove 100% of the required heat from the engine

  2. Using Hybrid MPI/OpenMP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Hybrid MPI/OpenMP Using Hybrid MPI/OpenMP Using OpenMP Franklin has 4 cores sharing the memory on each node. OpenMP is supported within the node. To use OpenMP, a specific compiler option to turn on OpenMP is needed to compile the code with each compiler. A torque batch script need to specify keywords "-l mppnppn=1" (use single-core for one MPI task per node) and "-l mppdepth=4" (use 4 threads per MPI task). Also need to set OpenMP environment variable OMP_NUM_THREADS

  3. Lower Hybrid to Whistler Wave Conversion

    SciTech Connect (OSTI)

    Winske, Dan

    2012-07-16

    In this presentation we discuss recent work concerning the conversion of whistler waves to lower hybrid waves (as well as the inverse process). These efforts have been motivated by the issue of attenuation of upward propagating whistler waves in the ionosphere generated by VLF transmitters on the ground, i.e., the 'Starks 20 db' problem, which affects the lifetimes of energetic electrons trapped in the geomagnetic field at low magnetic altitude (L). We discuss recent fluid and kinetic plasma simulations as well as ongoing experiments at UCLA to quantify linear and nonlinear mode conversion of lower hybrid to whistler waves.

  4. hybrid-membrane | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Membrane/Absorption Process for Post-Combustion CO2 Capture Project No.: DE-FE0004787 Gas Technology Institute is partnering with PoroGen Corporation and Aker Process Systems in a three-year effort to develop a hybrid technology for CO2 capture from flue gases based on a combination of solvent absorption and hollow fiber membrane technologies. The technology could also apply to removal of numerous other gas pollutants such as NOx and SOx, separation of CO2 from hydrogen in refinery

  5. Autonomie Modeling Tool Improves Vehicle Design and Testing, Informs New Fuel Economy Standards

    Broader source: Energy.gov [DOE]

    Autonomie, an advanced vehicle modeling and design software package created by Argonne National laboratory with EERE support, is helping U.S. auto manufacturers develop the next generation of hybrid and electric vehicles.

  6. High Energy Batteries for Hybrid Buses

    SciTech Connect (OSTI)

    Bruce Lu

    2010-12-31

    EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing

  7. A hybrid Rayleigh-Taylor-current-driven coupled instability in...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: A hybrid Rayleigh-Taylor-current-driven ... March 22, 2017 Title: A hybrid Rayleigh-Taylor-current-driven coupled instability in a ...

  8. Influence of Mild Hybridization on Performance and emission in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Influence of Mild Hybridization on Performance and emission in a 4-Cylinder, In-Line Common Rail Diesel Engine Influence of Mild Hybridization on Performance and emission in a ...

  9. AVTA: Plug-in Hybrid Electric Vehicle Specifications and Test...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-in Hybrid Electric Vehicle Test Plan DRAFT - Integrated Test Plan and Evaluation Program for Review for Plug-in Hybrid Electric Vehicles (PHEVs) (2.33 MB) More Documents & ...

  10. Plug-in hybrid electric vehicle R&D plan

    SciTech Connect (OSTI)

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  11. Development and Optimization of Modular Hybrid Plasma Reactor...

    Office of Scientific and Technical Information (OSTI)

    Optimization of Modular Hybrid Plasma Reactor N A 36 MATERIALS SCIENCE INL developed a bench-scale, modular hybrid plasma system for gas-phase nanomaterials synthesis. The system...

  12. Fact #762: January 14, 2013 Sales from Introduction: Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 762: January 14, 2013 Sales from Introduction: Hybrid Vehicles vs. Plug-in Vehicles The Toyota Prius hybrid-electric vehicle (HEV) was first released in the U.S. market in ...

  13. Company Adds Commercial Trucks to List of Hybrids

    Broader source: Energy.gov [DOE]

    Allison's bus hybrid drive unit for transit buses can be found in 164 cities around the world. The company will use similar technology in the commercial truck hybrid system.

  14. Alternative Fuels Data Center: Availability of Hybrid and Plug...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Find more information about plug-in hybrids and all-electric vehicles: Find electric charging stations near you. Look up incentives and laws related to hybrid and plug-in electric ...

  15. Plug-In Hybrid Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles A new study released on ... could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles ...

  16. Passive solar design handbook. Volume two of two volumes: passive solar design analysis

    SciTech Connect (OSTI)

    Balcomb, J.D.; Barley, D.; McFarland, R.; Perry, J. Jr.; Wray, W.; Noll, S.

    1980-01-01

    A manual for the design and performance evaluation and analysis of passive solar heating systems is presented. Two passive solar building types are analyzed: direct gain and thermal storage walls. Rules of thumb for the schematic design phase and simplified procedures for the design development phase are described. Analysis methods for the construction documents phase are given. The design procedure for fan-forced rock beds for hybrid systems is presented. Economic analysis methods for passive solar buildings are described. Tables of monthly average solar radiation, temperature, and degree-days for various locations in the US and southern Canada are included. (WHK)

  17. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report

    SciTech Connect (OSTI)

    Bharathan, D.

    2013-06-01

    Many binary-cycle geothermal plants use air as the heat rejection medium. Usually this is accomplished by using an air-cooled condenser (ACC) system to condense the vapor of the working fluid in the cycle. Many air-cooled plants suffer a loss of production capacity of up to 50% during times of high ambient temperatures. Use of limited amounts of water to supplement the performance of ACCs is investigated. Deluge cooling is found to be one of the least-cost options. Limiting the use of water in such an application to less than one thousand operating hours per year can boost plant output during critical high-demand periods while minimizing water use in binary-cycle geothermal power plants.

  18. Two-Phase Spray Cooling of Hybrid Vehicle Electronics: Preprint

    SciTech Connect (OSTI)

    Mudawar, I.; Bharathan, D.; Kelly, K.; Narumanchi, S.

    2008-07-01

    Spray cooling is a feasible cooling technology for hybrid vehicle electronics; HFE 7100 is a promising coolant.

  19. A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power presentation at the April 2013 peer review meeting held in Denver, Colorado. hybrid_therm_cycle_peer2013.pdf (571.03 KB) More Documents & Publications Working Fluids and Their Effect on Geothermal Turbines Tailored Working Fluids for Enhanced Binary

  20. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program (VTP) | Department of Energy Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options. 52723.pdf (1.06 MB) More Documents & Publications Sample Employee Newsletter Articles for Plug-In Electric

  1. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses (Conference)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses Citation Details In-Document Search Title: Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid

  2. Tempe Transportation Division: LNG Turbine Hybrid Electric Buses

    SciTech Connect (OSTI)

    Not Available

    2002-02-01

    Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

  3. Multi-level Hybrid Cache: Impact and Feasibility

    SciTech Connect (OSTI)

    Zhang, Zhe; Kim, Youngjae; Ma, Xiaosong; Shipman, Galen M; Zhou, Yuanyuan

    2012-02-01

    Storage class memories, including flash, has been attracting much attention as promising candidates fitting into in today's enterprise storage systems. In particular, since the cost and performance characteristics of flash are in-between those of DRAM and hard disks, it has been considered by many studies as an secondary caching layer underneath main memory cache. However, there has been a lack of studies of correlation and interdependency between DRAM and flash caching. This paper views this problem as a special form of multi-level caching, and tries to understand the benefits of this multi-level hybrid cache hierarchy. We reveal that significant costs could be saved by using Flash to reduce the size of DRAM cache, while maintaing the same performance. We also discuss design challenges of using flash in the caching hierarchy and present potential solutions.

  4. Conversion of Solar Two to a Kokhala hybrid power tower

    SciTech Connect (OSTI)

    Price, H.W.

    1997-06-01

    The continued drop in energy prices and restructuring of the utility industry have reduced the likelihood that a follow-on commercial 100-MW, power tower project will be built immediately following the Solar Two demonstration project. Given this, it would be desirable to find a way to extend the life of the Solar Two project to allow the plant to operate as a showcase for future power tower projects. This paper looks at the possibility of converting Solar Two into a commercial Kokhala hybrid power tower plant at the end of its demonstration period in 1998. The study identifies two gas turbines that could be integrated into a Kokhala cycle at Solar Two and evaluates the design, expected performance, and economics of each of the systems. The study shows that a commercial Kokhala project at Solar Two could produce power at a cost of less than 7 e/kWhr.

  5. Hybrid polaritons in a resonant inorganic/organic semiconductor microcavity

    SciTech Connect (OSTI)

    Höfner, M. Sadofev, S.; Henneberger, F.; Kobin, B.; Hecht, S.

    2015-11-02

    We demonstrated the strong coupling regime in a hybrid inorganic-organic microcavity consisting of (Zn,Mg)O quantum wells and ladder-type oligo(p-phenylene) molecules embedded in a polymer matrix. A Fabry-PĂ©rot cavity is formed by an epitaxially grown lower ZnMgO Bragg reflector and a dielectric mirror deposited atop of the organic layer. A clear anticrossing behavior of the polariton branches related to the Wannier-Mott and Frenkel excitons, and the cavity photon mode with a Rabi-splitting reaching 50 meV, is clearly identified by angular-dependent reflectivity measurements at low temperature. By tailoring the structural design, an equal mixing with weights of about 0.3 for all three resonances is achieved for the middle polariton branch at an incidence angle of about 35°.

  6. An evaluation of MPI message rate on hybrid-core processors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barrett, Brian W.; Brightwell, Ron; Grant, Ryan; Hammond, Simon D.; Hemmert, K. Scott

    2014-11-01

    Power and energy concerns are motivating chip manufacturers to consider future hybrid-core processor designs that may combine a small number of traditional cores optimized for single-thread performance with a large number of simpler cores optimized for throughput performance. This trend is likely to impact the way in which compute resources for network protocol processing functions are allocated and managed. In particular, the performance of MPI match processing is critical to achieving high message throughput. In this paper, we analyze the ability of simple and more complex cores to perform MPI matching operations for various scenarios in order to gain insightmore » into how MPI implementations for future hybrid-core processors should be designed.« less

  7. An evaluation of MPI message rate on hybrid-core processors

    SciTech Connect (OSTI)

    Barrett, Brian W.; Brightwell, Ron; Grant, Ryan; Hammond, Simon D.; Hemmert, K. Scott

    2014-11-01

    Power and energy concerns are motivating chip manufacturers to consider future hybrid-core processor designs that may combine a small number of traditional cores optimized for single-thread performance with a large number of simpler cores optimized for throughput performance. This trend is likely to impact the way in which compute resources for network protocol processing functions are allocated and managed. In particular, the performance of MPI match processing is critical to achieving high message throughput. In this paper, we analyze the ability of simple and more complex cores to perform MPI matching operations for various scenarios in order to gain insight into how MPI implementations for future hybrid-core processors should be designed.

