Sample records for design cooling water

  1. Critical review of water based radiant cooling system design methods

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Bauman, Fred; Schiavon, Stefano

    2014-01-01T23:59:59.000Z

    Embedded Radiant Heating and Cooling Systems, InternationalWATER BASED RADIANT COOLING SYSTEM DESIGN METHODS Jingjuan (Keywords: Radiant Cooling System, Design Approach,

  2. Designing a 'Near Optimum' Cooling-Water System

    E-Print Network [OSTI]

    Crozier, R. A., Jr.

    1981-01-01T23:59:59.000Z

    Cooling water is expensive to circulate. Reducing its flow - i.e., hiking exchanger outlet temperatures - can cut tower, pump and piping investment as much as one-third and operating cost almost in half. Heat-exchanger-network optimization has been...

  3. The design and evaluation of a water delivery system for evaporative cooling of a proton exchange membrane fuel cell

    E-Print Network [OSTI]

    Al-Asad, Dawood Khaled Abdullah

    2009-06-02T23:59:59.000Z

    An investigation was performed to demonstrate system design for the delivery of water required for evaporative cooling of a proton exchange membrane fuel cell (PEMFC). The water delivery system uses spray nozzles capable of injecting water directly...

  4. The design and evaluation of a water delivery system for evaporative cooling of a proton exchange membrane fuel cell 

    E-Print Network [OSTI]

    Al-Asad, Dawood Khaled Abdullah

    2009-06-02T23:59:59.000Z

    An investigation was performed to demonstrate system design for the delivery of water required for evaporative cooling of a proton exchange membrane fuel cell (PEMFC). The water delivery system uses spray nozzles capable of injecting water directly...

  5. RAMI Analysis for Designing and Optimizing Tokamak Cooling Water System (TCWS) for the ITER's Fusion Reactor

    SciTech Connect (OSTI)

    Ferrada, Juan J [ORNL] [ORNL; Reiersen, Wayne T [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    U.S.-ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). TCWS is designed to provide cooling and baking for client systems that include the first wall/blanket, vacuum vessel, divertor, and neutral beam injector. Additional operations that support these primary functions include chemical control of water provided to client systems, draining and drying for maintenance, and leak detection/localization. TCWS interfaces with 27 systems including the secondary cooling system, which rejects this heat to the environment. TCWS transfers heat generated in the Tokamak during nominal pulsed operation - 850 MW at up to 150 C and 4.2 MPa water pressure. Impurities are diffused from in-vessel components and the vacuum vessel by water baking at 200-240 C at up to 4.4 MPa. TCWS is complex because it serves vital functions for four primary clients whose performance is critical to ITER's success and interfaces with more than 20 additional ITER systems. Conceptual design of this one-of-a-kind cooling system has been completed; however, several issues remain that must be resolved before moving to the next stage of the design process. The 2004 baseline design indicated cooling loops that have no fault tolerance for component failures. During plasma operation, each cooling loop relies on a single pump, a single pressurizer, and one heat exchanger. Consequently, failure of any of these would render TCWS inoperable, resulting in plasma shutdown. The application of reliability, availability, maintainability, and inspectability (RAMI) tools during the different stages of TCWS design is crucial for optimization purposes and for maintaining compliance with project requirements. RAMI analysis will indicate appropriate equipment redundancy that provides graceful degradation in the event of an equipment failure. This analysis helps demonstrate that using proven, commercially available equipment is better than using custom-designed equipment with no field experience and lowers specific costs while providing higher reliability. This paper presents a brief description of the TCWS conceptual design and the application of RAMI tools to optimize the design at different stages during the project.

  6. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard (Pittsburgh, PA)

    1994-01-01T23:59:59.000Z

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  7. Cooling Water System Optimization

    E-Print Network [OSTI]

    Aegerter, R.

    2005-01-01T23:59:59.000Z

    During summer months, many manufacturing plants have to cut back in rates because the cooling water system is not providing sufficient cooling to support higher production rates. There are many low/no-cost techniques available to improve tower...

  8. Spent nuclear fuel project cold vacuum drying facility tempered water and tempered water cooling system design description

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1998-11-30T23:59:59.000Z

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Tempered Water (TW) and Tempered Water Cooling (TWC) System . The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the TW and TWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SOD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  9. Thermoelectrically cooled water trap

    DOE Patents [OSTI]

    Micheels, Ronald H. (Concord, MA)

    2006-02-21T23:59:59.000Z

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  10. Selecting the Design Entering Water Temperature for Vertical Geothermal Heat Pumps in Cooling-Dominated Applications

    SciTech Connect (OSTI)

    Shonder, John A [ORNL; Thornton, Jeff W. [Thermal Energy Systems Specialists, Inc.; Hughes, Patrick [ORNL

    2001-01-01T23:59:59.000Z

    At a military base in the Southeastern United States, an energy services company (ESCO) has proposed to retrofit more than 1,000 family residences with geothermal heat pumps as part of an energy savings performance contract (ESPC). Each residence is to have one heat pump with its own ground heat exchanger consisting of two or more vertical bores. A design firm hired by the ESCO sized the heat pumps to meet peak cooling loads, and sized the borefields to limit the maximum entering water temperature (EWT) to the heat pumps to 95 F (35 C). Because there is some disagreement in the geothermal heat pump industry over the peak temperature to be used for design (some designers and design manuals recommend temperatures as low as 85 F [29 C], while equipment manufacturers and others specify temperatures of 100 F [38 C] or higher) the authors were requested to examine the designs in detail to determine whether the 95 F (35 C) limit was adequate to ensure occupant comfort, efficient operation, and low capital and operating costs. It was found that three of the designer's assumptions made the borefield designs more conservative (i.e., longer) than the 95 F (35 C) limit would indicate. In fact, the analysis indicates that with more realistic assumptions about system operation, the maximum entering water temperature at the modeled residence will be about 89 F (32 C). Given the implications of a borefield that is shorter than required, it is likely that other designers are using similarly conservative assumptions to size vertical borefields for geothermal heat pumps. This implies that unless all of the design assumptions are examined, blanket recommendations to limit the entering water temperature to a specific value (such as 90 F [32 C]) may result in borefields that are significantly oversized.

  11. Selecting the Design Entering Water Temperature for Vertical Geothermal Heat Pumps in Cooling-Dominated Applications

    SciTech Connect (OSTI)

    Shonder, J.A.

    2001-07-12T23:59:59.000Z

    At a military base in the Southeastern US, an energy services company (ESCO) has proposed to retrofit more than 1,000 family residences with geothermal heat pumps as part of an energy savings performance contract (ESPC). Each residence is to have one heat pump with its own ground heat exchanger consisting of two or more vertical bores. A design firm hired by the ESCO sized the heat pumps to meet peak cooling loads, and sized the borefields to limit the maximum entering water temperature (EWT) to the heat pumps to 95 F (35 C). Because there is some disagreement in the geothermal heat pump industry over the peak temperature to be used for design (some designers and design manuals recommend temperatures as low as 85 F [29 C], while equipment manufacturers and others specify temperatures of 100 F [38 C] or higher) the authors were requested to examine the designs in detail to determine whether the 95 F (35 C) limit was adequate to ensure occupant comfort, efficient operation, and low capital and operating costs. It was found that three of the designer's assumptions made the borefield designs more conservative (i.e., longer) than the 95 F (35 C) limit would indicate. In fact, the analysis indicates that with more realistic assumptions about system operation, the maximum entering water temperature at the modeled residence will be about 89 F (32 C). Given the implications of a borefield that is shorter than required, it is likely that other designers are using similarly conservative assumptions to size vertical borefields for geothermal heat pumps. This implies that unless all of the design assumptions are examined, blanket recommendations to limit the entering water temperature to a specific value (such as 90 F [32 C]) may result in borefields that are significantly oversized.

  12. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    C: DIRECT LIQUID AND AIR COOLING COMPONENT TCASE FORECASTGRAPHICS Direct Liquid Cooling Thermal Components andThermal Design Margins Air Cooling Thermal Components and

  13. Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling

    SciTech Connect (OSTI)

    Borodin, Dmitri; Ben-Moshe, Roey; Einat, Moshe [Department of Electrical and Electronic Engineering, Ariel University, Ariel 40700 (Israel)

    2014-07-15T23:59:59.000Z

    The design work for 2nd harmonic 95 GHz, 50 kW gyrotron based on continuous operation copper solenoid is presented. Thermionic magnetron injection gun specifications were calculated according to the linear trade off equation, and simulated with CST program. Numerical code is used for cavity design using the non-uniform string equation as well as particle motion in the “cold” cavity field. The mode TE02 with low Ohmic losses in the cavity walls was chosen as the operating mode. The Solenoid is designed to induce magnetic field of 1.8 T over a length of 40 mm in the interaction region with homogeneity of ±0.34%. The solenoid has six concentric cylindrical segments (and two correction segments) of copper foil windings separated by water channels for cooling. The predicted temperature in continuous operation is below 93?°C. The parameters of the design together with simulation results of the electromagnetic cavity field, magnetic field, electron trajectories, and thermal analyses are presented.

  14. Proposal for the award of a contract for the design, supply, installation and commissioning of three backup water cooling stations for the LHC cryogenic plants

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Proposal for the award of a contract for the design, supply, installation and commissioning of three backup water cooling stations for the LHC cryogenic plants

  15. Guidelines for selecting a solar heating, cooling or hot water design

    SciTech Connect (OSTI)

    Kelly, C.J. Jr.

    1981-12-01T23:59:59.000Z

    Guidelines are presented for the professional who may have to choose between competing solar heating and cooling designs for buildings. The experience of the National Solar Data Network in monitoring over 100 solar installations are drawn upon. Three basic principles and a design selection checklist are developed which will aid in choosing the most cost effective design.

  16. Optimization of Cooling Water

    E-Print Network [OSTI]

    Matson, J.

    A cooling water system can be optimized by operation at the highest possible cycles of concentration without risking sealing and fouling on heat exchanger surfaces. The way to optimize will be shown, with a number of examples of new systems....

  17. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, Jr., Edward P. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  18. Seismicity and seismic response of the Soviet-designed VVER (Water-cooled, Water moderated Energy Reactor) reactor plants

    SciTech Connect (OSTI)

    Ma, D.C.; Gvildys, J.; Wang, C.Y.; Spencer, B.W.; Sienicki, J.J.; Seidensticker, R.W.; Purvis, E.E. III

    1989-01-01T23:59:59.000Z

    On March 4, 1977, a strong earthquake occurred at Vrancea, Romania, about 350 km from the Kozloduy plant in Bulgaria. Subsequent to this event, construction of the unit 2 of the Armenia plant was delayed over two years while seismic features were added. On December 7, 1988, another strong earthquake struck northwest Armenia about 90 km north of the Armenia plant. Extensive damage of residential and industrial facilities occurred in the vicinity of the epicenter. The earthquake did not damage the Armenia plant. Following this event, the Soviet government announced that the plant would be shutdown permanently by March 18, 1989, and the station converted to a fossil-fired plant. This paper presents the results of the seismic analyses of the Soviet-designed VVER (Water-cooled, Water moderated Energy Reactor) plants. Also presented is the information concerning seismicity in the regions where VVERs are located and information on seismic design of VVERs. The reference units are the VVER-440 model V230 (similar to the two units of the Armenia plant) and the VVER-1000 model V320 units at Kozloduy in Bulgaria. This document provides an initial basis for understanding the seismicity and seismic response of VVERs under seismic events. 1 ref., 9 figs., 3 tabs.

  19. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    Gain on Radiant Floor Cooling System Design. Proceedings ofWater-based radiant cooling systems are gaining popularityGain on Radiant Floor Cooling System Design. Proceedings of

  20. Cooling load design tool for UFAD systems.

    E-Print Network [OSTI]

    Bauman, Fred; Schiavon, Stefano; Webster, Tom; Lee, Kwang Ho

    2010-01-01T23:59:59.000Z

    De- velopment of a Simplified Cooling Load Design Tool forand C. Benedek. 2007. “Cooling airflow design calculationscalculation method for design cooling loads in underfloor

  1. Activation analysis and characteristics of the European community water cooled ceramic breeder blanket design proposal for ITER

    SciTech Connect (OSTI)

    Petrizzi, L.; Rado, V. [ENEA-ERG-FUS, Frascati (Italy); Cepraga, D.G. [ENEA-INN-FIS, Bologna (Italy)

    1994-12-31T23:59:59.000Z

    The European Community (EC) Home Team has proposed various alternative blanket designs to the basic concept (essentially integrated first wall, cooled by liquid metal, with structures made by vanadium alloys). One of the EC proposal is the Water Cooled Ceramic Blanket developed on the basis of a common action between NET and ENEA. It is based on a more conservative approach, but involving well proven technologies and qualified materials: SS-316L as structural material, Li{sub 2}ZrO{sub 3} as first breeder material choice (50% Li{sup 6} enrichment) and low temperature water coolant (160/200{degrees}C). Beryllium has been chosen as multiplying material. The nominal performance are: 1 MW/m{sup 2} as average neutron wall load, corresponding to 1.5 GW fusion power, 1 MW-y/m{sup 2} beneath it has been proved to withstand power excursion till 5 GW. The proposed blanket concept is based on a Breeder Inside Tube (BIT) type technology, with poloidal breeding elements, each one consisting of two concentric tubes. Breeder pebbles are filled into the inner tube, the water coolant flows in the annular channel between the two tubes. Beryllium pebbles fill the space of the blanket box outside the outer tube. A helium purge gas flows through the breeder pebbles bed for tritium recovery. Alternative operating water temperature and pressure are proposed, considering also batch tritium recovery.

  2. The design and performance of a water cooling system for a prototype coupled cavity linear particle accelerator for the spallation neutron source

    SciTech Connect (OSTI)

    Bernardin, J. D. (John D.); Ammerman, C. N. (Curtt N.); Hopkins, S. M. (Steve M.)

    2002-01-01T23:59:59.000Z

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. The SNS will generate and employ neutrons as a research tool in a variety of disciplines including biology, material science, superconductivity, chemistry, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of, in part, a multi-cell copper structure termed a coupled cavity linac (CCL). The CCL is responsible for accelerating the protons from an energy of 87 MeV, to 185 MeV. Acceleration of the charged protons is achieved by the use of large electrical field gradients established within specially designed contoured cavities of the CCL. While a large amount of the electrical energy is used to accelerate the protons, approximately 60-80% of this electrical energy is dissipated in the CCL's copper structure. To maintain an acceptable operating temperature, as well as minimize thermal stresses and maintain desired contours of the accelerator cavities, the electrical waste heat must be removed from the CCL structure. This is done using specially designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by a complex water cooling and temperature control system. This paper discusses the design, analysis, and testing of a water cooling system for a prototype CCL. First, the design concept and method of water temperature control is discussed. Second, the layout of the prototype water cooling system, including the selection of plumbing components, instrumentation, as well as controller hardware and software is presented. Next, the development of a numerical network model used to size the pump, heat exchanger, and plumbing equipment, is discussed. Finally, empirical pressure, flow rate, and temperature data from the prototype CCL water cooling tests are used to assess water cooling system performance and numerical modeling accuracy.

  3. Cooling airflow design calculations for UFAD

    E-Print Network [OSTI]

    Bauman, Fred; Webster, Tom; Benedek, Corinne

    2007-01-01T23:59:59.000Z

    written permission. Cooling Airflow Design Calculations form) height. Table 2: Design cooling airflow performance fortool predictions of UFAD cooling airflow rates and associ-

  4. DESIGN AND ANALYSIS OF THE SNS CCL HOT MODEL WATER COOLING SYSTEM USING THE SINDA/FLUINT NETWORK MODELING TOOL

    SciTech Connect (OSTI)

    C. AMMERMAN; J. BERNARDIN

    1999-11-01T23:59:59.000Z

    This report presents results for design and analysis of the hot model water cooling system for the Spallation Neutron Source (SNS) coupled-cavity linac (CCL). The hot model, when completed, will include segments for both the CCL and coupled-cavity drift-tube linac (CCDTL). The scope of this report encompasses the modeling effort for the CCL portion of the hot model. This modeling effort employed the SINDA/FLUINT network modeling tool. This report begins with an introduction of the SNS hot model and network modeling using SINDA/FLUINT. Next, the development and operation of the SINDA/FLUINT model are discussed. Finally, the results of the SINDA/FLUINT modeling effort are presented and discussed.

  5. Engineering Design Cooling flow design

    E-Print Network [OSTI]

    McDonald, Kirk

    · Moderators 2 x H2O (0.5 L) Gd poison + Boral decoupler CH4 (0.5 L) Gd poison + Boral decoupler H2 (0.8 L) no poison + Boral decoupler · Reflector - Rods of Beryllium (D2O cooled) · 17 Neutron Beam lines Upgrade

  6. A better cooling water system

    SciTech Connect (OSTI)

    Gale, T.E.; Beecher, J.

    1987-12-01T23:59:59.000Z

    To prepare their newly constructed reduced crude conversion (RCC) open recirculating cooling water system for the implementation of a corrosion and deposit control water treatment program, Ashland Petroleum, Catlettsburg, Ky., made plans for and carried out precleaning and passivation procedures. Here, the authors share the results, and some potential guidelines for one's own operations. Inspection of equipment after precleaning showed that the precleaning procedures was very effective in removing undesirable matter. After precleaning and passivation of the system, the recommended cooling water treatment program was started. Corrosion rates for mild steel specimens ranged from 0.5 to 1.5 mils per year (mpy), with an average of 1.0 mpy. The corrosion rates for admiralty specimens ranged from 0.1 to 0.2 mpy. Benefits of the precleaning and passivating programs greatly outweigh the costs, since the normal cooling water treatment program for corrosion and deposit control can then operate more effectively.

  7. Hazard Evaluation for a Salt Well Centrifugal Pump Design Using Service Water for Lubrication and Cooling

    SciTech Connect (OSTI)

    GRAMS, W.H.

    2000-10-09T23:59:59.000Z

    This report documents the results of a preliminary hazard analysis (PHA) covering the new salt well pump design. The PHA identified ten hazardous conditions mapped to four analyzed accidents: flammable gas deflagrations, fire in contaminated area, tank failure due to excessive loads, and waste transfer leaks. This document also presents the results of the control decision/allocation process. A backflow preventer and associated limiting condition were assigned.

  8. Water cooling of HVDC thyristor valves

    SciTech Connect (OSTI)

    Lips, H.P. (Siemens AG, Erlangen (Germany))

    1994-10-01T23:59:59.000Z

    It is generally accepted that water is a very effective medium to remove heat losses from any type of equipment. When used for HVDC thyristor valves, the fundamentals of electrolyte conduction and water chemistry need to be considered in the design of the cooling circuit. The characteristics of the materials used, in conjunction with high voltage stresses and circuit configuration, play an important role to assure longevity and corrosion-free performance.

  9. Cooling load design tool for UFAD systems.

    E-Print Network [OSTI]

    Bauman, Fred; Schiavon, Stefano; Webster, Tom; Lee, Kwang Ho

    2010-01-01T23:59:59.000Z

    fraction (SPF) of cooling Supply Plenum SPF heat transfer bythrough the supply ple- Figure 2: Design day cooling loadsupply represent the????????????????????????????????????????????? air temperature, diffuser type and number, room setpoint instantaneous cooling

  10. Pressure loadings of Soviet-designed VVER (Water-Cooled, Water-Moderated Energy Reactor) reactor release mitigation structures from large-break LOCAs

    SciTech Connect (OSTI)

    Sienicki, J.J.; Horak, W.C. (Argonne National Lab., IL (USA); Brookhaven National Lab., Upton, NY (USA))

    1989-01-01T23:59:59.000Z

    Analyses have been carried out of the pressurization of the accident release mitigation structures of Soviet-designed VVER (Water-Cooled, Water-Moderated Energy Reactor) pressurized water reactors following large-break loss-of-coolant accidents. Specific VVER systems for which calculations were performed are the VVER-440 model V230, VVER-440 model V213, and VVER-1000 model V320. Descriptions of the designs of these and other VVER models are contained in the report DOE/NE-0084. The principal objective of the current analyses is to calculate the time dependent pressure loadings inside the accident localization or containment structures immediately following the double-ended guillotine rupture of a primary coolant pipe. In addition, the pressures are compared with the results of calculations of the response of the structures to overpressure. Primary coolant system thermal hydraulic conditions and the fluid conditions at the break location were calculated with the RETRAN-02 Mod2 computer code (Agee, 1984). Pressures and temperatures inside the building accident release mitigation structures were obtained from the PACER (Pressurization Accompanying Coolant Escape from Ruptures) multicompartment containment analysis code developed at Argonne National Laboratory. The analyses were carried out using best estimate models and conditions rather than conservative, bounding-type assumptions. In particular, condensation upon structure and equipment was calculated using correlations based upon analyses of the HDR, Marviken, and Battelle Frankfurt containment loading experiments. The intercompartment flow rates incorporate an effective discharge coefficient and liquid droplet carryover fraction given by expressions of Schwan determined from analyses of the Battelle Frankfurt and Marviken tests. 5 refs., 4 figs.

  11. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    points for maximum cooling liquid supply temperatures thatLiquid cooling guidelines may include: Supply temperatureliquid supply temperature for liquid cooling guidelines. Due

  12. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    defining liquid cooling guidelines for future use. The goalis key to reducing cooling energy consumption for futureliquid-cooling temperatures to guide future supercomputer

  13. Passive containment cooling water distribution device

    DOE Patents [OSTI]

    Conway, Lawrence E. (Hookstown, PA); Fanto, Susan V. (Plum Borough, PA)

    1994-01-01T23:59:59.000Z

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using a series of radial guide elements and cascading weir boxes to collect and then distribute the cooling water into a series of distribution areas through a plurality of cascading weirs. The cooling water is then uniformly distributed over the curved surface by a plurality of weir notches in the face plate of the weir box.

  14. Water Management for Evaporatively Cooled Condensers

    E-Print Network [OSTI]

    California at Davis, University of

    Water Management for Evaporatively Cooled Condensers Theresa Pistochini May 23rd, 2012 ResearchAirCapacity,tons Gallons of Water Continuous Test - Outdoor Air 110-115 Deg F Cyclic Test - Outdoor Air 110-115 Deg F #12 AverageWaterHardness(ppm) Cooling Degree Days (60°F Reference) 20% Population 70% Population 10

  15. CALIFORNIA ENERGY COMMISSION STAFF COOLING WATER MANAGEMENT

    E-Print Network [OSTI]

    1 CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY COMMISSION STAFF COOLING WATER MANAGEMENT PROGRAM GUIDELINES For Wet and Hybrid Cooling Towers at Power Plants MAY 17, 2004 DRAFTGUIDELINES NOVEMBER 2005 CEC-700-2005-025 Arnold Schwarzenegger, Governor #12;2 DRAFT CALIFORNIA ENERGY COMMISSION STAFF COOLING

  16. Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger Rack Cooling Device

    E-Print Network [OSTI]

    Greenberg, Steve

    2014-01-01T23:59:59.000Z

    eliminating the need for compressor cooling. The plant modelunique design (using compressor cooling only when needed by

  17. Chemical Treatment Fosters Zero Discharge by Making Cooling Water Reusable

    E-Print Network [OSTI]

    Boffardi, B. P.

    Over the past decade, the water requirements for cooling industrial manufacturing processes have changed dramatically. Once-through cooling has been largely replaced by open recirculating cooling water methods. This approach reduces water...

  18. Covered Product Category: Water-Cooled Electric Chillers | Department...

    Energy Savers [EERE]

    Water-Cooled Electric Chillers Covered Product Category: Water-Cooled Electric Chillers The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal...

  19. "Hot" for Warm Water Cooling

    SciTech Connect (OSTI)

    IBM Corporation; Energy Efficient HPC Working Group; Hewlett Packard Corporation; SGI; Cray Inc.; Intel Corporation; U.S. Army Engineer Research Development Center; Coles, Henry; Ellsworth, Michael; Martinez, David J.; Bailey, Anna-Maria; Banisadr, Farhad; Bates, Natalie; Coghlan, Susan; Cowley, David E.; Dube, Nicholas; Fields, Parks; Greenberg, Steve; Iyengar, Madhusudan; Kulesza, Peter R.; Loncaric, Josip; McCann, Tim; Pautsch, Greg; Patterson, Michael K.; Rivera, Richard G.; Rottman, Greg K.; Sartor, Dale; Tschudi, William; Vinson, Wade; Wescott, Ralph

    2011-08-26T23:59:59.000Z

    Liquid cooling is key to reducing energy consumption for this generation of supercomputers and remains on the roadmap for the foreseeable future. This is because the heat capacity of liquids is orders of magnitude larger than that of air and once heat has been transferred to a liquid, it can be removed from the datacenter efficiently. The transition from air to liquid cooling is an inflection point providing an opportunity to work collectively to set guidelines for facilitating the energy efficiency of liquid-cooled High Performance Computing (HPC) facilities and systems. The vision is to use non-compressor-based cooling, to facilitate heat re-use, and thereby build solutions that are more energy-efficient, less carbon intensive and more cost effective than their air-cooled predecessors. The Energy Efficient HPC Working Group is developing guidelines for warmer liquid-cooling temperatures in order to standardize facility and HPC equipment, and provide more opportunity for reuse of waste heat. This report describes the development of those guidelines.

  20. Stability analysis of supercritical water cooled reactors

    E-Print Network [OSTI]

    Zhao, Jiyun, Ph. D. Massachusetts Institute of Technology

    2005-01-01T23:59:59.000Z

    The Supercritical Water-Cooled Reactor (SCWR) is a concept for an advanced reactor that will operate at high pressure (25MPa) and high temperature (500°C average core exit). The high coolant temperature as it leaves the ...

  1. Condensate polishers for brackish water-cooled PWRs

    SciTech Connect (OSTI)

    Sadler, M.A.; Darvill, M.R.; Bickerstaffe, J.A.; Chakravorti, R.; Siegwarth, D.P.

    1986-07-01T23:59:59.000Z

    The objectives of project RP 1571-5 ''Optimization of Pressurized Water Reactor Secondary Water Treatment: Task 4 Conceptual Design Options - Condensate Polishing'' were to provide detailed guidelines for the design of a condensate polishing system for retrofitting to a seawater cooled PWR. For this purpose a national 1100MW PWR with recirculating steam generators was defined. The polished water to be produced by this plant must be of such a quality so as to permit the advisory SGOG guidelines on impurity levels in Steam Generator water to be achieved. Target maximum impurity levels in the final polished water were proposed by the RP 1571 Project review Team and adopted for this study.

  2. Complete Muon Cooling Channel Design and Simulations

    SciTech Connect (OSTI)

    Neuffer, D.V.; /Fermilab; Ankenbrandt, C.M.; Johnson, R.P.; Yoshikawa, C.Y.; /MUONS Inc., Batavia; Derbenev, Y.S.; Morozov, V.S.; /Jefferson Lab

    2012-05-01T23:59:59.000Z

    Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

  3. Complete Muon Cooling Channel Design and Simulations

    SciTech Connect (OSTI)

    C. Y. Yoshikawa, C.M. Ankenbrandt, R.P. Johnson, Y.S. Derbenev, V.S. Morozov, D.V. Neuffer, K. Yonehara

    2012-07-01T23:59:59.000Z

    Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

  4. Air and water cooled modulator

    DOE Patents [OSTI]

    Birx, Daniel L. (Oakley, CA); Arnold, Phillip A. (Livermore, CA); Ball, Don G. (Livermore, CA); Cook, Edward G. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  5. Air and water cooled modulator

    DOE Patents [OSTI]

    Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

    1995-09-05T23:59:59.000Z

    A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

  6. Covered Product Category: Water-Cooled Electric Chillers

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including water-cooled electric chillers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  7. EVAPORATIVE COOLING - CONCEPTUAL DESIGN FOR ATLAS SCT

    E-Print Network [OSTI]

    Niinikoski, T O

    1998-01-01T23:59:59.000Z

    The conceptual design of an evaporative two-phase flow cooling system for the ATLAS SCT detector is described, using perfluorinated propane (C3F8) as a coolant. Comparison with perfluorinated butane (C4F10) is made, although the detailed design is presented only for C3F8. The two-phase pressure drop and heat transfer coefficient are calculated in order to determine the dimensions of the cooling pipes and module contacts for the Barrel SCT. The region in which the flow is homogeneous is determined. The cooling cycle, pipework, compressor, heat exchangers and other main elements of the system are calculated in order to be able to discuss the system control, safety and reliability. Evaporative cooling appears to be substantially better than the binary ice system from the point of view of safety, reliability, detector thickness, heat transfer coefficient, cost and simplicity.

  8. ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM

    E-Print Network [OSTI]

    ASSESSING POWER PLANT COOLING WATER INTAKE SYSTEM ENTRAINMENT IMPACTS Prepared For: California be obvious that large studies like these require the coordinated work of many people. We would first like from the Duke Energy South Bay and Morro Bay power plants and the PG&E Diablo Canyon Power Plant

  9. Helical Muon Beam Cooling Channel Engineering Design

    SciTech Connect (OSTI)

    Kashikhin, V.S.; Lopes, M.L.; Romanov, G.V.; Tartaglia, M.A.; Yonehara, K.; Yu, M.; Zlobin, A.V.; /Fermilab; Flanagan, G.; Johnson, R.P.; Kazakevich, G.M.; Marhauser, F.; /MUONS Inc., Batavia

    2012-05-01T23:59:59.000Z

    The Helical Cooling Channel (HCC), a novel technique for six-dimensional (6D) ionization cooling of muon beams, has shown considerable promise based on analytic and simulation studies. However, the implementation of this revolutionary method of muon cooling requires new techniques for the integration of hydrogen-pressurized, high-power RF cavities into the low-temperature superconducting magnets of the HCC. We present the progress toward a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb{sub 3}Sn based HCC test section. We include discussions on the pressure and thermal barriers needed within the cryostat to maintain operation of the magnet at 4.2 K while operating the RF and energy absorber at a higher temperature. Additionally, we include progress on the Nb{sub 3}Sn helical solenoid design.

  10. Covered Product Category: Water-Cooled Ice Machines

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance and federal efficiency requirements for water-cooled ice machines.

  11. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    V. King

    2000-06-19T23:59:59.000Z

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.

  12. Muon Beam Helical Cooling Channel Design

    SciTech Connect (OSTI)

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G.; Kazakevich, G.M.; Marhauser, Frank; Neubauer, Michael; Roberts, T.; Yoshikawa, C.; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V.S.; Lopes, Mattlock; Tollestrup, A.; Yonehara, Katsuya; Zloblin, A.

    2013-06-01T23:59:59.000Z

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  13. A Free Cooling Based Chilled Water System at Kingston

    E-Print Network [OSTI]

    Jansen, P. R.

    1984-01-01T23:59:59.000Z

    to the concept of cooling chilled water with condenser water via plate heat exchangers. The other free cooling scheme considered was a process called 'strainer cycle'. In strainer cycle, the cooling tower water is pumped directly into the chilled water... and process equipment and the CDD's (coolant distribution units) of computers installed and on test. Additionally, switchover to strainer cycle would be more time consuming and difficult. For a high technology site the switch over must be smooth...

  14. Deployment Scenario of Heavy Water Cooled Thorium Breeder Reactor

    SciTech Connect (OSTI)

    Mardiansah, Deby; Takaki, Naoyuki [Course of Applied Science, School of Engineering, Tokai University (Japan)

    2010-06-22T23:59:59.000Z

    Deployment scenario of heavy water cooled thorium breeder reactor has been studied. We have assumed to use plutonium and thorium oxide fuel in water cooled reactor to produce {sup 233}U which will be used in thorium breeder reactor. The objective is to analysis the potential of water cooled Th-Pu reactor for replacing all of current LWRs especially in Japan. In this paper, the standard Pressurize Water Reactor (PWR) has been designed to produce 3423 MWt; (i) Th-Pu PWR, (ii) Th-Pu HWR (MFR = 1.0) and (iii) Th-Pu HWR (MFR 1.2). The properties and performance of the core were investigated by using cell and core calculation code. Th-Pu PWR or HWR produces {sup 233}U to introduce thorium breeder reactor. The result showed that to replace all (60 GWe) LWR by thorium breeder reactor within a period of one century, Th-Pu oxide fueled PWR has insufficient capability to produce necessary amount of {sup 233}U and Th-Pu oxide fueled HWR has almost enough potential to produce {sup 233}U but shows positive void reactivity coefficient.

  15. Electrochemistry of Water-Cooled Nuclear Reactors

    SciTech Connect (OSTI)

    Macdonald, Dgiby; Urquidi-Macdonald, Mirna; Pitt, Jonathan

    2006-08-08T23:59:59.000Z

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or "radiation fields" around the primary loop and the vessel, as a function of the operating parameters and the water chemistry.

  16. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    SciTech Connect (OSTI)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16T23:59:59.000Z

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  17. Water-cooled solid-breeder concept for ITER

    SciTech Connect (OSTI)

    Gohar, Y.; Baker, C.C.; Attaya, H.; Billone, M.; Clemmer, R.C.; Finn, P.A.; Hassanein, A.; Johnson, C.E.; Majumdar, S.; Mattas, R.F.

    1988-08-01T23:59:59.000Z

    A water-cooled solid-breeder blanket concept was developed for ITER. The main function of this blanket is to produce the necessary tritium for the ITER operation. Several design features are incorporated in this blanket concept to increase its attractiveness. It is assumed that the blanket operation at commercial power reactor conditions can be sacrificed to achieve a high tritium breeding ratio with minimum additional research and development, and minimal impact on reactor design and operation. Operating temperature limits are enforced for each material to insure a satisfactory blanket performance. In fact, the design was iterated to maximize the tritium breeding ratio and satisfy these temperature limits. The other design constraint is to permit a large increase in the neutron wall loading without exceeding the temperature limits for the different blanket materials. The blanket concept contains 1.8 cm of Li/sub 2/O and 22.5 cm of beryllium both with a 0.8 density factor. The water coolant is isolated from the breeder material by several zones which reduces the tritium buildup in the water by permeation, reduces the chance for water-breeder interaction, and permits the breeder to operate at high temperature with a low temperature coolant. This improves the safety and environmental aspects of the blanket and eliminates the costly process of the tritium recovery from the water. The key features and design analysis of this blanket are summarized in this paper. 11 refs., 2 figs., 3 tabs.

  18. Direct Water-Cooled Power Electronics Substrate Packaging

    Broader source: Energy.gov (indexed) [DOE]

    Water-Cooled Power Electronics Substrate Packaging Randy H. Wiles Oak Ridge National Laboratory June 10, 2010 Project ID: APE001 This presentation does not contain any proprietary,...

  19. advanced water cooled: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    your Cooling Water System Texas A&M University - TxSpace Summary: characteristics limit savings. Figure 1. Predicted Performance Curve PD-3274 HISTORY Colder temperatures allow...

  20. Candidate Materials Evaluation for Supercritical Water-Cooled Reactor

    SciTech Connect (OSTI)

    T. R. Allen and G. S. Was

    2008-12-12T23:59:59.000Z

    Final technical report on the corrosion, stress corrosion cracking, and radiation response of candidate materials for the supercritical water-cooled reactor concept.

  1. Forced cooling of underground electric power transmission lines : design manual

    E-Print Network [OSTI]

    Brown, Jay A.

    1978-01-01T23:59:59.000Z

    The methodology utilized for the design of a forced-cooled pipe-type underground transmission system is presented. The material is divided into three major parts: (1) The Forced-cooled Pipe-Type Underground Transmission ...

  2. Cooling Water Systems - Energy Savings/Lower Costs By Reusing Cooling Tower Blowdown

    E-Print Network [OSTI]

    Puckorius, P. R.

    1981-01-01T23:59:59.000Z

    Reuse of cooling tower blow down cannot only provide energy conservation, but can provide water conservation and chemical conservation. To be effective, it is critical that the water treatment program be coordinated with the treatment of the blow...

  3. Use of nanofiltration to reduce cooling tower water usage.

    SciTech Connect (OSTI)

    Sanchez, Andres L.; Everett, Randy L.; Jensen, Richard Pearson; Cappelle, Malynda A.; Altman, Susan Jeanne

    2010-09-01T23:59:59.000Z

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  4. Use of nanofiltration to reduce cooling tower water consumption.

    SciTech Connect (OSTI)

    Altman, Susan Jeanne; Ciferno, Jared

    2010-10-01T23:59:59.000Z

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  5. COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS

    SciTech Connect (OSTI)

    Gary Vine

    2010-12-01T23:59:59.000Z

    This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes “Best Technology Available” for intake structures that withdraw cooling water that is used to transfer and reject heat from the plant’s steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R&D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

  6. Water-lithium bromide double-effect absorption cooling analysis. Final report

    SciTech Connect (OSTI)

    Vliet, G.C.; Lawson, M.B.; Lithgow, R.A.

