National Library of Energy BETA

Sample records for design electrical rating

  1. Customer Incentives for Energy Efficiency Through Electric and Natural Gas Rate Design

    SciTech Connect (OSTI)

    none,

    2009-09-01

    Summarizes the issues and approaches involved in motivating customers to reduce the total energy they consume through energy prices and rate design.

  2. Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review

    SciTech Connect (OSTI)

    Lesh, Pamela G.

    2009-10-15

    Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

  3. Electric Utility Rate Design Study: economic theory of marginal-cost pricing and its application by electric utilities in France and Great Britain

    SciTech Connect (OSTI)

    Westfield, F.M.

    1980-08-12

    This report (1) reviews economic theory of marginal-cost pricing; and (2) examines its applications, going back to the 1960s and before, by electric utilities in France and Great Britain. An ideal pricing system for an economy is first reviewed to clarify fairly complicated ideas of economic theory for noneconomists - the industry specialist and state regulator. The concept of ideal marginal-cost pricing as applied to electricity is then developed. Next, an overview is provided of practical issues that need to be faced when the theory is implemented. Finally, the study turns to examine how the theory has actually been interpreted and applied to electricity rate design by the French and the British. Their methods of transforming theory into practice are reviewed, illustrative tariffs that incorporate their interpretation are provided.

  4. Minority Utility Rate Design Assessment Model

    Energy Science and Technology Software Center (OSTI)

    2003-01-20

    Econometric model simulates consumer demand response to various user-supplied, two-part tariff electricity rate designs and assesses their economic welfare impact on black, hispanic, poor and majority households.

  5. Lincoln Electric System - Renewable Generation Rate (Nebraska...

    Open Energy Info (EERE)

    Applicable Sector Commercial, Industrial Eligible Technologies Solar Thermal Electric, Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, Anaerobic Digestion, Small...

  6. electricity rates for military bases | OpenEI Community

    Open Energy Info (EERE)

    electricity rates for military bases Home > Groups > Utility Rate Hi, I was hoping to find rates for military bases, but have been unable to find anything. Are they just charged as...

  7. Electricity market design for generator revenue sufficiency with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity market design for generator revenue sufficiency with increased variable generation Title Electricity market design for generator revenue sufficiency with increased...

  8. Hubei Electric Power Survey Design Institute | Open Energy Information

    Open Energy Info (EERE)

    Survey Design Institute Jump to: navigation, search Name: Hubei Electric Power Survey&Design Institute Place: Hubei Province, China Product: Wuhan-based power project design and...

  9. Advanced Electric Submersible Pump Design Tool for Geothermal Applications

    SciTech Connect (OSTI)

    Xuele Qi; Norman Turnquist; Farshad Ghasripoor

    2012-05-31

    Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300 C geothermal water at 80kg/s flow rate in a maximum 10-5/8-inch diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis has been developed to design ESPs for geothermal applications. Design of Experiments was also performed to optimize the geometry and performance. The designed mixed-flow type centrifugal impeller and diffuser exhibit high efficiency and head rise under simulated EGS conditions. The design tool has been validated by comparing the prediction to experimental data of an existing ESP product.

  10. Impact of residential PV adoption on Retail Electricity Rates

    SciTech Connect (OSTI)

    Cai, DWH; Adlakha, S; Low, SH; De Martini, P; Chandy, KM

    2013-11-01

    The price of electricity supplied from home rooftop photo voltaic (PV) solar cells has fallen below the retail price of grid electricity in some areas. A number of residential households have an economic incentive to install rooftop PV systems and reduce their purchases of electricity from the grid. A significant portion of the costs incurred by utility companies are fixed costs which must be recovered even as consumption falls. Electricity rates must increase in order for utility companies to recover fixed costs from shrinking sales bases. Increasing rates will, in turn, result in even more economic incentives for customers to adopt rooftop PV. In this paper, we model this feedback between PV adoption and electricity rates and study its impact on future PV penetration and net-metering costs. We find that the most important parameter that determines whether this feedback has an effect is the fraction of customers who adopt PV in any year based solely on the money saved by doing so in that year, independent of the uncertainties of future years. These uncertainties include possible changes in rate structures such as the introduction of connection charges, the possibility of PV prices dropping significantly in the future, possible changes in tax incentives, and confidence in the reliability and maintainability of PV. (C) 2013 Elsevier Ltd. All rights reserved.

  11. DOE Affirms National Interest Electric Transmission Corridor Designations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Affirms National Interest Electric Transmission Corridor Designations DOE Affirms National Interest Electric Transmission Corridor Designations March 6, 2008 - 11:54am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today denied requests for rehearing of the Mid-Atlantic and the Southwest Area National Interest Electric Transmission Corridors (National Corridors) designated by DOE in October 2007 as areas of significant electricity congestion and constraint.

  12. Impact of Rate Design Alternatives on Residential Solar Customer Bills. Increased Fixed Charges, Minimum Bills and Demand-based Rates

    SciTech Connect (OSTI)

    Bird, Lori; Davidson, Carolyn; McLaren, Joyce; Miller, John

    2015-09-01

    With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset, on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.

  13. Electric heat tracing designed to prevent icing

    SciTech Connect (OSTI)

    Lonsdale, J.T.; Norrby, T.

    1985-11-01

    Mobile offshore rigs designed for warmer climates are not capable of operating year-round in the arctic or near-arctic regions. Icing is but one major operational problem in these waters. The danger of instability due to ice loading exists on an oil rig as well as on a ship. From a safety standpoint, ice must be prevented from forming on the helideck, escape passages, escape doors and hatches and handrails. Norsk Hydro A/S, as one of the major operators in the harsh environment outside northern Norway, recognized at an early stage the need for special considerations for the drilling rigs intended for year-round drilling in these regions. In 1982 Norsk Hydro awarded a contract for an engineering study leading to the design of a harsh environment semisubmersible drilling rig. The basic requirement was to develop a unit for safe and efficient year-round drilling operation in the waters of northern Norway. The study was completed in 1983 and resulted in a comprehensive report including a building specification. The electric heat tracing system designed to prevent icing on the unit is described.

  14. Service design in the electric power industry

    SciTech Connect (OSTI)

    Oren, S.S.; Smith, S.A.; Wilson, R.B. )

    1990-01-01

    This essay reviews the basic concepts of product differentiation as they apply to service design in the electric power industry. Unbundling the quality attributes of service conditions benefits utilities as well as their customers. Each customer gains from new opportunities to match the quality and cost of service conditions to the characteristics of their end uses. A well designed product line of service conditions benefits every customer. The utility benefits from improved operating efficiency and from greater flexibility in meeting service obligations and competitive pressures. In addition, the utility obtains better information for planning investments in generation, transmission, and distribution. Together these features provide a foundation for a utility's business strategy. The basic principles of product design are described and a unified methodology for specifying and pricing service conditions is outlined. We also describe how the pricing of quality attributes enables the utility to price other service options systematically, such as long-term supply contracts, cogeneration, and standby service. 60 refs., 21 figs., 14 tabs.

  15. Methodology for Preliminary Design of Electrical Microgrids

    SciTech Connect (OSTI)

    Jensen, Richard P.; Stamp, Jason E.; Eddy, John P.; Henry, Jordan M; Munoz-Ramos, Karina; Abdallah, Tarek

    2015-09-30

    Many critical loads rely on simple backup generation to provide electricity in the event of a power outage. An Energy Surety Microgrid TM can protect against outages caused by single generator failures to improve reliability. An ESM will also provide a host of other benefits, including integration of renewable energy, fuel optimization, and maximizing the value of energy storage. The ESM concept includes a categorization for microgrid value proposi- tions, and quantifies how the investment can be justified during either grid-connected or utility outage conditions. In contrast with many approaches, the ESM approach explic- itly sets requirements based on unlikely extreme conditions, including the need to protect against determined cyber adversaries. During the United States (US) Department of Defense (DOD)/Department of Energy (DOE) Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) effort, the ESM methodology was successfully used to develop the preliminary designs, which direct supported the contracting, construction, and testing for three military bases. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military installations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Melanie Johnson and Harold Sanborn of the U.S. Army Corps of Engineers Construc- tion Engineering Research Laboratory * Experts from the National Renewable Energy Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory

  16. Dynamic Line Rating Oncor Electric Delivery Smart Grid Program

    SciTech Connect (OSTI)

    Johnson, Justin; Smith, Cale; Young, Mike; Donohoo, Ken; Owen, Ross; Clark, Eddit; Espejo, Raul; Aivaliotis, Sandy; Stelmak, Ron; Mohr, Ron; Barba, Cristian; Gonzalez, Guillermo; Malkin, Stuart; Dimitrova, Vessela; Ragsdale, Gary; Mitchem, Sean; Jeirath, Nakul; Loomis, Joe; Trevino, Gerardo; Syracuse, Steve; Hurst, Neil; Mereness, Matt; Johnson, Chad; Bivens, Carrie

    2013-05-04

    Electric transmission lines are the lifeline of the electric utility industry, delivering its product from source to consumer. This critical infrastructure is often constrained such that there is inadequate capacity on existing transmission lines to efficiently deliver the power to meet demand in certain areas or to transport energy from high-generation areas to high-consumption regions. When this happens, the cost of the energy rises; more costly sources of power are used to meet the demand or the system operates less reliably. These economic impacts are known as congestion, and they can amount to substantial dollars for any time frame of reference: hour, day or year. There are several solutions to the transmission constraint problem, including: construction of new generation, construction of new transmission facilities, rebuilding and reconductoring of existing transmission assets, and Dynamic Line Rating (DLR). All of these options except DLR are capital intensive, have long lead times and often experience strong public and regulatory opposition. The Smart Grid Demonstration Program (SGDP) project co-funded by the Department of Energy (DOE) and Oncor Electric Delivery Company developed and deployed the most extensive and advanced DLR installation to demonstrate that DLR technology is capable of resolving many transmission capacity constraint problems with a system that is reliable, safe and very cost competitive. The SGDP DLR deployment is the first application of DLR technology to feed transmission line real-time dynamic ratings directly into the system operation’s State Estimator and load dispatch program, which optimizes the matching of generation with load demand on a security, reliability and economic basis. The integrated Dynamic Line Rating (iDLR)1 collects transmission line parameters at remote locations on the lines, calculates the real-time line rating based on the equivalent conductor temperature, ambient temperature and influence of wind and solar

  17. Annual Steam-Electric Plant Operation and Design Data (EIA-767 data file)

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity data files > Form EIA-767 Form EIA-767 historical data files Data Released: November 02, 2006 Next Release: None(discontinued) Annual steam-electric plant operation and design data Historical data files contain annual data from organic-fueled or combustible renewable steam-electric plants with a generator nameplate rating of 10 or more megawatts. The data are derived from the Form EIA-767 "Steam-Electric Plant Operation and Design Report." The files contains data on

  18. DOE Issues Two Draft National Interest Electric Transmission Corridor Designations

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced the issuance of two draft National Interest Electric Transmission Corridor (National Corridor) designations. The Energy Policy Act of 2005 authorizes the Secretary, based on the findings of DOE's National Electric Transmission Congestion Study (Congestion Study), to designate National Corridors.

  19. Tips: Time-Based Electricity Rates | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Time-based electricity programs encourage you to use energy when the demand is low by giving you a lower price for electricity during those times. Time-based electricity programs...

  20. Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency

    SciTech Connect (OSTI)

    R. Wigeland; K. Hamman

    2009-09-01

    Suggested for Track 7: Advances in Reactor Core Design and In-Core Management _____________________________________________________________________________________ Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency R. Wigeland and K. Hamman Idaho National Laboratory Given the ability of fast reactors to effectively transmute the transuranic elements as are present in spent nuclear fuel, fast reactors are being considered as one element of future nuclear power systems to enable continued use and growth of nuclear power by limiting high-level waste generation. However, a key issue for fast reactors is higher electricity cost relative to other forms of nuclear energy generation. The economics of the fast reactor are affected by the amount of electric power that can be produced from a reactor, i.e., the thermal efficiency for electricity generation. The present study is examining the potential for fast reactor subassembly design changes to improve the thermal efficiency by increasing the average coolant outlet temperature without increasing peak temperatures within the subassembly, i.e., to make better use of current technology. Sodium-cooled fast reactors operate at temperatures far below the coolant boiling point, so that the maximum coolant outlet temperature is limited by the acceptable peak temperatures for the reactor fuel and cladding. Fast reactor fuel subassemblies have historically been constructed using a large number of small diameter fuel pins contained within a tube of hexagonal cross-section, or hexcan. Due to this design, there is a larger coolant flow area next to the hexcan wall as compared to flow area in the interior of the subassembly. This results in a higher flow rate near the hexcan wall, overcooling the fuel pins next to the wall, and a non-uniform coolant temperature distribution. It has been recognized for many years that this difference in sodium coolant temperature was detrimental to achieving

  1. Idaho - IC 61-516 - Priority Designation for Electric Transmission...

    Open Energy Info (EERE)

    Idaho - IC 61-516 - Priority Designation for Electric Transmission Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation:...

  2. Electrically heated particulate filter embedded heater design

    DOE Patents [OSTI]

    Gonze, Eugene V.; Chapman, Mark R.

    2014-07-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  3. Lighting Electricity Rates on OpenEI | OpenEI Community

    Open Energy Info (EERE)

    Lighting Electricity Rates on OpenEI Home > Groups > Utility Rate Sfomail's picture Submitted by Sfomail(48) Member 31 May, 2013 - 12:04 API Utility Rates I'm pleased to announce...

  4. Wholesale electricity market design with increasing levels of renewable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    generation: Revenue sufficiency and long-term reliability | Argonne National Laboratory Revenue sufficiency and long-term reliability Title Wholesale electricity market design with increasing levels of renewable generation: Revenue sufficiency and long-term reliability Publication Type Journal Article Year of Publication 2016 Authors Milligan, M, Frew, BA, Bloom, A, Ela, E, Botterud, A, Townsend, A, Levin, T Journal The Electricity Journal Volume 29 Start Page 26 Issue 2 Pagination 13 Date

  5. FITCH RATES ENERGY NORTHWEST, WA'S ELECTRIC REV RFDG BONDS 'AA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    debt (4.1 billion). KEY RATING DRIVERS BONNEVILLE'S OBLIGATION SECURES BONDS: The rating on the Energy Northwest bonds reflects the credit quality of Bonneville and its...