  8. Development of a Hybrid Compressor/Expander Module for Automotive Fuel Cell Applications

    SciTech Connect (OSTI)

    McTaggart, Paul

    2004-12-31

    In this program TIAX LLC conducted the development of an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The overall objective of this program was to develop a hybrid compressor/expander module, based on both scroll and high-speed turbomachinery technologies, which will combine the strengths of each technology to create a concept with superior performance at minimal size and cost. The resulting system was expected to have efficiency and pressure delivery capability comparable to that of a scroll-only machine, at significantly reduced system size and weight when compared to scroll-only designs. Based on the results of detailed designs and analyses of the critical system elements, the Hybrid Compressor/Expander Module concept was projected to deliver significant improvements in weight, volume and manufacturing cost relative to previous generation systems.

  9. Autonomous Intelligent Plug-In Hybrid Electric Vehicles (PHEVs) |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss092_malikopoulos_2012_p.pdf (922.92 KB) More Documents & Publications Autonomous Intelligent Hybrid Propulsion Systems The Meritor Dual Mode Hybrid Powertrain CRADA The Meritor Dual Mode Hybrid Powertrain CRADA

  10. EERE: VTO - Hybrid Bus PNG Image | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Bus PNG Image EERE: VTO - Hybrid Bus PNG Image hybrid_bus_17144.png (11.1 MB) More Documents & Publications EERE: VTO - Red Leaf PNG Image EERE: VTO - UPS Truck PNG Image Research Site Locations for Current EERE Postdoctoral Awards

  11. Hybrid Solar Cells via UV Polymerization of Polymer Precursor | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Solar Cells via UV Polymerization of Polymer Precursor Technology available for licensing: A method to create improved hybrid solar cells through the ultraviolet (UV) polymerization of a polymer precursor. Creates high-performing hybrid solar cells through ultraviolet polymerization of a polymer precursor Cost effective, simple method PDF icon hybrid_solar_cells

  12. 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Hybrid Vehicle Systems Technologies 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities 2014_amr_01.pdf (10.42 MB) More Documents & Publications 2014 Annual Merit Review Results Report 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies 2013 Annual Merit Review Results Report

  13. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.; Burress, Timothy A; Marlino, Laura D

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if

  14. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R.; Hope, Mark E.; Zou, Zhanjiang; Kang, Xiaosong

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  15. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect (OSTI)

    Woolley, Robert D; Miller, Laurence F

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  16. Automatic visual inspection of hybrid microcircuits

    SciTech Connect (OSTI)

    Hines, R.E.

    1980-05-01

    An automatic visual inspection system using a minicomputer and a video digitizer was developed for inspecting hybrid microcircuits (HMC) and thin-film networks (TFN). The system performed well in detecting missing components on HMCs and reduced the testing time for each HMC by 75%.

  17. Probing Compositional Variation within Hybrid Nanostructures

    SciTech Connect (OSTI)

    Yuhas, Benjamin D.; Habas, Susan E.; Fakra, Sirine C.; Mokari, Taleb

    2010-06-22

    We present a detailed analysis of the structural and magnetic properties of solution-grown PtCo-CdS hybrid structures in comparison to similar free-standing PtCo alloy nanoparticles. X-ray absorption spectroscopy is utilized as a sensitive probe for identifying subtle differences in the structure of the hybrid materials. We found that the growth of bimetallic tips on a CdS nanorod substrate leads to a more complex nanoparticle structure composed of a PtCo alloy core and thin CoO shell. The core-shell architecture is an unexpected consequence of the different nanoparticle growth mechanism on the nanorod tip, as compared to free growth in solution. Magnetic measurements indicate that the PtCo-CdS hybrid structures are superparamagnetic despite the presence of a CoO shell. The use of X-ray spectroscopic techniques to detect minute differences in atomic structure and bonding in complex nanosystems makes it possible to better understand and predict catalytic or magnetic properties for nanoscale bimetallic hybrid materials.

  18. Hybrid anode for semiconductor radiation detectors

    SciTech Connect (OSTI)

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  19. Hybrid switch for resonant power converters

    DOE Patents [OSTI]

    Lai, Jih-Sheng; Yu, Wensong

    2014-09-09

    A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.

  20. Enhanced Harmonic Up-Conversion Using a Hybrid HGHG-EEHG Scheme

    SciTech Connect (OSTI)

    Marksteiner, Quinn R.; Bishofberger, Kip A.; Carlsten, Bruce E.; Freund, Henry P.; Yampolsky, Nikolai A.

    2012-04-30

    We introduce a novel harmonic generation scheme which can be used, for a given desired harmonic, to achieve higher bunching factors, weaker chicanes, and/or less final energy spread than can be achieved using Echo-Enabled Harmonic Generation. This scheme only requires a single laser with relatively low power, and is a hybrid of High-Gain Harmonic Generation and EEHG. We present a design of this scheme applied to the Next Generation Light Source (NGLS).

  1. Miniature hybrid optical imaging lens

    DOE Patents [OSTI]

    Sitter, Jr., David N.; Simpson, Marc L.

    1997-01-01

    A miniature lens system that corrects for imaging and chromatic aberrations, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components.

  2. Miniature hybrid optical imaging lens

    DOE Patents [OSTI]

    Sitter, D.N. Jr.; Simpson, M.L.

    1997-10-21

    A miniature lens system that corrects for imaging and chromatic aberrations is disclosed, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components. 2 figs.

  3. Strategy and gaps for modeling, simulation, and control of hybrid systems

    SciTech Connect (OSTI)

    Rabiti, Cristian; Garcia, Humberto E.; Hovsapian, Rob; Kinoshita, Robert; Mesina, George L.; Bragg-Sitton, Shannon M.; Boardman, Richard D.

    2015-04-01

    The purpose of this report is to establish a strategy for modeling and simulation of candidate hybrid energy systems. Modeling and simulation is necessary to design, evaluate, and optimize the system technical and economic performance. Accordingly, this report first establishes the simulation requirements to analysis candidate hybrid systems. Simulation fidelity levels are established based on the temporal scale, real and synthetic data availability or needs, solution accuracy, and output parameters needed to evaluate case-specific figures of merit. Accordingly, the associated computational and co-simulation resources needed are established; including physical models when needed, code assembly and integrated solutions platforms, mathematical solvers, and data processing. This report first attempts to describe the figures of merit, systems requirements, and constraints that are necessary and sufficient to characterize the grid and hybrid systems behavior and market interactions. Loss of Load Probability (LOLP) and effective cost of Effective Cost of Energy (ECE), as opposed to the standard Levelized Cost of Electricty (LCOE), are introduced as technical and economical indices for integrated energy system evaluations. Financial assessment methods are subsequently introduced for evaluation of non-traditional, hybrid energy systems. Algorithms for coupled and iterative evaluation of the technical and economic performance are subsequently discussed. This report further defines modeling objectives, computational tools, solution approaches, and real-time data collection and processing (in some cases using real test units) that will be required to model, co-simulate, and optimize; (a) an energy system components (e.g., power generation unit, chemical process, electricity management unit), (b) system domains (e.g., thermal, electrical or chemical energy generation, conversion, and transport), and (c) systems control modules. Co-simulation of complex, tightly coupled

  4. High performance hybrid magnetic structure for biotechnology applications

    DOE Patents [OSTI]

    Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.

    2006-12-12

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  5. High performance hybrid magnetic structure for biotechnology applications

    DOE Patents [OSTI]

    Humphries, David E; Pollard, Martin J; Elkin, Christopher J

    2005-10-11

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  6. Hybrid power management system and method - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles & Fuels » Vehicles » Hybrid and Plug-In Electric Vehicle Basics Hybrid and Plug-In Electric Vehicle Basics August 20, 2013 - 9:13am Addthis Text Version Photo of hands holding a battery pack (grey rectangular box) for a hybrid electric vehicle. Hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs)-also called electric drive vehicles collectively-use electricity either as their primary fuel or to improve the efficiency of

  7. Direct Observation of Photoinduced Charge Separation in Ruthenium Complex/Ni(OH)2 Nanoparticle Hybrid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tang, Yu; Pattengale, Brian A.; Ludwig, John M.; Atifi, Abderrahman; Zinovev, Alexander V.; Dong, Bin; Kong, Qingyu; Zuo, Xiaobing; Zhang, Xiaoyi; Huang, Jier

    2015-12-17

    We report that Ni(OH)2 have emerged as important functional materials for solar fuel conversion because of their potential as cost-effective bifunctional catalysts for both hydrogen and oxygen evolution reactions. However, their roles as photocatalysts in the photoinduced charge separation (CS) reactions remain unexplored. In this paper, we investigate the CS dynamics of a newly designed hybrid catalyst by integrating a Ru complex with Ni(OH)2 nanoparticles (NPs). Using time resolved X-ray absorption spectroscopy (XTA), we directly observed the formation of the reduced Ni metal site (~60 ps), unambiguously demonstrating CS process in the hybrid through ultrafast electron transfer from Ru complexmore » to Ni(OH)2 NPs. Compared to the ultrafast CS process, the charge recombination in the hybrid is ultraslow (>>50 ns). These results not only suggest the possibility of developing Ni(OH)2 as solar fuel catalysts, but also represent the first time direct observation of efficient CS in a hybrid catalyst using XTA.« less

  8. Hybrid Ground-Source Heat Pump Installations: Experiences, Improvements, and Tools

    SciTech Connect (OSTI)

    Scott Hackel; Amanda Pertzborn

    2011-06-30

    One innovation to ground-source heat pump (GSHP, or GHP) systems is the hybrid GSHP (HyGSHP) system, which can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. This work uses three case studies (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. Three buildings were studied for a year; the measured data was used to validate models of each system. The models were used to analyze further improvements to the hybrid approach, and establish that this approach has positive impacts, both economically and environmentally. Lessons learned by those who design and operate the systems are also documented, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, the measured data sets and models that were created during this work are described; these materials have been made freely available for further study of hybrid systems.