    1980-12-01T23:59:59.000Z

    This investigation involved the development of a numerical model for the transient simulation of the double-effect, water-lithium bromide absorption cooling machine, and the use of the model to determine the effect of the various design and input variables on the absorption unit performance. The performance parameters considered were coefficient of performance and cooling capacity. The sensitivity analysis was performed by selecting a nominal condition and determining performance sensitivity for each variable with others held constant. The variables considered in the study include source hot water, cooling water, and chilled water temperatures; source hot water, cooling water, and chilled water flow rates; solution circulation rate; heat exchanger areas; pressure drop between evaporator and absorber; solution pump characteristics; and refrigerant flow control methods. The performance sensitivity study indicated in particular that the distribution of heat exchanger area among the various (seven) heat exchange components is a very important design consideration. Moreover, it indicated that the method of flow control of the first effect refrigerant vapor through the second effect is a critical design feature when absorption units operate over a significant range of cooling capacity. The model was used to predict the performance of the Trane absorption unit with fairly good accuracy. The dynamic model should be valuable as a design tool for developing new absorption machines or modifying current machines to make them optimal based on current and future energy costs.

  7. Water-cooled solid-breeder blanket concept for ITER

    SciTech Connect (OSTI)

    Gohar, Y.; Baker, C.C.; Attaya, H.; Billone, M.; Clemmer, R.C.; Finn, P.A.; Hassanein, A.; Johnson, C.E.; Majumdar, S.; Mattas, R.F.

    1989-03-01T23:59:59.000Z

    A water cooled solid-breeder blanket concept was developed for ITER. The main function of this blanket is to produce the necessary tritium for the ITER operation. Several design features are incorporated in this blanket concept to increase its attractiveness. The main features are the following: (a) a multilayer concept which reduces fabrication cost; (b) a simple blanket configuration which results in reliability advantages; (c) a very small breeder volume is employed to reduce the tritium inventory and the blanket cost; (d) a high tritium breeding ratio eliminates the need for an outside tritium supply; (e) a low-pressure system decreases the required steel fraction for structural purposes; (f) a low-temperature operation reduces the swelling concerns for beryllium; and (g) the small fractions of structure and breeder materials used in the blanket reduce the decay heat source. The key features and design analyses of this blanket are summarized in this paper.

  8. Cooling system early-stage design tool for naval applications

    E-Print Network [OSTI]

    Fiedel, Ethan R

    2011-01-01T23:59:59.000Z

    This thesis utilizes concepts taken from the NAVSEA Design Practices and Criteria Manualfor Surface Ship Freshwater Systems and other references to create a Cooling System Design Tool (CSDT). With the development of new ...

  9. THE MECHANICAL DESIGN AND FABRICATION OF A CONVECTIVELY COOLED ION ACCELERATOR FOR CONTINUOUSLY OPERATING NEUTRAL BEAM SYSTEMS

    E-Print Network [OSTI]

    Paterson, J.A.

    2012-01-01T23:59:59.000Z

    over the grid rails. cooling water supply piping is not areliability. The cooling water supply pres-· sure and flowwill sound if the cooling water supply temperature rises. A.

  10. Advanced water-cooled phosphoric acid fuel cell development

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    This program was conducted to improve the performance and minimize the cost of existing water-cooled phosphoric acid fuel cell stacks for electric utility and on-site applications. The goals for the electric utility stack technology were a power density of at least 175 watts per square foot over a 40,000-hour useful life and a projected one-of-a-kind, full-scale manufactured cost of less than $400 per kilowatt. The program adapted the existing on-site Configuration-B cell design to electric utility operating conditions and introduced additional new design features. Task 1 consisted of the conceptual design of a full-scale electric utility cell stack that meets program objectives. The conceptual design was updated to incorporate the results of material and process developments in Tasks 2 and 3, as well as results of stack tests conducted in Task 6. Tasks 2 and 3 developed the materials and processes required to fabricate the components that meet the program objectives. The design of the small area and 10-ft{sup 2} stacks was conducted in Task 4. Fabrication and assembly of the short stacks were conducted in Task 5 and subsequent tests were conducted in Task 6. The management and reporting functions of Task 7 provided DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that was conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

  11. Data Center Economizer Cooling with Tower Water; Demonstration of a

    E-Print Network [OSTI]

    LBNL-6660E Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger program and by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies heat exchangers was demonstrated to illustrate an energy efficient cooling capability. This unique

  12. Purification of water from cooling towers and other heat exchange systems

    DOE Patents [OSTI]

    Sullivan; Enid J. (Los Alamos, NM), Carlson; Bryan J. (Ojo Caliente, NM), Wingo; Robert M. (Los Alamos, NM), Robison; Thomas W. (Stilwell, KS)

    2012-08-07T23:59:59.000Z

    The amount of silica in cooling tower water is reduced by passing cooling tower water through a column of silica gel.

  13. Water Cooling of High Power Light Emitting Diode Henrik Srensen

    E-Print Network [OSTI]

    Berning, Torsten

    Water Cooling of High Power Light Emitting Diode Henrik Sørensen Department of Energy Technology and product lifetime. The high power Light Emitting Diodes (LED) belongs to the group of electronics

  14. applying water cooled: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China HVAC Technologies for Energy Efficiency, Vol. IV-9-4 Applying a Domestic Water-cooled Air-conditioner in Subtropical Cities WL Lee Hua Chen Assistant Professor...

  15. Development of Materials for Supercritical-Water-Cooled Reactor

    Broader source: Energy.gov [DOE]

    Supercritical-Water-Cooled Reactor (SCWR) was selected as one of the promising candidates in Generation IV reactors for its prominent advantages; those are the high thermal efficiency, the system...

  16. Optimized Design of a Furnace Cooling System

    E-Print Network [OSTI]

    Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

    2013-01-01T23:59:59.000Z

    at higher temperatures. The second mechanism considers the introduction of forced argon convection. Argon is used in the process to mitigate part oxidation. Cycling argon through the furnace during cooling increases convection over the parts and removes heat...

  17. Optimized Design of a Furnace Cooling System 

    E-Print Network [OSTI]

    Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

    2013-01-01T23:59:59.000Z

    at higher temperatures. The second mechanism considers the introduction of forced argon convection. Argon is used in the process to mitigate part oxidation. Cycling argon through the furnace during cooling increases convection over the parts and removes heat...

  18. Evaluation of models for predicting evaporative water loss in cooling impoundments

    E-Print Network [OSTI]

    Helfrich, Karl Richard

    1982-01-01T23:59:59.000Z

    Cooling impoundments can offer a number of advantages over cooling towers for condenser water cooling at steam electric power plants. However, a major disadvantage of cooling ponds is a lack of confidence in the ability ...

  19. DUSEL Facility Cooling Water Scaling Issues

    SciTech Connect (OSTI)

    Daily, W D

    2011-04-05T23:59:59.000Z

    Precipitation (crystal growth) in supersaturated solutions is governed by both kenetic and thermodynamic processes. This is an important and evolving field of research, especially for the petroleum industry. There are several types of precipitates including sulfate compounds (ie. barium sulfate) and calcium compounds (ie. calcium carbonate). The chemical makeup of the mine water has relatively large concentrations of sulfate as compared to calcium, so we may expect that sulfate type reactions. The kinetics of calcium sulfate dihydrate (CaSO4 {center_dot} 2H20, gypsum) scale formation on heat exchanger surfaces from aqueous solutions has been studied by a highly reproducible technique. It has been found that gypsum scale formation takes place directly on the surface of the heat exchanger without any bulk or spontaneous precipitation in the reaction cell. The kinetic data also indicate that the rate of scale formation is a function of surface area and the metallurgy of the heat exchanger. As we don't have detailed information about the heat exchanger, we can only infer that this will be an issue for us. Supersaturations of various compounds are affected differently by temperature, pressure and pH. Pressure has only a slight affect on the solubility, whereas temperature is a much more sensitive parameter (Figure 1). The affect of temperature is reversed for calcium carbonate and barium sulfate solubilities. As temperature increases, barium sulfate solubility concentrations increase and scaling decreases. For calcium carbonate, the scaling tendencies increase with increasing temperature. This is all relative, as the temperatures and pressures of the referenced experiments range from 122 to 356 F. Their pressures range from 200 to 4000 psi. Because the cooling water system isn't likely to see pressures above 200 psi, it's unclear if this pressure/scaling relationship will be significant or even apparent. The most common scale minerals found in the oilfield include calcium carbonates (CaCO3, mainly calcite) and alkaline-earth metal sulfates (barite BaSO4, celestite SrSO4, anhydrite CaSO4, hemihydrate CaSO4 1/2H2O, and gypsum CaSO4 2H2O or calcium sulfate). The cause of scaling can be difficult to identify in real oil and gas wells. However, pressure and temperature changes during the flow of fluids are primary reasons for the formation of carbonate scales, because the escape of CO2 and/or H2S gases out of the brine solution, as pressure is lowered, tends to elevate the pH of the brine and result in super-saturation with respect to carbonates. Concerning sulfate scales, the common cause is commingling of different sources of brines either due to breakthrough of injected incompatible waters or mixing of two different brines from different zones of the reservoir formation. A decrease in temperature tends to cause barite to precipitate, opposite of calcite. In addition, pressure drops tend to cause all scale minerals to precipitate due to the pressure dependence of the solubility product. And we can expect that there will be a pressure drop across the heat exchanger. Weather or not this will be offset by the rise in pressure remains to be seen. It's typically left to field testing to prove out. Progress has been made toward the control and treatment of the scale deposits, although most of the reaction mechanisms are still not well understood. Often the most efficient and economic treatment for scale formation is to apply threshold chemical inhibitors. Threshold scale inhibitors are like catalysts and have inhibition efficiency at very low concentrations (commonly less than a few mg/L), far below the stoichiometric concentrations of the crystal lattice ions in solution. There are many chemical classes of inhibitors and even more brands on the market. Based on the water chemistry it is anticipated that there is a high likelihood for sulfate compound precipitation and scaling. This may be dependent on the temperature and pressure, which vary throughout the system. Therefore, various types and amounts of scaling may occur at different

  20. A Semi-Passive Containment Cooling System Conceptual Design

    E-Print Network [OSTI]

    Liu, H.

    The objective of this project was to investigate a passive containment cooling system (PCCS) for the double concrete containment of the Korean Next Generation Reactor (KNGR). Two conceptual PCCS designs: the thermosyphon ...

  1. Reactor physics design of supercritical CO?-cooled fast reactors

    E-Print Network [OSTI]

    Pope, Michael A. (Michael Alexander)

    2004-01-01T23:59:59.000Z

    Gas-Cooled Fast Reactors (GFRs) are among the GEN-IV designs proposed for future deployment. Driven by anticipated plant cost reduction, the use of supercritical CO? (S-CO?) as a Brayton cycle working fluid in a direct ...

  2. Water Network Design by MINLP

    E-Print Network [OSTI]

    2008-02-12T23:59:59.000Z

    We propose a solution method for a water-network optimization problem using a ... The optimal design of a WDN (Water Distribution Network) consists, in its ...

  3. Air-cooled condensers eliminate plant water use

    SciTech Connect (OSTI)

    Wurtz, W.; Peltier, R. [SPX Cooling Technologies Inc. (United States)

    2008-09-15T23:59:59.000Z

    River or ocean water has been the mainstay for condensing turbine exhaust steam since the first steam turbine began generating electricity. A primary challenge facing today's plant developers, especially in drought-prone regions, is incorporating processes that reduce plant water use and consumption. One solution is to shed the conventional mindset that once-through cooling is the only option and adopt dry cooling technologies that reduce plant water use from a flood to a few sips. A case study at the Astoria Energy plant, New York City is described. 14 figs.

  4. The Full Water Disposal Ways and Study on Central Air-conditioning Circulation Cooling Water System

    E-Print Network [OSTI]

    Zhang, J.

    2006-01-01T23:59:59.000Z

    This paper has been made the further study about the water quality issue of the central air-conditioning circulation cooling water. Based on the comparison of the existing common adopted disposal ways, put forward the new ways of combination...

  5. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    SciTech Connect (OSTI)

    Apfelbaum, Steven; Duvall, Kenneth; Nelson, Theresa; Mensing, Douglas; Bengtson, Harlan; Eppich, John; Penhallegon, Clayton; Thompson, Ry

    2013-09-30T23:59:59.000Z

    Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric power plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant positive ancillary socio-economic, ecosystem, and water treatment/polishing benefits when used to complement water resources at thermoelectric power plants. Through the Phase II pilot study segment of the contract, the project team partnered with Progress Energy Florida (now Duke Energy Florida) to quantify the wetland water cooling benefits at their Hines Energy Complex in Bartow, Florida. The project was designed to test the wetland’s ability to cool and cleanse power plant cooling pond water while providing wildlife habitat and water harvesting benefits. Data collected during the monitoring period was used to calibrate a STELLA model developed for the site. It was also used to inform management recommendations for the demonstration site, and to provide guidance on the use of cooling wetlands for other power plants around the country. As a part of the pilot study, Duke Energy is scaling up the demonstration project to a larger, commercial scale wetland instrumented with monitoring equipment. Construction is expected to be finalized in early 2014.

  6. 1. Cooling water is one-third of US water usage Basic approach: (a) estimate power consumption, from which you estimate cooling water usage

    E-Print Network [OSTI]

    Nimmo, Francis

    joule of waste heat is generated. (Lots of people just used the electricity production as the cooling requirement - that isn't correct!). Therefore, 3 kW per person of waste heat is generated. Cooling water carries away waste heat in the form of sensible heat, i.e. by warming the water slightly. This warming can

  7. Best Practice for Energy Efficient Cleanrooms: Cooling tower and condenser water optimization

    E-Print Network [OSTI]

    Xu, Tengfang

    2005-01-01T23:59:59.000Z

    for Energy Efficient Cleanrooms: Cooling Tower and Condenserfor Energy Efficient Cleanrooms: Cooling tower and condensertower and condenser water optimization Summary Cleanroom energy

  8. 514 ASHRAE Transactions: Symposia Design cooling load calculation methods are, by the

    E-Print Network [OSTI]

    Handbook--Fundamentals (ASHRAE 1997) and the Cooling and Heating Load Calculation Manual (Mc514 ASHRAE Transactions: Symposia ABSTRACT Design cooling load calculation methods are Load Calculation Methods (942-RP)" are also given. INTRODUCTION Design cooling load calculation

  9. Design of Helical Cooling Channel for Muon Collider

    SciTech Connect (OSTI)

    Yonehara, Katsuya; /Fermilab

    2010-07-30T23:59:59.000Z

    Fast muon beam six dimensional (6D) phase space cooling is essential for muon colliders. The Helical Cooling Channel (HCC) uses hydrogen-pressurized RF cavities imbedded in a magnet system with solenoid, helical dipole, and helical quadrupole components that provide the continuous dispersion needed for emittance exchange and effective 6D beam cooling. A series of HCC segments, each with sequentially smaller aperture, higher magnetic field, and higher RF frequency to match the beam size as it is cooled, has been optimized by numerical simulation to achieve a factor of 10{sup 5} emittance reduction in a 300 m long channel with only a 40% loss of beam. Conceptual designs of the hardware required for this HCC system and the status of the RF studies and HTS helical solenoid magnet prototypes are described.

  10. Heat Transfer Performance and Piping Strategy Study for Chilled Water Systems at Low Cooling Loads 

    E-Print Network [OSTI]

    Li, Nanxi 1986-

    2012-12-05T23:59:59.000Z

    cooling loads, it may lead to the laminar flow of the chilled water in the cooling coils. The main objective of this thesis is to explain the heat transfer performance of the cooling coils under low cooling loads. The water side and air side heat transfer...

  11. Design of a helium-cooled molten salt fusion breeder

    SciTech Connect (OSTI)

    Moir, R.W.; Lee, J.D.; Fulton, F.J.; Huegel, F.; Neef, W.S. Jr.; Sherwood, A.E.; Berwald, D.H.; Whitley, R.H.; Wong, C.P.C.; DeVan, J.H.

    1985-02-01T23:59:59.000Z

    A new conceptual blanket design for a fusion reactor produces fissile material for fission power plants. Fission is suppressed by using beryllium, rather than uranium, to multiply neutrons and also by minimizing the fissile inventory. The molten-salt breeding media (LiF + BeF/sub 2/ + TghF/sub 4/) is circulated through the blanket and on to the online processing system where /sup 233/U and tritium are continuously removed. Helium cools the blanket including the steel pipes containing the molten salt. Austenitic steel was chosen because of its ease of fabrication, adequate radiation-damage lifetime, and low corrosion rate by molten salt. We estimate the breeder, having 3000 MW of fusion power, produces 6400 kg of /sup 233/U per year, which is enough to provide make up for 20 GWe of LWR per year (or 14 LWR plants of 4440 MWt) or twice that many HTGRs or CANDUs. Safety is enhanced because the afterheat is low and the blanket materials do not react with air or water. The fusion breeder based on a pre-MARS tandem mirror is estimated to cost $4.9B or 2.35 times an LWR of the same power. The estimated present value cost of the /sup 2/anumber/sup 3/U produced is $40/g if utility financed or $16/g if government financed.

  12. USE of mine pool water for power plant cooling.

    SciTech Connect (OSTI)

    Veil, J. A.; Kupar, J. M .; Puder, M. G.

    2006-11-27T23:59:59.000Z

    Water and energy production issues intersect in numerous ways. Water is produced along with oil and gas, water runs off of or accumulates in coal mines, and water is needed to operate steam electric power plants and hydropower generating facilities. However, water and energy are often not in the proper balance. For example, even if water is available in sufficient quantities, it may not have the physical and chemical characteristics suitable for energy or other uses. This report provides preliminary information about an opportunity to reuse an overabundant water source--ground water accumulated in underground coal mines--for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), which has implemented a water/energy research program (Feeley and Ramezan 2003). Among the topics studied under that program is the availability and use of ''non-traditional sources'' of water for use at power plants. This report supports NETL's water/energy research program.

  13. Double-Sided Cooling Design for Novel Planar Module

    SciTech Connect (OSTI)

    Ning, Puqi [ORNL; Liang, Zhenxian [ORNL; Marlino, Laura D [ORNL; Wang, Fei [ORNL

    2013-01-01T23:59:59.000Z

    A novel packaging structure for medium power modules featuring power semiconductor switches sandwiched between two symmetric substrates that fulfill electrical conduction and insulation functions is presented. Large bonding areas between dies and substrates allow this packaging technology to offer significant improvements in electrical, thermal performance. Double-sided cooling system was dedicatedly analyzed and designed for different applications.

  14. Helical channel design and technology for cooling of muon beams

    SciTech Connect (OSTI)

    Yonehara, K; /Fermilab; Derbenev, Y.S.; /Jefferson Lab; Johnson, R.P.; /MUONS Inc., Batavia

    2010-08-01T23:59:59.000Z

    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.

  15. Risk-informed design changes for a passive cooling system

    E-Print Network [OSTI]

    Patalano, Giovanbattista

    2007-01-01T23:59:59.000Z

    The failure probability of a passive decay heat removal system after a LOCA is evaluated as part of a risk-informed design process for a helium-cooled fast reactor. The system was modeled using RELAP5-3D. The epistemic ...

  16. APPLICATION OF DESIGN METHODOLOGY TO THE COOLING SYSTEM OF AN IN-LINE MACHINE VISION SYSTEM

    E-Print Network [OSTI]

    Shih, Albert J.

    APPLICATION OF DESIGN METHODOLOGY TO THE COOLING SYSTEM OF AN IN-LINE MACHINE VISION SYSTEM ....................................... 8 Figure 3. Cooling System Failure with Respect to Electrical Wiring................................. 8 Figure 4. Cooling System Failure with Respect to QD fitting

  17. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    SciTech Connect (OSTI)

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01T23:59:59.000Z

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water system cost estimates were then compared to the base-case river source estimate. We found that the use of net-alkaline mine water would under current economic conditions be competitive with a river-source in a comparable-size water cooling system. On the other hand, utilization of net acidic water would be higher in operating cost than the river system by 12 percent. This does not account for any environmental benefits that would accrue due to the treatment of acid mine drainage, in many locations an existing public liability. We also found it likely that widespread adoption of mine-water utilization for power plant cooling will require resolution of potential liability and mine-water ownership issues. In summary, Type A mine-water utilization for power plant cooling is considered a strong option for meeting water needs of new plant in selected areas. Analysis of the thermal and water handling requirements for a 600 megawatt power plant indicated that Type B earth coupled cooling would not be feasible for a power plant of this size. It was determined that Type B cooling would be possible, under the right conditions, for power plants of 200 megawatts or less. Based on this finding the feasibility of a 200 megawatt facility was evaluated. A series of mines were identified where a Type B earth-coupled 200 megawatt power plant cooling system might be feasible. Two water handling scenarios were designed to distribute heated power-plant water throughout the mines. Costs were developed for two different pumping scenarios employing a once-through power-plant cooling circuit. Thermal and groundwater flow simulation models were used to simulate the effect of hot water injection into the mine under both pumping strategies and to calculate the return-water temperature over the design life of a plant. Based on these models, staged increases in required mine-water pumping rates are projected to be part of the design, due to gradual heating and loss of heat-sink efficiency of the rock sequence above the mines. Utilizing pumping strategy No.1 (two mines) capital costs were 25 percent lower a

  18. Patterns of fish assemblage structure and dynamics in waters of the Savannah River Plant. Comprehensive Cooling Water Study final report

    SciTech Connect (OSTI)

    Aho, J.M.; Anderson, C.S.; Floyd, K.B.; Negus, M.T.; Meador, M.R.

    1986-06-01T23:59:59.000Z

    Research conducted as part of the Comprehensive Cooling Water Study (CCWS) has elucidated many factors that are important to fish population and community dynamics in a variety of habitats on the Savannah River Plant (SRP). Information gained from these studies is useful in predicting fish responses to SRP operations. The overall objective of the CCWS was (1) to determine the environmental effects of SRP cooling water withdrawals and discharges and (2) to determine the significance of the cooling water impacts on the environment. The purpose of this study was to: (1) examine the effects of thermal plumes on anadromous and resident fishes, including overwintering effects, in the SRP swamp and associated tributary streams; (2) assess fish spawning and locate nursery grounds on the SRP; (3) examine the level of use of the SRP by spawning fish from the Savannah River, this objective was shared with the Savannah River Laboratory, E.I. du Pont de Nemours and Company; and (4) determine impacts of cooling-water discharges on fish population and community attributes. Five studies were designed to address the above topics. The specific objectives and a summary of the findings of each study are presented.

  19. Impacts of Water Loop Management on Simultaneous Heating and Cooling in Coupled Control Air Handling Units 

    E-Print Network [OSTI]

    Guan, W.; Liu, M.; Wang, J.

    1998-01-01T23:59:59.000Z

    across the hot water control valve is 5 psi and 2 psi for the coil and pipeline. The flow coefficient of the control valves are 9 GPIW~S~~,~ for hot water valve and 13 GPIW~S~~.~ for the chilled water control valve. The designed loop pressure is 7... 14: Using dry coil model will introduce certain error for the cooling coil simulation since the heat transfer coefficient is higher when the coil is wet. Thermostat Model: The thermostat generates a pneumatic pressure signal from 3 to 15 psig...

  20. Designing Water Smart Landscapes Activity

    E-Print Network [OSTI]

    Designing Water Smart Landscapes Activity Objective: Create a water smart home landscape. Materials://aggie-horticulture.tamu.edu/plantanswers/publications/publications.html Draw the plants, using tracing paper. Citizenship Activity Develop a water smart plan for a non generations. Reference For additional assistance with planning your home landscape, refer to "Planning

  1. Design and Control of Hydronic Radiant Cooling Systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove

    2014-01-01T23:59:59.000Z

    embedded heating and cooling systems. Brussels, Belgium,of radiant heating/cooling systems for non-residentalSimulations of floor cooling system capacity." Applied

  2. Feasibility of Water Cooled Thorium Breeder Reactor Based on LWR Technology

    SciTech Connect (OSTI)

    Takaki, Naoyuki; Permana, Sidik; Sekimoto, Hiroshi [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2007-07-01T23:59:59.000Z

    The feasibility of Th-{sup 233}U fueled, homogenous breeder reactor based on matured conventional LWR technology was studied. The famous demonstration at Shipping-port showed that the Th-{sup 233}U fueled, heterogeneous PWR with four different lattice fuels was possible to breed fissile but its low averaged burn-up including blanket fuel and the complicated core configuration were not suitable for economically competitive reactor. The authors investigated the wide design range in terms of fuel cell design, power density, averaged discharge burn-up, etc. to determine the potential of water-cooled Th reactor as a competitive breeder. It is found that a low moderated (MFR=0.3) H{sub 2}O-cooled reactor with comparable burn-up with current LWR is feasible to breed fissile fuel but the core size is too large to be economical because of the low pellet power density. On the other hand, D{sub 2}O-cooled reactor shows relatively wider feasible design window, therefore it is possible to design a core having better neutronic and economic performance than H{sub 2}O-cooled. Both coolant-type cores show negative void reactivity coefficient while achieving breeding capability which is a distinguished characteristics of thorium based fuel breeder reactor. (authors)

  3. Handbook of experiences in the design and installation of solar heating and cooling systems

    SciTech Connect (OSTI)

    Ward, D.S.; Oberoi, H.S.

    1980-07-01T23:59:59.000Z

    A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

  4. Use of Produced Water in Recirculating Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    Kent Zammit; Michael N. DiFilippo

    2005-07-01T23:59:59.000Z

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. This deliverable describes possible test configurations for produced water demonstration projects at SJGS. The ability to host demonstration projects would enable the testing and advancement of promising produced water treatment technologies. Testing is described for two scenarios: Scenario 1--PNM builds a produced water treatment system at SJGS and incorporates planned and future demonstration projects into the design of the system. Scenario 2--PNM forestalls or decides not to install a produced water treatment system and would either conduct limited testing at SJGS (produced water would have to be delivered by tanker trucked) or at a salt water disposal facility (SWD). Each scenario would accommodate demonstration projects differently and these differences are discussed in this deliverable. PNM will host a demonstration test of water-conserving cooling technology--Wet Surface Air Cooling (WSAC) using cooling tower blowdown from the existing SJGS Unit 3 tower--during the summer months of 2005. If successful, there may be follow-on testing using produced water. WSAC is discussed in this deliverable. Recall that Deliverable 4, Emerging Technology Testing, describes the pilot testing conducted at a salt water disposal facility (SWD) by the CeraMem Corporation. This filtration technology could be a candidate for future demonstration testing and is also discussed in this deliverable.

  5. Design and Operation of Fan-Coil Units in Using River Water as Chilled Water

    E-Print Network [OSTI]

    Jiang, A.; Chen, H.; Ma, W.; Zhu, H.

    2006-01-01T23:59:59.000Z

    ) in the system. An approximate formula is proposed for computing the cooling capacity of FCUs when the temperature of water supply is a little higher than designed temperature. Finally, recommendations are given for the design of the FCUs to follow dry operating...

  6. High-Temperature Air-Cooled Power Electronics Thermal Design (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-06-01T23:59:59.000Z

    This presentation discusses the status of research at NREL on high temperature air-cooled power electronics thermal design.

  7. Cooling rate, heating rate, and aging effects in glassy water Nicolas Giovambattista,1

    E-Print Network [OSTI]

    Sciortino, Francesco

    be glassified by cooling using hyper- quenching techniques (i.e., with rates of the order of 105 K/s [8Cooling rate, heating rate, and aging effects in glassy water Nicolas Giovambattista,1 H. Eugene of water molecules during the process of generating a glass by cooling, and during the process

  8. Sensitivity Analysis of Reprocessing Cooling Times on Light Water Reactor and Sodium Fast Reactor Fuel Cycles

    SciTech Connect (OSTI)

    R. M. Ferrer; S. Bays; M. Pope

    2008-04-01T23:59:59.000Z

    The purpose of this study is to quantify the effects of variations of the Light Water Reactor (LWR) Spent Nuclear Fuel (SNF) and fast reactor reprocessing cooling time on a Sodium Fast Reactor (SFR) assuming a single-tier fuel cycle scenario. The results from this study show the effects of different cooling times on the SFR’s transuranic (TRU) conversion ratio (CR) and transuranic fuel enrichment. Also, the decay heat, gamma heat and neutron emission of the SFR’s fresh fuel charge were evaluated. A 1000 MWth commercial-scale SFR design was selected as the baseline in this study. Both metal and oxide CR=0.50 SFR designs are investigated.

  9. Water cooled metal optics for the Advanced Light Source

    SciTech Connect (OSTI)

    McKinney, W.R.; Irick, S.C. [Lawrence Berkeley Lab., CA (United States); Lunt, D.L.J. [Tucson Optical Research Corp., AZ (United States)

    1991-10-28T23:59:59.000Z

    The program for providing water cooled metal optics for the Advanced Light Source at Berkeley is reviewed with respect to fabrication and metrology of the surfaces. Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from prototype mirrors and grating blanks will be presented, which show exceptionally low microroughness and mid-period error. We will briefly describe out improved version of the Long Trace Profiler, and its importance to out metrology program. We have completely redesigned the mechanical, optical and computational parts of the profiler system with the cooperation of Peter Takacs of Brookhaven, Continental Optical, and Baker Manufacturing. Most important is that one of our profilers is in use at the vendor to allow testing during fabrication. Metrology from the first water cooled mirror for an ALS beamline is presented as an example. The preplating processing and grinding and polishing were done by Tucson Optical. We will show significantly better surface microroughness on electroless nickel, over large areas, than has been reported previously.

  10. Yahoo! Compute Coop (YCC): A Next-Generation Passive Cooling Design for Data Centers

    SciTech Connect (OSTI)

    Robison, AD; Page, Christina; Lytle, Bob

    2011-09-13T23:59:59.000Z

    The purpose of the Yahoo! Compute Coop (YCC) project is to research, design, build and implement a greenfield "efficient data factory" and to specifically demonstrate that the YCC concept is feasible for large facilities housing tens of thousands of heat-producing computing servers. The project scope for the Yahoo! Compute Coop technology includes: - Analyzing and implementing ways in which to drastically decrease energy consumption and waste output. - Analyzing the laws of thermodynamics and implementing naturally occurring environmental effects in order to maximize the "free-cooling" for large data center facilities. "Free cooling" is the direct usage of outside air to cool the servers vs. traditional "mechanical cooling" which is supplied by chillers or other Dx units. - Redesigning and simplifying building materials and methods. - Shortening and simplifying build-to-operate schedules while at the same time reducing initial build and operating costs. Selected for its favorable climate, the greenfield project site is located in Lockport, NY. Construction on the 9.0 MW critical load data center facility began in May 2009, with the fully operational facility deployed in September 2010. The relatively low initial build cost, compatibility with current server and network models, and the efficient use of power and water are all key features that make it a highly compatible and globally implementable design innovation for the data center industry. Yahoo! Compute Coop technology is designed to achieve 99.98% uptime availability. This integrated building design allows for free cooling 99% of the year via the building�¢����s unique shape and orientation, as well as server physical configuration.

  11. One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes

    E-Print Network [OSTI]

    California at Davis, University of

    One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net at the core of a zero-net-energy demonstration home designed to generate enough electricity to also power policy initiatives to advance zero net energy homes as standard practice. #12;As heat pump systems become

  12. Safety and core design of large liquid-metal cooled fast breeder reactors

    E-Print Network [OSTI]

    Qvist, Staffan Alexander

    2013-01-01T23:59:59.000Z

    fission gas plenum212 Conventional fast reactor core designGUPTA. “A Compact Gas-Cooled Fast Reactor with an Ultra-Longbreed and burn gas-cooled fast reactor”. Ph.D. Thesis. MIT,

  13. Survival of zooplankton entrained into the cooling water system and supplemental cooling towers of a steam-electric generating station located on Galveston Bay, Texas

    E-Print Network [OSTI]

    Chase, Cathleen Louise

    1977-01-01T23:59:59.000Z

    is not an unlimited resource. Another method supplements the open ? cycle system with external cooling facilities, through which the heated water passes before it flows into the receiving body. Ex- ternal cooling facilities may be wet-cooling towers, dry-cooling...

  14. Overall plant design specification Modular High Temperature Gas-cooled Reactor. Revision 9

    SciTech Connect (OSTI)

    NONE

    1990-05-01T23:59:59.000Z

    Revision 9 of the ``Overall Plant Design Specification Modular High Temperature Gas-Cooled Reactor,`` DOE-HTGR-86004 (OPDS) has been completed and is hereby distributed for use by the HTGR Program team members. This document, Revision 9 of the ``Overall Plant Design Specification`` (OPDS) reflects those changes in the MHTGR design requirements and configuration resulting form approved Design Change Proposals DCP BNI-003 and DCP BNI-004, involving the Nuclear Island Cooling and Spent Fuel Cooling Systems respectively.

  15. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    SciTech Connect (OSTI)

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27T23:59:59.000Z

    Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and dissolved solids. Makeup water is withdrawn, usually from surface water bodies, to replace the lost water. The volume of makeup water is many times smaller than the volume needed to operate a once-through system. Although neither the final new facility rule nor the proposed existing facility rule require dry cooling towers as the national best technology available, the environmental community and several States have supported the use of dry-cooling technology as the appropriate technology for addressing adverse environmental impacts. It is possible that the requirements included in the new facility rule and the ongoing push for dry cooling systems by some stakeholders may have a role in shaping the rule for existing facilities. The temperature of the cooling water entering the condenser affects the performance of the turbine--the cooler the temperature, the better the performance. This is because the cooling water temperature affects the level of vacuum at the discharge of the steam turbine. As cooling water temperatures decrease, a higher vacuum can be produced and additional energy can be extracted. On an annual average, once-through cooling water has a lower temperature than recirculated water from a cooling tower. By switching a once-through cooling system to a cooling tower, less energy can be generated by the power plant from the same amount of fuel. This reduction in energy output is known as the energy penalty. If a switch away from once-through cooling is broadly implemented through a final 316(b) rule or other regulatory initiatives, the energy penalty could result in adverse effects on energy supplies. Therefore, in accordance with the recommendations of the Report of the National Energy Policy Development Group (better known as the May 2001 National Energy Policy), the U.S. Department of Energy (DOE), through its Office of Fossil Energy, National Energy Technology Laboratory (NETL), and Argonne National Laboratory (ANL), has studied the energy penalty resulting from converting plants with once-through cooling to wet towers or indirect-dry towers. Five l

  16. Improving the Water Efficiency of Cooling Production System

    E-Print Network [OSTI]

    Maheshwari, G.; Al-Hadban, Y.; Al-Taqi, H. H.; Alasseri, R.

    2010-01-01T23:59:59.000Z

    For most of the time, cooling towers (CTs) of cooling systems operate under partial load conditions and by regulating the air circulation with a variable frequency drive (VFD), significant reduction in the fan power can be achieved. In Kuwait...

  17. State waste discharge permit application for cooling water and condensate discharges

    SciTech Connect (OSTI)

    Haggard, R.D.

    1996-08-12T23:59:59.000Z

    The following presents the Categorical State Waste Discharge Permit (SWDP) Application for the Cooling Water and Condensate Discharges on the Hanford Site. This application is intended to cover existing cooling water and condensate discharges as well as similar future discharges meeting the criteria set forth in this document.

  18. The Use of Water Cooling during the Continuous Casting of Steel and Aluminum Alloys

    E-Print Network [OSTI]

    Thomas, Brian G.

    The Use of Water Cooling during the Continuous Casting of Steel and Aluminum Alloys J. SENGUPTA, B of aluminum alloy ingots, water is used to cool the mold in the initial stages of solidification between 50 and 300 mm for steel, and up to 500 to 750 mm for aluminum alloys), thin slabs (thickness

  19. A Simple and Intuitive Graphical Approach to the Design of Thermoelectric Cooling Systems

    E-Print Network [OSTI]

    A Simple and Intuitive Graphical Approach to the Design of Thermoelectric Cooling Systems Simon, thermoelectric active cooling systems can help maintain electronic devices at a desired temperature condition for calculating the steady-state operational point of a TEC based active cooling system, including the heatsink

  20. User-friendly and intuitive graphical approach to the design of thermoelectric cooling systems

    E-Print Network [OSTI]

    User-friendly and intuitive graphical approach to the design of thermoelectric cooling systems)-based active cooling system, including the heatsink role. The method is simple and intuitive and provides com- prehensive information about the cooling system such as its feasibility, required heatsink, the TEC current

  1. Comparative Study Between Air-Cooled and Water-Cooled Condensers of the Air-Conditioning Systems 

    E-Print Network [OSTI]

    Maheshwari, G. P.; Mulla Ali, A. A.