  6. The Impacts of Commercial Electric Utility Rate Structure Elements on the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economics of Photovoltaic Systems | Department of Energy The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to better understand the impacts of different commercial rate structures on the

  7. Maximizing the Value of Photovoltaic Installations on Schools in California: Choosing the Best Electricity Rates

    SciTech Connect (OSTI)

    Ong, S.; Denholm, P.

    2011-07-01

    Schools in California often have a choice between multiple electricity rate options. For schools with photovoltaic (PV) installations, choosing the right rate is essential to maximize the value of PV generation. The rate option that minimizes a school?s electricity expenses often does not remain the most economical choice after the school installs a PV system. The complex interaction between PV generation, building load, and rate structure makes determining the best rate a challenging task. This report evaluates 22 rate structures across three of California?s largest electric utilities--Pacific Gas and Electric Co. (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E)--in order to identify common rate structure attributes that are favorable to PV installations.

  8. Vacuum Bellows, Vacuum Piping, Cryogenic Break, and Copper Joint Failure Rate Estimates for ITER Design Use

    SciTech Connect (OSTI)

    L. C. Cadwallader

    2010-06-01

    The ITER international project design teams are working to produce an engineering design in preparation for construction of the International Thermonuclear Experimental Reactor (ITER) tokamak. During the course of this work, questions have arisen in regard to safety barriers and equipment reliability as important facets of system design. The vacuum system designers have asked several questions about the reliability of vacuum bellows and vacuum piping. The vessel design team has asked about the reliability of electrical breaks and copper-copper joints used in cryogenic piping. Research into operating experiences of similar equipment has been performed to determine representative failure rates for these components. The following chapters give the research results and the findings for vacuum system bellows, power plant stainless steel piping (amended to represent vacuum system piping), cryogenic system electrical insulating breaks, and copper joints.

  9. Incorporating a Time Horizon in Rate-of-Return Estimations: Discounted Cash Flow Model in Electric Transmission Rate Cases

    SciTech Connect (OSTI)

    Chatterjee, Bishu; Sharp, Peter A.

    2006-07-15

    Electric transmission and other rate cases use a form of the discounted cash flow model with a single long-term growth rate to estimate rates of return on equity. It cannot incorporate information about the appropriate time horizon for which analysts' estimates of earnings growth have predictive powers. Only a non-constant growth model can explicitly recognize the importance of the time horizon in an ROE calculation. (author)

  10. Duke Energy (Electric)- Energy Star Homes Rate Discount Program

    Broader source: Energy.gov [DOE]

    Duke Energy encourages residential customers to buy energy-efficient homes through the utility's Energy Star Homes Program, which awards a rate discount to customers living in Energy Star homes. To...

  11. Duke Energy Carolinas (Electric)- Energy Star Homes Rate Discount Program

    Broader source: Energy.gov [DOE]

    Duke Energy Carolinas encourages residential customers to buy energy-efficient homes through the utility's Energy Star Homes Program, which awards a rate discount to customers living in Energy Star...

  12. Duke Energy (Electric)- Energy Star Homes Rate Discount Program

    Broader source: Energy.gov [DOE]

    Duke Energy encourages residential customers to buy energy-efficient homes through the utility's Energy Star Homes Program, which awards a rate discount to customers living in Energy Star homes....

  13. Photovoltaic module electrical termination design requirement study. Final report

    SciTech Connect (OSTI)

    Mosna, F.J. Jr.; Donlinger, J.

    1980-07-01

    Motorola Inc., in conjunction with ITT Cannon, has conducted a study to develop information to facilitate the selection of existing, commercial, electrical termination hardware for photovoltaic modules and arrays. Details of the study are presented in this volume. Module and array design parameters were investigated and recommendations were developed for use in surveying, evaluating, and comparing electrical termination hardware. Electrical termination selection criteria factors were developed and applied to nine generic termination types in each of the four application sectors. Remote, residential, intermediate and industrial. Existing terminations best suited for photovoltaic modules and arrays were identified. Cost information was developed to identify cost drivers and/or requirements which might lead to cost reductions. The general conclusion is that there is no single generic termination that is best suited for photovoltaic application, but that the appropriate termination is strongly dependent upon the module construction and its support structure as well as the specific application sector.

  14. Lifeline electric rates and alternative approaches to the problems of low-income ratepayers. Ten case studies of implemented programs

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    Program summaries, issue developments, governmental processes, and impacts are discussed for 10 case studies dealing with lifeline electric rates and alternative approaches to the problems of low-income ratepayers, namely; the Boston Edison rate freeze; the California lifeline; Florida Power and Light conservation rate; the Iowa-Illinois Gas and Electric small-use rate; the Maine demonstration lifeline program; the Massachusetts Electric Company A-65 rate; the Michigan optional senior citizen rate; the Narragansett Electric Company A-65 SSI rate; the Northern States Power Company conservation rate break; and the Potomac Electric Power Company rate freeze. (MCW)

  15. Electricity Market Manipulation: How Behavioral Modeling Can Help Market Design

    SciTech Connect (OSTI)

    Gallo, Giulia

    2015-12-18

    The question of how to best design electricity markets to integrate variable and uncertain renewable energy resources is becoming increasingly important as more renewable energy is added to electric power systems. Current markets were designed based on a set of assumptions that are not always valid in scenarios of high penetrations of renewables. In a future where renewables might have a larger impact on market mechanisms as well as financial outcomes, there is a need for modeling tools and power system modeling software that can provide policy makers and industry actors with more realistic representations of wholesale markets. One option includes using agent-based modeling frameworks. This paper discusses how key elements of current and future wholesale power markets can be modeled using an agent-based approach and how this approach may become a useful paradigm that researchers can employ when studying and planning for power systems of the future.

  16. User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates

    SciTech Connect (OSTI)

    Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

    1982-05-01

    SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

  17. Design and performance of low-wattage electrical heater probe

    SciTech Connect (OSTI)

    Biddle, R.; Wetzel, J.R.; Cech, R.

    1997-11-01

    A mound electrical calibration heater (MECH) has been used in several EG and G Mound developed calorimeters as a calibration tool. They are very useful over the wattage range of a few to 500 W. At the lower end of the range, a bias develops between the MECH probe and calibrated heat standards. A low-wattage electrical calibration heater (L WECH) probe is being developed by the Safeguards Science and Technology group (NIS-5) of Los Alamos National Laboratory based upon a concept proposed by EG and G Mound personnel. The probe combines electrical resistive heating and laser-light powered heating. The LWECH probe is being developed for use with power settings up to 2W. The electrical heater will be used at the high end of the range, and laser-light power will be used low end of the wattage range. The system consists of two components: the heater probe and a control unit. The probe is inserted into the measuring cavity through an opening in the insulating baffle, and a sleeve is required to adapt to the measuring chamber. The probe is powered and controlled using electronics modules located separately. This paper will report on the design of the LWECH probe, initial tests, and expected performance.

  18. Residential electricity rates for the United States for Solcost Data Bank cities

    SciTech Connect (OSTI)

    Smith, L. E.

    1981-05-01

    Electricity rates are given for selected cities in each state, first of the Southern Solar Energy Center region and then of the rest of the US, for an average residence that uses 1000 kWh a month. (LEW)

  19. Standby rate design: current issues and possible innovations

    SciTech Connect (OSTI)

    Goulding, A.J.; Bahceci, Serkan

    2007-05-15

    While options pricing principles have some relevance for the design a standby distribution rates, insurance pricing may provide an even better model. An insurance-based approach using an outage probability methodology also provides powerful incentives to the utility to connect additional DG resources to the grid. (author)

  20. A rate design to increase efficiency and reduce revenue requirements

    SciTech Connect (OSTI)

    Boonin, David Magnus

    2009-05-15

    One decoupling approach, a Straight Fixed Variable (SFV) rate design, is a rational way to recover fixed and variable costs because it aligns pricing with variable and fixed cost causation, thereby removing the utility's profit sensitivity to reduced sales. The problem with SFV is that it reduces the variable charge to short-term variable cost, leading to overconsumption. Revenue-neutral energy efficiency ''feebates'' combining fees and rebates offer an economic incentive for consumer energy efficiency. (author)

  1. Polymer selection and cell design for electric-vehicle supercapacitors

    SciTech Connect (OSTI)

    Mastragostino, M.; Arbizzani, C.; Paraventi, R.; Zanelli, A.

    2000-02-01

    Supercapacitors are devices for applications requiring high operating power levels, such as secondary power sources in electric vehicles (EVs) to provide peak power for acceleration and hill climbing. While electronically conducting polymers yield different redox supercapacitor configurations, devices with the n-doped polymer as the negative electrode and the p-doped polymer as the positive one are the most promising for EV applications. Indeed, this type of supercapacitor has a high operating potential, is able to deliver all the doping charge and, when charged, has both electrodes in the conducting (p- and n-doped) states. This study reports selection criteria for polymer materials and cell design for high performance EV supercapacitors and experimental results of selected polymer materials.

  2. Impact of Rate Design Alternatives on Residential Solar Customer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Company PSCo Public Service Company of Colorado PV photovoltaic SAM System Advisor Model TMY3 Typical Meteorological Year 3 TOU time-of-use VEPCo Virginia Electric and...

  3. Cogeneration of Electricity and Potable Water Using The International Reactor Innovative And Secure (IRIS) Design

    SciTech Connect (OSTI)

    Ingersoll, D.T.; Binder, J.L.; Kostin, V.I.; Panov, Y.K.; Polunichev, V.; Ricotti, M.E.; Conti, D.; Alonso, G.

    2004-10-06

    The worldwide demand for potable water has been steadily growing and is projected to accelerate, driven by a continued population growth and industrialization of emerging countries. This growth is reflected in a recent market survey by the World Resources Institute, which shows a doubling in the installed capacity of seawater desalination plants every ten years. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh/m3 of produced desalted water. At current U.S. water use rates, a dedicated 1000 MW power plant for every one million people would be required to meet our water needs with desalted water. Nuclear energy plants are attractive for large scale desalination application. The thermal energy produced in a nuclear plant can provide both electricity and desalted water without the production of greenhouse gases. A particularly attractive option for nuclear desalination is to couple a desalination plant with an advanced, modular, passively safe reactor design. The use of small-to-medium sized nuclear power plants allows for countries with smaller electrical grid needs and infrastructure to add new electrical and water capacity in more appropriate increments and allows countries to consider siting plants at a broader number of distributed locations. To meet these needs, a modified version of the International Reactor Innovative and Secure (IRIS) nuclear power plant design has been developed for the cogeneration of electricity and desalted water. The modular, passively safe features of IRIS make it especially well adapted for this application. Furthermore, several design features of the IRIS reactor will ensure a safe and reliable source of energy and water even for countries with limited nuclear power experience and infrastructure. The IRIS-D design utilizes low-quality steam extracted from the low-pressure turbine to boil seawater in a multi-effect distillation desalination plant. The desalination plant is based on the horizontal

  4. Plug-In Hybrid Electric Vehicle Energy Storage System Design: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2006-05-01

    This paper discusses the design options for a plug-in hybrid electric vehicle, including power, energy, and operating strategy as they relate to the energy storage system.

  5. DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - U.S. Department of Energy (DOE) Assistant Secretary for Electricity Delivery and Energy Reliability Kevin M. Kolevar today announced the Department's designation of two National...

  6. DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Assistant Secretary for Electricity Delivery and Energy Reliability Kevin M. Kolevar today announced the Department's designation of two National Interest Electric Transmission Corridors (National Corridors) -- the Mid-Atlantic Area National Interest Electric Transmission Corridor, and the Southwest Area National Interest Electric Transmission Corridor. These corridors include areas in two of the Nation's most populous regions with growing electricity congestion problems. The Department based its designations on data and analysis showing that persistent transmission congestion exists in these two areas.

  7. Unbundling power products, modifying rate design, and fixed cost coverage

    SciTech Connect (OSTI)

    Procter, R.J.

    1996-03-01

    In this paper, the author provides an overview of efforts currently underway at the Bonneville Power Administration (BPA) to respond to these various challenges to how BPA has traditionally managed the marketing of power at the wholesale level in the Pacific Northwest and to areas outside this region along the West Cast in general. The paper begins with an overview of the role of the BPA in the region, and trends in costs and revenues. The paper provides a general outline of BPA`s efforts to separate its business into three separate product lines (power, energy services, and transmission) as well as providing an overview of how BPA is unbundling power products. In addition, the paper provides an overview of some of the major changes BPA has proposed in its rate design. This is followed by an overview of the approach to the issue of stranded cost. You will see that it is their desire to as much as possible avoid a legislative solution to this issue and rely on marketing and working with customers as a way of dealing with this very contentious issue. The paper wraps up with an assessment of the potential for power product unbundling to significantly reduce potential stranded costs. You will see that at the present time, unbundling power products offers BPA little in the way of substantial reductions in potential stranded costs. Whereas, margins on the delivery of energy and capacity offer the greatest potential for covering fixed costs.

  8. Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems

    SciTech Connect (OSTI)

    Ong, S.; Denholm, P.; Doris, E.

    2010-06-01

    This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to understand better the impacts of different commercial rate structures on the value of solar PV systems. By analyzing and comparing 55 unique rate structures across the United States, this study seeks to identify the rate components that have the greatest effect on the value of PV systems. Understanding the beneficial components of utility tariffs can both assist decision makers in choosing appropriate rate structures and influence the development of rates that favor the deployment of PV systems. Results from this analysis show that a PV system's value decreases with increasing demand charges. Findings also indicate that time-of-use rate structures with peaks coincident with PV production and wide ranges between on- and off-peak prices most benefit the types of buildings and PV systems simulated. By analyzing a broad set of rate structures from across the United States, this analysis provides an insight into the range of impacts that current U.S. rate structures have on PV systems.

  9. Electric rate that shifts hourly may foretell spot-market kWh

    SciTech Connect (OSTI)

    Springer, N.

    1985-11-25

    Four California industrial plants have cut their electricity bills up to 16% by shifting from the traditional time-of-use rates to an experimental real-time program (RTP) that varies prices hourly. The users receive a price schedule reflecting changing generating costs one day in advance to encourage them to increase power consumption during the cheapest time periods. Savings during the pilot program range between $11,000 and $32,000 per customer. The hourly cost breakdown encourages consumption during the night and early morning. The signalling system could be expanded to cogenerators and independent small power producers. If an electricity spot market develops, forecasters think a place on the stock exchanges for future-delivery contracts could develop in the future.