  9. Environmental Assessment of the US Department of Energy Electric and Hybrid Vehicle Program

    SciTech Connect (OSTI)

    Singh, M.K.; Bernard, M.J. III; Walsh, R.F

    1980-11-01

    This environmental assessment (EA) focuses on the long-term (1985-2000) impacts of the US Department of Energy (DOE) electric and hybrid vehicle (EHV) program. This program has been designed to accelerate the development of EHVs and to demonstrate their commercial feasibility as required by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (P.L. 94-413), as amended (P.L. 95-238). The overall goal of the program is the commercialization of: (1) electric vehicles (EVs) acceptable to broad segments of the personal and commercial vehicle markets, (2) hybrid vehicles (HVs) with range capabilities comparable to those of conventional vehicles (CVs), and (3) advanced EHVs completely competitive with CVs with respect to both cost and performance. Five major EHV projects have been established by DOE: market demonstration, vehicle evaluation and improvement, electric vehicle commercialization, hybrid vehicle commercialization, and advanced vehicle development. Conclusions are made as to the effects of EV and HV commercialization on the: consumption and importation of raw materials; petroleum and total energy consumption; ecosystems impact from the time of obtaining raw material through vehicle use and materials recycling; environmental impacts on air and water quality, land use, and noise; health and safety aspects; and socio-economic factors. (LCL)

  10. Conceptual design of a coal-fired MHD retrofit. Final technical report

    SciTech Connect (OSTI)

    1994-06-01

    Coal-fired magnetohydrodynamics (MHD) technology is ready for its next level of development - an integrated demonstration at a commercial scale. The development and testing of MHD has shown its potential to be the most efficient, least costly, and cleanest way to burn coal. Test results have verified a greater than 99% removal of sulphur with a potential for greater than 60% efficiency. This development and testing, primarily funded by the U.S. Department of Energy (DOE), has progressed through the completion of its proof-of-concept (POC) phase at the 50 MWt Component Development and Integration Facility (CDIF) and 28 MWt Coal Fired Flow Facility (CFFF), thereby, providing the basis for demonstration and further commercial development and application of the technology. The conceptual design of a retrofit coal-fired MHD generating plant was originally completed by the MHD Development Corporation (MDC) under this Contract, DE-AC22-87PC79669. Thereafter, this concept was updated and changed to a stand-alone MHD demonstration facility and submitted by MDC to DOE in response to the fifth round of solicitations for Clean Coal Technology. Although not selected, that activity represents the major interest in commercialization by the developing industry and the type of demonstration that would be eventually necessary. This report updates the original executive summary of the conceptual design by incorporating the results of the POC program as well as MDC`s proposed Billings MHD Demonstration Project (BMDP) and outlines the steps necessary for commercialization.

  11. MERCURY CONTROL WITH ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect (OSTI)

    Ye Zhuang; Stanley J. Miller

    2005-05-01

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-00NT40769 and specifically addressed Technical Topical Area 4-Testing Novel and Less Mature Control Technologies on Actual Flue Gas at the Pilot Scale. The project team included the Energy & Environmental Research Center (EERC) as the main contractor; W.L. Gore & Associates, Inc., as a technical and financial partner; and the Big Stone Power Plant operated by Otter Tail Power Company, host for the field-testing portion of the research. Since 1995, DOE has supported development of a new concept in particulate control called the advanced hybrid particulate collector (AHPC). The AHPC has been licensed to W.L. Gore & Associates, Inc., and has been marketed as the Advanced Hybrid{trademark} filter by Gore. The Advanced Hybrid{trademark} filter combines the best features of electrostatic precipitators (ESPs) and baghouses in a unique configuration, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The Advanced Hybrid{trademark} filter provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and it solves the problem of reentrainment and re-collection of dust in conventional baghouses. The Advanced Hybrid{trademark} filter also appears to have unique advantages for mercury control over baghouses or ESPs as an excellent gas--solid contactor. The objective of the project was to demonstrate 90% total mercury control in the Advanced Hybrid{trademark} filter at a lower cost than current mercury control estimates. The approach included bench-scale batch tests, larger-scale pilot testing with real flue gas on a coal-fired combustion system, and field demonstration at the 2.5-MW (9000-acfm) scale at a utility power plant to prove scale-up and demonstrate longer-term mercury control

  12. Biosystems Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 2: Frontiers and Horizons Session 2-A: Synthetic Biology and the Promise of Biofuels Pablo Rabinowicz, Program Manager, Biosystems Design Program, Biological and Environmental Research (BER), U.S. Department of Energy

  13. Hybrid anodes for redox flow batteries

    DOE Patents [OSTI]

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-22

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  14. Parametric systems analysis for tandem mirror hybrids

    SciTech Connect (OSTI)

    Lee, J.D.; Chapin, D.L.; Chi, J.W.H.

    1980-09-01

    Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U/sub 3/O/sub 8/ cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions.

  15. Nonlinear lower hybrid modeling in tokamak plasmas

    SciTech Connect (OSTI)

    Napoli, F.; Schettini, G.; Castaldo, C.; Cesario, R.

    2014-02-12

    We present here new results concerning the nonlinear mechanism underlying the observed spectral broadening produced by parametric instabilities occurring at the edge of tokamak plasmas in present day LHCD (lower hybrid current drive) experiments. Low frequency (LF) ion-sound evanescent modes (quasi-modes) are the main parametric decay channel which drives a nonlinear mode coupling of lower hybrid (LH) waves. The spectrum of the LF fluctuations is calculated here considering the beating of the launched LH wave at the radiofrequency (RF) operating line frequency (pump wave) with the noisy background of the RF power generator. This spectrum is calculated in the frame of the kinetic theory, following a perturbative approach. Numerical solutions of the nonlinear LH wave equation show the evolution of the nonlinear mode coupling in condition of a finite depletion of the pump power. The role of the presence of heavy ions in a Deuterium plasma in mitigating the nonlinear effects is analyzed.

  16. Hybrid Energy System Modeling in Modelica

    SciTech Connect (OSTI)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  17. Fuelcell-Hybrid Mine loader (LHD)

    SciTech Connect (OSTI)

    James L Dippo; Tim Erikson; Kris Hess

    2009-07-10

    The fuel cell hybrid mine loader project, sponsored by a government-industry consortium, was implemented to determine the viability of proton exchange membrane (PEM) fuel cells in underground mining applications. The Department of Energy (DOE) sponsored this project with cost-share support from industry. The project had three main goals: (1) to develop a mine loader powered by a fuel cell, (2) to develop associated metal-hydride storage and refueling systems, and (3) to demonstrate the fuel cell hybrid loader in an underground mine in Nevada. The investigation of a zero-emissions fuel cell power plant, the safe storage of hydrogen, worker health advantages (over the negative health effects associated with exposure to diesel emissions), and lower operating costs are all key objectives for this project.

  18. System for controlling a hybrid energy system

    DOE Patents [OSTI]

    Hoff, Brian D.; Akasam, Sivaprasad

    2013-01-29

    A method includes identifying a first operating sequence of a repeated operation of at least one non-traction load. The method also includes determining first and second parameters respectively indicative of a requested energy and output energy of the at least one non-traction load and comparing the determined first and second parameters at a plurality of time increments of the first operating sequence. The method also includes determining a third parameter of the hybrid energy system indicative of energy regenerated from the at least one non-traction load and monitoring the third parameter at the plurality of time increments of the first operating sequence. The method also includes determining at least one of an energy deficiency or an energy surplus associated with the non-traction load of the hybrid energy system and selectively adjusting energy stored within the storage device during at least a portion of a second operating sequence.

  19. Hybrid least squares multivariate spectral analysis methods

    DOE Patents [OSTI]

    Haaland, David M.

    2002-01-01

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  20. Hybrid least squares multivariate spectral analysis methods

    DOE Patents [OSTI]

    Haaland, David M.

    2004-03-23

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following prediction or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The hybrid method herein means a combination of an initial calibration step with subsequent analysis by an inverse multivariate analysis method. A spectral shape herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The shape can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  1. Hybrid anodes for redox flow batteries

    DOE Patents [OSTI]

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-15

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  2. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely organic, the physical properties desirable in molecular machines are mostly found in inorganic

  3. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely organic, the physical properties desirable in molecular machines are mostly found in inorganic

  4. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely organic, the physical properties desirable in molecular machines are mostly found in inorganic

  5. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely organic, the physical properties desirable in molecular machines are mostly found in inorganic

  6. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely organic, the physical properties desirable in molecular machines are mostly found in inorganic

  7. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely organic, the physical properties desirable in molecular machines are mostly found in inorganic

  8. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely organic, the physical properties desirable in molecular machines are mostly found in inorganic

  9. Hybrid Rotaxanes: Interlocked Structures for Quantum Computing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Rotaxanes: Interlocked Structures for Quantum Computing? Print Rotaxanes are mechanically interlocked molecular architectures consisting of a dumbbell-shaped molecule, the "axle," that threads through a ring called a macrocycle. Because the rings can spin around and slide along the axle, rotaxanes are promising components of molecular machines. While most rotaxanes have been entirely organic, the physical properties desirable in molecular machines are mostly found in inorganic

  10. Advancements of the Hybrid Method UF6 Container Inspection System

    SciTech Connect (OSTI)

    Mace, Emily K.; Orton, Christopher R.; Jordan, David V.; McDonald, Benjamin S.; Smith, Leon E.

