Powered by Deep Web Technologies
Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Energy Design Guides  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One way to influence above-code One way to influence above-code exemplary energy performance in commercial buildings is to provide architects, engineers, and other design practitioners prescriptive guidance that indicates, measure by measure, how to do it. To this end, the U.S. Department of Energy (DOE) actively supports development of a series of AEDGs- publications designed to provide recommendations for achieving 30 to 50

2

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Design Energy Design Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Design Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Design Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Design Guides on Google Bookmark Building Technologies Office: Advanced Energy Design Guides on Delicious Rank Building Technologies Office: Advanced Energy Design Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Design Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

3

Building Technologies Office: Advanced Energy Design Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

K-12 School Buildings Medium to Big Box Retail Buildings Large Hospitals The Advanced Energy Design Guides (AEDGs) accelerate the construction of energy efficient buildings by...

4

Advanced Energy Design Guides | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance Regulations Resource Center Advanced Energy Design Guides The Advanced Energy Design Guides (AEDGs) are a series of publications designed to provide recommendations for...

5

Advanced Energy Design Guides | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Guides Design Guides Advanced Energy Design Guides The 50% AEDGs provide practical approaches to achieve 50% energy savings compared to base code requirements. Download them free from ASHRAE: Small and Medium Office Buildings K-12 School Buildings Medium to Big Box Retail Buildings Large Hospitals The Advanced Energy Design Guides (AEDGs) accelerate the construction of energy efficient buildings by providing prescriptive solutions to achieve significant energy savings over minimum building energy codes. The AEDG project represents a partnership between the U.S. Department of Energy (DOE), ASHRAE, American Institute of Architects, U.S. Green Building Council, and the Illuminating Engineering Society of North America (IES). The AEDG series provides design guidance for buildings that use 50% less

6

50% Advanced Energy Design Guides: Preprint  

SciTech Connect

This paper presents the process, methodology, and assumptions for the development of the 50% Energy Savings Advanced Energy Design Guides (AEDGs), a design guidance document that provides specific recommendations for achieving 50% energy savings above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 in four building types: (1) Small to medium office buildings, (2) K-12 school buildings, (3) Medium to big box retail buildings, (4) Large hospital buildings.

Bonnema, E.; Leach, M.; Pless, S.; Liu, B.; Wang, W.; Thornton, B.; Williams, J.

2012-07-01T23:59:59.000Z

7

Advanced Energy Design Guides Slash Energy Use in Schools and...  

NLE Websites -- All DOE Office Websites (Extended Search)

simulation tools and led the committee that produced the guides. Key Result The Advanced Energy Design Guides, based on the work of NREL's researchers, provide owners,...

8

Technical Support Document: Development of the Advanced Energy Design Guide for Small Hospitals and Healthcare Facilities--30% Guide  

SciTech Connect

This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Small Hospitals and Healthcare Facilities.

Bonnema, E.; Doebber, I.; Pless, S.; Torcellini, P.

2010-03-01T23:59:59.000Z

9

Advanced Energy Design Guides | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Design Guides Session 6 of a seven-part webcast series presented by the U.S. Department of Energy's (DOE's) Federal Energy Management Program to help federal agencies comply...

10

Advanced Energy Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Guides Energy Guides Shanti Pless National Renewable Energy Laboratory shanti.pless@nrel.gov 303-384-6365 April 4 2013 2 | Building Technologies Office eere.energy.gov Advanced Energy Design Guides Provide prescriptive energy savings guidance and recommendations by building type and geographic location: * Design packages and strategies to help owners and designers achieve 50% site energy savings over Standard 90.1 * Two series: - 30% savings over 90.1-1999

11

Advanced Energy Guides  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Guides Energy Guides Shanti Pless National Renewable Energy Laboratory shanti.pless@nrel.gov 303-384-6365 April 4 2013 2 | Building Technologies Office eere.energy.gov Advanced Energy Design Guides Provide prescriptive energy savings guidance and recommendations by building type and geographic location: * Design packages and strategies to help owners and designers achieve 50% site energy savings over Standard 90.1 * Two series: - 30% savings over 90.1-1999

12

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Retrofit Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Retrofit Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Retrofit Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Google Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Delicious Rank Building Technologies Office: Advanced Energy Retrofit Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Retrofit Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

13

Technical Support Document: The Development of the Advanced Energy Design Guide for Small Retail Buildings  

SciTech Connect

The Advanced Energy Design Guide for Small Retail Buildings (AEDG-SR) was developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the Department of Energy (DOE). The guide is intended to offer recommendations to achieve 30% energy savings and thus to encourage steady progress towards net-zero energy buildings. The baseline level energy use was set at buildings built at the turn of the millennium, which are assumed to be based on ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings (refer to as the ?Standard? in this report). ASHRAE and its partners are engaged in the development of a series of guides for small commercial buildings, with the AEDG-SR being the second in the series. Previously the partnership developed the Advanced Energy Design Guide for Small Office Buildings: Achieving 30% Energy Savings Over ANSI/ASHRAE/IESNA Standard 90.1-1999, which was published in late 2004. The technical support document prepared by PNNL details how the energy analysis performed in support of the Guide and documents development of recommendation criteria.

Liu, Bing; Jarnagin, Ronald E.; Winiarski, David W.; Jiang, Wei; McBride, Merle F.; Crall, C.

2006-09-30T23:59:59.000Z

14

Technical Support Document: The Development of the Advanced Energy Design Guide for Highway Lodging Buildings  

SciTech Connect

This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Highway Lodgings (AEDG-HL or the Guide), a design guidance document intended to provide recommendations for achieving 30% energy savings in highway lodging properties over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-HL is the fifth in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the U.S. Department of Energy (DOE).

Jiang, Wei; Jarnagin, Ronald E.; Gowri, Krishnan; McBride, M.; Liu, Bing

2008-09-30T23:59:59.000Z

15

Technical Support Document: Development of the Advanced Energy Design Guide for Small Office Buildings  

Science Conference Proceedings (OSTI)

This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for Small Office Buildings (AEDG-SO), a design guidance document intended to provide recommendations for achieving 30% energy savings in small office buildings over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-SO is the first in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the New Buildings Institute (NBI), and the U.S. Department of Energy (DOE). Each of the guides in the AEDG series will provide recommendations and user-friendly design assistance to designers, developers and owners of small commercial buildings that will encourage steady progress towards net-zero energy buildings. The guides will provide prescriptive recommendation packages that are capable of reaching the energy savings target for each climate zone in order to ease the burden of the design and construction of energy-efficient small commercial buildings The AEDG-SO was developed by an ASHRAE Special Project committee (SP-102) made up of representatives of each of the partner organizations in eight months. This TSD describes the charge given to the committee in developing the office guide and outlines the schedule of the development effort. The project committee developed two prototype office buildings (5,000 ft2 frame building and 20,000 ft2 two-story mass building) to represent the class of small office buildings and performed an energy simulation scoping study to determine the preliminary levels of efficiency necessary to meet the energy savings target. The simulation approach used by the project committee is documented in this TSD along with the characteristics of the prototype buildings. The prototype buildings were simulated in the same climate zones used by the prevailing energy codes and standards to evaluate energy savings. Prescriptive packages of recommendations presented in the guide by climate zone include enhanced envelope technologies, lighting and day lighting technologies and HVAC and SWH technologies. The report also documents the modeling assumptions used in the simulations for both the baseline and advanced buildings. Final efficiency recommendations for each climate zone are included, along with the results of the energy simulations indicating an average energy savings over all buildings and climates of approximately 38%.

Jarnagin, Ronald E.; Liu, Bing; Winiarski, David W.; McBride, Merle F.; Suharli, L.; Walden, D.

2006-11-30T23:59:59.000Z

16

Technical Support Document: Development of the Advanced Energy Design Guide for Large Hospitals - 50% Energy Savings  

SciTech Connect

This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Large Hospitals: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-LH) ASHRAE et al. (2011b). The AEDG-LH is intended to provide recommendations for achieving 50% whole-building energy savings in large hospitals over levels achieved by following Standard 90.1-2004. The AEDG-LH was created for a 'standard' mid- to large-size hospital, typically at least 100,000 ft2, but the strategies apply to all sizes and classifications of new construction hospital buildings. Its primary focus is new construction, but recommendations may be applicable to facilities undergoing total renovation, and in part to many other hospital renovation, addition, remodeling, and modernization projects (including changes to one or more systems in existing buildings).

Bonnema, E.; Leach, M.; Pless, S.

2013-06-01T23:59:59.000Z

17

Development of the Advanced Energy Design Guide for K-12 Schools -- 50% Energy Savings  

SciTech Connect

This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-K12) (ASHRAE et al. 2011a). The AEDG-K12 provides recommendations for achieving 50% whole-building energy savings in K-12 schools over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-K12 was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE).

Bonnema, E.; Leach, M.; Pless, S.; Torcellini, P.

2013-02-01T23:59:59.000Z

18

Technical Support Document: The Development of the Advanced Energy Design Guide for Small Warehouse and Self-Storage Buildings  

SciTech Connect

This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Small Warehouse and Self-storage Buildings (AEDG-WH or the Guide), a design guidance document intended to provide recommendations for achieving 30% energy savings in small warehouses over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-WH is the fourth in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the United States Green Buildings Council (USGBC), and the U.S. Department of Energy (DOE).

Liu, Bing; Jarnagin, Ronald E.; Jiang, Wei; Gowri, Krishnan

2007-12-01T23:59:59.000Z

19

Technical Support Document: Development of the Advanced Energy Design Guide for K-12 Schools--30% Energy Savings  

SciTech Connect

This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings (K-12 AEDG), a design guidance document intended to provide recommendations for achieving 30% energy savings in K-12 Schools over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The 30% energy savings target is the first step toward achieving net-zero energy schools; schools that, on an annual basis, draw from outside sources less or equal energy than they generate on site from renewable energy sources.

Pless, S.; Torcellini, P.; Long, N.

2007-09-01T23:59:59.000Z

20

Advanced Energy Retrofit Guides | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Guides Retrofit Guides Advanced Energy Retrofit Guides Photo of the cover of the Advanced Energy Retrofit Guide for Healthcare Facilities. The Advanced Energy Retrofit Guides (AERGs) were created to help decision makers plan, design, and implement energy improvement projects in their facilities. With energy managers in mind, they present practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle. These guides are primarily reference documents, allowing energy managers to consult the particular sections that address the most pertinent topics.. Useful resources are also cited throughout the guides for further information. Each AERG is tailored specifically to the needs of a specific building type, with an emphasis on the most effective

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Energy Design Guides Slash Energy Use in Schools and Retail Buildings by 50% (Fact Sheet)  

SciTech Connect

Owners, contractors, engineers, and architects can easily achieve significant energy savings by leveraging the complex analyses and expertise captured in these guides.

2012-04-01T23:59:59.000Z

22

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrofit Guides Retrofit Guides Photo of the cover of the Advanced Energy Retrofit Guide for Healthcare Facilities. The Advanced Energy Retrofit Guides (AERGs) help building owners and managers as well as design and construction professionals plan, design, and implement energy efficiency upgrades in commercial buildings. The Advanced Energy Retrofit Guides (AERGs) were created to help decision makers plan, design, and implement energy improvement projects in their facilities. With energy managers in mind, they present practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle. These guides are primarily reference documents, allowing energy managers to consult the particular sections that address the most pertinent topics.. Useful resources are also cited throughout the guides for further information. Each AERG is tailored specifically to the needs of a specific building type, with an emphasis on the most effective retro-commissioning and retrofit measures identified by experts familiar with those unique opportunities and challenges. The guides present a broad range of proven practices that can help energy managers take specific actions at any stage of the retrofit process, resulting in energy savings for many years to come.

23

Radiological design guide  

SciTech Connect

The purpose of this design guide is to provide radiological safety requirements, standards, and information necessary for designing facilities that will operate without unacceptable risk to personnel, the public, or the environment as required by the US Department of Energy (DOE). This design guide, together with WHC-CM-4-29, Nuclear Criticality Safety, WHC-CM-4-46, Nonreactor Facility Safety Analysis, and WHC-CM-7-5, Environmental Compliance, covers the radiation safety design requirements at Westinghouse Hanford Company (WHC). This design guide applies to the design of all new facilities. The WHC organization with line responsibility for design shall determine to what extent this design guide shall apply to the modifications to existing facilities. In making this determination, consideration shall include a cost versus benefit study. Specifically, facilities that store, handle, or process radioactive materials will be covered. This design guide replaces WHC-CM-4-9 and is designated a living document. This design guide is intended for design purposes only. Design criteria are different from operational criteria and often more stringent. Criteria that might be acceptable for operations might not be adequate for design.

Evans, R.A.

1994-08-16T23:59:59.000Z

24

Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings  

SciTech Connect

This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.

Bonnema, E.; Leach, M.; Pless, S.

2013-06-01T23:59:59.000Z

25

Wet Stacks Design Guide  

Science Conference Proceedings (OSTI)

The expense of fluegas reheat has led to increased application of less expensive wet stacks downstream of wet FGD (flue gas desulfurization) systems. Good data is necessary to properly design the wet stack system or serious problems can occur. This design guide summarizes all the latest information and provides guidance on developing detailed design specifications.

1997-01-04T23:59:59.000Z

26

Technical Support Document: Development of the Advanced Energy Design Guide for Grocery Stores--50% Energy Savings  

DOE Green Energy (OSTI)

This report provides recommendations that architects, designers, contractors, developers, owners, and lessees of grocery store buildings can use to achieve whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004.

Hale, E. T.; Macumber, D. L.; Long, N. L.; Griffith, B. T.; Benne, K. S.; Pless, S. D.; Torcellini, P. A.

2008-09-01T23:59:59.000Z

27

Residential Duct Design Guide  

Science Conference Proceedings (OSTI)

To provide comfortable levels of heating or cooling, a space-conditioning system must be properly sized and carefully installed. Movement of air and passages through which air is moved are vitally important for comfort. An inadequate system can cause uncomfortable drafts, may fail to move sufficient air to meet space heating and cooling loads, or may result in excessive energy costs. The best way to avoid problems is to prevent them in the design stage. This guide gives HVAC specialists basic information...

2000-11-02T23:59:59.000Z

28

Advanced Notification of Awards (ANA) User Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Notification of Awards Advanced Notification of Awards (ANA) User Guide A service of iManage ANA User Guide Page 2 Table of Content: Introduction........................................................................... 3 Approval Process Overview.................................................... 3 Role Descriptions................................................................... 3 Accessing the ANA system..................................................... 5 Termination Guidelines.......................................................... 9 Approving Notifications......................................................... 9 Rejecting Notifications........................................................... 13 Additional System Tools: Document History.......................... 16

29

Transmission Structure Foundation Design Guide  

Science Conference Proceedings (OSTI)

This guide contains the most current and comprehensive information for the design of foundations for overhead line structures. The guide covers the complete transmission structure foundation design process from the subsurface investigations and design of the foundations, to the construction and inspection of the foundation. Reference documents to assist transmission structure foundation designers in the development of specifications such as for subsurface investigations and foundation construction ...

2012-11-28T23:59:59.000Z

30

Advanced Energy Retrofit Guide Office Buildings  

SciTech Connect

The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energys Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

2011-09-27T23:59:59.000Z

31

Advanced Energy Retrofit Guide Retail Buildings  

Science Conference Proceedings (OSTI)

The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energys Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

2011-09-19T23:59:59.000Z

32

Advanced Notification of Awards (ANA) User Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 U.S. Department of Energy Advanced Notification of Awards (ANA) User Guide A service of iManage ANA User Guide Page 2 Table of Contents Introduction ............................................................................. 3 Approval Process Overview ...................................................... 3 Role Descriptions ..................................................................... 3 Accessing the ANA system ....................................................... 5 Approving Notifications ........................................................... 8 Rejecting Notifications ........................................................... 11 Additional System Tools: Document History .......................... 15 Manual Submission: ............................................................... 16

33

CALIFORNIA ENERGY Small HVAC System Design Guide  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Small HVAC System Design Guide DESIGNGUIDELINES October 2003 500;#12;Small HVAC System Design Guide Acknowledgements i Acknowledgements The products and outcomes presented; Darren Goody, PECI, Design Guide review. #12;Small HVAC System Design Guide Preface ii Preface The Small

34

REC Tracking Systems Design Guide  

DOE Green Energy (OSTI)

OAK-B135 The Design Guide is presented in three parts. Section II describes the need for REC tracking, the two principal tracking methods available, and, in simple terms, the operation of certificate-based systems. Section III presents the major issues in the design of certificate-based tracking systems and discusses the advantages and disadvantages of alternative solutions. Finally, Section IV offers design principles or recommendations for most of these issues.

Meredith Wingate

2004-02-03T23:59:59.000Z

35

Revised Wet Stack Design Guide  

Science Conference Proceedings (OSTI)

For the past 14 years, the design of wet stacks around the world has been guided by the original EPRI Wet Stacks Design Guide (1996). Since that time, the number of wet stack installations has grown considerably, and a wealth of practical real-world operating and maintenance experience has been obtained. The laws of physics have not changed, and most of the information presented in 1996 is just as valid today as it was when originally published. What has changed is the power-generation ...

2012-12-12T23:59:59.000Z

36

Technical Support Document: Development of the Advanced Energy Design Guide for Medium Box Retail -- 50% Energy Savings  

DOE Green Energy (OSTI)

This report provides recommendations that architects, designers, contractors, developers, owners, and lessees of medium box retail buildings can use to achieve whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004. The recommendations are given by climate zone and address building envelope, fenestration, lighting systems, HVAC systems, building automation and controls, outside air treatment, service water heating, plug loads, and photovoltaic systems. The report presents several paths to 50% savings, which correspond to different levels of integrated design. These are recommendations only, and are not part of a code or standard. The recommendations are not exhaustive, but we do try to emphasize the benefits of integrated building design, that is, a design approach that analyzes a building as a whole system, rather than as a disconnected collection of individually engineered subsystems.

Hale, E. T.; Macumber, D. L.; Long, N. L.; Griffith, B. T.; Benne, K. S.; Pless, S. D.; Torcellini, P. A.

2008-09-01T23:59:59.000Z

37

Energy Design Guides for Army Barracks: Preprint  

Science Conference Proceedings (OSTI)

The U.S. Army Corps of Engineers and NREL are developing target energy budgets and design guides to achieve 30% energy savings. This paper focuses the design guide for one type of barracks called unaccompanied enlisted personal housing.

Deru, M.; Zhivov, A.; Herron, D.

2008-08-01T23:59:59.000Z

38

Advanced Design Studies  

Science Conference Proceedings (OSTI)

The ARIES-CS project was a multi-year multi-institutional pro ject to assess the feasibility of a compact stellarator as a fusion power plant. The work herein describes efforts to help design one aspect of the device, the divertor, which is responsible for the removal of particle and heat flux from the system, acting as the first point of contact between the magnetically confined hot plasma and the outside world. Specifically, its location and topology are explored, extending previous work on the sub ject. An optimized design is determined for the thermal particle flux using a suite of 3D stellarator design codes which trace magnetic field lines from just inside the confined plasma edge to their strike points on divertor plates. These divertor plates are specified with a newly developed plate design code. It is found that a satisfactory thermal design exists which maintains the plate temperature and heat load distribution below tolerable engineering limits. The design is unique, including a toroidal taper on the outboard plates which was found to be important to our results. The maximum thermal heat flux for the final design was 3.61 M W/m2 and the maximum peaking factor was 10.3, below prescribed limits of 10 M W/m2 and 15.6, respectively. The median length of field lines reaching the plates is about 250 m and their average angle of inclination to the surface is 2? . Finally, an analysis of the fast alphas, resulting from fusion in the core, which escape the plasma was performed. A method is developed for obtaining the mapping from magnetic coordinates to real-space coordinates for the ARIES-CS. This allows the alpha exit locations to be identified in real space for the first time. These were then traced using the field line algorithm as well as a guiding center routine accounting for their mass, charge, and specific direction and energy. Results show that the current design is inadequate for accommodating the alpha heat flux, capturing at most 1/3 of lost alphas. However the distribution of the alphas on the device first wall indicates that a viable solution likely exists. It is noted that future designs must be sought which specifically address the fusion alphas through an integrated approach involving physics and engineering teams.

Steiner, Don [Rensselaer Polytechnic Institute

2012-12-01T23:59:59.000Z

39

1. First Time Designer's Guide  

E-Print Network (OSTI)

Altera provides various tools for development of hardware and software for embedded systems. This handbook complements the primary documentation for these tools by describing how to most effectively use some of these tools. It recommends design styles and practices for developing, debugging, and optimizing embedded systems using Altera-provided tools such as the Software Build Tools for Eclipse and SOPC Builder. The handbook introduces concepts to new users of Alteras embedded solutions, and helps to increase the design efficiency of the experienced user. This handbook is not a comprehensive reference guide. For general reference and detailed information, refer to the primary documentation cited in this handbook. This first chapter of the handbook contains information about the Altera embedded development process and procedures for the first time user. The remaining chapters focus on specific aspects of embedded development for Altera FPGAs. This handbook does not provide information about the Qsys system integration tool.

unknown authors

2011-01-01T23:59:59.000Z

40

Residential Retrofit Program Design Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Assistance Program Technical Assistance Program Residential Retrofit Program Design Guide May 2011 This work has been performed by the Vermont Energy Investment Corporation (VEIC) and Energy Futures Group (EFG), under the Contract No. 4200000341 with Oak Ridge National Laboratory which is managed by UT-Battelle, LLC under Contract with the US Department of Energy No. DE-AC05-00OR22725. This document was prepared in collaboration with a partnership of companies under this contract. The partnership is led by the Vermont Energy Investment Corporation (VEIC), and includes the following companies: American Council for an Energy Efficient Economy (ACEEE), Energy Futures Group (EFG), Midwest Energy Efficiency Alliance (MEEA), Northwest Energy Efficiency Alliance (NEEA), Northeast Energy Efficiency Partnership (NEEP), Natural

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advanced Energy Retrofit Guide: Practical Ways to Improve Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

BUILDING TECHNOLOGIES PROGRAM Advanced Energy Retrofit Guide Practical Ways to Improve Energy Performance Grocery Stores In collaboration with: Prepared by: National Renewable...

42

Advanced Turbine Design Program  

SciTech Connect

The prime objective of this project task is to select a natural gas fired as Advanced Turbine Systems (ATS) capable of reaching 60% cycle efficiency. Several cycles were compared and evaluated under all different kind of aspects, to determine the one with the highest potential and, at the same time, the best overall fit within and experience base to guarantee project goals. The combined cycle with multistep development potential was identified as the system to reach the 60% or greater thermal efficiency.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1992-01-01T23:59:59.000Z

43

Advanced Turbine Design Program  

SciTech Connect

The prime objective of this project task is to select a natural gas fired as Advanced Turbine Systems (ATS) capable of reaching 60% cycle efficiency. Several cycles were compared and evaluated under all different kind of aspects, to determine the one with the highest potential and, at the same time, the best overall fit within and experience base to guarantee project goals. The combined cycle with multistep development potential was identified as the system to reach the 60% or greater thermal efficiency.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1992-12-31T23:59:59.000Z

44

A design guide for energy-efficient research laboratories  

Science Conference Proceedings (OSTI)

This document--A Design Guide for Energy-Efficient Research Laboratories--provides a detailed and holistic framework to assist designers and energy managers in identifying and applying advanced energy-efficiency features in laboratory-type environments. The Guide fills an important void in the general literature and compliments existing in-depth technical manuals. Considerable information is available pertaining to overall laboratory design issues, but no single document focuses comprehensively on energy issues in these highly specialized environments. Furthermore, practitioners may utilize many antiquated rules of thumb, which often inadvertently cause energy inefficiency. The Guide helps its user to: introduce energy decision-making into the earliest phases of the design process, access the literature of pertinent issues, and become aware of debates and issues on related topics. The Guide does focus on individual technologies, as well as control systems, and important operational factors such as building commissioning. However, most importantly, the Guide is intended to foster a systems perspective (e.g. right sizing) and to present current leading-edge, energy-efficient design practices and principles.

Wishner, N.; Chen, A.; Cook, L. [eds.; Bell, G.C.; Mills, E.; Sartor, D.; Avery, D.; Siminovitch, M.; Piette, M.A.

1996-09-24T23:59:59.000Z

45

ColdDesignGuide.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

orientation, window area, and shading strategies for homes in Minneapolis, Minnesota. The energy use was calculated for many window design variations including 5 orientations, 3...

46

Commercial Cool Storage Design Guide  

Science Conference Proceedings (OSTI)

This state-of-the-art handbook provides comprehensive guidance for designing ice and chilled-water storage systems for commercial buildings. HVAC engineers can take advantage of attractive rates and incentives offered by utilities to increase the market for cool storage systems.

1985-05-01T23:59:59.000Z

47

Designing and Supporting Computer Networks, CCNA Discovery Learning Guide (Companion Guide), 1 Pap/Cdr edition  

Science Conference Proceedings (OSTI)

Designing and Supporting Computer Networks CCNA Discovery Learning Guide Kenneth D. Stewart III Aubrey Adams Designing and Supporting Computer Networks, CCNA Discovery Learning Guide is the official supplemental textbook for the Designing and Supporting ...

Kenneth Stewart; Aubrey Adams; Allan Reid; Jim Lorenz

2008-05-01T23:59:59.000Z

48

LANL Sustainable Design Guide - Appendices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix A: Best Practices, Orders, Regulations, and Laws Appendix B: Climate Charts Appendix C: Green Building Adviser Appendix D: Site-Wide Metering Program at LANL Appendix E: LEED Checklist Appendix F: Building Simulations Appendix G: Sun Path Diagram Appendix H: Reduce, Reuse, and Recycle Options | Appendix A Best Practices, Orders, Regulations, and Laws All facilities must comply with the Code of Federal Reg- ulations 10CFR434, "Energy Conservation Voluntary Performance Standards for New Buildings; Mandatory for Federal Buildings." This code establishes perfor- mance standards to be used in the design of new fed- eral commercial and multifamily high-rise buildings. Some of the guidelines are relevant to retrofits. 10CFR434 establishes the "base case" for a building,

49

Energy Design Guides for Army Barracks  

Science Conference Proceedings (OSTI)

The Energy Policy Act of 2005 requires federal facilities to be built to achieve 30% energy savings over the 2004 International Energy Code or American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2004, as appropriate. The Engineer Research and Development Center of the U.S. Army Corps of Engineers and the National Renewable Energy Laboratory (NREL) are developing target energy budgets and design guides with a prescriptive path to achieve 30% energy savings over a baseline built to the minimum requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004. This project covers eight building types in 15 U.S. climate zones. The building types include barracks, administrative buildings, a maintenance facility, a dining facility, a child development center, and an Army reserve center. All the design guides will be completed by the end of 2008. This paper focuses on the design guide for one type of barracks called unaccompanied enlisted personal housing (UEPH). The UEPH buildings are similar to apartment buildings with double occupancy units. For each building type, a baseline was established following typical Army construction and ASHRAE Standard 90.1 Appendix G modeling rules. Improvements in energy performance were achieved for the envelope using the NREL optimization platform for commercial buildings and previous ASHRAE design guides. Credit was also taken for tightening the building envelope by using proposed envelope leakage rates from ASHRAE and the Army. Two HVAC systems, including a dedicated outdoor air system, were considered. The final results achieved 29% site energy savings in two climates and greater than 30% site energy savings in all other climates. Results of this study were implemented in the Army's standard RFP process for new UEPH barracks construction in late 2007. New UEPH design/construction begun in 2008 and beyond will require the contractor to design and construct a UEPH facility that meets the target energy budget developed in this study using either a custom design or the design guide's prescriptive path developed as part of this study.

Deru, M.; Zhivov, A.; Herron, D.

2008-01-01T23:59:59.000Z

50

Design of the Mechanical Parts for the Neutron Guide System at HANARO  

SciTech Connect

The research reactor HANARO (High-flux Advanced Neutron Application ReactOr) in Korea will be equipped with a neutron guide system, in order to transport cold neutrons from the neutron source to the neutron scattering instruments in the neutron guide hall near the reactor building. The neutron guide system of HANARO consists of the in-pile plug assembly with in-pile guides, the primary shutter with in-shutter guides, the neutron guides in the guide shielding room with dedicated secondary shutters, and the neutron guides connected to the instruments in the neutron guide hall. Functions of the in-pile plug assembly are to shield the reactor environment from nuclear radiation and to support the neutron guides and maintain them precisely oriented. The primary shutter is a mechanical structure to be installed just after the in-pile plug assembly, which stops neutron flux on demand. This paper describes the design of the in-pile assembly and the primary shutter for the neutron guide system at HANARO. The design of the guide shielding assembly for the primary shutter and the neutron guides is also presented.

Shin, J. W.; Cho, Y. G.; Cho, S. J.; Ryu, J. S. [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

2008-03-17T23:59:59.000Z

51

Design guide for category V reactors transient reactors  

SciTech Connect

The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification, operation, maintenance, and decommissioning of DOE-owned reactors be in accordance with generally uniform standards, guides, and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirements of Category V reactor structures, components, and systems.

Brynda, W J; Karol, R C; Lobner, P R; Powell, R W; Straker, E A

1979-03-01T23:59:59.000Z

52

Best Practices Guide for Energy-Efficient Data Center Design...  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide for Energy-Efficient Data Center Design Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new...

53

Advanced Overfire Air system and design  

DOE Green Energy (OSTI)

The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

Gene berkau

2004-07-30T23:59:59.000Z

54

Advanced Remote Maintenance Design for Pilot-Scale Centrifugal Contactors  

Science Conference Proceedings (OSTI)

Advanced designs of used nuclear fuel recycling processes and radioactive waste treatment processes are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, annular centrifugal contactors are destined to play a more important role for such future processing schemes. Pilot-scale testing will be an integral part of development of many of these processes. An advanced design for remote maintenance of pilot-scale centrifugal contactors has been developed and a prototype module fabricated and tested for a commercially available pilot-scale centrifugal contactor (CINC V-02, 5-cm rotor diameter). Advanced design features include air actuated clamps for holding the motor-rotor assembly in place, an integral electrical connection, upper flange o-rings, a welded bottom plate, a lifting bale, and guide pins. These design features will allow for rapid replacement of the motor rotor assembly, which can be accomplished while maintaining process equilibrium. Hydraulic testing of a three-stage prototype unit was also performed to verify that design changes did not impact performance of the centrifugal contactors. Details of the pilot-scale remote maintenance design, results of testing in a remote mockup test facility, and results of hydraulic testing of the advanced design are provided.

Jack Law; David Meikrantz; Troy Garn; Lawrence Macaluso

2011-02-01T23:59:59.000Z

55

Advanced Pulverizer Control: Design and Testbed Implementation  

Science Conference Proceedings (OSTI)

Coal pulverizers play an important role in all aspects of power plant performance, including availability, efficiency, and responsiveness. In relationship to dynamic response, pulverizer control often limits a plant's maximum load rate-of-change. EPRI has been investigating the use of advanced multivariable control techniques on several plant subsystems and in this project is developing an advanced pulverizer control system. The ultimate goal is to design, implement, and test an advanced control system o...

2004-03-22T23:59:59.000Z

56

Clean Cities' Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Brochure)  

DOE Green Energy (OSTI)

Guide describes the alternative fuel and advanced medium- and heavy-duty vehicles available on the market, including buses, vans, refuse haulers, and more.

Not Available

2010-09-01T23:59:59.000Z

57

Whole Building Design Guide Courses | Open Energy Information  

Open Energy Info (EERE)

Whole Building Design Guide Courses Whole Building Design Guide Courses Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Whole Building Design Guide Courses Agency/Company /Organization: National Institute of Building Sciences Focus Area: Buildings Resource Type: Training materials Website: www.wbdg.org/education/cont_education.php References: Whole Building Design Guide Courses[1] Background Continuing Education "Welcome to the WBDG continuing education system. The WBDG contains a wealth of information and is your gateway to up-to-date information on integrated 'Whole Building' Design Techniques and Technologies. The courses featured offer an introduction to whole building design concepts as well as more specific applications for design objectives, building types and operations and maintenance.

58

EPR: an Advanced Evolutionary Design  

SciTech Connect

This paper presents the main features of the EPR, an evolutionary design product that builds on French N4 plants (Chooz and Civaux) and Konvoi, the most recent reactor series built in Germany. This Franco-German project was driven by a common French and German desire to cooperate in several areas. In January 2001, Framatome SA and Siemens AG merged their nuclear activities to form Framatome ANP with three regional entities in France, Germany and the USA. The recent decision of Teollisuuden Voima Oy (TVO) to select the EPR for construction in Olkiluoto of the fifth Nuclear Power Plant in Finland gave a new impetus to the project. Framatome ANP is committed to put the FOAK EPR in commercial operation on May 1, 2009. This challenging time schedule will set a new reference for 'Generation III +' LWR's. (authors)

Czech, Juergen [Framatome ANP GmbH, Freyeslebenstrasse, 1 - 91058 Erlangen (Germany); Bouteille, Francois [Framatome ANP, Tour Areva - 1 place de la Coupole - 92084 Paris-La Defense (France); Hudson, Greg [Framatome ANP Inc., 400 South Tyron St - 28285 - Charlotte, NC (United States)

2004-07-01T23:59:59.000Z

59

Best Practices Guide for Energy-Efficient Data Center Design  

Energy.gov (U.S. Department of Energy (DOE))

Guide provides an overview of best practices for energy-efficient data center design which spans the categories of Information Technology (IT) systems and their environmental conditions, data center air management, cooling and electrical systems, on-site generation, and heat recovery. This guide was revised in March of 2011.

60

Energy Efficiency as a Guiding Principle in the Building Design...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency as a Guiding Principle in the Building Design Process Speaker(s): Lennart Jagemar Date: September 3, 1996 - 12:00pm Location: 90-3148 Seminar HostPoint of...

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advanced wind turbine design studies: Advanced conceptual study. Final report  

DOE Green Energy (OSTI)

In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

Hughes, P.; Sherwin, R. [Atlantic Orient Corp., Norwich, VT (United States)

1994-08-01T23:59:59.000Z

62

Guides: Design/Engineering for Deactivation & Decommissioning | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guides: Design/Engineering for Deactivation & Guides: Design/Engineering for Deactivation & Decommissioning Guides: Design/Engineering for Deactivation & Decommissioning To ensure development of appropriate levels of engineering detail, DOE-EM's Office of Deactivation and Decommissioning and Facility Engineering (EM-13) has prepared this guidance for tailoring a D&D project's engineering/design to meet the objectives of the CD milestones. The enhanced rigor in planning and systematic, forward looking approach to engineering/design recommended in this guidance is intended to ensure that the level of detail in technical planning and technical development, integrated with other project aspects such as safety basis modifications, leads to a high confidence that the engineered system as a whole will function as designed. As the level of

63

Materials Design of Advanced Performance Metal Catalysts  

SciTech Connect

The contribution of materials design to the fabrication of advanced metal catalysts is highlighted, with particular emphasis on the construction of relatively complex contact structures surrounding metal nanoparticles. Novel advanced metal catalysts can be synthesized via encapsulation of metal nanoparticles into oxide shells, immobilization of metal oxide core-shell structures on solid supports, post-modification of supported metal nanoparticles by surface coating, and premodification of supports before loading metal nanoparticles. Examples on how these materials structures lead to enhanced catalytic performance are illustrated, and a few future prospects are presented.

Ma, Zhen [ORNL; Dai, Sheng [ORNL

2008-01-01T23:59:59.000Z

64

APS Preliminary Beamline Design Report Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

PRELIMINARY BEAMLINE DESIGN REPORT PRELIMINARY BEAMLINE DESIGN REPORT December 5, 1994 5.1 Preliminary Beamline Design: General Guidelines The Preliminary Design of the beamline represents an approximately 30% design level of each of the beamline components. This level of design permits the CAT to develop cost estimates for the construction of the beamline, as well as a realistic timeline for completion of the construction tasks. A committee from the APS has been charged with reviewing the Preliminary Design Reports and has established the evaluation criteria described below. The Preliminary Beamline Report is expected to expand upon the Conceptual Design Report in the following areas: Beamline Layout Component Design Work Breakdown Structure Cost and Schedule Additional Operational Requirements

65

Mirror Advanced Reactor Study interim design report  

DOE Green Energy (OSTI)

The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

Not Available

1983-04-01T23:59:59.000Z

66

A Design Guide for Early-Market Electrochromic Windows  

SciTech Connect

Switchable variable-tint electrochromic (EC) windows preserve view out while modulating transmitted light, glare, and solar heat gains. Consumers will require objective information on the risks and benefits of this emerging technology as it enters the market in 2006. This guide provides such information and data derived from a wide variety of simulations, laboratory tests, and a 2.5-year field test of prototype large-area EC windows evaluated under outdoor sun and sky conditions. This design guide is provided to architects, engineers, building owners, and others interested in electrochromic windows. The design guide provides basic information about what is an electrochromic window, what it looks like, how fast does it switch, and what current product offerings are. The guide also provides information on performance benefits if more mature product offerings were available.