  10. Impacts of Western Area Power Administration`s power marketing alternatives on retail electricity rates and utility financial viability

    SciTech Connect (OSTI)

    Bodmer, E.; Fisher, R.E.; Hemphill, R.C.

    1995-03-01

    Changes in power contract terms for customers of Western`s Salt Lake City Area Office affect electricity rates for consumers of electric power in Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. The impacts of electricity rate changes on consumers are studied by measuring impacts on the rates charged by individual utility systems, determining the average rates in regional areas, and conducting a detailed rate analysis of representative utility systems. The primary focus is an evaluation of the way retail electricity rates for Western`s preference customers vary with alternative pricing and power quantity commitment terms under Western`s long-term contracts to sell power (marketing programs). Retail rate impacts are emphasized because changes in the price of electricity are the most direct economic effect on businesses and residences arising from different Western contractual and operational policies. Retail rates are the mechanism by which changes in cost associated with Western`s contract terms are imposed on ultimate consumers, and rate changes determine the dollar level of payments for electric power incurred by the affected consumers. 41 figs., 9 tabs.

  11. Net Metering and Market Feedback Loops: Exploring the Impact of Retail Rate Design on Distributed PV Deployment

    SciTech Connect (OSTI)

    Darghouth, Naïm R.; Wiser, Ryan; Barbose, Galen; Mills, Andrew

    2015-01-13

    The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and further rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer

  12. Thermal/Electrical Modeling for Abuse-Tolerant Design of Li-Ion Modules (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Kim, G.-H.; Pesaran, A.; Darcy, E.

    2008-11-01

    To help design safe, high-performing batteries, NREL and NASA created and verified a new multicell math model capturing electrical-thermal interactions of cells with PTC devices during thermal abuse.

  13. Synthetic aperture design for increased SAR image rate

    DOE Patents [OSTI]

    Bielek, Timothy P.; Thompson, Douglas G.; Walker, Bruce C.

    2009-03-03

    High resolution SAR images of a target scene at near video rates can be produced by using overlapped, but nevertheless, full-size synthetic apertures. The SAR images, which respectively correspond to the apertures, can be analyzed in sequence to permit detection of movement in the target scene.

  14. Design-Build Contract Awarded for Electrical Substation at Los Alamos

    National Nuclear Security Administration (NNSA)

    National Laboratory | National Nuclear Security Administration | (NNSA) Design-Build Contract Awarded for Electrical Substation at Los Alamos National Laboratory April 27, 2016 LOS ALAMOS, NM - Under an interagency agreement with the Department of Energy's National Nuclear Security Administration (DOE/NNSA), the U.S. Army Corps of Engineers (USACE) has awarded a design-build contract at Los Alamos National Laboratory (LANL) to Gardner Zemke Mechanical and Electrical Contractors of

  15. Resilient design of recharging station networks for electric transportation vehicles

    SciTech Connect (OSTI)

    Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

    2011-08-01

    As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

  16. The Impact of Rate Design and Net Metering on the Bill Savings...

    Open Energy Info (EERE)

    Impact of Rate Design and Net Metering on the Bill Savings from Distributed Photovoltaics (PV) for Residential Customers in California Jump to: navigation, search Tool Summary...

  17. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    SciTech Connect (OSTI)

    Ela, E.; Milligan, M.; Bloom, A.; Botterud, A.; Townsend, A.; Levin, T.

    2014-09-01

    Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.

  18. Design Configurations for a Very High Temperature Gas-Cooled Reactor Designed to Generate Electricity and Hydrogen

    SciTech Connect (OSTI)

    Conference preceedings

    2006-07-01

    The High Temperature Gas-Cooled Reactor is being envisioned that will generate not just electricity, but also hydrogen to charge up fuel cells for cars, trucks and other mobile energy uses. INL engineers studied various heat-transfer working fluids—including helium and liquid salts—in seven different configurations. In computer simulations, serial configurations diverted some energy from the heated fluid flowing to the electric plant and hydrogen production plant. In anticipation of the design, development and procurement of an advanced power conversion system for HTGR, this study was initiated to identify the major design and technology options and their tradeoffs in the evaluation of power conversion system (PCS) coupled to hydrogen plant. In this study, we investigated a number of design configurations and performed thermal hydraulic analyses using various working fluids and various conditions (Oh, 2005). This paper includes a portion of thermal hydraulic results based on a direct cycle and a parallel intermediate heat exchanger (IHX) configuration option.

  19. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-03-30

    Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

  20. Mergers, acquisitions, divestitures, and applications for market-based rates in a deregulating electric utility industry

    SciTech Connect (OSTI)

    Cox, A.J.

    1999-05-01

    In this article, the author reviews FERC's current procedures for undertaking competitive analysis. The current procedure for evaluating the competitive impact of transactions in the electric utility industry is described in Order 592, in particular Appendix A. These procedures effectively revised criteria that had been laid out in Commonwealth Edison and brought its merger policy in line with the EPAct and the provisions of Order 888. Order 592 was an attempt to provide more certainty and expedition in handling mergers. It established three criteria that had to be satisfied for a merger to be approved: Post-merger market power must be within acceptable thresholds or be satisfactorily mitigated, acceptable customer protections must be in place (to ensure that rates will not go up as a result of increased costs) and any adverse effect on regulation must be addressed. FERC states that its Order 592 Merger Policy Statement is based upon the Horizontal Merger Guidelines issued jointly by the Federal Trade Commission and the Antitrust Division Department of Justice (FTC/DOJ Merger Guidelines). While it borrows much of the language and basic concepts of the Merger Guidelines, FERC's procedures have been criticized as not following the methodology closely enough, leaving open the possibility of mistakes in market definition.

  1. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Designs, Architectures, and Concepts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designs, Architectures, and Concepts Chapter 3: Technology Assessments Introduction Society's growing dependence on the electric infrastructure, along with rapid changes in generation-side and demand-side technologies, is forcing a reconsideration of the fundamental design principles and operational concepts of the grid. Currently, the grid is characterized by monolithic central generation interconnected by high voltage transmission lines, with one-way power flows on distribution feeders,

  2. The Role of Electricity Markets and Market Design in Integrating Solar Generation: Solar Integration Series. 2 of 3 (Brochure)

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2011-05-03

    The second out of a series of three fact sheets describing the role of electricity markets and market design in integrating solar generation.

  3. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-06-01

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

  4. Rethinking Standby & Fixed Cost Charges: Regulatory & Rate Design Pathways to Deeper Solar PV Cost Reductions

    Office of Energy Efficiency and Renewable Energy (EERE)

    While solar PV's impact on utilities has been frequently discussed the past year, little attention has been paid to the potentially impact posed by solar PV-specific rate designs (often informally referred to as solar "fees" or "taxes") upon non-hardware "soft" cost reductions. In fact, applying some rate designs to solar PV customers could potentially have a large impact on the economics of PV systems.

  5. Electric utility engineer`s FGD manual -- Volume 1: FGD process design. Final report

    SciTech Connect (OSTI)

    1996-03-04

    Part 1 of the Electric Utility Engineer`s Flue Gas Desulfurization (FGD) Manual emphasizes the chemical and physical processes that form the basis for design and operation of lime- and limestone-based FGD systems applied to coal- or oil-fired steam electric generating stations. The objectives of Part 1 are: to provide a description of the chemical and physical design basis for lime- and limestone-based wet FGD systems; to identify and discuss the various process design parameters and process options that must be considered in developing a specification for a new FGD system; and to provide utility engineers with process knowledge useful for operating and optimizing a lime- or limestone-based wet FGD system.

  6. Design of a low-cost thermoacoustic electricity generator and its experimental verification

    SciTech Connect (OSTI)

    Backhaus, Scott N; Yu, Z; Jaworski, A J

    2010-01-01

    This paper describes the design and testing of a low cost thermoacoustic generator. A travelling-wave thermoacoustic engine with a configuration of a looped-tube resonator is designed and constructed to convert heat to acoustic power. A commercially available, low-cost loudspeaker is adopted as the alternator to convert the engine's acoustic power to electricity. The whole system is designed using linear thermoacoustic theory. The optimization of different parts of the thermoacoustic generator, as well as the matching between the thermoacoustic engine and the alternator are discussed in detail. A detailed comparison between the preliminary test results and linear thermoacoustic predictions is provided.

  7. [Tampa Electric Company IGCC project]. Final public design report; Technical progress report

    SciTech Connect (OSTI)

    1996-07-01

    This final Public Design Report (PDR) provides completed design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the operating parameters and benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. Pending development of technically and commercially viable sorbent for the Hot Gas Cleanup System, the HGCU also is demonstrated. The report is organized under the following sections: design basis description; plant descriptions; plant systems; project costs and schedule; heat and material balances; general arrangement drawings; equipment list; and miscellaneous drawings.

  8. Public Utility Regulatory Policies Act of 1978: Natural Gas Rate Design Study

    SciTech Connect (OSTI)

    1980-05-01

    First, the comments on May 3, 1979 Notice of Inquiry of DOE relating to the Gas Utility Rate Design Study Required by Section 306 of PURPA are presented. Then, comments on the following are included: (1) ICF Gas Utility Model, Gas Utility Model Data Outputs, Scenario Design; (2) Interim Model Development Report with Example Case Illustrations; (3) Interim Report on Simulation of Seven Rate Forms; (4) Methodology for Assessing the Impacts of Alternative Rate Designs on Industrial Energy Use; (5) Simulation of Marginal-Cost-Based Natural Gas Rates; and (6) Preliminary Discussion Draft of the Gas Rate Design Study. Among the most frequent comments expressed were the following: (a) the public should be given the opportunity to review the final report prior to its submission to Congress; (b) results based on a single computer model of only four hypothetical utility situations cannot be used for policy-making purposes for individual companies or the entire gas industry; (c) there has been an unobjective treatment of traditional and economic cost rate structures; the practical difficulties and potential detrimental consequences of economic cost rates are not fully disclosed; and (d) it is erroneous to assume that end users, particularly residential customers, are influenced by price signals in the rate structure, as opposed to the total bill.

  9. A versatile electrical penetration design qualified to IEEE Std. 317-1983

    SciTech Connect (OSTI)

    Lankenau, W.; Wetherill, T.M.

    1994-12-31

    Although worldwide demand for new construction of nuclear power stations has been on a decline, the available opportunities for the design and construction of qualified electrical penetrations continues to offer challenges, requiring a highly versatile design. Versatility is necessary in order to meet unique customer requirements within the constraints of a design basis qualified to IEEE Std. 317-1983. This paper summarizes such a versatile electrical penetration designed, built and tested to IEEE Std. 317-1983. The principal features are described including major materials of construction. Some of the design constraints such as sealing requirements, and conductor density (including numerical example) are discussed. The requirements for qualification testing of the penetration assembly to IEEE Std. 317-1983 are delineated in a general sense, and some typical test ranges for preconditioning, radiation exposure, and LOCA are provided. The paper concludes by describing ways in which this versatile design has been adapted to meet unique customer requirements in a variety of nuclear power plants.

  10. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    SciTech Connect (OSTI)

    Wang, Mingyu; WolfeIV, Edward; Craig, Timothy; LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar

    2016-01-01

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.

  11. Tampa Electric Company, Polk Power Station Unit No. 1, preliminary public design report

    SciTech Connect (OSTI)

    1994-06-01

    This preliminary Public Design Report (PDR) provides design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. This project is partially funded by the US Department of Energy (DOE) under Round III of its Clean Coal Technology (CCT) Program under the provisions of Cooperative Agreement between DOE and Tampa Electric Company, novated on March 5,1992. The project is highlighted by the inclusion of a new hot gas cleanup system. DOE`s project management is based at its Morgantown Energy Technology Center (METC) in West Virginia. This report is preliminary, and the information contained herein is subject to revision. Definitive information will be available in the final PDR, which will be published at the completion of detailed engineering.

  12. Electricity rate effects of 150 MW shop assembled turbocharged boiler generating units

    SciTech Connect (OSTI)

    Drenker, S.; Fancher, R.

    1984-08-01

    Major upheavals in the environment in which electric utilities operate began in the 1960's. Modular construction, developed and perfected by process industry engineering firms, in conjuction with small turbocharged boiler power plants (currently under development), can respond to these forces by shortening construction time. Benefits from this approach, resulting from better matching of load growth and reducing planning horizon, can equal 15% to 60% of the capital cost of large pulverized coal plants.

  13. Thermal and Electrical Analysis of MARS Rover RTG, and Performance Comparison of Alternative Design Options.

    SciTech Connect (OSTI)

    Schock, Alfred; Or, Chuen T; Skrabek, Emanuel A

    1989-09-29

    The paper describes the thermal, thermoelectric and electrical analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the MARS Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The work described was part of an RTG design study conducted by Fairchild Space Company for the U.S. Department of Energy, in support of the Jet Propulsion Laboratory's MRSR Project.; A companion paper presented at this conference described a reference mission scenario, al illustrative Rover design and activity pattern on Mars, its power system requirements and environmental constraints, a design approach enabling RTG operation in the Martian atmosphere, and the design and the structural and mass analysis of a conservative baseline RTG employing safety-qualified heat source modules and reliability-proven thermoelectric converter elements.; The present paper presents a detailed description of the baseline RTG's thermal, thermoelectric, and electrical analysis. It examines the effect of different operating conditions (beginning versus end of mission, water-cooled versus radiation-cooled, summer day versus winter night) on the RTG's performance. Finally, the paper describes and analyzes a number of alternative RTG designs, to determine the effect of different power levels (250W versus 125W), different thermoelectric element designs (standard versus short unicouples versus multicouples) and different thermoelectric figures of merit (0.00058K(superscript -1) to 0.000140K (superscript -1) on the RTG's specific power.; The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost.; There is a duplicate copy and also a duplicate copy in the ESD files.

  14. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    SciTech Connect (OSTI)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-15

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  15. Regional economic impacts of changes in electricity rates resulting from Western Area Power Administration`s power marketing alternatives

    SciTech Connect (OSTI)

    Allison, T.; Griffes, P.; Edwards, B.K.