    2004-01-01T23:59:59.000Z

    The weather in Kuwait is very dry where the dry-bulb temperature exceeds the wet-bulb temperature more than 20oC in most of the summer months. Thus, the air-conditioning (A/C) system with the water-cooled (WC) condensers is expected to perform more...

  2. Comparative Study Between Air-Cooled and Water-Cooled Condensers of the Air-Conditioning Systems

    E-Print Network [OSTI]

    Maheshwari, G. P.; Mulla Ali, A. A.

    2004-01-01T23:59:59.000Z

    The weather in Kuwait is very dry where the dry-bulb temperature exceeds the wet-bulb temperature more than 20oC in most of the summer months. Thus, the air-conditioning (A/C) system with the water-cooled (WC) condensers is expected to perform more...

  3. Proposal for the award of a contract for the supply of water cooling systems for the HIE-ISOLDE infrastructure

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Proposal for the award of a contract for the supply of water cooling systems for the HIE-ISOLDE infrastructure

  4. Proposal to negotiate two contracts, without competitive tendering, for the supply and upgrade of cooling water pumps for the LHC

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Proposal to negotiate two contracts, without competitive tendering, for the supply and upgrade of cooling water pumps for the LHC

  5. Limitless Hot Gas Path Cooling Design | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization at GE Global Research, one such potent combination already taking shape is Additive Manufacturing and High Pressure Turbine Blade Cooling. Additive Manufacturing...

  6. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOE Patents [OSTI]

    Hill, P.R.

    1994-12-27T23:59:59.000Z

    A boiling water reactor is described having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit. 4 figures.

  7. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOE Patents [OSTI]

    Hill, Paul R. (Tucson, AZ)

    1994-01-01T23:59:59.000Z

    A boiling water reactor having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit.

  8. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  9. Design of passive decay heat removal system for the lead cooled flexible conversion ratio fast reactor

    E-Print Network [OSTI]

    Whitman, Joshua (Joshua J.)

    2007-01-01T23:59:59.000Z

    The lead-cooled flexible conversion ratio fast reactor shows many benefits over other fast-reactor designs; however, the higher power rating and denser primary coolant present difficulties for the design of a passive decay ...

  10. Thermal hydraulic design of a salt-cooled highly efficient environmentally friendly reactor

    E-Print Network [OSTI]

    Whitman, Joshua (Joshua J.)

    2009-01-01T23:59:59.000Z

    A 1 OOOMWth liquid-salt cooled thermal spectrum reactor was designed with a long fuel cycle, and high core exit temperature. These features are desirable in a reactor designed to provide process heat applications such as ...

  11. Advanced water-cooled phosphoric acid fuel cell development. Final report

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    This program was conducted to improve the performance and minimize the cost of existing water-cooled phosphoric acid fuel cell stacks for electric utility and on-site applications. The goals for the electric utility stack technology were a power density of at least 175 watts per square foot over a 40,000-hour useful life and a projected one-of-a-kind, full-scale manufactured cost of less than $400 per kilowatt. The program adapted the existing on-site Configuration-B cell design to electric utility operating conditions and introduced additional new design features. Task 1 consisted of the conceptual design of a full-scale electric utility cell stack that meets program objectives. The conceptual design was updated to incorporate the results of material and process developments in Tasks 2 and 3, as well as results of stack tests conducted in Task 6. Tasks 2 and 3 developed the materials and processes required to fabricate the components that meet the program objectives. The design of the small area and 10-ft{sup 2} stacks was conducted in Task 4. Fabrication and assembly of the short stacks were conducted in Task 5 and subsequent tests were conducted in Task 6. The management and reporting functions of Task 7 provided DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that was conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

  12. Understanding the Role Water-cooling Plays during Continuous Casting of Steel and Aluminum Alloys

    E-Print Network [OSTI]

    Thomas, Brian G.

    Understanding the Role Water-cooling Plays during Continuous Casting of Steel and Aluminum Alloys J the mold and solidifying metal during the continuous casting of steel and aluminum alloys for the control of cooling in casting processes for both steel and aluminum alloys are evaluated. Introduction

  13. argentinean water cooled: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    savings 0.3 to 0.6 k... Hoffman, W. 2011-01-01 98 Optimizing Cooling Tower Performance- Refrigeration Systems, Chemical Plants, and Power Plants all Have A Resource Quietly...

  14. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30T23:59:59.000Z

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC technology could cool process water at cycles of concentration considered highly scale forming for mechanical draft cooling towers. At the completion of testing, there was no visible scale on the heat transfer surfaces and cooling was sustained throughout the test period. The application of the WARMF decision framework to the San Juan Basis showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry) and lead to critical shortages. WARMF-ZeroNet, as part of the integrated ZeroNet decision support system, offers stakeholders an integrated approach to long-term water management that balances competing needs of existing water users and economic growth under the constraints of limited supply and potential climate change.

  15. Conservation of Energy Through The Use of a Predictive Performance Simulator of Operating Cooling Water Systems

    E-Print Network [OSTI]

    Schell, C. J.

    1981-01-01T23:59:59.000Z

    chemical treatment program for the prevention of corrosion, scale and deposit accumulations. Calgon has made available a computerized performance simulator of operating cooling water systems which reliably predicts system corrosion rates, percent scale...

  16. Optimization of hybrid-water/air-cooled condenser in an enhanced turbine geothermal ORC system

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: To improve the efficiency and output variability of geothermal-based ORC power production systems with minimal water consumption by deploying: 1) a hybrid-water/air cooled condenser with low water consumption and 2) an enhanced turbine with high efficiency.

  17. Indoor design condition and the cooling load calculation

    SciTech Connect (OSTI)

    Sun, T.Y. [Sun (Tseng-Yao), Rancho Palos Verde, CA (United States)

    1997-12-01T23:59:59.000Z

    Cooling load calculation involves two steps. The first is to determine the basic building load. This consists of external loads through the building envelope and internal loads from people, lights, appliances, and other heat sources. The required supply air quantity for each conditioned space generally is determined in the first step. This is because each relates only to the coil leaving and required room dry bulb temperatures (unless reheat is required to control the humidity level in the conditioned space). The second step, after completing the above, is to calculate the system cooling load. This step adapts the selected air distribution system to the building load and involves the introduction of the required outdoor air volume into the air conditioning system for ventilation. Proper psychrometric analysis is required to calculate the entering and leaving wet bulb conditions of the air passing through the cooling coil. These, together with the corresponding dry bulb temperatures, will determine the system cooling load.

  18. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

    2010-11-01T23:59:59.000Z

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

  19. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOE Patents [OSTI]

    Jukkola, Walfred W. (Westport, CT); Leon, Albert M. (Mamaroneck, NY); Van Dyk, Jr., Garritt C. (Bethel, CT); McCoy, Daniel E. (Williamsport, PA); Fisher, Barry L. (Montgomery, PA); Saiers, Timothy L. (Williamsport, PA); Karstetter, Marlin E. (Loganton, PA)

    1981-11-24T23:59:59.000Z

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  20. A Qualitative Assessment of Thorium-Based Fuels in Supercritical Pressure Water Cooled Reactors

    SciTech Connect (OSTI)

    Weaver, Kevan Dean; Mac Donald, Philip Elsworth

    2002-10-01T23:59:59.000Z

    The requirements for the next generation of reactors include better economics and safety, waste minimization (particularly of the long-lived isotopes), and better proliferation resistance (both intrinsic and extrinsic). A supercritical pressure water cooled reactor has been chosen as one of the lead contenders as a Generation IV reactor due to the high thermal efficiency and compact/simplified plant design. In addition, interest in the use of thorium-based fuels for Generation IV reactors has increased based on the abundance of thorium, and the minimization of transuranics in a neutron flux; as plutonium (and thus the minor actinides) is not a by-product in the thorium chain. In order to better understand the possibility of the combination of these concepts to meet the Generation IV goals, the qualitative burnup potential and discharge isotopics of thorium and uranium fuel were studied using pin cell analyses in a supercritical pressure water cooled reactor environment. Each of these fertile materials were used in both nitride and metallic form, with light water reactor grade plutonium and minor actinides added. While the uranium-based fuels achieved burnups that were 1.3 to 2.7 times greater than their thorium-based counterparts, the thorium-based fuels destroyed 2 to 7 times more of the plutonium and minor actinides. The fission-to-capture ratio is much higher in this reactor as compared to PWR’s and BWR’s due to the harder neutron spectrum, thus allowing more efficient destruction of the transuranic elements. However, while the uranium-based fuels do achieve a net depletion of plutonium and minor actinides, the breeding of these isotopes limits this depletion; especially as compared to the thorium-based fuels.

  1. Cooling design of large capacity gas insulated transformer

    SciTech Connect (OSTI)

    Kawano, Koichiro; Biswas, Debasis; Ishizuka, Masaru; Muramatsu, Koji; Nakadate, Masumi; Toda, Katsutoshi [Toshiba Corp., Kawasaki (Japan)

    1995-12-31T23:59:59.000Z

    From the view point of safety and maintenance simplicity, the development of large capacity gas insulated transformer has been desirable. In this type of transformer, the coolant gas is circulated in the gap between the coils to cool it. The flow pattern of coolant in the flow path strongly depend on its configuration formed by the coil. Therefore, in order to achieve high cooling efficiency of coils and at the same time to reduce the pressure loss, it is important to have sufficient knowledge about the flow behavior in the coil flow path. In the present work, in order to improve the coil cooling efficiency, appropriate flow path configuration were decided on the basis of numerical simulation using various coil configuration and validity of the computed results were tested by comparing with experimental data.

  2. Heat Transfer Performance and Piping Strategy Study for Chilled Water Systems at Low Cooling Loads

    E-Print Network [OSTI]

    Li, Nanxi 1986-

    2012-12-05T23:59:59.000Z

    Cooling Coil Efficiency Water viscosity at the water bulk temperature Water fluid viscosity at the pipe wall temperature Fin Pitch ix TABLE OF CONTENTS... of the analysis will be compared with the weather data and chilled water system data of the DFW Airport during 2010. Other possible causes of the reduced delta-T at low loads exist and will be investigated. 8 2 LITERATURE REVIEW 2.1 Heat transfer...

  3. Development of a Water Based, Critical Flow, Non-Vapor Compression cooling Cycle

    SciTech Connect (OSTI)

    Hosni, Mohammad H.

    2014-03-30T23:59:59.000Z

    Expansion of a high-pressure liquid refrigerant through the use of a thermostatic expansion valve or other device is commonplace in vapor-compression cycles to regulate the quality and flow rate of the refrigerant entering the evaporator. In vapor-compression systems, as the condensed refrigerant undergoes this expansion, its pressure and temperature drop, and part of the liquid evaporates. We (researchers at Kansas State University) are developing a cooling cycle that instead pumps a high-pressure refrigerant through a supersonic converging-diverging nozzle. As the liquid refrigerant passes through the nozzle, its velocity reaches supersonic (or critical-flow) conditions, substantially decreasing the refrigerant’s pressure. This sharp pressure change vaporizes some of the refrigerant and absorbs heat from the surrounding conditions during this phase change. Due to the design of the nozzle, a shockwave trips the supersonic two-phase refrigerant back to the starting conditions, condensing the remaining vapor. The critical-flow refrigeration cycle would provide space cooling, similar to a chiller, by running a secondary fluid such as water or glycol over one or more nozzles. Rather than utilizing a compressor to raise the pressure of the refrigerant, as in a vapor-cycle system, the critical-flow cycle utilizes a high-pressure pump to drive refrigerant liquid through the cooling cycle. Additionally, the design of the nozzle can be tailored for a given refrigerant, such that environmentally benign substances can act as the working fluid. This refrigeration cycle is still in early-stage development with prototype development several years away. The complex multi-phase flow at supersonic conditions presents numerous challenges to fully understanding and modeling the cycle. With the support of DOE and venture-capital investors, initial research was conducted at PAX Streamline, and later, at Caitin. We (researchers at Kansas State University) have continued development of the cycle and have gained an in-depth understanding of the governing fundamental knowledge, based on the laws of physics and thermodynamics and verified with our testing results. Through this research, we are identifying optimal working fluid and operating conditions to eventually demonstrate the core technology for space cooling or other applications.

  4. A Charge Separation Study to Enable the Design of a Complete Muon Cooling Channel

    SciTech Connect (OSTI)

    Yoshikawa, C. [Muons, Inc.; Ankenbrandt, Charles M. [Muons, Inc.; Johnson, Rolland P. [Muons, Inc.; Derbenev, Yaroslav [JLAB; Morozov, Vasiliy [JLAB; Neuffer, David [FNAL; Yonehara, K. [FNAL

    2013-12-01T23:59:59.000Z

    The most promising designs for 6D muon cooling channels operate on a specific sign of electric charge. In particular, the Helical Cooling Channel (HCC) and Rectilinear RFOFO designs are the leading candidates to become the baseline 6D cooling channel in the Muon Accelerator Program (MAP). Time constraints prevented the design of a realistic charge separator, so a simplified study was performed to emulate the effects of charge separation on muons exiting the front end of a muon collider. The output of the study provides particle distributions that the competing designs will use as input into their cooling channels. We report here on the study of the charge separator that created the simulated particles.

  5. MIT Electric Vehicle Team Porsche designing a cooling system for the AC24 electric motor

    E-Print Network [OSTI]

    Meenen, Jordan N

    2010-01-01T23:59:59.000Z

    In this thesis I worked on the design and analysis of a cooling system for the electric motor of the MIT Electric Vehicle Team's Porsche 914 Battery Electric Vehicle. The vehicle's Azure Dynamics AC24 motor tended to ...

  6. Cost reduction performance enhancements of multiple site cooling water systems, enabled by remote system monitoring/control and multifaceted data management

    SciTech Connect (OSTI)

    Cook, B. [BetzDearborn Water Management Group, Horsham, PA (United States); Young, D. [BetzDearborn Water Management Group, Mississauga, Ontario (Canada); Tari, K. [Praxair, Inc., Tonawanda, New York, NY (United States)

    1998-12-31T23:59:59.000Z

    An outsourced cooling water treatment automated control and data acquisition package, has been designed, installed, and commissioned in over 70 sites in North America and offshore. The standard package consists of a controller, sensors, human-machine interface software, data acquisition and management software, communications, and reporting. Significant challenges to applying this standard package in multiple sites arose from variations in cooling system design and makeup water quality as well as operations, environmental considerations, metrics, and language. A standard approach has met these challenges and overcome effects of downsizing through significant reduction in non-value-added, manual activities. Overall system reliability has been improved by migration to best practice throughout the organizations involved and immediate proactive response to out-of-specification conditions. This paper documents the evolution of a standard cooling water automation and data management package from its inception to current practice.

  7. Feasibility Study of Supercritical Light Water Cooled Reactors for Electrical Power Production, 5th Quarterly Report, October - December 2002

    SciTech Connect (OSTI)

    Philip MacDonald; Jacopo Buongiorno; Cliff Davis; J. Stephen Herring; Kevan Weaver; Ron Latanision; Bryce Mitton; Gary Was; Luca Oriani; Mario Carelli; Dmitry Paramonov; Lawrence Conway

    2003-01-01T23:59:59.000Z

    The overall objective of this project is to evaluate the feasibility of supercritical light water cooled reactors for electric power production. The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies for the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR that can also burn actinides. The project is organized into three tasks:

  8. NOVEL CHAMBER DESIGN FOR AN IN-VACUUM CRYO-COOLED MINI-GAP UNDULATOR.

    SciTech Connect (OSTI)

    HU, J.-P.; FOERSTER, C.L.; SKARITKA, J.R.; WATERMAN, D.

    2006-05-24T23:59:59.000Z

    A stainless steel, Ultra-High Vacuum (UHV) chamber, featuring a large vertical rectangular port (53''W by 16''H), has been fabricated to house the one-meter magnet assembly of a newly installed undulator insertion device for beamline X-25 at the National Synchrotron Light Source. To achieve UHV, the new chamber is equipped with a differential ion pump, NEG pump, nude ion gauge, residual gas analyzer, and an all metal roughing valve. Temperature of the magnet assembly is maintained below 90 C during vacuum bake. The large rectangular port cover is sealed to the main flange of the chamber using a one-piece flat aluminum gasket and special sealing surfaces developed exclusively by Nor-Cal Products, Inc. The large flange provides easy access to the gap of the installed magnet girders for in situ magnetic measurements and shimming. Special window ports were designed into the cover and chamber for manipulation of optical micrometers external to the chamber to provide precise measurements of the in-vacuum magnet gap. The vacuum chamber assembly features independently vacuum-isolated feedthroughs that can be used for either water-or-cryogenic refrigeration-cooling of the monolithic magnet girders. This would allow for cryogenic-cooled permanent magnet operation and has been successfully tested within temperature range of +100 C to -150 C. Details of the undulator assembly for beamline X-25 is described in the paper.

  9. Water Network Design by MINLP

    E-Print Network [OSTI]

    2008-02-12T23:59:59.000Z

    Feb 13, 2008 ... ... on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home . .... The hydraulic head is the total energy per unit of weight of the water, and it is ..... used to model the hydraulic and water quality behavior of water ...

  10. Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water

    E-Print Network [OSTI]

    Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

    2014-01-01T23:59:59.000Z

    source and cooling water overall (in comparison with normal system 15% of energy saving) -Adopt large-scale ice heat storage system and realize equalization of electricity load -Adopt turbo chiller and heat recovery facilities as high efficiency heat... screw heat pump - 838MJ/? 1 IHP/Water source screw heat pump (Ice storage and heat recovery) Cool water? 3,080MJ/h Ice Storage? 1,936MJ/h Cool water heat recovery? 3,606MJ/h Ice storage heat recovery? 2,448MJ/h 8Unit ?16? TR1 Water cooling turbo...

  11. Simulation of radiant cooling performance with evaporative cooling sources

    E-Print Network [OSTI]

    Moore, Timothy

    2008-01-01T23:59:59.000Z

    energy sources of cooling supply water and an aggressiveas the primary source of cooling supply water. The analysisthermal mass to the cooling supply water source, nighttime

  12. Decoupled Modeling of Chilled Water Cooling Coils Using a Finite Element Method

    E-Print Network [OSTI]

    Wang, G.; Liu, M.

    2005-01-01T23:59:59.000Z

    Decoupled Modeling of Chilled Water Cooling Coils Using a Finite Element Method Gang Wang Research Associate University of Nebraska – Lincoln Mingsheng Liu Professor University of Nebraska – Lincoln David E. Claridge Professor Texas A... be decoupled using a constant sensible heat ratio (SHR) and the saturation humidity ratio vs. temperature curve can be treated as linear in a small area corresponding to a finite element of the coil. This paper presents the decoupled cooling coil model...

  13. Some ideas on the choice of designs and materials for cooled mirrors

    SciTech Connect (OSTI)

    Howells, M.R.

    1994-12-01T23:59:59.000Z

    This paper expresses some views on the fabrication of future synchrotron beam-line optics; more particularly the metallurgical issues in high-quality metal mirrors. A simple mirror with uniform cooling channels is first analyzed theoretically, followed by the cullular-pin-post system with complex coolant flow path. Choice of mirror material is next considered. For the most challenging situations (need for intensive cooling), the present practice is to use nickel-plated glidcop or silicon; for less severe challenges, Si carbide may be used and cooling may be direct or indirect; and for the mildest heat loads, fused silica or ulf are popular. For the highest performance mirrors (extreme heat load), the glidcop developments should be continued perhaps to cellular-pin-post systems. For extreme distortion, Si is indicated and invar offers both improved performance and lower price. For less extreme challenges but still with cooling, Ni-plated metals have the cost advantage and SXA and other Al alloys can be added to glidcop and invar. For mirrors with mild cooling requirements, stainless steel would have many advantages. Once the internal cooling designs are established, they will be seen as more cost-effective and reliable than clamp-on schemes. Where no cooling is needed, Si, Si carbide, and the glasses can be used. For the future, the effect of electroless Ni layers on cooling design need study, and a way to finish nickel that is compatible with multilayers should be developed.

  14. Sidestream treatment of high silica cooling water and reverse osmosis desalination in geothermal power generation

    SciTech Connect (OSTI)

    Mindler, A.B.; Bateman, S.T.

    1981-01-19T23:59:59.000Z

    Bench scale and pilot plant test work has been performed on cooling water for silica reduction and water reuse, at DOE's Raft River Geothermal Site, Malta, Idaho in cooperation with EG and G (Idaho), Inc. Technical supervision was by Permutit. A novel process of rusting iron shavings was found effective and economical in reducing silica to less than 20 mg/l. Reverse Osmosis was investigated for water reuse after pretreatment and ion exchange softening.

  15. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2011-10-01T23:59:59.000Z

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  16. New Mexico cloud super cooled liquid water survey final report 2009.

    SciTech Connect (OSTI)

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01T23:59:59.000Z

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  17. Cooling Semiconductor Manufacturing Facilities with Chilled Water Storage 

    E-Print Network [OSTI]

    Fiorino, D. P.

    1995-01-01T23:59:59.000Z

    of 35 psig was applied to the 36" diameter return header in the basement of the Central Utility Plant by a pressure-activated make-up valve. In addition, a hydro-pneumatic tank allowed for expansion. Chilled water was supplied at 42"F year... and a 5,000 gpm peak chilled water flow rate (1.33 gpmlton). Outside ofDPIIDMOS5, a pair of 600' long, 18" diameter overhead welded-steel primary chilled water pipelines were direct-connected with the Expressway manufacturing complex's existing...

  18. Turbine cooling configuration selection and design optimization for the high-reliability gas turbine. Final report

    SciTech Connect (OSTI)

    Smith, M J; Suo, M

    1981-04-01T23:59:59.000Z

    The potential of advanced turbine convectively air-cooled concepts for application to the Department of Energy/Electric Power Research Institute (EPRI) Advanced Liquid/Gas-Fueled Engine Program was investigated. Cooling of turbine airfoils is critical technology and significant advances in cooling technology will permit higher efficiency coal-base-fuel gas turbine energy systems. Two new airfoil construction techniques, bonded and wafer, were the principal designs considered. In the bonded construction, two airfoil sections having intricate internal cooling configurations are bonded together to form a complete blade or vane. In the wafer construction, a larger number (50 or more) of wafers having intricate cooling flow passages are bonded together to form a complete blade or vane. Of these two construction techniques, the bonded airfoil is considered to be lower in risk and closer to production readiness. Bonded airfoils are being used in aircraft engines. A variety of industrial materials were evaluated for the turbine airfoils. A columnar grain nickel alloy was selected on the basis of strength and corrosion resistance. Also, cost of electricity and reliability were considered in the final concept evaluation. The bonded airfoil design yielded a 3.5% reduction in cost-of-electricity relative to a baseline Reliable Engine design. A significant conclusion of this study was that the bonded airfoil convectively air-cooled design offers potential for growth to turbine inlet temperatures above 2600/sup 0/F with reasonable development risk.

  19. Hydronic rooftop cooling systems

    DOE Patents [OSTI]

    Bourne, Richard C. (Davis, CA); Lee, Brian Eric (Monterey, CA); Berman, Mark J. (Davis, CA)

    2008-01-29T23:59:59.000Z

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  20. DESIGNER WATER Dr. Torleiv Bilstad

    E-Print Network [OSTI]

    , Norway #12;Drilling Production of oil and gas #12;Flow of crude oil from well #12;WETTABILITY Tendency.17 million m3/year New Mexico 55.65 million m3/year 30.21 million m3/year 85.86 million m3/year Texas 842 on trucking produced water across the major shale plays in the US #12;Separation Technology Produced Water

  1. Cooling Configuration Design Considerations for Long-Length HTS Cables

    SciTech Connect (OSTI)

    Demko, Jonathan A [ORNL; Duckworth, Robert C [ORNL

    2009-01-01T23:59:59.000Z

    Recent successes in demonstrating high temperature superconducting (HTS) cable systems hundreds of meters in length have inspired even longer length projects. A compact and energy efficient cooling configuration can be achieved using a counterflow-cooling arrangement. This is particularly attractive when all three phases are contained in a single cryostat because of the elimination of the space and thermal requirements of a separate liquid nitrogen return line. Future cable projects will utilize second generation (2G) wire which is expected to become lower in cost but may have different thermal requirements than first generation (1G) BSCCO wire due to the lower critical temperature and to a lesser extent, the lower thermal conductivity of the wire. HTS cable configurations will be studied with a numerical model to assess thermal hydraulic performance with AC and thermal losses; a summary of the results from the analysis will be presented. An analysis of the cable thermal- hydraulic response to over-current faults will be presented.

  2. Progress on Design and Construction of a MuCool Coupling Solenoid Magnet

    SciTech Connect (OSTI)

    Wang, L.; Liu, Xiao Kun; Xu, FengYu; Li, S.; Pan, Heng; Wu, Hong; Guo, Xinglong; Zheng, ShiXian; Li, Derun; Virostek, Steve; Zisman, Mike; Green, M.A.

    2010-06-28T23:59:59.000Z

    The MuCool program undertaken by the US Neutrino Factory and Muon Collider Collaboration is to study the behavior of muon ionization cooling channel components. A single superconducting coupling solenoid magnet is necessary to pursue the research and development work on the performance of high gradient, large size RF cavities immersed in magnetic field, which is one of the main challenges in the practical realization of ionization cooling of muons. The MuCool coupling magnet is to be built using commercial copper based niobium titanium conductors and cooled by two cryo-coolers with each cooling capacity of 1.5 W at 4.2 K. The solenoid magnet will be powered by using a single 300A power supply through a single pair of binary leads that are designed to carry a maximum current of 210A. The magnet is to be passively protected by cold diodes and resistors across sections of the coil and by quench back from the 6061 Al mandrel in order to lower the quench voltage and the hot spot temperature. The magnet is currently under construction. This paper presents the updated design and fabrication progress on the MuCool coupling magnet.

  3. Design of a 2400MW liquid-salt cooled flexible conversion ratio reactor

    E-Print Network [OSTI]

    Petroski, Robert C

    2008-01-01T23:59:59.000Z

    A 2400MWth liquid-salt cooled flexible conversion ratio reactor was designed, utilizing the ternary chloride salt NaCl-KCl-MgCI2 (30%-20%-50%) as coolant. The reference design uses a wire-wrapped, hex lattice core, and is ...

  4. Heat exchanger and water tank arrangement for passive cooling system

    DOE Patents [OSTI]

    Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

    1993-11-30T23:59:59.000Z

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

  5. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    SciTech Connect (OSTI)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03T23:59:59.000Z

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir) and type of plant (nuclear vs. fossil fuel). This is accomplished in Chapter 3. In Chapter 4, the nature of any compacts or agreements that give priority to users (i.e., which users must stop withdrawing water first) is examined. This is examined on a regional or watershed basis, specifically for western water rights, and also as a function of federal and state water management programs. Chapter 5 presents the findings and conclusions of this study. In addition to the above, a related intent of this study is to conduct preliminary modeling of how lowered surface water levels could affect generating capacity and other factors at different regional power plants. If utility managers are forced to take some units out of service or reduce plant outputs, the fuel mix at the remaining plants and the resulting carbon dioxide emissions may change. Electricity costs and other factors may also be impacted. Argonne has conducted some modeling based on the information presented in the database described in Chapter 2 of this report. A separate report of the modeling effort has been prepared (Poch et al. 2009). In addition to the U.S. steam electric power plant fleet, this modeling also includes an evaluation of power production of hydroelectric facilities. The focus of this modeling is on those power plants located in the western United States.

  6. Note: High turn density magnetic coils with improved low pressure water cooling for use in atom optics

    SciTech Connect (OSTI)

    McKay Parry, Nicholas, E-mail: n.mckayparry@uq.net.au; Neely, Tyler; Carey, Thomas; Bell, Thomas; Rubinsztein-Dunlop, Halina [School of Mathematics and Physics, University of Queensland, St Lucia 4072 (Australia); ARC Centre of Excellence for Engineered Quantum Systems, University of Queensland, St Lucia 4072 (Australia); Baker, Mark [School of Mathematics and Physics, University of Queensland, St Lucia 4072 (Australia)

    2014-08-15T23:59:59.000Z

    We describe a magnetic coil design utilizing concentrically wound electro-magnetic insulating (EMI) foil (25.4 ?m Kapton backing and 127 ?m thick layers). The magnetic coils are easily configurable for different coil sizes, while providing large surfaces for low-pressure (0.12 bar) water cooling. The coils have turn densities of ?5 mm{sup ?1} and achieve a maximum of 377 G at 2.1 kW driving power, measured at a distance 37.9 mm from the axial center of the coil. The coils achieve a steady-state temperature increase of 36.7°C/kW.

  7. Critical Simulation Based Evaluation of Thermally Activated Building Systems (TABS) Design Models

    E-Print Network [OSTI]

    Basu, Chandrayee

    2012-01-01T23:59:59.000Z

    results of water supply temperature, cooling capacity andcooling energy 34 Water supplyThe cooling generation source will be designed to supply the

  8. Cooling Towers: Understanding Key Components of Cooling Towers...

    Office of Environmental Management (EM)

    Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve...

  9. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01T23:59:59.000Z

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  10. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14T23:59:59.000Z

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  11. EIS-0121: Alternative Cooling Water Systems, Savannah River Plant, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into the selection and implementation of cooling water systems for thermal discharges from K– and C-Reactors and from a coal-fired powerhouse in the D-Area at the Savannah River Plant (SRP)

  12. Impacts of Water Loop Management on Simultaneous Heating and Cooling in Coupled Control Air Handling Units

    E-Print Network [OSTI]

    Guan, W.; Liu, M.; Wang, J.

    1998-01-01T23:59:59.000Z

    The impacts of the water loop management on the heating and cooling energy consumption are investigated by using model simulation. The simulation results show that the total thermal energy consumption can be increased by 24% for a typical AHU in San...

  13. air-cooled libr-water absorption: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air-cooled libr-water absorption First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 THE DEVELOPMENT OF AN...

  14. Applying a Domestic Water-cooled Air-conditioner in Subtropical Cities

    E-Print Network [OSTI]

    Lee, W.; Chen, H.

    2006-01-01T23:59:59.000Z

    the energy and environmental benefits of WACS over AACS applying to commercial buildings with central air-conditioning. This paper presents an experimental study on the performance of a 3.36 kW prototype water-cooled air conditioner. The prototype is a self...

  15. Design and development of a cooling device for solid polymer electrolyte fuel cells

    E-Print Network [OSTI]

    Nandi, Asis

    1991-01-01T23:59:59.000Z

    DESIGN AND DEVEI OPMENT OF A COOLING DEVICE FOR SOLID POLYMER ELECTROLYTE FUEL CELLS A Thesis by- ASIS NANDI Submitted to the Office of Graduate Studies of Texas ALA'I Ifniversity in partial fulfillment of the requirements I' or the degree ot...' MASTER OF SCIENCE December 1991 Major Subject: Mechanical Engineering DESIGN AND DEVELOPMENT OF A COOLING DEVICE FOR SOLID POLYMER ELECTROLYTE FUEL CELLS A Thesis ASIS lVAiVDI Approved as to style and content by: q. v, 4~. V. K. Anand (' Chair...

  16. Cooling Semiconductor Manufacturing Facilities with Chilled Water Storage

    E-Print Network [OSTI]

    Fiorino, D. P.

    Utility Plant (See Figure 1). This piping network was originally designed as a closed, variable-volume hydronic system with constant speed primary pumps as large as 500 hp, 9,000 gpm, 200' tdh located in the return piping 272 ESL-IE-95-04-41... and reheating coils, 274 ESL-IE-95-04-41 Proceedings from the Seventeenth Industrial Energy Technology Conference, Houston, TX, April 5-6, 1995 I as well as 7.5 hp, 400 gpm, 75' tdh "run-around" pumps and piping. This measure produced 95 tons (20%) of "free...

  17. A Novel Absorption Cycle for Combined Water Heating, Dehumidification, and Evaporative Cooling

    SciTech Connect (OSTI)

    CHUGH, Devesh [University of Florida, Gainesville; Gluesenkamp, Kyle R [ORNL; Abdelaziz, Omar [ORNL; Moghaddam, Saeed [University of Florida, Gainesville

    2014-01-01T23:59:59.000Z

    In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser. The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel feature of the cycle is recovery of the solution heat energy exiting the desorber by process water (a process-solution heat exchanger ) rather than the absorber exiting solution (the conventional solution heat exchanger ). This approach has enabled heating the process water from an inlet temperature of 15 C to 57 C (conforming to the DOE water heater test standard) and interfacing the process water with absorbent on the opposite side of a single metal sheet encompassing the absorber, process-solution heat exchanger, and desorber. The system under development has a 3.2 kW water heating capacity and a target thermal coefficient of performance (COP) of 1.6.

  18. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza [ORNL; Petrov, Andrei Y [ORNL; Linkous, Randall Lee [ORNL; Vineyard, Edward Allan [ORNL

    2007-01-01T23:59:59.000Z

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

  19. Boiling water neutronic reactor incorporating a process inherent safety design

    DOE Patents [OSTI]

    Forsberg, C.W.

    1985-02-19T23:59:59.000Z

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  20. Passive decay heat removal system for water-cooled nuclear reactors

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1991-01-01T23:59:59.000Z

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  1. Core design and reactor physics of a breed and burn gas-cooled fast reactor

    E-Print Network [OSTI]

    Yarsky, Peter

    2005-01-01T23:59:59.000Z

    In order to fulfill the goals set forth by the Generation IV International Forum, the current NERI funded research has focused on the design of a Gas-cooled Fast Reactor (GFR) operating in a Breed and Burnm (B&B) fuel cycle ...

  2. Boiling water neutronic reactor incorporating a process inherent safety design

    DOE Patents [OSTI]

    Forsberg, Charles W. (Kingston, TN)

    1987-01-01T23:59:59.000Z

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  3. Cooling Towers, Energy Conservation Strategies

    E-Print Network [OSTI]

    Burger, R.

    1983-01-01T23:59:59.000Z

    system. While our engineers are pretty well convinced of the importance of their sophisticated equipment, and rightly so, they take the cooling towers and the cold water returning from them for granted. Design Conditions are specified...

  4. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect (OSTI)

    None

    1980-11-01T23:59:59.000Z

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  5. Wet-dry cooling demonstration. Test results

    SciTech Connect (OSTI)

    Allemann, R.T.; DeBellis, D.E.; Werry, E.V.; Johnson, B.M.

    1986-05-01T23:59:59.000Z

    A large-scale test of dry/wet cooling using the ammonia phase-change system, designated the Advanced Concepts Test (ACT), has been operated at Pacific Gas and Electric Company's Kern Station at Bakersfield, California. The facility is capable of condensing 60,000 lbs/h of steam from a small house turbine. Two different modes of combining dry and evaporative cooling have been tested. One uses deluge cooling in which water is allowed to flow over the fins of the dry (air-cooled) heat exchanger on hot days; the other uses a separate evaporative condenser in parallel to the dry heat exchanger. A third mode of enhancing the dry cooling system, termed capacitive cooling has been tested. In this system, the ammonia-cooled steam condenser is supplemented by a parallel conventional water-cooled condenser with water supplied from a closed system. This water is cooled during off-peak hours each night by an ammonia heat pump which rejects heat through the ACT Cooling Tower. If operated over the period of a year, each of the wet/dry systems would use only 25% of the water normally required to reject this heat load in an evaporative cooling tower. The third would consume no water, the evaporative cooling being replaced by the delayed cooling of the closed system water supply.

  6. AUTOMATED DEAD-END ULTRAFILTRATION FOR ENHANCED SURVEILLANCE OF LEGIONELLA 2 PNEUMOPHILA AND LEGIONELLA SPP. IN COOLING TOWER WATERS

    SciTech Connect (OSTI)

    Brigmon, R.; Leskinen, S.; Kearns, E.; Jones, W.; Miller, R.; Betivas, C.; Kingsley, M.; Lim, D.