Lee, Eleanor S.; Selkowitz, Stephen E.; Clear, Robert D.; DiBartolomeo, Dennis L.; Klems, Joseph H.; Fernandes, Luis L.; Ward, GregJ.; Inkarojrit, Vorapat; Yazdanian, Mehry

2006-05-01T23:59:59.000Z

67

Recent advances in centrifugal contactors design  

SciTech Connect

Advances in thedesign of the Argonne centrifugal contactor for solvent extaction are being realized as these contactors are built, tested, and used to implement the TRUEX process for the cleanup of nuclear waste liquids. These advances include (1) using off-the-shelf, face-mounted motors, (2) modifying the contractor so that relatively volatile solvents can be used, (3) adding a high-level liquid detector that can be used to alert the plant operator of process upsets, (4) providing secondary feed ports, (5) optimizing support frame design, (6) maintaining a linear design with external interstage lines so the stages can be allocated as needed for extraction, scrub, strip, and solvent cleanup operations, and (7) developing features that facilitate contractor operation in remote facilities. 11 refs., 8 figs.

Leonard, R.A.

1987-10-01T23:59:59.000Z

68

The ULTIMATE Tesla Coil Design and Construction Guide, 1 edition  

Science Conference Proceedings (OSTI)

The only book available to cover the Tesla coil in so much detail The Ultimate Tesla Coil Design and Construction Guide is a one-stop reference covering the theory, design tools, and techniques necessary to create the Tesla coil using modern ...

Mitch Tilbury

2007-09-01T23:59:59.000Z

69

GUIDES  

SciTech Connect

Hanford Atomic Production Operation specification guides for equipment and procedures, instrumentation, structural engineering, welding, design criteria, electrical engineering, and construction repairs are presented. Details of this manual are given in TID-4100(Suppl.). (N.W.R.)

1963-01-01T23:59:59.000Z

70

Guide to Passive Solar Home Design  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Elements of Passive Solar Design Elements of Passive Solar Design To design a completely passive solar home, you need to incorporate what are considered the five elements of passive solar design: 1. Aperture (Windows) - Windows should face within 30 degrees of true south, and during winter months they should not be shaded from 9 a.m. to 3 p.m. The windows in living areas should face south, while the windows in bedrooms should face north. In colder climates, reduce the window area

71

Advanced turbine systems: Studies and conceptual design  

SciTech Connect

The ABB selection for the Advanced Turbine System (ATS) includes advanced developments especially in the hot gas path of the combustion turbine and new state-of-the-art units such as the steam turbine and the HRSG. The increase in efficiency by more than 10% multiplicative compared to current designs will be based on: (1) Turbine Inlet Temperature Increase; (2) New Cooling Techniques for Stationary and Rotating Parts; and New Materials. Present, projected component improvements that will be introduced with the above mentioned issues will yield improved CCSC turbine performance, which will drive the ATS selected gas-fired reference CC power plant to 6 % LHV or better. The decrease in emission levels requires a careful optimization of the cycle design, where cooling air consumption has to be minimized. All interfaces of the individual systems in the complete CC Plant need careful checks, especially to avoid unnecessary margins in the individual designs. This study is an important step pointing out the feasibility of the ATS program with realistic goals set by DOE, which, however, will present challenges for Phase II time schedule of 18 months. With the approach outlined in this study and close cooperation with DOE, ATS program success can be achieved to deliver low emissions and low cost of electricity by the year 2002. The ABB conceptual design and step approach will lead to early component demonstration which will help accelerate the overall program objectives.

van der Linden, S.; Gnaedig, G.; Kreitmeier, F.

1993-11-01T23:59:59.000Z

72

Guide for Selection of Overhead Line Components and Design Parameters  

Science Conference Proceedings (OSTI)

This report outlines the contents for the Electric Power Research Institute (EPRI) report Guide for Selection of Overhead Line Components and Design Parameters that is to be developed under the Design and ConstructionApproach and Practice project. It identifies the topics to be covered and the scope to be developed for each topic. New topics will be added to the list whenever such needs arise. Detailed information suitable for use in the design of overhead lines on a few topics will be ...

2012-12-31T23:59:59.000Z

73

Stratified Chilled-Water Storage Design Guide  

Science Conference Proceedings (OSTI)

Improved load factors for utilities and lower operating costs for users are two of the benefits of chilled-water storage technologies for space cooling in commercial buildings. Among those technologies, the lowest-cost and simplest to operate are the thermally stratified systems treated in this comprehensive, state-of-the-art design handbook.

1988-06-14T23:59:59.000Z

74

Measuring advances in HVAC distribution system designs  

Science Conference Proceedings (OSTI)

Substantial commercial building energy savings have been achieved by improving the performance of the HVAC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.

Franconi, Ellen

1998-07-01T23:59:59.000Z

75

Measuring Advances in HVAC Distribution System Design  

SciTech Connect

Substantial commercial building energy savings have been achieved by improving the performance of the HV AC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.

Franconi, E.

1998-05-01T23:59:59.000Z

76

Advanced burner test reactor preconceptual design report.  

Science Conference Proceedings (OSTI)

The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

2008-12-16T23:59:59.000Z

77

SNL Mechanical Computer Aided Design (MCAD) guide 2007.  

Science Conference Proceedings (OSTI)

This document is considered a mechanical design best-practice guide to new and experienced designers alike. The contents consist of topics related to using Computer Aided Design (CAD) software, performing basic analyses, and using configuration management. The details specific to a particular topic have been leveraged against existing Product Realization Standard (PRS) and Technical Business Practice (TBP) requirements while maintaining alignment with sound engineering and design practices. This document is to be considered dynamic in that subsequent updates will be reflected in the main title, and each update will be published on an annual basis.

Moore, Brandon; Pollice, Stephanie L.; Martinez, Jack R.

2007-12-01T23:59:59.000Z

78

SNL Mechanical Computer Aided Design (MCAD) guide 2007.  

SciTech Connect

This document is considered a mechanical design best-practice guide to new and experienced designers alike. The contents consist of topics related to using Computer Aided Design (CAD) software, performing basic analyses, and using configuration management. The details specific to a particular topic have been leveraged against existing Product Realization Standard (PRS) and Technical Business Practice (TBP) requirements while maintaining alignment with sound engineering and design practices. This document is to be considered dynamic in that subsequent updates will be reflected in the main title, and each update will be published on an annual basis.

Moore, Brandon; Pollice, Stephanie L.; Martinez, Jack R.

2007-12-01T23:59:59.000Z

79

Standard guide for general design considerations for hot cell equipment  

E-Print Network (OSTI)

1.1 Intent: 1.1.1 The intent of this guide is to provide general design and operating considerations for the safe and dependable operation of remotely operated hot cell equipment. Hot cell equipment is hardware used to handle, process, or analyze nuclear or radioactive material in a shielded room. The equipment is placed behind radiation shield walls and cannot be directly accessed by the operators or by maintenance personnel because of the radiation exposure hazards. Therefore, the equipment is operated remotely, either with or without the aid of viewing. 1.1.2 This guide may apply to equipment in other radioactive remotely operated facilities such as suited entry repair areas, canyons or caves, but does not apply to equipment used in commercial power reactors. 1.1.3 This guide does not apply to equipment used in gloveboxes. 1.2 Applicability: 1.2.1 This guide is intended for persons who are tasked with the planning, design, procurement, fabrication, installation, or testing of equipment used in rem...

American Society for Testing and Materials. Philadelphia

2008-01-01T23:59:59.000Z

80

A design guide and specification for small explosive containment structures  

SciTech Connect

The design of structural containments for testing small explosive devices requires the designer to consider the various aspects of the explosive loading, i.e., shock and gas or quasistatic pressure. Additionally, if the explosive charge has the potential of producing damaging fragments, provisions must be made to arrest the fragments. This may require that the explosive be packed in a fragment attenuating material, which also will affect the loads predicted for containment response. Material also may be added just to attenuate shock, in the absence of fragments. Three charge weights are used in the design. The actual charge is used to determine a design fragment. Blast loads are determined for a {open_quotes}design charge{close_quotes}, defined as 125% of the operational charge in the explosive device. No yielding is permitted at the design charge weight. Blast loads are also determined for an over-charge, defined as 200% of the operational charge in the explosive device. Yielding, but no failure, is permitted at this over-charge. This guide emphasizes the calculation of loads and fragments for which the containment must be designed. The designer has the option of using simplified or complex design-analysis methods. Examples in the guide use readily available single degree-of-freedom (sdof) methods, plus static methods for equivalent dynamic loads. These are the common methods for blast resistant design. Some discussion of more complex methods is included. Generally, the designer who chooses more complex methods must be fully knowledgeable in their use and limitations. Finally, newly fabricated containments initially must be proof tested to 125% of the operational load and then inspected at regular intervals. This specification provides guidance for design, proof testing, and inspection of small explosive containment structures.

Marchand, K.A.; Cox, P.A.; Polcyn, M.A. [Southwest Research Institute, San Antonio, TX (United States)

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

HVDC Overhead Line Design Guide: 2013 Interim Report  

Science Conference Proceedings (OSTI)

This report is an updated version of the Electric Power Research Institute (EPRI) report HVDC Overhead Line Design Guide (1024326). An outline developed in 2012 identified all of the topics to be covered by the report. A draft for high-voltage, direct-current (HVDC) ground electrodes and another for HVDC conductor selection were also included in the 2012 version. These topics were finalized in 2013, and the topics of HVDC line performance and insulation were added to the report. All four ...

2013-12-23T23:59:59.000Z

82

Standard guide for design criteria for plutonium gloveboxes  

E-Print Network (OSTI)

1.1 This guide defines criteria for the design of glovebox systems to be used for the handling of plutonium in any chemical or physical form or isotopic composition or when mixed with other elements or compounds. Not included in the criteria are systems auxiliary to the glovebox systems such as utilities, ventilation, alarm, and waste disposal. Also not addressed are hot cells or open-face hoods. The scope of this guide excludes specific license requirements relating to provisions for criticality prevention, hazards control, safeguards, packaging, and material handling. Observance of this guide does not relieve the user of the obligation to conform to all federal, state, and local regulations for design and construction of glovebox systems. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user...

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

83

Advanced Lighting Design and the Energy Code | Building Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Version Development Adoption Compliance Regulations Resource Center Advanced Lighting Design and the Energy Code This course addresses the lighting requirements of the...

84

Updated Uranium Fuel Cycle Environmental Impacts for Advanced Reactor Designs  

Science Conference Proceedings (OSTI)

The purpose of this project was to update the environmental impacts from the uranium fuel cycle for select advanced (GEN III+) reactor designs.

Nitschke, R.

2004-10-03T23:59:59.000Z

85

Measuring Advances in HVAC Distribution System Design  

E-Print Network (OSTI)

Gabel and Andresen, HVAC Secondary Toolkil. Atlanta: ASHRAE,P_02 Measuring Advances in HVAC Distribution System Designdesign and operation of the HVAC thermal distribution system

Franconi, E.

2011-01-01T23:59:59.000Z

86

A Policymaker's Guide to Feed-In Tariff Policy Design | Open Energy  

Open Energy Info (EERE)

A Policymaker's Guide to Feed-In Tariff Policy Design A Policymaker's Guide to Feed-In Tariff Policy Design Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Policymaker's Guide to Feed-In Tariff Policy Design Agency/Company /Organization: National Renewable Energy Laboratory Partner: United States Department of State Sector: Energy Topics: Implementation, Policies/deployment programs Resource Type: Publications, Guide/manual Website: www.nrel.gov/docs/fy10osti/44849.pdf A Policymaker's Guide to Feed-In Tariff Policy Design Screenshot References: FIT Policy Design Guide[1] Logo: A Policymaker's Guide to Feed-In Tariff Policy Design This report provides U.S. policymakers who have decided to enact FIT policies with a roadmap to the design options: It explains the policy and how it works, explores the variety of design options available, and

87

Salt Repository Project shaft design guide: Revision 0  

Science Conference Proceedings (OSTI)

The Salt Repository Project (SRP) Shaft Design Guide (SDG) and the accompanying SRP Input to Seismic Design define the basic approach for developing appropriate shaft designs for a high-level nuclear waste repository in salt at a proposed site in Deaf Smith County, Texas. The SDG is based on current mining industry standards and practices enhanced to meet the special needs of an underground nuclear waste repository. It provides a common approach for design of both the exploratory and repository shafts. The SDG defines shaft lining and material concepts and presents methods for calculating the loads and displacements that will be imposed on lining structures. It also presents the methodology and formulae for sizing lining components. The SDG directs the shaft designer to sources of geoscience and seismic design data for the Deaf Smith County, Texas repository site. In addition, the SDG describes methods for confirming shaft lining design by means of computer analysis, and it discusses performance monitoring needs that must be considered in the design. 113 refs., 18 figs., 14 tabs.

Not Available

1987-12-01T23:59:59.000Z

88

Advanced Energy Retrofit Guide (AERG): Practical Ways to Improve Energy Performance; Healthcare Facilities (Book)  

SciTech Connect

The Advanced Energy Retrofit Guide for Healthcare Facilities is part of a series of retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures (EEMs), the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The Advanced Energy Retrofit Guides (AERGs) are intended to address key segments of the U.S. commercial building stock: retail stores, office buildings, K-12 schools, grocery stores, and healthcare facilities. The guides' general project planning considerations are applicable nationwide; the energy and cost savings estimates for recommended EEMs were developed based on energy simulations and cost estimates for an example hospital tailored to five distinct climate regions. These results can be extrapolated to other U.S. climate zones. Analysis is presented for individual EEMs, and for packages of recommended EEMs for two project types: existing building commissioning projects that apply low-cost and no-cost measures, and whole-building retrofits involving more capital-intensive measures.

Hendron, R.; Leach, M.; Bonnema, E.; Shekhar, D.; Pless, S.

2013-09-01T23:59:59.000Z

89

SOLCOST-PASSIVE solar energy design program: User's Guide  

DOE Green Energy (OSTI)

The SOLCOST-PASSIVE solar energy design program is a public domain interactive computer design tool intended for use by non-thermal specialists to size passive solar systems with a methodology based on the Los Alamos Solar Load Ratio method. A life cycle savings analysis is included in the program. An overview of SOLCOST-PASSIVE capabilities and the Solar Load Ratio method which it is based on is presented. A detailed guide to the SOLCOST-PASSIVE input parameters is given. Sample problems showing typical execution sessions and the resulting SOLCOST-PASSIVE output are included. Appendices A thru D provide details on the SLR method and the life cycle savings methodology of SOLCOST-PASSIVE. (MHR)

Not Available

1980-09-01T23:59:59.000Z

90

Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance; Grocery Stores (Revised) (Book)  

SciTech Connect

The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders successfully plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited in these guides. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. Grocery stores were selected as one of the highest priority sectors, because they represent one of the most energy-intensive market segments.

Hendron, B.

2013-07-01T23:59:59.000Z

91

Advances in Integrated Computational Materials Design  

Science Conference Proceedings (OSTI)

Parametric materials design integrating materials science, applied mechanics and quantum physics within a systems engineering framework has brought a first ...

92

A Design Guide for Early-Market Electrochromic Windows  

E-Print Network (OSTI)

This attachment, Advancement of Electrochromic Windows:attachments to the Advancement of Electrochromic Windows:attachment to the final report for the Advancement of Electrochromic Windows

2006-01-01T23:59:59.000Z

93

Applying advanced simulation in early stage unconventional ship design  

Science Conference Proceedings (OSTI)

A detailed description of the first, or global, optimization stage of two-stage hydrodynamic optimization framework for high-speed vessels is presented. A key feature of the framework is the application of advanced simulation in the early phases of design ... Keywords: early-stage design, high-speed vessel, optimization, ship design, surrogate model

Matthew Collette; Woei-Min Lin; Jun Li

2010-07-01T23:59:59.000Z

94

A Policymaker's Guide to Feed-in Tariff Policy Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Toby D. Couture Toby D. Couture E3 Analytics Karlynn Cory Claire Kreycik National Renewable Energy Laboratory Emily Williams U.S. Department of State Technical Report NREL/TP-6A2-44849 July 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. A Policymaker's Guide to Feed-in Tariff Policy Design On the Cover Feed-in tari ff (FIT) policies can apply to several renewable energy technologies and their applications including (top to bottom) solar photovoltaics (PV) on commercial buildings (Art Institute of Chicago - Chicago, Illinois); on-site wind energy (Great Lakes Science Center - Cleveland, Ohio); rooftop PV on residences (Glastonbury, Connecticut); solar power tower

95

ANL/APS/TB-16 ADVANCED PHOTON SOURCE ACCELERATOR ULTRAHIGH VACUUM GUIDE  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 ADVANCED PHOTON SOURCE ACCELERATOR ULTRAHIGH VACUUM GUIDE Chian Liu and John Noonan CONTENTS 1. Ultrahigh Vacuum Overview ............................................................................... 1 1.1 Vacuum ..................................................................................................... 1 1.2 Sources of Residual Gas ........................................................................... 2 1.3 Material Selections in Ultrahigh Vacuum ................................................. 9 1.4 Pumps and Pumping Processes ................................................................. 11 1.5 Common Sense in Ultrahigh Vacuum Related Work ................................ 15 1.6 Vacuum Safety Issues ...............................................................................

96

90.2/189.1/ Advanced Energy Design Guides  

Science Conference Proceedings (OSTI)

... Std. 90.2-?2004 and IECC 2006. 4 Four prescrip:ve paths per climate zone. 5 Retained the annual energy cost tradeoff ...

2013-04-26T23:59:59.000Z

97

Advanced Burner Test Reactor - Preconceptual Design Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Burner Test Reactor Preconceptual Design Report ANL-ABR-1 (ANL-AFCI-173) Nuclear Engineering Division Disclaimer This report was prepared as an account of work sponsored by an...

98

Performance and safety design of the advanced liquid metal reactor  

SciTech Connect

The Advanced Liquid Metal Reactor (ALMR) program led by General Electric is developing, under U.S. Department of Energy sponsorship, a conceptual design for an advanced sodium-cooled liquid metal reactor plant. This design is intended to improve the already excellent level of plant safety achieved by the nuclear power industry while at the same time providing significant reductions in plant construction and operating costs. In this paper, the plant design and performance are reviewed, with emphasis on the ALMR's unique passive design safety features and its capability to utilize as fuel the actinides in LWR spent fuel.

Berglund, R.C.; Magee, P.M.; Boardman, C.E.; Gyorey, G.L. (General Electric Co., San Jose, CA (United States). Advanced Nuclear Technology)

1991-01-01T23:59:59.000Z

99

Advanced High Temperature Reactor Neutronic Core Design  

Science Conference Proceedings (OSTI)

The AHTR is a 3400 MW(t) FHR class reactor design concept intended to serve as a central generating station type power plant. While significant technology development and demonstration remains, the basic design concept appears sound and tolerant of much of the remaining performance uncertainty. No fundamental impediments have been identified that would prevent widespread deployment of the concept. This paper focuses on the preliminary neutronic design studies performed at ORNL during the fiscal year 2011. After a brief presentation of the AHTR design concept, the paper summarizes several neutronic studies performed at ORNL during 2011. An optimization study for the AHTR core is first presented. The temperature and void coefficients of reactivity are then analyzed for a few configurations of interest. A discussion of the limiting factors due to the fast neutron fluence follows. The neutronic studies conclude with a discussion of the control and shutdown options. The studies presented confirm that sound neutronic alternatives exist for the design of the AHTR to maintain full passive safety features and reasonable operation conditions.

Ilas, Dan [ORNL; Holcomb, David Eugene [ORNL; Varma, Venugopal Koikal [ORNL

2012-01-01T23:59:59.000Z

100

Building design guidance and resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology and equipment Software tools Energy performance ASHRAE: Advanced Energy Design Guides https:www.ashrae.orgstandards-research--technology...

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

SOLCOST-PHOTOVOLTAIC solar energy design program: User's Guide  

DOE Green Energy (OSTI)

The SOLCOST-PHOTOVOLTAIC solar energy design program is a public domain interactive computer design tool intended for use by non-solar specialists to predict the long term performance for photovoltaic systems. A life cycle cost analysis is included in the program along with the ERDA-EPRI standard economic analysis which predicts levelized busbar energy costs for the photovoltaic system assuming ownership by an electric utility. SOLCOST-PV currently can evaluate flat plate arrays and concentrating arrays which use Fresnel lenses and passive cooling. The methodology could easily be extended to include all the known types of concentrators, however the scope of the version 1.0 activity was limited to only the flat plate and the passive Fresnel concentrators. An overview of the SOLCOST-PV capabilities and methodology is given. A detailed guide to the SOLCOST-PV input parameters is included, and examples showing typical interactive execution sessions and the resulting SOLCOST-PV output are presented. Appendices A and B provide additional information on the SOLCOST-PV analysis.

Not Available

1980-10-01T23:59:59.000Z

102

Department of Energy Designates the Idaho National Laboratory Advanced Test  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designates the Idaho National Laboratory Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility Department of Energy Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility April 23, 2007 - 12:36pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today designated the Idaho National Laboratory's (INL) Advanced Test Reactor (ATR) as a National Scientific User Facility. Establishing the ATR as a National Scientific User Facility will help assert U.S. leadership in nuclear science and technology, and will attract new users - universities, laboratories and industry - to conduct research at the ATR. This facility will support basic and applied nuclear research and development (R&D), furthering

103

A Design Guide for Early-Market Electrochromic Windows  

NLE Websites -- All DOE Office Websites (Extended Search)

Early-Market Electrochromic Windows Early-Market Electrochromic Windows Title A Design Guide for Early-Market Electrochromic Windows Publication Type Report LBNL Report Number LBNL-59950 Year of Publication 2006 Authors Lee, Eleanor S., Stephen E. Selkowitz, Robert D. Clear, Dennis L. DiBartolomeo, Joseph H. Klems, Luis L. Fernandes, Gregory J. Ward, Vorapat Inkarojrit, and Mehry Yazdanian Call Number LBNL-59950 Abstract Switchable variable-tint electrochromic windows preserve the view out while modulating transmitted light, glare, and solar heat gains and can reduce energy use and peak demand. To provide designers objective information on the risks and benefits of this technology, this study offers data from simulations, laboratory tests, and a 2.5-year field test of prototype large-area electrochromic windows evaluated under outdoor sun and sky conditions. The study characterized the prototypes in terms of transmittance range, coloring uniformity, switching speed, and control accuracy. It also integrated the windows with a daylighting control system and then used sensors and algorithms to balance energy efficiency and visual comfort, demonstrating the importance of intelligent design and control strategies to provide the best performance. Compared to an efficient low-e window with the same daylighting control system, the electrochromic window showed annual peak cooling load reductions from control of solar heat gains of 19-26% and lighting energy use savings of 48-67% when controlled for visual comfort. Subjects strongly preferred the electrochromic window over the reference window, with preferences related to perceived reductions in glare, reflections on the computer monitor, and window luminance. The EC windows provide provided the benefit of greater access to view year-round. Though not definitive, findings can be of great value to building professionals.

104

Advanced Hydropower Turbine System Design for Field Testing  

Science Conference Proceedings (OSTI)

The Alden/Concepts NREC hydroturbine was initially developed under the U.S. Department of Energy's (DOE) Advanced Hydropower Turbine Systems Program. This design work was intended to develop a new runner that would substantially reduce fish mortality at hydroelectric projects, while developing power at efficiencies similar to competing hydroturbine designs. A pilot-scale test facility was constructed to quantify the effects of the conceptual turbine design on passing fish and to verify the hydraulic char...

2009-07-31T23:59:59.000Z

105

Policymaker's Guide to Feed-in Tariff Policy Design  

SciTech Connect

Feed-in tariffs (FITs) are the most widely used renewable energy policy in the world for driving accelerating renewable energy (RE) deployment, accounting for a greater share of RE development than either tax incentives or renewable portfolio standard (RPS) policies. FITs have generated significant RE deployment, helping bring the countries that have implemented them successfully to the forefront of the global RE industry. In the European Union (EU), FIT policies have led to the deployment of more than 15,000 MW of solar photovoltaic (PV) power and more than 55,000 MW of wind power between 2000 and the end of 2009. In total, FITs are responsible for approximately 75% of global PV and 45% of global wind deployment. Countries such as Germany, in particular, have demonstrated that FITs can be used as a powerful policy tool to drive RE deployment and help meet combined energy security and emissions reductions objectives. This policymaker's guide provides a detailed analysis of FIT policy design and implementation and identifies a set of best practices that have been effective at quickly stimulating the deployment of large amounts of RE generation. Although the discussion is aimed primarily at decision makers who have decided that a FIT policy best suits their needs, exploration of FIT policies can also help inform a choice among alternative renewable energy policies.

Couture, T. D.; Cory, K.; Kreycik, C.; Williams, E.

2010-07-01T23:59:59.000Z

106

Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)  

DOE Green Energy (OSTI)

Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

Not Available

2013-08-01T23:59:59.000Z

107

Advanced human-system interface design review guidelines  

SciTech Connect

Advanced, computer-based, human-system interface designs are emerging in nuclear power plant (NPP) control rooms. These developments may have significant implications for plant safety in that they will greatly affect the ways in which operators interact with systems. At present, however, the only guidance available to the US Nuclear Regulatory Commission (NRC) for the review of control room-operator interfaces, NUREG-0700, was written prior to these technological changes and is thus not designed to address them. The objective of the project reported in this paper is to develop an Advanced Control Room Design Review Guideline for use in performing human factors reviews of advanced operator interfaces. This guideline will be implemented, in part, as a portable, computer-based, interactive document for field use. The paper describes the overall guideline development methodology, the present status of the document, and the plans for further guideline testing and development. 21 refs., 3 figs.

O'Hara, J.M.

1990-01-01T23:59:59.000Z

108

Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)  

SciTech Connect

The U.S. Department of Energy developed the K-12 Advanced Energy Retrofit Guide to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. We emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluation of the most promising retrofit measure for each building type. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings.

Not Available

2013-02-01T23:59:59.000Z

109

WRAP 2A advanced conceptual design report comments  

SciTech Connect

This report contains the compilation of the 393 comments that were submitted during the review of the Advanced Conceptual Design Report for the Waste Receiving and Processing Facility Module 2A. The report was prepared by Raytheon Engineers and Constructors, Inc. of Englewood, Colorado for the United States Department of Energy. The review was performed by a variety of organizations identified in the report. The comments were addressed first by the Westinghouse cognizant engineers and then by the Raytheon cognizant engineers, and incorporated into the final issue of the Advanced Conceptual Design Report.

Lamberd, D.L.

1994-10-04T23:59:59.000Z

110

ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report  

SciTech Connect

Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

Albrecht H. Mayer

2000-07-15T23:59:59.000Z

111

ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report  

SciTech Connect

Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

Albrecht H. Mayer

2000-07-15T23:59:59.000Z

112

Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, April--June 1992  

Science Conference Proceedings (OSTI)

Effective September 26, 1991, Bechtel, with Amoco as the main subcontractor, initiated a study to develop a computer model and baseline design for advanced Fischer-Tropsch (F-T) technology for the US Department of Energy`s Pittsburgh Energy Technology Center (PETC). The objectives of the study are to: Develop a baseline design for indirect liquefaction using advanced F-T technology; prepare the capital and operating costs for the baseline design; and develop a process flow sheet simulation (PI-S) model. The baseline design, the economic analysis, and the computer model win be the major research planning tools that PETC will use to plan, guide, and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction. for the manufacture of synthetic liquid fuels from coal. This report is Bechtel`s third quarterly technical progress report covering the period from March 16, 1992 through June 21, 1992. This report consists of seven sections: Section 1 - introduction; Section 2 - summary; Section 3 - carbon dioxide removal tradeoff study; Section 4 - preliminary plant designs for coal preparation; Section 5 - preliminary design for syngas production; Section 6 - Task 3 - engineering design criteria; and Section 7 - project management.

Not Available

1992-10-01T23:59:59.000Z

113

Optimization of the Ballistic Guide Design for the SNS FNPB 8.9 A Neutron Line  

E-Print Network (OSTI)

The optimization of the ballistic guide design for the SNS Fundamental Neutron Physics Beamline 8.9 A line is described. With a careful tuning of the shape of the curve for the tapered section and the width of the straight section, this optimization resulted in more than 75% increase in the neutron flux exiting the 33 m long guide over a straight m=3.5 guide with the same length.

Takeyasu M. Ito; Christopher B. Crawford; Geoffrey L. Greene

2006-04-24T23:59:59.000Z

114

Advanced Turbine Systems Program: Conceptual design and product development  

SciTech Connect

Objective is to provide the conceptual design and product development plant for an ultra high efficiency, environmentally superior, and cost competitive industrial gas turbine system to be commercialized by the year 2000 (secondary objective is to begin early development of technologies critical to the success of ATS). This report addresses the remaining 7 of the 9 subtasks in Task 8, Design and Test of Critical Components: catalytic combustion, recuperator, high- temperature turbine disc, advanced control system, and ceramic materials.

1996-12-31T23:59:59.000Z

115

A FRONT END DESIGN FOR THE ADVANCED PHOTON SOURCE  

E-Print Network (OSTI)

X-ray sources on next generation low emittance/high brilliance synchrotrons such as the 7-GeV Advanced Photon Source (APS) (1) have unique properties which directly affect the design of the front end of the beam line. The most striking of these are the large peak photon power densities

P. J. Viccaro

1988-01-01T23:59:59.000Z

116

Beamline standard component designs for the Advanced Photon Source  

SciTech Connect

The Advanced Photon Source (APS) has initiated a design standardization and modularization activity for the APS synchrotron radiation beamline components. These standard components are included in components library, sub-components library and experimental station library. This paper briefly describes these standard components using both technical specifications and side view drawings.

Shu, D.; Barraza, J.; Brite, C.; Chang, J.; Sanchez, T.; Tcheskidov, V.; Kuzay, T.M.

1994-12-01T23:59:59.000Z

117

Design and Operation of First-and Second-Harmonic Coaxial Gyroklystrons for Advanced Accelerator Applications  

E-Print Network (OSTI)

Design and Operation of First-and Second-Harmonic Coaxial Gyroklystrons for Advanced Accelerator Applications

Castle, M; Granatstein, V L; Hogan, B; Lawson, W; Reiser, M; Xu, X

1998-01-01T23:59:59.000Z

118

CAD and Graphics: Design and CAD-directed inspection planning of laser-guided measuring robot  

Science Conference Proceedings (OSTI)

A miniature laser-guided measuring robot (LGMR) has been developed based on a novel theory ''laser beam moving and spherical mounted retro-reflector (SMR) tracking'' instead of the traditional method ''SMR moving and laser beam tracking''. A systematic ... Keywords: CAD-directed, Design, Inspection planning, Laser-guided measuring robot (LGMR)

Wanli Liu; Xinghua Qu; Jianfei Ouyang; Zhankui Wang

2008-12-01T23:59:59.000Z

119

Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests  

SciTech Connect

The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

Wright, A. D.; Fingersh, L. J.

2008-03-01T23:59:59.000Z

120

Advanced Turbine Systems (ATS) program conceptual design and product development  

SciTech Connect

Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

1996-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Advanced computational research in materials processing for design and manufacturing  

DOE Green Energy (OSTI)

The computational requirements for design and manufacture of automotive components have seen dramatic increases for producing automobiles with three times the mileage. Automotive component design systems are becoming increasingly reliant on structural analysis requiring both overall larger analysis and more complex analyses, more three-dimensional analyses, larger model sizes, and routine consideration of transient and non-linear effects. Such analyses must be performed rapidly to minimize delays in the design and development process, which drives the need for parallel computing. This paper briefly describes advanced computational research in superplastic forming and automotive crash worthiness.

Zacharia, T. [Oak Ridge National Lab., TN (United States). Metals and Ceramics

1994-12-31T23:59:59.000Z

122

Design guide for category VI reactors: air-cooled graphite reactors  

SciTech Connect

The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification, operation, maintenance, and decommissioning of DOE-owned air-cooled graphite reactors be in accordance with generally uniform standards, guides, and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC).

Brynda, W.J.; Karol, R.; Powell, R.W.

1979-02-01T23:59:59.000Z

123

Development of environmentally advanced hydropower turbine system design concepts  

DOE Green Energy (OSTI)

A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

1997-08-01T23:59:59.000Z

124

Advanced Electric Submersible Pump Design Tool for Geothermal Applications  

DOE Green Energy (OSTI)

Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300 C geothermal water at 80kg/s flow rate in a maximum 10-5/8-inch diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis has been developed to design ESPs for geothermal applications. Design of Experiments was also performed to optimize the geometry and performance. The designed mixed-flow type centrifugal impeller and diffuser exhibit high efficiency and head rise under simulated EGS conditions. The design tool has been validated by comparing the prediction to experimental data of an existing ESP product.

Xuele Qi; Norman Turnquist; Farshad Ghasripoor

2012-05-31T23:59:59.000Z

125

Advancing Adaptive Optics Technology: Laboratory Turbulence Simulation and Optimization of Laser Guide Stars  

E-Print Network (OSTI)

M. , White, J. , and Chan, S. , Laser guide star upgrade ofM. , First light of the ESO Laser Guide Star Facility, inand van Dam, M. , Keck I Laser Guide Star Adaptive Optics

Rampy, Rachel

2013-01-01T23:59:59.000Z

126

Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)  

SciTech Connect

The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit energy efficiency measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings nationwide. U.S. K-12 school districts spend more than $8 billion each year on energy - more than they spend on computers and textbooks combined. Most occupy older buildings that often have poor operational performance - more than 30% of schools were built before 1960. The average age of a school is about 42 years - which is nearly the expected serviceable lifespan of the building. K-12 schools offer unique opportunities for deep, cost-effective energy efficiency improvements, and this guide provides convenient and practical guidance for exploiting these opportunities in the context of public, private, and parochial schools.

Not Available

2013-12-01T23:59:59.000Z

127

Advanced 3D inverse method for designing turbomachine blades  

DOE Green Energy (OSTI)

To meet the goal of 60% plant-cycle efficiency or better set in the ATS Program for baseload utility scale power generation, several critical technologies need to be developed. One such need is the improvement of component efficiencies. This work addresses the issue of improving the performance of turbo-machine components in gas turbines through the development of an advanced three-dimensional and viscous blade design system. This technology is needed to replace some elements in current design systems that are based on outdated technology.

Dang, T. [Syracuse Univ., NY (United States). Dept. of Mechanical/Aerospace/Manufacturing Engineering

1995-12-31T23:59:59.000Z

128

Best Practices Guide for Energy-Efficient Data Center Design | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide for Energy-Efficient Data Center Design Guide for Energy-Efficient Data Center Design Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

129

Design guide for Category III reactors: pool type reactors. [US DOE  

SciTech Connect

The Department of Energy (DOE) in the ERDA Manual requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification, operation, maintenance, and decommissioning of DOE-owned reactors be in accordance with generally uniform standards, guides, and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirement of Category III reactor structures, components, and systems.

Brynda, W J; Lobner, P R; Powell, R W; Straker, E A

1978-11-01T23:59:59.000Z

130

AEDG Implementation Recommendations: Interior Lighting Good Design...  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance Regulations Resource Center AEDG Implementation Recommendations: Interior Lighting Good Design Practice The Advanced Energy Design Guide (AEDG) for Small Office...

131

Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus * Shuttle Bus * Transit Bus * Refuse Truck * Tractor * Van * Vocational Truck School Bus * Shuttle Bus * Transit Bus * Refuse Truck * Tractor * Van * Vocational Truck Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles 2 Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles 3 Table of Contents About the Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Heavy-Duty Vehicle Application Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Heavy-Duty Emission Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Multiple-Stage Construction of Medium- and Heavy-Duty Vehicles . . . . . . . . . . . . . . . . . . 6 Chassis Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

132

Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, April--June 1994  

SciTech Connect

The objectives of this study are to: Develop a baseline design and two alternative designs for indirect liquefaction using advanced F-T technology. The baseline design uses Illinois No. 6 Eastern Coal and conventional refining. There is an alternative refining case using ZSM-5 treatment of the vapor steam from the flurry F-T reactor and an alternative coal case using Western coal from the Powder River Basin. Prepare the capital and operating costs for the baseline design and the alternatives. Individual plant costs for the alternative cases will be prorated on capacity, wherever possible, from the baseline case, develop a process flowsheet simulation (PFS) model. The baseline design, the economic analysis and computer model will be major research planning tools that Pittsburgh Energy Technology Center will use to plan, guide and evaluate its ongoing and future research and commercialization programs relating to indirect coal liquefaction for the manufacture of synthetic liquid fuels from coal. During the reporting period, work progressed on Tasks 1, 4, 5, 6 and 7. This report covers work done during the period and consists of six sections: introduction and summary; Task 1, baseline design and alternatives; Task 4, process flowsheet simulation (PFS) model; Task 5, perform sensitivity studies using the PFS model; Task 6, document the PFS model and develop a DOE training session on its use, and project management and staffing report.