    1995-03-01

    This technical memorandum describes an analysis of regional economic impacts resulting from changes in retail electricity rates due to six power marketing programs proposed by Western Area Power Administration (Western). Regional economic impacts of changes in rates are estimated in terms of five key regional economic variables: population, gross regional product, disposable income, employment, and household income. The REMI (Regional Impact Models, Inc.) and IMPLAN (Impact Analysis for Planning) models simulate economic impacts in nine subregions in the area in which Western power is sold for the years 1993, 2000, and 2008. Estimates show that impacts on aggregate economic activity in any of the subregions or years would be minimal for three reasons. First, the utilities that buy power from Western sell only a relatively small proportion of the total electricity sold in any of the subregions. Second, reliance of Western customers on Western power is fairly low in each subregion. Finally, electricity is not a significant input cost for any industry or for households in any subregion.

  16. An institutional design for an electricity contract market with central dispatch

    SciTech Connect (OSTI)

    Chao, Hung-po; Peck, S.

    1997-02-01

    Chao and Peck (1996) introduce a new approach to the design of an efficient market that explicitly incorporates these externalities so that market efficiency can be restored. The main idea is the introduction of tradable transmission capacity rights that closely match physical power flows and a trading rule that codifies the effects of power transfers on power flows and transmission losses throughout the network in a way that is consistent with the physical laws. The trading rule specifies the transmission capacity rights and transmission loss compensation required for electricity transactions. It is demonstrated that the market mechanism will produce an efficient allocation in equilibrium, and a dynamic trading process that involves electricity trading and transmission bidding will converge to a market equilibrium in a stable manner. 11 refs., 6 figs., 5 tabs.

  17. Debate response: Which rate designs provide revenue stability and efficient price signals? Let the debate continue.

    SciTech Connect (OSTI)

    Boonin, David Magnus

    2009-11-15

    Let's engage in further discussion that provides solutions and details, not just criticisms and assertions. Let's engage in a meaningful dialogue about the conditions where real-time pricing or critical peak pricing with decoupling or the SFV rate design with a feebate is most effective. (author)

  18. High-Efficiency Solar Cells for Large-Scale Electricity Generation & Design Considerations for the Related Optics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.k; Kibbler, A.; Kramer, C.; Ward, S.; Duda, A.; Young, M.; Carapella, J.

    2007-09-17

    The photovoltaic industry has been growing exponentially at an average rate of about 35%/year since 1979. Recently, multijunction concentrator cell efficiencies have surpassed 40%. Combined with concentrating optics, these can be used for electricity generation.

  19. Market Evolution: Wholesale Electricity Market Design for 21st Century Power Systems

    SciTech Connect (OSTI)

    Cochran, Jaquelin; Miller, Mackay; Milligan, Michael; Ela, Erik; Arent, Douglas; Bloom, Aaron; Futch, Matthew; Kiviluoma, Juha; Holtinnen, Hannele; Orths, Antje; Gomez-Lazaro, Emilio; Martin-Martinez, Sergio; Kukoda, S.; Garcia, Glycon; Mikkelsen, Kim M.; Yongqiang, Zhao; Sandholt, Kaare

    2013-10-01

    Demand for affordable, reliable, domestically sourced, and low-carbon electricity is on the rise. This growing demand is driven in part by evolving public policy priorities, especially reducing the health and environmental impacts of electricity service and expanding energy access to under-served customers. Consequently, variable renewable energy resources comprise an increasing share ofelectricity generation globally. At the same time, new opportunities for addressing the variability of renewables are being strengthened through advances in smart grids, communications, and technologies that enable dispatchable demand response and distributed generation to extend to the mass market. A key challenge of merging these opportunities is market design -- determining how to createincentives and compensate providers justly for attributes and performance that ensure a reliable and secure grid -- in a context that fully realizes the potential of a broad array of sources of flexibility in both the wholesale power and retail markets. This report reviews the suite of wholesale power market designs in use and under consideration to ensure adequacy, security, and flexibilityin a landscape of significant variable renewable energy. It also examines considerations needed to ensure that wholesale market designs are inclusive of emerging technologies, such as demand response, distributed generation, and storage.

  20. Factors Affecting the Rate of Penetration of Large-Scale Electricity Technologies: The Case of Carbon Sequestration

    SciTech Connect (OSTI)

    James R. McFarland; Howard J. Herzog

    2007-05-14

    This project falls under the Technology Innovation and Diffusion topic of the Integrated Assessment of Climate Change Research Program. The objective was to better understand the critical variables that affect the rate of penetration of large-scale electricity technologies in order to improve their representation in integrated assessment models. We conducted this research in six integrated tasks. In our first two tasks, we identified potential factors that affect penetration rates through discussions with modeling groups and through case studies of historical precedent. In the next three tasks, we investigated in detail three potential sets of critical factors: industrial conditions, resource conditions, and regulatory/environmental considerations. Research to assess the significance and relative importance of these factors involved the development of a microeconomic, system dynamics model of the US electric power sector. Finally, we implemented the penetration rate models in an integrated assessment model. While the focus of this effort is on carbon capture and sequestration technologies, much of the work will be applicable to other large-scale energy conversion technologies.

  1. Experimental investigation on the energy deposition and expansion rate under the electrical explosion of aluminum wire in vacuum

    SciTech Connect (OSTI)

    Shi, Zongqian; Wang, Kun; Shi, Yuanjie; Wu, Jian; Han, Ruoyu

    2015-12-28

    Experimental investigations on the electrical explosion of aluminum wire using negative polarity current in vacuum are presented. Current pulses with rise rates of 40 A/ns, 80 A/ns, and 120 A/ns are generated for investigating the influence of current rise rate on energy deposition. Experimental results show a significant increase of energy deposition into the wire before the voltage breakdown with the increase of current rise rate. The influence of wire dimension on energy deposition is investigated as well. Decreasing the wire length allows more energy to be deposited into the wire. The energy deposition of a 0.5 cm-long wire explosion is ∼2.5 times higher than the energy deposition of a 2 cm-long wire explosion. The dependence of the energy deposition on wire diameter demonstrates a maximum energy deposition of 2.7 eV/atom with a diameter of ∼18 μm. Substantial increase in energy deposition is observed in the electrical explosion of aluminum wire with polyimide coating. A laser probe is applied to construct the shadowgraphy, schlieren, and interferometry diagnostics. The morphology and expansion trajectory of exploding products are analyzed based on the shadowgram. The interference phase shift is reconstructed from the interferogram. Parallel dual wires are exploded to estimate the expansion velocity of the plasma shell.

  2. Market Evolution: Wholesale Electricity Market Design for 21st Century Power Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1stCenturyPower.org Technical Report NREL/TP-6A20-57477 October 2013 Contract No. DE-AC36-08GO28308 Market Evolution: Wholesale Electricity Market Design for 21 st Century Power Systems Jaquelin Cochran, Mackay Miller, Michael Milligan, Erik Ela, Douglas Arent, and Aaron Bloom National Renewable Energy Laboratory Matthew Futch IBM Juha Kiviluoma and Hannele Holtinnen VTT Technical Research Centre of Finland Antje Orths Energinet.dk Emilio Gómez-Lázaro and Sergio Martín-Martínez Universidad

  3. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation E. Ela, 1 M. Milligan, 1 A. Bloom, 1 A. Botterud, 2 A. Townsend, 1 and T. Levin 2 1 National Renewable Energy Laboratory 2 Argonne National Laboratory Technical Report NREL/TP-5D00-61765 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost

  4. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  5. In-Vessel Coil Material Failure Rate Estimates for ITER Design Use

    SciTech Connect (OSTI)

    L. C. Cadwallader

    2013-01-01

    The ITER international project design teams are working to produce an engineering design for construction of this large tokamak fusion experiment. One of the design issues is ensuring proper control of the fusion plasma. In-vessel magnet coils may be needed for plasma control, especially the control of edge localized modes (ELMs) and plasma vertical stabilization (VS). These coils will be lifetime components that reside inside the ITER vacuum vessel behind the blanket modules. As such, their reliability is an important design issue since access will be time consuming if any type of repair were necessary. The following chapters give the research results and estimates of failure rates for the coil conductor and jacket materials to be used for the in-vessel coils. Copper and CuCrZr conductors, and stainless steel and Inconel jackets are examined.

  6. Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives

    SciTech Connect (OSTI)

    Giorgio Rizzoni

    2005-09-30

    Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a

  7. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the

  8. Synthesis of economic criteria in the design of electric utility industrial conservation programs in Costa Rica

    SciTech Connect (OSTI)

    Fisher, S.C.

    1995-12-31

    This paper lays out a set of economic criteria to guide the development of electricity conservation programs for industrial customers of the Costa Rican utilities. It puts the problem of utility and other public policy formulation in the industrial conservation field into the context of ongoing economic and trade liberalization in Costa Rica, as well as the financial and political pressures with which the country`s utilities must contend. The need to bolster utility financial performance and the perennial political difficulty of adjusting power rates for inflation and devaluation, not to mention maintaining efficient real levels, puts a premium on controlling the costs of utility conservation programs and increasing the degree of cost recovery over time. Industrial conservation programs in Costa Rica must adopt a certain degree of activation to help overcome serious market failures and imperfections while at the same time avoiding significant distortion of the price signals guiding the ongoing industrial rationalization process and the reactivation of growth.

  9. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets

  10. Conceptual design phase of a district heating and cooling plant with cogeneration to serve James Madison University and the Harrisonburg Electric Commission

    SciTech Connect (OSTI)

    Belcher, J.B.

    1995-12-31

    A unique opportunity for cooperation and community development exists in Harrisonburg, Virginia. James Madison University, located in Harrisonburg, is undergoing an aggressive growth plan of its academic base which also includes the physical expansion of its campus. The City of Harrisonburg is presently supplying steam to meet a portion of the heating needs of the existing James Madison campus from a city owned and operated waste-to-energy plant. In an effort of cooperation, Harrisonburg and James Madison University have now negotiated an agreement for the city to provide all of the heating and cooling requirements of the new campus expansion. In another unique turn of events, the local electrical power distributor, Harrisonburg Electric Commission, approached the city concerning the inclusion of cogeneration in the project in order to reduce and maintain existing electric rates thus further benefiting the community. Through the cooperation of these three entities, the conceptual design phase of the project has been completed. The plant design developed through this process includes 3,000 tons of chilled water capacity, an additional 64,000 lb/hr of steam capacity and 2.5 MW of cogeneration capacity. This paper describes the conceptual design process for this interesting project.

  11. Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

    2013-02-01

    Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

  12. Increases in electric rates in rural areas. Hearing before the Committee on Agriculture, House of Representatives, Ninety-Sixth Congress, Second Session, June 4, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Seven witnesses representing rural electric utilities and cooperatives spoke at a June 4, 1980 hearing to discuss which inflationary factors are increasing rural electric rates. The Committee recognized that the problem is not unique to rural systems. In their testimony, the witnesses noted increasing urbanization of rural areas; the cost of generating plant construction, fuel, and operating expenses; general economic factors of inflation and high interest rates; and regulations as major contributing factors to utility requests for rate increases. The hearing record includes their testimony, additional material submitted for the record, and responses to questions from the subcommittee. (DCK)

  13. Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year 2013 is All Electric

    Broader source: Energy.gov [DOE]

    The 2013 model year marks the first time when the Environmental Protection Agency's (EPA's) top ten most fuel efficient vehicles list is comprised entirely of electric vehicles. Electric vehicles...

  14. The gathering storm: A primer on gas gathering and production area rate design

    SciTech Connect (OSTI)

    Morgan, R.G.

    1994-12-31

    The commission`s new direction on gathering issues has now been commenced. Implementation of those orders will raise a host of corollary issues. Subsequent orders are likely to refine and further define matters relating to spin-downs and spin-offs. Of course, several court appeals of FERC orders which adopted the Northwest conditional authority approach are pending. Rehearing and appeals of the most recent gathering orders are also likely. While FERC`s course is clearer now, the courts will ultimately review whether the course is permissible. The full unbundling of gathering costs from mainline transmission costs and production area rate design are significant matters which still remain and require immediate commission attention. The potential for mischief and competitive disadvantage to competing pipelines are inconsistent with the underlying concepts of Order No. 636.

  15. Final Report Providing the Design for Low-Cost Wireless Current Transducer and Electric Power Sensor Prototype

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Burghard, Brion J.; Reid, Larry D.

    2005-01-31

    This report describes the design and development of a wireless current transducer and electric power sensor prototype. The report includes annotated schematics of the power sensor circuitry and the printed circuit board. The application program used to illustrate the functionality of the wireless sensors is described in this document as well.

  16. Renewable Electricity Standards: Good Practices and Design Considerations. A Clean Energy Regulators Initiative Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Electricity Generation Success Stories Renewable Electricity Generation Success Stories Renewable Electricity Generation Success Stories The Office of Energy Efficiency and Renewable Energy's (EERE) successes in converting tax dollars into more affordable, effective, and deployable renewable energy sources make it possible to use these technologies in more ways each day. Learn how EERE's investments in geothermal, solar, water, and wind energy translate into more efficient, affordable

  17. The design, construction, and operation of long-distance high-voltage electricity transmission technologies.

    SciTech Connect (OSTI)

    Molburg, J. C.; Kavicky, J. A.; Picel, K. C.