    2011-10-10T23:59:59.000Z

    Detection of Legionella pneumophila in cooling towers and domestic hot water systems involves concentration by centrifugation or membrane filtration prior to inoculation onto growth media or analysis using techniques such as PCR or immunoassays. The Portable Multi-use Automated Concentration System (PMACS) was designed for concentrating microorganisms from large volumes of water in the field and was assessed for enhancing surveillance of L. pneumophila at the Savannah River Site, SC. PMACS samples (100 L; n = 28) were collected from six towers between August 2010 and April 2011 with grab samples (500 ml; n = 56) being collected before and after each PMACS sample. All samples were analyzed for the presence of L. pneumophila by direct fluorescence immunoassay (DFA) using FITC-labeled monoclonal antibodies targeting serogroups 1, 2, 4 and 6. QPCR was utilized for detection of Legionella spp. in the same samples. Counts of L. pneumophila from DFA and of Legionella spp. from qPCR were normalized to cells/L tower water. Concentrations were similar between grab and PMACS samples collected throughout the study by DFA analysis (P = 0.4461; repeated measures ANOVA). The same trend was observed with qPCR. However, PMACS concentration proved advantageous over membrane filtration by providing larger volume, more representative samples of the cooling tower environment, which led to reduced variability among sampling events and increasing the probability of detection of low level targets. These data highlight the utility of the PMACS for enhanced surveillance of L. pneumophila by providing improved sampling of the cooling tower environment.

  7. The ultra-high lime with aluminum process for removing chloride from recirculating cooling water

    E-Print Network [OSTI]

    Abdel-wahab, Ahmed Ibraheem Ali

    2004-09-30T23:59:59.000Z

    THE ULTRA-HIGH LIME WITH ALUMINUM PROCESS FOR REMOVING CHLORIDE FROM RECIRCULATING COOLING WATER A Dissertation by AHMED IBRAHEEM ALI ABDEL-WAHAB Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...-WAHAB Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by: Bill Batchelor (Chair of Committee) Robin L. Autenrieth (Member...

  8. Loca study for a helium-cooled solid breeder design for ITER

    SciTech Connect (OSTI)

    Gorbis, Z.R.; Raffray, A.R.; Fujimura, K.; Jun, I.; Abdou, M.A.

    1989-03-01T23:59:59.000Z

    The analysis of thermal processes after a loss-of-coolant accident (LOCA) in a solid breeder blanket is important because of the first wall and solid breeder maximum allowable temperature constraints. The objective is to design for a LOCA so that following a LOCA, the maximum solid breeder and structure temperatures are less than the limit beyond which irreversible damage is done, which would lead to loss of investment. The temporal temperature profiles for the solid breeder and first wall regions of a helium-cooled solid breeder design for ITER were calculated based on afterheat values for adiabatic and non-adiabatic conditions and the results are presented in this paper. It is found that, for this design, even when excluding radiation to the cooled inboard, a LOCA can be recommended by energy removal through a flowing purge with a reasonable flow rate.

  9. State waste discharge permit application 400 Area secondary cooling water. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This document constitutes the Washington Administrative Code 173-216 State Waste Discharge Permit Application that serves as interim compliance as required by Consent Order DE 91NM-177, for the 400 Area Secondary Cooling Water stream. As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site that affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 of the Washington Administrative Code, the State Waste Discharge Permitting Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order DE 91NM-177. The Consent Order DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. Based upon compositional and flow rate characteristics, liquid effluent streams on the Hanford Site have been categorized into Phase 1, Phase 2, and Miscellaneous streams. This document only addresses the 400 Area Secondary Cooling Water stream, which has been identified as a Phase 2 stream. The 400 Area Secondary Cooling Water stream includes contribution streams from the Fuels and Materials Examination Facility, the Maintenance and Storage Facility, the 481-A pump house, and the Fast Flux Test Facility.

  10. Preliminary Neutronics Design and Analysis of D2O Cooled High Conversion PWRs

    SciTech Connect (OSTI)

    Hikaru Hiruta; Gilles Youinou

    2012-09-01T23:59:59.000Z

    This report presents a neutronics analysis of tight-pitch D2O-cooled PWRs loaded with MOX fuel and focuses essentially on the Pu breeding potential of such reactors as well as on an important safety parameter, the void coefficient, which has to be negative. It is well known that fast reactors have a better neutron economy and are better suited than thermal reactors to breed fissile material from neutron capture in fertile material. Such fast reactors (e.g. sodium-cooled reactors) usually rely on technologies that are very different from those of existing water-cooled reactors and are probably more expensive. This report investigates another possibility to obtain a fast neutron reactor while still relying mostly on a PWR technology by: (1) Tightening the lattice pitch to reduce the water-to-fuel volume ratio compared to that of a standard PWR. Water-to-fuel volume ratios of between 0.45 and 1 have been considered in this study while a value of about 2 is typical of standard PWRs, (2) Using D2O instead of H2O as a coolant. Indeed, because of its different neutron physics properties, the use of D2O hardens the neutron spectrum to an extent impossible with H2O when used in a tight-pitch lattice. The neutron spectra thus obtained are not as fast as those in sodium-cooled reactor but they can still be characterized as fast compared to that of standard PWR neutron spectra. In the phase space investigated in this study we did not find any configurations that would have, at the same time, a positive Pu mass balance (more Pu at the end than at the beginning of the irradiation) and a negative void coefficient. At this stage, the use of radial blankets has only been briefly addressed whereas the impact of axial blankets has been well defined. For example, with a D2O-to-fuel volume ratio of 0.45 and a core driver height of about 60 cm, the fissile Pu mass balance between the fresh fuel and the irradiated fuel (50 GWd/t) would be about -7.5% (i.e. there are 7.5% fewer fissile Pu isotopes at the end than at the beginning of the irradiation) and the void coefficient would be negative. The addition of 1 cm of U-238 blanket at the top and bottom of the fuel would bring the fissile Pu mass balance from -7.5% to -6.5% but would also impact the void coefficient in the wrong way. In fact, it turns out that the void coefficient is so sensitive to the presence of axial blanket that it limits its size to only a few cm for driver fuel height of about 50-60 cm. For reference, the fissile Pu mass balance is about -35% in a standard PWR MOX fuel such as those used in France. In order to reduce the fissile Pu deficit and potentially reach a true breeding regime (i.e. a positive Pu mass balance), it would be necessary to make extensive use of radial blankets, both internal and external. Even though this was not addressed in detail here, it is reasonable to believe that at least as much U-238 blanket subassemblies as MOX driver fuel subassemblies would be necessary to breed enough Pu to compensate for the Pu deficit in the driver fuel. Hence, whereas a relatively simple D2O-cooled PWR core design makes it possible to obtain a near-breeder core, it may be necessary to more than double the mass of heavy metal in the core as well as the mass of heavy metal to reprocess per unit of energy produced in order to breed the few percents of Pu missing to reach a true breeding regime. It may be interesting to quantify these aspects further in the future.

  11. KEY DESIGN REQUIREMENTS FOR THE HIGH TEMPERATURE GAS-COOLED REACTOR NUCLEAR HEAT SUPPLY SYSTEM

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01T23:59:59.000Z

    Key requirements that affect the design of the high temperature gas-cooled reactor nuclear heat supply system (HTGR-NHSS) as the NGNP Project progresses through the design, licensing, construction and testing of the first of a kind HTGR based plant are summarized. These requirements derive from pre-conceptual design development completed to-date by HTGR Suppliers, collaboration with potential end users of the HTGR technology to identify energy needs, evaluation of integration of the HTGR technology with industrial processes and recommendations of the NGNP Project Senior Advisory Group.

  12. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01T23:59:59.000Z

    passive safety cooling systems. To develop an understandingthe passive safety cooling system and recommend an approachof Passive Safety Cooling Systems for Advanced Nuclear

  13. Translating Water Spray Cooling of a Steel Bar Sand Casting Thomas J. Williams, Daniel Galles, and Christoph Beckermann

    E-Print Network [OSTI]

    Beckermann, Christoph

    Translating Water Spray Cooling of a Steel Bar Sand Casting Thomas J. Williams, Daniel Galles, i.e., washed away, from the casting during solidification. The method uses a water-soluble binder and translation of a water spray to achieve directional solidification. The advantages of the ablation technique

  14. Conceptual design of a lead-bismuth cooled fast reactor with in-vessel direct-contact steam generation

    E-Print Network [OSTI]

    Buongiorno, Jacopo, 1971-

    2001-01-01T23:59:59.000Z

    The feasibility of a lead-bismuth (Pb-Bi) cooled fast reactor that eliminates the need for steam generators and coolant pumps was explored. The working steam is generated by direct contact vaporization of water and liquid ...

  15. Conceptual Design of a Lead-Bismuth Cooled Fast Reactor with In-Vessel Direct-Contact Steam Generation

    E-Print Network [OSTI]

    Buongiorno, J.

    The feasibility of a lead-bismuth (Pb-Bi) cooled fast reactor that eliminates the need for steam generators and coolant pumps was explored. The working steam is generated by direct contact vaporization of water and liquid ...

  16. Stochastic Cooling

    SciTech Connect (OSTI)

    Blaskiewicz, M.

    2011-01-01T23:59:59.000Z

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  17. Regulatory analysis for the resolution of Generic Issue 143: Availability of chilled water system and room cooling

    SciTech Connect (OSTI)

    Leung, V.T.

    1993-12-01T23:59:59.000Z

    This report presents the regulatory analysis for Generic Issue (GI-143), {open_quotes}Availability of Chilled Water System and Room Cooling.{close_quotes} The heating, ventilating, and air conditioning (HVAC) systems and related auxiliaries are required to provide control of environmental conditions in areas in light water reactor (LWR) plants that contain safety-related equipment. In some plants, the HVAC and chilled water systems serve to maintain a suitable environment for both safety and non-safety-related areas. Although some plants have an independent chilled water system for the safety-related areas, the heat removal capability often depends on the operability of other supporting systems such as the service water system or the component cooling water system. The operability of safety-related components depends upon operation of the HVAC and chilled water systems to remove heat from areas containing the equipment. If cooling to dissipate the heat generated is unavailable, the ability of the safety-related equipment to operate as intended cannot be assured. Typical components or areas in the nuclear power plant that could be affected by the failure of cooling from HVAC or chilled water systems include the (1) emergency switchgear and battery rooms, (2) emergency diesel generator room, (3) pump rooms for residual heat removal, reactor core isolation cooling, high-pressure core spray, and low-pressure core spray, and (4) control room. The unavailability of such safety-related equipment or areas could cause the core damage frequency (CDF) to increase significantly.

  18. Thermal Response of the Hybrid Loop-Pool Design for Sodium Cooled Faster Reactors

    SciTech Connect (OSTI)

    Zhang, Hongbin; Zhao, Haihua; Davis, Cliff

    2008-09-01T23:59:59.000Z

    An innovative hybrid loop-pool design for the sodium cooled fast reactor (SFR) has been recently proposed with the primary objective of achieving cost reduction and safety enhancement. With the hybrid loop-pool design, closed primary loops are immersed in a secondary buffer tank. This design takes advantage of features from conventional both pool and loop designs to further improve economics and safety. This paper will briefly introduce the hybrid loop-pool design concept and present the calculated thermal responses for unproctected (without reactor scram) loss of forced circulation (ULOF) transients using RELAP5-3D. The analyses examine both the inherent reactivity shutdown capability and decay heat removal performance by passive safety systems.

  19. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Michael N. DiFilippo

    2004-08-01T23:59:59.000Z

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 2 focuses on transportation--the largest obstacle to produced water reuse in the San Juan Basin (the Basin). Most of the produced water in the Basin is stored in tanks at the well head and must be transported by truck to salt water disposal (SWD) facilities prior to injection. Produced water transportation requirements from the well head to SJGS and the availability of existing infrastructure to transport the water are discussed in this deliverable.

  20. Boson Peak in Deeply Cooled Confined Water: A Possible Way to Explore the Existence of the Liquid-to-Liquid Transition in Water

    E-Print Network [OSTI]

    Wang, Zhe

    The boson peak in deeply cooled water confined in nanopores is studied with inelastic neutron scattering. We show that in the (P, T) plane, the locus of the emergence of the boson peak is nearly parallel to the Widom line ...

  1. Fusion Engineering and Design 41 (1998) 561567 Combination of a self-cooled liquid metal breeder blanket with

    E-Print Network [OSTI]

    1998-01-01T23:59:59.000Z

    , the cost of electricity. Self-cooled liquid metal breeder blankets have a high potential to meetFusion Engineering and Design 41 (1998) 561­567 Combination of a self-cooled liquid metal breeder blanket with a gas turbine power conversion system S. Malang a, *, H. Schnauder a , M.S. Tillack b

  2. ITER's Tokamak Cooling Water System and the the Use of ASME Codes to Comply with French Regulations of Nuclear Pressure Equipment

    SciTech Connect (OSTI)

    Berry, Jan [ORNL] [ORNL; Ferrada, Juan J [ORNL] [ORNL; Curd, Warren [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Dell Orco, Dr. Giovanni [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Barabash, Vladimir [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Kim, Seokho H [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    During inductive plasma operation of ITER, fusion power will reach 500 MW with an energy multiplication factor of 10. The heat will be transferred by the Tokamak Cooling Water System (TCWS) to the environment using the secondary cooling system. Plasma operations are inherently safe even under the most severe postulated accident condition a large, in-vessel break that results in a loss-of-coolant accident. A functioning cooling water system is not required to ensure safe shutdown. Even though ITER is inherently safe, TCWS equipment (e.g., heat exchangers, piping, pressurizers) are classified as safety important components. This is because the water is predicted to contain low-levels of radionuclides (e.g., activated corrosion products, tritium) with activity levels high enough to require the design of components to be in accordance with French regulations for nuclear pressure equipment, i.e., the French Order dated 12 December 2005 (ESPN). ESPN has extended the practical application of the methodology established by the Pressure Equipment Directive (97/23/EC) to nuclear pressure equipment, under French Decree 99-1046 dated 13 December 1999, and Order dated 21 December 1999 (ESP). ASME codes and supplementary analyses (e.g., Failure Modes and Effects Analysis) will be used to demonstrate that the TCWS equipment meets these essential safety requirements. TCWS is being designed to provide not only cooling, with a capacity of approximately 1 GW energy removal, but also elevated temperature baking of first-wall/blanket, vacuum vessel, and divertor. Additional TCWS functions include chemical control of water, draining and drying for maintenance, and facilitation of leak detection/localization. The TCWS interfaces with the majority of ITER systems, including the secondary cooling system. U.S. ITER is responsible for design, engineering, and procurement of the TCWS with industry support from an Engineering Services Organization (ESO) (AREVA Federal Services, with support from Northrop Grumman, and OneCIS). ITER International Organization (ITER-IO) is responsible for design oversight and equipment installation in Cadarache, France. TCWS equipment will be fabricated using ASME design codes with quality assurance and oversight by an Agreed Notified Body (approved by the French regulator) that will ensure regulatory compliance. This paper describes the TCWS design and how U.S. ITER and fabricators will use ASME codes to comply with EU Directives and French Orders and Decrees.

  3. Fuel Breeding and Core Behavior Analyses on In Core Fuel Management of Water Cooled Thorium Reactors

    SciTech Connect (OSTI)

    Permana, Sidik [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-17, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132 (Indonesia); Sekimoto, Hiroshi [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-17, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Waris, Abdul; Subhki, Muhamad Nurul [Department of Physics, Bandung Institute of Technology, Gedung Fisika, Jl. Ganesha 10, Bandung 40132 (Indonesia); Ismail, [BAPETEN (Indonesia)

    2010-12-23T23:59:59.000Z

    Thorium fuel cycle with recycled U-233 has been widely recognized having some contributions to improve the water-cooled breeder reactor program which has been shown by a feasible area of breeding and negative void reactivity which confirms that fissile of 233U contributes to better fuel breeding and effective for obtaining negative void reactivity coefficient as the main fissile material. The present study has the objective to estimate the effect of whole core configuration as well as burnup effects to the reactor core profile by adopting two dimensional model of fuel core management. About more than 40 months of cycle period has been employed for one cycle fuel irradiation of three batches fuel system for large water cooled thorium reactors. All position of fuel arrangement contributes to the total core conversion ratio which gives conversion ratio less than unity of at the BOC and it contributes to higher than unity (1.01) at the EOC after some irradiation process. Inner part and central part give the important part of breeding contribution with increasing burnup process, while criticality is reduced with increasing the irradiation time. Feasibility of breeding capability of water-cooled thorium reactors for whole core fuel arrangement has confirmed from the obtained conversion ratio which shows higher than unity. Whole core analysis on evaluating reactivity change which is caused by the change of voided condition has been employed for conservative assumption that 100% coolant and moderator are voided. It obtained always a negative void reactivity coefficient during reactor operation which shows relatively more negative void coefficient at BOC (fresh fuel composition), and it becomes less negative void coefficient with increasing the operation time. Negative value of void reactivity coefficient shows the reactor has good safety properties in relation to the reactivity profile which is the main parameter in term of criticality safety analysis. Therefore, this evaluation has confirmed that breeding condition and negative coefficient can be obtained simultaneously for water-cooled thorium reactor obtains based on the whole core fuel arrangement.

  4. Property:CoolingTowerWaterUseWinterGross | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType Jump to:CoolingTowerWaterUseWinterGross Jump to: navigation,

  5. Thermal analysis and cooling structure design of the primary collimator in CSNS/RCS

    E-Print Network [OSTI]

    Zou, Yi-Qing; Kang, Ling; Qu, Hua-Min; He, Zhe-Xi; Yu, Jie-Bing; 10.1088/1674-1137/37/5/057004

    2013-01-01T23:59:59.000Z

    The rapid cycling synchrotron (RCS) of the China Spallation Neutron Source (CSNS) is a high intensity proton ring with beam power of 100 kW. In order to control the residual activation to meet the requirements of hands-on maintenance, a two-stage collimation system has been designed for the RCS. The collimation system consists of one primary collimator made of thin metal to scatter the beam and four secondary collimators as absorbers. Thermal analysis is an important aspect in evaluating the reliability of the collimation system. The calculation of the temperature distribution and thermal stress of the primary collimator with different materials is carried out by using ANSYS code. In order to control the temperature rise and thermal stress of the primary collimator to a reasonable level, an air cooling structure is intended to be used. The mechanical design of the cooling structure is presented, and the cooling effciency with different chin numbers and wind velocity is also analyzed. Finally, the fatigue life...

  6. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    DOE Patents [OSTI]

    Schilke, Peter W. (4 Hempshire Ct., Scotia, NY 12302); Muth, Myron C. (R.D. #3, Western Ave., Amsterdam, NY 12010); Schilling, William F. (301 Garnsey Rd., Rexford, NY 12148); Rairden, III, John R. (6 Coronet Ct., Schenectady, NY 12309)

    1983-01-01T23:59:59.000Z

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  7. An innovative concept for deep water oil production platform design 

    E-Print Network [OSTI]

    Racine, Florian

    1994-01-01T23:59:59.000Z

    As more oil and gas are discovered in deep water, the offshore industry has become increasingly interested in the design of deep water offshore production facilities. A new design concept tentatively called FPSOT (Floating ...

  8. Investigation and design of a secure, transportable fluoride-salt-cooled high-temperature reactor (TFHR) for isolated locations

    E-Print Network [OSTI]

    Macdonald, Ruaridh (Ruaridh R.)

    2014-01-01T23:59:59.000Z

    In this work we describe a preliminary design for a transportable fluoride salt cooled high temperature reactor (TFHR) intended for use as a variable output heat and electricity source for off-grid locations. The goals of ...

  9. Design and Implementation of a Liquid Nitrogen-Cooled Hollow Cathode Discharge Source for the Study of the Reaction H+

    E-Print Network [OSTI]

    McCall, Benjamin J.

    Design and Implementation of a Liquid Nitrogen-Cooled Hollow Cathode Discharge Source for the Study in the first place and providing me with this incredible opportunity! You guys rock! 2 #12;Introduction Work

  10. Introduction of Heat Recovery Chiller Control and Water System Design

    E-Print Network [OSTI]

    Jia, J.

    2006-01-01T23:59:59.000Z

    The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

  11. Introduction of Heat Recovery Chiller Control and Water System Design 

    E-Print Network [OSTI]

    Jia, J.

    2006-01-01T23:59:59.000Z

    The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

  12. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01T23:59:59.000Z

    www.Zurn.com PAGE 35 Radiant Cooling Research Scoping Study1988. “Radiant Heating and Cooling, Displacement VentilationHeat Recovery and Storm Water Cooling: An Environmentally

  13. Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building 

    E-Print Network [OSTI]

    Zhu, N.

    2014-01-01T23:59:59.000Z

    Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building Na Zhu*, Yu Lei, Pingfang Hu, Linghong Xu, Zhangning Jiang Department of Building Environment and Equipment Engineering... heat pump system integrated with phase change cooling storage technology could save energy and shift peak load. This paper studied the optimal design of a ground source heat pump system integrated with phase change thermal storage tank in an office...

  14. Analysis of the conceptual shielding design for the upflow Gas-Cooled Fast Breeder Reactor

    SciTech Connect (OSTI)

    Slater, C.O.; Reed, D.A.; Cramer, S.N.; Emmett, M.B.; Tomlinson, E.T.

    1981-01-01T23:59:59.000Z

    Conceptual Shielding Configuration III for the Gas-Cooled Fast Breeder Reactor (GCFR) was analyzed by performing global calculations of neutron and gamma-ray fluences and correcting the results as appropriate with bias factors from localized calculations. Included among the localized calculations were the radial and axial cell streaming calculations, plus extensive preliminary calculations and three final confirmation calculations of the plenum flow-through shields. The global calculations were performed on the GCFR mid-level and the lower and upper plenum regions. Calculated activities were examined with respect to the design constraint, if any, imposed on the particular activity. The spatial distributions of several activities of interest were examined with the aid of isoplots (i.e., symbols are used to describe a surface on which the activity level is everywhere the same). In general the results showed that most activities were below the respective design constraints. Only the total neutron fluence in the core barrel appeared to be marginal with the present reactor design. Since similar results were obtained for an earlier design, it has been proposed that the core barrel be cooled with inlet plenum gas to maintain it at a temperature low enough that it can withstand a higher fluence limit. Radiation levels in the prestressed concrete reactor vessel (PCRV) and liner appeared to be sufficiently below the design constraint that expected results from the Radial Shield Heterogeneity Experiment should not force any levels above the design constraint. A list was also made of a number of issues which should be examined before completion of the final shielding design.

  15. Optimizing Cooling Tower Performance Refrigeration Systems, Chemical Plants, and Power Plants All Have A Resource Quietly Awaiting Exploitation-Cold Water!!

    E-Print Network [OSTI]

    Burger, R.

    requirements before a cooling tower is purchased. This relates to the volume of circulating water, hot water temperature on the tower, cold water discharge, and wet bulb temperature (consisting of ambient temperature and relative humidity). After the tower...

  16. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2009-06-30T23:59:59.000Z

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  17. Optimization of hybrid-water/air-cooled condenser in an enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimization of hybrid-waterair-cooled condenser in an enhanced turbine geothermal ORC system Optimization of hybrid-waterair-cooled condenser in an enhanced turbine geothermal...

  18. Development of a neutronics calculation method for designing commercial type Japanese sodium-cooled fast reactor

    SciTech Connect (OSTI)

    Takeda, T.; Shimazu, Y.; Hibi, K.; Fujimura, K. [Research Inst. of Nuclear Engineering, Univ. of Fukui, 1cho-me 2gaiku 4, Kanawa-cho, Tsuruga-shi, Fukui 914-0055 (Japan)

    2012-07-01T23:59:59.000Z

    Under the R and D project to improve the modeling accuracy for the design of fast breeder reactors the authors are developing a neutronics calculation method for designing a large commercial type sodium- cooled fast reactor. The calculation method is established by taking into account the special features of the reactor such as the use of annular fuel pellet, inner duct tube in large fuel assemblies, large core. The Verification and Validation, and Uncertainty Qualification (V and V and UQ) of the calculation method is being performed by using measured data from the prototype FBR Monju. The results of this project will be used in the design and analysis of the commercial type demonstration FBR, known as the Japanese Sodium fast Reactor (JSFR). (authors)

  19. Passive solar heating and natural cooling of an earth-integrated design

    SciTech Connect (OSTI)

    Barnes, P.R.; Shapira, H.B.

    1980-01-01T23:59:59.000Z

    The Joint Institute for Heavy Ion Research is being designed with innovative features that will greatly reduce its energy consumption for heating, cooling, and lighting. A reference design has been studied and the effects of extending the overhang during summer and fall, varying glazing area, employing RIB, and reducing internal heat by natural lighting have been considered. The use of RIB and the extendable overhang increases the optimum window glazing area and the solar heating fraction. A mass-storage wall which will likely be included in the final design has also been considered. A figure of merit for commercial buildings is the total annual energy consumption per unit area of floor space. A highly efficient office building in the Oak Ridge area typically uses 120 to 160 kWhr/m/sup 2/. The Joint Institute reference design with natural lighting, an annual average heat pump coefficient of performance (COP) equal to 1.8, RIB, and the extendable overhang uses 71 kWhr/m/sup 2/. This figure was determined from NBSLD simulations corrected for the saving from RIB. The internal heat energy from lighting and equipment used in the simulation was 1653 kWhrs/month (high natural lighting case) which is much lower than conventional office buildings. This value was adopted because only a portion of the building will be used as office space and efforts will be made to keep internal heat generation low. The mass-storage wall and ambient air cooling will reduce energy consumption still further. The combined savings of the innovative features in the Joint Institute building are expected to result in a very energy efficient design. The building will be instrumented to monitor its performance and the measured data will provide a means of evaluating the energy-saving features. The efficiency of the design will be experimentally verified over the next several years.

  20. Development of a simplified cooling load design tool for underfloor air distribution (UFAD) systems.

    E-Print Network [OSTI]

    Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom

    2010-01-01T23:59:59.000Z

    occupants) W = zone cooling load (supply and return plenumm]. W L is the zone cooling load (supply and return plenumthe total UFAD cooling load between the supply plenum, the

  1. Simplified calculation method for design cooling loads in underfloor air distribution (UFAD) systems

    E-Print Network [OSTI]

    Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom

    2010-01-01T23:59:59.000Z

    of the UFAD cooling load between the supply plenum, zone (split the UFAD cooling load into the supply plenum, the zonesplit the UFAD cooling load into the supply plenum, zone and

  2. Safety and core design of large liquid-metal cooled fast breeder reactors

    E-Print Network [OSTI]

    Qvist, Staffan Alexander

    2013-01-01T23:59:59.000Z

    with burnup of a depleted-uranium fueled sodium-cooled B&Bwith burnup of a depleted-uranium fueled sodium-cooled B&Bbalance integral of a depleted-uranium fueled sodium-cooled

  3. Technology to Facilitate the Use of Impaired Waters in Cooling Towers

    SciTech Connect (OSTI)

    Colborn, Robert

    2012-04-30T23:59:59.000Z

    The project goal was to develop an effective silica removal technology and couple that with existing electro-dialysis reversal (EDR) technology to achieve a cost effective treatment for impaired waters to allow for their use in the cooling towers of coal fired power plants. A quantitative target of the program was a 50% reduction in the fresh water withdrawal at a levelized cost of water of $3.90/Kgal. Over the course of the program, a new molybdenum-modified alumina was developed that significantly outperforms existing alumina materials in silica removal both kinetically and thermodynamically. The Langmuir capacity is 0.11g silica/g adsorbent. Moreover, a low cost recycle/regeneration process was discovered to allow for multiple recycles with minimal loss in activity. On the lab scale, five runs were carried out with no drop in performance between the second and fifth run in ability to absorb the silica from water. The Mo-modified alumina was successfully prepared on a multiple kilogram scale and a bench scale model column was used to remove 100 ppm of silica from 400 liters of simulated impaired water. Significant water savings would result from such a process and the regeneration process could be further optimized to reduce water requirements. Current barriers to implementation are the base cost of the adsorbent material and the fine powder form that would lead to back pressure on a large column. If mesoporous materials become more commonly used in other areas and the price drops from volume and process improvements, then our material would also lower in price because the amount of molybdenum needed is low and no additional processing is required. There may well be engineering solutions to the fine powder issue; in a simple concept experiment, we were able to pelletize our material with Boehmite, but lost performance due to a dramatic decrease in surface area.

  4. How to solve materials and design problems in solar heating and cooling. Energy technology review No. 77

    SciTech Connect (OSTI)

    Ward, D.S.; Oberoi, H.S.; Weinstein, S.D.

    1982-01-01T23:59:59.000Z

    A broad range of difficulties encountered in active and passive solar space heating systems and active solar space cooling systems is covered. The problems include design errors, installation mistakes, inadequate durability of materials, unacceptable reliability of components, and wide variations in performance and operation of different solar systems. Feedback from designers and manufacturers involved in the solar market is summarized. The designers' experiences with and criticisms of solar components are presented, followed by the manufacturers' replies to the various problems encountered. Information is presented on the performance and operation of solar heating and cooling systems so as to enable future designs to maximize performance and eliminate costly errors. (LEW)

  5. A STUDY ON LEGIONELLA PNEUMOPHILA, WATER CHEMISTRY, AND ATMOSPHERIC CONDITIONS IN COOLING TOWERS AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Smith, C.; Brigmon, R.

    2009-10-20T23:59:59.000Z

    Legionnaires disease is a pneumonia caused by the inhalation of the bacterium Legionella pneumophila. The majority of illnesses have been associated with cooling towers since these devices can harbor and disseminate the bacterium in the aerosolized mist generated by these systems. Historically, Savannah River Site (SRS) cooling towers have had occurrences of elevated levels of Legionella in all seasons of the year and in patterns that are difficult to predict. Since elevated Legionella in cooling tower water are a potential health concern a question has been raised as to the best control methodology. In this work we analyze available chemical, biological, and atmospheric data to determine the best method or key parameter for control. The SRS 4Q Industrial Hygiene Manual, 4Q-1203, 1 - G Cooling Tower Operation and the SRNL Legionella Sampling Program, states that 'Participation in the SRNL Legionella Sampling Program is MANDATORY for all operating cooling towers'. The resulting reports include L. pneumophila concentration information in cells/L. L. pneumophila concentrations >10{sup 7} cells/L are considered elevated and unsafe so action must be taken to reduce these densities. These remedial actions typically include increase biocide addition or 'shocking'. Sometimes additional actions are required if the problem persists including increase tower maintenance (e.g. cleaning). Evaluation of 14 SRS cooling towers, seven water quality parameters, and five Legionella serogroups over a three-plus year time frame demonstrated that cooling tower water Legionella densities varied widely though out this time period. In fact there was no one common consistent significant variable across all towers. The significant factors that did show up most frequently were related to suspended particulates, conductivity, pH, and dissolved oxygen, not chlorine or bromine as might be expected. Analyses of atmospheric data showed that there were more frequent significant elevated Legionella concentrations when the dew point temperature was high--a summertime occurrence. However, analysis of the three years of Legionella monitoring data of the 14 different SRS Cooling Towers demonstrated that elevated concentrations are observed at all temperatures and seasons. The objective of this study is to evaluate the ecology of L. pneumophila including serogroups and population densities, chemical, and atmospheric data, on cooling towers at SRS to determine whether relationships exist among water chemistry, and atmospheric conditions. The goal is to more fully understand the conditions which inhibit or encourage L. pneumophila growth and supply this data and associated recommendations to SRS Cooling Tower personnel for improved management of operation. Hopefully this information could then be used to help control L. pneumophila growth more effectively in SRS cooling tower water.

  6. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01T23:59:59.000Z

    systems for the Gas Cooled Fast Reactor (GCFR) includes theThey are 1) gas cooled fast reactors (GFR), 2) very high

  7. "Hot" for Warm Water Cooling Henry Coles, Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    to set guidelines for facilitating the energy efficiency of liquid- cooled High Performance Computing

  8. Proposal for the award of a blanket contract for the supply, commissioning and maintenance of water-and air-cooled chillers

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Proposal for the award of a blanket contract for the supply, commissioning and maintenance of water-and air-cooled chillers

  9. Proposal to negotiate an amendment to a blanket purchase contract for the supply and installation of water-cooled bus bars and cables for the LHC

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Proposal to negotiate an amendment to a blanket purchase contract for the supply and installation of water-cooled bus bars and cables for the LHC

  10. Kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. Final report

    SciTech Connect (OSTI)

    Haag, W.R.; Lietzke, M.H.

    1981-08-01T23:59:59.000Z

    A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking.

  11. An investigation of RVACS (reactor vessel auxiliary cooling system) design improvements

    SciTech Connect (OSTI)

    Tzanos, C.P.; Tessier, J.H.; Pedersen, D.R. (Argonne National Laboratory, IL (USA))

    1989-11-01T23:59:59.000Z

    One of the main safety features of the current liquid-metal reactor (LMR) designs is the utilization of decay heat removal systems that remove heat by natural convection. In the reactor vessel auxiliary cooling system (RVACS), decay heat is removed by naturally circulating air in the gap between the guard vessel and a baffle wall surrounding the guard vessel. The objective of this work was to determine the impact of a number of design parameters on the performance of the RVACS of a pool LMR. These parameters were (a) the stack height, (b) the size of the airflow gap, (c) the system pressure loss, (d) fins on the guard vessel or the baffle wall, and (e) roughness (in the form of repeated ribs) on the airflow channel walls. Reactor designs ranging from 400 to 3,500 MW(thermal) were considered. From the RVACS design parameters considered in this analysis, an optimized ribbed configuration gave the best improvement in RVACS performance. For a 3,500-MW(thermal) LMR, the peak sodium and cladding temperatures were reduced by 52 K.

  12. Design of water-splitting photocatalysts by first principles computations

    E-Print Network [OSTI]

    Wu, Yabi

    2014-01-01T23:59:59.000Z

    This thesis focuses on the design of novel inorganic water-splitting photocatalysts for solar applications using first principles computations. Water-splitting photocatalysts are materials that can photo-catalyze the ...

  13. Water protection in coke-plant design

    SciTech Connect (OSTI)

    G.I. Alekseev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    Wastewater generation, water consumption, and water management at coke plants are considered. Measures to create runoff-free water-supply and sewer systems are discussed. Filters for water purification, corrosion inhibitors, and biocides are described. An integrated single-phase technology for the removal of phenols, thiocyanides, and ammoniacal nitrogen is outlined.

  14. Development of an internally cooled annular fuel bundle for pressurized heavy water reactors

    SciTech Connect (OSTI)

    Hamilton, H.; Armstrong, J.; Kittmer, A.; Zhuchkova, A.; Xu, R.; Hyland, B.; King, M.; Nava-Dominguez, A.; Livingstone, S.; Bergeron, A. [Atomic Energy of Canada, Ltd., Chalk River Laboratories, Chalk River, ON (Canada)

    2013-07-01T23:59:59.000Z

    A number of preliminary studies have been conducted at Atomic Energy of Canada Limited to explore the potential of using internally cooled annular fuel (ICAF) in CANDU reactors including finite element thermo-mechanical modelling, reactor physics, thermal hydraulics, fabrication and mechanical design. The most compelling argument for this design compared to the conventional solid-rod design is the significant reduction in maximum fuel temperature for equivalent LERs (linear element ratings). This feature presents the potential for power up-rating or higher burnup and a decreased defect probability due to in-core power increases. The thermal-mechanical evaluation confirmed the significant reduction in maximum fuel temperatures for ICAF fuel compared to solid-rod fuel for equivalent LER. The maximum fuel temperature increase as a function of LER increase is also significantly less for ICAF fuel. As a result, the sheath stress induced by an equivalent power increase is approximately six times less for ICAF fuel than solid-rod fuel. This suggests that the power-increase thresholds to failure (due to stress-corrosion cracking) for ICAF fuel should be well above those for solid-rod fuel, providing improvement in operation flexibility and safety.

  15. A European proposal for a ITER water cooled solid breeder blanket

    SciTech Connect (OSTI)

    Lorenzetto, P. [NET, Garching (Germany); Gierszewski, P. [CFFTP, Mississauga, Ontario (Canada); Simbolotti, G. [ENEA, Frascati (Italy)

    1994-12-31T23:59:59.000Z

    The Water Cooled Solid Breeder Blanket concept here proposed is based on a conservative approach, involving well proven technologies and-qualified materials. 316 L type stainless steel has been selected as the structural material. The nominal performances are: 1 MW/m{sup 2} as the average neutron wall load which corresponds to a fusion power of about 1.5 GW, and 1 MWy/m{sup 2} as the average neutron fluence. The power margins of the proposed concept have been estimated. The proposed blanket concept is based on a Breeder Inside Tube (BIT) type blanket with poloidal breeding elements, whose dimensions are compatible with space available in test fission reactor core channels, that makes easier in-pile testing required for the blanket development and qualification. Each breeding element consists of two concentric tubes. 1.2 mm lithium metazirconate (Li{sub 2}ZrO{sub 3}) pebbles are filled into the inner tube, the water coolant flows in the annular channel between the two tubes, and 2 mm Beryllium pebbles are poured into the blanket box outside the outer tube. Lithium metazirconate has been selected as the breeder material because it presents today the best tritium release properties at low temperature. A helium purge gas flows through the breeder pebble bed for tritium recovery. A Shielding Blanket can be derived from the proposed Blanket concept by removing the breeder pebbles from the inner tube. In-situ convertibility issues are addressed.