NONE

1994-01-01T23:59:59.000Z

133

Manifestations of everyday design: guiding goals and motivations  

Science Conference Proceedings (OSTI)

This paper explores the relationship between goals, materials and competences in the practice of everyday design. Appropriations and creative uses of design artifacts are often reported in terms of outcomes and goals; however, we observe a gap in understanding ... Keywords: DIY, appropriation, everyday design, families, hobby, jewelry, practice theory, steampunk

Audrey Desjardins; Ron Wakkary

2013-06-01T23:59:59.000Z

134

Design guide for calculating fluid damping for circular cylindrical structures. [LMFBR  

Science Conference Proceedings (OSTI)

Fluid damping plays an important role for structures submerged in fluid, subjected to flow, or conveying fluid. This design guide presents a summary of calculational procedures and design data for fluid damping for circular cylinders vibrating in quiescent fluid, crossflow, and parallel flow.

Chen, S.S.

1983-06-01T23:59:59.000Z

135

Co-Simulation for Advanced Process Design and Optimization  

Science Conference Proceedings (OSTI)

Meeting the increasing demand for clean, affordable, and secure energy is arguably the most important challenge facing the world today. Fossil fuels can play a central role in a portfolio of carbon-neutral energy options provided CO{sub 2} emissions can be dramatically reduced by capturing CO{sub 2} and storing it safely and effectively. Fossil energy industry faces the challenge of meeting aggressive design goals for next-generation power plants with CCS. Process designs will involve large, highly-integrated, and multipurpose systems with advanced equipment items with complex geometries and multiphysics. APECS is enabling software to facilitate effective integration, solution, and analysis of high-fidelity process/equipment (CFD) co-simulations. APECS helps to optimize fluid flow and related phenomena that impact overall power plant performance. APECS offers many advanced capabilities including ROMs, design optimization, parallel execution, stochastic analysis, and virtual plant co-simulations. NETL and its collaborative R&D partners are using APECS to reduce the time, cost, and technical risk of developing high-efficiency, zero-emission power plants with CCS.

Stephen E. Zitney

2009-01-01T23:59:59.000Z

136

Surveillance Guides - QAS 2.5 Design Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DESIGN CONTROL DESIGN CONTROL 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of the contractor's design control program. The surveillance encompasses design input, design output, and design control. The Facility Representatives will evaluate implementation of the program as well as compliance with applicable DOE requirements. 2.0 References 2.1 DOE 5700.6C, Quality Assurance 2.2 10 CFR Part 50, Appendix B, Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants. 2.3 NQA-1-1989, Quality Assurance Program Requirements for Nuclear Facilities 3.0 Requirements Implemented This surveillance is conducted to implement requirement QA-0009 from the RL S/RID. This requirement is extracted from DOE 5700.6C.

137

Surveillance Guide - ENS 7.1 Definition of Design Requirements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEFINITION OF DESIGN REQUIREMENTS DEFINITION OF DESIGN REQUIREMENTS 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of the contractor's program to establish comprehensive design requirements for modifications or new installations before detailed design work commences. The Facility Representative verifies that appropriate design requirements have been established and that the contractor is complying with applicable DOE requirements. 2.0 References 2.1 DOE 4700.1, Project Management System 2.2 DOE 5700.6C, Quality Assurance 2.3 DOE 6430.1A, General Design Criteria 3.0 Requirements Implemented This surveillance implements requirement EN-0008 from the RL S/RIDs. This requirement is contained in Secretary of Energy Notice

138

AEDG Implementation Recommendations: Daylighting Window Design...  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Design The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on...

139

Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants  

SciTech Connect

OAK-B135 Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

O' Connell, J. Michael

2002-01-01T23:59:59.000Z

140

Best Practices Guide for Energy-Efficient Data Center Design: Revised March 2011 (Brochure)  

SciTech Connect

This guide provides an overview of best practices for energy-efficient data center design which spans the categories of Information Technology (IT) systems and their environmental conditions, data center air management, cooling and electrical systems, on-site generation, and heat recovery. IT system energy efficiency and environmental conditions are presented first because measures taken in these areas have a cascading effect of secondary energy savings for the mechanical and electrical systems. This guide concludes with a section on metrics and benchmarking values by which a data center and its systems energy efficiency can be evaluated. No design guide can offer 'the most energy-efficient' data center design but the guidelines that follow offer suggestions that provide efficiency benefits for a wide variety of data center scenarios.

Not Available

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Systems analysis and futuristic designs of advanced biofuel factory concepts.  

SciTech Connect

The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

2007-10-01T23:59:59.000Z

142

Procedural guide for the design of transit stations and terminals  

DOE Green Energy (OSTI)

State-of-the-art concepts regarding the planning, design, and evaluation of passenger transportation stations are discussed. The material directs transportation planning teams to search for efficient station designs. The important stages and considerations in a comprehensive terminal analysis methodology are described. The transit station design process requires contributions from many disciplines and skills. The report given will help coordinate station development programs in accommodating inputs from the disciplines, and it highlights the elements of different stations to assure valid comparisons relative to performance and cost criteria.

Demetsky, M.J.; Hoel, L.A.; Virkler, M.R.

1977-06-01T23:59:59.000Z

143

Advanced turbine systems program conceptual design and product development. Topical report, April 1995  

Science Conference Proceedings (OSTI)

Allison Engine Company has developed and verified key combustion system technologies to satisfy ATS Phase 2 performance requirements. These activities include the following: demonstration test of an ultra-lean premix module meeting the ATS 8 ppm NOx goal using natural gas fuel; design and fabrication of a second generation premix module for bench test evaluation; bench test verification of catalytically enhanced combustion; and preliminary design of the transition section that guides the combustor discharge flow from the external combustor to the turbine inlet. Allison has been executing a systematic approach in developing the combustion system technologies to insure that the ATS engine includes the benefits of advanced material and low NOx combustion technologies without placing undue risk on the overall engine development program. New technology is most easily assimilated in discrete evolutionary stages; thus Allison has structured the combustion system development plan with a series of increasingly demanding performance evaluations that demonstrate the suitability of the individual technology. The discussion summarizes the progress made in bringing advanced combustion technology to the ATS.

NONE

1996-02-01T23:59:59.000Z

144

Criticality alarm system design guide with accompanying alarm system development for the Radiochemical Processing Laboratory in Richland, Washington.  

E-Print Network (OSTI)

??A detailed instructional manual was created to guide criticality safety engineers through the process of designing a criticality alarm system (CAS) for Department of Energy (more)

Greenfield, Bryce

2010-01-01T23:59:59.000Z

145

The Packaging Handbook -- A guide to package design  

Science Conference Proceedings (OSTI)

The Packaging Handbook is a compilation of 14 technical chapters and five appendices that address the life cycle of a packaging which is intended to transport radioactive material by any transport mode in normal commerce. Although many topics are discussed in depth, this document focuses on the design aspects of a packaging. The Handbook, which is being prepared under the direction of the US Department of Energy, is intended to provide a wealth of technical guidance that will give designers a better understanding of the regulatory approval process, preferences of regulators in specific aspects of packaging design, and the types of analyses that should be seriously considered when developing the packaging design. Even though the Handbook is concerned with all packagings, most of the emphasis is placed on large packagings that are capable of transporting large radioactive sources that are also fissile (e.g., spent fuel). These are the types of packagings that must address the widest range of technical topics in order to meet domestic and international regulations. Most of the chapters in the Handbook have been drafted and submitted to the Oak Ridge National Laboratory for editing; the majority of these have been edited. This report summarizes the contents.

Shappert, L.B.

1995-12-31T23:59:59.000Z

146

Activity Theory to Guide Online Collaborative Learning Instructional Design  

Science Conference Proceedings (OSTI)

Learning Management Systems LMS are facing challenges to improve its traditional focus on individual learning towards social learning. Despite the great success in distributing learning materials and managing students, the availability of the read and ... Keywords: Activity Theory, Computer-Supported Collaborative Learning, Instructional Design, Knowledge Building, Learning Management System, Online Collaborative Learning, Qualitative Method, Quantitative Method, Teachers Training

Siti Rosni Mohamad Yusoff, Nor Azan Mat Zin

2012-04-01T23:59:59.000Z

147

Clean Cities Designation Guide: A Resource for Developing, Implementing, and Sustaining Your Clean Cities Coalition  

NLE Websites -- All DOE Office Websites (Extended Search)

Designation Guide Designation Guide A Resource for Developing, Implementing, and Sustaining Your Clean Cities Coalition DOE/GO-102008-2608 April 2008 For more information contact: EERE Information Center 1-877-EERE-INF (1-877-337-3463) www.eere.energy.gov Note: This guide is currently under revision. Please use for planning purposes only. Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

148

Automatic differentiation of advanced CFD codes for multidisciplinary design  

SciTech Connect

Automated multidisciplinary design of aircraft and other flight vehicles requires the optimization of complex performance objectives with respect to a number of design parameters and constraints. The effect of these independent design variables on the system performance criteria can be quantified in terms of sensitivity derivatives which must be calculated and propagated by the individual discipline simulation codes. Typical advanced CFD analysis codes do not provide such derivatives as part of a flow solution; these derivatives are very expensive to obtain by divided (finite) differences from perturbed solutions. It is shown here that sensitivity derivatives can be obtained accurately and efficiently using the ADIFOR source translator for automatic differentiation. In particular, it is demonstrated that the 3-D, thin-layer Navier-Stokes, multigrid flow solver called TLNS3D is amenable to automatic differentiation in the forward mode even with its implicit iterative solution algorithm and complex turbulence modeling. It is significant that using computational differentiation, consistent discrete nongeometric sensitivity derivatives have been obtained from an aerodynamic 3-D CFD code in a relatively short time, e.g. O(man-week) not O(man-year).

Bischof, C.; Corliss, G.; Griewank, A. (Argonne National Lab., IL (United States)); Green, L.; Haigler, K.; Newman, P. (National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center)

1992-01-01T23:59:59.000Z

149

Automatic differentiation of advanced CFD codes for multidisciplinary design  

SciTech Connect

Automated multidisciplinary design of aircraft and other flight vehicles requires the optimization of complex performance objectives with respect to a number of design parameters and constraints. The effect of these independent design variables on the system performance criteria can be quantified in terms of sensitivity derivatives which must be calculated and propagated by the individual discipline simulation codes. Typical advanced CFD analysis codes do not provide such derivatives as part of a flow solution; these derivatives are very expensive to obtain by divided (finite) differences from perturbed solutions. It is shown here that sensitivity derivatives can be obtained accurately and efficiently using the ADIFOR source translator for automatic differentiation. In particular, it is demonstrated that the 3-D, thin-layer Navier-Stokes, multigrid flow solver called TLNS3D is amenable to automatic differentiation in the forward mode even with its implicit iterative solution algorithm and complex turbulence modeling. It is significant that using computational differentiation, consistent discrete nongeometric sensitivity derivatives have been obtained from an aerodynamic 3-D CFD code in a relatively short time, e.g. O(man-week) not O(man-year).

Bischof, C.; Corliss, G.; Griewank, A. [Argonne National Lab., IL (United States); Green, L.; Haigler, K.; Newman, P. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center

1992-12-31T23:59:59.000Z

150

Advanced modeling and simulation to design and manufacture high performance and reliable advanced microelectronics and microsystems.  

SciTech Connect

An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology.

Nettleship, Ian (University of Pittsburgh, Pittsburgh, PA); Hinklin, Thomas; Holcomb, David Joseph; Tandon, Rajan; Arguello, Jose Guadalupe, Jr. (,; .); Dempsey, James Franklin; Ewsuk, Kevin Gregory; Neilsen, Michael K.; Lanagan, Michael (Pennsylvania State University, University Park, PA)

2007-07-01T23:59:59.000Z

151

THE ADVANCED TEST REACTOR-ATR FINAL CONCEPTUAL DESIGN  

SciTech Connect

The results of a study are presented which provided additional experimental-loop irradiation space for the AECDRD testing program. It was a premise that the experiments allocated to this reactor were those which could not be accommodated in the MTR, ETR, or in existing commercial test reactors. To accomplish the design objectives called for a reactor producing perturbed neutron fluxes exceeding 1O/sup 15/ thermal n/cm/sup 2/-sec and 1.5 x 1O/sup 15/ epithermal n/cm/sup 2/-sec. To accommodate the experimental samples, the reactor fuel core is four feet long in the direction of experimental loops. This is twice the length of the MTR core and a third longer than the ETR core. The vertical arrangement of reactor and experiments permits the use of loops penetrating the top cap of the reactor vessel running straight and vertically through the reactor core. The design offers a high degree of accessibility of the exterior portions of the experiments and offers very convenient handling and discharge of experiments. Since the loops are to be integrated into the reactor design and the in-pile portions installed before reactor start-up, it is felt that many of the problems encountered in MTR and ETR experience will cease to exist. Installation of the loops prior to startup will have an added advantage in that the flux variations experienced in experiments in ETR every time a new loop is installed will be absent. The Advanced Test Reactor has a core configuration that provides essentially nine flux-trap regions in a geometry that is almost optimum for cylindrical experiments. The geometry is similar to that of a fourleaf clover with one flux trap in each leaf, one at the intersection of the leaves, and one between each pair of leaves. The nominal power level is 250 Mw. The study was carried out in enough detail to permit the establishment of the design parameters and to develop the power requirement which, conservatively rated, will definitely reach the flux specifications. A critical mockup of an arrangement similar to ATR was loaded into the Engineering Test Reactor Critical Facility. (auth)

deBoisblanc, D.R. et al

1960-11-01T23:59:59.000Z

152

BOUT++: Performance Characterization and Recent Advances in Design  

NLE Websites -- All DOE Office Websites (Extended Search)

BOUT++: BOUT++: Performance Characterization and Recent Advances in Design Sean Farley, 1,2 Ben Dudson, 3 Praveen Narayanan, 4 Lois Curfman McInnes, 1 Maxim Umansky, 5 Xueqiao Xu, 5 Satish Balay, 1 John Cary, 6 Alice Koniges, 4 Carol Woodward, 5 Hong Zhang 1 Edge Localized Modes ￿ Fast (∼ 100µs) eruption from the edge of tokamak plasmas ￿ If uncontrolled in ITER, these would release ∼ 20 MJ ￿ World-wide effort to understand and control these events The BOUT++ Simulation Code ￿ Based on BOUT written by X. Xu, et. al. from LLNL [1] ￿ New 3D simulation code developed at York with LLNL and ANL ￿ Simulates plasma fluid equations in curvilinear coordinate systems ￿ Runs on workstations, clusters, large-scale machines, e.g., Cray XE6 ELM Equations ρ 0 dω dt = B 2 0 b · ∇ ￿ J || B 0 ￿ + 2b 0 × κ 0 · ∇p ∂A || ∂t = -∇ || φ dp dt = - 1 B 0 b 0 × ∇φ · ∇p 0 ω = 1 B 0 ∇ 2 ⊥ φ J || = J ||0 - 1 µ

153

Designing and Testing Controls to Mitigate Tower Dynamic Loads in the Controls Advanced Research Turbine: Preprint  

DOE Green Energy (OSTI)

This report describes NREL's efforts to design, implement, and test advanced controls for maximizing energy extraction and reducing structural dynamic loads in wind turbines.

Wright, A. D.; Fingersh, L. J.; Stol, K. A.

2007-01-01T23:59:59.000Z

154

Design Principle and Strengthening of Advanced Austenitic Heat ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Unprecedented austenitic heat resistant steels strengthened by ... for application to tubes and pipes of advanced thermal power plants (A-USC).

155

Stationary Battery Guide: Design, Application, and Maintenance: Revision of TR-100248  

Science Conference Proceedings (OSTI)

Stationary batteries provide backup to various dc control systems in power plants, substations, telecommunication facilities, and other applications that require a safe and orderly shutdown in the event of primary power loss. Batteries are expected to be fully capable and ready in the event of a power emergency such as a loss of ac power. This guide has been revised by EPRI's Nuclear Maintenance Applications Center to reflect design, application, and maintenance recommendations that will be helpful to us...

2002-08-29T23:59:59.000Z

156

Advanced turbine systems program conceptual design and product development. Quarterly report, February 1995--April 1995  

Science Conference Proceedings (OSTI)

Research continued on the design of advanced turbine systems. This report describes the design and test of critical components such as blades, materials, cooling, combustion, and optical diagnostics probes.

NONE

1995-06-01T23:59:59.000Z

157

Designing and Testing Contols to Mitigate Dynamic Loads in the Controls Advanced Research Turbine: Preprint  

SciTech Connect

The National Renewable Energy Laboratory is designing, implementing, and testing advanced controls to maximize energy extraction and reduce structural dynamic loads of wind turbines. These control designs are based on a linear model of the turbine that is generated by specialized modeling software. In this paper, we show the design and simulation testing of a control algorithm to mitigate blade, tower, and drivetrain loads using advanced state-space control design methods.

Wright, A.D.; Stol, K.A.

2008-01-01T23:59:59.000Z

158

Advanced turbine systems program conceptual design and product development. Quarterly report, August--October 1994  

SciTech Connect

This is a quarterly report on the Westinghouse Electric Corporation Advanced Turbine Systems Program--conceptual design and product development. The topics of the report include the management plan, National Energy Policy Act, selection of natural gas-fired advanced turbine systems, selection of coal-fired advanced turbine systems, market study, systems definition and analysis, design and test of critical components, and plans for the next reporting period.

1994-12-01T23:59:59.000Z

159

Advanced Turbine Systems Program, Conceptual Design and Product Development. Task 6, System definition and analysis  

DOE Green Energy (OSTI)

The strategy of the ATS program is to develop a new baseline for industrial gas turbine systems for the 21st century, meeting the buying criteria of industrial gas turbine end users, and having growth potential. These criteria guided the Solar ATS Team in selecting the system definition described in this Topical Report. The key to selecting the ATS system definition was meeting or exceeding each technical goal without negatively impacting other commercial goals. Among the most crucial goals are the buying criteria of the industrial gas turbine market. Solar started by preliminarily considering several cycles with the potential to meet ATS program goals. These candidates were initially narrowed based on a qualitative assessment of several factors such as the potential for meeting program goals and for future growth; the probability of successful demonstration within the program`s schedule and expected level of funding; and the appropriateness of the cycle in light of end users` buying criteria. A first level Quality Function Deployment (QFD) analysis then translated customer needs into functional requirements, and ensured favorable interaction between concept features. Based on this analysis, Solar selected a recuperated cycle as the best approach to fulfilling both D.O.E. and Solar marketing goals. This report details the design and analysis of the selected engine concept, and explains how advanced features of system components achieve program goals. Estimates of cost, performance, emissions and RAMD (reliability, availability, maintainability, durability) are also documented in this report.

NONE

1995-04-01T23:59:59.000Z

160

Safety Software Guide Perspectives for the Design of New Nuclear Facilities (U)  

SciTech Connect

In June of this year, the Department of Energy (DOE) issued directives DOE O 414.1C and DOE G 414.1-4 to improve quality assurance programs, processes, and procedures among its safety contractors. Specifically, guidance entitled, ''Safety Software Guide for use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance, DOE G 414.1-4'', provides information and acceptable methods to comply with safety software quality assurance (SQA) requirements. The guidance provides a roadmap for meeting DOE O 414.1C, ''Quality Assurance'', and the quality assurance program (QAP) requirements of Title 10 Code of Federal Regulations (CFR) 830, Subpart A, Quality Assurance, for DOE nuclear facilities and software application activities. [1, 2] The order and guide are part of a comprehensive implementation plan that addresses issues and concerns documented in Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2002-1. [3] Safety SQA requirements for DOE as well as National Nuclear Security Administration contractors are necessary to implement effective quality assurance (QA) processes and achieve safe nuclear facility operations. DOE G 414.1-4 was developed to provide guidance on establishing and implementing effective QA processes tied specifically to nuclear facility safety software applications. The Guide includes software application practices covered by appropriate national and international consensus standards and various processes currently in use at DOE facilities. While the safety software guidance is considered to be of sufficient rigor and depth to ensure acceptable reliability of safety software at all DOE nuclear facilities, new nuclear facilities are well suited to take advantage of the guide to ensure compliant programs and processes are implemented. Attributes such as the facility life-cycle stage and the hazardous nature of each facility operations are considered, along with the category and level of importance of the software. The discussion provided herein illustrates benefits of applying the Safety Software Guide to work activities dependent on software applications and directed toward the design of new nuclear facilities. In particular, the Guide-based systematic approach with software enables design processes to effectively proceed and reduce the likelihood of rework activities. Several application examples are provided for the new facility.

VINCENT, Andrew

2005-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Application of USNRC NUREG/CR-6661 and draft DG-1108 to evolutionary and advanced reactor designs  

Science Conference Proceedings (OSTI)

For the seismic design of evolutionary and advanced nuclear reactor power plants, there are definite financial advantages in the application of USNRC NUREG/CR-6661 and draft Regulatory Guide DG-1108. NUREG/CR-6661, 'Benchmark Program for the Evaluation of Methods to Analyze Non-Classically Damped Coupled Systems', was by Brookhaven National Laboratory (BNL) for the USNRC, and Draft Regulatory Guide DG-1108 is the proposed revision to the current Regulatory Guide (RG) 1.92, Revision 1, 'Combining Modal Responses and Spatial Components in Seismic Response Analysis'. The draft Regulatory Guide DG-1108 is available at http://members.cox.net/apolloconsulting, which also provides a link to the USNRC ADAMS site to search for NUREG/CR-6661 in text file or image file. The draft Regulatory Guide DG-1108 removes unnecessary conservatism in the modal combinations for closely spaced modes in seismic response spectrum analysis. Its application will be very helpful in coupled seismic analysis for structures and heavy equipment to reduce seismic responses and in piping system seismic design. In the NUREG/CR-6661 benchmark program, which investigated coupled seismic analysis of structures and equipment or piping systems with different damping values, three of the four participants applied the complex mode solution method to handle different damping values for structures, equipment, and piping systems. The fourth participant applied the classical normal mode method with equivalent weighted damping values to handle differences in structural, equipment, and piping system damping values. Coupled analysis will reduce the equipment responses when equipment, or piping system and structure are in or close to resonance. However, this reduction in responses occurs only if the realistic DG-1108 modal response combination method is applied, because closely spaced modes will be produced when structure and equipment or piping systems are in or close to resonance. Otherwise, the conservatism in the current Regulatory Guide 1.92, Revision 1, will overshadow the advantage of coupled analysis. All four participants applied the realistic modal combination method of DG-1108. Consequently, more realistic and reduced responses were obtained. (authors)

Chang 'Apollo', Chen [Apollo Consulting, Inc., Surprise, AZ 85374-4605 (United States)

2006-07-01T23:59:59.000Z

162

Alternative Design Study Report: WindPACT Advanced Wind Turbine Drive Train Designs Study; November 1, 2000 -- February 28, 2002  

DOE Green Energy (OSTI)

This report presents the Phase I results of the National Renewable Energy Laboratory's (NREL's) WindPACT (Wind Partnership for Advanced Component Technologies) Advanced Wind Turbine Drive Train Designs Study. Global Energy Concepts, LLC performed this work under a subcontract with NREL. The purpose of the WindPACT project is to identify technology improvements that will enable the cost of energy (COE) from wind turbines to be reduced. Other parts of the WindPACT project have examined blade and logistics scaling, balance-of-station costs, and rotor design. This study was designed to investigate innovative drive train designs.

Poore, R.; Lettenmaier, T.

2003-08-01T23:59:59.000Z

163

Advanced conceptual design report. Phase II. Liquid effluent treatment and disposal Project W-252  

Science Conference Proceedings (OSTI)

This Advanced Conceptual Design Report (ACDR) provides a documented review and analysis of the Conceptual Design Report (CDR), WHC-SD-W252-CDR-001, June 30, 1993. The ACDR provides further design evaluation of the major design approaches and uncertainties identified in the original CDR. The ACDR will provide a firmer basis for the both the design approach and the associated planning for the performance of the Definitive Design phase of the project.

NONE

1995-01-31T23:59:59.000Z

164

Engineering design and analysis of advanced physical fine coal cleaning technologies  

SciTech Connect

This project is sponsored by the United States Department of Energy (DOE) for the Engineering Design and Analysis of Advanced Physical Fine Coal Cleaning Technologies. The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This DOE project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cylconing, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level.

1992-01-20T23:59:59.000Z

165

Recent advances in ASM++ methodology for FPGA design  

Science Conference Proceedings (OSTI)

This paper reports the latest advances achieved in ASM++ methodology since its presentation in FPGAworld Conference 2007 and 2008. A fully new ASM++ compiler has been built, with an improved graphical interface, but also implementing a ... Keywords: ASM++ charts, FPGA, RTL, SoC, USB, compiler, methodology

S. de Pablo; F. Martnez; L. C. Herrero; J. A. Cebrin; S. Cceres

2010-09-01T23:59:59.000Z

166

ANL/APS/LS-309 Design Calculations for the Advanced Photon Source Safety Shutters P. K. Job, Advanced Photon Source  

E-Print Network (OSTI)

A safety shutter at the Advanced Photon Source (APS) is a remotely actuated device that prevents a photon beam from traveling down a beamline into an experimental enclosure. All APS safety shutters are designed to be redundant. When the shutter is closed, two shielding blocks are positioned to stop bremsstrahlung and the synchrotron

B. J. Micklich; Intense Pulsed; Neutron Source

2005-01-01T23:59:59.000Z

167

Advanced design and simulation of a hybrid electric vehicle.  

E-Print Network (OSTI)

??This thesis illustrates the modeling of power electronics components for a two- mode hybrid electric vehicle. The model designed is for a Texas Tech University (more)

Sidhanthi, Swathi

2010-01-01T23:59:59.000Z

168

Advanced turbine systems program--conceptual design and product development. Quarterly report, November 1994--January 1995  

SciTech Connect

Research continued in the design and development of advanced gas turbine systems. This report presents progress towards turbine blade development, diffuser development, combustion noise investigations,catalytic combustion development, and diagnostic probe development.

1995-02-01T23:59:59.000Z

169

Advanced Reactor Design for Integrated WGS/Pre-combustion CO2...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Reactor Design for Integrated WGSPre-combustion CO2 Capture TDA Research, Inc. Project Number: FE0012048 Project Description The purpose is to develop a new high-hydrogen...

170

Advanced Strategy Guideline: Air Distribution Basics and Duct Design  

SciTech Connect

This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings. Principles discussed that will maximize occupant comfort include delivery of the proper amount of conditioned air for appropriate temperature mixing and uniformity without drafts, minimization of system noise, the impacts of pressure loss, efficient return air duct design, and supply air outlet placement, as well as duct layout, materials, and sizing.

Burdick, A.

2011-12-01T23:59:59.000Z

171

Design modifications in electrospinning setup for advanced applications  

Science Conference Proceedings (OSTI)

The paper deals with the modification made to the general electrospinning setup. The emphasis is given to characterize the designs based on their applicability. Four basic categories are identified, namely, patterned fibers, fiber yarns, multicomponent, ...

Rahul Sahay; Velmurugan Thavasi; Seeram Ramakrishna

2011-01-01T23:59:59.000Z

172

Designing for man: advances in control room operation  

SciTech Connect

Considers the human factor in nuclear power plants in relation to improving control room and maintenance operations. Control room operators face thousands of dials, meters, and indicator lights dispersed over large control boards. Components may not be arranged in clearly identifiable panels of related elements; sometimes related controls may not be near each other. Extensive alarm systems may sometimes confuse rather than alert the operators; communications with other parts of the plant may be difficult. Maintenance personnel may have to squeeze past pipes and similar obstructions to make repairs while carrying equipment and tools, sometimes while wearing protective gear. EPRI has developed a cool suit consisting of 16 pounds of water-filled compartments built into a two-piece repair suit that can be frozen to keep body temperatures at acceptable levels for up to 2 hrs. in high-heat areas of the plant. An ergonomics guide, which examines alternative solutions to heat stress (such as rest cycles and worker screening) is also being developed. Because few new nuclear plants are currently being built, many of the improvements will be retrofits in existing plants. EPRI's human factors work emphasizes thorough validation of new techniques through simulators and mockups.

Lihach, N.

1982-07-01T23:59:59.000Z

173

Advanced Turbine Systems Program: Conceptual design and product development. Quarterly status report, May--July 1994  

Science Conference Proceedings (OSTI)

The goal of the overall Advanced Turbine Systems (ATS) program is to develop and commercialize ultrahigh-efficiency gas-turbine-based power systems for utility and industrial applications. This contract will complete conceptual design and begin component testing for a utility-scale power system having 60% efficiency. Progress reports are presented for the following tasks: selection of natural gas-fired advance turbine systems (GFATS); selection of coal-fired advanced turbine systems (CFATS); market study; system definition and analysis; and design and test of critical components.

Not Available

1994-09-14T23:59:59.000Z

174

Design of the Advanced Light Source timing system  

SciTech Connect

The Advanced Light Source (ALS) is a third generation synchrotron radiation facility, and as such, has several unique timing requirements. Arbitrary Storage Ring filling patterns and high single bunch purity requirements demand a highly stable, low jitter timing system with the flexibility to reconfigure on a pulse-to-pulse basis. This modular system utilizes a highly linear Gauss Clock with ``on the fly`` programmable setpoints to track a free-running Booster ramping magnet and provides digitally programmable sequencing and delay for Electron Gun, Linac, Booster Ring, and Storage Ring RF, Pulsed Magnet, and Instrumentation systems. It has proven itself over the last year of accelerator operation to be reliable and rock solid.

Fahmie, M.

1993-05-01T23:59:59.000Z

175

Advanced study techniques: tools for HVDC systems design  

SciTech Connect

High voltage direct current (HVDC) transmission systems, which offer functional as well as environmental and economic advantages, could see a 15% growth rate over the next decade. Design studies of HVDC system components are complicated by the need to cover 11 major elements: power system, insulation coordination, filter design, subsynchronous torsional interaction, circuit breaker requirements, power line carrier and radio interference, electric fields and audible noise, protective relaying, availability and reliability, efficiency, equipment specification, and HVDC simulator and Transient Network Analyzers. The author summarizes and illustrates each element. 6 figures, 1 table.

Degeneff, R.C.

1984-01-01T23:59:59.000Z

176

Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology  

Science Conference Proceedings (OSTI)

Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

2005-06-30T23:59:59.000Z

177

7-GeV Advanced Photon Source Conceptual Design Report  

SciTech Connect

During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.

Not Available

1987-04-01T23:59:59.000Z

178

Facility design for cyclic testing of advanced solid desiccant dehumidifiers  

DOE Green Energy (OSTI)

The development of high performance components is required to reach the goal of desiccant cooling system cost-competitiveness with conventional vapor compensation air conditioning systems. SERI has designed a laminar flow, parallel passage dehumidifier that has this potential. The goal of SERI's desiccant cooling research program is to fully characterize experimentally the performance of the parallel passage dehumidifier under a wide range of operating conditions, investigate improvements in design, and verify existing models of dehumidifier performance against experimental results. This report documents the design of the SERI Desiccant Cooling Test Facility for performing the above testing. With slight modifications, the testing can be used for testing other desiccant cooling system components. The dehumidifier processes and the parameters and variables needed to control and characterize its performance are presented. The physical layout of the test loop and instrumentation for monitoring the operating conditions and dehumidifer performance and the controls for maintaining the operating conditions are specified. The computerized data acquisition system conversion equations and an error analysis of measurement variables are also presented.

Schlepp, D.; Schultz, K.; Zangrando, F.

1984-08-01T23:59:59.000Z

179

Advanced turbine design for coal-fueled engines  

DOE Green Energy (OSTI)

The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500[degrees]F (815[degrees]C), relatively innocuous salts. In this study it is found that at 1650[degrees]F (900[degrees]C) and above, calcium sulfate becomes an aggressive corrodent.

Bornstein, N.S.

1992-07-17T23:59:59.000Z

180

Advanced Control and Protection system Design Methods for Modular HTGRs  

DOE Green Energy (OSTI)

The project supported the Nuclear Regulatory Commission (NRC) in identifying and evaluating the regulatory implications concerning the control and protection systems proposed for use in the Department of Energy's (DOE) Next-Generation Nuclear Plant (NGNP). The NGNP, using modular high-temperature gas-cooled reactor (HTGR) technology, is to provide commercial industries with electricity and high-temperature process heat for industrial processes such as hydrogen production. Process heat temperatures range from 700 to 950 C, and for the upper range of these operation temperatures, the modular HTGR is sometimes referred to as the Very High Temperature Reactor or VHTR. Initial NGNP designs are for operation in the lower temperature range. The defining safety characteristic of the modular HTGR is that its primary defense against serious accidents is to be achieved through its inherent properties of the fuel and core. Because of its strong negative temperature coefficient of reactivity and the capability of the fuel to withstand high temperatures, fast-acting active safety systems or prompt operator actions should not be required to prevent significant fuel failure and fission product release. The plant is designed such that its inherent features should provide adequate protection despite operational errors or equipment failure. Figure 1 shows an example modular HTGR layout (prismatic core version), where its inlet coolant enters the reactor vessel at the bottom, traversing up the sides to the top plenum, down-flow through an annular core, and exiting from the lower plenum (hot duct). This research provided NRC staff with (a) insights and knowledge about the control and protection systems for the NGNP and VHTR, (b) information on the technologies/approaches under consideration for use in the reactor and process heat applications, (c) guidelines for the design of highly integrated control rooms, (d) consideration for modeling of control and protection system designs for VHTR, and (e) input for developing the bases for possible new regulatory guidance to assist in the review of an NGNP license application. This NRC project also evaluated reactor and process heat application plant simulation models employed in the protection and control system designs for various plant operational modes and accidents, including providing information about the models themselves, and the appropriateness of the application of the models for control and protection system studies. A companion project for the NRC focused on the potential for new instrumentation that would be unique to modular HTGRs, as compared to light-water reactors (LWRs), due to both the higher temperature ranges and the inherent safety features.

Ball, Sydney J [ORNL; Wilson Jr, Thomas L [ORNL; Wood, Richard Thomas [ORNL

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Advanced coal gasifier designs using large-scale simulations  

Science Conference Proceedings (OSTI)

Porting of the legacy code MFIX to a high performance computer (HPC) and the use of high resolution simulations for the design of a coal gasifier are described here. MFIX is based on a continuum multiphase flow model that considers gas and solids to form interpenetrating continua. Low resolution simulations of a commercial scale gasifier with a validated MFIX model revealed interesting physical phenomena with implications on the gasifier design, which prompted the study reported here. To be predictive, the simulations need to model the spatiotemporal variations in gas and solids volume fractions, velocities, temperatures with any associated phase change and chemical reactions. These processes occur at various time- and length-scales requiring very high spatial resolution and large number of iterations with small time-steps. We were able to perform perhaps the largest known simulations of gas-solids reacting flows, providing detailed information about the gas-solids flow structure and the pressure, temperature and species distribution in the gasifier. One key finding is the new features of the coal jet trajectory revealed with the high spatial resolution, which provides information on the accuracy of the lower resolution simulations. Methodologies for effectively combining high and low resolution simulations for design studies must be developed. From a computational science perspective, we found that global communication has to be reduced to achieve scalability to 1000s of cores, hybrid parallelization is required to effectively utilize the multicore chips, and the wait time in the batch queue significantly increases the actual time-to-solution. From our experience, development is required in the following areas: efficient solvers for heterogeneous, massively parallel systems; data analysis tools to extract information from large data sets; and programming environments for easily porting legacy codes to HPC.

Syamlal, M [National Energy Technology Laboratory (NETL); Guenther, Chris [National Energy Technology Laboratory (NETL); Gel, Aytekin [Aeolus Research Inc.; Pannala, Sreekanth [ORNL

2009-01-01T23:59:59.000Z

182

DOE G 420.1-1A, Nonreactor Nuclear Safety Design Guide for use with DOE O 420.1C, Facility Safety  

Directives, Delegations, and Requirements

This Guide provides an acceptable approach for safety design of DOE hazard category 1, 2 and 3 nuclear facilities for satisfying the requirements of DOE O ...

2012-12-04T23:59:59.000Z

183

Safety goals and functional performance criteria. [Advanced Reactor Design  

DOE Green Energy (OSTI)

This report discusses a possible approach to the development of functional performance criteria to be applied to evolutionary LWR designs. Key safety functions are first identified; then, criteria are drawn up for each individual function, based on the premise that no single function's projected unreliability should be allowed to exhaust the safety goal frequencies. In the area of core damage prevention, functional criteria are cast in terms of necessary levels of redundancy and diversity of critical equipment. In the area of core damage mitigation (containment), functional performance criteria are cast with the aim of mitigating post-core-melt phenomena with sufficient assurance to eliminate major uncertainties in containment performance. 9 refs.