    2011-07-17

    Safeguards inspectors currently visit uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are performed with handheld high-resolution detectors on a limited number of cylinders taken to be representative of the plant’s cylinder inventory. These enrichment assay methods interrogate only a small fraction of the total cylinder volume, and are time-consuming and expensive to execute. Pacific Northwest National Laboratory (PNNL) is developing an automated UF6 cylinder verification station concept based on the combined collection of traditional enrichment-meter data (186 keV photons from 235U) and non-traditional, neutron-induced, high-energy gamma-ray signatures (3-8 MeV) with an array of collimated, medium-resolution scintillators. Previous work at PNNL (2010) demonstrated proof-of-principle that this hybrid method yields accurate, full-volume assay of the cylinder enrichment, reduces systematic errors when compared to several other enrichment assay methods, and provides simplified instrumentation and algorithms suitable for long-term, unattended operations. This system aims to increase the number of inspected cylinders at higher accuracy and with lower cost than when compared to inspectors with hand-held instruments. Several measurement campaigns of 30B cylinder populations and a refined MCNP model will be reported. The MCNP model consists of per-gram basis vectors for the different uranium isotopes and several fill geometries, enabling fast generation of any UF6 enrichment level and multiple configurations. The refined model was used to optimize collimator design and detector configuration for the hybrid method. In addition, a new field prototype based on model results was utilized in a set of field measurements.

  11. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    SciTech Connect (OSTI)

    Tsai, Alex; Banta, Larry; Tucker, David; Gemmen, Randall

    2010-08-01

    This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.

  12. Linkages of DOE's Energy Storage R&D to Batteries and Ultracapacitors for Hybrid, Plug-In Hybrid, and Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report traces the connections between DOE energy storage research and downstream energy storage systems used in hybrid electric, plug-in hybrid electric, and fully electric vehicles.

  13. Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014

  14. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures

    SciTech Connect (OSTI)

    Huang, Cheng; Xiao, Jie; Shao, Yuyan; Zheng, Jianming; Bennett, Wendy D.; Lu, Dongping; Saraf, Laxmikant V.; Engelhard, Mark H.; Ji, Liwen; Zhang, Jiguang; Li, Xiaolin; Graff, Gordon L.; Liu, Jun

    2014-01-09

    Lithium-sulfur (Li-S) batteries have recently attracted extensive attention due to the high theoretical energy density and potential low cost. Even so, significant challenges prevent widespread adoption, including continuous dissolution and consumption of active sulfur during cycling. Here we present a fundamentally new design using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on the anode. The lithiated graphite placed in front of the lithium metal functions as an artificial self-regulated solid electrolyte interface (SEI) layer to actively control the electrochemical reaction while minimizing the deleterious side reactions on the surface and bulk lithium metal. Continuous corrosion and contamination of lithium anode by dissolved polysulfides is largely mitigated. Excellent electrochemical performance has been observed. Li-S cell incorporating the hybrid design retain a capacity of more than 800 mAh g-1 for 400 cycles, corresponding to only 11% fade and a Coulombic efficiency above 99%. This simple hybrid concept may also provide new lessons for protecting metal anodes in other energy storage devices.

  15. NREL: Learning - Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Series design-In this design, the primary engine is connected to a generator that produces electricity. The electricity charges the batteries, which drive an electric motor that ...

  16. An Optimization Model for Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas; Smith, David E

    2011-01-01

    The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

  17. Close Look at Hybrid Vehicle Loyalty and Ownership

    SciTech Connect (OSTI)

    Hwang, Ho-Ling; Chin, Shih-Miao; Wilson, Daniel W; Oliveira Neto, Francisco Moraes; Taylor, Rob D

    2013-01-01

    In a news release dated April 9, 2012, Polk stated that only 35% of hybrid owners bought a hybrid again when they returned to market in 2011. These findings were based on an internal study conducted by Polk. The study also indicated that if repurchase behavior among the high volume audience of Toyota Prius owners wasn t factored in; hybrid loyalty would drop to under 25%. This news release has generated a lot of interest and concern by the automobile industry as well as consumers, since it was published, and caused many to think about the idea of hybrid loyalty as well as factors that influence consumers. Most reactions to the 35% hybrid loyalty dealt with concerns of the viability of hybrid technology as part of the solution to address transportation energy challenges. This paper attempts to shed more light on Polk s hybrid loyalty study as well as explore several information sources concerning hybrid loyalty status. Specifically, major factors that might impact the selection and acquisition of hybrid vehicles are addressed. This includes investigating the associations between hybrid market shares and influencing factors like fuel price and hybrid incentives, as well as the availability of hybrid models and other highly fuel efficient vehicle options. This effort is not in-depth study, but rather a short study to see if Polk s claim could be validated. This study reveals that Polk s claim was rather misleading because its definition of loyalty was very narrow. This paper also suggests that Polk s analysis failed to account for some very important factors, raising the question of whether it is fair to compare a vehicle drive train option (which hybrids are) with a vehicle brand in terms of loyalty and also raises the question of whether hybrid loyalty is even a valid point to consider. This report maintains that Polk s study does not prove that hybrid owners were dissatisfied with their vehicles, which was a common theme among reporting news agencies when Polk

  18. Tailoring double Fano profiles with plasmon-assisted quantum interference in hybrid exciton-plasmon system

    SciTech Connect (OSTI)

    Zhao, Dongxing; Wu, Jiarui; Gu, Ying Gong, Qihuang

    2014-09-15

    We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter for visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.

  19. Critical issues in the development of hybrid solar/gas receivers for dish/Stirling systems

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.

    1991-01-01

    A hybrid solar/gas receiver system will allow Stirling engines to operate with combined solar and gas power sources. One of the most attractive options for building a hybrid system is to integrate a gas-fired heat pipe directly into a heat-pipe solar receiver. Before this union can take place, however, a number of technical issues must be resolved. A design must be found that properly distributes the heat-pipe's working fluid over the heated surfaces and prevents fluid from accumulating at undesirable locations in the heat pipe. Experience that has been gained in developing solar receivers and gas-fired heat pipes under recent Department of Energy solar-thermal dish-electric programs is used in this paper to address many of the technical obstacles to building receiver systems. 16 refs.

  20. Critical issues in the development of hybrid solar/gas receivers for dish/Stirling systems

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.

    1991-12-31

    A hybrid solar/gas receiver system will allow Stirling engines to operate with combined solar and gas power sources. One of the most attractive options for building a hybrid system is to integrate a gas-fired heat pipe directly into a heat-pipe solar receiver. Before this union can take place, however, a number of technical issues must be resolved. A design must be found that properly distributes the heat-pipe`s working fluid over the heated surfaces and prevents fluid from accumulating at undesirable locations in the heat pipe. Experience that has been gained in developing solar receivers and gas-fired heat pipes under recent Department of Energy solar-thermal dish-electric programs is used in this paper to address many of the technical obstacles to building receiver systems. 16 refs.

  1. Near term hybrid passenger vehicle development program. Phase I. Appendices A and B. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    In this report vehicle use patterns or missions are defined and studied. The three most promising missions were found to be: all-purpose city driving which has the maximum potential market penetration; commuting which requires mainly a two-passenger car; and family and civic business driving which have minimal range requirements. The mission selection process was based principally on an analysis of the travel patterns found in the Nationwide Transportation Survey and on the Los Angeles and Washington, DC origin-destination studies data presented by General Research Corporation in Volume II of this report. Travel patterns in turn were converted to fuel requirements for 1985 conventional and hybrid cars. By this means the potential fuel savings for each mission were estimated, and preliminary design requirements for hybrid vehicles were derived.

  2. A 10kW photovoltaic/hybrid system for Pinnacles National Monument

    SciTech Connect (OSTI)

    Ball, T.J.; DeNio, D.

    1997-12-31

    Visitors to the Chaparral area of the Pinnacles National Monument now can enjoy this beautiful section of the park without the constant drone of diesel generators, thanks to a recently installed photovoltaic/hybrid system. Electrical power had been supplied by two 100 KW diesel generators operating 24 hours per day. The diesels were running lightly loaded resulting in poor efficiency and high operating cost. Applied Power Corporation under contract with the National Park Service designed and supplied a 10 KW photovoltaic array, 200 KW hr battery bank and 24 KW of inverters to power the maintenance facility, visitor center and ranger residences. A new 20 KW propane generator was installed to provide supplemental power, totally eliminating the storage and transport of diesel fuel at this site. The Pinnacles PV/Hybrid system was brought on line in early 1996 and the park is now benefiting from the cost savings associated with the system.

  3. Bimode uninterruptible power supply compatibility in renewable hybrid energy systems

    SciTech Connect (OSTI)

    Bower, W. ); O'Sullivan, G. )

    1990-08-01

    Inverters installed in renewable hybrid energy systems are typically used in a stand-alone mode to supply ac power to loads from battery storage when the engine-generator is not being used. Similarities in topology and in the performance requirements of the standby uninterruptible power supply (UPS) system and the hybrid system suggest the UPS could be used in hybrid energy systems. Another alternative to inverters with add-on charging circuits or standby UPS hardware is the Bimode UPS. The bimode UPS uses common circuitry and power components for dc to ac inversion and battery charging. It also provides an automatic and nearly instantaneous ac power transfer function when the engine-generator is started or stopped. The measured operating and transfer characteristics of a bimode UPS in a utility system and in a hybrid system are presented. The applicability of the bimode UPS to hybrid systems and its compatibility in a PV/engine-generator hybrid system are given.

  4. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    SciTech Connect (OSTI)

    Hansen, James Gerald

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  5. Design Considerations for Economically Competitive Sodium Cooled Fast Reactors

    SciTech Connect (OSTI)

    Hongbin Zhang; Haihua Zhao

    2009-05-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phénix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design.