  16. Optimized core design of a supercritical carbon dioxide-cooled fast reactor

    E-Print Network [OSTI]

    Handwerk, Christopher S. (Christopher Stanley), 1974-

    2007-01-01T23:59:59.000Z

    Spurred by the renewed interest in nuclear power, Gas-cooled Fast Reactors (GFRs) have received increasing attention in the past decade. Motivated by the goals of the Generation-IV International Forum (GIF), a GFR cooled ...

  17. Risk-informed design guidance for a Generation-IV gas-cooled fast reactor emergency core cooling system

    E-Print Network [OSTI]

    Delaney, Michael J. (Michael James), 1979-

    2004-01-01T23:59:59.000Z

    Fundamental objectives of sustainability, economics, safety and reliability, and proliferation resistance, physical protection and stakeholder relations must be considered during the design of an advanced reactor. However, ...

  18. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2011-12-31T23:59:59.000Z

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  19. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01T23:59:59.000Z

    61–65° F (16–18°C) cooling supply air temperatures requiredprovide appropriate cooling with supply water no cooler thancirculation of the cooling/heating supply water through the

  20. Feasibility study for use of the natural convection shutdown heat removal test facility (NSTF) for VHTR water-cooled RCCS shutdown.

    SciTech Connect (OSTI)

    Tzanos, C.P.; Farmer, M.T.; Nuclear Engineering Division

    2007-08-31T23:59:59.000Z

    In summary, a scaling analysis of a water-cooled Reactor Cavity Cooling System (RCCS) system was performed based on generic information on the RCCS design of PBMR. The analysis demonstrates that the water-cooled RCCS can be simulated at the ANL NSTF facility at a prototypic scale in the lateral direction and about half scale in the vertical direction. Because, by necessity, the scaling is based on a number of approximations, and because no analytical information is available on the performance of a reference water-cooled RCCS, the scaling analysis presented here needs to be 'validated' by analysis of the steady state and transient performance of a reference water-cooled RCCS design. The analysis of the RCCS performance by CFD and system codes presents a number of challenges including: strong 3-D effects in the cavity and the RCCS tubes; simulation of turbulence in flows characterized by natural circulation, high Rayleigh numbers and low Reynolds numbers; validity of heat transfer correlations for system codes for heat transfer in the cavity and the annulus of the RCCS tubes; the potential of nucleate boiling in the tubes; water flashing in the upper section of the RCCS return line (during limiting transient); and two-phase flow phenomena in the water tanks. The limited simulation of heat transfer in cavities presented in Section 4.0, strongly underscores the need of experimental work to validate CFD codes, and heat transfer correlations for system codes, and to support the analysis and design of the RCCS. Based on the conclusions of the scaling analysis, a schematic that illustrates key attributes of the experiment system is shown in Fig. 4. This system contains the same physical elements as the PBMR RCCS, plus additional equipment to facilitate data gathering to support code validation. In particular, the prototype consists of a series of oval standpipes surrounding the reactor vessel to provide cooling of the reactor cavity during both normal and off-normal operating conditions. The standpipes are headered (in groups of four in the prototype) to water supply (header) tanks that are situated well above the reactor vessel to facilitate natural convection cooling during a loss of forced flow event. During normal operations, the water is pumped from a heat sink located outside the containment to the headered inlets to the standpipes. The water is then delivered to each standpipe through a centrally located downcomer that passes the coolant to the bottom of each pipe. The water then turns 180{sup o} and rises up through the annular gap while extracting heat from the reactor cavity due to a combination of natural convection and radiation across the gap between the reactor vessel and standpipes. The water exits the standpipes at the top where it is headered (again in groups of four) into a return line that passes the coolant to the top of the header tank. Coolant is drawn from each tank through a fitting located near the top of the tank where it flows to the heat rejection system located outside the containment. This completes the flow circuit for normal operations. During off-normal conditions, forced convection water cooling in the RCCS is presumed to be lost, as well as the ultimate heat sink outside the containment. In this case, water is passively drawn from an open line located at the bottom of the header tank. This line is orificed so that flow bypass during normal operations is small, yet the line is large enough to provide adequate flow during passive operations to remove decay heat while maintaining acceptable fuel temperatures. In the passive operating mode, water flows by natural convection from the bottom of the supply tank to the standpipes, and returns through the normal pathway to the top of the tanks. After the water reaches saturation and boiling commences, steam will pass through the top of the tanks and be vented to atmosphere. In the experiment system shown in Fig. 4, a steam condensation and collection system is included to quantify the boiling rate, thereby providing additional validation data. This sys

  1. A helium-cooled blanket design of the low aspect ratio reactor

    SciTech Connect (OSTI)

    Wong, C.P.; Baxi, C.B.; Reis, E.E. [General Atomics, San Diego, CA (United States); Cerbone, R.; Cheng, E.T. [TSI Research, Solana Beach, CA (United States)

    1998-03-01T23:59:59.000Z

    An aggressive low aspect ratio scoping fusion reactor design indicated that a 2 GW(e) reactor can have a major radius as small as 2.9 m resulting in a device with competitive cost of electricity at 49 mill/kWh. One of the technology requirements of this design is a high performance high power density first wall and blanket system. A 15 MPa helium-cooled, V-alloy and stagnant LiPb breeder first wall and blanket design was utilized. Due to the low solubility of tritium in LiPb, there is the concern of tritium migration and the formation of V-hydride. To address these issues, a lithium breeder system with high solubility of tritium has been evaluated. Due to the reduction of blanket energy multiplication to 1.2, to maintain a plant Q of > 4, the major radius of the reactor has to be increased to 3.05 m. The inlet helium coolant temperature is raised to 436 C in order to meet the minimum V-alloy temperature limit everywhere in the first wall and blanket system. To enhance the first wall heat transfer, a swirl tape coolant channel design is used. The corresponding increase in friction factor is also taken into consideration. To reduce the coolant system pressure drop, the helium pressure is increased from 15 to 18 MPa. Thermal structural analysis is performed for a simple tube design. With an inside tube diameter of 1 cm and a wall thickness of 1.5 mm, the lithium breeder can remove an average heat flux and neutron wall loading of 2 and 8 MW/m(2), respectively. This reference design can meet all the temperature and material structural design limits, as well as the coolant velocity limits. Maintaining an outlet coolant temperature of 650 C, one can expect a gross closed cycle gas turbine thermal efficiency of 45%. This study further supports the use of helium coolant for high power density reactor design. When used with the low aspect ratio reactor concept a competitive fusion reactor can be projected at 51.9 mill/kWh.

  2. Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling.

    SciTech Connect (OSTI)

    Dwyer, Brian P.; Heath, Jason E.; Borns, David James; Dewers, Thomas A.; Kobos, Peter Holmes; Roach, Jesse D.; McNemar, Andrea; Krumhansl, James Lee; Klise, Geoffrey T.

    2010-10-01T23:59:59.000Z

    In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water system) constraints across the United States. Finally, a representative scenario for a 1,800 MW subcritical coal fired power plant (amongst other types including supercritical coal, integrated gasification combined cycle, natural gas turbine and natural gas combined cycle) can look to existing and new carbon capture, transportation, compression and sequestration technologies along with a suite of extracting and treating technologies for water to assess the system's overall physical and economic viability. Thus, this particular plant, with 90% capture, will reduce the net emissions of CO{sub 2} (original less the amount of energy and hence CO{sub 2} emissions required to power the carbon capture water treatment systems) less than 90%, and its water demands will increase by approximately 50%. These systems may increase the plant's LCOE by approximately 50% or more. This representative example suggests that scaling up these CO{sub 2} capture and sequestration technologies to many plants throughout the country could increase the water demands substantially at the regional, and possibly national level. These scenarios for all power plants and saline formations throughout U.S. can incorporate new information as it becomes available for potential new plant build out planning.

  3. Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water 

    E-Print Network [OSTI]

    Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

    2014-01-01T23:59:59.000Z

    Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 1The heating and cooling system used in Osaka’s Nakanoshima district uses heat pumps and river water to achieve the efficient use of the heat source and mitigate the heat... source -Utilize waste heat discharged from substation, and supply in large difference of temperature Water intake Heat exchangers Water discharge Turbo chiller Screw heat pump pumps ESL-IC-14-09-19 Proceedings of the 14th International Conference...

  4. Design of Hard Water Stable Emulsifier Systems for Petroleum-

    E-Print Network [OSTI]

    Clarens, Andres

    Design of Hard Water Stable Emulsifier Systems for Petroleum- and Bio-based Semi for petroleum and bio-based MWFs that improve fluid lifetime by providing emulsion stability under hard water. The newly developed petroleum and bio-based formulations with improved hard water stability are competitive

  5. The nominal cooling tower

    SciTech Connect (OSTI)

    Burger, R. [Burger Associates, Dallas, TX (United States)

    1995-12-31T23:59:59.000Z

    The heat Rejection Industry defines a nominal cooling tower as circulating three gallons of water per minute (GPM) per ton of refrigeration from entering the tower at 95{degrees}F. Hot Water temperature (HWT) Leaving at 85{degrees}F Cold Water Temperature (CWT) at a Design Wet Bulb of 70{degrees}F (WBT). Manufacturers then provide a selection chart based on various wet bulb temperatures and HWTs. The wet bulb fluctuates and varies through out the world since it is the combination ambient temperature, relative humidity, and/or dew point. Different HWT and CWT requirements are usually charted as they change, so that the user can select the nominal cooling tower model recommended by the manufacturer. Ask any HVAC operator, refinery manager, power generating station operator what happens when the Wet Bulb reaches or exceeds the design WBT of the area. He probably will tell you, {open_quotes}My cooling tower works quite well, but in the summer time, I usually have trouble with it.{close_quotes} This occurs because he is operating a nominal cooling tower.

  6. Design package for solar domestic hot water system

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  7. Optimization of hybrid-water/air-cooled condenser in an enhanced...

    Open Energy Info (EERE)

    Optimization of hybrid-waterair-cooled condenser in an enhanced turbine geothermal ORC system Geothermal Project Jump to: navigation, search Last modified on July 22, 2011....

  8. Water-use efficiency for alternative cooling technologies in arid climates Energy and Buildings, Volume 43, Issues 23, FebruaryMarch 2011, Pages 631-638

    E-Print Network [OSTI]

    California at Davis, University of

    Water-use efficiency for alternative cooling technologies in arid climates Energy and Buildings, Volume 43, Issues 2­3, February­March 2011, Pages 631-638 Theresa Pistochini, Mark Modera 1 Water-site water use and the impact of poor water quality on their performance. While compressor-based systems do

  9. CO$_2$ cooling experience (LHCb)

    E-Print Network [OSTI]

    Van Lysebetten, Ann; Verlaat, Bart

    2007-01-01T23:59:59.000Z

    The thermal control system of the LHCb VErtex LOcator (VELO) is a two-phase C0$_2$ cooling system based on the 2-Phase Accumulator Controlled Loop (2PACL) method. Liquid carbon dioxide is mechanically pumped in a closed loop, chilled by a water-cooled freon chiller and evaporated in the VELO detector. The main goal of the system is the permanent cooling of the VELO silicon sensors and of the heat producing front-end electronics inside a vacuum environment. This paper describes the design and the performance of the system. First results obtained during commissioning are also presented.

  10. Simulated performance of CIEE's 'Alternatives to Compressive Cooling' prototype house under design conditions in various California climates

    SciTech Connect (OSTI)

    Huang, Yu Joe

    1999-12-01T23:59:59.000Z

    To support the design development of a compressorless house that does not rely on mechanical air-conditioning, the author carried out detailed computer analysis of a prototypical house design to determine the indoor thermal conditions during peak cooling periods for over 170 California locations. The peak cooling periods are five-day sequences at 2{percent} frequency determined through statistical analysis of long-term historical weather data. The DOE-2 program was used to simulate the indoor temperatures of the house under four operating options: windows closed, with mechanical ventilation, evaporatively-cooled mechanical ventilation, or a conventional 1 1/2-ton air conditioner. The study found that with a 1500 CFM mechanical ventilation system, the house design would maintain comfort under peak conditions in the San Francisco Bay Area out to Walnut Creek, but not beyond. In southern California, the same system and house design would maintain adequate comfort only along the coast. With the evaporatively-cooled ventilation system, the applicability of the house design can be extended to Fairfield and Livermore in northern California, but in southern California a larger 3000 CFM system would be needed to maintain comfort conditions over half of the greater Los Angeles area, the southern half of the Inland Empire, and most of San Diego county. With the 1 1/2-ton air conditioner, the proposed house design would perform satisfactorily through most of the state, except in the upper areas of the Central Valley and the hot desert areas in southern California. In terms of energy savings, the simulations showed that the prototypical house design would save from 0.20 to 0.43 in northern California, 0.20 to 0.53 in southern California, and 0.16 to 0.35 in the Central Valley, the energy used by the same house design built to Title-24 requirements.

  11. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    SciTech Connect (OSTI)

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01T23:59:59.000Z

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  12. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    SciTech Connect (OSTI)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01T23:59:59.000Z

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  13. Effective monitoring of non-chromate chemical treatment programs for refinery cooling systems using sewage water as make-up

    SciTech Connect (OSTI)

    AlMajnouni, A.D.; Jaffer, A.E. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-08-01T23:59:59.000Z

    Treated sewage water as make-up to the cooling tower requires novel approaches to control potential cooling water problems common to refineries besides meeting environmental regulations. An intensive field study was conducted to evaluate the effectiveness of non-chromate treatment programs. On-line cleaning of the exchangers occurred prior to instituting the new chemical treatment program. Low carbon steel corrosion rates with minimal deposition was achieved. Microbiological fouling was controlled with chlorination and non-oxidizing biocide program. Field results are presented which compare the efficacy of these proprietary treatments to control corrosion and inhibit scale and fouling. Analytical results which provide a comprehensive performance evaluation of a new non-chromate chemical treatment program are presented.

  14. Case Study of Stratified Chilled Water Storage Utilization for Comfort and Process Cooling in a Hot, Humid Climate

    E-Print Network [OSTI]

    Bahnfleth, W. P.; Musser, A.

    1998-01-01T23:59:59.000Z

    by approximately $1.5 million per year. The thermal storage tank is a fully buried cylindrical, precast, pre-stressed tank with four-ring single pipe octagonal diffusers. It holds 5.2 million gallons (1 9.7 million L) of water, and is 140 ft (42.7 m... of the system and its operation is followed by presentation of operating data taken during 1997. INTRODUCTION Chilled water thermal energy storage ('TES) in naturally stratified tanks has been shown to be a valuable central cooling plant load management...

  15. Growth and mortality of the oyster, Crassostrea virginica (Gmelin) in an electric generating station cooling lake receiving heated discharge water

    E-Print Network [OSTI]

    Oja, Robert Kenneth

    1974-01-01T23:59:59.000Z

    throughout the tudy. STUDY ARZA AND ?)vTHODS Studg Area Thi. study was conducted at the Houston Lighting and Power Camp- y's Cedar Bayou Generating Station in Baytown, Texas. The plant comprises two 750-mcg watt units with individual water circulating... group, was located at the . intake canal of the power plant. The remaining four stations were located within the cooling lake (I'ig. 2, p. ll ). The station oositions were selected to encompass th maximum water temperature range within the lake. Prior...

  16. Optimization of Chilled Water Flow and Its Distribution in Central Cooling System

    E-Print Network [OSTI]

    Maheshwari, G. P.; Hajiah, A. E.; ElSherbini, A. I.

    2007-01-01T23:59:59.000Z

    inefficiency included improper distribution of chilled water in the main branches, and bypassing return water through non-operation chillers....

  17. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    SciTech Connect (OSTI)

    Spitler, J.D.; Culling, J.R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30T23:59:59.000Z

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  18. Application of Pulsed Electrical Fields for Advanced Cooling and Water Recovery in Coal-Fired Power Plant

    SciTech Connect (OSTI)

    Young Cho; Alexander Fridman

    2009-04-02T23:59:59.000Z

    The overall objective of the present work was to develop technologies to reduce freshwater consumption in a cooling tower of coal-based power plant so that one could significantly reduce the need of make-up water. The specific goal was to develop a scale prevention technology based an integrated system of physical water treatment (PWT) and a novel filtration method so that one could reduce the need for the water blowdown, which accounts approximately 30% of water loss in a cooling tower. The present study investigated if a pulsed spark discharge in water could be used to remove deposits from the filter membrane. The test setup included a circulating water loop and a pulsed power system. The present experiments used artificially hardened water with hardness of 1,000 mg/L of CaCO{sub 3} made from a mixture of calcium chloride (CaCl{sub 2}) and sodium carbonate (Na{sub 2}CO{sub 3}) in order to produce calcium carbonate deposits on the filter membrane. Spark discharge in water was found to produce strong shockwaves in water, and the efficiency of the spark discharge in cleaning filter surface was evaluated by measuring the pressure drop across the filter over time. Results showed that the pressure drop could be reduced to the value corresponding to the initial clean state and after that the filter could be maintained at the initial state almost indefinitely, confirming the validity of the present concept of pulsed spark discharge in water to clean dirty filter. The present study also investigated the effect of a plasma-assisted self-cleaning filter on the performance of physical water treatment (PWT) solenoid coil for the mitigation of mineral fouling in a concentric counterflow heat exchanger. The self-cleaning filter utilized shockwaves produced by pulse-spark discharges in water to continuously remove scale deposits from the surface of the filter, thus keeping the pressure drop across the filter at a relatively low value. Artificial hard water was used in the present fouling experiments for three different cases: no treatment, PWT coil only, and PWT coil plus self-cleaning filter. Fouling resistances decreased by 59-72% for the combined case of PWT coil plus filter compared with the values for no-treatment cases. SEM photographs showed much smaller particle sizes for the combined case of PWT coil plus filter as larger particles were continuously removed from circulating water by the filter. The x-ray diffraction data showed calcite crystal structures for all three cases.

  19. Daylighting Design Tools in Atria for Minimum Cooling Loads in Atrium Buildings

    E-Print Network [OSTI]

    Atif, M. R.; Boyer, L. L.; Degelman, L. O.; Claridge, D. E.

    The daylighting and sunlighting value of an atrium are considered the main reasons for including the atrium use in the built environment. However, most atria today are either overlit, which causes tremendous cooling loads, or underlit, requiring...

  20. A passive cooling design for multifamily residences [sic] in hot, humid climates

    E-Print Network [OSTI]

    Tang, Joseph C

    1983-01-01T23:59:59.000Z

    People living in hot, humid climates suffer either from extremely uncomfortable weather conditions or from the great cost of air-conditioning systems for maintaining comfort. Most of the available passive cooling techniques ...

  1. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01T23:59:59.000Z

    H. G. MacPherson The molten salt adventure Nuclear Scienceand P.F. Peterson, Molten-Salt-Cooled Advanced High-Clarno Assessment of candidate molten salt coolants for the

  2. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01T23:59:59.000Z

    1] B. Farrar et. al. , Fast reactor decay heat removal:CA [2] B. Farrar et. al. , Fast reactor decay heat removal:They are 1) gas cooled fast reactors (GFR), 2) very high

  3. Safety and core design of large liquid-metal cooled fast breeder reactors

    E-Print Network [OSTI]

    Qvist, Staffan Alexander

    2013-01-01T23:59:59.000Z

    Florida, USA (1997). [34] P. HEJZLAR et. al. “Traveling WaveLaboratory, 2013. [76] P. HEJZLAR and C. B. DAVIS. “studies on TWRs Yarsky, Hejzlar, Driscoll (MIT) Gas-cooled

  4. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    SciTech Connect (OSTI)

    Jasbir Gill

    2010-08-30T23:59:59.000Z

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica/silicate are two common potential cycle-limiting minerals for using impaired waters. For produced waters, barium sulfate and calcium sulfate are two additional potential cycle-limiting minerals. For reclaimed municipal wastewater effluents, calcium phosphate scaling can be an issue, especially in the co-presence of high silica. Computational assessment, using a vast amount of Nalco's field data from coal fired power plants, showed that the limited use and reuse of impaired waters is due to the formation of deposit caused by the presence of iron, high hardness, high silica and high alkalinity in the water. Appropriate and cost-effective inhibitors were identified and developed - LL99B0 for calcite and gypsum inhibition and TX-15060 for silica inhibition. Nalco's existing dispersants HSP-1 and HSP-2 has excellent efficacy for dispersing Fe and Mn. ED and EDI were bench-scale tested by the CRADA partner Argonne National Laboratory for hardness, alkalinity and silica removal from synthetic make-up water and then cycled cooling water. Both systems showed low power consumption and 98-99% salt removal, however, the EDI system required 25-30% less power for silica removal. For Phase 2, the EDI system's performance was optimized and the length of time between clean-in-place (CIP) increased by varying the wafer composition and membrane configuration. The enhanced EDI system could remove 88% of the hardness and 99% of the alkalinity with a processing flux of 19.2 gal/hr/m{sup 2} and a power consumption of 0.54 kWh/100 gal water. Bench tests to screen alternative silica/silicate scale inhibitor chemistries have begun. The silica/silicate control approaches using chemical inhibitors include inhibition of silicic acid polymerization and dispersion of silica/silicate crystals. Tests were conducted with an initial silica concentration of 290-300 mg/L as SiO{sub 2} at pH 7 and room temperature. A proprietary new chemistry was found to be promising, compared with a current commercial product commonly used for silica/silicate control. Additional pilot cooling tower testing confirmed

  5. 524 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 4, APRIL 2013 GreenCool: An Energy-Efficient Liquid Cooling

    E-Print Network [OSTI]

    Coskun, Ayse

    multiprocessor system-on-chips (MPSoCs). Microchannel- based liquid cooling, however, can substantially increaseCs. GreenCool simultaneously minimizes the cooling energy for a given system while maintaining thermal memory chips, package-on-package integration, and 2.5-D systems. Recently, research efforts for building

  6. Internet Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at America's Coal-Fired Power Plants

    SciTech Connect (OSTI)

    J. Daniel Arthur

    2011-09-30T23:59:59.000Z

    In recent years, rising populations and regional droughts have caused coal-fired power plants to temporarily curtail or cease production due to a lack of available water for cooling. In addition, concerns about the availability of adequate supplies of cooling water have resulted in cancellation of plans to build much-needed new power plants. These issues, coupled with concern over the possible impacts of global climate change, have caused industry and community planners to seek alternate sources of water to supplement or replace existing supplies. The Department of Energy, through the National Energy Technology Laboratory (NETL) is researching ways to reduce the water demands of coal-fired power plants. As part of the NETL Program, ALL Consulting developed an internet-based Catalog of potential alternative sources of cooling water. The Catalog identifies alternative sources of water, such as mine discharge water, oil and gas produced water, saline aquifers, and publicly owned treatment works (POTWs), which could be used to supplement or replace existing surface water sources. This report provides an overview of the Catalog, and examines the benefits and challenges of using these alternative water sources for cooling water.

  7. Design of a high temperature hot water central heating system

    SciTech Connect (OSTI)

    Beaumont, E.L.; Johnson, R.C.; Weaver, J.M.

    1981-11-01T23:59:59.000Z

    The paper reviews the conceptual design of a central heating system at Los Alamos Scientific Laboratory. The resource considered for this heating system design was hot dry rock geothermal energy. Design criteria were developed to ensure reliability of energy supply, to provide flexibility for adaptation to multiple energy resources, to make optimum use of existing equipment and to minimize reinvestment cost. A variable temperature peaking high temperature water system was selected for this purpose.

  8. Wet-dry cooling demonstration: A transfer of technology: Final report

    SciTech Connect (OSTI)

    Allemann, R.T.; Johnson, B.M.; Werry, E.V.

    1987-01-01T23:59:59.000Z

    Wet-dry cooling using the ammonia phase-change system, designated the Advanced Concepts Test, was tested on a large-scale at Pacific Gas and Electric Company's Kern Station at Bakersfield, California. The facility is capable of condensing 60,000 lb/h of steam from a small house turbine. Two different modes of combining dry and evaporative cooling were tested. One uses deluge cooling in which water is allowed to flow over the fins of the dry (air-cooled) heat exchanger on hot days; the other uses a separate evaporative condenser in parallel to the dry heat exchanger. A third mode of enhancing the dry-cooling system, termed capacitive cooling, was tested. In this system, the ammonia-cooled steam condenser is supplemented by a parallel conventional water-cooled condenser with water supplied from a closed system. This water is cooled during off-peak hours each night by an ammonia heat pump that rejects heat through the cooling tower. If operated over the period of a year, each of the wet-dry systems would use only 25% of the water normally required to reject this heat load in an evaporative cooling tower. The third would consume no water, the evaporative cooling being replaced by the delayed cooling of the closed system water supply.

  9. The impact of different climates on window and skylight design for daylighting and passive cooling and heating in residential buildings: A comparative study

    SciTech Connect (OSTI)

    Al-Sallal, K.A.

    1999-07-01T23:59:59.000Z

    The study aims to explore the effect of different climates on window and skylight design in residential buildings. The study house is evaluated against climates that have design opportunities for passive systems, with emphasis on passive cooling. The study applies a variety of methods to evaluate the design. It has found that earth sheltering and night ventilation have the potential to provide 12--29% and 25--77% of the cooling requirements respectively for the study house in the selected climates. The reduction of the glazing area from 174 ft{sup 2} to 115 ft{sup 2} has different impacts on the cooling energy cost in the different climates. In climates such Fresno and Tucson, one should put the cooling energy savings as a priority for window design, particularly when determining the window size. In other climates such as Albuquerque, the priority of window design should be first given to heating savings requirements.

  10. Use of caged fish for mariculture and environmental monitoring in a power-plant cooling-water system

    E-Print Network [OSTI]

    Chamberlain, George William

    1978-01-01T23:59:59.000Z

    fishes were cultured in cages in the intake area, at the head of the 9. S-km discharge canal, and at three locations in the 1053-ha ccoling lake of a power plant near upper Galveston Bay, fran 1 September 1975 to 11 September 1976 both to explore... species of fish within cages, and water and tissue concen- trations of heavy metals and pesticides. Major hydrological characteristics of the cooling system were as follows: (1) temperature in the discharge canal averaged 8-9 C higher than those...

  11. Design for an invertible water bottle to facilitate cleaning and promote sustainable water bottle usage

    E-Print Network [OSTI]

    Metlitz, Matthew S

    2014-01-01T23:59:59.000Z

    The goal of this thesis is to explore the design of a reusable water bottle that can be inverted to expose the inside. Being able to directly touch the entire inside of the product could facilitate cleaning and consequently ...

  12. Expansion and user study of CoolVent : inclusion of thermal comfort models in an early-design natural ventilation tool

    E-Print Network [OSTI]

    Rich, Rebecca E. (Rebecca Eileen)

    2011-01-01T23:59:59.000Z

    CoolVent, a software design tool for architects, has been improved. The work of Maria- Alejandra Menchaca-B. and colleagues has been improved to include a more robust and intuitive building and window dimensioning scheme, ...

  13. Design of a 2 Slot VLPC Cryostat Cooled by a Cryocooler

    SciTech Connect (OSTI)

    Rucinski, Russell A.; /Fermilab

    2004-04-22T23:59:59.000Z

    The conceptual design and preliminary engineering calculations have been completed for a two cassette cryostat. This report summarizes the design. A cryocooler is permanently mounted in the center of a stainless steel, 0.75 inch thick top lid. The cryocooler sits upon a spacer which raises the cooling stage elevations to favorably match the cassette heat intercept elevations. The top lid (32.0-inch outside diameter) mates to a 24-inch pipe size flange with o-ring. The 24-inch pipe size vacuum vessel with end plate has a minimum internal depth of 16-inch to give adequate clearance for the depth of the cryocooler and multilayer insulation blankets. Support stand legs elevate the container to a convenient height and allow for placement of the AFE power supply underneath. Two cassette slots are located on either side of the cryocooler. The slots are positioned parallel to each other, 10.5-inch center to center (6 standard cassette slot widths) so that the standard 8 slot AFE backplane can be used. The slot opening through the lid is approximately 1.422-inch x 16.782-inch. A 0.016-inch thick titanium (Ti-6AI-4V) envelope with sealing lip is inserted through lid and defines the gas helium boundary that the VLPC cassette resides. The internal dimensions of the titanium envelope are 1.390-inch x 16.75-inch x 10.531-inch deep. When the cassette is inserted the clearances will be 0.015-inch on the long side, 0.063-inch on the short side, and 0.032-inch at the bottom. The cassette gasket seals against the top lip of the titanium envelope. A soft gasket or thin vacuum sealant tape seals the underside of the titanium envelope to the top surface of the lid. A clamping hold down bar may be necessary to make this vacuum seal. Gas helium for the cassette space is supplied through a fitting and port that is added to the cassette bulkhead assembly. This is the only modification necessary the standard D-Zero cassette. Evacuation and backfilling and then stagnant positive pressure are achieved through this one port. After the titanium envelope/pocket and cassette are mounted to the top lid, the lid is raised so that assembly work can be accomplished below. Three pneumatic cylinders mounted to the lid are pressurized (with air or the gas helium source) to raise the lid. Safety linkages are installed to prevent accidental lowering of the lid while work is being performed. Honeycomb sandwich panels are attached to the titanium envelope to support the thin envelope against the pressure differential. A thin thermoplastic mesh placed between the honeycomb panel and titanium envelope helps to insulate the panel so it is not a significant parallel heat path down the wall. There are two panel sets for each cassette. One for the area above the upper intercept and one set for the area below. It is reasonable that a 0.40-inch thick panel will suffice. A high conductance thermal link is made between the first stage of the cryocooler and the uppermost intercept location. This is solid OFHC copper part with a short section of flexible copper braid that connects to bars that clamp solidly to the long sides of the cassette envelope. Apiezon 'N' grease is used at assembly to enhance heat transfer at the clamp bar to titanium envelope interface. A second high conductance thermal connection is made between the second stage of the cryocooler and the bottom of the cassette envelope. The link is mostly solid OFHC copper along with a short flexible braid section in between. The two piece clamping bar encases the bottom 1.75-inch of the cassette. Thermal grease is used at the interface.

  14. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01T23:59:59.000Z

    dummy>0.95) dummy=pn1/g6; ppp=ge(:,1); elseif aa==2 ge2(k,1)=ge3(:,1); subplot(3,8,1);plot(ppp,mf(:,1),'o');title('Airmflow') subplot(3,8,9);plot(ppp,mf(:,2),'o');title('cooling

  15. Thermally Simulated 32kW Direct-Drive Gas-Cooled Reactor: Design, Assembly, and Test

    SciTech Connect (OSTI)

    Godfroy, Thomas J.; Bragg-Sitton, Shannon M. [NASA Marshall Space Flight Center, TD40, Huntsville, Alabama, 35812 (United States); University of Michgan, Dept. of Nuclear Engineering and Radiological Sciences, Ann Arbor MI 48109 (United States); Kapernick, Richard J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2004-02-04T23:59:59.000Z

    One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow pre-prototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW direct-drive gas-cooled reactor in the Early Flight Fission - Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.

  16. air-cooled water chillers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Telephone: (409) 845-1214 Fax: (409) 845-6495 Internet: r-howard1@tamu.edu ix x Lesson 1 Water in Our Daily Lives Every living thing on earth requires water to survive...

  17. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth

    2002-09-01T23:59:59.000Z

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

  18. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect (OSTI)

    Yu, W.; France, D. M.; Routbort, J. L. (Energy Systems)

    2011-01-19T23:59:59.000Z

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  19. Breeder-in-tube design for a helium-cooled Li/sub 2/O tokamak blanket

    SciTech Connect (OSTI)

    Billone, M.C.; Jung, J.; Liu, Y.Y.; Smith, D.L.

    1986-01-01T23:59:59.000Z

    Of the solid breeder designs considered in the Blanket Comparison and Selection Study (BCSS), the lithium oxide breeder with helium coolant and ferritic steel (HT-9) structural material received the highest overall ranking for both tokamak and tandem mirror systems in terms of engineering, economics, safety, and R and D requirements. The BCSS blanket surrounding the fusion plasma consists of a number of thin breeder plates externally cooled by flowing helium and internally purged of tritium by a separate helium stream. A detailed review of this design indicated that significant improvements would be realized in the areas of tritium breeding, blanket thickness, blanket energy multiplication, power-conversion efficiency, breeder temperature window, and geometrical integrity of the coolant and purge paths by using a neutron multiplier (beryllium), a higher temperature structural material (vanadium-based alloy), and a tube geometry. The neutronics, thermal-hydraulics, tritium recovery, and structural performance characteristics of this innovative solid breeder design are discussed in this paper.

  20. Passive containment cooling system

    DOE Patents [OSTI]

    Conway, Lawrence E. (Robinson Township, Allegheny County, PA); Stewart, William A. (Penn Hills Township, Allegheny County, PA)

    1991-01-01T23:59:59.000Z

    A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

  1. Gas-Cooled Fast Breeder Reactor Preliminary Safety Information Document, Amendment 10. GCFR residual heat removal system criteria, design, and performance

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    This report presents a comprehensive set of safety design bases to support the conceptual design of the gas-cooled fast breeder reactor (GCFR) residual heat removal (RHR) systems. The report is structured to enable the Nuclear Regulatory Commission (NRC) to review and comment in the licensability of these design bases. This report also presents information concerning a specific plant design and its performance as an auxiliary part to assist the NRC in evaluating the safety design bases.

  2. Minimalist design of water-soluble cross-[beta] architecture

    SciTech Connect (OSTI)

    Biancalana, Matthew; Makabe, Koki; Koide, Shohei (UC)

    2010-08-13T23:59:59.000Z

    Demonstrated successes of protein design and engineering suggest significant potential to produce diverse protein architectures and assemblies beyond those found in nature. Here, we describe a new class of synthetic protein architecture through the successful design and atomic structures of water-soluble cross-{beta} proteins. The cross-{beta} motif is formed from the lamination of successive {beta}-sheet layers, and it is abundantly observed in the core of insoluble amyloid fibrils associated with protein-misfolding diseases. Despite its prominence, cross-{beta} has been designed only in the context of insoluble aggregates of peptides or proteins. Cross-{beta}'s recalcitrance to protein engineering and conspicuous absence among the known atomic structures of natural proteins thus makes it a challenging target for design in a water-soluble form. Through comparative analysis of the cross-{beta} structures of fibril-forming peptides, we identified rows of hydrophobic residues ('ladders') running across {beta}-strands of each {beta}-sheet layer as a minimal component of the cross-{beta} motif. Grafting a single ladder of hydrophobic residues designed from the Alzheimer's amyloid-{beta} peptide onto a large {beta}-sheet protein formed a dimeric protein with a cross-{beta} architecture that remained water-soluble, as revealed by solution analysis and x-ray crystal structures. These results demonstrate that the cross-{beta} motif is a stable architecture in water-soluble polypeptides and can be readily designed. Our results provide a new route for accessing the cross-{beta} structure and expanding the scope of protein design.

  3. Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water

    E-Print Network [OSTI]

    Cawley, R.

    heaters. The methods presented demonstrate how integrated systems can be of value in reducing daily summertime peaks. INTRODUCTION A need for descriptors to evaluate systems that condition space and heat domestic water has been recognized for several... added to and used by the water from the desuperheated refrigerant - heat normally provided by the electric water heater's resistance elements. DESCRIPTION OF EQUIPMENT The system considered for this study is best described by U.S. Patent No. 4...

  4. Subtask 1.24 - Optimization of Cooling Water Resources for Power Generation

    SciTech Connect (OSTI)

    Daniel Stepan; Richard Shockey; Bethany Kurz; Wesley Peck

    2009-03-31T23:59:59.000Z

    The Energy & Environmental Research Center (EERC) has developed an interactive, Web-based decision support system (DSS{copyright} 2007 EERC Foundation) to provide power generation utilities with an assessment tool to address water supply issues when planning new or modifying existing generation facilities. The Web-based DSS integrates water and wastewater treatment technology and water law information with a geographic information system-based interactive map that links to state and federal water quality and quantity databases for North Dakota, South Dakota, Minnesota, Wyoming, Montana, Nebraska, Wisconsin, and Iowa.