Youngblood, R.W.; Pratt, W.T. (Brookhaven National Lab., Upton, NY (USA)); Hardin, W.B. (Nuclear Regulatory Commission, Washington, DC (USA). Div. of Regulatory Applications)

1990-01-01T23:59:59.000Z

184

Advanced Turbine Systems Program conceptual design and product development. Annual report, August 1993--July 1994  

SciTech Connect

The stated objective of the project was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems (GFATS) in order to select one that would achieve all of the ATS Program goals. Detailed cycle performance, cost of electricity, and RAM analysis were carried out to provide information on the final selection of the GFATS cycle. To achieve the very challenging goals, innovative approaches and technological advances are required, especially in combustion, aerodynamic design, cooling design, mechanical design, leakage control, materials, and coating technologies.

1994-11-01T23:59:59.000Z

185

DCU Library User Guide -DataStream Advance 5.1 What is DataStream?  

E-Print Network (OSTI)

on Criteria Search, enter your search terms and click on Search. 5. Double-click on the DS Mnemonic you want on the designated DataStream PC in the Library's information commons. You'll be prompted to "Enter Password". Type is not broken!). 2. At Novell Login: "Workstation only" must be ticked. This automatically enters "datastream

Humphrys, Mark

186

APEX ADVANCED FERRITIC STEEL, FLIBE SELF-COOLED FIRST WALL AND BLANKET DESIGN  

Science Conference Proceedings (OSTI)

OAK-B135 As an element in the US Advanced Power Extraction (APEX) program, they evaluated the design option of using advanced nanocomposite ferritic steel (AFS) as the structural material and Flibe as the tritium breeder and coolant. They selected the recirculating flow configuration as the reference design. Based on the material properties of AFS, they found that the reference design can handle a maximum surface heat flux of 1 MW/m{sup 2}, and a maximum neutron wall loading of 5.4 MW/m{sup 2}, with a gross thermal efficiency of 47%, while meeting all the tritium breeding and structural design requirements. This paper covers the results of the following areas of evaluation: materials selection, first wall and blanket design configuration, materials compatibility, components fabrication, neutronics analysis, thermal hydraulics analysis including MHD effects, structural analysis, molten salt and helium closed cycle power conversion system, and safety and waste disposal of the recirculating coolant design.

WONG,CPC; MALANG,S; SAWAN,M; SVIATOSLAVSKY,I; MOGAHED,E; SMOLENTSEV,S; MAJUMDAR,S; MERRILL,B; MATTAS,R; FRIEND,M; BOLIN,J; SHARAFAT,S

2003-11-01T23:59:59.000Z

187

Laboratories for the 21st Century: Best Practices Guide: Modeling Exhaust Dispersion for Specifying Acceptable Exhaust/Intake Design (Brochure)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

L L a b o r a t o r i e s f o r t h e 2 1 s t C e n t u r y : B e s t P r a c t i c e s Modeling exhaust dispersion for specifying acceptable exhaust/intake designs Introduction This guide provides general information on specify- ing acceptable exhaust and intake designs. It also offers various quantitative approaches (dispersion modeling) that can be used to determine expected concentration (or dilution) levels resulting from exhaust system emissions. In addition, the guide describes methodologies that can be employed to operate laboratory exhaust systems in a safe and energy efficient manner by using variable air volume (VAV) technology. The guide, one in a series on best practices for laboratories, was produced by Laboratories for the 21st Century (Labs21), a joint pro- gram of the U.S. Environmental Protection Agency (EPA)

188

Advanced turbine design for coal-fueled engines  

SciTech Connect

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

189

Advanced turbine systems program conceptual design and product development. Quarterly report, August--October 1995  

Science Conference Proceedings (OSTI)

This report describes the tasks completed for the advanced turbine systems program. The topics of the report include last row turbine blade development, single crystal blade casting development, ceramic materials development, combustion cylinder flow mapping, shroud film cooling, directional solidified valve development, shrouded blade cooling, closed-loop steam cooling, active tip clearance control, flow visualization tests, combustion noise investigation, TBC field testing, catalytic combustion development, optical diagnostics probe development, serpentine channel cooling tests, brush seal development, high efficiency compressor design, advanced air sealing development, advanced coating development, single crystal blade development, Ni-based disc forging development, and steam cooling effects on materials.

NONE

1996-01-01T23:59:59.000Z

190

ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION  

Science Conference Proceedings (OSTI)

This document reviews the work performed during the quarter April-June 2003. The main focus of this quarter has been the site preparation (task 1) for the test campaign scheduled in September/October 2003. Task 3 (Techno-economical assessment) has also been initiated while selecting the methodology to be used in the economics analysis and specifying the plants to be compared: In Task 1 (Site Preparation), the process definition and design activities have been completed, the equipment and instruments required have been identified, and the fabrication and installation activities have been initiated, to implement the required modifications on the pilot boiler. As of today, the schedule calls for completion of construction by late-July. System check-down is scheduled for the first two weeks of August. In Task 2 (Combustion and Emissions Performance Optimization), four weeks of testing are planned, two weeks starting second half of August and two weeks starting at the end of September. In Task 3 (Techno-Economic Study), the plants to be evaluated have been specified, including baseline cases (air fired PC boilers with or without CO{sub 2} capture), O{sub 2}-fired cases (with or without flue gas recirculation) and IGCC cases. Power plants ranging from 50 to 500MW have been selected and the methodology to be used has been described, both for performance evaluation and cost assessment. The first calculations will be performed soon and the first trends will be reported in the next quarter. As part of Task 5 (Project Management & Reporting), the subcontract between Babcock&Wilcox and American Air Liquide has been finalized. The subcontract between ISGS and American Air Liquide is in the final stages of completion.

Ovidiu Marin; Fabienne Chatel-Pelage

2003-07-01T23:59:59.000Z

191

ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION  

Science Conference Proceedings (OSTI)

This document reviews the work performed during the quarter January-March 2003. The main objectives of the project are: To demonstrate the feasibility of the full-oxy combustion with flue gas recirculation on Babcock & Wilcox's 1.5MW pilot boiler, To measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection strategies, To perform an economical feasibility study, comparing this solution with alternate technologies, and To design a new generation, full oxy-fired boiler. The main objective of this quarter was to initiate the project, primarily the experimental tasks. The contractor and its subcontractors have defined a working plan, and the first tasks have been started. Task 1 (Site Preparation) is now in progress, defining the modifications to be implemented to the boiler and oxygen delivery system. The changes are required in order to overcome some current limitations of the existing system. As part of a previous project carried out in 2002, several changes have already been made on the pilot boiler, including the enrichment of the secondary and tertiary air with oxygen or the replacement of these streams with oxygen-enriched recycled flue gas. A notable modification for the current project involves the replacement of the primary air with oxygen-enriched flue gas. Consequently, the current oxygen supply and flue gas recycle system is being modified to meet this new requirement. Task 2 (Combustion and Emissions Performance Optimization) has been initiated with a preliminary selection of four series of tests to be performed. So far, the project schedule is on-track: site preparation (Task 1) should be completed by August 1st, 2003 and the tests (Task 2) are planned for September-October 2003. The Techno-Economic Study (Task 3) will be initiated in the following quarter.

Ovidiu Marin; Fabienne Chatel-Pelage

2003-04-01T23:59:59.000Z

192

Guide to good practices for the design, development, and implementation of examinations  

Science Conference Proceedings (OSTI)

The purpose of this Guide to Good Practices is to provide direction to training personnel in the broad areas of design, development, and implementation of examinations. Nuclear facilities spend a significant amount of training resources testing trainees. Tests are used for employee selection, qualification, requalification, certification and recertification, and promotion. Ineffective testing procedures, or inappropriate interpretation of test results, can have significant effects on both human performance and facility operations. Test development requires unique skills, and as with any skill, training and experience are needed to develop the skills. Test development, test use, test result interpretation, and test refinement, like all other aspects of the systematic approach to training, should be part of an ongoing, systematic process. For some users this document will provide a review of ideas and principles with which they are already familiar; for others it will present new concepts. While not intended to provide in-depth coverage of test theory design and development, it should provide developers, instructors, and evaluators with a foundation on which to develop sound examinations.

NONE

1997-06-01T23:59:59.000Z

193

Development and design of an advanced pulverized coal-fired system  

SciTech Connect

Under the US Department of Energy (DOE) project `Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems` (LEBS) the ABB team developed the design of a 400 MWe advanced pulverized coal fired electric generating system. The work and the results are described in the paper. Early work included concept development and evaluation of several subsystems for controlling the emission of SO{sub 2}, NO{sub x}, particulates and for reducing wastes. Candidate technologies were then evaluated in various combinations as part of complete advanced supercritical power generation systems. One system was selected for the design of the advanced generating system. Pilot scale testing is now being conducted to support the design of subsystems. The design meets the overall objective of the LEBS Project by dramatically improving environmental performance of pulverized coal fired power plants without adversely impacting efficiency or the cost of electricity. Advanced technologies will be used to reduce NO{sub x}, SO{sub 2}, and particulate emissions to one-fifth to one-tenth of current NSPS limits. Air toxics will be in compliance, and wastes will be reduced and made more disposable. Net station (HHV) efficiency can be increased to 45 percent without increasing the cost of electricity.

Regan, J.W.; Borio, R.W.; Palkes, M. [ABB Power Plant Laboratories (United States); Mirolli, M.D. [ABB Combustion Engineering, Inc., Windsor, CT (United States); Wesnor, J.D. [ABB Environmental Systems, Birmingham, AL (United States); Bender, D.J. [Raytheon Engineers & Constructors, Inc. (United States)

1995-12-31T23:59:59.000Z

194

Benchmark analysis for the design of piping systems in advanced reactors  

SciTech Connect

To satisfy the need for the verification of the computer programs and modeling techniques that will be used to perform the final piping analyses for an advanced boding water reactor standard design, three piping benchmark problems were developed. The problems are representative piping systems subjected to representative dynamic loads with solutions developed using the methods being proposed for analysis for the advanced reactor standard design. It will be required that the combined license holders demonstrate that their solutions to these problems are in agreement with the benchmark problem set. A summary description of each problem and some sample results are included.

Bezler, P.; DeGrassi, G.; Braverman, J. (Brookhaven National Lab., Upton, NY (United States)); Shounien Hou (Nuclear Regulatory Commission, Washington, DC (United States))

1993-01-01T23:59:59.000Z

195

Benchmark analysis for the design of piping systems in advanced reactors  

Science Conference Proceedings (OSTI)

To satisfy the need for the verification of the computer programs and modeling techniques that will be used to perform the final piping analyses for an advanced boding water reactor standard design, three piping benchmark problems were developed. The problems are representative piping systems subjected to representative dynamic loads with solutions developed using the methods being proposed for analysis for the advanced reactor standard design. It will be required that the combined license holders demonstrate that their solutions to these problems are in agreement with the benchmark problem set. A summary description of each problem and some sample results are included.

Bezler, P.; DeGrassi, G.; Braverman, J. [Brookhaven National Lab., Upton, NY (United States); Shounien Hou [Nuclear Regulatory Commission, Washington, DC (United States)

1993-03-01T23:59:59.000Z

196

EGGS (Guide for Transmission Line Grounding: A Roadmap for Design Testing and Remediation), Version 2.1  

Science Conference Proceedings (OSTI)

The EPRI Grounding Guide Software (EGGS), Version 2.1, is calculation/modeling software for transmission line grounding. EGGS Version 2.1, is a set of applets to assist technical staff in the design and implementation of effective grounding of transmission lines and is intended for users who need simple methods to evaluate new or existing transmission line grounding electrode designs. When ordering EGGS 2.1, included will be product 1018973, EPRIs Overhead Transmission Line Lightning and Grounding Refere...

2008-12-22T23:59:59.000Z

197

Design and estimated performance of a new neutron guide system for the NCNR expansion project  

SciTech Connect

An integral part of the National Institute of Standards and Technology Center for Neutron Research (NCNR) expansion project is the addition of five cold neutron guide tubes serving multiple experimental stations in an expanded guide hall. The guides have curved-straight arrangements in the horizontal plane, employing horizontally or vertically defocusing and focusing sections in some cases to improve transmission efficiency or for beam reshaping. The horizontally curved sections eliminate direct lines of sight between the source and the experimental stations, and the outer (concave) surfaces generally have higher critical angles than the inner (convex) surfaces. These features result in well-filtered cold neutron beams with no intensity losses at shorter wavelengths with respect to curved guides having the higher critical angle coatings on both surfaces. For all guides the critical angle of the outer coating of the curved section is selected to achieve a desirable characteristic wavelength, consistent with the instrument requirements. On guides where the scattering-plane beam divergence must be strictly limited, the inner radial coatings of the curved sections and the side coatings and lengths of the final straight sections are chosen to produce the desired beam divergence while the outer radial coating is selected so as to obtain a spatial-angular uniformity of the transmitted beam that is not achievable using a curved guide alone. The long-wavelength transmission of such guides tends to exceed that of equivalent straight guides using crystal filters.

Cook, J. C. [NIST Center for Neutron Research, 100 Bureau Drive, Stop 6103, Gaithersburg, Maryland 20899-6103 (United States)

2009-02-15T23:59:59.000Z

198

Collimator design for a dedicated molecular breast imaging-guided biopsy system: Proof-of-concept  

SciTech Connect

Purpose: Molecular breast imaging (MBI) is a dedicated nuclear medicine breast imaging modality that employs dual-head cadmium zinc telluride (CZT) gamma cameras to functionally detect breast cancer. MBI has been shown to detect breast cancers otherwise occult on mammography and ultrasound. Currently, a MBI-guided biopsy system does not exist to biopsy such lesions. Our objective was to consider the utility of a novel conical slant-hole (CSH) collimator for rapid (<1 min) and accurate monitoring of lesion position to serve as part of a MBI-guided biopsy system. Methods: An initial CSH collimator design was derived from the dimensions of a parallel-hole collimator optimized for MBI performed with dual-head CZT gamma cameras. The parameters of the CSH collimator included the collimator height, cone slant angle, thickness of septa and cones of the collimator, and the annular areas exposed at the base of the cones. These parameters were varied within the geometric constraints of the MBI system to create several potential CSH collimator designs. The CSH collimator designs were evaluated using Monte Carlo simulations. The model included a breast compressed to a thickness of 6 cm with a 1-cm diameter lesion located 3 cm from the collimator face. The number of particles simulated was chosen to represent the count density of a low-dose, screening MBI study acquired with the parallel-hole collimator for 10 min after a {approx}150 MBq (4 mCi) injection of Tc-99m sestamibi. The same number of particles was used for the CSH collimator simulations. In the resulting simulated images, the count sensitivity, spatial resolution, and accuracy of the lesion depth determined from the lesion profile width were evaluated. Results: The CSH collimator design with default parameters derived from the optimal parallel-hole collimator provided 1-min images with error in the lesion depth estimation of 1.1 {+-} 0.7 mm and over 21 times the lesion count sensitivity relative to 1-min images acquired with the current parallel-hole collimator. Sensitivity was increased via more vertical cone slant angles, larger annular areas, thinner cone walls, shorter cone heights, and thinner radiating septa. Full width at half maximum trended in the opposite direction as sensitivity for all parameters. There was less error in the depth estimates for less vertical slant angles, smaller annular areas, thinner cone walls, cone heights near 1 cm, and generally thinner radiating septa. Conclusions: A Monte Carlo model was used to demonstrate the feasibility of a CSH collimator design for rapid biopsy application in molecular breast imaging. Specifically, lesion depth of a 1-cm diameter lesion positioned in the center of a typical breast can be estimated with error of less than 2 mm using circumferential count profiles of images acquired in 1 min.

Weinmann, Amanda L.; Hruska, Carrie B.; Conners, Amy L.; O'Connor, Michael K. [Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905 (United States)

2013-01-15T23:59:59.000Z

199

Test data will be used to validate advanced turbine design and analysis tools.  

E-Print Network (OSTI)

Test data will be used to validate advanced turbine design and analysis tools. NREL signed a Cooperative Research and Development Agreement with Alstom in 2010 to conduct certification testing certification testing in 2011. Tests to be conducted by NREL include a power quality test to finalize

200

Design and implementation of P2P multimedia system on Taiwan Advance Research and Education Network  

Science Conference Proceedings (OSTI)

This study designs and implements a cross-platform, cross-domain P2P multimedia sharing system in the Taiwan Advance Research and Education Network. The system allows users to easily access the multimedia resources of the entire network from any network ... Keywords: OSGi, P2P network, multimedia system

Sung-Yen Chang; Chin-Feng Lai; Yueh-Min Huang; Te-Lung Liu; Jen-Wei Hu; Chia-Cheng Hu

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design  

E-Print Network (OSTI)

1 Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design Pedram Samadi.S. Wong, Senior Member, IEEE Abstract--In the future smart grid, both users and power companies can meter. All smart meters are connected to not only the power grid but also a communication infrastructure

Wong, Vincent

202

F2001-01-2793 Design of an Advanced Heavy Tactical Truck  

E-Print Network (OSTI)

response of both a series hybrid and an electric-driven truck at the top (vehicle) level, and the response is applied to the design of an advanced heavy tactical truck. Novel technologies (e.g., series hybrid for both series hybrid and series electric drive propulsion systems; results are presented for two sets

Michelena, Nestor

203

Design, construction, and procurement methodology of magnets for the 7-GeV Advanced Photon Source  

SciTech Connect

All major magnets of the Advanced Photon Source (APS) have now been measured and installed in the facility. This paper describes the mechanical design, construction, and procurement philosophy and methodology, and lessons learned from the construction and procurement of more than 1500 magnets for the APS storage ring, injector synchrotron ring, and positron accumulator ring.

Gorski, A.; Argyrakis, J.; Biggs, J. [and others

1995-06-01T23:59:59.000Z

204

Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors  

Science Conference Proceedings (OSTI)

The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are too costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized.

Fleischman, R.M.; Goldsmith, S.; Newman, D.F.; Trapp, T.J.; Spinrad, B.I.

1981-09-01T23:59:59.000Z

205

Safety aspects of the US advanced LMR (liquid metal reactor) design  

SciTech Connect

The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the US program is to produce a standard, commercial ALMR, including the associated fuel cycle. This paper discusses the US regulatory framework for design of an ALMR, safety aspects of the IFR program at ANL, the IFR fuel cycle and actinide recycle, and the ALMR plant design program at GE. 6 refs., 5 figs.

Pedersen, D.R.; Gyorey, G.L.; Marchaterre, J.F.; Rosen, S. (Argonne National Lab., IL (USA); General Electric Co., San Jose, CA (USA); Argonne National Lab., IL (USA); USDOE Assistant Secretary for Nuclear Energy, Washington, DC (USA))

1989-01-01T23:59:59.000Z

206

Advanced insulations for refrigerator/freezers: The potential for new shell designs incorporating polymer barrier construction  

Science Conference Proceedings (OSTI)

The impending phase-out of chlorofluorocarbons (CFCs) used to expand foam insulation, combined with requirements for increased energy efficiency, make the use of non-CFC-based high performance insulation technologies increasingly attractive. The majority of current efforts are directed at using advanced insulations in the form of thin, flat low-conductivity gas-filled or evacuated orthogonal panels, which we refer to as Advanced Insulation Panels (AIPs). AIPs can be used in composite with blown polymer foams to improve insulation performance in refrigerator/freezers (R/Fs) of conventional design and manufacture. This AIP/foam composite approach is appealing because it appears to be a feasible, near-term method for incorporating advanced insulations into R/Fs without substantial redesign or retooling. However, the requirements for adequate flow of foam during the foam-in-place operation impose limitations on the allowable thickness and coverage area of AIPs. This report examines design alternatives which may offer a greater increase in overall thermal resistance than is possible with the use of AIP/foam composites in current R/F design. These design alternatives generally involve a basic redesign of the R/F taking into account the unique requirements of advanced insulations and the importance of minimizing thermal bridging with high thermal resistance insulations. The focus here is on R/F doors because they are relatively simple and independent R/F components and are therefore good candidates for development of alterative designs. R/F doors have significant thermal bridging problems due to the steel outer shell construction. A three dimensional finite difference computer modeling exercise of a R/F door geometry was used to compare the overall levels of thermal resistance (R-value) for various design configurations.

Griffith, B.T.; Arasteh, D.

1992-11-01T23:59:59.000Z

207

Greening Federal Facilities: An Energy, Environmental, and Economic Resource Guide for Federal Facility managers and Designers; Second Edition  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEDERAL FACILITIES FEDERAL FACILITIES An Energy, Environmental, and Economic Resource Guide for Federal Facility Managers and Designers SECOND EDITION DOE/GO-102001-1165 Section DOE/GO-102001-1165 NREL/BK-710-29267 May 2001 i Greening Federal Facilities An Energy, Environmental, and Economic Resource Guide for Federal Facility Managers and Designers SECOND EDITION "Then I say the earth belongs to each ... generation during its course, fully and in its own right, no generation can contract debts greater than may be paid during the course of its own existence." Thomas Jefferson, September 6, 1789 Produced for: U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Federal Energy Management Program Produced by: BuildingGreen, Inc., Brattleboro, Vermont Under:

208

Evaluation of critical materials in five additional advance design photovoltaic cells  

DOE Green Energy (OSTI)

The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. The Critical Materials Assessment Program (CMAP) screens the designs and their supply chains and identifies potential shortages which might preclude large-scale use of the technologies. The results of the screening of five advanced PV cell designs are presented: (1) indium phosphide/cadmium sulfide, (2) zinc phosphide, (3) cadmium telluride/cadmium sulfide, (4) copper indium selenium, and (5) cadmium selenide photoelectrochemical. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 Gwe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has a 5 GWe of peak capacity by the year 2000, so that the total online capacity for the five cells is 25 GWe. Based on a review of the preliminary baseline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. The CMAP methodology used to identify critical materials is described; and detailed characterizations of the advanced photovoltaic cell designs under investigation, descriptions of additional cell production processes, and the results are presented. (WHK)

Smith, S.A.; Watts, R.L.; Martin, P.; Gurwell, W.E.

1981-02-01T23:59:59.000Z

209

PRISM; The plant design concept for the U. S. advanced liquid metal reactor program  

SciTech Connect

The US program for development of an advanced liquid metal reactor (ALMR) is proceeding into a new phase of focused design development. This new phase started at the beginning of 1989; its objective is to complete the conceptual design of the US ALMR, with supporting key feature tests, sufficiently to enter a more detailed design phase and subsequent construction of a prototype reactor plant. A project goal is to demonstrate by actual performance of the reactor its passive, inherent safety features and thereby provide the technical basis for certification of the design by the Nuclear Regulatory Commission (NRC). This paper reports on the PRISM (power reactor inherently safe module) reactor concept which in combination with the IFR (integral fast reactor) metal fuel cycle being developed by Argonne National Laboratory, was selected by DOE in 1988 as the reference design for the US ALMR program.

Berglund, R.C.; Tippets, F.E. (GE Nuclear Energy, Advance Nuclear Technology, San Jose, CA (US))

1989-01-01T23:59:59.000Z

210

Advanced Turbine Systems Program -- Conceptual design and product development. Quarterly report, August 1--October 31, 1995  

SciTech Connect

The objective of Phase 2 of the Advanced Turbine Systems (ATS) Program is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. This quarterly report, addresses only Task 4, conversion of a gas turbine to a coal-fired gas turbine, which was completed during the quarter and the nine subtasks included in Task 8, design and test of critical components. These nine subtasks address six ATS technologies as follows: catalytic combustion; recuperator; autothermal fuel reformer; high temperature turbine disc; advanced control system (MMI); and ceramic materials.

1995-12-31T23:59:59.000Z

211

Advanced turbine systems program conceptual design and product development. Quarterly report, August--October, 1994  

SciTech Connect

The objective of Phase 2 of the Advanced Turbine Systems (ATS) Program is to provide the conceptual design and product development plan for an ultra-high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. During this report period, the following tasks were completed: Market study; System definition and analysis; and Integrated program plans. Progress on Task 8, Design and Test of Critical Components, is also discussed. This particular task includes expanded materials and component research covering recuperators, combustion, autothermal fuel reformation, ceramics application and advanced gas turbine system controls.

1995-01-01T23:59:59.000Z

212

Advanced turbine systems program conceptual design and product development: Quarterly report, November 1993--January 1994  

SciTech Connect

This report describes progress made in the advanced turbine systems program conceptual design and product development. The topics of the report include selection of the Allison GFATS, castcool technology development for industrial engines test plan and schedule, code development and background gathering phase for the ultra low NOx combustion technology task, active turbine clearance task, and water vapor/air mixture cooling of turbine vanes task.

1995-01-01T23:59:59.000Z

213

Advanced Control Design and Field Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint  

DOE Green Energy (OSTI)

Utility-scale wind turbines require active control systems to operate at variable rotational speeds. As turbines become larger and more flexible, advanced control algorithms become necessary to meet multiple objectives such as speed regulation, blade load mitigation, and mode stabilization. At the same time, they must maximize energy capture. The National Renewable Energy Laboratory has developed control design and testing capabilities to meet these growing challenges.

Hand, M. M.; Johnson, K. E.; Fingersh, L. J.; Wright, A. D.

2004-05-01T23:59:59.000Z

214

Advanced Turbine Systems Program conceptual design and product development. Quarterly report, November 1994--January 1995  

SciTech Connect

Objective of Phase II of the ATS Program is to provide the conceptual design and product development plan for anultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. Technical progress covered in this report is confined to Task 4 (conversion to coal) and the nine subtasks under Task 8 (design and test of critical components). These nine subtasks address six ATS technologies: catalytic combustion, recuperator, autothermal fuel reformer, high temperature turbine disc, advanced control system, and ceramic materials.

1995-02-01T23:59:59.000Z

215

Advanced conceptual design report solid waste retrieval facility, phase I, project W-113  

SciTech Connect

Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

Smith, K.E.

1994-03-21T23:59:59.000Z

216

Mirror mounts designed for the Advanced Photon Source SRI-CAT  

SciTech Connect

Use of a mirror for beamlines at third-generation synchrotron radiation facilities, such as the Advanced Photon Source (APS) at Argonne National laboratory, has many advantages. A mirror as a first optical component provides significant reduction in the beam peak heat flux and total power on the downstream monochromator and simplifies the bremsstrahlung shielding design for the beamline transport. It also allows one to have a system for multibeamline branching and switching. More generally, a mirror is used for beam focusing and/or low-pass filtering. Six different mirror mounts have been designed for the SRI-CAT beamlines. Four of them are designed as water-cooled mirrors for white or pink beam use, and the other two are for monochromatic beam use. Mirror mount designs, including vacuum vessel structure and precision supporting stages, are presented in this paper.

Shu, D.; Benson, C.; Chang, J. [and others

1997-09-01T23:59:59.000Z

217

Best Practices Guide for Energy-Efficient Data Center Design: Revised March 2011, Federal Energy Management Program (FEMP) (Brochure)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Practices Guide Best Practices Guide for Energy-Efficient Data Center Design Revised March 2011 Prepared by the National Renewable Energy Laboratory (NREL), a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; NREL is operated by the Alliance for Sustainable Energy, LLC. FEDERAL ENERGY MANAGEMENT PROGRAM Acknowledgements | Contacts Acknowledgements This report was prepared by John Bruschi, Peter Rumsey, Robin Anliker, Larry Chu, and Stuart Gregson of Rumsey Engineers under contract to the National Renewable Energy Laboratory. The work was supported by the Federal Energy Management Program led by Will Lintner. Contacts William Lintner Bill Tschudi Otto VanGeet U.S. Department of Energy FEMP Lawrence Berkeley National Laboratory National Renewable Energy Laboratory

218

Design manual for management of solid by-products from advanced coal technologies  

SciTech Connect

Developing coal conversion technologies face major obstacles in byproduct management. This project has developed several management strategies based on field trials of small-scale landfills in an earlier phase of the project, as well as on published/unpublished sources detailing regulatory issues, current industry practice, and reuse opportunities. Field testing, which forms the basis for several of the disposal alternatives presented in this design manual, was limited to byproducts from Ca-based dry SO{sub 2} control technologies, circulating fluidized bed combustion ash, and bubbling bed fluidized bed combustion ash. Data on byproducts from other advanced coal technologies and on reuse opportunities are drawn from other sources (citations following Chapter 3). Field results from the 5 test cases examined under this project, together with results from other ongoing research, provide a basis for predictive modeling of long-term performance of some advanced coal byproducts on exposure to ambient environment. This manual is intended to provide a reference database and development plan for designing, permitting, and operating facilities where advanced coal technology byproducts are managed.

1994-10-01T23:59:59.000Z

219

Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995  

SciTech Connect

This report summarizes the tasks completed under this project during the period from August 1, 1994 through July 31, 1994. The objective of the study is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized by the year 2000. The tasks completed include a market study for the advanced turbine system; definition of an optimized recuperated gas turbine as the prime mover meeting the requirements of the market study and whose characteristics were, in turn, used for forecasting the total advanced turbine system (ATS) future demand; development of a program plan for bringing the ATS to a state of readiness for field test; and demonstration of the primary surface recuperator ability to provide the high thermal effectiveness and low pressure loss required to support the proposed ATS cycle.

1995-11-01T23:59:59.000Z

220

Task 6 -- Advanced turbine systems program conceptual design and product development  

DOE Green Energy (OSTI)

The Allison Engine Company has completed the Task 6 Conceptual Design and Analysis of Phase 2 of the Advanced Turbine System (ATS) contract. At the heart of Allison`s system is an advanced simple cycle gas turbine engine. This engine will incorporate components that ensure the program goals are met. Allison plans to commercialize the ATS demonstrator and market a family of engines incorporating this technology. This family of engines, ranging from 4.9 MW to 12 MW, will be suitable for use in all industrial engine applications, including electric power generation, mechanical drive, and marine propulsion. In the field of electric power generation, the engines will be used for base load, standby, cogeneration, and distributed generation applications.

NONE

1996-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Masters Thesis- Criticality Alarm System Design Guide with Accompanying Alarm System Development for the Radioisotope Production Laboratory in Richland, Washington  

SciTech Connect

A detailed instructional manual was created to guide criticality safety engineers through the process of designing a criticality alarm system (CAS) for Department of Energy (DOE) hazard class 1 and 2 facilities. Regulatory and technical requirements were both addressed. A list of design tasks and technical subtasks are thoroughly analyzed to provide concise direction for how to complete the analysis. An example of the application of the design methodology, the Criticality Alarm System developed for the Radioisotope Production Laboratory (RPL) of Richland, Washington is also included. The analysis for RPL utilizes the Monte Carlo code MCNP5 for establishing detector coverage in the facility. Significant improvements to the existing CAS were made that increase the reliability, transparency, and coverage of the system.

Greenfield, Bryce A.

2009-12-20T23:59:59.000Z

222

Neutronic Analysis of an Advanced Fuel Design Concept for the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

This study presents the neutronic analysis of an advanced fuel design concept for the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) that could significantly extend the current fuel cycle length under the existing design and safety criteria. A key advantage of the fuel design herein proposed is that it would not require structural changes to the present HFIR core, in other words, maintaining the same rated power and fuel geometry (i.e., fuel plate thickness and coolant channel dimensions). Of particular practical importance, as well, is the fact that the proposed change could be justified within the bounds of the existing nuclear safety basis. The simulations herein reported employed transport theory-based and exposure-dependent eigenvalue characterization to help improve the prediction of key fuel cycle parameters. These parameters were estimated by coupling a benchmarked three-dimensional MCNP5 model of the HFIR core to the depletion code ORIGEN via the MONTEBURNS interface. The design of an advanced HFIR core with an improved fuel loading is an idea that evolved from early studies by R. D. Cheverton, formerly of ORNL. This study contrasts a modified and increased core loading of 12 kg of 235U against the current core loading of 9.4 kg. The simulations performed predict a cycle length of 39 days for the proposed fuel design, which represents a 50% increase in the cycle length in response to a 25% increase in fissile loading, with an average fuel burnup increase of {approx}23%. The results suggest that the excess reactivity can be controlled with the present design and arrangement of control elements throughout the core's life. Also, the new power distribution is comparable or even improved relative to the current power distribution, displaying lower peak to average fission rate densities across the inner fuel element's centerline and bottom cells. In fact, the fission rate density in the outer fuel element also decreased at these key locations for the proposed design. Overall, it is estimated that the advanced core design could increase the availability of the HFIR facility by {approx}50% and generate {approx}33% more neutrons annually, which is expected to yield sizeable savings during the remaining life of HFIR, currently expected to operate through 2014. This study emphasizes the neutronics evaluation of a new fuel design. Although a number of other performance parameters of the proposed design check favorably against the current design, and most of the core design features remain identical to the reference, it is acknowledged that additional evaluations would be required to fully justify the thermal-hydraulic and thermal-mechanical performance of a new fuel design, including checks for cladding corrosion performance as well as for industrial and economic feasibility.

Xoubi, Ned [ORNL; Primm, Trent [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

2009-01-01T23:59:59.000Z

223

Devleopment of ceramics for FMCRD guide rollers  

SciTech Connect

In the current design of the fine motion control rod drive (FMCRD) in boiling water reactors, nearly 30 guide rollers made of Stellite No.3 are going to be used in each FMCRD. The release of cobalt from these guide rollers into the reactor core is inevitable, which will raise {sup 60}Co levels in reactor water and will increase radiation exposure during maintenance work. The purpose of this work is to develop cobalt-free guide rollers that have the necessary properties required for FMCRD guide rollers and replace the current guide rollers. This research and development (R&D) project has been performed under the sponsorship of the Advanced Nuclear Equipment Research Institute, which established the research contract with the Agency of National Resources and Energy, Ministry of International Trade and Industry.

Hirashima, Yutaka; Imamura, Yasuo [Denki Kagaku Kogyo Company, Ltd., Fukuoka (Japan)

1995-12-31T23:59:59.000Z

224

Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting  

SciTech Connect

The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

1995-02-01T23:59:59.000Z

225

Safety Design Strategy for the Advanced Test Reactor Primary Coolant Pump and Motor Replacement Project  

Science Conference Proceedings (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, Program and Project Management for the Acquisition of Capital Assets, safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, Facility Safety, and the expectations of DOE-STD-1189-2008, Integration of Safety into the Design Process, provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

Noel Duckwitz

2011-06-01T23:59:59.000Z

226

Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project  

Science Conference Proceedings (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, Program and Project Management for the Acquisition of Capital Assets, safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, Facility Safety, and the expectations of DOE-STD-1189-2008, Integration of Safety into the Design Process, provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

Noel Duckwitz

2011-06-01T23:59:59.000Z

227

Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project  

Science Conference Proceedings (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, Program and Project Management for the Acquisition of Capital Assets, safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, Facility Safety, and the expectations of DOE-STD-1189-2008, Integration of Safety into the Design Process, provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

Noel Duckwitz

2011-06-01T23:59:59.000Z

228

Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor  

Science Conference Proceedings (OSTI)

Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progress toward element testing will be reviewed.

Daniel M. Wachs; Richard G. Ambrosek; Gray Chang; Mitchell K. Meyer

2006-10-01T23:59:59.000Z

229

Advanced Photon Source RF Beam Position Monitor System Upgrade Design and Commissioning  

E-Print Network (OSTI)

This paper describes the Advanced Photon Source (APS) storage ring mono-pulse rf beam position monitor (BPM) system upgrade. The present rf BPM system requires a large dead time of 400 ns between the measured bunch and upstream bunch. The bunch pattern is also constrained by the required target cluster of six bunches of 7 mA minimum necessary to operate the receiver near the top end of the dynamic range. The upgrade design objectives involve resolving bunches spaced as closely as 100 ns. These design objectives require us to reduce receiver front-end losses and reflections. An improved trigger scheme that minimizes systematic errors is also required. The upgrade is in the final phases of installation and commissioning at this time. The latest experimental and commissioning data and results will be presented.

Lill, R; Singh, O

2001-01-01T23:59:59.000Z

230

Design and Application of CVD Diamond Windows for X-Rays at the Advanced Photon Source  

Science Conference Proceedings (OSTI)

Two types of directly cooled, 0.2-mm-thick, 8-mm-diameter clear aperture CVD diamond windows have been designed and successfully fabricated by two different vendors for use at the Advanced Photon Source (APS). Both windows contain a direct braze joint between the diamond and the cooled OFHC copper. These windows can be used to replace the front-end beryllium windows in high-heat-load applications and can be used as white beam windows in the beamlines. This paper presents the detailed design of the diamond windows, the thermal analysis of the diamond window under different thermal load configurations, as well as a complete list of the existing APS front-end beryllium window configurations and replacement scenarios. Small-angle scattering experiments have been conducted on both diamond windows and a polished beryllium window, and the results are presented.

Jaski, Yifei [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Bldg 401, Argonne, IL 60439 (United States); Cookson, David [University of Chicago, CARS, APS Sector 15, 9700 S. Cass Ave, Bldg. 434D, Argonne, IL 60439 (United States)

2007-01-19T23:59:59.000Z

231

Design and application of CVD diamond windows for x-rays at the Advanced Photon Source.  