    2008-03-03

    This report focuses on transmission lines, which operate at voltages of 115 kV and higher. Currently, the highest voltage lines comprising the North American power grid are at 765 kV. The grid is the network of transmission lines that interconnect most large power plants on the North American continent. One transmission line at this high voltage was built near Chicago as part of the interconnection for three large nuclear power plants southwest of the city. Lines at this voltage also serve markets in New York and New England, also very high demand regions. The large power transfers along the West Coast are generally at 230 or 500 kV. Just as there are practical limits to centralization of power production, there are practical limits to increasing line voltage. As voltage increases, the height of the supporting towers, the size of the insulators, the distance between conductors on a tower, and even the width of the right-of-way (ROW) required increase. These design features safely isolate the electric power, which has an increasing tendency to arc to ground as the voltage (or electrical potential) increases. In addition, very high voltages (345 kV and above) are subject to corona losses. These losses are a result of ionization of the atmosphere, and can amount to several megawatts of wasted power. Furthermore, they are a local nuisance to radio transmission and can produce a noticeable hum. Centralized power production has advantages of economies of scale and special resource availability (for instance, hydro resources), but centralized power requires long-distance transfers of power both to reach customers and to provide interconnections for reliability. Long distances are most economically served at high voltages, which require large-scale equipment and impose a substantial footprint on the corridors through which power passes. The most visible components of the transmission system are the conductors that provide paths for the power and the towers that keep these

  18. Design and Analysis of a Region-Wide Remotely Controllable Electrical Lock-Out System

    SciTech Connect (OSTI)

    Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Howlader, Mostofa; Kisner, Roger A; Ewing, Paul D; McIntyre, Timothy J

    2012-01-01

    configuration and status of electrical system circuits and permit them to lock out customer-owned DG devices for safety purposes using a highly secure and ultra-reliable radio signal. The system consists of: (1) individual personal lockout devices, (2) lockout communications and logic module at circuit breakers, which are located at all DG devices, and (3) a database and configuration control process located at the utility operations center. The lockout system is a close permissive, i.e., loss of control power or communications will cause the circuit breaker to open. Once the DG device is tripped open, a visual means will provide confirmation of a loss of voltage and current that verifies the disconnected status of the DG. Further the utility personnel will be able to place their own lock electronically on the system to ensure a lockout functionally. The proposed LOTO system provides enhanced worker safety and protection against unintended energized lines when DG is present. The main approaches and challenges encountered through designing the proposed region-wide LOTO system are discussed in this paper. These approaches include: (1) evaluating the reliability of the proposed approach under N-modular redundancy with voter/spares configurations and (2) conducting a system level risk assessment study using the failure modes and effects analysis (FMEA) technique to identify and rank failure modes by probability of occurrence, probability of detection, and severity of consequences. This ranking allows a cost benefits analysis to be conducted such that dollars and efforts will be applied to the failures that provide greatest incremental gains in system capability (resilience, survivability, security, reliability, availability, etc.) per dollar spent whether capital, operations, or investment. Several simulation scenarios and their results are presented to demonstrate the viability of these approaches.

  19. Finance & Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all of its costs in the rates it charges customers for wholesale electricity and transmission services. The agency is committed to careful cost management consistent with its...

  20. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    SciTech Connect (OSTI)

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  1. Wholesale electricity market design with increasing levels of renewable generation: Revenue sufficiency and long-term reliability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Milligan, Michael; Frew, Bethany A.; Bloom, Aaron; Ela, Erik; Botterud, Audun; Townsend, Aaron; Levin, Todd

    2016-03-22

    This paper discusses challenges that relate to assessing and properly incentivizing the resources necessary to ensure a reliable electricity system with growing penetrations of variable generation (VG). The output of VG (primarily wind and solar generation) varies over time and cannot be predicted precisely. Therefore, the energy from VG is not always guaranteed to be available at times when it is most needed. This means that its contribution towards resource adequacy can be significantly less than the contribution from traditional resources. Variable renewable resources also have near-zero variable costs, and with production-based subsidies they may even have negative offer costs.more » Because variable costs drive the spot price of energy, this can lead to reduced prices, sales, and therefore revenue for all resources within the energy market. The characteristics of VG can also result in increased price volatility as well as the need for more flexibility in the resource fleet in order to maintain system reliability. Furthermore, we explore both traditional and evolving electricity market designs in the United States that aim to ensure resource adequacy and sufficient revenues to recover costs when those resources are needed for long-term reliability. We also investigate how reliability needs may be evolving and discuss how VG may affect future electricity market designs.« less

  2. Design requirements document for the phase 1 privatization electrical power system

    SciTech Connect (OSTI)

    Singh, G.

    1997-10-31

    The electrical system for the Phase 1 privatization facilities will support the TWRS mission by providing the electrical power to the Phase 1 privatized facilities. This system will receive power from the Department of Energy-Richland Operations (RL) A4-8 230 kV transmission system powered from Bonneville Power Administration (BPA) Ashe and Midway 230 kV Substations. The existing RL 230 kV transmission line will be modified and looped 1021 into the new 230 kV substation bus. The new substation will be located in the vicinity of the privatized facilities, approximately 3.2 km (2 mi) south of the existing RL A4-8 230 kV transmission line. The substation will be capable of providing up to 40 MW of electrical power to support the Phase 1 privatization facilities and has space for accommodating future expansions. The substation will require at least two 230-13.8 kV transformers, 13.8 kV split bus switchgear, switchgear building, grounding transformers, instrument transformers, control and monitoring equipment, associated protection and isolation devices, lightning protection, yard lighting, cable and raceways, and infrastructure needed to provide desired availability and reliability. The power from the 13.8 kV switchgear located in the switchgear building will be delivered at the privatization facilities site boundaries. The 13.8 kV distribution system inside the privatization facilities site boundaries is the responsibility of the privatization contract.

  3. The Role of Electricity Markets and Market Design in Integrating The Importance of Flexible Electricity Supply: Solar Integration Series. 1 of 3 (Brochure)

    SciTech Connect (OSTI)

    2011-05-03

    The first out of a series of three fact sheets describing the importance of flexible electricity supply.

  4. Design of electric-field assisted surface plasmon resonance system for the detection of heavy metal ions in water

    SciTech Connect (OSTI)

    Kyaw, Htet Htet; Boonruang, Sakoolkan E-mail: waleed.m@bu.ac.th; Mohammed, Waleed S. E-mail: waleed.m@bu.ac.th; Dutta, Joydeep

    2015-10-15

    Surface Plasmon Resonance (SPR) sensors are widely used in diverse applications. For detecting heavy metal ions in water, surface functionalization of the metal surface is typically used to adsorb target molecules, where the ionic concentration is detected via a resonance shift (resonance angle, resonance wavelength or intensity). This paper studies the potential of a possible alternative approach that could eliminate the need of using surface functionalization by the application of an external electric field in the flow channel. The exerted electrical force on the ions pushes them against the surface for enhanced adsorption; hence it is referred to as “Electric-Field assisted SPR system”. High system sensitivity is achieved by monitoring the time dynamics of the signal shift. The ion deposition dynamics are discussed using a derived theoretical model based on ion mobility in water. On the application of an appropriate force, the target ions stack onto the sensor surface depending on the ionic concentration of target solution, ion mass, and flow rate. In the experimental part, a broad detection range of target cadmium ions (Cd{sup 2+}) in water from several parts per million (ppm) down to a few parts per billion (ppb) can be detected.

  5. Rate Schedules

    Broader source: Energy.gov [DOE]

    One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

  6. The Study and Implementation of Electrically Small Printed Antennas for an Integrated Transceiver Design

    SciTech Connect (OSTI)

    Speer, Pete

    2009-04-15

    This work focuses on the design and evaluation of the inverted-F, meandering-monopole, and loop antenna geometries. These printed antennas are studied with the goal of identifying which is suitable for use in a miniaturized transceiver design and which has the ability to provide superior performance using minimal Printed Circuit Board (PCB) space. As a result, the main objective is to characterize tradeoffs and identify which antenna provides the best compromise among volume, bandwidth and efficiency. For experimentation purposes, three types of meandering-monopole antenna are examined resulting in five total antennas for the study. The performance of each antenna under study is evaluated based upon return loss, operational bandwidth, and radiation pattern characteristics. For our purposes, return loss is measured using the S11-port reflection coefficient which helps to characterize how well the small antenna is able to be efficiently fed. Operational bandwidth is measured as the frequency range over which the antenna maintains 2:1 Voltage Standing Wave Ratio (VSWR) or equivalently has 10-dB return loss. Ansoft High Frequency Structure Simulator (HFSS) is used to simulate expected resonant frequency, bandwidth, VSWR, and radiation pattern characteristics. Ansoft HFSS simulation is used to provide a good starting point for antenna design before actual prototype are built using an LPKF automated router. Simulated results are compared with actual measurements to highlight any differences and help demonstrate the effects of antenna miniaturization. Radiation characteristics are measured illustrating how each antenna is affected by the influence of a non-ideal ground plane. The antenna with outstanding performance is further evaluated to determine its maximum range of communication. Each designs range performance is evaluated using a pair of transceivers to demonstrate round-trip communication. This research is intended to provide a knowledge base which will help

  7. Comparative Survival [Rate] Study (CSS); Design and Analysis, 2002 Technical Report.

    SciTech Connect (OSTI)

    Bouwes, Nick; Petrosky, Charlie; Schaller, Howard

    2002-04-01

    Fisheries agencies and tribes have developed a multi-year program, the Comparative Survival Study (CSS), to obtain information to be used in monitoring and evaluating the impacts of the mitigation measures and actions (e.g., flow augmentation, spill, and transportation) under NMFS' Biological Opinion to recover listed stocks. Through 2001, the CSS has utilized PIT tagged yearling hatchery chinook that were tagged specifically for the CSS and PIT tagged wild chinook from all available marking efforts in the Snake River basin above Lower Granite Dam. We selected hatchery programs that would allow the opportunity to mark sufficient numbers of smolts to give enough returning adult fish that statistically rigorous smolt-to-adult survival rates could be computed. Since the CSS inception, hatchery fish that have consistently been used include spring/summer chinook tagged at McCall, Rapid River, Dworshak, and Lookingglass (Imnaha stock) hatcheries. The CSS has also included a group of spring chinook from Carson Hatchery in the lower Columbia River for planned upstream/downstream comparison. The wild stocks included chinook PIT tagged as parr (summer/fall tagging season) and smolts (spring tagging season) in each major tributary above Lower Granite Dam. Future years will see the CSS add wild and hatchery steelhead in the Snake River basin, hatchery steelhead in the Mid-Columbia River basin, hatchery yearling chinook in the Mid-Columbia River basin, and wild chinook in John Day River in the lower Columbia River. Each PIT (passive integrated transponder) tag has a unique code. The tags are glass encapsulated, 11 mm in length, and implanted into the fish's underbelly by a syringe. All attempts are made to make the PIT tagged fish as representative of their untagged cohorts as possible. At trapping sites, sampling and tagging occur over the entire migration season. At hatcheries, fish to tag are obtained across as wide a set of ponds and raceways as possible to allow effective

  8. NREL: Learning - Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Series design-In this design, the primary engine is connected to a generator that produces electricity. The electricity charges the batteries, which drive an electric motor that ...

  9. Rate Design and Renewables

    Gasoline and Diesel Fuel Update (EIA)

    INCIDENCE OF AN OIL GLUT: WHO BENEFITS FROM CHEAP CRUDE OIL IN THE MIDWEST? Severin Borenstein Haas School of Business and Energy Institute at Haas U.C. Berkeley Ryan Kellogg Department of Economics University of Michigan The Midwest oil glut has changed old views about integration of world oil markets * Common statement, pre-2011: "It's a world oil market" * Increased oil production in Canadian tar sands and North Dakota Bakken field changed the Midwest from crude importing to

  10. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  11. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  12. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    End Use: June 2016 Retail rates/prices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on

  13. CASL - Westinghouse Electric Company

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Westinghouse Electric Company Cranberry Township, PA Westinghouse Electric Company provides fuel, services, technology, plant design and equipment for the commercial nuclear electric power industry. Westinghouse nuclear technology is helping to provide future generations with safe, clean and reliable electricity. Key Contributions Definition of CASL challenge problems Existing codes and expertise Data for validation Computatinoal fluid dynamics modeling and analysis Development of test stand for

  14. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  15. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  16. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  17. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    SciTech Connect (OSTI)

    Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

    2012-03-11

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO

  18. Updated Miscellaneous Electricity Loads and Appliance Energy Usage Profiles for Use in Home Energy Ratings, the Building America Benchmark Procedures and Related Calculations. Revised

    SciTech Connect (OSTI)

    Parker, Danny; Fairey, Philip; Hendron, Robert

    2011-06-10

    This report discusses how TIAX data, supplemented by the 2005 Residential Energy Consumption Survey (RECS)public use data set was used to make significant improvements in the prediction metods for estimating energy use of miscellaneous electric loads.

  19. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    SciTech Connect (OSTI)

    Sulaeman, M. Y.; Widita, R.

    2014-09-30

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of ?1.5 kV with falltime 3 ns and risetime 15 ns into a 50? load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  20. Modeling and Analysis of Wholesale Electricity Market Design. Understanding the Missing Money Problem. December 2013 - January 2015

    SciTech Connect (OSTI)

    Papalexopoulos, A.; Hansen, C.; Perrino, D.; Frowd, R.

    2015-05-31

    This project examined the impact of renewable energy sources, which have zero incremental energy costs, on the sustainability of conventional generation. This “missing money” problem refers to market outcomes in which infra-marginal energy revenues in excess of operations and maintenance (O&M) costs are systematically lower than the amortized costs of new entry for a marginal generator. The problem is caused by two related factors: (1) conventional generation is dispatched less, and (2) the price that conventional generation receives for its energy is lower. This lower revenue stream may not be sufficient to cover both the variable and fixed costs of conventional generation. In fact, this study showed that higher wind penetrations in the Electric Reliability Council of Texas (ERCOT) system could cause many conventional generators to become uneconomic.

  1. Optimal Electric Utility Expansion

    Energy Science and Technology Software Center (OSTI)

    1989-10-10

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansionmore » configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.« less

  2. April 5 PSERC Webinar: Seamless Bulk Electric Grid Management: A Platform for Designing the Next Generation EMS

    Broader source: Energy.gov [DOE]

    The DOE-funded Power Systems Engineering Research Center (PSERC) is offering a free public webinar that will address the feasibility of a flexible platform that is needed when designing the framework for the next generation Energy Management System (EMS) and analytics.

  3. Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.

    SciTech Connect (OSTI)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr.

    2005-11-01

    This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

  4. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

    2001-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

  5. Electric Vehicles

    Broader source: Energy.gov [DOE]

    This album contains a variety of all-electric, plug-in hybrid electric and fuel cell electric vehicles. For a full list of all electric vehicles visit the EV Everywhere website.

  6. Electricity Markets Analysis (EMA) Model | Open Energy Information

    Open Energy Info (EERE)

    U.S. wholesale electricity markets designed to examine how mid- to long-term energy and environmental policies will influence electricity supply decisions, electricity generation...

  7. Experimental Design for a Macrofoam-Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Hutchison, Janine R.

    2014-12-05

    This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam-swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (culture and polymerase chain reaction) will be used. Only one previous study has investigated how the false negative rate depends on test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam-swab sampling at low concentrations.

  8. Sandia National Laboratories: Careers: Electrical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrical Engineering Electrical Engineering photo Electrical engineers at Sandia design and develop advanced instrumentation systems for in-flight weapons system evaluations and other applications. Sandia creates innovative, science-based, systems-engineering solutions to our nation's most challenging national security problems. Sandia electrical engineers are an integral part of multidisciplinary teams tasked with defining requirements, creating system designs, implementing design

  9. Wheego Electric Cars | Open Energy Information

    Open Energy Info (EERE)

    Wheego Electric Cars Jump to: navigation, search Name: Wheego Electric Cars Place: Atlanta, Georgia Zip: 30318 Sector: Vehicles Product: Atlanta-based Wheego has designed compact...