  5. Cooling Water Issues and Opportunities at U.S. Nuclear Power Plants,

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluorControls andCONVENTIONAL ENERGY|CoolDecember

  6. Alternative cooling resource for removing the residual heat of reactor

    SciTech Connect (OSTI)

    Park, H. C.; Lee, J. H.; Lee, D. S.; Jung, C. Y.; Choi, K. Y. [Korea Hydro and Nuclear Power Co., Ltd., 260 Naa-ri Yangnam-myeon Gyeongju-si, Gyeonasangbuk-do, 780-815 (Korea, Republic of)

    2012-07-01T23:59:59.000Z

    The Recirculated Cooling Water (RCW) system of a Candu reactor is a closed cooling system which delivers demineralized water to coolers and components in the Service Building, the Reactor Building, and the Turbine Building and the recirculated cooling water is designed to be cooled by the Raw Service Water (RSW). During the period of scheduled outage, the RCW system provides cooling water to the heat exchangers of the Shutdown Cooling System (SDCS) in order to remove the residual heat of the reactor, so the RCW heat exchangers have to operate at all times. This makes it very hard to replace the inlet and outlet valves of the RCW heat exchangers because the replacement work requires the isolation of the RCW. A task force was formed to prepare a plan to substitute the recirculated water with the chilled water system in order to cool the SDCS heat exchangers. A verification test conducted in 2007 proved that alternative cooling was possible for the removal of the residual heat of the reactor and in 2008 the replacement of inlet and outlet valves of the RCW heat exchangers for both Wolsong unit 3 and 4 were successfully completed. (authors)

  7. Sustaining Industrial Energy Efficiency in Process Cooling in a Potentially Water-Short Future

    E-Print Network [OSTI]

    Ferland, K.

    2014-01-01T23:59:59.000Z

    Operation: ESL-IE-14-05-18 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 15 eco-ATWE Water Efficient Mode (Combined Evaporative and Dry Mode) Third Mode of Operation: • Two Pumps • Two Water...

  8. Considerations for understanding one`s cooling system prior to reuse water implementation

    SciTech Connect (OSTI)

    Chmelovski, M.J. [Nalco Chemical Co., Naperville, IL (United States)

    1996-10-01T23:59:59.000Z

    Water reuse situations are growing due to the need or desire to minimize water discharge from an industrial facility. Most of these applications are retrofits or system redesigns. Many times information is required to make decisions about the reuse application. Real-time or diagnostic studies provide improved information about the water systems. Addition of very low concentrations of a chemical tracer can provide improved information about the system. Useful and unique functions of chemical tracers are that they can provide one with the following information: system volume, quantifying previously unaccounted blowdown, holding time index, water distribution, leakage, and flowrate. These are important parameters when considering water reuse and system redesign. The chemical tracers discussed in this paper represent a significant improvement over compounds previously used in reuse applications.

  9. Thermodynamic formalism of water uptakes on solid porous adsorbents for adsorption cooling applications

    SciTech Connect (OSTI)

    Sun, Baichuan; Chakraborty, Anutosh, E-mail: AChakraborty@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-05-19T23:59:59.000Z

    This Letter presents a thermodynamic formulation to calculate the amount of water vapor uptakes on various adsorbents such as zeolites, metal organic frameworks, and silica gel for the development of an advanced adsorption chiller. This formalism is developed from the rigor of the partition distribution function of each water vapor adsorptive site on adsorbents and the condensation approximation of adsorptive water molecules and is validated with experimental data. An interesting and useful finding has been established that the proposed model is thermodynamically connected with the pore structures of adsorbent materials, and the water vapor uptake highly depends on the isosteric heat of adsorption at zero surface coverage and the adsorptive sites of the adsorbent materials. Employing the proposed model, the thermodynamic trends of water vapor uptakes on various adsorbents can be estimated.

  10. Ground and Water Source Heat Pump Performance and Design for Southern Climates 

    E-Print Network [OSTI]

    Kavanaugh, S.

    1988-01-01T23:59:59.000Z

    Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

  11. Ground and Water Source Heat Pump Performance and Design for Southern Climates

    E-Print Network [OSTI]

    Kavanaugh, S.

    1988-01-01T23:59:59.000Z

    Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

  12. Design of a sodium-cooled epithermal long-term exploration nuclear engine

    E-Print Network [OSTI]

    Yarsky, Peter

    2004-01-01T23:59:59.000Z

    To facilitate the mission to Mars initiative, the current work has focused on conceptual designs for transformational and enabling space nuclear reactor technologies. A matrix of design alternatives for both the reactor ...

  13. Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling

    SciTech Connect (OSTI)

    Walker, Michael E.; Theregowda, Ranjani B.; Safari, Iman; Abbasian, Javad; Arastoopour, Hamid; Dzombak, David A.; Hsieh, Ming-Kai; Miller, David C.

    2013-10-01T23:59:59.000Z

    A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondarytreated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

  14. Fusion Engineering and Design 4950 (2000) 709717 Helium-cooled refractory alloys first wall and blanket

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    2000-01-01T23:59:59.000Z

    impurity control, and mechanical, nuclear and thermal hydraulics design, and waste disposal, tritium and safety design. Systems study results show that at a closed cycle gas turbine (CCGT) gross thermal team, we performed the preliminary design of the W-alloy FW/blanket concept. We projected

  15. Hydration-dependent dynamics of deeply cooled water under strong confinement

    E-Print Network [OSTI]

    Bertrand, C. E.

    We have measured the hydration-level dependence of the single-particle dynamics of water confined in the ordered mesoporous silica MCM-41. The dynamic crossover observed at full hydration is absent at monolayer hydration. ...

  16. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production

    SciTech Connect (OSTI)

    Philip MacDonald; Jacopo Buongiorno; James Sterbentz; Cliff Davis; Robert Witt; Gary Was; J. McKinley; S. Teysseyre; Luca Oriani; Vefa Kucukboyaci; Lawrence Conway; N. Jonsson: Bin Liu

    2005-02-13T23:59:59.000Z

    The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor.

  17. A comparison of the heat transfer capabilities of two manufacturing methods for high heat flux water-cooled devices

    SciTech Connect (OSTI)

    McKoon, R.H.

    1986-10-01T23:59:59.000Z

    An experimental program was undertaken to compare the heat transfer characteristics of water-cooled copper devices manufactured via conventional drilled passage construction and via a technique whereby molten copper is cast over a network of preformed cooling tubes. Two similar test blocks were constructed; one using the drilled passage technique, the other via casting copper over Monel pipe. Each test block was mounted in a vacuum system and heated uniformly on the top surface using a swept electron beam. From the measured absorbed powers and resultant temperatures, an overall heat transfer coefficient was calculated. The maximum heat transfer coefficient calculated for the case of the drilled passage test block was 2534 Btu/hr/ft/sup 2///sup 0/F. This corresponded to an absorbed power density of 320 w/cm/sup 2/ and resulted in a maximum recorded copper temperature of 346/sup 0/C. Corresponding figures for the cast test block were 363 Btu/hr/ft/sup 2///sup 0/F, 91 w/cm/sup 2/, and 453/sup 0/C.

  18. Apparatus and method of direct water cooling several parallel circuit cards each containing several chip packages

    DOE Patents [OSTI]

    Cipolla, Thomas M. (Katonah, NY); Colgan, Evan George (Chestnut Ridge, NY); Coteus, Paul W. (Yorktown Heights, NY); Hall, Shawn Anthony (Pleasantville, NY); Tian, Shurong (Mount Kisco, NY)

    2011-12-20T23:59:59.000Z

    A cooling apparatus, system and like method for an electronic device includes a plurality of heat producing electronic devices affixed to a wiring substrate. A plurality of heat transfer assemblies each include heat spreaders and thermally communicate with the heat producing electronic devices for transferring heat from the heat producing electronic devices to the heat transfer assemblies. The plurality of heat producing electronic devices and respective heat transfer assemblies are positioned on the wiring substrate having the regions overlapping. A heat conduit thermally communicates with the heat transfer assemblies. The heat conduit circulates thermally conductive fluid therethrough in a closed loop for transferring heat to the fluid from the heat transfer assemblies via the heat spreader. A thermally conductive support structure supports the heat conduit and thermally communicates with the heat transfer assemblies via the heat spreader transferring heat to the fluid of the heat conduit from the support structure.

  19. Cooling load estimation methods

    SciTech Connect (OSTI)

    McFarland, R.D.

    1984-01-01T23:59:59.000Z

    Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described. Correlations are described that permit auxiliary cooling estimates from monthly average insolation and weather data. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy required of a given building.

  20. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    SciTech Connect (OSTI)

    none,

    1981-05-01T23:59:59.000Z

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  1. APEX ADVANCED FERRITIC STEEL, FLIBE SELF-COOLED FIRST WALL AND BLANKET DESIGN

    SciTech Connect (OSTI)

    WONG,CPC; MALANG,S; SAWAN,M; SVIATOSLAVSKY,I; MOGAHED,E; SMOLENTSEV,S; MAJUMDAR,S; MERRILL,B; MATTAS,R; FRIEND,M; BOLIN,J; SHARAFAT,S

    2003-11-01T23:59:59.000Z

    OAK-B135 As an element in the US Advanced Power Extraction (APEX) program, they evaluated the design option of using advanced nanocomposite ferritic steel (AFS) as the structural material and Flibe as the tritium breeder and coolant. They selected the recirculating flow configuration as the reference design. Based on the material properties of AFS, they found that the reference design can handle a maximum surface heat flux of 1 MW/m{sup 2}, and a maximum neutron wall loading of 5.4 MW/m{sup 2}, with a gross thermal efficiency of 47%, while meeting all the tritium breeding and structural design requirements. This paper covers the results of the following areas of evaluation: materials selection, first wall and blanket design configuration, materials compatibility, components fabrication, neutronics analysis, thermal hydraulics analysis including MHD effects, structural analysis, molten salt and helium closed cycle power conversion system, and safety and waste disposal of the recirculating coolant design.

  2. Safety and core design of large liquid-metal cooled fast breeder reactors

    E-Print Network [OSTI]

    Qvist, Staffan Alexander

    2013-01-01T23:59:59.000Z

    OF LARGE FAST REACTORS Calculation examples A typicalMonte Carlo Reactor Physics Burnup Calculation Code. Tech.reactor core design from experience and coarse calculations

  3. Safety and core design of large liquid-metal cooled fast breeder reactors

    E-Print Network [OSTI]

    Qvist, Staffan Alexander

    2013-01-01T23:59:59.000Z

    4 Reactivity feedback of large fast reactors 4.1temperature . . . . . . . . . . . . . . . . . . Fast reactorfission gas plenum212 Conventional fast reactor core design

  4. Safety and core design of large liquid-metal cooled fast breeder reactors

    E-Print Network [OSTI]

    Qvist, Staffan Alexander

    2013-01-01T23:59:59.000Z

    of conventional LWR systems (PWR & BWRs), partly due to thethe margin to boiling in a PWR is ?15 ? C, while the coolantprimary heat exhangers of a PWR, in which borated water is

  5. Variable Frequency AC Drives for Cooling Tower Energy Efficiency

    E-Print Network [OSTI]

    Corey, R. W.

    1982-01-01T23:59:59.000Z

    speed fan drives. Fan speed is reduced to yield specific water temperatures at thermal conditions less difficult than design. The reduced air flow is accomplished by reduced fan power consumption, resulting in optimum cooling tower operation... and economics. Automatic fan speed control by sensing cold water temperature is the economic essence of the application of adjustable frequency power to A-C fan motors. 2.2 Cell Partitions In some multi-cell mechanical-draft cooling towers, the isolation...

  6. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    SciTech Connect (OSTI)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30T23:59:59.000Z

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially

  7. Design and simulation of a heat pump for simultaneous heating and cooling using HFC or CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    subcooling vol volumetric w water 1. Context and objectives Nowadays, global warming being a major concern and the large temperature glide at heat rejection used for DHW production. Keywords: design, simulation, heating;2 NOMENCLATURE c relative clearance volume (-) C electricity consumption (Wh) Cp specific heat (J kg-1 K-1 ) h

  8. An Ontology Design Pattern for Surface Water Features

    SciTech Connect (OSTI)

    Sinha, Gaurav [Ohio University, Athens; Mark, David [University at Buffalo, NY; Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01T23:59:59.000Z

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  9. Cool Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Links Explore Science Explore Explore these Topics Activities Videos Cool Links Favorite Q&A invisible utility element Cool Links Los Alamos National Laboratory links Los...

  10. Earth-Coupled Water-Source Heat Pump Research, Design and Applications in Louisiana

    E-Print Network [OSTI]

    Braud, H. J.; Klimkowski, H.; Baker, F. E.

    1985-01-01T23:59:59.000Z

    An earth-coupled water-source heat pump uses the earth as the thermal source and sink for economical, energy efficient, space heating and cooling. Water exiting the heat pump passes through an earth heat exchanger, which is a closed loop of plastic...

  11. Earth-Coupled Water-Source Heat Pump Research, Design and Applications in Louisiana 

    E-Print Network [OSTI]

    Braud, H. J.; Klimkowski, H.; Baker, F. E.

    1985-01-01T23:59:59.000Z

    An earth-coupled water-source heat pump uses the earth as the thermal source and sink for economical, energy efficient, space heating and cooling. Water exiting the heat pump passes through an earth heat exchanger, which is a closed loop of plastic...

  12. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    SciTech Connect (OSTI)

    None

    1980-11-01T23:59:59.000Z

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  13. Design and implementation of liquid cooling system for ArchiMITes vehicle

    E-Print Network [OSTI]

    Hui, Sam, S.B. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    MIT Vehicle Design Summit is building ArchiMITes, a lightweight hybrid vehicle with a modular auxiliary power unit. For testing purposes, the vehicle platform will first be built as an all-electric vehicle. It will be ...

  14. Design of compact intermediate heat exchangers for gas cooled fast reactors

    E-Print Network [OSTI]

    Gezelius, Knut, 1978-

    2004-01-01T23:59:59.000Z

    Two aspects of an intermediate heat exchanger (IHX) for GFR service have been investigated: (1) the intrinsic characteristics of the proposed compact printed circuit heat exchanger (PCHE); and (2) a specific design optimizing ...

  15. Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors

    E-Print Network [OSTI]

    Gibbs, Jonathan Paul

    2008-01-01T23:59:59.000Z

    The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

  16. Design of a Low Power, Fast-Spectrum, Liquid-Metal Cooled Surface Reactor System

    SciTech Connect (OSTI)

    Marcille, T. F.; Poston, D. I.; Kapernick, R. J. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Dixon, D. D. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Fischer, G. A. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Doherty, S. P. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Department of Engineering, Trinity College, Hartford, CT 06106 (United States)

    2006-01-20T23:59:59.000Z

    In the current 2005 US budget environment, competition for fiscal resources make funding for comprehensive space reactor development programs difficult to justify and accommodate. Simultaneously, the need to develop these systems to provide planetary and deep space-enabling power systems is increasing. Given that environment, designs intended to satisfy reasonable near-term surface missions, using affordable technology-ready materials and processes warrant serious consideration. An initial lunar application design incorporating a stainless structure, 880 K pumped NaK coolant system and a stainless/UO2 fuel system can be designed, fabricated and tested for a fraction of the cost of recent high-profile reactor programs (JIMO, SP-100). Along with the cost reductions associated with the use of qualified materials and processes, this design offers a low-risk, high-reliability implementation associated with mission specific low temperature, low burnup, five year operating lifetime requirements.

  17. Importance of Delayed Neutrons on the Coupled Neutronic-Thermohydraulic Stability of a Natural Circulation Heavy Water-Moderated Boiling Light Water-Cooled Reactor

    SciTech Connect (OSTI)

    Nayak, A.K. [Bhaha Atomic Research Centre (India); Aritomi, M. [Tokyo Institute of Technology (Japan); Raj, V. Venkat [Bhaha Atomic Research Centre (India)

    2001-07-15T23:59:59.000Z

    The coupled neutronic-thermohydraulic stability characteristics of a natural circulation heavy water-moderated boiling light water-cooled reactor was investigated analytically considering the effects of prompt and delayed neutrons. For this purpose, the reactor considered is the Indian Advanced Heavy Water Reactor. The analytical model considers a point kinetics model for the neutron dynamics, a homogeneous two-phase flow model for the coolant thermal hydraulics, and a lumped heat transfer model for the fuel thermal dynamics. A higher mode of oscillation having a frequency much greater than the density-wave oscillation frequency was observed if prompt neutrons alone were considered. The occurrence of a higher mode of oscillation was found to be dependent on the concentration of delayed neutrons, the void reactivity coefficient, and the fuel time constant. The core inlet subcooling is found to have different effects on the decay ratio of the fundamental and higher modes of oscillations. The influences of void reactivity coefficient and fuel time constant on the fundamental and higher modes of oscillations were also found to be opposite in nature.

  18. Thermoelectric-power water withdrawals by cooling type, 2005. [Values may not sum to totals because of independent rounding. All values are in million gallons per day

    E-Print Network [OSTI]

    Thermoelectric-power water withdrawals by cooling type, 2005. [Values may not sum to totals because,190 5,850 .33 .01 0 273 273 New Mexico.............. 0 0 0 0 0 10.4 0 45.5 0 55.9 New York

  19. Infrared Cavity Ringdown Spectroscopy of Jet-Cooled Nucleotide Base Clusters and Water Raphael N. Casaes, Joshua B. Paul, R. Patrick McLaughlin, and Richard J. Saykally*

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Infrared Cavity Ringdown Spectroscopy of Jet-Cooled Nucleotide Base Clusters and Water Complexes the first direct infrared absorption measurements of gas phase nucleotide base clusters and complexes. Introduction The five nucleotide bases (adenine, guanine, thymine, cy- tosine, and uracil) found in DNA and RNA

  20. Self-Sustaining Thorium Boiling Water Reactors

    E-Print Network [OSTI]

    Ganda, Francesco

    A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar ...

  1. FEMP Designated Product Assessment for Commercial Gas Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    heaters, hot water supply boilers, and unfired hot water storage tanks.heaters, hot water supply boilers, and unfired hot water storage tanks.

  2. Factor water treatment up-front in IPP plant design

    SciTech Connect (OSTI)

    Levine, J.

    1994-09-01T23:59:59.000Z

    This article describes how independent power producers profit from drawing on the expertise of a water-treatment supplier at the inception of a project. Concepts presented here apply to other major subsystems. The nature of independent power project development, both domestic and international, has resulted in many innovative approaches to client service. The highly competitive, fast-track nature of project development requires that financial pro forma plans remain fluid, with periodic updates made as the project races from conceptual design through financial closing. Suppliers are continually called upon to provide insight and expertise to facilitate the project. Their expertise is also sought by organizations considering the purchase of an existing independent power producer (IPP) facility. Many foundation steps'' occur during early commercial development. Among these are: response to a request for proposals, power slates agreements, feasibility studies, site qualification, contract negotiation, host development, and steam sales agreements. As the project moves forward, development of comprehensive design and equipment specifications, equipment selection, and financial analysis are required. One aspect frequently overlooked because of the multitude of business and technical issues involved is the water supply. With public water supplies often inaccessible, it may be necessary to make use of a poor-quality source--such as effluent from publicly owned treatment works (POTWs), acid mine drainage, host-facility process discharge, landfill leachate, and produced water from oil fields. Even if surface water or groundwater is available, the quality and often the quantity may be unknown, or there may be no provisions for discharge of wastewater.

  3. Thermal hydraulic design of a 2400 MW t?h? direct supercritical CO?-cooled fast reactor

    E-Print Network [OSTI]

    Pope, Michael A. (Michael Alexander)

    2006-01-01T23:59:59.000Z

    The gas cooled fast reactor (GFR) has received new attention as one of the basic concepts selected by the Generation-IV International Forum (GIF) for further investigation. Currently, the reference GFR is a helium-cooled ...

  4. Best Management Practice #10: Cooling Tower Management

    Broader source: Energy.gov [DOE]

    Cooling towers regulate temperature by dissipating heat from recirculating water used to cool chillers, air-conditioning equipment, or other process equipment. Heat is rejected from the tower...

  5. Design of A Conduction-cooled 4T Superconducting Racetrack for Multi-field Coupling Measurement System

    E-Print Network [OSTI]

    Chen, Yuquan; Wu, Wei; Guan, Mingzhi; Wu, Beimin; Mei, Enming; Xin, Canjie

    2015-01-01T23:59:59.000Z

    A conduction-cooled superconducting magnet producing a transverse field of 4 Tesla has been designed for the new generation multi-field coupling measurement system, which was used to study the mechanical behavior of superconducting samples at cryogenic temperature and intense magnetic fields. Considering experimental costs and coordinating with system of strain measurements by contactless signals (nonlinear CCD optics system), the racetrack type for the coil winding was chosen in our design, and a compact cryostat with a two-stage GM cryocooler was designed and manufactured for the superconducting magnet. The magnet was composed of a pair of flat racetrack coils wound by NbTi/Cu superconducting composite wires, a copper and stainless steel combinational form and two Bi2Sr2CaCu2Oy superconducting current leads. All the coils were connected in series and can be powered with a single power supply. The maximum central magnetic field is 4 T. In order to support the high stress and uniform thermal distribution in t...

  6. Design and Implementation of a Real-time Spray Cooling Control System for Continuous Casting of Thin Steel Slabs

    E-Print Network [OSTI]

    Thomas, Brian G.

    @uiuc.edu Key words: Continuous casting, Secondary spray cooling, Real-time control, Heat Transfer Model

  7. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01T23:59:59.000Z

    geothermal reservoir. Greif provides a review of the use of applications of natural circulation to the cooling

  8. Questions About Your Cooling Water System That You Need To Ask

    E-Print Network [OSTI]

    Matson, J. V.

    1984-01-01T23:59:59.000Z

    and corrode the system rapidly. HOW CAN I DETERMINE WHAT TREATMENT I NEED? First, you must have tests performed on the water. The chemical constituents must be identified. Your system must be defined in terms of its sca1 ing and foul ing tendencies by a...IANT TO TEST ONE OF THE NON-CHEMICAL TREATMENT OEVICES? Fine. Just recognize it may not be effective, and evaluate the risk involved. Try to be scientific in terms of taking measurements during a control period prior to the insertion of the device...

  9. Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

  10. Evaporative Cooling for Energy Conservation

    E-Print Network [OSTI]

    Meyer, J. R.

    1983-01-01T23:59:59.000Z

    cooling. A recent application of evaporative air cooling equipment in a heat treat area at the John Deere Component Works in Waterloo, Iowa provided the required cooling at an operating cost of 30% of a city water coil and 10% of a chilled water system...

  11. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth

    2002-06-01T23:59:59.000Z

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  12. Nuclear design of small-sized high temperature gas-cooled reactor for developing countries

    SciTech Connect (OSTI)

    Goto, M.; Seki, Y.; Inaba, Y.; Ohashi, H.; Sato, H.; Fukaya, Y.; Tachibana, Y. [Japan Atomic Energy Agency, 4002, Oarai-machi, Higashi Ibaraki-gun, Ibaraki-ken 311-1394 (Japan)

    2012-07-01T23:59:59.000Z

    Japan Atomic Energy Agency (JAEA) has started a conceptual design of a small-sized HTGR with 50 MW thermal power (HTR50S), which is a first-of-a-kind commercial or demonstration plant of a small-sized HTGR to be deployed in developing countries such as Kazakhstan in the 2020's. The nuclear design of the HTR50S is performed by upgrading the proven technology of the High Temperature Engineering Test Reactor (HTTR) to reduce the cost for the construction. In the HTTR design, twelve kinds of fuel enrichment was used to optimize the power distribution, which is required to make the maximum fuel temperature below the thermal limitation during the burn-up period. However, manufacture of many kinds of fuel enrichment causes increase of the construction cost. To solve this problem, the present study challenges the nuclear design by reducing the number of fuel enrichment to as few as possible. The nuclear calculations were performed with SRAC code system whose validity was proven by the HTTR burn-up data. The calculation results suggested that the optimization of the power distribution was reasonably achieved and the maximum fuel temperature was kept below the limitation by using three kinds of fuel enrichment. (authors)

  13. Cooling Towers- Energy Conservation Strategies Understanding Cooling Towers 

    E-Print Network [OSTI]

    Smith, M.

    1991-01-01T23:59:59.000Z

    Cooling towers are energy conservation devices that Management, more often than not, historically overlooks in the survey of strategies for plant operating efficiencies. The utilization of the colder water off the cooling tower is the money maker!...

  14. Cooling Towers- Energy Conservation Strategies Understanding Cooling Towers

    E-Print Network [OSTI]

    Smith, M.

    Cooling towers are energy conservation devices that Management, more often than not, historically overlooks in the survey of strategies for plant operating efficiencies. The utilization of the colder water off the cooling tower is the money maker!...

  15. Natural Circulation in Water Cooled Nuclear Power Plants Phenomena, models, and methodology for system reliability assessments

    SciTech Connect (OSTI)

    Jose Reyes

    2005-02-14T23:59:59.000Z

    In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''.

  16. Robot design for leak detection in water-pipe systems

    E-Print Network [OSTI]

    Choi, Changrak

    2012-01-01T23:59:59.000Z

    Leaks are major problem that occur in the water pipelines all around the world. Several reports indicate loss of around 20 to 30 percent of water in the distribution of water through water pipe systems. Such loss of water ...

  17. Design, Fabrication and Integration of a NaK-Cooled Circuit

    SciTech Connect (OSTI)

    Garber, Anne; Godfroy, Thomas [NASA Marshall Space Flight Center, MSFC, AL 35824 (United States)

    2006-07-01T23:59:59.000Z

    The Early Flight Fission Test Facilities (EFF-TF) team has been tasked by the NASA Marshall Space Flight Center Nuclear Systems Office to design, fabricate, and test an actively pumped alkali metal flow circuit. The system, which was originally designed for use with a eutectic mixture of sodium potassium (NaK), was redesigned for use with lithium. Due to a shift in focus, it is once again being prepared for use with NaK. Changes made to the actively pumped, high temperature circuit include the replacement of the expansion reservoir, addition of remotely operated valves, and modification of the support table. Basic circuit components include: reactor segment, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and a spill reservoir. A 37-pin partial-array core (pin and flow path dimensions are the same as those in a full design) was selected for fabrication and test. This paper summarizes the integration and preparations for the fill of the pumped NaK circuit. (authors)

  18. Improvement design study on steam generator of MHR-50/100 aiming higher safety level after water ingress accident

    SciTech Connect (OSTI)

    Oyama, S. [Mitsubishi Heavy Industries, Ltd., 1-1 Wadasaki-cho 1-Chome, Hyogo-ku, Kobe (Japan); Minatsuki, I.; Shimizu, K. [Mitsubishi Heavy Industries, Ltd., 16-5, Konan 2-Chome, Minato-ku, Tokyo (Japan)

    2012-07-01T23:59:59.000Z

    Mitsubishi Heavy Industries, Ltd. (MHI) has been studying on MHI original High Temperature Gas cooled Reactor (HTGR), namely MHR-50/100, for commercialization with supported by JAEA. In the heat transfer system, steam generator (SG) is one of the most important components because it should be imposed a function of heat transfer from reactor power to steam turbine system and maintaining a nuclear grade boundary. Then we especially focused an effort of a design study on the SG having robustness against water ingress accident based on our design experience of PWR, FBR and HTGR. In this study, we carried out a sensitivity analysis from the view point of economic and plant efficiency. As a result, the SG design parameter of helium inlet/outlet temperature of 750 deg. C/300 deg. C, a side-by-side layout and one unit of SG attached to a reactor were selected. In the next, a design improvement of SG was carried out from the view point of securing the level of inherent safety without reliance on active steam dump system during water ingress accident considering the situation of the Fukushima nuclear power plant disaster on March 11, 2011. Finally, according to above basic design requirement to SG, we performed a conceptual design on adapting themes of SG structure improvement. (authors)

  19. Cooling load differences between radiant and air systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01T23:59:59.000Z

    radiant heating and cooling systems, in: Proceedings ofof radiant heating and cooling systems versus air systems,Gain on Radiant Floor Cooling System Design, in: Proceedings

  20. Cost-Effective Gas-Fueled Cooling Systems for Commercial/Industrial Buildings and Process Applications

    E-Print Network [OSTI]

    Lindsay, B. B.

    Gas Research Institute initiated a program in 1985 to develop cost-effective gas engine-driven cooling systems for commercial and industrial applications. Tecogen, Inc., has designed, fabricated, and tested a nominal 150-ton engine-driven water...

  1. Natural Cooling Retrofit

    E-Print Network [OSTI]

    Fenster, L. C.; Grantier, A. J.

    1981-01-01T23:59:59.000Z

    Figure V). Tower Water Injection Natural Cool ing consists of crossover piping between the chillers, condenser and chiller water piping, switching valves, con trols, a strainer and/or a filtration system, and a water treatment system, in addition..., if not impera tive, to utilize a combination of strainers, filters, and/or sophisticated water treatment to ensure that the thermal efficiency of the chilled water system is not degraded due to scal ing, corro sion, and microbial growth. A routine water...

  2. Design and Analysis of High-Performance Air-Cooled Heat Exchanger with an Integrated Capillary-Pumped Loop Heat Pipe

    E-Print Network [OSTI]

    McCarthy, Matthew

    We report the design and analysis of a high-power air-cooled heat exchanger capable of dissipating over 1000 W with 33 W of input electrical power and an overall thermal resistance of less than 0.05 K/W. The novelty of the ...

  3. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01T23:59:59.000Z

    natural circulation solar water heater. Energy Conversionas water circulation in solar water heaters 60 , and passivewater circulation in solar water heaters 60 , and passive

  4. National Ignition Facility subsystem design requirements laser auxiliary subsystem SSDR 1.3.5

    SciTech Connect (OSTI)

    Mukherji, S.

    1996-10-24T23:59:59.000Z

    This system design requirement document establishes the performance, design, development and test requirements for the NIF Laser Auxiliary Systems. The Laser Auxiliary Systems consist of: a. Gas Cooling System; b. Low conductivity cooling water system; C. Deionized cooling water system; d. Electrical power distribution system. The gas cooling system will be used for cooling the main laser amplifier flashlamps and some smaller quantities will be used for purging Pockels cells and for diode pumps in preamplifier. The low conductivity cooling water system will be used for cooling the capacitor banks. The deionized cooling water system will be used to cool the multi-pass amplifier in the OPG PAM. Electrical power will be required for the OPG systems, Pockels cells, power conditioning, and amplifier support equipment.

  5. Direct-Cooled Power Electronic Substrate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70C standalone cooling loop * Three dimensional inverter packaging and eliminating the heat exchanger volume by directly cooling the DBC result in compact, light weight design...

  6. Annual Simulation Results for an Air-Cooled Binary Power Cycle Employing Flash Cooling Enhancement

    SciTech Connect (OSTI)

    Buys, A.; Gladden, C.; Kutscher, C.

    2006-01-01T23:59:59.000Z

    Objective is to perform detailed simulation of air cooled cycle with flash supplied cooling water using two types of evaporative enhancement, spray nozzels and evaporative media.

  7. Cooling Towers--Energy Conservation Strategies 

    E-Print Network [OSTI]

    Matson, J.

    1991-01-01T23:59:59.000Z

    COOLING TOWERS -- ENERGY CONSERVATION STRATEGIES Cooling Water Optimization Dr. JACK MATSON Environmental Engg. Dept. University of Houston Houston, Texas A cooling water system can be optimized by operating the cooling tower... pressures on generating turbines and all of the good things listed above can be achieved with a well upgraded modernized cooling tower, but if minimum or no attention is paid to the water chemistry, poor performance, and loss of energy and dollar...

  8. STOCHASTIC COOLING

    E-Print Network [OSTI]

    Bisognano, J.

    2010-01-01T23:59:59.000Z

    L. Thorndahl, Stochastic Cooling o f Momentum Spread by F ion Stochastic Cooling i n ICE, IEEE Transaction's in Nucl. Sand S. A. Kheifhets', On Stochastic Cooling, P a r t i c l e

  9. STOCHASTIC COOLING

    E-Print Network [OSTI]

    Bisognano, J.

    2010-01-01T23:59:59.000Z

    the stochastic cooling technique. This work directly led tol . . Physics and Techniques o f Stochastic Cooling, PhysicsCooling o f Momentum Spread by F i l t e r Techniques, CERN-

  10. DESIGN AND DEVELOPMENT TESTING OF AN IMPROVED (1 HIGH-EFFICIENCY WATER HEATER

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;DESIGN AND DEVELOPMENT TESTING OF AN IMPROVED (1 HIGH-EFFICIENCY WATER HEATER (2} (3) (21 icense in and to any copyright covering the drticle. This paper describes a high-efficiency water heater which uses a design approach quite different from the conventional center-flue water heater. While high

  11. Cooling towers, the neglected energy conservations and money making machine

    SciTech Connect (OSTI)

    Burger, R. [Burger Associates, Dallas, TX (United States)

    1996-12-31T23:59:59.000Z

    The heat Rejection Industry defines a nominal cooling tower as circulating three gallons of water per minute (GPM) per ton of refrigeration from entering the tower at 95 {degrees}F, Hot Water temperature (HWT), Leaving at 85{degrees}F Cold Water Temperature (CWT) at a Design Wet Bulb of 70{degrees}F (WBT). Manufacturers then provide a selection chart based on various wet bulb temperatures and HWTs. The wet bulb fluctuates and varies throughout the world since it is the combination ambient temperature, relative humidity, and/or dew point. Different HWT and CWT requirements are usually charted as they change, so that the user can select the nominal cooling tower model recommended by the manufacturer. In the specification of cooling towers it is necessary to clearly understand the definition of nominal cooling tower, and to make sure the specification you need addressed can be met by the system you purchase. This should be tested prior to final acceptance.

  12. Ground Water Cooling System

    E-Print Network [OSTI]

    Greaves, K.; Chave, G. H.

    1984-01-01T23:59:59.000Z

    Based on a thorough study of products and anticipated growth, the Turbine and Generator Division of Westinghouse Canada Inc. concluded that a component feeder plant for fabrication and machining of turbine components was required. This facility now...

  13. FEMP Designated Product Assessment for Commercial Gas Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    price for a condensing commercial water heater is $1,579.For condensing commercial water heaters with a thermalFound products for water heater in any product field and gas

  14. Cooling load calculations for radiant systems: are they the same traditional methods?

    E-Print Network [OSTI]

    Bauman, Fred; Feng, Jingjuan Dove; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    B. 2008. “Radiant floor cooling systems. ” ASHRAE Journal 4.gain on radiant floor cooling system design. ” Proceedings,of designing radiant slab cooling systems, including load

  15. FEMP Designated Product Assessment for Commercial Gas Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    resistance and heat pump water heaters are not covered.other than commercial heat pump water heaters). 10CFR431.110

  16. Measure Guideline: Ventilation Cooling

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01T23:59:59.000Z

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  17. DOAS, Radiant Cooling Revisited

    SciTech Connect (OSTI)

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2012-12-01T23:59:59.000Z

    The article discusses dedicated outdoor air systems (DOAS) and radiant cooling technologies. Both of these topics were covered in previous ASHRAE Journal columns. This article reviews the technologies and their increasing acceptance. The two steps that ASHRAE is taking to disseminate DOAS information to the design community, available energy savings and the market potential of radiant cooling systems are addressed as well.