Science Conference Proceedings (OSTI)

Two types of directly cooled, 0.2-mm-thick, 8-mm-diameter clear aperture CVD diamond windows have been designed and successfully fabricated by two different vendors for use at the Advanced Photon Source (APS). Both windows contain a direct braze joint between the diamond and the cooled OFHC copper. These windows can be used to replace the front-end beryllium windows in high-heat-load applications and can be used as white beam windows in the beamlines. This paper presents the detailed design of the diamond windows, the thermal analysis of the diamond window under different thermal load configurations, as well as a complete list of the existing APS front-end beryllium window configurations and replacement scenarios. Small-angle scattering experiments have been conducted on both diamond windows and a polished beryllium window, and the results are presented.

Jaski, Y.; Cookson, D.; Experimental Facilities Division (APS); Univ. of Chicago

2007-01-01T23:59:59.000Z

232

Advanced turbine systems program -- Conceptual design and product development. Final report  

SciTech Connect

This Final Technical Report presents the accomplishments on Phase 2 of the Advanced Turbine Systems (ATS). The ATS is an advanced, natural gas fired gas turbine system that will represent a major advance on currently available industrial gas turbines in the size range of 1--20 MW. This report covers a market-driven development. The Market Survey reported in Section 5 identified the customer`s performance needs. This market survey used analyses performed by Solar turbine Incorporated backed up by the analyses done by two consultants, Research Decision Consultants (RDC) and Onsite Energy Corporation (Onsite). This back-up was important because it is the belief of all parties that growth of the ATS will depend both on continued participation in Solar`s traditional oil and gas market but to a major extent on a new market. This new market is distributed electrical power generation. Difficult decisions have had to be made to meet the different demands of the two markets. Available resources, reasonable development schedules, avoidance of schedule or technology failures, probable acceptance by the marketplace, plus product cost, performance and environmental friendliness are a few of the complex factors influencing the selection of the Gas Fired Advanced Turbine System described in Section 3. Section 4 entitled ``Conversion to Coal`` was a task which addresses the possibility of a future interruption to an economic supply of natural gas. System definition and analysis is covered in Section 6. Two major objectives were met by this work. The first was identification of those critical technologies that can support overall attainment of the program goals. Separate technology or component programs were begun to identify and parameterize these technologies and are described in Section 7. The second objective was to prepare parametric analyses to assess performance sensitivity to operating variables and to select design approaches to meet the overall program goals.

1996-07-26T23:59:59.000Z

233

The Advanced Manufacturing Jobs and Innovation Accelerator ...  

Science Conference Proceedings (OSTI)

Page 1. Advanced Manufacturing Jobs and Innovation Accelerator Challenge Application Guide & Document Checklist 1 of 4 ...

2012-06-26T23:59:59.000Z

234

Designing and Operating Through Compromise: Architectural Analysis of CKMS for the Advanced Metering Infrastructure  

Science Conference Proceedings (OSTI)

Compromises attributable to the Advanced Persistent Threat (APT) highlight the necessity for constant vigilance. The APT provides a new perspective on security metrics (e.g., statistics based cyber security) and quantitative risk assessments. We consider design principals and models/tools that provide high assurance for energy delivery systems (EDS) operations regardless of the state of compromise. Cryptographic keys must be securely exchanged, then held and protected on either end of a communications link. This is challenging for a utility with numerous substations that must secure the intelligent electronic devices (IEDs) that may comprise complex control system of systems. For example, distribution and management of keys among the millions of intelligent meters within the Advanced Metering Infrastructure (AMI) is being implemented as part of the National Smart Grid initiative. Without a means for a secure cryptographic key management system (CKMS) no cryptographic solution can be widely deployed to protect the EDS infrastructure from cyber-attack. We consider 1) how security modeling is applied to key management and cyber security concerns on a continuous basis from design through operation, 2) how trusted models and key management architectures greatly impact failure scenarios, and 3) how hardware-enabled trust is a critical element to detecting, surviving, and recovering from attack.

Duren, Mike [Sypris Electronics, LLC; Aldridge, Hal [ORNL; Abercrombie, Robert K [ORNL; Sheldon, Frederick T [ORNL

2013-01-01T23:59:59.000Z

235

Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly progress report, December 1, 1995--February 29, 1996  

SciTech Connect

This report describes the overall program status of the General Electric Advanced Gas Turbine Development program, and reports progress on three main task areas. The program is focused on two specific products: (1) a 70-MW class industrial gas turbine based on the GE90 core technology, utilizing a new air cooling methodology; and (2) a 200-MW class utility gas turbine based on an advanced GE heavy-duty machine, utilizing advanced cooling and enhancement in component efficiency. The emphasis for the industrial system is placed on cycle design and low emission combustion. For the utility system, the focus is on developing a technology base for advanced turbine cooling while achieving low emission combustion. The three tasks included in this progress report are on: conversion to a coal-fueled advanced turbine system, integrated program plan, and design and test of critical components. 13 figs., 1 tab.

1997-06-01T23:59:59.000Z

236

Core and Refueling Design Studies for the Advanced High Temperature Reactor  

SciTech Connect

The Advanced High Temperature Reactor (AHTR) is a design concept for a central generating station type [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. This report presents the current status of ongoing design studies of the core, in-vessel structures, and refueling options for the AHTR. The AHTR design remains at the notional level of maturity as important material, structural, neutronic, and hydraulic issues remain to be addressed. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. An illustration of the current AHTR core, reactor vessel, and nearby structures is shown in Fig. ES1. The AHTR core design concept is based upon 252 hexagonal, plate fuel assemblies configured to form a roughly cylindrical core. The core has a fueled height of 5.5 m with 25 cm of reflector above and below the core. The fuel assembly hexagons are {approx}45 cm across the flats. Each fuel assembly contains 18 plates that are 23.9 cm wide and 2.55 cm thick. The reactor vessel has an exterior diameter of 10.48 m and a height of 17.7 m. A row of replaceable graphite reflector prismatic blocks surrounds the core radially. A more complete reactor configuration description is provided in Section 2 of this report. The AHTR core design space exploration was performed under a set of constraints. Only low enrichment (<20%) uranium fuel was considered. The coated particle fuel and matrix materials were derived from those being developed and demonstrated under the Department of Energy Office of Nuclear Energy (DOE-NE) advanced gas reactor program. The coated particle volumetric packing fraction was restricted to at most 40%. The pressure drop across the core was restricted to no more than 1.5 atm during normal operation to minimize the upward force on the core. Also, the flow velocity in the core was restricted to 3 m/s to minimize erosion of the fuel plates. Section 3.1.1 of this report discusses the design restrictions in more detail.

Holcomb, David Eugene [ORNL; Ilas, Dan [ORNL; Varma, Venugopal Koikal [ORNL; Cisneros, Anselmo T [ORNL; Kelly, Ryan P [ORNL; Gehin, Jess C [ORNL

2011-09-01T23:59:59.000Z

237

Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR)  

DOE Green Energy (OSTI)

A new reactor plant concept is presented that combines the benefits of ceramic-coated, high-temperature particle fuel with those of clean, high-temperature, low-pressure molten salt coolant. The Advanced High-Temperature Reactor (AHTR) concept is a collaboration of Oak Ridge National Laboratory, Sandia National Laboratories, and the University of California at Berkeley. The purpose of the concept is to provide an advanced design capable of satisfying the top-level functional requirements of the U.S. Department of Energy Next Generation Nuclear Plant (NGNP), while also providing a technology base that is sufficiently robust to allow future development paths to higher temperatures and larger outputs with highly competitive economics. This report summarizes the status of the AHTR preconceptual design. It captures the results from an intense effort over a period of 3 months to (1) screen and examine potential feasibility concerns with the concept; (2) refine the conceptual design of major systems; and (3) identify research, development, and technology requirements to fully mature the AHTR design. Several analyses were performed and are presented to quantify the AHTR performance expectations and to assist in the selection of several design parameters. The AHTR, like other NGNP reactor concepts, uses coated particle fuel in a graphite matrix. But unlike the other NGNP concepts, the AHTR uses molten salt rather than helium as the primary system coolant. The considerable previous experience with molten salts in nuclear environments is discussed, and the status of high-temperature materials is reviewed. The large thermal inertia of the system, the excellent heat transfer and fission product retention characteristics of molten salt, and the low-pressure operation of the primary system provide significant safety attributes for the AHTR. Compared with helium coolant, a molten salt cooled reactor will have significantly lower fuel temperatures (150-200-C lower) for the equivalent temperature of heat delivered to either the power conversion system or a hydrogen production plant. Using a comparative cost analysis, the construction costs per unit output are projected to be 50-55% of the costs for modular gas-cooled or sodium-cooled reactor systems. This is primarily a consequence of substantially larger power output and higher conversion efficiency for the AHTR. The AHTR has a number of unique technical challenges in meeting the NGNP requirements; however, it appears to offer advantages over high-temperature helium-cooled reactors and provides an alternative development path to achieve the NGNP requirements. Primary challenges include optimizing the core design for improved response to transients, designing an internal blanket to thermally protect the reactor vessel, and engineering solutions to high-temperature refueling and maintenance.

Ingersoll, D.T.

2004-07-29T23:59:59.000Z

238

Database Design for Mere Mortals: A Hands-on Guide to Relational Database Design, 2nd edition  

Science Conference Proceedings (OSTI)

From the Book:Plain cooking cannot be entrusted to plain cooks.?Countess Morphy In the past, the process of designing a database has been a task performed by information technology (IT) personnel and professional database developers. These ...

Michael J. Hernandez

2003-03-01T23:59:59.000Z

239

A Review of the Containment Building Design for the Advanced Reactor  

SciTech Connect

A pilot plant is being designed to prove and validate the technical merits and capabilities of the System-Integrated Modular Advanced Reactor(SMART) technology. The first phase of architect/engineering services is being in progress to obtain the construction permit for the pilot plant. During this first phase, the Safe Guard Vessel that surrounds the reactor vessel was eliminated and its function incorporated into the containment building structure. Further investigation and review were performed to optimize the Reactor Containment Building structure and the layout inside to ensure all design criteria and concepts required by the SMART technology were met. This paper describes the review and the design of the Reactor Containment Building structure for the pilot plant considering the requirements of the original SMART design. The results of this review show that the cylindrical reinforced concrete containment was selected from the various types of the containment buildings and will be used to demonstrate the performance of the original SMART reactor. (authors)

Lee, Joon-Ho; Park, Mun-Baek; Yun, Soon-Chul [Korea Power Engineering Company, Inc., 360-9 Mabuk-Ri, Gusong-Eup, Yongin-Si, Kyonggi-Do, 449-713 (Korea, Republic of)

2004-07-01T23:59:59.000Z

240

Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, January--March 1992  

DOE Green Energy (OSTI)

The objectives of the study are to: Develop a baseline design for indirect liquefaction using advanced Fischer-Tropsch (F-T) technology. Prepare the capital and operating costs for the baseline design. Develop a process flow sheet simulation (PFS) model. This report summarizes the activities completed during the period December 23, 1992 through March 15, 1992. In Task 1, Baseline Design and Alternates, the following activities related to the tradeoff studies were completed: approach and basis; oxygen purity; F-T reactor pressure; wax yield; autothermal reformer; hydrocarbons (C{sub 3}/C{sub 4}s) recovery; and hydrogenrecovery. In Task 3, Engineering Design Criteria, activities were initiated to support the process tradeoff studies in Task I and to develop the environmental strategy for the Illinois site. The work completed to date consists of the development of the F-T reactor yield correlation from the Mobil dam and a brief review of the environmental strategy prepared for the same site in the direct liquefaction baseline study.Some work has also been done in establishing site-related criteria, in establishing the maximum vessel diameter for train sizing and in coping with the low H{sub 2}/CO ratio from the Shell gasifier. In Task 7, Project Management and Administration, the following activities were completed: the subcontract agreement between Amoco and Bechtel was negotiated; a first technical progress meeting was held at the Bechtel office in February; and the final Project Management Plan was approved by PETC and issued in March 1992.

Not Available

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Baseline design/economics for advanced Fischer-Tropsch technology. Quarterly report, July--September 1994  

DOE Green Energy (OSTI)

This report is Bechtel`s twelfth quarterly technical progress report and covers the period of July through September, 1994. All major tasks associated with the contract study have essentially been completed. Effort is under way in preparing various topical reports for publication. The objectives of this study are to: Develop a baseline design and two alternative designs for indirect liquefaction using advanced F-T technology. The baseline design uses Illinois No. 6 Eastern Coal and conventional refining. There is an alternative refining case using ZSM-5 treatment of the vapor stream from the slurry F-T reactor and an alternative coal case using Western coal from the Powder River Basin. Prepare the capital and operating costs for the baseline design and the alternatives. Individual plant costs for the alternative cases win be prorated on capacity, wherever possible, from the baseline case. Develop a process flowsheet simulation (PFS) model; establish the baseline design and alternatives; evaluate baseline and alternative economics; develop engineering design criteria; develop a process flowsheet simulation (PFS) model; perform sensitivity studies using the PFS model; document the PFS model and develop a DOE training session on its use; and perform project management, technical coordination and other miscellaneous support functions. Tasks 1, 2, 3 and 5 have essentially been completed. Effort is under way in preparing topical reports for publication. During the current reporting period, work progressed on Tasks 4, 6 and 7. This report covers work done during this period and consists of four sections: Introduction and Summary; Task 4 - Process Flowsheet Simulation (PFS) Model and Conversion to ASPEN PLUS; Task 6 - Document the PFS model and develop a DOE training session on its use; and Project Management and Staffing Report.

NONE

1994-12-31T23:59:59.000Z

242

Advanced turbine systems program conceptual design and product development. Annual report, August 1993--July 1994  

SciTech Connect

This Yearly Technical Progress Report covers the period August 3, 1993 through July 31, 1994 for Phase 2 of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE Contract No. DE-AC421-93MC30246. As allowed by the Contract (Part 3, Section J, Attachment B) this report is also intended to fulfill the requirements for a fourth quarterly report. The objective of Phase 2 of the ATS Program is to provide the conceptual design and product development plan for an ultra-high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized in the year 2000. During the period covered by this report, Solar has completed three of eight program tasks and has submitted topical reports. These three tasks included a Project Plan submission of information required by NEPA, and the selection of a Gas-Fueled Advanced Turbine System (GFATS). In the latest of the three tasks, Solar`s Engineering team identified an intercooled and recuperated (ICR) gas turbine as the eventual outcome of DOE`s ATS program coupled with Solar`s internal New Product Introduction (NPI) program. This machine, designated ``ATS50`` will operate at a thermal efficiency (turbine shaft power/fuel LHV) of 50 percent, will emit less than 10 parts per million of NOx and will reduce the cost of electricity by 10 percent. It will also demonstrate levels of reliability, availability, maintainability, and durability (RAMD) equal to or better than those of today`s gas turbine systems. Current activity is concentrated in three of the remaining five tasks a Market Study, GFATS System Definition and Analysis, and the Design and Test of Critical Components.

1994-11-01T23:59:59.000Z

243

Biological Assessment of the Advanced Turbine Design at Wanapum Dam, 2005  

DOE Green Energy (OSTI)

This report summarizes the results of studies sponsored by the U.S. Department of Energy and conducted by Pacific Northwest National Laboratory to evaluate the biological performance (likelihood of injury to fish) from an advanced design turbine installed at Unit 8 of Wanapum Dam on the Columbia River in Washington State in 2005. PNNL studies included a novel dye technique to measure injury to juvenile fish in the field, an evaluation of blade-strike using both deterministic and stochastic models, and extended analysis of the response of the Sensor Fish Device to strike, pressure, and turbulence within the turbine system. Fluorescein dye was used to evaluate injuries to live fish passed through the advanced turbine and an existing turbine at two spill discharges (15 and 17 kcfs). Under most treatments the results were not significantly different for the two turbines, however, eye injury occurred in nearly 30% of fish passing through Unit 9 but in less than 10% of those passing through Unit 8 at 15 kcfs. Both deterministic and stochastic blade-strike models were applied for the original and new AHTS turbines. The modeled probabilities were compared to the Sensor Fish results (Carlson et al. 2006) and the biological studies using juvenile fish (Normandeau et al. 2005) under the same operational parameters. The new AHTS turbine had slightly higher modeled injury rates than the original turbine, but no statistical evidence to suggest that there is significant difference in blade-strike injury probabilities between the two turbines, which is consistent with the experiment results using Sensor Fish and juvenile fish. PNNL also conducted Sensor Fish studies at Wanapum Dam in 2005 concurrent with live fish studies. The probablility of severe collision events was similar for both turbine. The advanced turbine had a slightly lower probability of severe shear events but a slightly higher probability of slight shear.

Dauble, Dennis D.; Deng, Zhiqun; Richmond, Marshall C.; Moursund, Russell A.; Carlson, Thomas J.; Rakowski, Cynthia L.; Duncan, Joanne P.

2007-09-12T23:59:59.000Z

244

Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies  

Science Conference Proceedings (OSTI)

The primary goal of this project is to increase the fatigue life of a welded-joint by 10 times and to reduce energy use by 25% through product performance and productivity improvements using an integrated modeling approach. The fatigue strength of a welded-joint is currently the bottleneck to design high performance and lightweight welded structures using advanced materials such as high strength steels. In order to achieve high fatigue strength in a welded-joint it is necessary to manage the weld bead shape for lower stress concentration, produce preferable residual stress distribution, and obtain the desired microstructure for improved material toughness and strength. This is a systems challenge that requires the optimization of the welding process, the welding consumable, the base material, as well as the structure design. The concept of virtual welded-joint design has been proposed and established in this project. The goal of virtual welded-joint design is to develop a thorough procedure to predict the relationship of welding process, microstructure, property, residual stress, and the ultimate weld fatigue strength by a systematic modeling approach. The systematic approach combines five sub-models: weld thermal-fluid model, weld microstructure model, weld material property model, weld residual stress model, and weld fatigue model. The systematic approach is thus based on interdisciplinary applied sciences including heat transfer, computational fluid dynamics, materials science, engineering mechanics, and material fracture mechanics. The sub-models are based on existing models with further development. The results from modeling have been validated with critical experiments. The systematic modeling approach has been used to design high fatigue resistant welds considering the combined effects of weld bead geometry, residual stress, microstructure, and material property. In particular, a special welding wire has been developed in this project to introduce compressive residual stress at weld toe for weld fatigue resistance.

Yang, Z.; Dong, P.; Liu, S.; Babu, S.; Olson, G.; DebRoy, T.

2005-04-15T23:59:59.000Z

245

Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

in PEM Fuel Cells: in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization J. Vernon Cole and Ashok Gidwani CFDRC Prepared for: DOE Hydrogen Fuel Cell Kickoff Meeting February 13, 2007 This presentation does not contain any proprietary or confidential information. Background Water Management Issues Arise From: ƒ Generation of water by cathodic reaction ƒ Membrane humidification requirements ƒ Capillary pressure driven transport through porous MEA and GDL materials ƒ Scaling bipolar plate channel dimensions J.H. Nam and M. Kaviany, Int. J. Heat Mass Transfer, 46, pp. 4595-4611 (2003) Relevant Barriers and Targets ƒ Improved Gas Diffusion Layer, Flow Fields, Membrane Electrode Assemblies Needed to Improve Water Management: * Flooding blocks reactant transport

246

Advanced Turbine Systems program conceptual design and product development. Quarterly report, February--April 1994  

DOE Green Energy (OSTI)

Task 8.5 (active clearance control) was replaced with a test of the 2600F prototype turbine (Task 8.1T). Test 8.1B (Build/Teardown of prototype turbine) was added. Tasks 4 (conversion of gas-fired turbine to coal-fired turbine) and 5 (market study) were kicked off in February. Task 6 (conceptual design) was also initiated. Task 8.1 (advanced cooling technology) now has an approved test plan. Task 8.4 (ultra low NOx combustion technology) has completed the code development and background gathering phase. Task 8.6 (two-phase cooling of turbine vanes) is proceeding well; initial estimates indicate that nearly 2/3 of required cooling flow can be eliminated.

NONE

1995-02-01T23:59:59.000Z

247

Advanced turbine systems program: Conceptual design and product development. Topical report, November 1993  

SciTech Connect

This report has been prepared by Solar Turbines Incorporated (Solar) in accordance with Task 2 of the Advanced Turbine Systems (ATS) Contract. This report addresses only the work that will be performed under Task 8 (Design and Test of Critical Components) of the Contract. The discussion is divided into four general sections: Project Description; Potential Environmental Impacts; Required Permits and Licenses; and Environmental, Safety and Health (ES and H) Agency Contact Information. As described in further detail herein, the activities to occur during the project (i.e., Task 8) consists primarily of short duration testing of laboratory-scale components (or portions of components) for the ATS program. The testing involved will fall in the following general categories: recuperator, combustor, and blade/airfoil cooling. All activities contemplated will occur at existing facilities. Solar believes that the information in this report supports the conclusion that no significant environmental impacts will be associated with the project.

Wilken, L.S.

1994-01-01T23:59:59.000Z

248

Advanced turbine systems program conceptual design and product development. Quarterly report, February 1995--April 1995  

DOE Green Energy (OSTI)

This Quarterly Technical Progress Report covers the period February 1, 1995, through April 30, 1995, for Phase II of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE contract No. DE-AC21-93MC30246. The objective of Phase II of the ATS Program is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. Tasks 1, 2, 3, 5, 6 and 7 of Phase II have been completed in prior quarters. Their results have been discussed in the applicable quarterly reports and in their respective topical reports. With the exception of Task 7, final editions of these topical reports have been submitted to the DOE. This quarterly report, then, addresses only Task 4 and the nine subtasks included in Task 8, {open_quotes}Design and Test of Critical Components.{close_quotes} These nine subtasks address six ATS technologies as follows: (1) Catalytic Combustion - Subtasks 8.2 and 8.5, (2) Recuperator - Subtasks 8.1 and 8.7, (3) Autothermal Fuel Reformer - Subtask 8.3, (4) High Temperature Turbine Disc - Subtask 8.4, (5) Advanced Control System (MMI) - Subtask 8.6, and (6) Ceramic Materials - Subtasks 8.8 and 8.9. Major technological achievements from Task 8 efforts during the quarter are as follows: (1) The subscale catalytic combustion rig in Subtask 8.2 is operating consistently at 3 ppmv of NO{sub x} over a range of ATS operating conditions. (2) The spray cast process used to produce the rim section of the high temperature turbine disc of Subtask 8.4 offers additional and unplanned spin-off opportunities for low cost manufacture of certain gas turbine parts.

Karstensen, K.W.

1995-07-01T23:59:59.000Z

249

Advanced Turbine Systems program conceptual design and product development. Quarterly report, August--October 1994  

Science Conference Proceedings (OSTI)

This report addresses progress on Advanced Turbine Systems (ATS) design and testing. The most important program milestone to date occurred during this quarter. Allison successfully tested the prototype ATS high temperature turbine section to the ATS goal of 2600F Turbine Rotor Inlet Temperature. This test represented the first full engine test of the Castcool turbine airfoil cooling system. This contract provided funding for the build and test of the turbine system while other Allison IR and D funding and Navy contract funds provided the design and development successes necessary to advance this technology to the level required for a successful test. A demonstration of this kind shows what a cooperative government/industry initiative can achieve. This test itself was cut short due to a high interstage cavity temperature resulting in remaining budget at completion of test. Allison has decided that the best use of the remaining budget is to develop the manufacturing process for Castcool turbine rotor blades now that the process for the stator vanes has been proven. Development of this process will provide the basis for future engine development of this critical ATS high temperature turbine technology. DOE COR Diane Hooie agreed with this direction and Allison will proceed down this path posthaste. Allison is in the process of requesting a contract extension. Although most tasks will be completed by end of contract there are two areas where additional time is needed: (1) dynamic oxidation testing -- obtaining the goal of 5,000hrs will require an additional 2 months; (2) combustor rig testing of the ``best`` lean pre-mix module will require an additional one month. Addition time will be required to accomplish the reporting task for these efforts.

Not Available

1995-01-01T23:59:59.000Z

250

DOE-HDBK-1205-97; Guide to Good Practices for the Design, Development, and Implementation of Examinations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5-97 5-97 June 1997 Supersedes DOE-STD-1011-92 DOE HANDBOOK GUIDE TO GOOD PRACTICES FOR THE DESIGN, DEVELOPMENT, AND IMPLEMENTATION OF EXAMINATIONS U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (423) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. DOE-HDBK-1205-97 iii FOREWORD 1. This Department of Energy (DOE) Handbook is approved for use by all DOE

251

CALIOP: a multichannel design code for gas-cooled fast reactors. Code description and user's guide  

Science Conference Proceedings (OSTI)

CALIOP is a design code for fluid-cooled reactors composed of parallel fuel tubes in hexagonal or cylindrical ducts. It may be used with gaseous or liquid coolants. It has been used chiefly for design of a helium-cooled fast breeder reactor and has built-in cross section information to permit calculations of fuel loading, breeding ratio, and doubling time. Optional cross-section input allows the code to be used with moderated cores and with other fuels.

Thompson, W.I.

1980-10-01T23:59:59.000Z

252

Advanced Turbine Systems Program conceptual design and product development. Task 3.0, Selection of natural gas-fired Advanced Turbine System  

DOE Green Energy (OSTI)

This report presents results of Task 3 of the Westinghouse ATS Phase II program. Objective of Task 3 was to analyze and evaluate different cycles for the natural gas-fired Advanced Turbine Systems in order to select one that would achieve all ATS program goals. About 50 cycles (5 main types) were evaluated on basis of plant efficiency, emissions, cost of electricity, reliability-availability-maintainability (RAM), and program schedule requirements. The advanced combined cycle was selected for the ATS plant; it will incorporate an advanced gas turbine engine as well as improvements in the bottoming cycle and generator. Cost and RAM analyses were carried out on 6 selected cycle configurations and compared to the baseline plant. Issues critical to the Advanced Combined Cycle are discussed; achievement of plant efficiency and cost of electricity goals will require higher firing temperatures and minimized cooling of hot end components, necessitating new aloys/materials/coatings. Studies will be required in combustion, aerodynamic design, cooling design, leakage control, etc.

NONE

1994-12-01T23:59:59.000Z

253

Kinetics and advanced digester design for anaerobic digestion of water hyacinth and primary sludge  

Science Conference Proceedings (OSTI)

A research program centered around a facility located at Walt Disney World (WDW) is in progress to evaluate the use of water hyacinth (WH) for secondary and tertiary wastewater treatment, to optimize growth of WH under these conditions, and to convert the resultant primary sludge (PS) and WH to methane via anaerobic digestion. This article describes the status of the biogasification component of this program, which includes baseline and advanced digestion experiments with individual feeds and blends and the design of an experimental test unit (ETU) to be installed at WDW. Experiments with several blends demonstrated that methane yields can be predicted from the fractional content and methane yield of each component. The process was found to adhere to the Monod kinetic model for microbial growth, and associated kinetic parameters were developed for various feed combinations. A novel upflow digester is achieving significantly higher conversion than a stirred-tank digester. Of several pretreatment techniques used, only alkaline treatment resulted in increased biodegradability. A larger scale (4.5 m/sup 3/) experimental test unit is being designed for installation at WDW in 1982. 13 figures, 4 tables.

Chynoweth, D.P.; Dolenc, D.A.; Ghosh, S.; Henry, M.P.; Jerger, D.E.; Srivastava, V.J.

1982-01-01T23:59:59.000Z

254

Design, fabrication, and certification of advanced modular PV power systems. Final technical progress report  

DOE Green Energy (OSTI)

Solar Electric Specialties Company (SES) has completed a two and a half year effort under the auspices of the US Department of Energy (DOE) PVMaT (Photovoltaic Manufacturing Technology) project. Under Phase 4A1 of the project for Product Driven System and Component Technology, the SES contract ``Design, Fabrication and Certification of Advanced Modular PV Power Systems`` had the goal to reduce installed system life cycle costs through development of certified (Underwriters Laboratories or other listing) and standardized prototype products for two of the product lines, MAPPS{trademark} (Modular Autonomous PV Power Supply) and Photogensets{trademark}. MAPPS are small DC systems consisting of Photovoltaic modules, batteries and a charge controller and producing up to about a thousand watt-hours per day. Photogensets are stand-alone AC systems incorporating a generator as backup for the PV in addition to a DC-AC inverter and battery charger. The program tasks for the two-year contract consisted of designing and fabricating prototypes of both a MAPPS and a Photogenset to meet agency listing requirements using modular concepts that would support development of families of products, submitting the prototypes for listing, and performing functionality testing at Sandia and NREL. Both prototypes were candidates for UL (Underwriters Laboratories) listing. The MAPPS was also a candidate for FM (Factory Mutual) approval for hazardous (incendiary gases) locations.

Lambarski, T.; Minyard, G. [Solar Electric Specialties Co., Willits, CA (United States)

1998-10-01T23:59:59.000Z

255

Physical Database Design: the database professional's guide to exploiting indexes, views, storage, and more  

Science Conference Proceedings (OSTI)

The rapidly increasing volume of information contained in relational databases places a strain on databases, performance, and maintainability: DBAs are under greater pressure than ever to optimize database structure for system performance and administration. ... Keywords: Data Modeling & Design, Data Warehousing, Database Management, Information Technology

Sam S. Lightstone; Toby J. Teorey; Tom Nadeau

2007-03-01T23:59:59.000Z

256

Market Transformation: A Practical Guide to Designing and Evaluating Energy Efficient Programs  

Science Conference Proceedings (OSTI)

One widely accepted paradigm for energy efficiency marketing is called market transformation. This theory holds that energy efficiency programs should be designed to transform markets by reducing market barriers, thus allowing energy efficient products and services to become widely available and adopted by energy customers. Market transformation theory also states that these market changes should become persistent and self-sustaining.

2001-04-19T23:59:59.000Z

257

Conceptual design of a high-intensity positron source for the Advanced Neutron Source  

SciTech Connect

The Advanced Neutron Source (ANS) is a planned new basic and applied research facility based on a powerful steady-state research reactor that provides neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux will be at least five times more than is available in the world`s best existing reactor facility. Construction of the ANS provides a unique opportunity to build a positron spectroscopy facility (PSF) with very-high-intensity beams based on the radioactive decay of a positron-generating isotope. The estimated maximum beam current is 1000 to 5000 times higher than that available at the world`s best existing positron research facility. Such an improvement in beam capability, coupled with complementary detectors, will reduce experiment durations from months to less than one hour while simultaneously improving output resolution. This facility will remove the existing barriers to the routine use of positron-based analytical techniques and will be a giant step toward realization of the full potential of the application of positron spectroscopy to materials science. The ANS PSF is based on a batch cycle process using {sup 64}Cu isotope as the positron emitter and represents the status of the design at the end of last year. Recent work not included in this report, has led to a proposal for placing the laboratory space for the positron experiments outside the ANS containment; however, the design of the positron source is not changed by that relocation. Hydraulic and pneumatic flight tubes transport the source material between the reactor and the positron source where the beam is generated and conditioned. The beam is then transported through a beam pipe to one of several available detectors. The design presented here includes all systems necessary to support the positron source, but the beam pipe and detectors have not been addressed yet.

Hulett, L.D.; Eberle, C.C.

1994-12-01T23:59:59.000Z

258

The Design and Construction of the Advanced Mixed Waste Treatment Facility  

SciTech Connect

The Advanced Mixed Treatment Project (AMWTP) privatized contract was awarded to BNFL Inc. in December 1996 and construction of the main facility commenced in August 2000. The purpose of the advanced mixed waste treatment facility is to safely treat plutonium contaminated waste, currently stored in drums and boxes, for final disposal at the Waste Isolation Pilot Plant (WIPP). The plant is being built at the Idaho National Engineering and Environmental Laboratory. Construction was completed in 28 months, to satisfy the Settlement Agreement milestone of December 2002. Commissioning of the related retrieval and characterization facilities is currently underway. The first shipment of pre-characterized waste is scheduled for March 2003, with AMWTP characterized and certified waste shipments from June 2003. To accommodate these challenging delivery targets BNFL adopted a systematic and focused construction program that included the use of a temporary structure to allow winter working, proven design and engineering principles and international procurement policies to help achieve quality and schedule. The technology involved in achieving the AMWTP functional requirements is primarily based upon a BNFL established pedigree of plant and equipment; applied in a manner that suits the process and waste. This technology includes the use of remotely controlled floor mounted and overhead power manipulators, a high power shredder and a 2000-ton force supercompactor with the attendant glove box suite, interconnections and automated material handling. The characterization equipment includes real-time radiography (RTR) units, drum and box assay measurement systems, drum head space gas sampling / analysis and drum venting, drum coring and sampling capabilities. The project adopted a particularly stringent and intensive pre-installation testing philosophy to ensure that equipment would work safely and reliably at the required throughput. This testing included the complete off site integration of functional components or glove boxes, with the attendant integrated control system and undertaking continuous, non-stop, operational effectiveness proof tests. This paper describes the process, plant and technology used within the AMWTP and provides an outline of the associated design, procurement, fabrication, testing and construction.

Harrop, G.

2003-02-27T23:59:59.000Z

259

SYNCH: A program for design and analysis of synchrotrons and beamlines -- user`s guide  

Science Conference Proceedings (OSTI)

SYNCH is a computer program for use in the design and analysis of synchrotrons, storage rings, and beamlines. It has a large repertoire of commands that can be accessed in a flexible way. The input statements and the results of the calculations they invoke are saved in an internal database so that this information may be shared by other statements. SYNCH is the first accelerator program to organize its input in the form of a language. The statements, which resemble sentences, provide a natural way of describing lattices and invoking relevant calculations. The organization of the program is modular, so that it has been possible to expand its capabilities progressively.

Garren, A.A.; Kenney, A.S.; Courant, E.D.; Russell, A.D.; Syphers, M.J.

1993-12-31T23:59:59.000Z

260

State solar energy incentives primer: a guide to selection and design  

DOE Green Energy (OSTI)

Basic design principles are discussed for the creation of several types of state financial incentives and the major advantages and disadvantages of a number of incentive options are cited. The financial incentives included are income tax strategies, loan programs, property tax exemptions, and excise/sales tax exemptions. Information is cited to maximize the effectiveness of solar energy programs. Four basic elements of a state solar energy program are program planning; institutional barriers mitigation; research, development, and demonstration projects; and information outreach efforts. A matrix of state solar legislation by type is shown and organizational contacts are listed. (MHR)

None

1979-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced Turbine Systems Program conceptual design and product development. Quarterly report, November 1993--January 1994  

SciTech Connect

This Quarterly Technical Progress Report covers the period November 1, 1993, through January 31, 1994, for Phase 11 of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE Contract No. DE-AC421-93MC30246. The objective of this program is to provide the conceptual design and product development plan for an industrial gas turbine system to operate at a thermal efficiency of 50 percent ({open_quotes}ATS50{close_quotes}) with future improvement to 60 percent ({open_quotes}ATS60{close_quotes}). During the prior quarter Solar`s ATS Engine Design Team characterized the intercooled and recuperated (ICR) gas turbine cycle in 1-spool, 2-shaft, and 2-spool 3-shaft arrangements. Fixed and variable geometry free power turbines were compared in both arrangements and sensitivity of all combinations to component performance was determined. Full- and part-load performance were compared over a range of ambient air temperatures. During the quarter just completed, the Team defined four unique and different physical arrangements of the gas turbine components outlined above. These three arrangements were then examined in terms of their ability to support Program goals of thermal efficiency, low emissions, increased reliability, availability and maintainability (RAM), and reduced cost of electrical power production. This work, together with preliminary specification of component cooling needs, suggested that earlier studies of the pressure ratio/firing temperature/thermal efficiency relationship should be re-visited. This accomplished, the effect of total cooling air bleed requirements on thermal efficiency was determined. This will lead to the selection of hot section material capability/cooling air requirements which are able to meet Program goals. As noted in the first quarterly report, where there are apparently conflicting data, later results should take precedence due to the continuing refinement of analytical models.

Karstensen, K.W.

1994-06-01T23:59:59.000Z

262

Design goals for advanced heat pumps: Engineering economics methodology: Final report  

SciTech Connect

An advanced heat pump (AHP) could make significant improvements in both the seasonal efficiency and peak power demand characteristics of all-electric equipment for space heating and cooling and water heating in residential and small commercial buildings. At the same time, however, the initial cost premium of an AHP must be low enough to make it a competitive offering in the heating and cooling marketplace of the 1990's. An essential step in the research and development process is the evaluation of the economic benefits of alternative AHP candidates. A present, residential electric rates do not provide an adequate basis for measuring such benefits in terms of actual resource utilization, especially with regard to power demand. For this reason, incremental electricity supply costs are developed in this report for typical utilities in different regions of the United States. These costs include both energy and demand charges on an hourly basis. A methodology is established to estimate the hourly kWh consumption of air-source heat pump systems with and without integrated water heating capability and to determine the annual operating cost of these systems based on the incremental electricity supply costs. Alternative design approaches for an AHP are evaluated in this analytical framework in order to determine the cost effectiveness of each approach in each region. Based on a preliminary analysis of a limited number of design alternatives, an air-source heat pump with an Energy Efficiency Ratio at 95/sup 0/F of 11.0 Btu/Wh, with integrated water heating, and in some regions, an adjustable-speed compressor, appears to be the most economic candidate for an AHP.