  10. Liquid metal thermal electric converter

    DOE Patents [OSTI]

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  11. Conserving Electric Energy

    Broader source: Energy.gov [DOE]

    A classroom activity whereby students participate in two experiments in which they gain an appreciation for their dependency on electricity, and learn how regulating the rate of energy consumption...

  12. Activity: Conserving Electric Energy

    Broader source: Energy.gov [DOE]

    Students participate in two experiments in which they (1) gain an appreciation for their dependency on electricity and (2) learn how regulating the rate of energy consumption makes the energy...

  13. Florida's electric industry and solar electric technologies

    SciTech Connect (OSTI)

    Camejo, N.

    1983-12-01

    The Florida Electric Industry is in a process of diversifying its generation technology and its fuel mix. This is being done in an effort to reduce oil consumption, which in 1981 accounted for 46.5% of the electric generation by fuel type. This does not compare well with the rest of the nation where oil use is lower. New coal and nuclear units are coming on line, and probably more will be built in the near future. However, eventhough conservation efforts may delay their construction, new power plants will have to be built to accomodate the growing demand for electricity. Other alternatives being considered are renewable energy resources. The purpose of this paper is to present the results of a research project in which 10 electric utilities in Florida and the Florida Electric Power Coordinating Group rated six Solar Electric options. The Solar Electric options considered are: 1) Wind, 2) P.V., 3) Solar thermal-electric, 4) OTEC, 5) Ocean current, and 6) Biomass. The questionaire involved rating the economic and technical feasibility, as well as, the potential environmental impact of these options in Florida. It also involved rating the difficulty in overcoming institutional barriers and assessing the status of each option. A copy of the questionaire is included after the references. The combined capacity of the participating utilities represent over 90% of the total generating capacity in Florida. A list of the participating utilities is also included. This research was done in partial fulfillment for the Mater's of Science Degree in Coastal Zone Management. This paper is complementary to another paper (in these condensed conference proceedings) titled COASTAL ZONE ENERGY MANAGEMENT: A multidisciplinary approach for the integration of Solar Electric Systems with Florida's power generation system, which present a summary of the Master's thesis.

  14. Electric Transmission System Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Lauren Azar Senior Advisor to Secretary Chu November 2, 2012 Electric Transmission System ... Can we agree on several key design attributes for the future grid? Taking Action in the ...

  15. Experimental Design for a Macrofoam Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Hutchison, Janine R.

    2014-04-16

    This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (plating/counting and polymerase chain reaction) will be used. Only one previous study has investigated false negative as a function of affecting test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam swab sampling at low concentrations.

  16. Construction, Qualification, and Low Rate Production Start-up...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Construction, Qualification, and Low Rate Production ... 100,000 Electric Drive Vehicles Construction, Qualification, and Low Rate ...

  17. Construction, Qualification, and Low Rate Production Start-up...

    Broader source: Energy.gov (indexed) [DOE]

    KB) More Documents & Publications Construction, Qualification, and Low Rate ... 100,000 Electric Drive Vehicles Construction, Qualification, and Low Rate ...

  18. Design and performance of a 100-kg/h, direct calcine-fed electric-melter system for nuclear-waste vitrification

    SciTech Connect (OSTI)

    Dierks, R.D.

    1980-11-01

    This report describes the physical characteristics of a ceramic-lined, joule-heated glass melter that is directly connected to the discharge of a spray calciner and is currently being used to study the vitrification of simulated nuclear-waste slurries. Melter performance characteristics and subsequent design improvements are described. The melter contains 0.24 m/sup 3/ of glass with a glass surface area of 0.76 m/sup 2/, and is heated by the flow of an alternating current (ranging from 600 to 1200 amps) between two Inconel-690 slab-type electrodes immersed in the glass at either end of the melter tank. The melter was maintained at operating temperature (900 to 1260/sup 0/C) for 15 months, and produced 62,000 kg of glass. The maximum sustained operating period was 122 h, during which glass was produced at the rate of 70 kg/h.

  19. Techniques of analyzing the impacts of certain electric-utility ratemaking and regulatory-policy concepts. Bibliography

    SciTech Connect (OSTI)

    1980-08-01

    This bibliography provides documentation for use by state public utility commissions and major nonregulated utilities in evaluating the applicability of a wide range of electric utility rate design and regulatory concepts in light of certain regulatory objectives. Part I, Utility Regulatory Objectives, contains 2084 citations on conservation of energy and capital; efficient use of facilities and resources; and equitable rates to electricity consumers. Part II, Rate Design Concepts, contains 1238 citations on time-of-day rates; seasonally-varying rates; cost-of-service rates; interruptible rates (including the accompanying use of load management techniques); declining block rates; and lifeline rates. Part III, Regulatory Concepts, contains 1282 references on restrictions on master metering; procedures for review of automatic adjustment clauses; prohibitions of rate or regulatory discrimination against solar, wind, or other small energy systems; treatment of advertising expenses; and procedures to protect ratepayers from abrupt termination of service.

  20. Rate Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  1. INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION

    SciTech Connect (OSTI)

    Todd Kollross; Mike Connolly

    2004-06-30

    Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, but low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy

  2. Thermal and Electrical Analysis of Mars Rover RTGs

    SciTech Connect (OSTI)

    Schock, Alfred; Or, Chuen T; Skrabek, Emanuel A

    2012-01-19

    The RTG designs described in the preceding paper in these proceedings were analyzed for their thermal and electrical performance. Each analysis consisted of coupled thermal, thermoelectric, and electrical analyses, using Fairchild-generated specialized computer codes. These were supplemented with preliminary structural and mass analyses. For each design, various cases representing different operating conditions (water-cooled/radiation-cooled, BOM/EOM, summer/winter, day/night) and different thermoelectric performance assumptions (from conservative to optimistic) were analyzed; and for every case, the heat flow rates, temperatures and electrical performance of each layer of thermoelectric elements and of the overall RTG were determined. The analyses were performed in great detail, to obtain accurate answers permitting meaningful comparisons between different designs. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments.

  3. ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In-Service Date","Electrical Connection Locations",,"Line Information",,,,"Conductor Characteristics",,,"Circuits",,"Company Information"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Table 6. Existing and Proposed High-voltage Transmission Line Additions Filed For Calendar Year 2004, by North American Electric Reliability Council, 2004 Through 2009" ,"(Various)",,,,,,,,,,,," " ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In-Service Date","Electrical Connection Locations",,"Line Information",,,,"Conductor Characteristics",,,"Circuits",,"Company

  4. ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In-Service Date","Electrical Connection Locations",,"Line Information",,,,"Conductor Characteristics",,,"Circuits",,"Company Information"

    U.S. Energy Information Administration (EIA) Indexed Site

    Covering Calendar Year 2005, by North American Electric Reliability Council, 2006 Through 2011" ,"(Various)" ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In-Service Date","Electrical Connection Locations",,"Line Information",,,,"Conductor Characteristics",,,"Circuits",,"Company Information" ,"Country - with Total (T) for sub-regions","NERC Region"," NERC

  5. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  6. MISS-1-N Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MISS-1-N Wholesale Power Rate Schedule MISS-1-N Wholesale Power Rate Schedule Area: South Mississippi Electric Power Association System: Georgia-Alabama-South Carolina This rate ...

  7. Hybrid and Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  8. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  9. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  10. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: electric load data Type Term Title Author Replies Last Post sort icon...

  11. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data

  12. Office of Electricity Delivery And Energy Reliability To Hold Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference On The Design Of Future Electric Transmission | Department of Energy Office of Electricity Delivery And Energy Reliability To Hold Technical Conference On The Design Of Future Electric Transmission Office of Electricity Delivery And Energy Reliability To Hold Technical Conference On The Design Of Future Electric Transmission February 5, 2009 - 10:57am Addthis On March 4, 2009, the Department of Energy's Office of Electricity Delivery and Energy Reliability (OE) will conduct a

  13. Belgium's Red Electrical Devils Win $1 Million for Innovative...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Belgium's Red Electrical Devils Win 1 Million for Innovative Inverter Design NREL ... Google and IEEE announced today that Belgium's Red Electrical Devils, a team from CE+T ...

  14. Huaiji County Huilian Hydro electric Group Company Limited |...

    Open Energy Info (EERE)

    Zip: 526400 Sector: Hydro Product: Hydro-electric project designer, constructor, and maintenance service provider. CLP Holding has 25% ownership of Huilian Hydro-electric....

  15. Office of Electricity Delivery And Energy Reliability To Hold...

    Office of Environmental Management (EM)

    Delivery And Energy Reliability To Hold Technical Conference On The Design Of Future Electric Transmission Office of Electricity Delivery And Energy Reliability To Hold Technical ...

  16. EIA - 2008 New Electric Power EIA-860 Form

    Gasoline and Diesel Fuel Update (EIA)

    Electric Generator Report Form EIA-767 - Steam-Electric Plant Operation and Design Report ... Part A Plant Configuration (Schedule 2) Part B Boiler Information - Air Emission Standards ...

  17. A study on the effect of various design parameters on the natural circulation flow rate of the ex-vessel core catcher cooling system of EU-APR1400

    SciTech Connect (OSTI)

    Rhee, B. W.; Ha, K. S.; Park, R. J.; Song, J. H.

    2012-07-01

    In this paper, a study on the effect of various design parameters such as the channel gap width, heat flux distribution, down-comer pipe size and two-phase flow slip ratio on the natural circulation flow rate is performed based on a physical model for a natural circulation flow along the flow path of the ex-vessel core catcher cooling system of an EU-APR1400, and these effects on the natural circulation flow rate are analyzed and compared with the minimum flow rate required for the safe operation of the system. (authors)

  18. Wholesale Power Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rate Schedules » Wholesale Power Rate Schedules Wholesale Power Rate Schedules October 1, 2015 KP-AP-1-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott October 1, 2015 KP-AP-2-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott October 1, 2015 KP-AP-3-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott October 1, 2015 CU-CC-1-J Wholesale Power Rate Schedule Area: Duke Energy Progress, Western

  19. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  20. Electrical Engineer

    Broader source: Energy.gov [DOE]

    Transmission Field Services is responsible for field switching operation and maintenance of Bonneville Power Administration's high-voltage electrical transmission system to provide safe, reliable,...

  1. Electrical Safety

    Office of Environmental Management (EM)

    Handbook that was originally issued in 1998, and revised in 2004. DOE handbooks are ... the National Fire Protection Association (NFPA) 70, the National Electrical Code (NEC), ...

  2. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  3. Power Sales to Electric Utilities

    SciTech Connect (OSTI)

    1989-02-01

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities

  4. Roles of electricity: Electric steelmaking

    SciTech Connect (OSTI)

    Burwell, C.C.

    1986-07-01

    Electric steel production from scrap metal continues to grow both in total quantity and in market share. The economics of electric-steel production in general, and of electric minimills in particular, seem clearly established. The trend towards electric steelmaking provides significant economic and competitive advantages for producers and important overall economic, environmental, and energy advantages for the United States at large. Conversion to electric steelmaking offers up to a 4-to-1 advantage in terms of the overall energy used to produce a ton of steel, and s similar savings in energy cost for the producer. The amount of old scrap used to produce a ton of steel has doubled since 1967 because of the use of electric furnaces.

  5. Electric avenues

    SciTech Connect (OSTI)

    Stone, P.; Chang, A.

    1994-12-31

    Highly efficient electric drive technology developed originally for defense applications is being applied to the development of all electric shuttle buses for the San Jose International Airport. An innovative opportunity charging system using induction chargers will be incorporated to extend operation hours. The project, if successful, is expected to reduce pollution at the airport and generate jobs for displaced defense workers.

  6. Electric machine

    DOE Patents [OSTI]

    El-Refaie, Ayman Mohamed Fawzi; Reddy, Patel Bhageerath

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  7. Electric chiller handbook. Final report

    SciTech Connect (OSTI)

    1998-02-01

    Electric chillers have dominated the market for large commercial cooling systems due to their history of reliable, economical operation. The phaseout of CFCs and deregulation of the utility industry are two factors that significantly impact the chiller market. The CFC phaseout is resulting in the upgrading or replacement of thousands of electric chillers nationwide. In a deregulated environment, utilities are finding increasing need to provide services that can win and retain new customers. Utility representatives need current information on applying and selecting cost-effective chiller systems. The objective of this report was to develop a comprehensive handbook that helps utility technical and marketing staff, their customers, and design professionals evaluate and select the best options for chilled-water systems in commercial buildings. Investigators used a variety of industry data sources to develop market-share information for electric and gas chiller systems and to determine applications according to building age, type, and region. Discussions with chiller manufacturers provided information on product availability, performance, and ownership cost. Using EPRI`s COMTECH software, investigators performed comprehensive cost analyses for placement of large and small chillers in three representative cities. Case studies of actual installations support these analyses. Electric Chiller Handbook provides a single source of current information on all major issues associated with chiller selection and application. Key issues include chiller availability and markets, rated performance, future viability of various refrigerant options, the cost-effectiveness of alternative chillers, and chilled-water system optimization. The Handbook also describes available hardware, outlines the features and costs of gas-fired competitive systems, and provides methods and comparisons of life-cycle costing of various chiller system options. Analyses of chiller features and economics show

  8. CM-1-H Wholesale Power Rate Schedule

    Office of Energy Efficiency and Renewable Energy (EERE)

    Availability:This rate schedule shall be available to the South Mississippi Electric Power Association, Municipal Energy Agency of Mississippi, and Mississippi Delta Energy Agency (hereinafter...

  9. Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive

    Broader source: Energy.gov [DOE]

    The Anaerobic Digester Gas-to-Electricity program is designed to support small-sized electricity generation where the energy generated is used primarily at the electric customer's location (third...

  10. Electrical connector

    DOE Patents [OSTI]

    Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.

    2006-11-21

    An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.

  11. Electric Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ... Tesla: In January 2010, the Department of Energy issued a 465 million loan to Tesla Motors to produce specially designed, all-electric plug-in vehicles and to develop a ...

  12. Electrical Safety

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Fig. 1-1. Flow down of Electrical AHJ and worker responsibility. 3 DOE-HDBK-1092-2013 2.0 ... When equipment contains storage batteries, workers should be protected from the various ...