  6. Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buses | Department of Energy Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press

  7. ADVANCED, ENERGY-EFFICIENT HYBRID MEMBRANE SYSTEM FOR INDUSTRIAL WATER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REUSE | Department of Energy ADVANCED, ENERGY-EFFICIENT HYBRID MEMBRANE SYSTEM FOR INDUSTRIAL WATER REUSE ADVANCED, ENERGY-EFFICIENT HYBRID MEMBRANE SYSTEM FOR INDUSTRIAL WATER REUSE Research Triangle Institute - Research Triangle Park, NC A single hybrid system for industrial wastewater treatment and reuse that combines two known processes-forward osmosis and membrane distillation-will be developed and demonstrated. This system will use waste heat to treat a wide variety of waste streams at

  8. Flexible Hybrid Friction Stir Joining Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Friction Stir Joining Technology Flexible Hybrid Friction Stir Joining Technology flexible_hybrid_friction.pdf (590.95 KB) More Documents & Publications Class Patent Waiver W(C)2009-001 Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

  9. NREL: News - Hybrid Buses Operate With Lower Emissions, Greater Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Hybrid Buses Operate With Lower Emissions, Greater Fuel Efficiency Golden, Colo., August 1, 2002 A recently released study by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) concludes that hybrid buses operate with lower emissions and greater fuel efficiency than conventional diesel buses. The yearlong evaluation of 10 prototype diesel hybrid-electric buses in the Metropolitan Transportation Authority's New York City Transit (NYCT) fleet of

  10. Vehicle Technologies Office: Materials for Hybrid and Electric Drive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Hybrid and Electric Drive Systems Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems The Vehicle Technologies Office (VTO) is working to lower the cost and increase the convenience of electric drive vehicles, which include hybrid and plug-in electric vehicles. These vehicles use advanced power electronics and electric motors that face barriers because their subcomponents have specific material limitations. Novel propulsion materials

  11. 2011 Annual Merit Review Results Report - Hybrid and Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy 1 Annual Merit Review Results Report - Hybrid and Vehicle Systems Technologies 2011 Annual Merit Review Results Report - Hybrid and Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities 2011_amr_01.pdf (10.5 MB) More Documents & Publications 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Introduction 2012 Annual Merit Review Results Report -

  12. 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1. Hybrid and Vehicle Systems Technologies Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of the U.S. Department of Energy's (DOE's) vehicle research programs, and identifies major opportunities for improving vehicle efficiencies. The effort evaluates and validates the integration of technologies, provides component and vehicle benchmarking, develops and validates heavy hybrid propulsion

  13. System Simulations of Hybrid Electric Vehicles with Focus on Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid electric vehicles with gasoline and diesel engines will be conducted with focus on emissions control. deer10_gao.pdf (6.28 MB) More Documents & Publications PHEV Engine and Aftertreatment Model Development Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis PHEV Engine and

  14. Simulation and Analysis of the Hybrid Operating Mode in ITER

    SciTech Connect (OSTI)

    Kessel, C.E.; Budny, R.V.; Indireshkumar, K.

    2005-09-22

    The hybrid operating mode in ITER is examined with 0D systems analysis, 1.5D discharge scenario simulations using TSC and TRANSP, and the ideal MHD stability is discussed. The hybrid mode has the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced in ITER. This paper reports progress in establishing the physics basis and engineering limitation for the hybrid mode in ITER.

  15. ITP Chemicals: Hybrid Separations/Distillation Technology. Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Energy and Emissions Reduction | Department of Energy Hybrid Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybrid Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction hybrid_separation.pdf (315.31 KB) More Documents & Publications Review of Historical Membrane Workshop Results Membrane Technology Workshop Summary Report, November 2012 Membrane Technology W

  16. NREL Acquires Fuel Cell Hybrid Vehicles from Toyota to Support...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acquires Fuel Cell Hybrid Vehicles from Toyota to Support Hydrogen Infrastructure, Production, and Vehicle Performance Studies January 28, 2013 The U.S. Department of Energy's ...

  17. Plug In Hybrid Development Consortium | Open Energy Information

    Open Energy Info (EERE)

    Hybrid Development Consortium Sector: Vehicles Product: US-based consortium of automotive suppliers, manufacturers and other organizations working together to accelerate the...

  18. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  19. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  20. Characterization of High Level Waste from a Hybrid LIFE Engine...

    Office of Scientific and Technical Information (OSTI)

    Title: Characterization of High Level Waste from a Hybrid LIFE Engine for Enhanced Repository Performance Authors: Beckett, E ; Fratoni, M Publication Date: 2010-08-25 OSTI ...

  1. Affordable Cold Climate Infill Housing with Hybrid Insulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A high R-value wall and roof assembly made use of 2 6 advanced framing and a hybrid ... ensure consistent results on site: * Framingheating, ventilating, and air ...

  2. SAND REPORT Material Characterization of Glass, Carbon, and Hybrid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Characterization of Glass, Carbon, and Hybrid-Fiber SCRIMP Panels Akira Kuraishi, Stanford Unive m a l Laboratories w. e w Mexico 871 fuwer dissemination unlimited. @...

  3. NREL: Transportation Research - Miami-Dade County Hydraulic Hybrid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    one conventional vehicle will undergo chassis dynamometer testing to determine the fuel economy and emissions impact of the hydraulic hybrid technology in a controlled setting....

  4. Modular hybrid plasma reactor and related systems and methods...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patent Search Success Stories News Events Find More Like This Return to Search Modular hybrid plasma reactor and related systems and methods United States Patent Patent Number:...

  5. Modular hybrid plasma reactor and related systems and methods...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (27) Visual Patent Search Success Stories News Events Return to Search Modular hybrid plasma reactor and related systems and methods United States Patent Application ***...

  6. Category:Microgravity-Hybrid Microgravity | Open Energy Information

    Open Energy Info (EERE)

    Datasets Community Login | Sign Up Search Category Edit History Category:Microgravity-Hybrid Microgravity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

  7. Hybrid Air-Cooled Condenser - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Air-Cooled Condenser National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Geothermal energy has been a viable energy source...

  8. Case Study: Ebus Hybrid Electric Buses and Trolleys

    SciTech Connect (OSTI)

    Barnitt, R.

    2006-07-01

    Evaluation focuses on the demonstration of hybrid electric buses and trolleys produced by Ebus Inc. at the Indianapolis Transportation Corporation and the Knoxville Area Transit.

  9. Marine Hybrid Propulsion Market Revenue is anticipated to Reach...

    Open Energy Info (EERE)

    ferry operators are the major adopters of marine hybrid propulsion systems across the world. These vessels primarily operate in coastal areas and inland waterways, where emission...

  10. JV between Paratransit Inc and Hybrid Technologies Inc | Open...

    Open Energy Info (EERE)

    California Zip: 95822 Sector: Vehicles Product: JV to determine the utility of lithium powered vehicles produced by Hybrid Technologies for taxicabs and vehicles that are...

  11. System Advisor Model Includes Analysis of Hybrid CSP Option ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concepts related to power generation have been missing in the System Advisor Model (SAM). One such concept, until now, is a hybrid integrated solar combined-cycle (ISCC)...

  12. Three-Dimensional Modeling and Simulation of DNA Hybridization...

    Office of Scientific and Technical Information (OSTI)

    Three-Dimensional Modeling and Simulation of DNA Hybridization Kinetics and Mass Transport ... Kinetics and Mass Transport as Functions of Temperature in a Microfluidic Channel. ...

  13. Documentation of Hybrid Hydride Model for Incorporation into...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    into Moose-Bison and Validation Strategy Documentation of Hybrid Hydride Model for Incorporation into Moose-Bison and Validation Strategy This report documents the ...

  14. Hybrid anodes for redox flow batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be ...

  15. Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Micropower and Fuel CellGas Turbine Hybrid Systems in Industrial Applications - Volume I, January 2000 Opportunities for Micropower and Fuel CellGas Turbine ...

  16. Modeling Grid-Connected Hybrid Electric Vehicles Using ADVISOR

    SciTech Connect (OSTI)

    Markel, T.; Wipke, K.

    2001-01-01

    Presents an electric utility grid-connected energy management strategy for a parallel hybrid electric vehicle using ADVISOR, a modeling tool.

  17. Hybrid radical energy storage device and method of making - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buying & Making Electricity » Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. According to many renewable energy experts,

  18. MHK Technologies/SMART Hybrid System | Open Energy Information

    Open Energy Info (EERE)

    Description Smart Hydro Power's hybrid system combines a micro hydro kinetic turbine with solar panels (and sometimes other sources) to provide clean, continuous energy year round....

  19. Cold-Start Emissions Control in Hybrid Vehicles Equipped with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Reports results from study of ...

  20. Ultracapacitor Applications and Evaluation for Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Gonder, J.; Keyser, M.

    2009-04-01

    Describes the use of ultracapacitors in advanced hybrid and electric vehicles and discusses thermal and electrical testing of lithium ion capacitors for HEV applications.

  1. Environmental Assessment of Plug-In Hybrid Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions (3.06 MB) More Documents & Publications Alternative Transportation ...

  2. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mini-Van PHEV DOE Funded Project Advancing Transportation Through Vehicle Electrification - PHEV Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity...

  3. High performance hybrid magnetic structure for biotechnology applications

    DOE Patents [OSTI]

    Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  4. Optimizing Geothermal with Geo-Solar Hybrid Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    geothermal plant and solar photovoltaic field, for a total installed capacity of 60 MW. Source: Enel Green Power North America DOE is exploring the potential of using hybrid ...

  5. Chassis Dynamometer Testing of Parallel and Series Diesel Hybrid Buses

    Broader source: Energy.gov [DOE]

    Emissions and fuel economy data were studied from tests on four diesel and diesel hybrid transit buses using the Houston Metro Bus Cycle.

  6. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buying & Making Electricity » Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. Because the peak operating times for wind and solar systems occur at different times of the day and year, hybrid systems are more likely to produce power when you need it. According to many renewable energy experts,

  7. Green Means Go for Hybrid and Alternative Fuel Taxis | Department...

    Broader source: Energy.gov (indexed) [DOE]

    improve their sustainability, including adopting hybrid, natural gas, or propane vehicles. ... Similarly, propane taxis produce fewer emissions than gasoline and use a domestically ...

  8. HILO: Quasi Diffusion Accelerated Monte Carlo on Hybrid Architectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fidelity simulation of a diverse range of kinetic systems. Available for thumbnail of Feynman Center (505) 665-9090 Email HILO: Quasi Diffusion Accelerated Monte Carlo on Hybrid...

  9. Advanced Hybrid Water-Heater Using Electrochemical Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bamdad Bahar bamdad.bahar@xergyinc.com Xergy, Inc. Advanced Hybrid Water-Heater Using ... Project Goal: Develop a heat pump water heater utilizing electrochemical ...