Petersen, S.R.

1987-06-01T23:59:59.000Z

263

Cyclone Boiler Reburn NOx Control Improvements via Cyclone Design Improvements and Advanced Air Staging  

E-Print Network (OSTI)

Eastman Kodak owns three Babcock & Wilcox coal fired cyclone boilers and one Combustion Engineering pulverized coal boiler located at Kodak Park in Rochester, New York. Duke Energy Generation Services (DEGS) operates and maintains the steam and electric generation equipment for Kodak and has primary responsibility for related capital project development and execution. The Kodak plant is capable of generating approximately 1,900,000 pounds of steam and 130 MWs of electrical power. To achieve the required level of NOx control, Kodak chose The Babcock & Wilcox (B&W) Company's, Natural Gas Reburn technology for the three cyclone boilers. The relatively low capital cost of the system and reasonable cost of natural gas in the mid 1990s made Natural Gas Reburn an economic fit for the RACT requirements of 0.60#s/Mmbtu NOx. The run up in natural gas prices since 2002 has increased the cost of NOx removed from ~ $2000/ton to ~$5000/ton based on fuel expense alone. In an effort to curtail the cost of control, Duke Energy Generations Services and Kodak implemented a series of projects that integrated Cyclone Design Improvements and Advancements in Air Staging along with ESP inlet flue modifications that resulted in decreasing the Natural Gas required for NOx control ~ 40% from baseline levels saving the plant several million dollars per year in fuel expense. Significant improvements in opacity and filterable PM were also realized by these changes.

Morabito, B.; Nee, B.; Goff, V.; Maringo, G.

2008-01-01T23:59:59.000Z

264

Designation Order No. 00-12.00 to the Executive Director of Loan Programs and Director of the Advanced Technology Vehicles Manufacturing Incentive Program  

Directives, Delegations, and Requirements

Secretary or Energy designates each of the Executive Director of Loan Programs and the Director of the Advanced Technology Vehicles Manufacturing Incentive ...

2010-04-30T23:59:59.000Z

265

Affordable housing through energy conservation: A guide to designing and constructing energy efficient homes  

SciTech Connect

PEAR is an interactive program for residential building energy analysis utilizing a comprehensive DOE-2.1 data base for residential buildings. This data base was compiled using over 10,000 computer simulations covering five residential buildings in 45 geographical locations. This extensive data base is used by PEAR to estimate the annual energy use of houses with typical conservation measures such as ceiling, wall, and floor insulation, different window types and glazing layers, infiltration levels, and equipment efficiency. It also allows the user to include the effects of roof and wall color, movable night insulation on the windows, reflective and heat absorbing glass, an attached sunspace, and use of a night setback. Regression techniques in PEAR permit adjustments for different building geometries, window areas and orientations, wall construction, and extension of the data to over 800 US locations based on climate parameters. PEAR is designed as a user-friendly program that can be used both as a research tool by energy policy analysts, and as a nontechnical energy calculation method by architects, homebuilders, homeowners, and others in the building industry. Technical documentation of the PEAR program and the database is given elsewhere (see References). 3 refs., 11 figs., 5 tabs.

Not Available

1989-06-01T23:59:59.000Z

266

Advanced Turbine System (ATS) program conceptual design and product development. Quarterly report, March 1, 1994--May 31, 1994  

DOE Green Energy (OSTI)

GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus their close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA based in engineering and manufacturing and are marketed through the GE Industrial and Power Systems. Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NO{sub x} and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coating and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives requires the development of Advanced Gas Turbine Systems which encompasses two potential products: a new aeroderivative combined cycle system for the industrial market and a combined cycle system for the utility sector that is based on an advanced frame machine.

NONE

1998-12-31T23:59:59.000Z

267

Advanced Turbine System (ATS) program conceptual design and product development. Quarterly report, September, 1--November 30, 1995  

SciTech Connect

GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus our close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA-based in engineering and manufacturing and are marketed through GE Power Systems. Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NOx, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both the efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emissions. Improved coatings and other materials technologies along with creative combustor design can result in solutions which will achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine.

1997-06-01T23:59:59.000Z

268

Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly report, December 1, 1994--February 28, 1995  

SciTech Connect

Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emission. Improved costing and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced GE heavy duty machines utilizing advanced cooling and enhancement in component efficiency. Both of these activities require the identification and resolution of technical issues critical to achieving Advanced Turbine System (ATS) goals. The emphasis for the industrial ATS will be placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS will be placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS will be placed on developing a technology base for advanced turbine cooling while utilizing demonstrated and planned improvements in low emissions combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE`s Industrial and Power Systems is solely responsible for offering Ge products for the industrial and utility markets. The GE ATS program will be managed fully by this organization with core engine technology being supplied by GE Aircraft Engines (GEAE) and fundamental studies supporting both product developments being conducted by GE Corporate Research and Development (CRD).

1995-12-31T23:59:59.000Z

269

Fusion Engineering and Design 80 (2006) 2562 Physics basis for the advanced tokamak fusion  

E-Print Network (OSTI)

2005 Abstract The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-axis. Transport projections are presented using the drift-wave based GLF23 model. The approach to power.V. All rights reserved. Keywords: Reactor studies; Fusion power plant; Advanced tokamak; Physics basis 1

270

Advanced Turbine System (ATS) program conceptual design and product development. Quarterly report, March 1--May 31, 1995  

DOE Green Energy (OSTI)

Achieving the goals of 60% efficiency, 8 ppmvd NOx, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system: the turbine inlet temperature of the gas turbine must increase, leading also to increased NOx emission. However, improved coating and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. The program is focused on two specific products: a 70MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling technology, and a 200MW class utility gas turbine based on an advanced GE heavy duty machine utilizing advanced cooling and enhancement in component efficiency.

NONE

1995-12-31T23:59:59.000Z

271

7-GeV advanced photon source beamline initiative: Conceptual design report  

Science Conference Proceedings (OSTI)

The DOE is building a new generation 6-7 GeV Synchrotron Radiation Source known as the Advanced Photon Source (APS) at Argonne National Laboratory. This facility, to be completed in FY 1996, can provide 70 x-ray sources of unprecedented brightness to meet the research needs of virtually all scientific disciplines and numerous technologies. The technological research capability of the APS in the areas of energy, communications and health will enable a new partnership between the DOE and US industry. Current funding for the APS will complete the current phase of construction so that scientists can begin their applications in FY 1996. Comprehensive utilization of the unique properties of APS beams will enable cutting-edge research not currently possible. It is now appropriate to plan to construct additional radiation sources and beamline standard components to meet the excess demands of the APS users. In this APS Beamline Initiative, 2.5-m-long insertion-device x-ray sources will be built on four straight sections of the APS storage ring, and an additional four bending-magnet sources will also be put in use. The front ends for these eight x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build standard beamline components to meet scientific and technological research demands of the Collaborative Access Teams. The Conceptual Design Report (CDR) for the APS Beamline Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. The document also describes the preconstruction R&D plans for the Beamline Initiative activities and provides the cost estimates for the required R&D.

Not Available

1993-05-01T23:59:59.000Z

272

ADVANCED COMPOSITE WIND TURBINE BLADE DESIGN BASED ON DURABILITY AND DAMAGE TOLERANCE  

Science Conference Proceedings (OSTI)

The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints and closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relati

Galib Abumeri; Frank Abdi (PhD)

2012-02-16T23:59:59.000Z

273

Advanced turbine systems (ATS) program conceptual design and product development. Quarterly report, September 1 - November 30, 1994  

DOE Green Energy (OSTI)

Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system: the turbine inlet temperature must increase, although this will lead to increased NOx emission. Improved coating and materials along with creative combustor design can result in solutions. The program is focused on two specific products: a 70 MW class industrial gas turbine based on GE90 core technology utilizing an innovative air cooling methodology, and a 200 MW class utility gas turbine based on an advanced GE heavy duty machines utilizing advanced cooling and enhancement in component efficiency. This report reports on tasks 3-8 for the industrial ATS and the utility ATS. Some impingement heat transfer results are given.

NONE

1994-12-31T23:59:59.000Z

274

Providing the Basis for Innovative Improvements in Advanced LWR Reactor Passive Safety Systems Design: An Educational R&D Project  

SciTech Connect

This project characterizes typical two-phase stratified flow conditions in advanced water reactor horizontal pipe sections, following activation of passive cooling systems. It provides (1) a means to educate nuclear engineering students regarding the importance of two-phase stratified flow in passive cooling systems to the safety of advanced reactor systems and (2) describes the experimental apparatus and process to measure key parameters essential to consider when designing passive emergency core cooling flow paths that may encounter this flow regime. Based on data collected, the state of analysis capabilities can be determined regarding stratified flow in advanced reactor systems and the best paths forward can be identified to ensure that the nuclear industry can properly characterize two-phase stratified flow in passive emergency core cooling systems.

Brian G. Williams; Jim C. P. Liou; Hiral Kadakia; Bill Phoenix; Richard R. Schultz

2007-02-27T23:59:59.000Z

275

Human Factors Psychology in the Support of Forecasting: The Design of Advanced Meteorological Workstations  

Science Conference Proceedings (OSTI)

Advanced Meteorological Processing (AMP) systems will provide a workstation environment to support the activities of operational forecasters and research meteorologists. AMP system research and development projects are underway at laboratories of ...

Robert R. Hoffman

1991-03-01T23:59:59.000Z

276

Thermal considerations for advanced SOI substrates designed for III-V/Si heterointegration  

E-Print Network (OSTI)

Silicon-on-lattice engineered substrates (SOLES) are SOI substrates with embedded Ge layers that facilitate III-V compound integration for advanced integrated circuits. The new materials integration scheme in SOLES requires ...

Bulsara, Mayank

277

Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors  

E-Print Network (OSTI)

H. G. MacPherson The molten salt adventure Nuclear Scienceand P.F. Peterson, Molten-Salt-Cooled Advanced High-Clarno Assessment of candidate molten salt coolants for the

Galvez, Cristhian

2011-01-01T23:59:59.000Z

278

Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 2: Appendices  

Science Conference Proceedings (OSTI)

This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

Not Available

1994-07-01T23:59:59.000Z

279

Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 1: Main report  

SciTech Connect

This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

Not Available

1994-07-01T23:59:59.000Z

280

Final safety evaluation report related to the certification of the Advanced Boiling Water Reactor design. Supplement 1  

SciTech Connect

This report supplements the final safety evaluation report (FSER) for the US Advanced Boiling Water Reactor (ABWR) standard design. The FSER was issued by the US Nuclear Regulatory Commission (NRC) staff as NUREG-1503 in July 1994 to document the NRC staff`s review of the US ABWR design. The US ABWR design was submitted by GE Nuclear Energy (GE) in accordance with the procedures of Subpart B to Part 52 of Title 10 of the Code of Federal Regulations. This supplement documents the NRC staff`s review of the changes to the US ABWR design documentation since the issuance of the FSER. GE made these changes primarily as a result of first-of-a-kind-engineering (FOAKE) and as a result of the design certification rulemaking for the ABWR design. On the basis of its evaluations, the NRC staff concludes that the confirmatory issues in NUREG-1503 are resolved, that the changes to the ABWR design documentation are acceptable, and that GE`s application for design certification meets the requirements of Subpart B to 10 CFR Part 52 that are applicable and technically relevant to the US ABWR design.

NONE

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems  

SciTech Connect

Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

Yoder, JR.G.L.

2006-03-08T23:59:59.000Z

282

Instrument guide for MRI-guided percutaneous interventions  

E-Print Network (OSTI)

As MRI guided interventions are becoming more widely practiced, the goal of this thesis was to design an instrument guidance device for MRI-guided percutaneous interventions in closed bore systems, namely cryoablation ...

Chen, Xuefeng, S.B. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

283

Design of Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety Matveev V.Z., Morenko A.I., Shapovalov V.I. Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 37 Mira Prospect, Sarov, Russia, 607190, matveev@vniief.ru Maslov A.A., Orlov V.K., Semenov A.G., Sergeev V.M., Yuferov O.I., Visik A.M. Bochvar Institute of Inorganic Materials (VNIINM) 5-A Rogova street, p.b. 369, Moscow, Russia, 123060, majul2000@mail.ru Abstract - The report is dedicated to a problem of creation of a new generation of dual-purpose transport packing complete sets (TPCS) 1 with advanced safety. These sets are intended for transportation and storage of spent nuclear fuel assemblies (SNFA) 2 of VVER reactors and spent spark elements (SSE)

284

Advancing Design-for-Assembly: The Next Generation in Assembly Planning  

SciTech Connect

At the 1995 IEEE Symposium on Assembly and Task Planning, Sandia National Laboratories introduced the Archimedes 2 Software Tool [2]. The system was described as a second-generation assembly planning system that allowed preliminmy application of awembly planning for industry, while solidly supporting further research in planning techniques. Sandia has worked closely with indust~ and academia over the last four years. The results of these working relationships have bridged a gap for the next generation in assembly planning. Zke goal of this paper is to share Sandia 's technological advancements in assembly planning over the last four years and the impact these advancements have made on the manufacturing communip.

Calton, T.L.

1998-12-09T23:59:59.000Z

285

Design of GA thermochemical water-splitting process for the Mirror Advanced Reactor System  

DOE Green Energy (OSTI)

GA interfaced the sulfur-iodine thermochemical water-splitting cycle to the Mirror Advanced Reactor System (MARS). The results of this effort follow as one section and part of a second section to be included in the MARS final report. This section describes the process and its interface to the reactor. The capital and operating costs for the hydrogen plant are described.

Brown, L.C.

1983-04-01T23:59:59.000Z

286

Designing and operating through compromise: architectural analysis of CKMS for the advanced metering infrastructure  

Science Conference Proceedings (OSTI)

Compromises attributable to the Advanced Persistent Threat (APT) highlight the necessity for constant vigilance. The APT provides a new perspective on security metrics (e.g., statistics based cyber security) and quantitative risk assessments. We consider ... Keywords: cryptographic key management system (CKMS), key management, security, security models/metrics, smart grid, testing/experimentation, trusted hardware

Michael Duren; Hal Aldridge; Robert K. Abercrombie; Frederick T. Sheldon

2013-01-01T23:59:59.000Z

287

Advanced turbine systems program conceptual design and product development. Quarterly report, August 1993--November 1994  

Science Conference Proceedings (OSTI)

This report discusses a series of heat balance programs were developed and reviewed in a Westinghouse Engineering Department meeting. The cycle formats were reviewed and candidate conditions and components selected for additional investigations,for the selection of the Natural Gas-fired Advanced Turbines Systems (GFATS).

Not Available

1993-12-01T23:59:59.000Z

288

Advanced turbine systems program conceptual design and product development. Quarterly report, November 1993--January 1994  

Science Conference Proceedings (OSTI)

This report discusses a series of materials testing programs were developed and reviewed in a Westinghouse Engineering Department meeting. The cycle formats were reviewed and candidate conditions and components selected for additional investigations,for the selection of the Natural Gas-fired Advanced Turbines Systems (GFATS).

Not Available

1994-04-01T23:59:59.000Z

289

Complexity analysis and algorithm design for advance bandwidth scheduling in dedicated networks  

Science Conference Proceedings (OSTI)

An increasing number of high-performance networks provision dedicated channels through circuit switching or MPLS/GMPLS techniques to support large data transfer. The link bandwidths in such networks are typically shared by multiple users through advance ... Keywords: bandwidth scheduling, dedicated networks, nonapproximable

Yunyue Lin, Qishi Wu

2013-02-01T23:59:59.000Z

290

CONCEPTUAL DESIGN AND ECONOMICS OF THE ADVANCED CO2 HYBRID POWER CYCLE  

SciTech Connect

Research has been conducted under United States Department of Energy Contract DEFC26-02NT41621 to analyze the feasibility of a new type of coal-fired plant for electric power generation. This new type of plant, called the Advanced CO{sub 2} Hybrid Power Plant, offers the promise of efficiencies nearing 36 percent, while concentrating CO{sub 2} for 100% sequestration. Other pollutants, such as SO{sub 2} and NOx, are sequestered along with the CO{sub 2} yielding a zero emissions coal plant. The CO{sub 2} Hybrid is a gas turbine-steam turbine combined cycle plant that uses CO{sub 2} as its working fluid to facilitate carbon sequestration. The key components of the plant are a cryogenic air separation unit (ASU), a pressurized circulating fluidized bed gasifier, a CO{sub 2} powered gas turbine, a circulating fluidized bed boiler, and a super-critical pressure steam turbine. The gasifier generates a syngas that fuels the gas turbine and a char residue that, together with coal, fuels a CFB boiler to power the supercritical pressure steam turbine. Both the gasifier and the CFB boiler use a mix of ASU oxygen and recycled boiler flue gas as their oxidant. The resulting CFB boiler flue gas is essentially a mixture of oxygen, carbon dioxide and water. Cooling the CFB flue gas to 80 deg. F condenses most of the moisture and leaves a CO{sub 2} rich stream containing 3%v oxygen. Approximately 30% of this flue gas stream is further cooled, dried, and compressed for pipeline transport to the sequestration site (the small amount of oxygen in this stream is released and recycled to the system when the CO{sub 2} is condensed after final compression and cooling). The remaining 70% of the flue gas stream is mixed with oxygen from the ASU and is ducted to the gas turbine compressor inlet. As a result, the gas turbine compresses a mixture of carbon dioxide (ca. 64%v) and oxygen (ca. 32.5%v) rather than air. This carbon dioxide rich mixture then becomes the gas turbine working fluid and also becomes the oxidant in the gasification and combustion processes. As a result, the plant provides CO{sub 2} for sequestration without the performance and economic penalties associated with water gas shifting and separating CO{sub 2} from gas streams containing nitrogen. The cost estimate of the reference plant (the Foster Wheeler combustion hybrid) was based on a detailed prior study of a nominal 300 MWe demonstration plant with a 6F turbine. Therefore, the reference plant capital costs were found to be 30% higher than an estimate for a 425 MW fully commercial IGCC with an H class turbine (1438 $/kW vs. 1111 $/kW). Consequently, the capital cost of the CO{sub 2} hybrid plant was found to be 25% higher than that of the IGCC with pre-combustion CO{sub 2} removal (1892 $/kW vs. 1510 $/kW), and the levelized cost of electricity (COE) was found to be 20% higher (7.53 c/kWh vs. 6.26 c/kWh). Although the final costs for the CO{sub 2} hybrid are higher, the study confirms that the relative change in cost (or mitigation cost) will be lower. The conceptual design of the plant and its performance and cost, including losses due to CO{sub 2} sequestration, is reported. Comparison with other proposed power plant CO{sub 2} removal techniques reported by a December 2000 EPRI report is shown. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2004-12-01T23:59:59.000Z

291

Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly report, December 1, 1993--February 28, 1994  

SciTech Connect

GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus our close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA based in engineering and manufacturing and are marketed through the GE Industrial and Power Systems. Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emission. Improved coating and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal.

1997-06-01T23:59:59.000Z

292

Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly report, August 25--November 30, 1993  

SciTech Connect

GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus our close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA based in engineering and manufacturing and are marketed through the GE Industrial and Power Systems. Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emission. Improved coating and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal.

1997-06-01T23:59:59.000Z

293

Evaluation of critical materials for five advanced design photovoltaic cells with an assessment of indium and gallium  

DOE Green Energy (OSTI)

The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. This report presents the results of the screening of the five following advanced PV cell designs: polycrystalline silicon, amorphous silicon, cadmium sulfide/copper sulfide frontwall, polycrystalline gallium arsenide MIS, and advanced concentrator-500X. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 GWe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has 5 GWe of peak capacity by the year 2000, so that the total online cpacity for the five cells is 25 GWe. Based on a review of the preliminary basline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. Earlier DOE sponsored work on the assessment of critical materials in PV cells conclusively identtified indium and gallium as warranting further investigation as to their availability. Therefore, this report includes a discussion of the future availability of gallium and indium. (WHK)

Watts, R.L.; Gurwell, W.E.; Jamieson, W.M.; Long, L.W.; Pawlewicz, W.T.; Smith, S.A.; Teeter, R.R.

1980-05-01T23:59:59.000Z

294

Advanced energy design and operation technologies research: Recommendations for a US Department of Energy multiyear program plan  

Science Conference Proceedings (OSTI)

This document describes recommendations for a multiyear plan developed for the US Department of Energy (DOE) as part of the Advanced Energy Design and Operation Technologies (AEDOT) project. The plan is an outgrowth of earlier planning activities conducted for DOE as part of design process research under the Building System Integration Program (BSIP). The proposed research will produce intelligent computer-based design and operation technologies for commercial buildings. In this document, the concept is explained, the need for these new computer-based environments is discussed, the benefits are described, and a plan for developing the AEDOT technologies is presented for the 9-year period beginning FY 1989. 45 refs., 37 figs., 9 tabs.

Brambley, M.R.; Crawley, D.B.; Hostetler, D.D.; Stratton, R.C.; Addision, M.S.; Deringer, J.J.; Hall, J.D.; Selkowitz, S.E.

1988-12-01T23:59:59.000Z

295

ANL/APS/TB-44, Guidelines for Beamline and Front-End Radiation Shielding Design at the Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

APS/TB-44 Rev. 4 APS/TB-44 Rev. 4 Guidelines for Beamline and Front-End Radiation Shielding Design at the Advanced Photon Source Revision 4 Advanced Photon Source About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information

296

Advanced Mixed Waste Treatment Project, Design, Construction and Start-up  

Science Conference Proceedings (OSTI)

The Advanced Mixed Waste Treatment Project (AMWTP) was awarded to BNG America in December of 1996. In 2005, following discussions between the United States (US) Department of Energy (DOE) and the United Kingdom (UK) Department of Trade and Industry (DTi) the DOE purchased the facilities. DOE awarded Bechtel B and W Idaho (BBWI) a contract to operate the facilities for one year, commencing 1 May 2005. The hand-over of AMWTP included the facility to repackage and super-compact waste (Advanced Mixed Waste Treatment Facility) and the retrieval, characterization, storage and Transuranic Package Transporter (TRUPACT) loading facility. This poster updates the progress of AMWTP from the previous presentations to Waste Management (WM) [1 and 2] to completion of the transition to BBWI in May 2005. (authors)

Dobson, A. [BNG America, 2345 Stevens Drive Suite no. 240, Richland, WA 99354 (United States); Harrop, G.; Holmes, R.G.G. [BNG America, 1920 E. 17th Street Suite no. 200, Idaho Falls, ID 83404 (United States)

2006-07-01T23:59:59.000Z

297

Advanced turbine systems phase II - conceptual design and product development. Final report, August 1993--July 1996  

SciTech Connect

The National Energy Strategy (NES) calls for a balanced program of greater energy efficiency, use of alternative fuels, and the environmentally responsible development of all U.S. energy resources. Consistent with the NES, a Department of Energy (DOE) program has been created to develop Advanced Turbine Systems (ATS). The technical ATS requirements are based upon two workshops held in Greenville, SC that were sponsored by DOE and hosted by Clemson University. The objective of this 8-year program, managed jointly by DOE`s Office of Fossil Energy, and, Office of Conservation and Renewable Energy, is to develop natural-gas-fired base load power plants that will have cycle efficiencies greater than 60%, lower heating value (LHV), be environmentally superior to current technology, and also be cost competitive. The program will include work to transfer advanced technology to the coal- and biomass-fueled systems being developed in other DOE programs.

1996-10-01T23:59:59.000Z

298

Using Process/CFD Co-Simulation for the Design and Analysis of Advanced Energy Systems  

Science Conference Proceedings (OSTI)

In this presentation we describe the major features and capabilities of NETLs Advanced Process Engineering Co-Simulator (APECS) and highlight its application to advanced energy systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based electricity and hydrogen plant in the DOEs $1 billion, 10-year FutureGen demonstration project. APECS is an integrated software suite which allows the process and energy industries to optimize overall plant performance with respect to complex thermal and fluid flow phenomena by combining process simulation (e.g., Aspen Plus) with high-fidelity equipment simulations based on computational fluid dynamics (CFD) models (e.g., FLUENT).

Zitney, S.E.

2007-04-01T23:59:59.000Z

299

Cryptographic Key Management (CKM) Design Principles for the Advanced Metering Infrastructure (AMI)  

Science Conference Proceedings (OSTI)

Smart grid technologies are introducing millions of new intelligent components to the electric grid that communicate in much more advanced ways (two-way communications, dynamic optimization, and wired and wireless communications) than in the past. Cyber security is important because the bi-directional flow of two-way communication and control capabilities in the smart grid that will enable an array of new functionalities and applications.One area of critical importance to the security of ...

2012-11-29T23:59:59.000Z

300

Advancement of Erosion Testing, Modeling, and Design of Concrete Pavement Subbase Layers  

E-Print Network (OSTI)

Concrete pavement systems have great capacity to provide long service lives; however, if the subbase layer is improperly designed or mismanaged, service life would be diminished significantly since the subbase layer performs many important roles in a concrete pavement system. The erosion of material beneath a concrete slab is an important performance-related factor that if applied to the selection of base materials can enhance the overall design process for concrete pavement systems. However, erosion of the subbase has not been included explicitly in analysis and design procedures since there is not a well accepted laboratory test and related erosion model suitable for design. Previous erosion test methods and erosion models are evaluated in terms of their utility to characterize subbase materials for erosion resistance. With this information, a new test configuration was devised that uses a Hamburg wheel-tracking device for evaluating erodibility with respect to the degree of stabilization and base type. Test devices, procedures, and results are explained and summarized for application in mechanistic design processes. A proposed erosion model is calibrated by comparing erosion to lab test results and LTPP field performance data. Subbase design guidelines are provided with a decision flowchart and a design assistant spread sheet for the economical and sustainable design of concrete pavement subbase layers by considering many design factors that affect the performance of the subbase.

Jung, Youn Su

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced turbine systems program conceptual design and product development. Quarterly report, February, 1996--April, 1996  

SciTech Connect

This paper describes the design and testing of critical gas turbine components. Development of catalytic combustors and diagnostic equipment is included.

1996-07-08T23:59:59.000Z

302

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation.  

E-Print Network (OSTI)

??This thesis is aimed at the process development, design, modeling and optimization of synthetic fuels, power and Substitute Natural Gas (SNG) production from coal and (more)

Lu, Xiaoming

2012-01-01T23:59:59.000Z

303

Advanced turbine systems program conceptual design and product development quarterly report, May--July 1995  

Science Conference Proceedings (OSTI)

Progress for the quarter is reported in the areas of system definition and analysis and design and test of critical components.

NONE

1995-08-01T23:59:59.000Z

304

In-Vessel Retention Technology Development and Use for Advanced PWR Designs in the USA and Korea  

SciTech Connect

In-Vessel Retention (IVR) of molten core debris by means of external reactor vessel flooding is a cornerstone of severe accident management for Westinghouse's AP600 (advanced passive light water reactor) design. The case for its effectiveness (made in previous work by the PI) has been thoroughly documented, reviewed as part of the licensing certification, and accepted by the US Nuclear Regulatory Commission. A successful IVR would terminate a severe accident, passively, with the core in a stable, coolable configuration (within the lower head), thus avoiding the largely uncertain accident evolution with the molten debris on the containment floor. This passive plant design has been upgraded by Westinghouse to the AP1000, a 1000 MWe plant very similar to the AP600. The severe accident management approach is very similar too, including In-Vessel Retention as the cornerstone feature, and initial evaluations indicated that this would be feasible at the higher power as well. A similar strategy is adopted in Korea for the APR1400 plant. The overall goal of this project is to provide experimental data and develop the necessary basic understanding so as to allow the robust extension of the AP600 In-Vessel Retention strategy for severe accident management to higher power reactors, and in particular, to the AP1000 advanced passive design.

T.G. Theofanous; S.J. Oh; J.H. Scobel

2004-05-18T23:59:59.000Z

305

Systems Engineering Advancement Research Initiative  

E-Print Network (OSTI)

strategic partners Define and research fundamental concepts for advanced system engineering Contribute materials, and handbooks to inspire, inform, and guide students and practitioners VENUE SEAri is located

de Weck, Olivier L.

306

User Information | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

User Information The Advanced Photon Source provides a variety of guides, resources, and information for prospective, new, and current users. In this section: For Prospective Users...

307

Designing Soybeans for the 21st Century MarketsChapter 3 Advances in Genome Sequencing and Genotyping Technology for Soybean Diversity Analysis  

Science Conference Proceedings (OSTI)

Designing Soybeans for the 21st Century Markets Chapter 3 Advances in Genome Sequencing and Genotyping Technology for Soybean Diversity Analysis Biofuels and Bioproducts and Biodiesel Health Nutrition Biochemistry Processing Biofuels -

308

Conceptual design of an advanced absorption cycle: the double-effect regenerative absorption refrigeration cycle  

DOE Green Energy (OSTI)

An advanced absorption refrigeration cycle was proposed as a heat-activated refrigeration system. Referred to as the double-effect regenerative absorption cycle of cycle 2R, it improves the performance of the conventional single-effect absorption cycle at high heat source temperatures. The performance of cycle 2R continually improves as input temperatures rise, in contrast to the conventional double-effect absorption cycle that has a sharp cut-off temperature below which it ceases to operate. Cycle 2R operates with two subcycles, the first-effect and the second-effect subcycles.

Dao, K.

1978-09-01T23:59:59.000Z

309

Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors  

E-Print Network (OSTI)

A. L. London, Compact Heat Exchangers 3 rd Edition McGraw-A. L. London, Compact Heat Exchangers 3 rd Edition McGraw-that short and compact NDHX heat exchanger designs can be

Galvez, Cristhian

2011-01-01T23:59:59.000Z

310

Advancing lighting and daylighting simulation: The transition from analysis to design aid tools  

SciTech Connect

This paper explores three significant software development requirements for making the transition from stand-alone lighting simulation/analysis tools to simulation-based design aid tools. These requirements include specialized lighting simulation engines, facilitated methods for creating detailed simulatable building descriptions, an automated techniques for providing lighting design guidance. Initial computer implementations meant to address each of these requirements are discussed to further elaborate these requirements and to illustrate work-in-progress.

Hitchcock, R.J.

1995-05-01T23:59:59.000Z

311

Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs  

SciTech Connect

This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

Yoder, G.L.

2005-10-03T23:59:59.000Z

312

Advanced Turbine Systems Program: Conceptual design and product development. Quarterly report, February--April 1994  

SciTech Connect

Objective (Phase II) is to develop an industrial gas turbine system to operate at a thermal efficiency of 50% (ATS50) with efficiency enhancements to be added as they become possible. During this quarter, Solar`s engine design team has refined both the 1- and 2-spool cycle concepts, to determine sensitivity to key component efficiencies, cooling air usage and origin, and location of compressor surge lines. The refined analysis included more detailed component work such as compressor and turbine design; different speed trade-offs for the low-and high-pressure compressor in the 1-spool configuration were examined for the best overall compressor efficiency. High-temperature and creep testing of recuperator candidate materials continued. Creep, yield, and proportional limit were measured for foil thicknesses 0.0030--0.0050 for Type 347 ss, Inconel 625, and Haynes 230. Combustor design work included preliminary layout of a multi-can annular combustor integrated into the main engine layout. During the subscale catalytic combustion rig testing, NOx emissions < 5 ppmv were measured. Integration of the engine concept designs into the full power plant system designs has started.

Benjamin, G.J.

1994-06-01T23:59:59.000Z

313

Advanced Off-Gas Control System Design For Radioactive And Mixed Waste Treatment  

SciTech Connect

Treatment of radioactive and mixed wastes is often required to destroy or immobilize hazardous constituents, reduce waste volume, and convert the waste to a form suitable for final disposal. These kinds of treatments usually evolve off-gas. Air emission regulations have become increasingly stringent in recent years. Mixed waste thermal treatment in the United States is now generally regulated under the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. These standards impose unprecedented requirements for operation, monitoring and control, and emissions control. Off-gas control technologies and system designs that were satisfactorily proven in mixed waste operation prior to the implementation of new regulatory standards are in some cases no longer suitable in new mixed waste treatment system designs. Some mixed waste treatment facilities have been shut down rather than have excessively restrictive feed rate limits or facility upgrades to comply with the new standards. New mixed waste treatment facilities in the U. S. are being designed to operate in compliance with the HWC MACT standards. Activities have been underway for the past 10 years at the INL and elsewhere to identify, develop, demonstrate, and design technologies for enabling HWC MACT compliance for mixed waste treatment facilities. Some specific off-gas control technologies and system designs have been identified and tested to show that even the stringent HWC MACT standards can be met, while minimizing treatment facility size and cost.

Nick Soelberg

2005-09-01T23:59:59.000Z

314

Design of Controls to Attenuate Loads in the Controls Advanced Research Turbine: Preprint  

DOE Green Energy (OSTI)

Designing wind turbines to maximize energy production and increase fatigue life is a major goal of the wind industry. To achieve this goal, we must design wind turbines to extract maximum energy and reduce component and system loads. This paper applies modern state-space control design methods to a two-bladed teetering-hub upwind machine located at the National Wind Technology Center*. The design objective is to regulate turbine speed in region 3 (above rated wind speed) and enhance damping in several low-damped flexible modes of the turbine. The controls approach is based on the Disturbance Accommodating Control (DAC) method and provides accountability for wind-speed disturbances. First, controls are designed using the single control input rotor collective pitch to stabilize the first drive-train torsion as well as the tower first fore-aft bending modes. Generator torque is then incorporated as an additional control input. This reduces some of the demand placed on the rotor collective pitch control system and enhances first drive train torsion mode damping. Individual blade pitch control is then used to attenuate wind disturbances having spatial variation over the rotor and effectively reduces blade flap deflections caused by wind shear.

Wright, A. D.; Balas, M. J.

2003-11-01T23:59:59.000Z

315

Advanced Turbine Systems program conceptual design and product development. Task 2: Information required for the National Environmental Policy Act  

Science Conference Proceedings (OSTI)

In cooperation with the US Department of Energy`s Morgantown Energy Technology Center, under contract DE-AC21-93MC30247, a Westinghouse Electric led team is working on a 10-year, four-phase Advanced Turbine Systems (ATS) program to develop the technology required to provide a significant increase in natural gas-fired combined cycle power generation plant efficiency. Environmental performance is to be enhanced, and busbar energy costs are to be 10% less than those of current state-of-the-art-turbines. In Phase II of the ATS program, the objective is to develop the conceptual design of this innovative natural-gas-fired advanced turbine system (GFATS) which, in combination with increased firing temperature ({ge}2600{degree}F), increased component efficiencies, and reduced cooling air usage, has the potential of achieving a lower heating value (LHV) plant efficiency in excess of 60%. Other program goals include providing flexibility to burn both natural gas and coal-derived fuels, holding water consumption to levels consistent with cost and efficiency goals, and having improved environmental performance. Phase II also includes development of an integrated plan to commercialize a GFATS by the year 2000, and initiation of R&D on engine components critical to the success of the plan. Figure 1 is the summary program schedule for Task 8; Design and Test of Critical Components.

Not Available

1993-11-01T23:59:59.000Z

316

Static Seals Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides comprehensive technical information on the understanding and maintenance of static seals. It is designed to help utility staffs maintain static seals and minimize and trouble shoot leakage problems that can reduce plant availability.

1994-09-22T23:59:59.000Z

317

Utility Brownfields Resource Guide  

Science Conference Proceedings (OSTI)

EPRI has established a program designed to assist utilities wishing to participate in local Brownfields redevelopment projects. EPRI developed this Brownfields guide to educate utility economic and real estate development personnel in identifying, screening, and supporting Brownfields projects.

1998-12-18T23:59:59.000Z

318

[Advanced Turbine Systems Program: Conceptual design and product development]. Task 8.7, Recuperator materials  

Science Conference Proceedings (OSTI)

Solar`s Primary Surface Recuperator (PSR) is a compact, high thermal effectiveness heat exchanger for reducing fuel consumption and increasing the thermal efficiency of gas turbine engines. (Recuperation extracts waste heat from the turbine exhaust stream to heat the compressor discharge air before entry into the combustion system.) Solar`s PSR is comprised of thin, folded, corrugated sheets of a stainless steel (eg type 347) in modular units (air cells). Since sheet data are not applicable to thin foils, effort was focused on acquiring creep, tensile, and oxidation data for a variety of stainless and alloy materials. A new thin foil material was created from two separate materials welded together at gage; the advanced alloy would be used only in the hottest sections of the recuperator and the stainless would be used elsewhere to keep the cost down.