  13. Power system design | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system design Subscribe to RSS - Power system design The design of the systems that would convert fusion energy into heat to create steam that would generate electricity. PPPL ...

  14. Electric utility engineer`s FGD manual -- Volume 2: Major mechanical equipment; FGD proposal evaluations; Use of FGDPRISM in FGD system modification, proposal, evaluation, and design; FGD system case study. Final report

    SciTech Connect (OSTI)

    1996-03-04

    Part 2 of this manual provides the electric utility engineer with detailed technical information on some of the major mechanical equipment used in the FGD system. The objectives of Part 2 are the following: to provide the electric utility engineer with information on equipment that may be unfamiliar to him, including ball mills, vacuum filters, and mist eliminators; and to identify the unique technique considerations imposed by an FGD system on more familiar electric utility equipment such as fans, gas dampers, piping, valves, and pumps. Part 3 provides an overview of the recommended procedures for evaluating proposals received from FGD system vendors. The objectives are to provide procedures for evaluating the technical aspects of proposals, and to provide procedures for determining the total costs of proposals considering both initial capital costs and annual operating and maintenance costs. The primary objective of Part 4 of this manual is to provide the utility engineer who has a special interest in the capabilities of FGDPRISM [Flue Gas Desulfurization PRocess Integration and Simulation Model] with more detailed discussions of its uses, requirements, and limitations. Part 5 is a case study in using this manual in the preparation of a purchase specification and in the evaluation of proposals received from vendors. The objectives are to demonstrate how the information contained in Parts 1 and 2 can be used to improve the technical content of an FGD system purchase specification; to demonstrate how the techniques presented in Part 3 can be used to evaluate proposals received in response to the purchase specification; and to illustrate how the FGDPRISM computer program can be used to establish design parameters for the specification and evaluate vendor designs.

  15. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  16. Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, efficient, and run using virtually no moving parts.

  17. Protean Electric Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sector: Vehicles Product: UK-based designer and manufacturer of a smaller, lighter motor systems for electric vehicles along with control power electronics for those systems....

  18. Urban Electric Vehicle (UEV) Technical Specifications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an independent assessment of urban electric vehicles (UEV), designed specifically for use ...inverter shall control the minimum traction battery discharge voltage to prevent ...

  19. AP-3-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3-B Wholesale Power Rate Schedule AP-3-B Wholesale Power Rate Schedule Area: American ... American Electric Power Service Corporation (hereinafter called the Company), PJM ...

  20. AP-1-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-B Wholesale Power Rate Schedule AP-1-B Wholesale Power Rate Schedule Area: American ... American Electric Power Service Corporation (hereinafter called the Company), the ...

  1. AP-2-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-B Wholesale Power Rate Schedule AP-2-B Wholesale Power Rate Schedule Area: American ... American Electric Power Service Corporation (hereinafter called the Company), the ...

  2. AP-4-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4-B Wholesale Power Rate Schedule AP-4-B Wholesale Power Rate Schedule Area: American ... of American Electric Power Service Corporation (hereinafter called the Company) and ...

  3. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  4. Electric power emergency handbook

    SciTech Connect (OSTI)

    Labadie, J.R.

    1980-09-01

    The Emergency Electric Power Administration's Emergency Operations Handbook is designed to provide guidance to the EEPA organization. It defines responsibilities and describes actions performed by the government and electric utilities in planning for, and in operations during, national emergencies. The EEPA Handbook is reissued periodically to describe organizational changes, to assign new duties and responsibilities, and to clarify the responsibilities of the government to direct and coordinate the operations of the electric utility industry under emergencies declared by the President. This Handbook is consistent with the assumptions, policies, and procedures contained in the National Plan for Emergency Preparedness. Claimancy and restoration, communications and warning, and effects of nuclear weapons are subjects covered in the appendices.

  5. Electric sales and revenue: 1993

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. The sales, revenue, and average revenue per kilowatthour data provided in the Electric Sales and Revenue are based on annual data reported by electric utilities for the calendar year ending December 31, 1993. Operating revenue includes energy charges, demand charges, consumer service charges, environmental surcharges, fuel adjustments, and other miscellaneous charges. The revenue does not include taxes, such as sales and excise taxes, that are assessed on the consumer and collected through the utility. Average revenue per kilowatthour is defined as the cost per unit of electricity sold and is calculated by dividing retail sales into the associated electric revenue. Because electric rates vary based on energy usage, average revenue per kilowatthour are affected by changes in the volume of sales. The sales of electricity, associated revenue, and average revenue per kilowatthour data provided in this report are presented at the national, Census division, State, and electric utility levels.

  6. Electrically powered hand tool

    DOE Patents [OSTI]

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  7. Liberalization of the Japanese electricity market

    SciTech Connect (OSTI)

    Shimazaki, Masaki

    1994-12-31

    The Japanese electricity industry is shackled by more regulations than other domestic industries. Electricity liberalization, however, is one of the few areas in which discussion of deregulation has been making steady progress although the outcome of deregulation has become uncertain due to the turbulence of politics and bureaucratic resistance. This study examines the liberalization of the Japanese electricity market focusing on the characteristics of (1) entering the electricity generation business, (2) access to power companies` transmission facilities, (3) beginning an electricity retail business, and (4) reforming the electricity rating system. The article follows three themes. First, the background of the Japanese electricity liberalization can be explained from economic, political, and bureaucratic points of view. Second, international electricity price comparison should not only depend on exchange rates but should also take other factors into account. Finally, liberalization will increase fossil fuel consumption, which could have unwelcome consequences.

  8. Evaluation of the three-phase, electric arc melting furnace for treatment of simulated, thermally oxidized radioactive and mixed wastes. Part 1: Design criteria and description of integrated waste treatment facility

    SciTech Connect (OSTI)

    Oden, L.L.; O`Connor, W.K.; Turner, P.C.; Hartman, A.D.

    1995-06-01

    The US Bureau of Mines and the Department of Energy (DOE), through its contractor EG and G Idaho Inc., are collaborating on a multiyear research project to evaluate the applicability of three-phase, electric-arc furnace melting technology to vitrify materials simulating low-level radioactive and mixed wastes buried or stored at the Idaho National Engineering Laboratory and other DOE sites. The melter is sealed, 1-t (1.1-st), three-phase, 800-kV {center_dot} A electric arc melting furnace with 10.2-cm- (4-in-) diameter graphite electrodes, water-cooled roof and sidewalls, and four water-cooled feed tubes. A water-cooled copper fixture provides for continuous tapping of slag. An instrumented air pollution control system (APCS) with access ports for analysis and a feeder based on screw conveyors and a bucket elevator are dedicated to the facility. Test data are provided by an arc furnace analyzer and by sensors indicating feed rate; slag temperature; and temperature, pressure, and velocity in the APCS. These data are received by a data logger, digitized, and transmitted to a personal computer for storage and display. This unique waste treatment facility is available for public and private use on a cost-sharing basis.

  9. Hybrid electric vehicle power management system

    SciTech Connect (OSTI)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  10. California Federal Facilities: Rate-Responsive Building Operation for Deeper Cost and Energy Savings

    SciTech Connect (OSTI)

    2012-05-01

    Dynamic pricing electricity tariffs, now the default for large customers in California (peak demand of 200 kW and higher for PG&E and SCE, and 20 kW and higher for SDG&E), are providing Federal facilities new opportunities to cut their electricity bills and help them meet their energy savings mandates. The U.S. Department of Energy’s (DOE) Federal Energy Management Program (FEMP) has created this fact sheet to help California federal facilities take advantage of these opportunities through “rate-responsive building operation.” Rate-responsive building operation involves designing your load management strategies around your facility’s variable electric rate, using measures that require little or no financial investment.

  11. Passive solar commercial buildings: design assistance and demonstration program. Phase 1. Final report

    SciTech Connect (OSTI)

    1981-01-26

    The final design of the Mount Airy Public Library is given. Incremental passive design costs are discussed. Performance and economic analyses are made and the results reported. The design process is thoroughly documented. Considerations discussed are: (1) building energy needs; (2) site energy potentials, (3) matching energy needs with site energy potentials, (4) design indicators for best strategies and concepts, (5) schematic design alternatives, (6) performance testing of the alternatives, (7) design selection, and (8) design development. Weather data and Duke Power electric rates are included. (LEW)

  12. Residential Solar Valuation Rates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Residential Solar Valuation Rates This presentation summarizes the information discussed by Rabago Energy during the Best Practices in the Design ...

  13. Solar energy electric generating system

    SciTech Connect (OSTI)

    Anthony, J.

    1988-03-01

    A solar energy electric generating system is described comprising in combination: (a) an array of photocells; (b) means for gating the electrical direct current energy produced by the array of photocells; (c) means for transforming the electrical direct current energy at an output of the array of photocells whereby an alternating current at the output of the transforming means is produced, and which is controlled by a control device for controlling the rate and duty cycle of the gating means; and (d) a photosensitive sampler which samples light incident upon the photocell array and outputs a proportional signal.

  14. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics,...

  15. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information and Staff The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S....

  16. Electric vehicle climate control

    SciTech Connect (OSTI)

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  17. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  18. Electrical Load Modeling and Simulation

    SciTech Connect (OSTI)

    Chassin, David P.

    2013-01-01

    Electricity consumer demand response and load control are playing an increasingly important role in the development of a smart grid. Smart grid load management technologies such as Grid FriendlyTM controls and real-time pricing are making their way into the conventional model of grid planning and operations. However, the behavior of load both affects, and is affected by load control strategies that are designed to support electric grid planning and operations. This chapter discussed the natural behavior of electric loads, how it interacts with various load control and demand response strategies, what the consequences are for new grid operation concepts and the computing issues these new technologies raise.

  19. Electrical receptacle

    DOE Patents [OSTI]

    Leong, Robert

    1993-01-01

    The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

  20. Electrical receptacle

    DOE Patents [OSTI]

    Leong, R.

    1993-06-22

    The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

  1. Electrical machine

    DOE Patents [OSTI]

    De Bock, Hendrik Pieter Jacobus; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Gerstler, William Dwight; Shah, Manoj Ramprasad; Shen, Xiaochun

    2016-06-21

    An apparatus, such as an electrical machine, is provided. The apparatus can include a rotor defining a rotor bore and a conduit disposed in and extending axially along the rotor bore. The conduit can have an annular conduit body defining a plurality of orifices disposed axially along the conduit and extending through the conduit body. The rotor can have an inner wall that at least partially defines the rotor bore. The orifices can extend through the conduit body along respective orifice directions, and the rotor and conduit can be configured to provide a line of sight along the orifice direction from the respective orifices to the inner wall.

  2. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    SciTech Connect (OSTI)

    Mills, Andrew; Wiser, Ryan; Barbose, Galen; Golove, William

    2008-05-11

    This article examines the impact of retail electricity rate design on the economic value of grid-connected photovoltaic (PV) systems, focusing on commercial customers in California. Using 15-minute interval building load and PV production data from a sample of 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial-customer retail electricity rates currently offered in the state. Across all combinations of customers and rates, we find that the annual bill savings from PV, per kWh generated, ranges from $0.05/kWh to $0.24/kWh. This sizable range in rate-reduction value reflects differences in rate structures, revenue requirements, the size of the PV system relative to building load, and customer load shape. The most significant rate design issue for the value of commercial PV is found to be the percentage of total utility bills recovered through demand charges, though a variety of other factors are also found to be of importance. The value of net metering is found to be substantial, but only when commercial PV systems represent a sizable portion of annual customer load. Though the analysis presented here is specific to California, our general results demonstrate the fundamental importance of retail rate design for the customer-economics of grid-connected, customer-sited PV.

  3. The impact of retail rate structures on the economics of commercial photovoltaic systems in California

    SciTech Connect (OSTI)

    Mills, Andrew D.; Wiser, Ryan; Barbose, Galen; Golove, William

    2008-06-24

    This article examines the impact of retail electricity rate design on the economic value of grid-connected photovoltaic (PV) systems, focusing on commercial customers in California. Using 15-min interval building load and PV production data from a sample of 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial-customer retail electricity rates currently offered in the state. Across all combinations of customers and rates, we find that the annual bill savings from PV, per kWh generated, ranges from $0.05 to $0.24/kWh. This sizable range in rate-reduction value reflects differences in rate structures, revenue requirements, the size of the PV system relative to building load, and customer load shape. The most significant rate design issue for the value of commercial PV is found to be the percentage of total utility bills recovered through demand charges, though a variety of other factors are also found to be of importance. The value of net metering is found to be substantial, but only when energy from commercial PV systems represents a sizable portion of annual customer load. Though the analysis presented here is specific to California, our general results demonstrate the fundamental importance of retail rate design for the customer-economics of grid-connected, customer-sited PV.

  4. Electrical resistivity probes

    DOE Patents [OSTI]

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  5. Electrically conductive proppant and methods for detecting, locating and characterizing the electrically conductive proppant

    DOE Patents [OSTI]

    Cannan, Chad; Bartel, Lewis; Palisch, Terrence; Aldridge, David

    2015-01-13

    Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at a surface of the earth or in an adjacent wellbore.

  6. Variable gas leak rate valve

    DOE Patents [OSTI]

    Eernisse, Errol P.; Peterson, Gary D.

    1976-01-01

    A variable gas leak rate valve which utilizes a poled piezoelectric element to control opening and closing of the valve. The gas flow may be around a cylindrical rod with a tubular piezoelectric member encircling the rod for seating thereagainst to block passage of gas and for reopening thereof upon application of suitable electrical fields.

  7. NSTX Electrical Power Systems

    SciTech Connect (OSTI)

    A. Ilic; E. Baker; R. Hatcher; S. Ramakrishnan; et al

    1999-12-16

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physic Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The design of the NSTX electrical power system was tailored to suit the available infrastructure and electrical equipment on site. Components were analyzed to verify their suitability for use in NSTX. The total number of circuits and the location of the NSTX device drove the major changes in the Power system hardware. The NSTX has eleven (11) circuits to be fed as compared to the basic three power loops for TFTR. This required changes in cabling to insure that each cable tray system has the positive and negative leg of cables in the same tray. Also additional power cabling had to be installed to the new location. The hardware had to b e modified to address the need for eleven power loops. Power converters had to be reconnected and controlled in anti-parallel mode for the Ohmic heating and two of the Poloidal Field circuits. The circuit for the Coaxial Helicity Injection (CHI) System had to be carefully developed to meet this special application. Additional Protection devices were designed and installed for the magnet coils and the CHI. The thrust was to making the changes in the most cost-effective manner without compromising technical requirements. This paper describes the changes and addition to the Electrical Power System components for the NSTX magnet systems.