  10. Advanced Hybrid Water-Heater Using Electrochemical Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Water-Heater Using Electrochemical Compression (ECC) 2016 Building Technologies ... Key Partners: Project Goal: Develop a heat pump water heater utilizing electrochemical ...

  11. BENEFIT: A New Hybrid Approach to Energy Modeling | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Related Publications 2016 BTO Peer Review Presentation-A New Hybrid Approach to ... schematic view of the HyrdronicHeating exmample model from the Modelica Buildings Library. ...

  12. A Hybrid Variance Reduction Method Based on Gaussian Process...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to accelerate the convergence of Monte Carlo (MC) simulation. Hybrid deterministic-MC methods 1, 2, 3 have been recently developed to achieve the goal of global variance...

  13. Compliant Glass-Polymer Hybrid Single Ion-ConductingElectrolytes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compliant Glass-Polymer Hybrid Single Ion-ConductingElectrolytes for Lithium Batteries ... excellent electrochemical stability, and limit the dissolution of lithium polysulfides. ...

  14. AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus...

    Broader source: Energy.gov (indexed) [DOE]

    (part of the medium and heavy-duty truck data) describes testing results of the Idaho National Laboratory's demonstration hybrid shuttle bus. This research was conducted by Idaho ...

  15. United Parcel Service Evaluates Hybrid Electric Delivery Vans...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... a synchronous brushless, permanent magnet motor (26-kW continuous power, 44-kW peak ... Hybrid-specific engine optimization and calibration might produce more consistent ...

  16. AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus Testing Results

    Broader source: Energy.gov [DOE]

    The following report describes testing results of the Idaho National Laboratory's demonstration hybrid shuttle bus. This research was conducted by Idaho National Laboratory.

  17. Formation of Compact Clusters from High Resolution Hybrid Cosmological...

    Office of Scientific and Technical Information (OSTI)

    Formation of Compact Clusters from High Resolution Hybrid Cosmological Simulations Citation Details In-Document Search Title: Formation of Compact Clusters from High Resolution ...

  18. US Energy Initiatives Corp formerly Hybrid Fuel Systems Inc ...

    Open Energy Info (EERE)

    Fuel Systems Inc) Place: Tampa, Florida Zip: 33637 Product: Holds patented natural gasdiesel dual fuel technology. References: US Energy Initiatives Corp (formerly Hybrid...

  19. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Vehicle Technologies Office Merit Review 2015: Medium and Heavy-Duty Vehicle Field Evaluations ...

  20. Building America Webinar: New Construction Hybrid-Ductless Heat Pumps

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study: Resistance is Futile | Department of Energy New Construction Hybrid-Ductless Heat Pumps Study: Resistance is Futile Building America Webinar: New Construction Hybrid-Ductless Heat Pumps Study: Resistance is Futile This webinar will focus on the use of ductless heat pumps (DHP) as a hybrid "all-electric" heating system in new high-performance homes. In a DHP/hybrid heating system, the DHP fan coil is located in the main living area in combination with electric resistance zone

  1. Building America Webinar: New Construction Hybrid-Ductless Heat Pumps

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study: Resistance is Futile | Department of Energy New Construction Hybrid-Ductless Heat Pumps Study: Resistance is Futile Building America Webinar: New Construction Hybrid-Ductless Heat Pumps Study: Resistance is Futile This webinar on June 24, 2015, focused on the use of ductless heat pumps (DHP) as a hybrid "all-electric" heating system in new high-performance homes. In a DHP/hybrid heating system, the DHP fan coil is located in the main living area in combination with electric

  2. HYBRID SULFUR ELECTROLYZER DEVELOPMENT FY09 SECOND QUARTER REPORT

    SciTech Connect (OSTI)

    Herman, D; David Hobbs, D; Hector Colon-Mercado, H; Timothy Steeper, T; John Steimke, J; Mark Elvington, M

    2009-04-15

    The primary objective of the DOE-NE Nuclear Hydrogen Initiative (NHI) is to develop the nuclear hydrogen production technologies necessary to produce hydrogen at a cost competitive with other alternative transportation fuels. The focus of the NHI is on thermochemical cycles and high temperature electrolysis that can be powered by heat from high temperature gas reactors. The Savannah River National Laboratory (SRNL) has been tasked with the primary responsibility to perform research and development in order to characterize, evaluate and develop the Hybrid Sulfur (HyS) thermochemical process. This report documents work during the first quarter of Fiscal Year 2009, for the period between January 1, 2009 and March 31, 2009. The HyS Process is a two-step hybrid thermochemical cycle that is part of the 'Sulfur Family' of cycles. As a sulfur cycle, it uses high temperature thermal decomposition of sulfuric acid to produce oxygen and to regenerate the sulfur dioxide reactant. The second step of the process uses a sulfur dioxide depolarized electrolyzer (SDE) to split water and produce hydrogen by electrochemically reacting sulfur dioxide with H{sub 2}O. The SDE produces sulfuric acid, which is then sent to the acid decomposer to complete the cycle. The DOE NHI program is developing the acid decomposer at Sandia National Laboratory for application to both the HyS Process and the Sulfur Iodine Cycle. The SDE is being developed at SRNL. During FY05 and FY06, SRNL designed and conducted proof-of-concept testing for a SDE using a low temperature, PEM fuel cell-type design concept. The advantages of this design concept include high electrochemical efficiency, small footprint and potential for low capital cost, characteristics that are crucial for successful implementation on a commercial scale. During FY07, SRNL extended the range of testing of the SDE to higher temperature and pressure, conducted a 100-hour longevity test with a 60-cm{sup 2} single cell electrolyzer, and

  3. Students Compete to Design Energy-Efficient Appliances | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Compete to Design Energy-Efficient Appliances Students Compete to Design Energy-Efficient Appliances May 10, 2012 - 1:39pm Addthis 1 of 5 Team Cal Poly Solar is working to significantly reduce the cost and construction time on their solar concentrator for cooking. Image: Lawrence Berkeley National Laboratory 2 of 5 Professor Dale Dolan's students from California Polytechnic State University San Luis Obispo Electrical Engineering department testing the placement of their Hybrid Solar

  4. Design concepts for a pulse power test facility to simulate EMP surges. Part II. Slow pulses

    SciTech Connect (OSTI)

    Dethlefsen, R.

    1985-10-01

    The work described in this report was sponsored by the Division of Electric Energy Systems (EES) of the US Department of Energy (DOE) through a subcontract with the Power Systems Technology Program at the Oak Ridge National Laboratory (ORNL). The work deals with the effect of high altitude nuclear bursts on electric power systems. In addition to fast voltage transients, slow, quasi-dc currents are also induced into extended power systems with grounded neutral connections. Similar phenomena at lower magnitude are generated by solar induced electromagnetic pulses (EMP). These have caused power outages, related to solar storms, at northern latitudes. The applicable utility experience is reviewed in order to formulate an optimum approach to future testing. From a wide variety of options two pulser designs were selected as most practical, a transformer-rectifier power supply, and a lead acid battery pulser. both can be mounted on a trailer as required for field testing on utility systems. The battery system results in the least cost. Testing on power systems requires that the dc pulser pass high values of alternating current, resulting from neutral imbalance or from potential fault currents. Batteries have a high ability to pass alternating currents. Most other pulser options must be protected by an ac bypass in the form of an expensive capacitor bank. 8D truck batteries can meet the original specification of 1 kA test current. Improved batteries for higher discharge currents are available.

  5. control design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control design - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  6. Analysis, optimization, and implementation of a hybrid DS/FFH spread-spectrum technique for smart grid communications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olama, Mohammed M.; Ma, Xiao; Killough, Stephen M.; Kuruganti, Teja; Smith, Stephen F.; Djouadi, Seddik M.

    2015-03-12

    In recent years, there has been great interest in using hybrid spread-spectrum (HSS) techniques for commercial applications, particularly in the Smart Grid, in addition to their inherent uses in military communications. This is because HSS can accommodate high data rates with high link integrity, even in the presence of significant multipath effects and interfering signals. A highly useful form of this transmission technique for many types of command, control, and sensing applications is the specific code-related combination of standard direct sequence modulation with fast frequency hopping, denoted hybrid DS/FFH, wherein multiple frequency hops occur within a single data-bit time. Inmore » this paper, error-probability analyses are performed for a hybrid DS/FFH system over standard Gaussian and fading-type channels, progressively including the effects from wide- and partial-band jamming, multi-user interference, and varying degrees of Rayleigh and Rician fading. In addition, an optimization approach is formulated that minimizes the bit-error performance of a hybrid DS/FFH communication system and solves for the resulting system design parameters. The optimization objective function is non-convex and can be solved by applying the Karush-Kuhn-Tucker conditions. We also present our efforts toward exploring the design, implementation, and evaluation of a hybrid DS/FFH radio transceiver using a single FPGA. Numerical and experimental results are presented under widely varying design parameters to demonstrate the adaptability of the waveform for varied harsh smart grid RF signal environments.« less

  7. Analysis, Optimization, and Implementation of a Hybrid DS/FFH Spread-Spectrum Technique for Smart Grid Communications

    SciTech Connect (OSTI)

    Olama, Mohammed M; Ma, Xiao; Killough, Stephen M; Kuruganti, Teja; Smith, Stephen Fulton; Djouadi, Seddik M

    2015-01-01

    In recent years, there has been great interest in using hybrid spread-spectrum (HSS) techniques for commercial applications, particularly in the Smart Grid, in addition to their inherent uses in military communications. This is because HSS can accommodate high data rates with high link integrity, even in the presence of significant multipath effects and interfering signals. A highly useful form of this transmission technique for many types of command, control, and sensing applications is the specific code-related combination of standard direct sequence modulation with fast frequency hopping, denoted hybrid DS/FFH, wherein multiple frequency hops occur within a single data-bit time. In this paper, error-probability analyses are performed for a hybrid DS/FFH system over standard Gaussian and fading-type channels, progressively including the effects from wide- and partial-band jamming, multi-user interference, and varying degrees of Rayleigh and Rician fading. In addition, an optimization approach is formulated that minimizes the bit-error performance of a hybrid DS/FFH communication system and solves for the resulting system design parameters. The optimization objective function is non-convex and can be solved by applying the Karush-Kuhn-Tucker conditions. We also present our efforts toward exploring the design, implementation, and evaluation of a hybrid DS/FFH radio transceiver using a single field-programmable gate array (FPGA). Numerical and experimental results are presented under widely varying design parameters to demonstrate the adaptability of the waveform for varied harsh smart grid RF signal environments.