  18. Design and Evaluation of a Low-Cost Point-of-Use Ultraviolet Water Disinfection Device

    E-Print Network [OSTI]

    Kammen, Daniel M.

    receive chlorinated water while another receives contaminated water with no residual level of chlorineDesign and Evaluation of a Low-Cost Point-of-Use Ultraviolet Water Disinfection Device Alicia Cohn around the world to supply safe drinking water. We have developed a device for disinfecting drinking

  19. Cryo Utilities Room Cooling System

    SciTech Connect (OSTI)

    Ball, G.S.; /Fermilab

    1989-01-26T23:59:59.000Z

    Many of the mechanical equipment failures at the Laboratory are due to the loss of cooling water. In order to insure the proper operating temperatures and to increase the reliability of the mechanical equipment in the D0 Cryo Utilities Room it is necessary to provide an independent liquid cooling system. To this end, an enclosed glycoVwater cooling system which transfers heat from two vane-type vacuum pumps and an air compressor to the outside air has been installed in the Cryo Utilities Room. From the appended list it can be seen that only the Thermal Precision PFC-121-D and Ingersoll-Rand WAC 16 deserve closer investigation based on price. The disadvantages of the WAC 16 are that: it runs a little warmer, it requires more valving to properly install a backup pump, inlet and outlet piping are not included, and temperature and pressure indicators are not included. Its only advantage is that it is $818 cheaper than the PFC-121-D. The advantages of the PFC-121-D are that: it has automatic pump switching during shutdown, it has a temperature regulator on one fan control, it has a switch which indicates proper operation, has a sight glass on the expansion tank, and comes with an ASME approved expansion tank and relief valve. For these reasons the Thermal Precision PFC-121-D was chosen. In the past, we have always found the pond water to be muddy and to sometimes contain rocks of greater than 1/2 inch diameter. Thus a system completely dependent on the pond water from the accelerator was deemed unacceptable. A closed system was selected based on its ability to greatly improve reliability, while remaining economical. It is charged with a 50/50 glycol/water mixture capable of withstanding outside temperatures down to -33 F. The fluid will be circulated by a totally enclosed air cooled Thermal Precision PFC-121-D pump. The system will be on emergency power and an automatically controlled backup pump, identical to the primary, is available should the main pump fail. The fan unit is used as a primary cooler and the trim cooler cools the fluid further on extremely hot days. The trim cooler has also been sized to cool the system in the event of a total shutdown provided that the pond water supply has adequate pressure. Due to a broken filter, we found it necessary to install a strainer in the pond water supply line. The expansion tank separates air bubbles, ensures a net positive suction head, protects against surges and over pressurization of the system, and allows for the filling of the system without shutting it off. All piping has been installed, flushed, charged with the glycol/water mix, and hydrostatically tested to 55 psi. The condition of all pumps and flow conditions will be recorded at the PLC. It has been decided not to include the regulator valve in the pond water return line. This valve was designated by the manufacturer to reduce the amount of water flowing through the trim cooler. This is not necessary in our application. There is some concern that the cooling fluid may cool the mechanical eqUipment too much when they are not operating or during very cold days. This issue will be addressed and the conclusion appended to this engineering note.

  20. Assessment of innovative fuel designs for high performance light water reactors

    E-Print Network [OSTI]

    Carpenter, David Michael

    2006-01-01T23:59:59.000Z

    To increase the power density and maximum allowable fuel burnup in light water reactors, new fuel rod designs are investigated. Such fuel is desirable for improving the economic performance light water reactors loaded with ...

  1. Designing a low cost XY stage for abrasive water jet cutting

    E-Print Network [OSTI]

    Abu Ibrahim, Fadi, 1980-

    2004-01-01T23:59:59.000Z

    This thesis guides the reader through the design of an inexpensive XY stage for abrasive water jet cutting machine starting with a set of functional requirements and ending with a product. Abrasive water jet cutting allows ...

  2. The design of a functionally graded composite for service in high temperature lead and lead-bismuth cooled nuclear reactors

    E-Print Network [OSTI]

    Short, Michael Philip

    2010-01-01T23:59:59.000Z

    A material that resists lead-bismuth eutectic (LBE) attack and retains its strength at 700°C would be an enabling technology for LBE-cooled reactors. No single alloy currently exists that can economically meet the required ...

  3. Preventing fuel failure for a beyond design basis accident in a fluoride salt cooled high temperature reactor

    E-Print Network [OSTI]

    Minck, Matthew J. (Matthew Joseph)

    2013-01-01T23:59:59.000Z

    The fluoride salt-cooled high-temperature reactor (FHR) combines high-temperature coated-particle fuel with a high-temperature salt coolant for a reactor with unique market and safety characteristics. This combination can ...

  4. Design and modeling of a high flux cooling device based on thin film evaporation from thin nanoporous membranes

    E-Print Network [OSTI]

    Lu, Zhengmao

    2014-01-01T23:59:59.000Z

    Heat dissipation is a limiting factor in the performance of integrated circuits, power electronics and laser diodes. State-of-the-art solutions typically use air-cooled heat sinks, which have limited performance owing to ...

  5. Procedure for developing biological input for the design, location, or modification of water-intake structures

    SciTech Connect (OSTI)

    Neitzel, D.A.; McKenzie, D.H.

    1981-12-01T23:59:59.000Z

    To minimize adverse impact on aquatic ecosystems resulting from the operation of water intake structures, design engineers must have relevant information on the behavior, physiology and ecology of local fish and shellfish. Identification of stimulus/response relationships and the environmental factors that influence them is the first step in incorporating biological information in the design, location or modification of water intake structures. A procedure is presented in this document for providing biological input to engineers who are designing, locating or modifying a water intake structure. The authors discuss sources of stimuli at water intakes, historical approaches in assessing potential/actual impact and review biological information needed for intake design.

  6. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems

    Broader source: Energy.gov [DOE]

    This project will improve the capability of engineers to design heat pump systems that utilize surface water or standing column wells (SCW) as their heat sources and sinks.

  7. Experiment study on FLOATING JACKET: a new concept for deep water platform design

    E-Print Network [OSTI]

    Xu, Yufeng

    1996-01-01T23:59:59.000Z

    As more oil and gas are discovered in deeper water than ever before, the offshore industry has become increasingly interested in the design of advanced offshore production platforms. A new design concept called FLOATING JACKET (FJ) is studied...

  8. Conceptual design of an annular-fueled superheat boiling water reactor

    E-Print Network [OSTI]

    Ko, Yu-Chih, Ph. D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    The conceptual design of an annular-fueled superheat boiling water reactor (ASBWR) is outlined. The proposed design, ASBWR, combines the boiler and superheater regions into one fuel assembly. This ensures good neutron ...

  9. Conceptual Design of a Large, Passive Pressure-Tube Light Water Reactor

    E-Print Network [OSTI]

    Hejzlar, P.

    A design for a large, passive, light water reactor has been developed. The proposed concept is a pressure tube reactor of similar design to CANDU reactors, but differing in three key aspects. First, a solid SiC-coated ...

  10. Department of Energy's team's analyses of Soviet designed VVERs (water-cooled water-moderated atomic energy reactors)

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    This document contains apprendices A through P of this report. Topics discussed are: a cronyms and technical terms, accident analyses reactivity control; Soviet safety regulations; radionuclide inventory; decay heat; operations and maintenance; steam supply system; concrete and concrete structures; seismicity; site information; neutronic parameters; loss of electric power; diesel generator reliability; Soviet codes and standards; and comparisons of PWR and VVER features. (FI)

  11. Abstract. Harvesting condensed atmospheric vapour as dew water can be an alternative or complementary potable water resource in specific arid or insular areas. Such radiation-cooled condensing devices use

    E-Print Network [OSTI]

    BUILDING - A USTAR INNOVATION CENTER Estimated New Space: USTAR - 200,000 NSF Estimated Completion Date, and coordination of site design with North Chilled Water Plant design. The 5,940 NSF Chilled Water Plant processes across all of campus. The existing distribution system is over 30 years old. Corrosion from ground

  12. Storm water quantity control has long been a challenge for highway designers. Traditionally, centralized best management practice designs

    E-Print Network [OSTI]

    Fiedler, Fritz R.

    on centralized detention-based best man- agement practices (BMPs) that reduce the amount of storm water released and environmentally sound storm water management practice (1, 6). Numerous studies and other research efforts have, centralized best management practice designs are often cost prohibitive and inefficient in many rural highway

  13. Cooling Towers, The Debottleneckers 

    E-Print Network [OSTI]

    Burger, R.

    1998-01-01T23:59:59.000Z

    looking into the function of the cooling tower, which is to produce colder water- and question the quality of water discharged from that simple appearing box. These cross-flow structures are quite large, ranging up to 60 feet tall with as many as 6 or more...

  14. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01T23:59:59.000Z

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ice thermal storage systems can effectively reduce the efficiency loss and water consumption during hot weather so that new LWRs could be considered in regions without enough cooling water. \\ This paper presents the feasibility study of using ice thermal storage systems for LWR supplemental cooling and peak power shifting. LWR cooling issues and ITS application status will be reviewed. Two ITS application case studies will be presented and compared with alternative options: one for once-through cooling without enough cooling for short time, and the other with dry cooling. Because capital cost, especially the ice storage structure/building cost, is the major cost for ITS, two different cost estimation models are developed: one based on scaling method, and the other based on a preliminary design using Building Information Modeling (BIM), an emerging technology in Architecture/Engineering/Construction, which enables design options, performance analysis and cost estimating in the early design stage.

  15. An Improved Simple Chilled Water Cooling Coil Author(s), Liping Wang, Philip Haves and Fred Buhl

    E-Print Network [OSTI]

    of cooling and dehumidification coil performance is important in model-based fault detection behavior is needed to assess local loop control performance while steady state modeling is generally sufficient for energy calculations. Recent work on coil modeling has focused on modeling dynamic response

  16. Monitoring peak power and cooling energy savings of shade trees and white surfaces in the Sacramento Municipal Utility District (SMUD) service area: Project design and preliminary results

    SciTech Connect (OSTI)

    Akbari, H.; Bretz, S.; Hanford, J.; Rosenfeld, A.; Sailor, D.; Taha, H. [Lawrence Berkeley Lab., CA (United States); Bos, W. [Sacramento Municipal Utility District, CA (United States)

    1992-12-01T23:59:59.000Z

    Urban areas in warm climates create summer heat islands of daily average intensity of 3--5{degrees}C, adding to discomfort and increasing air-conditioning loads. Two important factors contributing to urban heat islands are reductions in albedo (lower overall city reflectance) and loss of vegetation (less evapotranspiration). Reducing summer heat islands by planting vegetation (shade trees) and increasing surface albedos, saves cooling energy, allows down-sizing of air conditioners, lowers air-conditioning peak demand, and reduces the emission of CO{sub 2} and other pollutants from electric power plants. The focus of this multi-year project, jointly sponsored by SMUD and the California Institute for Energy Efficiency (CIEE), was to measure the direct cooling effects of trees and white surfaces (mainly roofs) in a few buildings in Sacramento. The first-year project was to design the experiment and obtain base case data. We also obtained limited post retrofit data for some sites. This report provides an overview of the project activities during the first year at six sites. The measurement period for some of the sites was limited to September and October, which are transitional cooling months in Sacramento and hence the interpretation of results only apply to this period. In one house, recoating the dark roof with a high-albedo coating rendered air conditioning unnecessary for the month of September (possible savings of up to 10 kWh per day and 2 kW of non-coincidental peak power). Savings of 50% relative to an identical base case bungalow were achieved when a school bungalow`s roof and southeast wall were coated with a high-albedo coating during the same period. Our measured data for the vegetation sites do not indicate conclusive results because shade trees were small and the cooling period was almost over. We need to collect more data over a longer cooling season in order to demonstrate savings conclusively.

  17. Stormwater BMPs for Trout Waters Coldwater Stream Design Guidance for Stormwater Wetlands,

    E-Print Network [OSTI]

    Hunt, William F.

    . To reduce these negative impacts, a variety of stormwater best management practices (BMPs) have been have on the temperature of storm- water runoff. With the wide implementation of storm- water BMPs Stormwater BMPs for Trout Waters Coldwater Stream Design Guidance for Stormwater Wetlands, Wet

  18. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01T23:59:59.000Z

    uranium (LEU) cores. Unlike light water reactors (LWRs), the ultimate heat sink for decay heat removal

  19. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Analysis and Concept Design for grey water heat

    E-Print Network [OSTI]

    Design for grey water heat recovery to preheat domestic water supply for multi-unit residential high rise of a project/report". #12;2 Analysis and Concept Design for grey water heat recovery to preheat domestic water) for effective capture of heat from waste grey water. Calculations for energy, dollar and GHG savings were made

  20. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect (OSTI)

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01T23:59:59.000Z

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  1. Design and experimental testing of the performance of an outdoor LiBr/H{sub 2}O solar thermal absorption cooling system with a cold store

    SciTech Connect (OSTI)

    Agyenim, Francis; Knight, Ian; Rhodes, Michael [The Welsh School of Architecture, Bute Building, King Edward VII Avenue, Cardiff University, Cardiff, CF10 3NB Wales (United Kingdom)

    2010-05-15T23:59:59.000Z

    A domestic-scale prototype experimental solar cooling system has been developed based on a LiBr/H{sub 2}O absorption system and tested during the 2007 summer and autumn months in Cardiff University, UK. The system consisted of a 12 m{sup 2} vacuum tube solar collector, a 4.5 kW LiBr/H{sub 2}O absorption chiller, a 1000 l cold storage tank and a 6 kW fan coil. The system performance, as well as the performances of the individual components in the system, were evaluated based on the physical measurements of the daily solar radiation, ambient temperature, inlet and outlet fluid temperatures, mass flow rates and electrical consumption by component. The average coefficient of thermal performance (COP) of the system was 0.58, based on the thermal cooling power output per unit of available thermal solar energy from the 12 m{sup 2} Thermomax DF100 vacuum tube collector on a hot sunny day with average peak insolation of 800 W/m{sup 2} (between 11 and 13.30 h) and ambient temperature of 24 C. The system produced an electrical COP of 3.6. Experimental results prove the feasibility of the new concept of cold store at this scale, with chilled water temperatures as low as 7.4 C, demonstrating its potential use in cooling domestic scale buildings. (author)

  2. Superfast Cooling

    E-Print Network [OSTI]

    S. Machnes; M. B. Plenio; B. Reznik; A. M. Steane; A. Retzker

    2010-01-15T23:59:59.000Z

    Currently laser cooling schemes are fundamentally based on the weak coupling regime. This requirement sets the trap frequency as an upper bound to the cooling rate. In this work we present a numerical study that shows the feasibility of cooling in the strong coupling regime which then allows cooling rates that are faster than the trap frequency with state of the art experimental parameters. The scheme we present can work for trapped atoms or ions as well as mechanical oscillators. It can also cool medium size ions chains close to the ground state.

  3. NASA's Marshall Space Flight Center Improves Cooling System Performanc...

    Broader source: Energy.gov (indexed) [DOE]

    Improves Cooling System Performance Case study details Marshall Space Flight Center's innovative technologies to improve water efficiency and cooling performance for one of its...

  4. The effect of water content, cooling rate, and growth temperature on the freezing temperature of 4 Tillandsia species

    E-Print Network [OSTI]

    Hagar, Christopher Flint

    1990-01-01T23:59:59.000Z

    -5oC / hr) (Levitt, 1972) . During extracellular freezing, ice forms in intracellular spaces and / or extracellularly between cell walls and protoplasts (Asahina, 1978; Levitt, 1972) creating a vapor pressure gradient between the ice... lethal (Asahina, 1978; Burke et al. , 1976; Habeshaw, 1976; Levitt, 1978). This type of freezing results from rapid cooling rates and extensive supercooling (Burke et al. , 1976; Levitt, 1972; 1978). When plants freeze intracellulary, ice crystals...

  5. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Progress Report for Work Through September 2003, 2nd Annual/8th Quarterly Report

    SciTech Connect (OSTI)

    Philip E. MacDonald

    2003-09-01T23:59:59.000Z

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation-IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% vs. about 33% efficiency for current Light Water Reactors, LWRs) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus the need for recirculation and jet pumps, a pressurizer, steam generators, steam separators and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies, LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which is also in use around the world.

  6. Statement of work for definitive design of the K basins integrated water treatment system project

    SciTech Connect (OSTI)

    Pauly, T.R., Westinghouse Hanford

    1996-07-16T23:59:59.000Z

    This Statement of Work (SOW) identifies the scope of work and schedule requirements for completing definitive design of the K Basins Integrated Water Treatment Systems (IWTS) Subproject. This SOW shall form the contractual basis between WHC and the Design Agent for the Definitive Design.

  7. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01T23:59:59.000Z

    the field of chemical engineering, design of scaled systemsDesign Approach to Safety and Reliability Yields Great Benefits. Chemical Engineering

  8. Site design for urban water management in Mexico City

    E-Print Network [OSTI]

    Rivera, José Pablo (Rivera De la Mora), 1967-

    2001-01-01T23:59:59.000Z

    As the world becomes aware of the scarcity of water resources and cities struggle to meet a growing demand, we face the challenge of finding more efficient ways to manage this vital resource. Cities in developing countries ...

  9. Design Method for the Heating/Cooling Coil in the AHU Based on Fuzzy Logic - Part Two: Design of the Minimum Heat-Exchanging Unit

    E-Print Network [OSTI]

    Zhang, J.; Chen, Y.; Liang, Z.

    2006-01-01T23:59:59.000Z

    Considering a heating/cooling coil with adjustable heat-exchange area, an unequal type is put forward in this paper. Aiming at the application of such heat exchanger in an air-handling unit, restriction conditions are given for the minimum heat...

  10. July 25, 2006 RHIC Stochastic Cooling

    E-Print Network [OSTI]

    (abandoned at SppS and Tevatron) ­ Not part of RHIC base line design #12;July 25, 2006 Heavy ions should before (red) and after (blue) cooling, Wall Current Monitor Schottky spectrum before cooling: blue trace "hot" beam best ·Good for counteracting IBS ·Effective for tails of distribution ·E-cooling cools "cold

  11. Cooling Towers--Energy Conservation Strategies

    E-Print Network [OSTI]

    Matson, J.

    A cooling water system can be optimized by operating the cooling tower at the highest possible cycles of concentration without risking sealing and fouling of heat exchanger surfaces, tube bundles, refrigeration equipment, overhead condensers...

  12. Progress on the MICE Liquid Absorber Cooling and Cryogenic Distribution System

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    PROGRESS ON THE MICE LIQUID ABSORBER COOLING AND CRYOGENIC DISTRIBUTION SYSTEMprogress made on the design of the cryogenic cooling system

  13. Progress on the MICE Liquid Absorber Cooling and Cryogenic Distribution System

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    LBNL-57692 PROGRESS ON THE MICE LIQUID ABSORBER COOLING ANDthe progress made on the design of the cryogenic cooling

  14. Innovative fuel designs for high power density pressurized water reactor

    E-Print Network [OSTI]

    Feng, Dandong, Ph. D. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    One of the ways to lower the cost of nuclear energy is to increase the power density of the reactor core. Features of fuel design that enhance the potential for high power density are derived based on characteristics of ...

  15. Comparison of advanced cooling technologies efficiency depending on outside temperature

    SciTech Connect (OSTI)

    Blaise Hamanaka; Haihua Zhao; Phil Sharpe

    2009-09-01T23:59:59.000Z

    In some areas, water availability is a serious problem during the summer and could disrupt the normal operation of thermal power plants which needs large amount of water to operate. Moreover, when water quantities are sufficient, there can still be problem created by the waste heat rejected into the water which is regulated in order to limit the impact of thermal pollution on the environment. All these factors can lead to a decrease of electricity production during the summer and during peak hours, when electricity is the most needed. In order to deal with these problems, advanced cooling technologies have been developed and implemented to reduce water consumption and withdrawals but with an effect in the plant efficiency. This report aims at analyzing the efficiency of several cooling technologies with a fixed power plant design and so to produce a reference to be able to compare them.

  16. Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers

    SciTech Connect (OSTI)

    Lekov, Alex; Franco, Victor; Meyers, Steve; Thompson, Lisa; Letschert, Virginie

    2010-11-24T23:59:59.000Z

    The U.S. Department of Energy (DOE) recently completed a rulemaking process in which it amended the existing energy efficiency standards for residential water heaters. A key factor in DOE?s consideration of new standards is the economic impacts on consumers. Determining such impacts requires a comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This paper describes the method used to conduct the life-cycle cost (LCC) and payback period analysis for gas and electric storage water heaters. It presents the estimated change in LCC associated with more energy-efficient equipment, including heat pump electric water heaters and condensing gas water heaters, for a representative sample of U.S. homes. The study included a detailed accounting of installation costs for the considered design options, with a focus on approaches for accommodating the larger dimensions of more efficient water heaters. For heat pump water heaters, the study also considered airflow requirements, venting issues, and the impact of these products on the indoor environment. The results indicate that efficiency improvement relative to the baseline design reduces the LCC in the majority of homes for both gas and electric storage water heaters, and heat pump electric water heaters and condensing gas water heaters provide a lower LCC for homes with large rated volume water heaters.

  17. Improving the Efficiency of Your Process Cooling System

    E-Print Network [OSTI]

    Baker, R.

    2005-01-01T23:59:59.000Z

    Many industries require process cooling to achieve desired outcomes of specific processes. This cooling may come from cooling towers, once-through water, mechanical refrigeration, or cryogenic sources such as liquid nitrogen or dry ice. This paper...

  18. Flexible design : an innovative approach for planning water infrastructure systems under uncertainty

    E-Print Network [OSTI]

    Wong, Melanie Kathleen

    2013-01-01T23:59:59.000Z

    This thesis develops a framework for a flexible design approach to support decision-making in water supply infrastructure planning. It contrasts with a conventional, deterministic planning approach that uses past data or ...

  19. A Cold Water Pipe for an OTEC Pilot Plant: Design Considerations

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    A Cold Water Pipe for an OTEC Pilot Plant: Design Considerations Kara Silver Abstract Ocean Thermal Energy Conversion (OTEC) is a baseload renewable technology for tropical countries and islands. In order

  20. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01T23:59:59.000Z

    reprocessing to recover fissionable material, FHR fuel handling systems must be designed to facilitate the application of IAEA safeguards.

  1. Computational design of a water-soluble analog of phospholamban

    E-Print Network [OSTI]

    Summa, Christopher M.

    membranes (Stevens and Arkin 2000). To date, roughly 13,000 X-ray or NMR derived structures of water. Such a technique would allow us to bypass the membrane to study membrane protein structures, while addressing These authors contributed equally to this work. Article and publication are at http

  2. Experimental testing of cooling by low pressure adsorption in a zeolite

    SciTech Connect (OSTI)

    Redman, C.M.

    1985-01-01T23:59:59.000Z

    A small scale facility was designed, constructed, and utilized to test the use of zeolite adsorption of water vapor to augment chill storage in ice for conventional space cooling. The facility uses solar-derived energy, for the heat source and evaporatively chilled water for the heat sump. The product cooling uses sublimation of ice instead of melting. The ZCAT facility utilizes a heat pumping technique in which a water vapor adsorbent functions as the compressor and condenser. The design was based on use of 13X zeolite as the adsorber because of its high adsorbence at low pressures. However, it has been determined that other materials such as silica gel should give superior performance. While zeolite 13X holds more water in the pressure and temperature ranges of interest, silica gel cycles more water and has less residue water. Both points are very important in the design of an efficient and cost effective system.

  3. Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building

    E-Print Network [OSTI]

    Zhu, N.

    2014-01-01T23:59:59.000Z

    decline 0.96?0.86?0.71?0.52? 0.29?0.11?0.01 under ration 0%,20%, 30%, 40%, 50%, 60%, 70%. After 20 years operation, the COP reduce to 3.5 under ration 0%,20%, 30%?this is not energy-saving. Other cases remained at a high value. 3.3 Energy consumption... in Fig.9. Table 2. The system energy consumption in 20 years operation under different ratio Cooling storage ratio Total energy consumption ?kWh? Annual energy consumption ?kWh? Annual operating costs ?RMB? Total operating costs ?RMB...

  4. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    SciTech Connect (OSTI)

    Monado, Fiber, E-mail: fiber.monado@gmail.com [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia and Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Ariani, Menik [Dept. of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University (Indonesia); Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik [Nuclear Physics and Biophysics Research Group, Dept. of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung (Indonesia); Aziz, Ferhat [National Nuclear Energy Agency of Indonesia (BATAN) (Indonesia); Sekimoto, Hiroshi [CRINES, Tokyo Institute of Technology, O-okoyama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-02-12T23:59:59.000Z

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  5. Water Requirements for Future Energy production in California

    E-Print Network [OSTI]

    Sathaye, J.A.

    2011-01-01T23:59:59.000Z

    sources of geothermal greater cooling which facilities isWater of geothermal with high cooling supplies appear waterof geothermal resources in this SUMMARY Cooling water for

  6. Linear Parameter-Varying versus Linear Time-Invariant Control Design for a Pressurized Water Reactor

    E-Print Network [OSTI]

    Bodenheimer, Bobby

    -dependent control to a nuclear pressurized water reactor is investigated and is compared to that of using an H1Linear Parameter-Varying versus Linear Time-Invariant Control Design for a Pressurized Water Reactor Pascale Bendotti y Electricit e de France Direction des Etudes et Recherches 6 Quai Watier, 78401

  7. The Battle of the Water Sensor Networks ,,BWSN...: A Design Challenge for Engineers and Algorithms

    E-Print Network [OSTI]

    Pratt, Vaughan

    The Battle of the Water Sensor Networks ,,BWSN...: A Design Challenge for Engineers and Algorithms. Ghimire16 ; Brian D. Barkdoll17 ; Roberto Gueli18 ; Jinhui J. Huang19 ; Edward A. McBean20 ; William James of September 11, 2001, in the United States, world public awareness for possible terrorist attacks on water

  8. The Project The Southern Region Water Quality Regional Coordination Project is designed to promote regional collaboration,

    E-Print Network [OSTI]

    The Project The Southern Region Water Quality Regional Coordination Project is designed to promote to protect and restore water resources. Effective approaches for watershed management, pollution prevention to the research, extension and education resources available through the Land Grant University System

  9. Modification and Validation of a Universal Thermodynamic Chiller Model Used to Evaluate the Performance of Water-Cooled Centrifugal Chillers

    E-Print Network [OSTI]

    Figueroa, I. E.; Cathey, M.; Medina, M. A.; Nutter, D. W.

    1998-01-01T23:59:59.000Z

    This paper presents modifications made to the procedure used to develop a universal thermodynamic model of chillers (Gordon and Ng, 1995). The modifications were necessary to capture physical phenomena involved when water is the coolant fluid...

  10. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    SciTech Connect (OSTI)

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01T23:59:59.000Z

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  11. Design manual for high temperature hot water and steam systems

    SciTech Connect (OSTI)

    Cofield, R.E. Jr.

    1984-01-01T23:59:59.000Z

    The author presents aspects of high temperature hot water and steam generating systems. It covers all the calculations that must be made for sizing and then selecting the equipment that will make up an energy system. The author provides essential information on loan analysis, types of fuel, storage requirements, handling facilities, waste disposal, HVAC needs, and back-up systems. Also included are the calculations needed for determining the size of compressors, air pollution devices, fans, filters, and other supplementary equipment.

  12. Study Design And Realization Of Solar Water Heater

    SciTech Connect (OSTI)

    Lounis, M. [LAAR Laboratory-Physics Department-USTOMB 31000 Oran (Algeria); Boudjemaa, F.; Akil, S. Kouider [Genie Climatic Department-CUKM 44000-Khemis Miliana (Algeria)

    2011-01-17T23:59:59.000Z

    Solar is one of the most easily exploitable energy, it is moreover inexhaustible. His applications are many and are varied. The heating of the domestic water is one of the most immediate, simplest and also of most widespread exploitation of the solar energy. Algeria, from its geographical situation, it deposits one of the largest high sun surface expositions in the world. The exposition duration of the almost territory exceeds 2000 hours annually and can reach the 3900 hours (high plateaus and Sahara). By knowing the daily energy received by 1 m{sup 2} of a horizontal surface of the solar thermal panel is nearly around 1700 KWh/m{sup 2} a year in the north and 2263 KWh/m{sup 2} a year in the south of the country, we release the most important and strategic place of the solar technologies in the present and in the future for Algeria. This work consists to study, conceive and manufacture solar water heating with the available local materials so, this type of the energy will be profitable for all, particularly the poor countries. If we consider the illumination duration of the panel around 6 hours a day, the water heat panel manufactured in our laboratory produce an equivalent energy of 11.615 KWh a day so, 4239 KWh a year. These values of energy can be easily increased with performing the panel manufacture.

  13. A domain-specific analysis system for examining nuclear reactor simulation data for light-water and sodium-cooled fast reactors

    E-Print Network [OSTI]

    Billings, Jay Jay; Hull, S Forest; Lingerfelt, Eric J; Wojtowicz, Anna

    2014-01-01T23:59:59.000Z

    Building a new generation of fission reactors in the United States presents many technical and regulatory challenges. One important challenge is the need to share and present results from new high-fidelity, high-performance simulations in an easily usable way. Since modern multiscale, multi-physics simulations can generate petabytes of data, they will require the development of new techniques and methods to reduce the data to familiar quantities of interest (e.g., pin powers, temperatures) with a more reasonable resolution and size. Furthermore, some of the results from these simulations may be new quantities for which visualization and analysis techniques are not immediately available in the community and need to be developed. This paper describes a new system for managing high-performance simulation results in a domain-specific way that naturally exposes quantities of interest for light water and sodium-cooled fast reactors. It describes requirements to build such a system and the technical challenges faced...

  14. Solar Roof Cooling by Evaporation

    E-Print Network [OSTI]

    Patterson, G. V.

    1982-01-01T23:59:59.000Z

    Evaporation is nature's way of cooling. By the application of a thin film of water, in the form of a mist, on the roof of the building, roof temperatures can be reduced from as high as 165o to a cool 86oF. Thus, under-roof temperatures are reduced...

  15. Preliminary design report for the K basins integrated water treatment system

    SciTech Connect (OSTI)

    Pauly, T.R., Westinghouse Hanford

    1996-08-12T23:59:59.000Z

    This Preliminary Design Report (PDR) provides a revised concept for the K Basins Integrated Water Treatment Systems (IWTS). This PDR incorporates the 11 recommendations made in a May 1996 Value Engineering session into the Conceptual Design, and provides new flow diagrams, hazard category assessment, cost estimate, and schedule for the IWTS Subproject.

  16. DESIGN AND DEVELOPMENT OF COST EFFECTIVE SURFACE MOUNTED WATER TURBINES FOR RURAL ELECTRICITY PRODUCTION

    E-Print Network [OSTI]

    Sóbester, András

    for further hydro development. Optimization of existing recourses for power harnessing has made application/low head hydro power generation. This project intends to design and develop cost effective design of engineered low head hydro turbines capable of utilizing 2-10 meter of water head and power output 2 to 15 k

  17. Blowing Ratio Effects on Film Cooling Effectiveness

    E-Print Network [OSTI]

    Liu, Kuo-Chun

    2010-01-14T23:59:59.000Z

    cooling Rib turbulators Shaped internal cooling passage Trailing edge ejection Cooling air 3 Among the variety of film cooling hole designs, compound angle and shaped holes are generally considered in modern high pressure and high temperature gas turbine... ratio of 1.85. As compared to cylindrical hole, both shaped holes showed significant improved thermal protection of the surface downstream of the ejection location. Yu et al. [7] studied film cooling effectiveness and heat transfer distributions on a...

  18. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J. (Knoxville, TN)

    2006-04-18T23:59:59.000Z

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  19. Development of Mechanistic Modeling Capabilities for Local Neutronically-Coupled Flow-Induced Instabilities in Advanced Water-Cooled Reactors

    SciTech Connect (OSTI)

    Michael Podowski

    2009-11-30T23:59:59.000Z

    The major research objectives of this project included the formulation of flow and heat transfer modeling framework for the analysis of flow-induced instabilities in advanced light water nuclear reactors such as boiling water reactors. General multifield model of two-phase flow, including the necessary closure laws. Development of neurton kinetics models compatible with the proposed models of heated channel dynamics. Formulation and encoding of complete coupled neutronics/thermal-hydraulics models for the analysis of spatially-dependent local core instabilities. Computer simulations aimed at testing and validating the new models of reactor dynamics.

  20. Cooling Towers, Energy Conservation Machines

    E-Print Network [OSTI]

    Burger, R.

    1980-01-01T23:59:59.000Z

    Cooling towers, in all too many industrial plants, are often the neglected units of the process chain which are hidden bonanzas for energy conservation and dollar savings. By lowering the entire systems temperature by the use of colder water...

  1. Laser cooling of infrared sensors.

    SciTech Connect (OSTI)

    Hasselbeck, M. P. (Michael P.); Sheik-Bahae, M (Mansoor); Thiede, J. (Jared); Distel, J. R. (James R.); Greenfield, S. R. (Scott R.); Patterson, Wendy M.; Bigotta, S.; Imangholi, B.; Seletskiy, D. (Denis); Bender, D.; Vankipuram, V.; Vadiee, N.; Epstein, Richard I.

    2004-01-01T23:59:59.000Z

    We present an overview of laser cooling of solids. In this all-solid-state approach to refrigeration, heat is removed radiatively when an engineered material is exposed to high power laser light. We report a record amount of net cooling (88 K below ambient) that has been achieved with a sample made from doped fluoride glass. Issues involved in the design of a practical laser cooler are presented. The possibility of laser cooling of semiconductor sensors is discussed.

  2. Water as a lubricant for Stirling air engines: design considerations and operating experience

    SciTech Connect (OSTI)

    Fauvel, O.R.; van Benthem, J.; Walker, G.

    1983-08-01T23:59:59.000Z

    Air is favoured as the working fluid for large, slow-running Stirling engines. Lubricating oil entering the working space could combine with compressed, heated air to form a mixture capable of spontaneous combustion. To preclude this possibility, water may be used as the lubricant in Stirling air engines. This paper reviews the lubrication requirements of Stirling air engines and the potential of water to fulfil these requirements. Some bearing and seal materials suitable for water-lubricated Stirling engines are reviewed in terms of a design case study for a 20 kW water lubricated Ringbom-Stirling air engine. Early operating experience with this engine is reported.

  3. Cooled railplug

    DOE Patents [OSTI]

    Weldon, William F. (Austin, TX)

    1996-01-01T23:59:59.000Z

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  4. NSTX Upgrade Project Final Design Review June 22 -24, 2011 1 NSTX Supported by

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    ­ Bakeout ­ Gas Injection ­ Cooling Water · Requirements · Description of the Design · Previous Chits, 2011 Cooling Water Requirements · Upgrade 8 OH Flow Paths ­ Existing · Eight (8) OH flow paths @ 1 GPM to equalize temperature of coil conductors · Add local pressure monitoring gage · Add remote pressure

  5. Designated Ground Water Basin Map | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05bGabbs ValleyWind Power JumpDesignated

  6. The Thermodynamic and Cost Benefits of Floating Cooling Systems 

    E-Print Network [OSTI]

    Svoboda, K. J.; Klooster, H. J.; Johnnie, D. H., Jr.

    1983-01-01T23:59:59.000Z

    Historically, a fixed cooling concept is used in the design of evaporative heat rejection systems for process and power plants. In the fixed cooling mode, a plant is designed for maximum output at the design summer wet bulb temperature...

  7. The Thermodynamic and Cost Benefits of Floating Cooling Systems

    E-Print Network [OSTI]

    Svoboda, K. J.; Klooster, H. J.; Johnnie, D. H., Jr.

    1983-01-01T23:59:59.000Z

    Historically, a fixed cooling concept is used in the design of evaporative heat rejection systems for process and power plants. In the fixed cooling mode, a plant is designed for maximum output at the design summer wet bulb temperature...

  8. Plant Design and Cost Assessment of Forced Circulation Lead-Bismuth Cooled Reactor with Conventional Power Conversion Cycles

    E-Print Network [OSTI]

    Dostal, Vaclav

    Cost of electricity is the key factor that determines competitiveness of a power plant. Thus the proper selection, design and optimization of the electric power generating cycle is of main importance. This report makes an ...

  9. Design of an experimental loop for post-LOCA heat transfer regimes in a Gas-cooled Fast Reactor

    E-Print Network [OSTI]

    Cochran, Peter A. (Peter Andrew)

    2005-01-01T23:59:59.000Z

    The goal of this thesis is to design an experimental thermal-hydraulic loop capable of generating accurate, reliable data in various convection heat transfer regimes for use in the formulation of a comprehensive convection ...

  10. Ventilative cooling

    E-Print Network [OSTI]

    Graça, Guilherme Carrilho da, 1972-

    1999-01-01T23:59:59.000Z

    This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

  11. Reduction of Water Consumption

    E-Print Network [OSTI]

    Adler, J.

    Cooling systems using water evaporation to dissipate waste heat, will require one pound of water per 1,000 Btu. To reduce water consumption, a combination of "DRY" and "WET" cooling elements is the only practical answer. This paper reviews...

  12. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

    2001-10-01T23:59:59.000Z

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

  13. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo

    2002-10-01T23:59:59.000Z

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

  14. TETRA MUON COOLING RING

    SciTech Connect (OSTI)

    KAHN,S.A.FERNOW,R.C.BALBEKOV,V.RAJA,R.USUBOV,Z.