NONE

1996-01-01T23:59:59.000Z

319

Advanced Turbine Systems Program conceptual design and product development: Task 4.0  

Science Conference Proceedings (OSTI)

This Topical Report presents the results of Task 4 of the Westinghouse ATS Program. The purpose of Task 4 is to determine the technical development needs for conversion of the gas-fired ATS (GFATS). Two closely related, advanced, coal-based power plant technologies have been selected for consideration as the CFATS -- air-blown, coal gasification with hot gas cleaning incorporated into an Integrated Gasification Combined Cycle (IGCC), and the Second-Generation Pressurized Fluidized Bed Combustion (PFBC) combined cycle. These are described and their estimated performance and emissions in the CFATS are reported. A development program for the CFATS is described that focuses on major commercialization issues. These issues are in the areas of combustion, flow distribution, structural analysis, and materials selection.

Not Available

1994-06-01T23:59:59.000Z

320

Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report  

Science Conference Proceedings (OSTI)

This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

Amann, J.; Bane, K.; /SLAC

2009-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced light water reactor plants system 80+{trademark} design certification program. Annual progress report, October 1, 1993--September 30, 1994  

SciTech Connect

The purpose of this report is to provide a status of the progress that was made towards Design Certification of System 80{sup +}{trademark} during the U.S. government`s 1994 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW (1350 MWe) Pressurized Water Reactor (PWR). The design covers an essentially complete plant. It is based on EPRI ALWR Utility Requirements Document (URD) improvements to the Standardized System 80 Nuclear Steam Supply System (NSSS) in operation at Palo Verde Units 1, 2 and 3. The NSSS is a traditional two-loop arrangement with two steam generators, two hot legs and four cold legs, each with a reactor coolant pump. The System 80+ standard design houses the NSSS in a spherical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual barrier to radioactivity release. Other major features include an all-digital, human-factors-engineered control room, an alternate electrical AC power source, an In-Containment Refueling Water Storage Tank (IRWST), and plant arrangements providing complete separation of redundant trains in safety systems. Some design enhancements incorporated in the System 80+ design are included in the four units currently under construction in the Republic of Korea. These units and the System 80+ design form the basis of the Korean standardization program. The Nuclear Island portion of the System 80+ standard design has also been offered to the Republic of China, in response to their bid specification for an ALWR. The ABB-CE Standard Safety Analysis Report (CESSAR-DC) was docketed by the Nuclear Regulatory Commission (NRC) in May 1991 and a Draft Safety Evaluation Report (DSER) was issued in October 1992.

Not Available

1995-01-01T23:59:59.000Z

322

Advanced Light Water Reactor Plants System 80+{trademark} Design Certification Program. Annual progress report, October 1, 1992--September 30, 1993  

SciTech Connect

The purpose of this report is to provide a status of the progress that was made towards Design Certification of System 80+{trademark} during the US government`s 1993 fiscal year. The System 80+ Advanced Light Water Reactor (ALWR) is a 3931 MW{sub t} (1350 MWe) Pressurized Water Reactor (PWR). The design consists of an essentially complete plant. It is based on evolutionary improvements to the Standardized System 80 nuclear steam supply system in operation at Palo Verde Units 1, 2, and 3, and the Duke Power Company P-81 balance-of-plant (BOP) that was designed and partially constructed at the Cherokee plant site. The System 80/P-81 original design has been substantially enhanced to increase conformance with the EPRI ALWR Utility Requirements Document (URD). Some design enhancements incorporated in the System 80+ design are included in the four units currently under construction in the Republic of Korea. These units form the basis of the Korean standardization program. The full System 80+ standard design has been offered to the Republic of China, in response to their recent bid specification. The ABB-CE Standard Safety Analysis Report (CESSAR-DC) was submitted to the NRC and a Draft Safety Evaluation Report was issued by the NRC in October 1992. CESSAR-DC contains the technical basis for compliance with the EPRI URD for simplified emergency planning. The Nuclear Steam Supply System (NSSS) is the standard ABB-Combustion Engineering two-loop arrangement with two steam generators, two hot legs and four cold legs each with a reactor coolant pump. The System 80+ standard plant includes a sperical steel containment vessel which is enclosed in a concrete shield building, thus providing the safety advantages of a dual containment.

Not Available

1993-12-31T23:59:59.000Z

323

QA role in advanced energy activities: Reductionism, emergence, and functionalism; presuppositions in designing internal QA audits  

SciTech Connect

After a brief overview of the mission of Fermilab, this paper explores some of the problems associated with designing internal QA audits. The paper begins with several examples of how audits should not be designed, then goes on to analyze two types of presuppositions about organizational structure (reductionism and emergence) that can be misleading and skew the data sample if folded too heavily into the checklist. A third type of presupposition (functionalism), is proposed as a viable way of achieving a more well-rounded measure of the performance of an organization, i.e. its effectiveness, not just compliance.

Bodnarczuk, M.

1988-06-01T23:59:59.000Z

324

Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995  

SciTech Connect

Objective of the ATS program is to develop ultra-high efficiency, environmentally superior, and cost-competitive gas turbine systems for base-load application in utility, independent power producer, and industrial markets. This report discusses the major accomplishments achieved during the second year of the ATS Phase 2 program, particularly the design and test of critical components.

1994-10-01T23:59:59.000Z

325

Production of Advanced Biofuels via Liquefaction - Hydrothermal Liquefaction Reactor Design: April 5, 2013  

SciTech Connect

This report provides detailed reactor designs and capital costs, and operating cost estimates for the hydrothermal liquefaction reactor system, used for biomass-to-biofuels conversion, under development at Pacific Northwest National Laboratory. Five cases were developed and the costs associated with all cases ranged from $22 MM/year - $47 MM/year.

Knorr, D.; Lukas, J.; Schoen, P.

2013-11-01T23:59:59.000Z

326

Advanced system demonstration for utilization of biomass as an energy source. Volume IV. Design drawings  

DOE Green Energy (OSTI)

This volume contains design drawings for the biomass cogeneration plant to be built in Maine. The drawings show a considerable degree of detail, however, they are not to be considered released for construction. There has been no actual procurement of equipment, therefore equipment drawings certified by suppliers have not been included. (DMC)

None

1980-10-01T23:59:59.000Z

327

DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR  

SciTech Connect

The objective of this report period was to continue the development of the Gas Generator design, fabrication and test of the non-polluting unique power turbine drive Gas Generator. Focus during this past report period has been to continue completion the Gas Generator design, completing the brazing and bonding experiments to determine the best method and materials necessary to fabricate the Gas Generator hardware, continuing to making preparations for fabricating and testing this Gas Generator and commencing with the fabrication of the Gas Generator hardware and ancillary hardware. Designs have been completed sufficiently such that Long Lead Items [LLI] have been ordered and upon arrival will be readied for the fabrication process. The keys to this design are the platelet construction of the injectors that precisely measures/meters the flow of the propellants and water all throughout the steam generating process and the CES patented gas generating cycle. The Igniter Assembly injector platelets fabrication process has been completed and bonded to the Igniter Assembly and final machined. The Igniter Assembly is in final assembly and is being readied for testing in the October 2001 time frame. Test Plan dated August 2001, was revised and finalized, replacing Test Plan dated May 2001.

Unknown

2002-01-31T23:59:59.000Z

328

Design and construction of an advanced power conditioning subsystem for small photovoltaic applications  

SciTech Connect

The power inverter development described in this report is based on the technical approach development during a previous project funded by the US Department of Energy. That project was completed in mid-1981. During that investigation the high-frequency transformer-link power conditioning system was selected as the preferred approach. This approach appears to have the greatest potential for cost reduction when compared to other transformer-isolated designs because of its significant reduction of magnetic component size and weight. This report describes the details of a microcomputer-controlled 4 kW inverter design intended for residential applications. The theory of operation, detailed design, and some operational results are given. The inverter was designed to deliver utility quality power to the residential grid. Total harmonic current distortion of less than 5% and efficiencies around 90% were achieved. This report also gives reliability and cost analyses of the inverter and presents an equivalent circuit of the inverter useful for system analysis.

Steigerwald, R.L.; Bose, B.K.; Szczesny, P.M.

1985-03-01T23:59:59.000Z

329

Advanced Binary Geothermal Power Plancts Working Fluid Property Determination and Heat Exchanger Design  

DOE Green Energy (OSTI)

The performance of binary geothermal power plants can be improved through the proper choice of a working fluid, and optimization of component designs and operating conditions. This paper reviews the investigations at the Idaho National Engineering Laboratory (INEL) which are examining binary cycle performance improvements: for moderate temperature (350 to 400 F) resources with emphasis on how the improvements may be integrated into design of binary cycles. These investigations are examining performance improvements resulting from the supercritical vaporization of mixed hydrocarbon working fluids and achieving countercurrent integral condensation with these fluids, as well as the modification of the turbine inlet state points to achieve supersaturated turbine vapor expansions. For resources where the brine outlet temperature is restricted, the use of turbine exhaust recuperators is examined. The baseline plant used to determine improvements in plant performance (characterized by the increase in the net brine effectiveness, watt-hours per pound of brine) in these studies operates at conditions similar to the 45 MW Heber binary plant. Through the selection of the optimum working fluids and operating conditions, achieving countercurrent integral condensation, and allowing supersaturated vapor expansions in the turbine, the performance of the binary cycle (the net brine effectiveness) can be improved by 25 to 30% relative to the baseline plant. The design of these supercritical Rankine-cycle (Binary) power plants for geothermal resources requires information about the potential working fluids used in the cycle. In addition, methods to design the various components, (e.g., heat exchangers, pumps, turbines) are needed. This paper limits its view of component design methods to the heat exchangers in binary power plants. The design of pumps and, turbines for these working fluids presents no new problems to the turbine manufacturer. However, additional work is proceeding at the Heat Cycle Research Facility to explore metastable expansions within turbines. This work, when completed, should allow the designer more flexibility in the state point selection in the design of these cycles which will potentially increase the system performance. The paper explores the different systems of thermodynamic and transport properties for mixtures of hydrocarbons. Methods include a computer program EXCST developed at the National Bureau of Standards in Boulder, as well as some of the thermodynamic models available in the chemical process simulation code, ASPEN, which was originally developed by the Department of Energy. The heat exchanger design methodology and computer programs of Heat Transfer Research, Inc. (HTRI) have been used because they represent data which is used throughout the industry by A & E firms as well as most heat exchanger manufacturers. For most cases, some modification of the computer results are necessary for supercritical heater design. When condensation takes place on the inside of enhanced tubes, new methods beyond HTRI's present state are necessary. The paper will discuss both of these modifications.

Bliem, C.J.; Mines, G.L.

1989-03-21T23:59:59.000Z

330

Solar Ready Buildings Planning Guide  

SciTech Connect

This guide offers a checklist for building design and construction to enable installation of solar photovoltaic and heating systems at some time after the building is constructed.

Lisell, L.; Tetreault, T.; Watson, A.

2009-12-01T23:59:59.000Z

331

Plant Engineering: Advanced Nuclear Plant Cable System Design and Installation Concepts to Assure Longevity  

Science Conference Proceedings (OSTI)

Although the electrical cable systems for existing nuclear power plants have functioned well for up to 40 years, the desired service life for new plants is 60 or more years. Experience with existing plants indicates that relatively small changes during the design and construction of nuclear plants will lead to longer cable system lives and greater ease of testing and assessment of cables to verify their remaining service life. This report describes those changes and provides recommendations for their imp...

2012-04-16T23:59:59.000Z

332

Advanced Neutron Source (ANS) Project progress report  

SciTech Connect

This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

McBee, M.R.; Chance, C.M. (eds.) (Oak Ridge National Lab., TN (USA)); Selby, D.L.; Harrington, R.M.; Peretz, F.J. (Oak Ridge National Lab., TN (USA))

1990-04-01T23:59:59.000Z

333

Out on the town: A socio-physical approach to the design of a context-aware urban guide  

Science Conference Proceedings (OSTI)

As urban environments become increasingly hybridized, mixing the social, built, and digital in interesting ways, designing for computing in the city presents new challengeshow do we understand such hybridization, and then respond to it as designers? ... Keywords: Pervasive computing, conceptual framework, field evaluation, field study, physical context, prototype design, social context, urban environment

Jeni Paay; Jesper Kjeldskov; Steve Howard; Bharat Dave

2009-06-01T23:59:59.000Z

334

Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor  

Science Conference Proceedings (OSTI)

The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangershelical coiled heat exchanger and printed circuit heat exchangeras possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.

Piyush Sabharwall; Ali Siahpush; Michael McKellar; Michael Patterson; Eung Soo Kim

2012-06-01T23:59:59.000Z

335

Final Report - Advanced Hydraulic and Mass Transfer Models for Distillation Column Optimization and Design  

Science Conference Proceedings (OSTI)

The project successfully developed a computational fluid dynamics (CFD) based simulation of the hydrodynamics of flow in a commercial structured packing element. This result fulfilled the prime objective of the research program. The simulation utilized commercial CFD code marketed by Fluent Inc. in combination with a novel graphical interface developed by Oak Ridge National Lab. The end product will allow the design of next generation column internals without the need for extensive experimental validation and will expand the fundamental understanding of the vapor-liquid contacting process.

Eldridge, Robert, B.

2005-10-13T23:59:59.000Z

336

Advanced design and economic considerations for commercial geothermal power plants at Heber and Niland, California. Final report  

DOE Green Energy (OSTI)

Two separate studies, involving advanced design and economic considerations for commercial geothermal power plants using liquid-dominated hydrothermal resources, are presented. In the first study, the effects on design, capital cost, and bus bar electric energy production cost caused by an anticipated decline in available geothermal fluid temperature over the lifetime of power plants are described. A two-stage, flashed-steam energy conversion process was used for the conceptual design of the power plants, which operate from the moderate-temperature, low-salinity reservoir at Heber, California. Plants with net capacities of 50, 100, and 200 MWe (net) were investigated. The results show that it is important to include provision for geothermal fluid temperature decline in the design of power plants to prevent loss of electric energy production capability and to reduce bus bar electric energy costs. In the second study, the technical, economic, and environmental effects of adding regeneration to a 50 MWe (net) power plant employing the multistage-flash/binary process are described. Regeneration is potentially attractive because it recovers waste heat from the turbine exhaust and uses it in the power cycle. However, the pressure drop caused by the introduction of the regenerator decreases the turbine expansion and thus decreases system performance. An innovative approach was taken in the design of the regenerator, which minimized the expected performance degradation of the turbine. The result was that the performance, capital cost, and bus bar electric energy production cost are nearly the same for the processes with and without regeneration. On the other hand, the addition of regeneration has the environmental benefits of substantially reducing heat rejection to the atmosphere and cooling tower makeup and blowdown water requirements. It also increases the temperature of the brine returned to the field for reinjection.

Not Available

1977-10-01T23:59:59.000Z

337

Advanced Core Design And Fuel Management For Pebble-Bed Reactors  

Science Conference Proceedings (OSTI)

A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

2004-10-01T23:59:59.000Z

338

Conceptual design of a solar electric advanced Stirling power system: Monthly progress report, 1 January-31 January 1987  

DOE Green Energy (OSTI)

The overall objective of this program is to develop a high confidence conceptual design for a free-piston Stirling engine based system designed to deliver 25 kW of three-phase electric power to a utility grid when coupled to the 11 meter Test Bed Concentrator (TBC) at SNLA. Further specific objectives include a design life of 60,000 hours, minimum life cycle cost and dynamic balancing. The approach used to achieve these objectives is to utilize a hermetically sealed Stirling hydraulic concept based on technology developed to an advanced level during the past 19 years for an artificial heart power source. Such engines and critical metal bellows components have demonstrated operating times in the desired range. This approach provides full film hydraulic lubrication of all sliding parts, simple construction with conventional manufacturing tolerances, proven hydraulically coupled counterbalancing, and simple but effective power control to follow insolation variations. Other advantages include use of commercially available hydraulic motors and rotary alternators which can be placed on the ground to minimize suspended weight. The output from several engine/concentrator modules can be directed to one large motor/alternator for further cost savings. Three monthly progress reports for the same period, January 1-January 31, 1987, are compiled within this document.

White, M.A.; Brown, A.T.

1987-02-09T23:59:59.000Z

339

Development of coupled SCALE4.2/GTRAN2 computational capability for advanced MOX fueled assembly designs  

Science Conference Proceedings (OSTI)

An advanced assembly code system that can efficiently and accurately analyze various designs (current and advanced) proposed for plutonium disposition is being developed by {open_quotes}marrying{close_quotes} two existing state-of-the-art methodologies-GTRAN2 and SCALE 4.2. The resulting code system, GT-SCALE, posses several unique characteristics: exact 2D representation of a complete fuel assembly, while preserving the heterogeniety of each of its pin cells; flexibility in the energy group structure, the present upper limit being 218 groups; a comprehensive cross-section library and material data base; and accurate burnup calculations. The resulting GT-SCALE is expected to be very useful for a wide variety of applications, including the analysis of very heterogeneous UO{sub 2} fueled LWR fuel assemblies; of hexagonal shaped fuel assemblies as of the Russian LWRs; of fuel assemblies for HTGRs; as well as for the analysis of criticality safety and for calculation of the source term of spent fuel.

Vujic, J.; Greenspan, E.; Slater, Postma, T.; Casher, G.; Soares, I. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Leal, L. [Oak Ridge National Lab., TN (United States)

1995-05-01T23:59:59.000Z

340

Advanced turbine systems program conceptual design and product development. Task 3 -- System selection; Topical report  

Science Conference Proceedings (OSTI)

Solar Turbines Incorporated has elected to pursue an intercooled and recuperated (ICR) gas turbine system to exceed the goals of the DOE Advanced Turbine Systems (ATS) program, which are to develop and commercialize an industrial gas turbine system that operates at thermal efficiencies at least 15% higher than 1991 products, and with emissions not exceeding eight ppmv NOx and 20 ppmv CO and UHC. Solar`s goal is to develop a commercially viable industrial system (3--20 MW) driven by a gas turbine engine with a thermal efficiency of 50% (ATS50), with the flexibility to meet the differing operational requirements of various markets. Dispersed power generation is currently considered to be the primary future target market for the ICR in the 5--15 MW size class. The ICR integrated system approach provides an ideal candidate for the assumed dispersed power market, with its small footprint, easy transportability, and environmental friendliness. In comparison with other systems that use water or toxic chemicals such as ammonia for NOx control, the ICR has no consumables other than fuel and air. The low pressure ratio of the gas turbine engine also is favorable in that less parasitic power is needed to pump the natural gas into the combustor than for simple-cycle machines. Solar has narrowed the ICR configuration to two basic approaches, a 1-spool, and a 2-spool version of the ATS50. The 1-spool engine will have a lower first-cost but lower part-power efficiencies. The 2-spool ATS may not only have better part-power efficiency, its efficiency will also be less sensitive to reduced turbine rotor inlet temperature levels. Thus hot-end parts life can be increased with only small sacrifices in efficiency. The flexibility of the 2-spool arrangement in meeting customer needs is its major advantage over the 1-spool. This Task 3 Topical Report is intended to present Solar`s preliminary system selection based upon the initial trade-off studies performed to date.

White, D.J.

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 1  

Science Conference Proceedings (OSTI)

This ACDR was performed following completed of the Conceptual Design Report in July 1992; the work encompassed August 1992 to January 1994. Mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage at Hanford and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford from about DOE sites. This volume provides an introduction to the ACDR process and the scope of the task along with a project summary of the facility, treatment technologies, cost, and schedule. Major areas of departure from the CDR are highlighted. Descriptions of the facility layout and operations are included.

Not Available

1994-03-01T23:59:59.000Z

342

DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR  

SciTech Connect

The objectives of this report period were to complete the development of the Gas Generator design, which was done; fabricate and test of the non-polluting unique power turbine drive gas Gas Generator, which has been postponed. Focus during this report period has been to complete the brazing and bonding necessary to fabricate the Gas Generator hardware, continue making preparations for fabricating and testing the Gas Generator, and continuing the fabrication of the Gas Generator hardware and ancillary hardware in preparation for the test program. Fabrication is more than 95% complete and is expected to conclude in early May 2002. the test schedule was affected by relocation of the testing to another test supplier. The target test date for hot fire testing is now not earlier than June 15, 2002.

Unknown

2002-03-31T23:59:59.000Z

343

Wind Turbine Control Design to Reduce Capital Costs: 7 January 2009 - 31 August 2009  

DOE Green Energy (OSTI)

This report first discusses and identifies which wind turbine components can benefit from advanced control algorithms and also presents results from a preliminary loads case analysis using a baseline controller. Next, it describes the design, implementation, and simulation-based testing of an advanced controller to reduce loads on those components. The case-by-case loads analysis and advanced controller design will help guide future control research.

Darrow, P. J.

2010-01-01T23:59:59.000Z

344

Design and Status of the NGNP Fuel Experiment AGR-3/4 Irradiated in the Advanced Test Reactor  

SciTech Connect

The United States Department of Energys Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in November 2013. Since the purpose of this experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is significantly different from the first two experiments, though the control and monitoring systems are very similar. The purpose and design of this experiment will be discussed followed by its progress and status to date.

Blaine Grover

2012-10-01T23:59:59.000Z

345

Advanced Turbine Systems Program conceptual design and product development. Quarterly report, [August 3, 1993--October 31, 1993  

SciTech Connect

This Quarterly Technical Progress Report covers the period August 3 through October 31, 1993, for Phase II of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE Contract No. DE-AC21-93MC30246. The objective of this program is to provide the conceptual design and product development plan for an industrial gas turbine system to operate at a thermal efficiency of 50 percent and developable to 60 percent. Solar`s ATS Engine Design Team reviewed the intercooled and recuperated (ICR) gas turbine concept defined in the Program proposal, validated certain assumptions associated therewith, and began the process of actualizing this concept in terms of achievable turbomachinery components. Given the probable use of a free power turbine arrangement, both 1-spool and 2-spool compressor arrangements were examined with both fixed and variable turbine geometry. Off-design performance, both part-load and full-load over a range of inlet air temperatures, was examined. During this period certain simplifying assumptions were made regarding the amount of cycle air extracted for use in turbine cooling and the distribution of its return to the cycle. The exact influence of turbine cooling air extraction on cycle performance (thermal efficiency) will be highly dependent upon turbine airfoil material selection, its life/temperature capabilities, etc. Thus, cycle performance will be subject to some degree of change as the design progresses. Even now, improvements made to the cycle performance model will result in variation in presented results. As a general rule, later results will always supersede earlier results when there is an apparent conflict.

Karstensen, K.W.

1994-02-01T23:59:59.000Z

346

Design and performance of the ASAXS instrument at the Advanced Photon Source.  

SciTech Connect

The SAXS instrument on the high brilliance undulator beam line (ID-12, BESSRC-CAT) at APS has been designed to produce high-resolution scattering patterns in the millisecond time domain. This instrument is equipped with a 20 cm x 20 cm position sensitive gas detector and a 15 cm x 15 cm high-resolution position sensitive CCD mosaic detector. A photodiode detector mounted on a 3 mm diameter beam stop permits quick alignment of the instrument as well as precise measurement of the transmitted beam intensity. The ease of changing the sample to detector distance and tuning of x-ray energy enables easy access to different Q ranges. With this instrument we routinely measure data in a Q range of 0.001 to 1 {angstrom}{sup {minus}1}. The exposure time with the CCD detector varies from 0.1 second to 10 sec depending on the scattering cross-section of the samples. Techniques to interface ancillary equipment for time-resolved studies and software for faster online analysis of the data have also been developed. We have obtained excellent data on the unfolding of proteins in the millisecond time domain, ASAXS of metallic alloys by using this instrument.

Seifert, S.; Thiyagarajan, P.; Tiede, D. M.; Winans, R. E.

1999-07-06T23:59:59.000Z

347

Design, Fabrication, and Certification of Advanced Modular PV Power Systems Final Technical Progress Report  

DOE Green Energy (OSTI)

This report describes the overall accomplishments and benefits of Solar Electric Specialties Co. (SES) under this Photovoltaic Manufacturing Technology (PVMaT) subcontract. SES addressed design issues related to their modular autonomous PV power supply (MAPPS) and a mobile photogenset. MAPPS investigations included gel-cell batteries mounted horizontally; redesign of the SES power supply; modified battery enclosure for increased safety and reduced cost; programmable, interactive battery charge controllers; and UL and FM listings. The photogenset systems incorporate generators, battery storage, and PV panels for a mobile power supply. The unit includes automatic oil-change systems for the propane generators, collapsible array mounts for the PV enclosure, and internal stowage of the arrays. Standardizing the products resulted in product lines of MAPPS and Photogensets that can be produced more economically and with shorter lead times, while increasing product quality and reliability. Product assembly and quality control have also been improved and streamlined with the development of standardized assembly processes and QC testing procedures. SES offers the UL-listed MAPPS at about the same price as its previous non-standardized, unlisted products.

Lambarski, T.; Minyard, G. (Solar Electric Specialties Co., Willits, California)

1998-10-06T23:59:59.000Z

348

Acquisition Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 71.1 (June 2010) Chapter 71.1 (June 2010) 1 HEADQUARTERS BUSINESS CLEARANCE PROCESS Overview This guide chapter provides guidance regarding the policies and procedures governing the Headquarters Business Clearance Review (BCR) process, the process by which certain procurement actions (solicitations, contracts, major contract changes, etc.) are reviewed and approved by the DOE Senior Procurement Executive (SPE) as a condition precedent to executing them. This section does not apply to the National Nuclear Security Administration (NNSA). Separate NNSA coverage is in BOP-003 and BOP-304. Background A. The Flow of Procurement Authority within the Department of Energy (DOE) The Secretary of Energy designated the Director, Office of Procurement and Assistance

349

Analysis of advanced conceptual designs for single-family-sized absorption chillers. Semi-annual report  

DOE Green Energy (OSTI)

The objective of the research program is to develop and analyze new concepts for absorption cycles to improve the performance or reduce the cost (or both) of a 3-ton absorption chiller that can be used with solar-collected heat. New refrigerant-absorbent pairs, additives to currently used refrigerant-absorbent pairs, and modifications to the cycle are being investigated. For the initial analyses the use of a fluid at 160 to 230/sup 0/F from a solar collector as a heating source is assumed. In the initial analyses the chiller is to provide chilled water at 45/sup 0/F at full load; alternatively, if a new refrigerant-absorbent pair appears to be amenable for direct cooling of the occupied space, the temperature of the evaporator is to be 45/sup 0/F. Both water cooling and air cooling of the absorber and the condenser are being studied. The use of ambient air at 95/sup 0/F dry bulb and 75/sup 0/F wet bulb temperatures is assumed. With the water-cooled cycles, the initial and operating costs of a properly sized cooling tower will be included. The research consists of five principal tasks: (a) acquisition of information for analysis, (b) definition of criteria for selection of promising refrigerant-absorbent pairs, additives for currently used pairs, or cycle modifications, (c) preparation and analysis of conceptual designs, (d) comparison and selection of the promising new systems that warrant further study, and (e) recommendations for further research for each promising new system. Progress on each of these tasks is described. (WHK)

None

1978-04-05T23:59:59.000Z

350

New advances in designing energy efficient time synchronization schemes for wireless sensor networks  

E-Print Network (OSTI)

Time synchronization in wireless sensor networks (WSNs) is essential and significant for maintaining data consistency, coordination, and performing other fundamental operations, such as power management, security, and localization. Energy efficiency is the main concern in designing time synchronization protocols for WSNs because of the limited and generally nonrechargeable power resources. In this dissertation, the problem of time synchronization is studied in three different aspects to achieve energy efficient time synchronization in WSNs. First, a family of novel joint clock offset and skew estimators, based on the classical two-way message exchange model, is developed for time synchronization in WSNs. The proposed joint clock offset and skew correction mechanisms significantly increase the period of time synchronization, which is a critical factor in the over-all energy consumption required for global network synchronization. Moreover, the Cramer-Rao bounds for the maximum likelihood estimators are derived under two different delay assumptions. These analytical metrics serve as good benchmarks for the experimental results thus far reported. Second, this dissertation proposes a new time synchronization protocol, called the Pairwise Broadcast Synchronization (PBS), which aims at minimizing the number of message transmissions and implicitly the energy consumption necessary for global synchronization of WSNs. A novel approach for time synchronization is adopted in PBS, where a group of sensor nodes are synchronized by only overhearing the timing messages of a pair of sensor nodes. PBS requires a far smaller number of timing messages than other well-known protocols and incurs no loss in synchronization accuracy. Moreover, for densely deployed WSNs, PBS presents significant energy saving. Finally, this dissertation introduces a novel adaptive time synchronization protocol, named the Adaptive Multi-hop Timing Synchronization (AMTS). According to the current network status, AMTS optimizes crucial network parameters considering the energy efficiency of time synchronization. AMTS exhibits significant benefits in terms of energy-efficiency, and can be applied to various types of sensor network applications having different requirements.

Noh, Kyoung Lae

2007-08-01T23:59:59.000Z

351

Siemens Westinghouse Advanced Turbine Systems Program Final Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

development concentrated on the following areas: aerodynamic design, combustion, heat transfercooling design, engine mechanical design, advanced alloys, advanced coating...

352

WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization  

Science Conference Proceedings (OSTI)

Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.

J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

2012-10-02T23:59:59.000Z

353

Advances in Filter Miniaturization and Design/Analysis of RF MEMS Tunable Filters  

E-Print Network (OSTI)

The main purpose of this dissertation was to address key issues in the design and analysis of RF/microwave filters for wireless applications. Since RF/microwave filters are one of the bulkiest parts of communication systems, their miniaturization is one of the most important technological challenges for the development of compact transceivers. In this work, novel miniaturization techniques were investigated for single-band, dual-band, ultra-wideband and tunable bandpass filters. In single-band filters, the use of cross-shaped fractals in half-mode substrate-integrated-waveguide bandpass filters resulted in a 37 percent size reduction. A compact bandpass filter that occupies an area of 0.315 mm2 is implemented in 90-nm CMOS technology for 20 GHz applications. For dual-band filters, using half-mode substrate-integrated-waveguides resulted in a filter that is six times smaller than its full-mode counterpart. For ultra-wideband filters, using slow-wave capacitively-loaded coplanar-waveguides resulted in a filter with improved stopband performance and frequency notch, while being 25 percent smaller in size. A major part of this work also dealt with the concept of 'hybrid' RF MEMS tunable filters where packaged, off-the-shelf RF MEMS switches were used to implement high-performance tunable filters using substrate-integrated-waveguide technology. These 'hybrid' filters are very easily fabricated compared to current state-of-the-art RF MEMS tunable filters because they do not require a clean-room facility. Both the full-mode and half-mode substrate-integrated waveguide tunable filters reported in this work have the best Q-factors (93 - 132 and 75 - 140, respectively) compared to any 'hybrid' RF MEMS tunable filter reported in current literature. Also, the half-mode substrate-integrated waveguide tunable filter is 2.5 times smaller than its full-mode counterpart while having similar performance. This dissertation also presented detailed analytical and simulation-based studies of nonlinear noise phenomena induced by Brownian motion in all-pole RF MEMS tunable filters. Two independent mathematical methods are proposed to calculate phase noise in RF MEMS tunable filters: (1) pole-perturbation approach, and (2) admittance-approach. These methods are compared to each other and to harmonic balance noise simulations using the CAD-model of the RF MEMS switch. To account for the switch nonlinearity in the mathematical methods, a nonlinear nodal analysis technique for tunable filters is also presented. In summary, it is shown that output signal-to-noise ratio degradation due to Brownian motion is maximum for low fractional bandwidth, high order and high quality factor RF MEMS tunable filters. Finally, a self-sustained microwave platform to detect the dielectric constant of organic liquids is presented in this dissertation. The main idea is to use a voltage- controlled negative-resistance oscillator whose frequency of oscillation varies according to the organic liquid under test. To make the system self-sustained, the oscillator is embedded in a frequency synthesizer system, which is then digitally interfaced to a computer for calculation of dielectric constant. Such a system has potential uses in a variety of applications in medicine, agriculture and pharmaceuticals.

Sekar, Vikram

2011-08-01T23:59:59.000Z

354

The second skin approach : skin strain field analysis and mechanical counter pressure prototyping for advanced spacesuit design  

E-Print Network (OSTI)

The primary aim of this thesis is to advance the theory of advanced locomotion mechanical counter pressure (MCP) spacesuits by studying the changes in the human body shape during joint motion. Two experiments take advantage ...

Bethke, Kristen (Kristen Ann)

2005-01-01T23:59:59.000Z

355

Diesel Engine Analysis Guide  

Science Conference Proceedings (OSTI)

This guide provides a thorough background on diesel engine analysis including combustion, vibration, and ultrasonic analysis theory. Interpretation of results is also provided. This guide is intended to enable nuclear utility personnel to make informed decisions regarding the nature and use of diesel engine analysis, including how to set up an effective program, how to establish analysis guidelines, how to make use of the resulting data to plan maintenance, determine the causes of off-design operating co...

1997-10-09T23:59:59.000Z

356

Use of Sensitivity and Uncertainty Analysis in the Design of Reactor Physics and Criticality Benchmark Experiments for Advanced Nuclear Fuel  

Science Conference Proceedings (OSTI)

Technical Paper / Advances in Nuclear Fuel Management - Increased Enrichment/High Burnup and Light Water Reactor Fuel Cycle Optimization

B. T. Rearden; W. J. Anderson; G. A. Harms

357

Penn State Faculty Handbook The Faculty Handbook is designed to serve as an orientation and reference guide for all faculty,  

E-Print Network (OSTI)

Penn State Faculty Handbook Welcome The Faculty Handbook is designed to serve as an orientation to locate and use a wide range of University resources. The Handbook contains information about the overall of the University #12;2 About the Faculty Handbook This handbook is intended for use as a general reference rather

Maroncelli, Mark

358

Design of the Next Generation Nuclear Plant Graphite Creep Experiments for Irradiation in the Advanced Test Reactor  

SciTech Connect

The United States Department of Energys Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energys lead laboratory for nuclear energy development. The ATR is one of the worlds premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain seven separate stacks of graphite specimens. Six of the specimen stacks will have half of their graphite specimens under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will be organized into pairs with a different compressive load being applied to the top half of each pair of specimen stacks. The seventh stack will not have a compressive load on the graphite specimens during irradiation. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the experiment. The final design phase for the first experiment was completed in September 2008, and the fabrication and assembly of the experiment test train as well as installation and testing of the control and support systems that will monitor and control the experiment during irradiation are being completed in early calendar 2009. The first experiment is scheduled to be ready for insertion in the ATR by April 30, 2009. This paper will discuss the design of the experiment including the test train and the temperature and compressive load monitoring, control, and data collection systems.

S. Blaine Grover

2009-05-01T23:59:59.000Z

359

NETL: News Release - Projects Selected to Advance Innovative Materials for  

NLE Websites -- All DOE Office Websites (Extended Search)

14, 2010 14, 2010 Projects Selected to Advance Innovative Materials for Fossil Energy Power Systems Washington, D.C. - Four projects that will develop capabilities for designing sophisticated materials that can withstand the harsh environments of advanced fossil energy power systems have been selected by the U.S. Department of Energy. The projects will develop computational capabilities for designing materials with unique thermal, chemical and mechanical properties necessary for withstanding the high temperatures and extreme environments of advanced energy systems. These innovative systems are both fuel efficient and produce lower amounts of emissions, including carbon dioxide for permanent storage. An effective way to accelerate research is to use advances in materials simulations and high performance computing and communications to guide experiments. Concurrent with the continuing drive to reduce costs and design cycle time in the manufacture of power plant equipment is an increase in the need for more materials property data demonstrating sufficient performance.

360

Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants  

SciTech Connect

This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant.

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Advanced electrorefiner design  

DOE Patents (OSTI)

This invention relates to a process and apparatus for electrochemically refining spent nuclear fuel from a nuclear reactor and recovering purified uranium and a mixture of uranium and plutonium for use as fresh blanket and core fuel in a nuclear reactor. A combination anode and cathode is described for an electrorefiner which includes a hollow cathode and an anode positioned inside the hollow cathode such that a portion of the anode is near the cathode. A retaining member is positioned at the bottom of the cathode. Mechanism is included for providing relative movement between the anode and the cathode during deposition of metal on the inside surface of the cathode during operation of the electrorefiner to refine spent nuclear fuel. A method is also disclosed which includes electrical power means selectively connectable to the anode and the hollow cathode for providing electrical power to the cell components, electrically transferring uranium values and plutonium values from the anode to the electrolyte, and electrolytically depositing substantially pure uranium on the hollow cathode. Uranium and plutonium are deposited at a liquid cathode together after the PuCl{sub 3} to UCl{sub 3} ratio is greater than 2:1. Slots in the hollow cathode provides close anode access for the liquid pool in the liquid cathode.