  8. Hybrid sol-gel optical materials

    DOE Patents [OSTI]

    Zeigler, J.M.

    1993-04-20

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  9. Hybrid sol-gel optical materials

    DOE Patents [OSTI]

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  10. Hybrid sol-gel optical materials

    DOE Patents [OSTI]

    Zeigler, John M.

    1993-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  11. Hybrid stretchable circuits on silicone substrate

    SciTech Connect (OSTI)

    Robinson, A., E-mail: adam.1.robinson@nokia.com; Aziz, A., E-mail: a.aziz1@lancaster.ac.uk [Nanoscience Centre, University of Cambridge, Cambridge CB01FF (United Kingdom); Liu, Q.; Suo, Z. [School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138 (United States); Lacour, S. P., E-mail: stephanie.lacour@epfl.ch [Centre for Neuroprosthetics and Laboratory for Soft Bioelectronics Interfaces, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015 (Switzerland)

    2014-04-14

    When rigid and stretchable components are integrated onto a single elastic carrier substrate, large strain heterogeneities appear in the vicinity of the deformable-non-deformable interfaces. In this paper, we report on a generic approach to manufacture hybrid stretchable circuits where commercial electronic components can be mounted on a stretchable circuit board. Similar to printed circuit board development, the components are electrically bonded on the elastic substrate and interconnected with stretchable electrical traces. The substrate—a silicone matrix carrying concentric rigid disks—ensures both the circuit elasticity and the mechanical integrity of the most fragile materials.

  12. Technique for Measuring Hybrid Electronic Component Reliability

    SciTech Connect (OSTI)

    Green, C.C.; Hernandez, C.L.; Hosking, F.M.; Robinson, D.; Rutherford, B.; Uribe, F.

    1999-01-01

    Materials compatibility studies of aged, engineered materials and hardware are critical to understanding and predicting component reliability, particularly for systems with extended stockpile life requirements. Nondestructive testing capabilities for component reliability would significantly enhance lifetime predictions. For example, if the detection of crack propagation through a solder joint can be demonstrated, this technique could be used to develop baseline information to statistically determine solder joint lifelengths. This report will investigate high frequency signal response techniques for nondestructively evaluating the electrical behavior of thick film hybrid transmission lines.

  13. INEXPENSIVE, OFF THE SHELF HYBRID MICROWAVE SYSTEM

    SciTech Connect (OSTI)

    Walters, T; Paul Burket, P; John Scogin, J

    2007-06-21

    A hybrid-heating microwave oven provides the energy to heat small 10-gram samples of spent metal tritide storage bed material to release tenaciously held decay product {sup 3}He. Complete mass balance procedures require direct measurement of added or produced gases on a tritide bed, and over 1100 C is necessary to release deep trapped {sup 3}He. The decomposition of non-radioactive CaCO{sub 3} and the quantitative measurement of CO{sub 2} within 3% of stoichiometry demonstrate the capabilities of the apparatus to capture generated (released) gases.

  14. Transport Test Problems for Hybrid Methods Development

    SciTech Connect (OSTI)

    Shaver, Mark W.; Miller, Erin A.; Wittman, Richard S.; McDonald, Benjamin S.

    2011-12-28

    This report presents 9 test problems to guide testing and development of hybrid calculations for the ADVANTG code at ORNL. These test cases can be used for comparing different types of radiation transport calculations, as well as for guiding the development of variance reduction methods. Cases are drawn primarily from existing or previous calculations with a preference for cases which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22.

  15. Hybrid electric vehicle power management system

    SciTech Connect (OSTI)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  16. A modified lower hybrid coupler for TPX

    SciTech Connect (OSTI)

    Bernabei, S.; Greenough, N.; Goranson, P.; Swain, D.

    1995-07-01

    Efforts have concentrated on redesigning the configuration of the Lower Hybrid coupler for TPX tokamak. Several concerns motivated this redesign: reduce the effect of thermal incompatibility between coupler and rf-window material, reduce weight, reduce the risk of wind failure and address the problem of replaceability, increase the reliability by reducing the number connections and finally, reduce the total cost. The result is a highly compact, light and easily serviceable coupler which incorporates some of the simplicity of the multifunction coupler but preserves the spectral flexibility of a conventional coupler.

  17. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    SciTech Connect (OSTI)

    Gallo, Jean-Baptiste

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the

  18. DEVELOPMENT OF A SOFTWARE DESIGN TOOL FOR | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEVELOPMENT OF A SOFTWARE DESIGN TOOL FOR DEVELOPMENT OF A SOFTWARE DESIGN TOOL FOR This project focuses on the development of a stand-alone software tool for the design and economic analysis of hybrid geothermal heat pump systems for heating-and cooling dominated buildings using solar collectors in both operating modes. gshp_yavuzturk_software_design_tool.pdf (330.28 KB) More Documents & Publications Tax Deduction Qualified Software TRNSYS version 17.01.0016 TESS Libraries version 17.1.01

  19. Plug-In Hybrid Urban Delivery Truck Technology Demonstration

    SciTech Connect (OSTI)

    Miyasato, Matt; Impllitti, Joseph; Pascal, Amar

    2015-07-31

    The I-710 and CA-60 highways are key transportation corridors in the Southern California region that are heavily used on a daily basis by heavy duty drayage trucks that transport the cargo from the ports to the inland transportation terminals. These terminals, which include store/warehouses, inland-railways, are anywhere from 5 to 50 miles in distance from the ports. The concentrated operation of these drayage vehicles in these corridors has had and will continue to have a significant impact on the air quality in this region whereby significantly impacting the quality of life in the communities surrounding these corridors. To reduce these negative impacts it is critical that zero and near-zero emission technologies be developed and deployed in the region. A potential local market size of up to 46,000 trucks exists in the South Coast Air Basin, based on near- dock drayage trucks and trucks operating on the I-710 freeway. The South Coast Air Quality Management District (SCAQMD), California Air Resources Board (CARB) and Southern California Association of Governments (SCAG) — the agencies responsible for preparing the State Implementation Plan required under the federal Clean Air Act — have stated that to attain federal air quality standards the region will need to transition to broad use of zero and near zero emission energy sources in cars, trucks and other equipment (Southern California Association of Governments et al, 2011). SCAQMD partnered with Volvo Trucks to develop, build and demonstrate a prototype Class 8 heavy-duty plug-in hybrid drayage truck with significantly reduced emissions and fuel use. Volvo’s approach leveraged the group’s global knowledge and experience in designing and deploying electromobility products. The proprietary hybrid driveline selected for this proof of concept was integrated with multiple enhancements to the complete vehicle in order to maximize the emission and energy impact of electrification. A detailed review of all

  20. Mechanical Design

    SciTech Connect (OSTI)

    Shook, Richard; /Marquette U. /SLAC

    2010-08-25

    The particle beam of the SXR (soft x-ray) beam line in the LCLS (Linac Coherent Light Source) has a high intensity in order to penetrate through samples at the atomic level. However, the intensity is so high that many experiments fail because of severe damage. To correct this issue, attenuators are put into the beam line to reduce this intensity to a level suitable for experimentation. Attenuation is defined as 'the gradual loss in intensity of any flux through a medium' by [1]. It is found that Beryllium and Boron Carbide can survive the intensity of the beam. At very thin films, both of these materials work very well as filters for reducing the beam intensity. Using a total of 12 filters, the first 9 being made of Beryllium and the rest made of Boron Carbide, the beam's energy range of photons can be attenuated between 800 eV and 9000 eV. The design of the filters allows attenuation for different beam intensities so that experiments can obtain different intensities from the beam if desired. The step of attenuation varies, but is relative to the thickness of the filter as a power function of 2. A relationship for this is f(n) = x{sub 0}2{sup n} where n is the step of attenuation desired and x{sub 0} is the initial thickness of the material. To allow for this desired variation, a mechanism must be designed within the test chamber. This is visualized using a 3D computer aided design modeling tool known as Solid Edge.

  1. Primordial anisotropies in gauged hybrid inflation

    SciTech Connect (OSTI)

    Abolhasani, Ali Akbar; Emami, Razieh; Firouzjahi, Hassan E-mail: emami@ipm.ir

    2014-05-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent ?N mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.

  2. Hybrid Ventilation Optimization and Control Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hybrid Ventilation Optimization and Control Research and Development Hybrid Ventilation Optimization and Control Research and Development Credit: Massachusetts Institute of Technology Credit: Massachusetts Institute of Technology Lead Performer: Massachusetts Institute of Technology - Cambridge, MA Partners: -- Chongqing University - Chongqing, China -- Tongji University - Shanghai, China -- Tianjin University - Tianjin, China -- Chongqing Fu Tai Construction Group

  3. 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Report - Hybrid Vehicle Systems Technologies 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities 2013_amr_01.pdf (9.05 MB) More Documents & Publications 2013 Annual Merit Review Results Report

  4. 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities 2012_amr_01.pdf (8.73 MB) More Documents & Publications 2012 Annual Merit Review Results Report - Introduction

  5. Control Sensitivity Study for a Hybrid Fuel Cell/Gas Turbine System

    SciTech Connect (OSTI)

    Banta, Larry; Absten, Jason; Tsai, Alex; Gemmen, R.S.; Tucker, D.A.

    2008-06-01

    The National Energy Technology Laboratory (NETL) has developed a hardware simulator to test the operating characteristics of Solid Oxide Fuel Cell/Gas Turbine (SOFC/GT) hybrid systems. The Hybrid Performance (HyPer) simulator has been described previously, and has contributed to the understanding of SOFC/GT system operation. HyPer contains not only the requisite elements of gas turbine/compressor/generator, recuperator, combustor, and associated piping, but also several air flow control valves that are proposed as system control mechanisms. It is necessary to know how operation of these valves affects the various entities such as cathode air flow, turbine speed, and various temperatures important to the safe and efficient operation of fuel cell/gas turbine hybrid systems. To determine the interactions among key variables, a series of experiments was performed in which the effect of modulating each of the key manipulated variables was recorded. This document outlines the test methods used and presents some of the data from those tests, along with analysis and interpretation of that data in the context of control system design.