  8. ELECTRICAL COIL STRUCTURE

    DOE Patents [OSTI]

    Baker, W.R.; Hartwig, A.

    1962-09-25

    A compactly wound electrical coil is designed for carrying intense pulsed currents such as are characteristic of controlled thermonuclear reaction devices. A flat strip of conductor is tightly wound in a spiral with a matching flat strip of insulator. To provide for a high fluid coolant flow through the coil with minimum pumping pressure, a surface of the conductor is scored with parallel transverse grooves which form short longitudinal coolant pasaages when the conductor is wound in the spiral configuration. Owing to this construction, the coil is extremely resistant to thermal and magnetic shock from sudden high currents. (AEC)

  9. Rates Meetings and Workshops (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Case Workshops Other Power Rates-Related Workshops July 1, 2004 - Rates and Finances Workshop (updated June 25, 2004) (financial and rate forecasts and scenarios for FY...

  10. ELECTRICAL SUPPORT SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    S. Roy

    2004-06-24

    The purpose of this revision of the System Design Description (SDD) is to establish requirements that drive the design of the electrical support system and their bases to allow the design effort to proceed to License Application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience/users are design engineers. This type of SDD both ''leads'' and ''trails'' the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential in performing the design process. The SDD trails the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. Functional and operational requirements applicable to electrical support systems are obtained from the ''Project Functional and Operational Requirements'' (F&OR) (Siddoway 2003). Other requirements to support the design process have been taken from higher-level requirements documents such as the ''Project Design Criteria Document'' (PDC) (Doraswamy 2004), and fire hazards analyses. The above-mentioned low-level documents address ''Project Requirements Document'' (PRD) (Canon and Leitner 2003) requirements. This SDD contains several appendices that include supporting information. Appendix B lists key system charts, diagrams, drawings, and lists, and Appendix C includes a list of system procedures.

  11. Clean Electricity Initiatives in California

    U.S. Energy Information Administration (EIA) Indexed Site

    Edward Randolph Director, Energy Division California Public Utilities Commission July 14, 2014 2014 EIA Energy Conference Clean Electricity Policy Initiatives In California (Partial) * Wholesale Renewables : - Renewables Portfolio Standard - Feet in Tariffs (RAM & ReMAT) - All source procurement (under development) * Customer Renewable Generation - California Solar Initiative - Net Energy Metering - Green Tariffs - Energy Efficiency - Demand Response - Rate Reform - Storage - Retirement of

  12. Implications of Low Electricity Demand Growth

    U.S. Energy Information Administration (EIA) Indexed Site

    2014 EIA Energy Conference July 14, 2014 | Washington, DC Jim Diefenderfer, Director, Office of Electricity, Coal, Nuclear, & Renewables Analysis U.S. Energy Information Administration Implications of low electricity demand growth Growth in electricity use slows, but still increases by 29% from 2012 to 2040 -2% 0% 2% 4% 6% 8% 10% 12% 14% 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 percent growth (3-year compounded annual growth rate) Source: EIA, Annual Energy Outlook 2014 Reference

  13. Evaluation of evolving residential electricity tariffs

    SciTech Connect (OSTI)

    Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

    2011-05-15

    Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. This poster: examines the history of the residential pricing structure and key milestones; summarizes and analyzes the usage between 2006 and 2009 for different baseline/climate areas; discusses the residential electricity Smart Meter roll out; and compares sample bills for customers in two climates under the current pricing structure and also the future time of use (TOU) structure.

  14. Chapter 3: Enabling Modernization of the Electric Power System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Enabling Modernization of the Electric Power System September 2015 Quadrennial Technology Review 3 Enabling Modernization of the Electric Power System Issues and RDD&D Opportunities  Fundamental changes in electricity generation and use are requiring the electricity system to perform in ways for which it was not designed-requiring new capabilities and system designs to maintain historical levels of reliability.  American industry and commerce demand affordable, high-quality power

  15. U.S. Department of Energy Charter Electricity Advisory Committee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charter Electricity Advisory Committee 1. Committee's Official Designation: Electricity Advisory Committee (EAC) 2. Committee's Obiectives and Scope of Activities and Duties: The EAC will conduct the following activities: A. Advise on electricity reliability, security and policy issues of concern to the Department of Energy. B. Periodically review and make recommendations on DOE electricity programs and initiatives, including electricity-related R&D programs. C. Advise on current and future

  16. Talquin Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    by expanding it. Talquin Electric Cooperative, Inc. Smart Grid Project was awarded 8,100,000 Recovery Act Funding with a total project value of 16,200,000. Utility Rate...

  17. Final Report- National Database of Utility Rates and Rate Structure

    Broader source: Energy.gov [DOE]

    One of the key informational barriers for consumers, installers, regulators and policymakers, is the proper comparison cost of utility-supplied electricity that will be replaced with a Photovoltaic (PV) system. Oftentimes, these comparisons are made with national or statewide averages which results in inaccurate comparisons and conclusions. Illinois State University seeks to meet the need for accurate information about electricity costs and rate structure by building a national database of utility rates and rate structures. The database will build upon the excellent framework that was developed by the OpenEI.org initiative and extend it in several important ways. First, the data will be populated and monitored by a team of trained regulatory economists. Second, the database will be more comprehensive because it will be populated with data from newer competitive retail suppliers for states that have restructured their electricity markets to allow such suppliers. Third, the University and its Institute for Regulatory Policy Studies will maintain the database and ensure that it contains the most recent rate information.

  18. Electric and Hybrid Electric Vehicle Sales: December 2010 - June...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. ...

  19. Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles...

    Open Energy Info (EERE)

    Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric...

  20. Redding Electric- Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    The Earth Advantage Rebate Program was designed to offer rebates to residential and business customers of Redding Electric Utility (REU) for solar PV, solar thermal, and geothermal heat pump...

  1. Electric Drive Status and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leaf * 75 mile electric range * 80 kW electric drive * electric drive cost:1,600 Tesla Model S * 250 mile electric range * 270 kW electric drive * electric drive ...

  2. Electrical safety guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  3. DOE handbook electrical safety

    SciTech Connect (OSTI)

    1998-01-01

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  4. Office of the Assistant General Counsel for Electricity and Fossil...

    Office of Environmental Management (EM)

    Further, the office represents the consumer interests of the United States, including national laboratories, military bases, and certain NNSA facilities, in electric rate ...

  5. Expected annual electricity bill savings for various PPA price...

    Open Energy Info (EERE)

    Expected annual electricity bill savings for various PPA price options Jump to: navigation, search Impact of Utility Rates on PV Economics Bill savings tables (main section): When...

  6. North Arkansas Electric Cooperative, Inc- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    North Arkansas Electric Cooperative (NAEC), a Touchstone Energy Cooperative, serves approximately 35,000 member accounts in seven different counties. The coop provides low interest rates for energy...

  7. Oncor Electric Delivery - Solar Photovoltaic Standard Offer Program...

    Broader source: Energy.gov (indexed) [DOE]

    Summary Oncor Electric Delivery offers rebates to its customers that install photovoltaic (PV) systems on homes or other buildings.* Oncor customers of all rate classes...

  8. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    See all Electricity Reports Electricity Monthly Update With Data for November 2014 | Release Date: Jan. 26, 2015 | Next Release Date: Feb. 24, 2015 Previous Issues Issue:...

  9. Edison Electric Institute Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the Edison Electric Institute (EEI) and the current electricity landscape.

  10. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Electric Power Sector comprises electricity-only and combined heat and power (CHP) plants within the North American Industrial Classification System 22 category whose...

  11. Electricity Monthly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Update November 28, 2012 Map of Electric System Selected for Daily Peak Demand was replaced with the correct map showing Selected Wholesale Electricity and Natural Gas Locations....

  12. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general...

  13. National Drive Electric Week

    Office of Energy Efficiency and Renewable Energy (EERE)

    Celebrate National Drive Electric Week with ways to make your all-electric or plug-in hybrid cars even greener!

  14. Ohio Electricity Restructuring Active

    Gasoline and Diesel Fuel Update (EIA)

    Other Links Ohio Electricity Profile Ohio Energy Profile Ohio Web Sites Acronyms for the ... Consumer education programs were available on the Ohio Electric Choice web site, through ...

  15. Electricity Restructuring by State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Restructuring Status Status of Electricity Restructuring by State Data as of: September 2010 Next Release Date: None The map below shows information on the electric industry ...

  16. Integrated electrical connector (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Integrated electrical connector Title: Integrated electrical connector An electrical ... The opening is also smaller than the diameter of an electrically conductive contact pin. ...

  17. Challenges for the vehicle tester in characterizing hybrid electric vehicles

    SciTech Connect (OSTI)

    Duoba, M.

    1997-08-01

    Many problems are associated with applying test methods, like the Federal Test Procedure (FTP), for HEVs. Although there has been considerable progress recently in the area of HEV test procedure development, many challenges are still unsolved. A major hurdle to overcoming the challenges of developing HEV test procedures is the lack of HEV designs available for vehicle testing. Argonne National Laboratory has tested hybrid electric vehicles (HEVs) built by about 50 colleges and universities from 1994 to 1997 in annual vehicle engineering competitions sponsored in part by the U.S. Department of Energy (DOE). From this experience, the Laboratory has gathered information about the basics of HEV testing and issues important to successful characterization of HEVs. A collaboration between ANL and the Society of Automotive Engineer`s (SAE) HEV Test Procedure Task Force has helped guide the development of test protocols for their proposed procedures (draft SAE J1711) and test methods suited for DOE vehicle competitions. HEVs use an electrical energy storage device, which requires that HEV testing include more time and effort to deal with the effects of transient energy storage as the vehicle is operating in HEV mode. HEV operation with electric-only capability can be characterized by correcting the HEV mode data using results from electric-only operation. HEVs without electric-only capability require multiple tests conducted to form data correlations that enable the tester to find the result that corresponds to a zero net change in SOC. HEVs that operate with a net depletion of charge cannot be corrected for battery SOC and are characterized with emissions and fuel consumption results coupled with the electrical energy usage rate. 9 refs., 8 figs.

  18. Hybrid and Plug-In Electric Vehicles (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: * Hybrid electric vehicles (HEVs) * Plug-in hybrid electric vehicles (PHEVs) * All-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions. Hybrid Electric Vehicles HEVs are powered by an internal combustion engine (ICE) and by an electric motor that uses energy stored

  19. Power Rates Announcements (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial Choices (2003-06) Power...

  20. Current BPA Power Rates (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Workshops WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...

  1. EAC Recommendations on Expanding and Modernizing the Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    resilient distribution systems, integrating multiple systems and technologies, and designing and planning the future ... and Modernizing the Electric Power Delivery System for ...

  2. NREL Releases Report on Testing Electric Vehicles to Optimize...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    designers and utilities to evaluate the performance of various EVs and hybrids to optimize how they connect with electric utility grids today - and "smart grids" in the future. ...

  3. El Paso Electric Company- SCORE Plus Standard Offer Program

    Broader source: Energy.gov [DOE]

    The El Paso Electric (EPE) SCORE Plus Program is designed to help participants identify energy efficiency opportunities in existing and newly planned facilities and to provide monetary incentives...

  4. Vectren Energy Delivery of Indiana (Electric)- Commercial New Construction Rebates

    Broader source: Energy.gov [DOE]

    Vectren Energy Delivery offers commercial customers in Indiana electric rebates for the installation of certain types of equipment in newly constructed buildings through its Energy Design Assist...

  5. Electrical Detector for Liquid Lithium Leaks Around Demountable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrical Detector for Liquid Lithium Leaks Around Demountable Pipe Joints This system is designed to detect leaks of liquid lithium from around demountable pipe joints. ...

  6. Rampressor Turbine Design

    SciTech Connect (OSTI)

    Ramgen Power Systems

    2003-09-30

    The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

  7. Model documentation: Electricity market module, electricity finance and pricing submodule

    SciTech Connect (OSTI)

    Not Available

    1994-04-07

    The purpose of this report is to define the objectives of the model, describe its basic approach, and provide detail on how it works. The EFP is a regulatory accounting model that projects electricity prices. The model first solves for revenue requirements by building up a rate base, calculating a return on rate base, and adding the allowed expenses. Average revenues (prices) are calculated based on assumptions regarding regulator lag and customer cost allocation methods. The model then solves for the internal cash flow and analyzes the need for external financing to meet necessary capital expenditures. Finally, the EFP builds up the financial statements. The EFP is used in conjunction with the National Energy Modeling System (NEMS). Inputs to the EFP include the forecast generating capacity expansion plans, operating costs, regulator environment, and financial data. The outputs include forecasts of income statements, balance sheets, revenue requirements, and electricity prices.

  8. National Electric Transmission Congestion Studies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Section 216(a) of the Federal Power Act, as amended by the Energy Policy Act of 2005, directs the U.S. Department of Energy (DOE) to conduct a study every three years on electric transmission congestion and constraints within the Eastern and Western Interconnections. The American Reinvestment and Recovery Act of 2009 (Recovery Act) further directed the Secretary to include in the 2009 Congestion Study an analysis of significant potential sources of renewable energy that are constrained by lack of adequate transmission capacity. Based on this study, and comments concerning it from states and other stakeholders, the Secretary of Energy may designate any geographic area experiencing electric transmission capacity constraints or congestion as a national interest electric transmission corridor (National Corridor).

  9. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.; Burress, Timothy A; Marlino, Laura D

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if

  10. ELECTRICAL PULSE COUNTER APPARATUS

    DOE Patents [OSTI]

    Kaufman, W.M.; Jeeves, T.A.

    1962-09-01

    A progressive electrical pulse counter circuit rs designed for the counting of a chain of input pulses. The circuit employs a series of direct connected bistable counting stages simultaneously pulsed by each input pulse and a delay means connected between each of the stages. Each bistable stage has two d-c operative states, which stage, when in its initial state, prevents the next succeeding stage from changing its condition when the latter stage is pulsed. Since the delay circuits between the stages prevents the immediate decay of the d-c state of each stage when the stages are pulsed, only one stage will change its state for each input pulse, thereby providing progressive stage-by-stage counting. (AEC)