Miller, W.E.; Gay, E.C.; Tomczuk, Z.

1994-12-31T23:59:59.000Z

362

Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion  

SciTech Connect

The first objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO{sub 2}) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing, waterflood depletion. The second objective is to demonstrate the performance and economic viability of the project in the field. This report includes work on the reservoir characterization and project design objective and the demonstration project objective.

NONE

1996-08-09T23:59:59.000Z

363

Enter Search Term Enter ED Online ID Advanced Search | Help Electronic Design Home Recent Articles Back Issues Featured Vendors Discussion Forums Subscribe / Renew  

E-Print Network (OSTI)

Enter Search Term Enter ED Online ID Advanced Search | Help Electronic Design Home Recent Articles- analyzer vendors have kept pace with industry demands in terms of speed and functionality. However, in many tools. Logic- analyzer vendors have kept pace with industry demands in terms of speed and functionality

LaMeres, Brock J.

364

Design and Implementation of a C02 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells in a Shallow Shelf Carbonate Approaching Waterflood Depletion  

Science Conference Proceedings (OSTI)

The objective is to utilize reservoir characteristics and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. Also the project seeks to demonstrate the performance and economic viability of the project in the field.

None

1997-08-01T23:59:59.000Z

365

Technical Support Document: 50% Energy Savings Design Technology Packages for Medium Office Buildings  

Science Conference Proceedings (OSTI)

This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Medium Offices (AEDG-MO or the Guide), a design guidance document which intends to provide recommendations for achieving 50% energy savings in medium office buildings that just meet the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

Thornton, Brian A.; Wang, Weimin; Lane, Michael D.; Rosenberg, Michael I.; Liu, Bing

2009-09-01T23:59:59.000Z

366

Seismic Safety Guide  

SciTech Connect

This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls.

Eagling, D.G. (ed.)

1983-09-01T23:59:59.000Z

367

HVDC Overhead Transmission Guide  

Science Conference Proceedings (OSTI)

This report is the initial version of a new EPRI publication, the HVDC Overhead Line Design Guide. The main objective of the report is to present a proposed outline for the guide so that users can review and discuss the content. The outline will then be fine-tuned with users to meet their needs. Topics unique to high-voltage direct current (HVDC) systems have been identified and included in the outline. The topics will be addressed and design information added each year. The ultimate goal ...

2012-12-12T23:59:59.000Z

368

Design guide for composite-material flywheels: rotor dyamic considerations. Part I. System whirling and stability. Final report  

DOE Green Energy (OSTI)

Information to designers of flywheels is provided which will enable them to predict many aspects of the dynamic behavior of their flywheel systems when spin-tested with a quill-shaft support and driven by an air turbine. Computer programs are presented for the following dynamic analysis to obtain the results indicated: free whirling for natural frequencies versus rotational speed and the associated mode shapes; rough-type stability analysis for determining the stability limits; and forced whirling analysis for estimating the response of major components of the system to flywheel mass eccentricity and initial tilt. For the first and third kinds of analyses, two different mathematical models of the generic system are investigated. One is a seven-degree-of-freedom lumped-parameter analysis, while the other is a combined distributed- and lumped-parameter analysis. When applied to an existing flywheel system, the two models yielded numerical values for the lowest first-order forward critical speed in very close agreement with each other and with experimental results obtained in spin tests. Therefore, for the second kind of analysis, only the lumped-parameter model is implemented. Qualitative discussions as to why forced retrograde whirling is not as severe as forward whirling are also presented. The analyses are applied to the multi-material ring type flywheel systems, a constant-thickness-diskring type, and a tapered-thickness-disk type. In addition, the effects of the following flywheel design parameters on system dynamics were investigated: flywheel mass; diametral and polar mass moments of inertia; location of mass center from the lower end of the quill shaft; quill shaft length; lower turbine-bearing support stiffness; equivalent viscous damping coefficient of the external damper; flywheel dead weight; and torque applied at the turbine.

Bert, C.W.; Ramunujam, G.

1981-09-01T23:59:59.000Z

369

Acquisition Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

_____Chapter 15.4-4 (July 2010) _____Chapter 15.4-4 (July 2010) GENERAL GUIDE FOR TECHNICAL ANALYSIS OF COST PROPOSALS FOR ACQUISITION CONTRACTS Acquisition Guide _____________________________________________________________ _______________________________________________________Chapter 15.4-4 (July 2010) TABLE OF CONTENT CHAPTER 1 - INTRODUCTION KEY CONCEPTS ........................................................................................1 LIST OF ACRONYMS...............................................................................1 RELATIONSHIP OF TECHNICAL ANALYSIS TO COST ANALYSIS ..................................2 RESPONSIBILITIES IN EVALUATING CONTRACTOR PROPOSALS ..................................2

370

EERE Program Management Guide - Chapter 3 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 EERE Program Management Guide - Chapter 3 Chapter 3 provides information on EERE's communications and outreach efforts, including the Office of Technology Advancement and...

371

The design and construction of electronic motor control and network interface hardware for advance concept urban mobility vehicles  

E-Print Network (OSTI)

Over the past several years, the Smart Cities Group at MIT's Media Lab has engaged in research to develop several advanced concepts for vehicles to improve urban mobility. This research has focused on developing a modular ...

Morrissey, Bryan L. (Bryan Lawrence)

2008-01-01T23:59:59.000Z

372

Residual Seminal Vesicle Displacement in Marker-Based Image-Guided Radiotherapy for Prostate Cancer and the Impact on Margin Design  

Science Conference Proceedings (OSTI)

Purpose: The objectives of this study were to quantify residual interfraction displacement of seminal vesicles (SV) and investigate the efficacy of rotation correction on SV displacement in marker-based prostate image-guided radiotherapy (IGRT). We also determined the effect of marker registration on the measured SV displacement and its impact on margin design. Methods and Materials: SV displacement was determined relative to marker registration by using 296 cone beam computed tomography scans of 13 prostate cancer patients with implanted markers. SV were individually registered in the transverse plane, based on gray-value information. The target registration error (TRE) for the SV due to marker registration inaccuracies was estimated. Correlations between prostate gland rotations and SV displacement and between individual SV displacements were determined. Results: The SV registration success rate was 99%. Displacement amounts of both SVs were comparable. Systematic and random residual SV displacements were 1.6 mm and 2.0 mm in the left-right direction, respectively, and 2.8 mm and 3.1 mm in the anteroposterior (AP) direction, respectively. Rotation correction did not reduce residual SV displacement. Prostate gland rotation around the left-right axis correlated with SV AP displacement (R{sup 2} = 42%); a correlation existed between both SVs for AP displacement (R{sup 2} = 62%); considerable correlation existed between random errors of SV displacement and TRE (R{sup 2} = 34%). Conclusions: Considerable residual SV displacement exists in marker-based IGRT. Rotation correction barely reduced SV displacement, rather, a larger SV displacement was shown relative to the prostate gland that was not captured by the marker position. Marker registration error partly explains SV displacement when correcting for rotations. Correcting for rotations, therefore, is not advisable when SV are part of the target volume. Margin design for SVs should take these uncertainties into account.

Smitsmans, Monique H.P.; Bois, Josien de; Sonke, Jan-Jakob [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Catton, Charles N. [Radiation Medicine Program, Princess Margaret Hospital, Ontario Cancer Institute, Department of Radiation Oncology, Toronto (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital, Ontario Cancer Institute, Department of Radiation Physics, Toronto (Canada); Lebesque, Joos V. [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Herk, Marcel van, E-mail: portal@nki.n [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

2011-06-01T23:59:59.000Z

373

Advanced heat pump for the recovery of volatile organic compounds. Phase 1, Conceptual design of an advanced Brayton cycle heat pump for the recovery of volatile organic compounds: Final report  

Science Conference Proceedings (OSTI)

Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The ``Toxic-Release Inventory`` of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy`s (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M`s work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

Not Available

1992-03-01T23:59:59.000Z

374

Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors  

SciTech Connect

This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the codes versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research projects primary objective is to advance the state of the art for reactor analysis.

Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

2013-11-29T23:59:59.000Z

375

Horizontal Advanced Tensiometer  

DOE Patents (OSTI)

An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

Hubbell, Joel M.; Sisson, James B.

2004-06-22T23:59:59.000Z

376

Design and Implementation of a C02 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells in a Shallow Carbonate Approaching Waterflood Depletion  

Science Conference Proceedings (OSTI)

The first project objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second project objective is to demonstrate the performance and economic viability of the project in the field. All work during the fourth quarter falls within the demonstration project.

J. Scott Bles; Kimberly B. Dollens.

1998-04-28T23:59:59.000Z

377

Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion  

SciTech Connect

The first project objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second project objective is to demonstrate the performance and economic viability of the project in the field. All work during the fourth quarter falls within the demonstration project.

Czirr, Kirk

1999-10-28T23:59:59.000Z

378

Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion  

SciTech Connect

The first project objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second project objective is to demonstrate the performance and economic viability of the project in the field. All work during the second quarter falls within the demonstration project.

Czirr, Kirk

1999-10-28T23:59:59.000Z

379

Design and Implementation of a CO(2) Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells in Shallow Shelf Carbonate Approaching Waterflood Depletion  

Science Conference Proceedings (OSTI)

The first objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second objective is to demonstrate the performance and economic viability of the project in the field. All work this quarter falls within the demonstration project.

Harpole, K.J.; Dollens, K.B.; Durrett, E.G.; Bles, J.S

1997-10-31T23:59:59.000Z

380

Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II  

Science Conference Proceedings (OSTI)

The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

2002-11-18T23:59:59.000Z

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

TWO-COLUMN FORMATTING GUIDE  

Science Conference Proceedings (OSTI)

This is a guide designed to cover the details of paper preparation to ensure uniformity and continuity for two-column ... printed in black and white. It is best to:.

382

Heavy Vehicle and Engine Resource Guide  

DOE Green Energy (OSTI)

The Heavy Vehicle and Engine Resource Guide is a catalog of medium- and heavy-duty engines and vehicles with alternative fuel and advanced powertrain options. This edition covers model year 2003 engines and vehicles.

Not Available

2004-03-01T23:59:59.000Z

383

NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

Not Available

1994-08-01T23:59:59.000Z

384

NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

Not Available

1994-08-01T23:59:59.000Z

385

Acquisition Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 15.4-4 (December 2010) Chapter 15.4-4 (December 2010) GENERAL GUIDE FOR TECHNICAL ANALYSIS OF COST PROPOSALS FOR ACQUISITION CONTRACTS Acquisition Guide _____________________________________________________________ __________________________________________________Chapter 15.4-4 (November 2010) TABLE OF CONTENT CHAPTER 1 - INTRODUCTION KEY CONCEPTS ........................................................................................1 LIST OF ACRONYMS...............................................................................1 RELATIONSHIP OF TECHNICAL ANALYSIS TO COST ANALYSIS ..................................2 RESPONSIBILITIES IN EVALUATING CONTRACTOR PROPOSALS ..................................2 CHAPTER 2 - PREPARING TO EVALUATE A PROPOSAL

386

Safety of high speed guided ground transportation systems: Comparison of magnetic and electric fields of conventional and advanced electrified transportation systems. Final report, September 1992-March 1993  

Science Conference Proceedings (OSTI)

Concerns exist regarding the potential safety, environmental and health effects on the public and on transportation workers due to electrification along new or existing rail corridors, and to proposed maglev and high speed rail operations. Therefore, the characterization of electric and magnetic fields (EMF) produced by both steady (dc) and alternating currents (ac) at power frequency (50 Hz in Europe and 60 Hz in the U.S.) and above, in the Extreme Low Frequency (ELF) range (3-3000 Hz) is of interest. The report summarizes and compares the results of a survey of EMF characteristics (spatial, temporal and frequency bands) for representative conventional railroad and transit and advanced high-speed systems including: the German TR-07 maglev system; the Amtrak Northeast Corridor (NEC) and North Jersey Transit (NJT) trains; the Washington, DC Metrorail (WMATA) and the Boston, MA (MBTA) transit systems; and the French TGV-A high speed rail system. This comprehensive comparative EMF survey produced both detailed data and statistical summaries of EMF profiles, and their variability in time and space. EMF ELF levels for WMATA are also compared to those produced by common environmental sources at home, work, and under power lines, but have specific frequency signatures.

Dietrich, F.M.; Feero, W.E.; Jacobs, W.L.

1993-08-01T23:59:59.000Z

387

NMAC Post Maintenance Testing Guide, Revision 1  

Science Conference Proceedings (OSTI)

This Nuclear Maintenance Applications Center (NMAC) guide addresses the concern of member utilities regarding the adequacy and consistency of post-maintenance testing programs. The guide provides information on structuring, developing, organizing, and controlling a post-maintenance testing program in a power plant. It stresses the importance of advance planning to post-maintenance testing.

2004-12-08T23:59:59.000Z

388

Clean Cities 2014 Vehicle Buyer's Guide (Brochure)  

DOE Green Energy (OSTI)

This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

Not Available

2013-12-01T23:59:59.000Z

389

Clean Cities 2011 Vehicle Buyer's Guide  

DOE Green Energy (OSTI)

The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

Not Available

2011-01-01T23:59:59.000Z

390

Canopy 2.1 User Guide  

SciTech Connect

Its user guide for the Canopy system. Its design to be used electronically or printed out in conjunction with the application to teach users about the features.

Burtner, Edwin R.

2012-09-15T23:59:59.000Z

391

Advanced turbine systems program: Conceptual design and product development. Quarterly report, November 1, 1995--January 31, 1996  

DOE Green Energy (OSTI)

Several tasks were completed. Design and test of critical components are discussed. Plans for the next reporting period are outlined.

NONE

1996-04-09T23:59:59.000Z

392

User Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide Guide User Guide Print 1. Apply for Beam Time Submit a new proposal or a Beam Time Request (BTR) using an existing active proposal. 2. Establish a User Agreement Your institute must have a signed agreement with Berkeley Lab before you may do work at the ALS. 3. Complete Experiment Safety Documentation and Review Safety for Users Safety documentation must be completed and reviewed before your beam time. Experiments involving any biological material or radioactive material require more review steps so please allow several weeks for these. 4. Register with the User Office New and returning users need to register with the User Office TWO weeks before arriving at the ALS. Users arriving out of regular office hours must either have a valid Berkeley Lab ID badge, or have completed registration to be granted access to the ALS.

393

Application of Robust Design and Advanced Computer Aided Engineering Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-04-143  

SciTech Connect

Oshkosh Corporation (OSK) is taking an aggressive approach to implementing advanced technologies, including hybrid electric vehicle (HEV) technology, throughout their commercial and military product lines. These technologies have important implications for OSK's commercial and military customers, including fleet fuel efficiency, quiet operational modes, additional on-board electric capabilities, and lower thermal signature operation. However, technical challenges exist with selecting the optimal HEV components and design to work within the performance and packaging constraints of specific vehicle applications. SK desires to use unique expertise developed at the Department of Energy?s (DOE) National Renewable Energy Laboratory (NREL), including HEV modeling and simulation. These tools will be used to overcome technical hurdles to implementing advanced heavy vehicle technology that meet performance requirements while improving fuel efficiency.

Thornton, M.

2013-06-01T23:59:59.000Z

394

Guidelines for the Beneficial Use of Advanced SO2 Control By-Products  

Science Conference Proceedings (OSTI)

This design guide describes the use of the by-products produced from advanced SO2 control processes as construction materials in high-volume applications such as road base stabilization, structural fills, manufactured aggregates, soil amendments, and concrete applications. The engineering data, major design parameters, standard specifications, and construction procedures in the report should help utility by-product managers and power plant managers incorporate these applications in their by-product manag...

1997-08-19T23:59:59.000Z

395

Ocean thermal energy conversion (OTEC) power system development utilizing advanced, high-performance heat transfer techniques. Volume 1. Conceptual design report  

DOE Green Energy (OSTI)

The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC Demonstration Plant. In turn, this Demonstration Plant is to demonstrate, by 1984, the operation and performance of an ocean thermal power plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the Demonstration Plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibility studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report describes the full-size power system module, and summarizes the design parameters and associated costs for the Demonstration Plant module (prototype) and projects costs for commercial plants in production. The material presented is directed primarily toward the surface platform/ship basic reference hull designated for use during conceptual design; however, other containment vessels were considered during the design effort so that the optimum power system would not be unduly influenced or restricted. (WHK)

Not Available

1978-05-12T23:59:59.000Z

396

Advanced turbine systems program conceptual design and product development task 5 -- market study of the gas fired ATS. Topical report  

DOE Green Energy (OSTI)

Solar Turbines Incorporated (Solar), in partnership with the Department of Energy, will develop a family of advanced gas turbine-based power systems (ATS) for widespread commercialization within the domestic and international industrial marketplace, and to the rapidly changing electric power generation industry. The objective of the jointly-funded Program is to introduce an ATS with high efficiency, and markedly reduced emissions levels, in high numbers as rapidly as possible following introduction. This Topical Report is submitted in response to the requirements outlined in Task 5 of the Department of Energy METC Contract on Advanced Combustion Systems, Contract No, DE AC21-93MC30246 (Contract), for a Market Study of the Gas Fired Advanced Turbine System. It presents a market study for the ATS proposed by Solar, and will examine both the economic and siting constraints of the ATS compared with competing systems in the various candidate markets. Also contained within this report is an examination and analysis of Solar`s ATS and its ability to compete in future utility and industrial markets, as well as factors affecting the marketability of the ATS.

NONE

1995-05-01T23:59:59.000Z

397

DOE Advanced Protection Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task 3 - Advanced Protection - Evaluate measures - 2009 - Design, model Irvine Smart Grid Demo protection system - 2010 6 Copyright 2010, Southern California Edison Task 1 -...

398

Source Selection Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

------------------ Chapter 31.4 (April 2013) ------------------ Chapter 31.4 (April 2013) Allowability of Incurred Costs References FAR Part 31 Contract Cost Principles and Procedures DEAR Subpart 970.31 Contract Cost Principles and Procedures DEAR Part 931 Contract Cost Principles and Procedures I. Overview This guide chapter discusses determining the allowability of incurred costs, emphasizing the five FAR requirements, especially the reasonableness requirement. The chapter requires Contracting Officers, when reviewing current advance agreements or establishing new advance agreements, to ensure they: (1) neither provide that a cost unallowable per FAR Part 31 or applicable DOE cost principles is allowable nor agree to any other treatment of costs inconsistent with FAR Part 31 or applicable DOE cost principles; and (2) emphasize that

399

users-guide  

NLE Websites -- All DOE Office Websites (Extended Search)

Contents Contents Contents Contents ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, IL 60439 in ANL/MCS-TM-234 Users Guide for ROMIO: A High-Performance, Portable MPI-IO Implementation by Rajeev Thakur, Robert Ross, Ewing Lusk, William Gropp, Robert Latham Mathematics and Computer Science Division Technical Memorandum No. 234 Revised May 2004, November 2007, April 2010 This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38; and by the Scalable I/O Initiative, a multiagency project funded by the Defense Advanced Research Projects Agency (Contract DABT63-94-C-0049), the Department of Energy, the National Aeronautics and Space Administration,

400

Technical Assistance Guide: Working with DOE National Laboratories (Brochure)  

Science Conference Proceedings (OSTI)

A fact sheet that provides an overview of FEMP's technical assistance through the Department of Energy's National Laboratories. The Federal Energy Management Program (FEMP) facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. To advance that mission, FEMP fosters collaboration between Federal agencies and U.S. Department of Energy (DOE) national laboratories. This guide outlines technical assistance capabilities and expertise at DOE national laboratories. Any laboratory assistance must be in accordance with Federal Acquisition Regulation (FAR) Subpart 35.017 requirements and the laboratory's designation as Federal Funded Research and Development Center (FFRDC) facilities.

Not Available

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Systems: Advanced Systems: high Performance fenestration systems Research areas: Research activities to improve the performance of windows and other fenestration products must address window systems issues as well as Glazing Materials research. LBNL activities in the area of Advanced Systems include research at both the product level and the building envelope and building systems levels. Highly insulating windows - using non structural center layers Lower cost solutions to more insulating three layer glazing systems, with the potential to turn windows in U.S. heating dominated residential applications into net-energy gainers. Highly Insulating Window Frames In collaboration with the Norwegian University of Science and Technology, we are researching the potentials for highly insulating window frames. Our initial work examines European frames with reported U-factors under 0.15 Btu/hr-ft2-F. Future research aims to analyze these designs, verify these performance levels and ensure that procedures used to calculate frame performance are accurate.

402

Guide to research facilities  

SciTech Connect

This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

Not Available

1993-06-01T23:59:59.000Z

403

Advanced Turbine Systems Program: Conceptual Design and Product Development. Annual report, August 1, 1995--July 31, 1996; Advanced turbine systems program: Conceptual design and product development. Annual report, August 1, 1995--July 31, 1996  

Science Conference Proceedings (OSTI)

Objective of Phase II is to provide the coneptual design and product development plan for an ultra high efficiency, enivornmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. All 8 tasks have been completed (see quarterly reports, topical reports).

NONE

1996-12-31T23:59:59.000Z

404

Advanced Combustion  

Science Conference Proceedings (OSTI)

The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

Holcomb, Gordon R. [NETL

2013-03-11T23:59:59.000Z

405

Sensor Characteristics Reference Guide  

Science Conference Proceedings (OSTI)

The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

2013-04-01T23:59:59.000Z

406

Source Selection Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Source Selection Guide Source Selection Guide Source Selection Guide More Documents & Publications Source Selection Guide Source Selection Guide Source Selection...

407

Design, analysis, and test verification of advanced encapsulation system. Triannual report for period ending 30 July 1980  

DOE Green Energy (OSTI)

An optical model has been developed which will predict the amount of incident sunlight reaching the cell surface as well as determining the heat absorbed in encapsulation layers above the cells in a given module design. These results can be factored into a thermal model which will predict the NOCT of a given design. An electrical analysis has been performed which will aid in the selection of properly sized (for thickness) layers in a given module design. Differing allowable voltages may be integrated into the model. Work has begun on the structural model using the MSC NASTRAN finite element model computer program. An algorithm has been developed for determining the total system life-cycle energy cost for ranking module systems.

Garcia, A.; Minning, C.; Perrygo, C.

1980-08-01T23:59:59.000Z

408

Advanced Notification of Awards (ANA) User Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Buyer will need to fill in this block. For this block the only field required is the Zip Code, but should be filled out in its entirety if different from the awardee address in...

409

Advanced Notification of Awards (ANA) User Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Search for documents within the Active and Inactive Queues. The search option will only query items in the Queue that is expanded on the screen. Fields included in the search:...

410

Final LDRD report : design and fabrication of advanced device structures for ultra high efficiency solid state lighting.  

SciTech Connect

The goal of this one year LDRD was to improve the overall efficiency of InGaN LEDs by improving the extraction of light from the semiconductor chip. InGaN LEDs are currently the most promising technology for producing high efficiency blue and green semiconductor light emitters. Improving the efficiency of InGaN LEDs will enable a more rapid adoption of semiconductor based lighting. In this LDRD, we proposed to develop photonic structures to improve light extraction from nitride-based light emitting diodes (LEDs). While many advanced device geometries were considered for this work, we focused on the use of a photonic crystal for improved light extraction. Although resonant cavity LEDs and other advanced structures certainly have the potential to improve light extraction, the photonic crystal approach showed the most promise in the early stages of this short program. The photonic crystal (PX)-LED developed here incorporates a two dimensional photonic crystal, or photonic lattice, into a nitride-based LED. The dimensions of the photonic crystal are selected such that there are very few or no optical modes in the plane of the LED ('lateral' modes). This will reduce or eliminate any radiation in the lateral direction so that the majority of the LED radiation will be in vertical modes that escape the semiconductor, which will improve the light-extraction efficiency. PX-LEDs were fabricated using a range of hole diameters and lattice constants and compared to control LEDs without a photonic crystal. The far field patterns from the PX-LEDs were dramatically modified by the presence of the photonic crystal. An increase in LED brightness of 1.75X was observed for light measured into a 40 degree emission cone with a total increase in power of 1.5X for an unencapsulated LED.

Koleske, Daniel David; Bogart, Katherine Huderle Andersen; Shul, Randy John; Wendt, Joel Robert; Crawford, Mary Hagerott; Allerman, Andrew Alan; Fischer, Arthur Joseph

2005-04-01T23:59:59.000Z

411

Guide to Integrating Renewable Energy in Federal Construction: Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Design to someone by E-mail Building Design to someone by E-mail Share Guide to Integrating Renewable Energy in Federal Construction: Building Design on Facebook Tweet about Guide to Integrating Renewable Energy in Federal Construction: Building Design on Twitter Bookmark Guide to Integrating Renewable Energy in Federal Construction: Building Design on Google Bookmark Guide to Integrating Renewable Energy in Federal Construction: Building Design on Delicious Rank Guide to Integrating Renewable Energy in Federal Construction: Building Design on Digg Find More places to share Guide to Integrating Renewable Energy in Federal Construction: Building Design on AddThis.com... Home Introduction Assessing Renewable Energy Options Planning, Programming, & Budgeting Project Funding Building Design

412

REQUEST BY DETROIT DIESEL CORPORATION FOR AN ADVANCE WAIVER OF...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to diverse markets. In these products they incorporate advanced materials such as ceramic piston rings, valves and valve guides, piston crowns, rocker arm bushings, clevis...

413

Use of Sensitivity and Uncertainty Analysis in the Design of Reactor Physics and Criticality Benchmark Experiments for Advanced Nuclear Fuel  

SciTech Connect

Framatome ANP, Sandia National Laboratories (SNL), Oak Ridge National Laboratory (ORNL), and the University of Florida are cooperating on the U.S. Department of Energy Nuclear Energy Research Initiative (NERI) project 2001-0124 to design, assemble, execute, analyze, and document a series of critical experiments to validate reactor physics and criticality safety codes for the analysis of commercial power reactor fuels consisting of UO{sub 2} with {sup 235}U enrichments {>=}5 wt%. The experiments will be conducted at the SNL Pulsed Reactor Facility.Framatome ANP and SNL produced two series of conceptual experiment designs based on typical parameters, such as fuel-to-moderator ratios, that meet the programmatic requirements of this project within the given restraints on available materials and facilities. ORNL used the Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI) to assess, from a detailed physics-based perspective, the similarity of the experiment designs to the commercial systems they are intended to validate. Based on the results of the TSUNAMI analysis, one series of experiments was found to be preferable to the other and will provide significant new data for the validation of reactor physics and criticality safety codes.

Rearden, B.T. [Oak Ridge National Laboratory (United States); Anderson, W.J. [Framatome ANP, Inc. (France); Harms, G.A. [Sandia National Laboratories (United States)

2005-08-15T23:59:59.000Z

414

Advanced turbine design for coal-fueled engines. Quarterly technical report, [July 1, 1989--September 30, 1989  

SciTech Connect

Coal-fueled gas turbines require the development of a number of new technologies which are being identified by METC and its Heat Engines Contractors. Three significant problems, that were Identified early in the development of coal-fueled engines, are the rapid wear of the turbine airfoils due to particulate erosion, the accumulation of deposits on portions of the airfoil surfaces due to slag deposition and the rapid corrosion of airfoils after the breakdown of surface coatings. The technology development study contained in this program is focused on improving the durability of the turbine through the development of erosion and deposition resistant airfoils and turbine operating conditions. The baseline turbine meanline design vas modified to prevent a local shock on the suction side of the rotor airfoil. New particle dimensionless parameters to be varied were determined. Three first-stage turbine meanline designs have been completed. The design of nev turbine airfoil shapes has been initiated. The calculation of particle trajectories has been completed for the baseline turbine vane and blade airfoils. The erosion model described in the previous technical report vas incorporated in the Post Processing Trajectory Analysis Code.

1989-12-31T23:59:59.000Z

415

Advanced turbine design for coal-fueled engines. Topical report, Task 1.6, Task 1.7  

DOE Green Energy (OSTI)

The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500{degrees}F (815{degrees}C), relatively innocuous salts. In this study it is found that at 1650{degrees}F (900{degrees}C) and above, calcium sulfate becomes an aggressive corrodent.

Bornstein, N.S.

1992-07-17T23:59:59.000Z

416

Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High Temperature Reactor (SmAHTR)  

DOE Green Energy (OSTI)

This document presents the results of a study conducted at Oak Ridge National Laboratory during 2010 to explore the feasibility of small modular fluoride salt-cooled high temperature reactors (FHRs). A preliminary reactor system concept, SmATHR (for Small modular Advanced High Temperature Reactor) is described, along with an integrated high-temperature thermal energy storage or salt vault system. The SmAHTR is a 125 MWt, integral primary, liquid salt cooled, coated particle-graphite fueled, low-pressure system operating at 700 C. The system employs passive decay heat removal and two-out-of-three , 50% capacity, subsystem redundancy for critical functions. The reactor vessel is sufficiently small to be transportable on standard commercial tractor-trailer transport vehicles. Initial transient analyses indicated the transition from normal reactor operations to passive decay heat removal is accomplished in a manner that preserves robust safety margins at all times during the transient. Numerous trade studies and trade-space considerations are discussed, along with the resultant initial system concept. The current concept is not optimized. Work remains to more completely define the overall system with particular emphasis on refining the final fuel/core configuration, salt vault configuration, and integrated system dynamics and safety behavior.

Greene, Sherrell R [ORNL; Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Carbajo, Juan J [ORNL; Ilas, Dan [ORNL; Cisneros, Anselmo T [ORNL; Varma, Venugopal Koikal [ORNL; Corwin, William R [ORNL; Wilson, Dane F [ORNL; Yoder Jr, Graydon L [ORNL; Qualls, A L [ORNL; Peretz, Fred J [ORNL; Flanagan, George F [ORNL; Clayton, Dwight A [ORNL; Bradley, Eric Craig [ORNL; Bell, Gary L [ORNL; Hunn, John D [ORNL; Pappano, Peter J [ORNL; Cetiner, Mustafa Sacit [ORNL

2011-02-01T23:59:59.000Z

417

Pulverizer Maintenance Guide, Volume 2: Babcock & Wilcox Roll Wheel Pulverizers  

Science Conference Proceedings (OSTI)

The "Pulverizer Maintenance Guide, Volume 2: B&W Roll Wheel Pulverizers" provides fossil plant personnel with current maintenance information on this specific mill design. This guide will assist a plant in improving the maintenance of their pulverizer mills.

2004-12-22T23:59:59.000Z

418

Guide to Chemistry Dept  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide to the Chemistry Building Guide to the Chemistry Building The main Chemistry building (Building 555) has been designed to make adequate facilities available for research and to provide an informal atmosphere for free exchange among Department members. There are public areas, shared laboratories, shared office space, and privately assigned places. A newcomer to the building should become familiar with locations of the key areas. Stairs and Elevators - Building 555 The central main staircase and a passenger elevator are for personnel traffic only. Each wing has a staircase. There is a rear staircase for traffic directly to service areas. The building has a freight elevator at the rear core. Flammable material, chemicals, solvents, gas cylinders, etc. can be transported in the freight elevator but not in the passenger elevator. Do not ride with gas cylinders or dewars charged with cryogens as the presence of these in a confined space introduces a suffocation hazard.

419

Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Design of a Multithreaded Barnes-Hut Algorithm for Multicore Clusters Technical Report Junchao Zhang and Babak Behzad Department of Computer Science, University of Illinois at Urbana-Champaign {jczhang, bbehza2}@illinois.edu Marc Snir Department of Computer Science, University of Illinois at Urbana-Champaign and MCS Division, Argonne National Laboratory snir@anl.gov Abstract We describe in this paper an implementation of the Barnes-Hut al- gorithm on multicore clusters. Based on a partitioned global ad- dress space (PGAS) library, the design integrates intranode mul- tithreading and internode one-sided communication, exemplifying a PGAS + X programming style. Within a node, the computation is decomposed into tasks (subtasks), and multitasking is used to hide network latency. We study the tradeoffs between locality in private caches and locality in shared caches

420

Acquisition Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

.4 (February 20 10) .4 (February 20 10) Source Evaluation Board (SEB) Secretariat and Knowledge Manager Guiding Principles P Establishment of a SEB Secretariat and Knowledge Management position will improve both the Department's procurement system and its management of knowledge attained by the Department's procurement personnel. REFERENCES Department of Energy (DOE) report on "Report on Reengineering the Business Clearance Process" issued November 2007 National Academy of Public Administration report on "Managing at the Speed of Light - Improving Mission Support Performance" issued July 2009 Government Accountability Office (GAO) report on "Better Performance Measures and Management Needed to Address Delays in Awarding Contracts (GAO-06-722)" issued June

Note: This page contains sample records for the topic "design guides advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Guide to good practices for communications  

Science Conference Proceedings (OSTI)

The purpose of this Guide to Good Practices is to provide Department of Energy (DOE) contractors with information that can be used to validate and/or modify existing programs relative to Conduct of Operations. This Guide to Good Practices is part of a series of guides designed to enhance the guidelines set forth in DOE Order 5480.19, Conduct of Operations Requirements for DOE Facilities.''

Not Available

1992-12-01T23:59:59.000Z

422

Guide to good practices for logkeeping  

Science Conference Proceedings (OSTI)

The purpose of this Guide to Good Practices is to provide Department of Energy (DOE) contractors with information that can be used to validate and/or modify existing programs relative to Conduct of Operations. This Guide to Good Practices is part of a series of guides designed to enhance the guidelines set forth in DOE Order 5480. 19, Conduct of Operations Requirement for DOE Facilities.'' (JDB)

Not Available

1993-03-01T23:59:59.000Z

423

Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 flux traps (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loops temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation.

Douglas M. Gerstner

2009-05-01T23:59:59.000Z

424

Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 2, Book 1. Commercial plant conceptual design. Final report  

DOE Green Energy (OSTI)

The conceptual design of the 100-MW solar tower focus commercial power plant is described in detail. Sodium is pumped up to the top of a tall tower where the receiver is located. The sodium is heated in the receiver and then flows down the tower, through a pressure reducing device, and thence into a large, hot storage tank which is located at ground level and whose size is made to meet a specific thermal energy storage capacity requirement. From this tank, the sodium is pumped by a separate pump, through a system of sodium-to-water steam generators. The steam generator system consists of a separate superheater and reheater operating in parallel and an evaporator unit operating in series with the other two units. The sodium flowing from the evaporator unit is piped to a cold storage tank. From the cold storage tank, sodium is then pumped up to the tip of the tower to complete the cycle. The steam generated in the steam generators is fed to a conventional off-the-shelf, high-efficiency turbine. The steam loop operates in a conventional rankine cycle with the steam generators serving the same purpose as a conventional boiler and water being fed to the evaporator with conventional feedwater pumps. The pressure reducing device (a standard drag valve, for example) serves to mitigate the pressure caused by the static head of sodium and thus allows the large tanks to operate at ambient pressure conditions. (WHK)

Not Available

1979-03-01T23:59:59.000Z

425

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network (OSTI)

completed advanced energy design guide for small hospitals,for an advanced energy design guide for large hospitals.care. An advanced energy design guide (AEDG) for small

Singer, Brett C.

2010-01-01T23:59:59.000Z

426

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Availability Technology Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And...

427

Advanced turbine systems program conceptual design and product development Task 8.3 - autothermal fuel reformer (ATR). Topical report  

DOE Green Energy (OSTI)

Autothermal fuel reforming (ATR) consists of reacting a hydrocarbon fuel such as natural gas or diesel with steam to produce a hydrogen-rich {open_quotes}reformed{close_quotes} fuel. This work has been designed to investigate the fuel reformation and the product gas combustion under gas turbine conditions. The hydrogen-rich gas has a high flammability with a wide range of combustion stability. Being lighter and more reactive than methane, the hydrogen-rich gas mixes readily with air and can be burned at low fuel/air ratios producing inherently low emissions. The reformed fuel also has a low ignition temperature which makes low temperature catalytic combustion possible. ATR can be designed for use with a variety of alternative fuels including heavy crudes, biomass and coal-derived fuels. When the steam required for fuel reforming is raised by using energy from the gas turbine exhaust, cycle efficiency is improved because of the steam and fuel chemically recuperating. Reformation of natural gas or diesel fuels to a homogeneous hydrogen-rich fuel has been demonstrated. Performance tests on screening various reforming catalysts and operating conditions were conducted on a batch-tube reactor. Producing over 70 percent of hydrogen (on a dry basis) in the product stream was obtained using natural gas as a feedstock. Hydrogen concentration is seen to increase with temperature but less rapidly above 1300{degrees}F. The percent reforming increases as the steam to carbon ratio is increased. Two basic groups of reforming catalysts, nickel - and platinum-basis, have been tested for the reforming activity.

NONE

1996-11-01T23:59:59.000Z

428

Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems  

DOE Green Energy (OSTI)

This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

2013-06-01T23:59:59.000Z

429

High temperature solid lubricant materials for heavy duty and advanced heat engines  

DOE Green Energy (OSTI)

Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

De