  6. The resilient hybrid fiber sensor network with self-healing function

    SciTech Connect (OSTI)

    Xu, Shibo Liu, Tiegen; Ge, Chunfeng; Chen, Qinnan; Zhang, Hongxia

    2015-03-15

    This paper presents a novel resilient fiber sensor network (FSN) with multi-ring architecture, which could interconnect various kinds of fiber sensors responsible for more than one measurands. We explain how the intelligent control system provides sensors with self-healing function meanwhile sensors are working properly, besides each fiber in FSN is under real-time monitoring. We explain the software process and emergency mechanism to respond failures or other circumstances. To improve the efficiency in the use of limited spectrum resources in some situations, we have two different structures to distribute the light sources rationally. Then, we propose a hybrid sensor working in FSN which is a combination of a distributed sensor and a FBG (Fiber Bragg Grating) array fused in a common fiber sensing temperature and vibrations simultaneously with neglectable crosstalk to each other. By making a failure to a working fiber in experiment, the feasibility and effectiveness of the network with a hybrid sensor has been demonstrated, hybrid sensors could not only work as designed but also survive from destructive failures with the help of resilient network and smart and quick self-healing actions. The network has improved the viability of the fiber sensors and diversity of measurands.

  7. Hybrid permanent magnet quadrupoles for the Recycler Ring at Fermilab

    SciTech Connect (OSTI)

    Brown, B.C.; Pruss, S.M.; Foster, G.W.; Glass, H.D.; Harding, D.J.; Jackson, G.R.; May, M.R.; Nicol, T.H.; Ostiguy, J.-F.; Schlabach, R.; Volk, J.T.

    1997-10-01

    Hybrid Permanent Magnet Quadrupoles are used in several applications for the Fermilab Recycler Ring and associated beam transfer lines. Most of these magnets use a 0.6096 m long iron shell and provide integrated gradients up to 1.4 T-m/m with an iron pole tip radius of 41.6 mm. A 58.4 mm pole radius design is also required. Bricks of 25. 4 mm thick strontium ferrite supply the flux to the back of the pole to produce the desired gradients (0.6 to 2.75 T/m). For temperature compensation, Ni-Fe alloy strips are interspersed between ferrite bricks to subtract flux in a temperature dependent fashion. Adjustments of the permeance of each pole using iron between the pole and the flux return shell permits the matching of pole potentials. Magnetic potentials of the poles are adjusted to the desired value to achieve the prescribed strength and field uniformity based on rotating coil harmonic measurements. Procurement, fabrication, pole potential adjustment, and measured fields will be reported.

  8. Applications of Strand-Specific in situ Hybridization

    SciTech Connect (OSTI)

    Goodwin, E.H.; Meyne, J.; Bailey, S.M.; Quigley, D.; Smith, L.; Tennyson, R.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Fluorescence in situ hybridization (FISH) is used to determine the location of specific DNA sequences on chromosomes. It is an effective tool in genomic mapping and is finding increasing use in medical diagnosis. A ''strand-specific'' version of FISH has been developed in the Life Sciences Division of LANL. The new procedure, named CO-FISH, reveals not only location but also the 5'-to-3'direction of a target sequence, such as the sense strand of a gene. This project was designed to investigate applications of the new technique. Strand-specific FISH was found to be useful and informative for genomic mapping of repetitive DNA sequences. The method provide a valuable new tool for investigating the mechanisms of aneuploidy inducing agents and the cytogenetic phenomena called lateral asymmetry. Finally, using strand-specific FISH, the authors were able to detect certain types of chromosome aberrations (isochromosomes, inversions and Robertsonian translocations) that can be difficult to observe with standard techniques.

  9. A Possible Hybrid Cooling Channel for a Neutrino Factory

    SciTech Connect (OSTI)

    Zisman, Michael S; Gallardo, Juan C.

    2010-05-17

    A Neutrino Factory requires an intense and well-cooled (in transverse phase space) muon beam. We discuss a hybrid approach for a linear 4D cooling channel consisting of high-pressure gas-filled RF cavities--potentially allowing high gradients without breakdown--and discrete LiH absorbers to provide the necessary energy loss that results in the required muon beam cooling. We report simulations of the channel performance and its comparison with the vacuum case; we also briefly discuss technical and safety issues associated with cavities filled with high-pressure hydrogen gas. Even with additional windows that might be needed for safety reasons, the channel performance is comparable to that of the original, all-vacuum Feasibility Study 2a channel on which our design is based. If tests demonstrate that the gas-filled RF cavities can operate effectively with an intense beam of ionizing particles passing through them, our approach would be an attractive way of avoiding possible breakdown problems with a vacuum RF channel.

  10. Novel Fabrication and Simple Hybridization of Exotic Material MEMS

    SciTech Connect (OSTI)

    Datskos, P.G.; Rajic, S.

    1999-11-13

    Work in materials other than silicon for MEMS applications has typically been restricted to metals and metal oxides instead of more ''exotic'' semiconductors. However, group III-V and II-VI semiconductors form a very important and versatile collection of material and electronic parameters available to the MEMS and MOEMS designer. With these materials, not only are the traditional mechanical material variables (thermal conductivity, thermal expansion, Young's modulus, etc.) available, but also chemical constituents can be varied in ternary and quaternary materials. This flexibility can be extremely important for both friction and chemical compatibility issues for MEMS. In addition, the ability to continually vary the bandgap energy can be particularly useful for many electronics and infrared detection applications. However, there are two major obstacles associated with alternate semiconductor material MEMS. The first issue is the actual fabrication of non-silicon devices and the second impediment is communicating with these novel devices. We will describe an essentially material independent fabrication method that is amenable to most group III-V and II-VI semiconductors. This technique uses a combination of non-traditional direct write precision fabrication processes such as diamond turning, ion milling, laser ablation, etc. This type of deterministic fabrication approach lends itself to an almost trivial assembly process. We will also describe in detail the mechanical, electrical, and optical self-aligning hybridization technique used for these alternate-material MEMS.

  11. Nonlinear upper hybrid waves and the induced density irregularities

    SciTech Connect (OSTI)

    Kuo, Spencer P.

    2015-08-15

    Upper hybrid waves are excited parametrically by the O-mode high-frequency heater waves in the ionospheric heating experiments. These waves grow to large amplitudes and self-induced density perturbations provide nonlinear feedback. The lower hybrid resonance modifies the nonlinear feedback driven by the ponderomotive force; the nonlinear equation governing the envelope of the upper hybrid waves is derived. Solutions in symmetric alternating functions, in non-alternating periodic functions, as well as in solitary functions are shown. The impact of lower hybrid resonance on the envelope of the upper hybrid waves is explored; the results show that both the spatial period and amplitude are enlarged. The average fluctuation level of induced density irregularities is also enhanced. In the soliton form, the induced density cavity is widened considerably.

  12. Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations Evaluation of 2010 Urea-SCR Technology for Hybrid Vehicles using PSAT System Simulations Results of ...

  13. Optimization of hybrid-water/air-cooled condenser in an enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization of hybrid-waterair-cooled condenser in an enhanced turbine geothermal ORC system Optimization of hybrid-waterair-cooled condenser in an enhanced turbine geothermal ORC ...

  14. Fact #731: June 11, 2012 Cost-Effectiveness of a Hybrid Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cityhighway driving, and fuel price (example vehicle is a Toyota Camry Hybrid XLE). ... Driving and Fuel Price (Example Vehicle Toyota Camry Hybrid XLE) 2012 Toyota Camry ...

  15. EM Finds Success with Fixed-Priced Hybrid Contract Approach Benefittin...

    Office of Environmental Management (EM)

    Finds Success with Fixed-Priced Hybrid Contract Approach Benefitting Taxpayers EM Finds Success with Fixed-Priced Hybrid Contract Approach Benefitting Taxpayers January 29, 2014 - ...

  16. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Vehicle ...

  17. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles ...

  18. Fusion-Fission Research Facility (FFRF) as a Practical Step Toward Hybrids

    SciTech Connect (OSTI)

    L. Zakharov, J. Li and Y. Wu

    2010-11-18

    The project of ASIPP (with PPPL participation), called FFRF, (R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, PDT=50-100 MW, Pfission=80-4000 MW, 1 m thick blanket) is outlined. FFRF stands for the Fusion-Fission Research Facility with a unique fusion mission and a pioneering mission of merging fusion and fission for accumulation of design, experimental, and operational data for future hybrid applications. The design of FFRF will use as much as possible the EAST and ITER design experience. On the other hand, FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China.

  19. Hybrid Electric Vehicle, Winner of the "FutureCar Challenge

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Electric Vehicle, Winner of the "FutureCar Challenge," to Recharge at the National Renewable Energy Laboratory, One of Only Three Stops Between Sacramento, Calif. and Washington, D.C. For more information contact: George Douglas (303) 275-4096 or (303) 880-2913 (cellular) Golden, Colo., July 15, 1997 -- Media are invited to photograph "FutureCar" winner and interview students who designed it. What: The "FutureCar Challenge" winner, a modified Ford Taurus,

  20. Hybrid heat exchange for the compression capture of CO2 from recirculated flue gas

    SciTech Connect (OSTI)

    Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.

    2004-01-01

    An approach proposed for removal of CO2 from flue gas cools and compresses a portion of a recirculated flue-gas stream, condensing its volatile materials for capture. Recirculating the flue gas concentrates SOx, H2O and CO2 while dramatically reducing N2 and NOx, enabling this approach, which uses readily available industrial components. A hybrid system of indirect and direct-contact heat exchange performs heat and mass transfer for pollutant removal and energy recovery. Computer modeling and experimentation combine to investigate the thermodynamics, heat and mass transfer, chemistry and engineering design of this integrated pollutant removal (IPR) system.