    2003-11-18T23:59:59.000Z

    We give a brief overview of recent simulation activities on the design of neutrino factories. Simulation work is ongoing on many aspects of a potential facility, including proton drivers, pion collection and decay channels, phase rotation, ionization cooling, and muon accelerators.

  15. ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1

    E-Print Network [OSTI]

    Carroll, William L.

    2011-01-01T23:59:59.000Z

    Lf.20 i 2.4E (1) Cumulative heating and cooling loads only.at the American Society of Heating, Refrigerating, and AirDecember 3-5, 1979 ANNUAL HEATING AND COOLING REQUIREMENTS

  16. Cogeneration of Electricity and Potable Water Using The International Reactor Innovative And Secure (IRIS) Design

    SciTech Connect (OSTI)

    Ingersoll, D.T.; Binder, J.L.; Kostin, V.I.; Panov, Y.K.; Polunichev, V.; Ricotti, M.E.; Conti, D.; Alonso, G.

    2004-10-06T23:59:59.000Z

    The worldwide demand for potable water has been steadily growing and is projected to accelerate, driven by a continued population growth and industrialization of emerging countries. This growth is reflected in a recent market survey by the World Resources Institute, which shows a doubling in the installed capacity of seawater desalination plants every ten years. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh/m3 of produced desalted water. At current U.S. water use rates, a dedicated 1000 MW power plant for every one million people would be required to meet our water needs with desalted water. Nuclear energy plants are attractive for large scale desalination application. The thermal energy produced in a nuclear plant can provide both electricity and desalted water without the production of greenhouse gases. A particularly attractive option for nuclear desalination is to couple a desalination plant with an advanced, modular, passively safe reactor design. The use of small-to-medium sized nuclear power plants allows for countries with smaller electrical grid needs and infrastructure to add new electrical and water capacity in more appropriate increments and allows countries to consider siting plants at a broader number of distributed locations. To meet these needs, a modified version of the International Reactor Innovative and Secure (IRIS) nuclear power plant design has been developed for the cogeneration of electricity and desalted water. The modular, passively safe features of IRIS make it especially well adapted for this application. Furthermore, several design features of the IRIS reactor will ensure a safe and reliable source of energy and water even for countries with limited nuclear power experience and infrastructure. The IRIS-D design utilizes low-quality steam extracted from the low-pressure turbine to boil seawater in a multi-effect distillation desalination plant. The desalination plant is based on the horizontal tube film evaporation design used successfully with the BN-350 nuclear plant in Aktau, Kazakhstan. Parametric studies have been performed to optimize the balance of plant design. Also, an economic analysis has been performed, which shows that IRIS-D should be able to provide electricity and clean water at highly competitive costs.

  17. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Nuclear Energy Research Initiative Project 2001-001, Westinghouse Electric Co. Grant Number: DE-FG07-02SF22533, Final Report

    SciTech Connect (OSTI)

    Philip E. MacDonald

    2005-01-01T23:59:59.000Z

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% versus about 33% efficiency for current Light Water Reactors [LWRs]) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus, the need for a pressurizer, steam generators, steam separators, and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies: LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which are also in use around the world. The reference SCWR design for the U.S. program is a direct cycle system operating at 25.0 MPa, with core inlet and outlet temperatures of 280 and 500 C, respectively. The coolant density decreases from about 760 kg/m3 at the core inlet to about 90 kg/m3 at the core outlet. The inlet flow splits with about 10% of the inlet flow going down the space between the core barrel and the reactor pressure vessel (the downcomer) and about 90% of the inlet flow going to the plenum at the top of the rector pressure vessel, to then flow down through the core in special water rods to the inlet plenum. Here it mixes with the feedwater from the downcomer and flows upward to remove the heat in the fuel channels. This strategy is employed to provide good moderation at the top of the core. The coolant is heated to about 500 C and delivered to the turbine. The purpose of this NERI project was to assess the reference U.S. Generation IV SCWR design and explore alternatives to determine feasibility. The project was organized into three tasks: Task 1. Fuel-cycle Neutronic Analysis and Reactor Core Design Task 2. Fuel Cladding and Structural Material Corrosion and Stress Corrosion Cracking Task 3. Plant Engineering and Reactor Safety Analysis. moderator rods. materials.

  18. OECD MCCI Small-Scale Water Ingression and Crust Strength tests (SSWICS) design report, Rev. 2 October 31, 2002.

    SciTech Connect (OSTI)

    Farmer, M.; Lomperski, S.; Kilsdonk, D.; Aeschlimann, B.; Pfeiffer, P. (Nuclear Engineering Division); (NRC)

    2011-05-23T23:59:59.000Z

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are planned to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. A description of the test apparatus, instrumentation, data reduction, and test matrix are the subject of the first portion of this report. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The introduction of a thermal gradient across the crust is thought to be important for these tests because of uncertainty in the magnitude of the thermal stresses and thus their relative importance in the crust fracture mechanism at plant scale. The second half of this report describes the apparatus for measuring crust strength. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength).

  19. Conceptual design of a pressure tube light water reactor with variable moderator control

    SciTech Connect (OSTI)

    Rachamin, R.; Fridman, E. [Reactor Safety Div., Inst. of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, POB 51 01 19, 01314 Dresden (Germany); Galperin, A. [Dept. of Nuclear Engineering, Ben-Gurion Univ. of the Negev, POB 653, Beer Sheva 84105 (Israel)

    2012-07-01T23:59:59.000Z

    This paper presents the development of innovative pressure tube light water reactor with variable moderator control. The core layout is derived from a CANDU line of reactors in general, and advanced ACR-1000 design in particular. It should be stressed however, that while some of the ACR-1000 mechanical design features are adopted, the core design basics of the reactor proposed here are completely different. First, the inter fuel channels spacing, surrounded by the calandria tank, contains a low pressure gas instead of heavy water moderator. Second, the fuel channel design features an additional/external tube (designated as moderator tube) connected to a separate moderator management system. The moderator management system is design to vary the moderator tube content from 'dry' (gas) to 'flooded' (light water filled). The dynamic variation of the moderator is a unique and very important feature of the proposed design. The moderator variation allows an implementation of the 'breed and burn' mode of operation. The 'breed and burn' mode of operation is implemented by keeping the moderator tube empty ('dry' filled with gas) during the breed part of the fuel depletion and subsequently introducing the moderator by 'flooding' the moderator tube for the 'burn' part. This paper assesses the conceptual feasibility of the proposed concept from a neutronics point of view. (authors)

  20. Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

  1. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, P.

    1991-10-15T23:59:59.000Z

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  2. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, Peter (Cary, NC)

    1991-01-01T23:59:59.000Z

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  3. Economic evaluation of four types of dry/wet cooling applied to the 5-MWe Raft River geothermal power plant

    SciTech Connect (OSTI)

    Bamberger, J.A.; Allemann, R.T.

    1982-07-01T23:59:59.000Z

    A cost study is described which compared the economics of four dry/wet cooling systems to use at the existing Raft River Geothermal Plant. The results apply only at this site and should not be generalized without due consideration of the complete geothermal cycle. These systems are: the Binary Cooling Tower, evaporative condenser, Combin-aire, and a metal fin-tube dry cooling tower with deluge augmentation. The systems were evaluated using cooled, treated geothermal fluid instead of ground or surface water in the cooling loops. All comparisons were performed on the basis of a common plant site - the Raft River 5 MWe geothermal plant in Idaho. The Binary Cooling Tower and the Combin-aire cooling system were designed assuming the use of the isobutane/water surface condenser currently installed at the Raft River Plant. The other two systems had the isobutane ducted to the evaporative condensers. Capital credit was not given to the system employing the direct condensing process. The cost of the systems were estimated from designs provided by the vendors. The levelized energy cost range for each cooling system is listed below. The levelized energy cost reflects the incremental cost of the cooling system for the life of the plant. The estimates are presented in 1981 dollars.

  4. DOE/NNSA perspective safeguard by design: GEN III/III+ light water reactors and beyond

    SciTech Connect (OSTI)

    Pan, Paul Y [Los Alamos National Laboratory

    2010-12-10T23:59:59.000Z

    An overview of key issues relevant to safeguards by design (SBD) for GEN III/IV nuclear reactors is provided. Lessons learned from construction of typical GEN III+ water reactors with respect to SBD are highlighted. Details of SBD for safeguards guidance development for GEN III/III+ light water reactors are developed and reported. This paper also identifies technical challenges to extend SBD including proliferation resistance methodologies to other GEN III/III+ reactors (except HWRs) and GEN IV reactors because of their immaturity in designs.

  5. Fusion Engineering and Design 46 (1999) 177183 ITER reference breeding blanket design

    E-Print Network [OSTI]

    Raffray, A. René

    1999-01-01T23:59:59.000Z

    breeding blanket with a lithium ceramic as breeder material and beryllium as neutron multiplierFusion Engineering and Design 46 (1999) 177­183 ITER reference breeding blanket design M. Ferrari a The ITER reference breeding blanket design is water-cooled and is characterised by the use of the neutronic

  6. A Successful Cool Storage Rate 

    E-Print Network [OSTI]

    Ahrens, A. C.; Sobey, T. M.

    1994-01-01T23:59:59.000Z

    Houston Lighting & Power (HL&P) initiated design and development of its commercial cool storage program as part of an integrated resource planning process with a targeted 225 MW of demand reduction through DSM. Houston's ...

  7. A Successful Cool Storage Rate

    E-Print Network [OSTI]

    Ahrens, A. C.; Sobey, T. M.

    1994-01-01T23:59:59.000Z

    Houston Lighting & Power (HL&P) initiated design and development of its commercial cool storage program as part of an integrated resource planning process with a targeted 225 MW of demand reduction through DSM. Houston's extensive commercial air...

  8. Gravel admix, vegetation, and soil water interactions in protective barriers: Experimental design, construction, and initial conditions

    SciTech Connect (OSTI)

    Waugh, W.J.

    1989-05-01T23:59:59.000Z

    The purpose of this study is to measure the interactive effects of gravel admix and greater precipitation on soil water storage and plant abundance. The study is one of many tasks in the Protective Barrier Development Program for the disposal of Hanford defense waste. A factorial field-plot experiment was set up at the site selected as the borrow area for barrier topsoil. Gravel admix, vegetation, and enhanced precipitation treatments were randomly assigned to the plots using a split-split plot design structure. Changes in soil water storage and plant cover were monitored using neutron probe and point intercept methods, respectively. The first-year results suggest that water extraction by plants will offset gravel-caused increases in soil water storage. Near-surface soil water contents were much lower in graveled plots with plants than in nongraveled plots without plants. Large inherent variability in deep soil water storage masked any effects gravel may have had on water content below the root zone. In the future, this source of variation will be removed by differencing monthly data series and testing for changes in soil water storage. Tests of the effects of greater precipitation on soil water storage were inconclusive. A telling test will be possible in the spring of 1988, following the first wet season during which normal precipitation is doubled. 26 refs., 9 figs., 9 tabs.

  9. Cooled railplug

    DOE Patents [OSTI]

    Weldon, W.F.

    1996-05-07T23:59:59.000Z

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  10. Conceptual design study of geothermal district heating of a thirty-house subdivision in Elko, Nevada, using existing water-distribution systems, Phase III. Final technical report, October 1, 1979-September 30, 1980

    SciTech Connect (OSTI)

    Pitts, D.R.

    1980-09-30T23:59:59.000Z

    A conceptual design study for district heating of a 30-home subdivision located near the southeast extremity of the city of Elko, Nevada is presented. While a specific residential community was used in the study, the overall approach and methodologies are believed to be generally applicable for a large number of communities where low temperature geothermal fluid is available. The proposed district heating system utilizes moderate temperature, clean domestic water and existing community culinary water supply lines. The culinary water supply is heated by a moderate temperature geothermal source using a single heat exchanger at entry to the subdivision. The heated culinary water is then pumped to the houses in the community where energy is extracted by means of a water supplied heat pump. The use of heat pumps at the individual houses allows economic heating to result from supply of relatively cool water to the community, and this precludes the necessity of supplying objectionably hot water for normal household consumption use. Each heat pump unit is isolated from the consumptive water flow such that contamination of the water supply is avoided. The community water delivery system is modified to allow recirculation within the community, and very little rework of existing water lines is required. The entire system coefficient of performance (COP) for a typical year of heating is 3.36, exclusive of well pumping energy.

  11. advanced turbine cooling: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water methods. This approach reduces water... Boffardi, B. P. 466 Blackbody-radiation-assisted molecular laser cooling Quantum Physics (arXiv) Summary: The translational motion of...

  12. Long-Baseline Neutrino Experiment (LBNE)Conceptual Design ReportThe LBNE Water Cherenkov DetectorApril 13 2012

    SciTech Connect (OSTI)

    Kettell S. H.; Bishai, M.; Brown, R.; Chen, H.; Diwan, M.; Dolph, J., Geronimo, G.; Gill, R.; Hackenburg, R.; Hahn, R.; Hans, S.; Isvan, Z.; Jaffe, D.; Junnarkar, S.; Kettell, S.H.; Lanni,F.; Li, Y.; Ling, J.; Littenberg, L.; Makowiecki, D.; Marciano, W.; Morse, W.; Parsa, Z.; Radeka, V.; Rescia, S.; Samios, N.; Sharma, R.; Simos, N.; Sondericker, J.; Stewart, J.; Tanaka, H.; Themann, H.; Thorn, C.; Viren, B., White, S.; Worcester, E.; Yeh, M.; Yu, B.; Zhang, C.

    2012-04-13T23:59:59.000Z

    Conceptual Design Report (CDR) developed for the Water Cherekov Detector (WCD) option for the far detector of the Long Baseline Neutrino Experiment (LBNE)

  13. Berkeley Lab's Cool Your School Program

    SciTech Connect (OSTI)

    Ivan Berry

    2012-07-30T23:59:59.000Z

    Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

  14. Berkeley Lab's Cool Your School Program

    ScienceCinema (OSTI)

    Ivan Berry

    2013-06-24T23:59:59.000Z

    Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

  15. Heating and Cooling Equipment Selection

    SciTech Connect (OSTI)

    Not Available

    2002-01-01T23:59:59.000Z

    This is one of a series of technology fact sheets created to help housing designers and builders adopt a whole-house design approach and energy efficient design practices. The fact sheet helps people choose the correct equipment for heating and cooling to reduce initial costs, increase homeowner comfort, increase operating efficiency, and greatly reduce utility costs.

  16. Designing a Collaborative Problem Solving Environment for Integrated Water Resource Modeling

    SciTech Connect (OSTI)

    Thurman, David A.; Cowell, Andrew J.; Taira, Randal Y.; Frodge, Jonathan

    2004-06-14T23:59:59.000Z

    We report on our approach for designing a collaborative problem solving environment for hydrologists, water quality planners and natural resource managers, all roles within a natural resource management agency and stakeholders in an integrated water resource management process. We describe our approach in context of the Integrated Water Resource Modeling System (IWRMS), under development by Pacific Northwest National Laboratory for the Department of Natural Resources and Parks in King County, Washington. This system will integrate a collection of water resource models (watersheds, rivers, lakes, estuaries) to provide the ability to address water, land use, and other natural resource management decisions and scenarios, with the goal of developing an integrated modeling capability to address future land use and resource management scenarios and provide scientific support to decision makers. Here, we discuss the five-step process used to ascertain the (potentially opposing) needs and interests of stakeholders and provide results and summaries from our experiences. The results of this process guide user interface design efforts to create a collaborative problems solving environment supporting multiple users with differing scientific backgrounds and modeling needs. We conclude with a discussion of participatory interface design methods used to encourage stakeholder involvement and acceptance of the system as well as the lessons learned to date.

  17. Department of Mechanical Engineering Spring 2012 Space Vehicle Water Drop Test and Vehicle Design

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical Engineering Spring 2012 Space Vehicle Water Drop Test and Vehicle Design Overview The team was tasked with modelling the accelerations and pressures of an impact of the scaled landing vehicle to reduce the accelerations and pressures of the vehicle. Objectives Provide

  18. A photonic nano-architecture is designed to enhance solar water splitting effi-

    E-Print Network [OSTI]

    Steiner, Ullrich

    energy into hydrogen. However, the solar- to-H2 conversion efficiency is still very low due to rapid bulk artificial photosynthesis routes using solar energy to produce H2 or other fuels is an attractive scientificA photonic nano-architecture is designed to enhance solar water splitting effi- ciency

  19. Design and installation of continuous flow and water qualitymonitoring stations to improve water quality forecasting in the lower SanJoaquin River

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.

    2007-01-20T23:59:59.000Z

    This project deliverable describes a number ofstate-of-the-art, telemetered, flow and water quality monitoring stationsthat were designed, instrumented and installed in cooperation with localirrigation water districts to improve water quality simulation models ofthe lower San Joaquin River, California. This work supports amulti-disciplinary, multi-agency research endeavor to develop ascience-based Total Maximum Daily Load for dissolved oxygen in the SanJoaquin River and Stockton Deep Water Ship Channel.

  20. Experimental study on corrugated cross-flow air-cooled plate heat exchangers

    SciTech Connect (OSTI)

    Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang [Solar Thermal and Geothermal Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea); Lim, Hyug [Research and Development Center, LHE Co., Ltd., Gimhae 621-874 (Korea)

    2010-11-15T23:59:59.000Z

    Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)

  1. Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1998-11-30T23:59:59.000Z

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  2. Methods of Beam Cooling

    E-Print Network [OSTI]

    Sessler, A. M.

    2008-01-01T23:59:59.000Z

    of Optical Stochastic Cooling", presented at PAC, (1995).1991). Hangst, J. , "Laser Cooling of a Stored Ion Beam - ATheorem and Phase Space Cooling", Proceedings of the

  3. Mixed-mode cooling.

    E-Print Network [OSTI]

    Brager, Gail

    2006-01-01T23:59:59.000Z

    ASHRAE’s permission. Mixed-Mode Cooling Photo Credit: Paulnatural ventilation for cooling. Buildings typically had1950s of large-scale mechanical cooling, along with other

  4. Conceptual design of a regional water quality screening model. [RFF; Reach; HANFORD; ARQUAL; SEAS; NASQUAN

    SciTech Connect (OSTI)

    Davis, M J

    1981-01-01T23:59:59.000Z

    This water quality assessment methodology is intended to predict concentrations at future times and to estimate the impacts on water quality of energy-related activities (including industrial boilers). Estimates of impacts on water quality at future times are based on incremental changes in pollutant inputs to the body water. Important features of the model are: use of measured concentrations to account for existing conditions; consideration of incremental changes in pollutant loads; emphasis on the energy sector and industrial boilers; analysis restricted to streams only; no attempt to fully account for pollutant behavior; and flexible design, so that future improvements can be incorporated. The basic approach is very similar to the one used by Argonne's ARQUAL model but will allow more complex pollutant behavior and more flexibility in use. (PSB)

  5. Cooling system design tool for rapid development and analysis of chilled water systems aboard U.S. Navy surface ships

    E-Print Network [OSTI]

    Sanfiorenzo, Amiel B. (Amiel Benjamin)

    2013-01-01T23:59:59.000Z

    Over the last several decades, there has been a dramatic increase in the complexity and power requirements of radars and other combat systems equipment aboard naval combatants and this trend is expected to continue for the ...

  6. Designing a water leasing market for the Mimbres River, New Mexico.

    SciTech Connect (OSTI)

    Reno-Trujillo, Marissa Devan; Tidwell, Vincent Carroll; Broadbent, Craig [Illinois Wesleyan University; Brookshire, David [University of New Mexico; Coursey, Don [University of Chicago; Jackson, Charles. [New Mexico Office of the State Engineer; Polley, Adam [New Mexico Office of the State Engineer; Stevenson, Bryan [New Mexico Office of the State Engineer

    2013-04-01T23:59:59.000Z

    The objective of this study is to develop a conceptual framework for establishing water leasing markets in New Mexico using the Mimbres River as a test case. Given the past and growing stress over water in New Mexico and the Mimbres River in particular, this work will develop a mechanism for the short term, efficient, temporary transfer of water from one user to another while avoiding adverse effects on any user not directly involved in the transaction (i.e., third party effects). Toward establishing a water leasing market, five basic tasks were performed, (1) a series of stakeholder meetings were conducted to identify and address concerns and interests of basin residents, (2) several gauges were installed on irrigation ditches to aid in the monitoring and management of water resources in the basin, (3) the hydrologic/market model and decision support interface was extended to include the Middle and Lower reaches of the Mimbres River, (4) experiments were conducted to aid in design of the water leasing market, and (5) a set of rules governing a water leasing market was drafted for future adoption by basin residents and the New Mexico Office of the State Engineer.

  7. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    cooling system was designed, constructed, and tested by the UC Solar group at the UC Merced Castle Research

  8. Field Test Design Simulations of Pore-Water Extraction for the SX Tank Farm

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus

    2013-09-01T23:59:59.000Z

    A proof of principle test of pore water extraction is being performed by Washington River Protection Solutions for the U.S. Department of Energy, Office of River Protection. This test is being conducted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989) Milestone M 045-20, and is described in RPP-PLAN-53808, 200 West Area Tank Farms Interim Measures Investigation Work Plan. To support design of this test, numerical simulations were conducted to help define equipment and operational parameters. The modeling effort builds from information collected in laboratory studies and from field characterization information collected at the test site near the Hanford Site 241-SX Tank Farm. Numerical simulations were used to evaluate pore-water extraction performance as a function of the test site properties and for the type of extraction well configuration that can be constructed using the direct-push installation technique. Output of simulations included rates of water and soil-gas production as a function of operational conditions for use in supporting field equipment design. The simulations also investigated the impact of subsurface heterogeneities in sediment properties and moisture distribution on pore-water extraction performance. Phenomena near the extraction well were also investigated because of their importance for pore-water extraction performance.

  9. The Design and Evaluation of Prototype Eco-Feedback Displays for Fixture-Level Water Usage Data

    E-Print Network [OSTI]

    Anderson, Richard

    to the design of future water eco-feedback systems but also for other types of consumption (e.g., electricity ABSTRACT Few means currently exist for home occupants to learn about their water consumption: e.g., where to extract, water suppliers and governments are shifting their focus from finding new supplies to using

  10. Light Water Breeder Reactor fuel rod design and performance characteristics (LWBR Development Program)

    SciTech Connect (OSTI)

    Campbell, W.R.; Giovengo, J.F.

    1987-10-01T23:59:59.000Z

    Light Water Breeder Reactor (LWBR) fuel rods were designed to provide a reliable fuel system utilizing thorium/uranium-233 mixed-oxide fuel while simultaneously minimizing structural material to enhance fuel breeding. The fuel system was designed to be capable of operating successfully under both load follow and base load conditions. The breeding objective required thin-walled, low hafnium content Zircaloy cladding, tightly spaced fuel rods with a minimum number of support grid levels, and movable fuel rod bundles to supplant control rods. Specific fuel rod design considerations and their effects on performance capability are described. Successful completion of power operations to over 160 percent of design lifetime including over 200 daily load follow cycles has proven the performance capability of the fuel system. 68 refs., 19 figs., 44 tabs.

  11. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    SciTech Connect (OSTI)

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02T23:59:59.000Z

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.

  12. acute whole-body cooling: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of initial investment, energy consumption and future maintenance costs for mechanical cooling systems, the decision was to proceed with a direct water cooled system.......

  13. Cooling system of an internal combustion engine having a turbo-charger

    SciTech Connect (OSTI)

    Hasegawa, M.; Fukuda, T.

    1986-09-02T23:59:59.000Z

    A cooling system of an internal combustion engine is described having a turbo-charger, comprising a cooling water circulation passageway filled with cooling water for cooling the engine including at least a cylinder head cooling portion, a cooling water circulation passageway for cooling the turbo-charger including a turbo-charger cooling portion, and means for supplying a part of the engine cooling water to the turbo-charger cooling water ciruclation passageway and returning it from there to the engine cooling water cirulation passageway, characterized in that the turbo-charger cooling portion is positioned at the same level or higher than the cylinder head cooling portion of the engine, the turbo-charger cooling water circulation passageway includes a water volume positioned at a level higher than the turbo-charger cooling portion. The volume is connected to a cooling water reservoir tank via a pressure relief valve which is opened when pressure in the volume exceeds a predetermined value to supply cooling water to the volume.

  14. Advance in MEIC cooling studies

    SciTech Connect (OSTI)

    Zhang, Yuhong [JLAB, Newport News, VA (United States); Derbenev, Ya. [JLAB, Newport News, VA (United States); Douglas, D. [JLAB, Newport News, VA (United States); Hutton, A. [JLAB, Newport News, VA (United States); Kimber, A. [JLAB, Newport News, VA (United States); Li, R. [JLAB, Newport News, VA (United States); Nissen, E. [JLAB, Newport News, VA (United States); Tennant, [JLAB, Newport News, VA (United States); Zhang, H. [JLAB, Newport News, VA (United States)

    2013-06-01T23:59:59.000Z

    Cooling of ion beams is essential for achieving a high luminosity for MEIC at Jefferson Lab. In this paper, we present the design concept of the electron cooling system for MEIC. In the design, two facilities are required for supporting a multi-staged cooling scheme; one is a 2 MeV DC cooler in the ion pre-booster; the other is a high electron energy (up to 55 MeV) ERL-circulator cooler in the collider ring. The simulation studies of beam dynamics in an ERL-circulator cooler are summarized and followed by a report on technology development for this cooler. We also discuss two proposed experiments for demonstrating high energy cooling with a bunched electron beam and the ERL-circulator cooler.

  15. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    This is because the heat capacity of liquids is orders ofthe heat capacity and transfer efficiency of liquids is

  16. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01T23:59:59.000Z

    Format Locations sorted by Dry Bulb Temperature Locationssorted by Wet Bulb Temperature 11. APPENDIX C: DIRECT LIQUIDis constrained by outdoor wet bulb temperature) or dry

  17. Water Cooling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search Contents 1Wastes Hazardous

  18. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect (OSTI)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01T23:59:59.000Z

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  19. Core design study of a supercritical light water reactor with double row fuel rods

    SciTech Connect (OSTI)

    Zhao, C.; Wu, H.; Cao, L.; Zheng, Y. [School of Nuclear Science and Technology, Xi'an Jiaotong Univ., No. 28, Xianning West Road, Xi'an, ShannXi, 710049 (China); Yang, J.; Zhang, Y. [China Nuclear Power Technology Research Inst., Yitian Road, ShenZhen, GuangDong, 518026 (China)

    2012-07-01T23:59:59.000Z

    An equilibrium core for supercritical light water reactor has been designed. A novel type of fuel assembly with dual rows of fuel rods between water rods is chosen and optimized to get more uniform assembly power distributions. Stainless steel is used for fuel rod cladding and structural material. Honeycomb structure filled with thermal isolation is introduced to reduce the usage of stainless steel and to keep moderator temperature below the pseudo critical temperature. Water flow scheme with ascending coolant flow in inner regions is carried out to achieve high outlet temperature. In order to enhance coolant outlet temperature, the radial power distributions needs to be as flat as possible through operation cycle. Fuel loading pattern and control rod pattern are optimized to flatten power distribution at inner regions. Axial fuel enrichment is divided into three parts to control axial power peak, which affects maximum cladding surface temperature. (authors)

  20. OTEC cold water pipe design for problems caused by vortex-excited oscillations

    SciTech Connect (OSTI)

    Griffin, O. M.

    1980-03-14T23:59:59.000Z

    Vortex-excited oscillations of marine structures result in reduced fatigue life, large hydrodynamic forces and induced stresses, and sometimes lead to structural damage and to diestructive failures. The cold water pipe of an OTEC plant is nominally a bluff, flexible cylinder with a large aspect ratio (L/D = length/diameter), and is likely to be susceptible to resonant vortex-excited oscillations. The objective of this report is to survey recent results pertaining to the vortex-excited oscillations of structures in general and to consider the application of these findings to the design of the OTEC cold water pipe. Practical design calculations are given as examples throughout the various sections of the report. This report is limited in scope to the problems of vortex shedding from bluff, flexible structures in steady currents and the resulting vortex-excited oscillations. The effects of flow non-uniformities, surface roughness of the cylinder, and inclination to the incident flow are considered in addition to the case of a smooth cyliner in a uniform stream. Emphasis is placed upon design procedures, hydrodynamic coefficients applicable in practice, and the specification of structural response parameters relevant to the OTEC cold water pipe. There are important problems associated with in shedding of vortices from cylinders in waves and from the combined action of waves and currents, but these complex fluid/structure interactions are not considered in this report.

  1. Cool Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site Office (FSO) FSOConverting Biomass toCool Links

  2. Desiccant-based, heat-actuated cooling assessment for DHC (District Heating and Cooling) systems

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.A.; Becker, F.E.

    1990-07-01T23:59:59.000Z

    An assessment has been completed of the use of desiccant-based, heat-actuated cooling for District Heating and Cooling (DHC) systems, showing that such desiccant-based cooling (DBC) systems are generally applicable to District Heating (DH) systems. Since the DH system only has to supply hot water (or steam) to its customers, systems that were designed as conventional two-pipe DH systems can now be operated as DHC systems without major additional capital expense. Desiccant-based DHC systems can be operated with low-grade DH-supplied heat, at temperatures below 180{degree}F, without significant loss in operating capacity, relative to absorption chillers. During this assessment, a systems analysis was performed, an experimental investigation was conducted, developmental requirements for commercializing DBC systems were examined, and two case studies were conducted. As a result of the case studies, it was found that the operating cost of a DBC system was competitive with or lower than the cost of purchasing DHC-supplied chilled water. However, because of the limited production volume and the current high capital costs of desiccant systems, the payback period is relatively long. In this regard, through the substitution of low-cost components specifically engineered for low-temperature DHC systems, the capital costs should be significantly reduced and overall economics made attractive to future users. 17 figs.

  3. Design of a rural water provision system to decrease arsenic exposure in Bangladesh

    SciTech Connect (OSTI)

    Mathieu, Johanna

    2009-01-07T23:59:59.000Z

    Researchers at the Lawrence Berkeley National Laboratory have invented ARUBA (Arsenic Removal Using Bottom Ash) a material that effectively and affordably removes high concentrations of arsenic from contaminated groundwater. The technology is cost-effective because the substrate?bottom ash from coal fired power plants?is a waste material readily available in South Asia. During fieldwork in four sub-districts ofBangladesh, ARUBA reduced groundwater arsenic concentrations as high as 680 ppb to below the Bangladesh standard of 50 ppb. Key results from three trips in Bangladesh and one trip to Cambodia include (1) ARUBA removes more than half of the arsenic from contaminated water within the first five minutes of contact, andcontinues removing arsenic for 2-3 days; (2) ARUBA?s arsenic removal efficiency can be improved through fractionated dosing (adding a given amount of ARUBA in fractions versus all at once); (3) allowing water to first stand for two to three days followed by treatment with ARUBA produced final arsenic concentrations ten times lower than treating water directly out of the well; and (4) the amount of arsenic removed per gram of ARUBA is linearly related to the initial arsenic concentrationof the water. Through analysis of existing studies, observations, and informal interviews in Bangladesh, eight design strategies have been developed and used in the design of a low-cost, community-scale water treatment system that uses ARUBA to remove arsenic from drinking water. We have constructed, tested, and analyzed a scale version of the system. Experiments have shown that the system is capable of reducing high levels of arsenic (nearly 600 ppb) to below 50 ppb, while remaining affordable to people living on less than $2 per day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.

  4. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    SciTech Connect (OSTI)

    Hassan, Yassin; Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14T23:59:59.000Z

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during stead-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the stead-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  5. Cool and Save: Cooling Aware Dynamic Workload Scheduling in Multi-socket CPU Systems

    E-Print Network [OSTI]

    Simunic, Tajana

    Cool and Save: Cooling Aware Dynamic Workload Scheduling in Multi-socket CPU Systems Raid Ayoub, dissipating the high temper- ature requires a large and energy hungry cooling system which increases the cost and fan control in multi-socket systems have been designed sep- arately leading to less efficient

  6. Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 This practice covers procedures for designing a surveillance program for monitoring the radiation-induced changes in the mechanical properties of ferritic materials in light-water moderated nuclear power reactor vessels. This practice includes the minimum requirements for the design of a surveillance program, selection of vessel material to be included, and the initial schedule for evaluation of materials. 1.2 This practice was developed for all light-water moderated nuclear power reactor vessels for which the predicted maximum fast neutron fluence (E > 1 MeV) at the end of license (EOL) exceeds 1 × 1021 neutrons/m2 (1 × 1017 n/cm2) at the inside surface of the reactor vessel. 1.3 This practice applies only to the planning and design of surveillance programs for reactor vessels designed and built after the effective date of this practice. Previous versions of Practice E185 apply to earlier reactor vessels. 1.4 This practice does not provide specific procedures for monitoring the radiation induced cha...

  7. Designer organisms for photosynthetic production of ethanol from carbon dioxide and water

    DOE Patents [OSTI]

    Lee, James Weifu (Knoxville, TN)

    2011-07-05T23:59:59.000Z

    The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

  8. Method and system for simulating heat and mass transfer in cooling towers

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Hassani, A. Vahab (Golden, CO)

    1997-01-01T23:59:59.000Z

    The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

  9. Coolerado 5 Ton RTU Performance: Western Cooling Challenge Results (Revised)

    SciTech Connect (OSTI)

    Kozubal, E.; Slayzak, S.

    2010-11-01T23:59:59.000Z

    The Western Cooling Efficiency Center (WCEC) developed a set of criteria for test conditions, minimum energy, and water use performance for prototype cooling equipment and identified these conditions as indicative of western state climates.

  10. MEIC Electron Cooling Simulation Using Betacool

    SciTech Connect (OSTI)

    Zhang, He [JLAB; Zhang, Yuhong [JLAB

    2013-12-01T23:59:59.000Z

    Electron cooling of ion beams is the most critical R&D issue in Jefferson Lab's MEIC design. In the ion collider ring, a bunched electron beam driven by an energy-recovery SRF linac assisted by a circulate ring will be employed to cool protons or ions with energies up to 100 GeV/u, a parameter regime that electron cooling has never been applied. It is essential to understand how efficient the electron cooling is, particularly in the high energy range, to confirm the feasibility of the design. Electron cooling is also important in LEIC design although the ion energy is 25 GeV/u, lower than MEIC. In this paper, we will present first results of the simulation studies of electron cooling processes in the collider ring of both MEIC and LEIC using BETACOOL code.

  11. Design Method for the Heating/Cooling Coil in the AHU Based on Fuzzy Logic - Part One: Basic Structure and Characteristics Analysis

    E-Print Network [OSTI]

    Zhang, J.; Chen, Y.; Liang, Z.

    2006-01-01T23:59:59.000Z

    An AHU's energy performance is greatly influenced by its heating/cooling coil energy performance, which is also greatly influenced by the different kinds of control methodologies such as PID control and fuzzy logic control. The conventional...

  12. ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1

    E-Print Network [OSTI]

    Carroll, William L.

    2011-01-01T23:59:59.000Z

    BLAST DOE-2 (SWF) Annual Cooling Requirements (10 6 Btu)Btu) I'" I NBSLD III DOE-2 (SW'F) DOE-2 (CW'F) DOE-2 (CWF)Heating (1 Annual Total Btu) City Jan HINNEAPOLIS NBSLD

  13. CFD MODELING AND ANALYSIS FOR A-AREA AND H-AREA COOLING TOWERS

    SciTech Connect (OSTI)

    Lee, S.; Garrett, A.; Bollinger, J.

    2009-09-02T23:59:59.000Z

    Mechanical draft cooling towers are designed to cool process water via sensible and latent heat transfer to air. Heat and mass transfer take place simultaneously. Heat is transferred as sensible heat due to the temperature difference between liquid and gas phases, and as the latent heat of the water as it evaporates. Mass of water vapor is transferred due to the difference between the vapor pressure at the air-liquid interface and the partial pressure of water vapor in the bulk of the air. Equations to govern these phenomena are discussed here. The governing equations are solved by taking a computational fluid dynamics (CFD) approach. The purpose of the work is to develop a three-dimensional CFD model to evaluate the flow patterns inside the cooling tower cell driven by cooling fan and wind, considering the cooling fans to be on or off. Two types of the cooling towers are considered here. One is cross-flow type cooling tower located in A-Area, and the other is counterflow type cooling tower located in H-Area. The cooling tower located in A-Area is mechanical draft cooling tower (MDCT) consisting of four compartment cells as shown in Fig. 1. It is 13.7m wide, 36.8m long, and 9.4m high. Each cell has its own cooling fan and shroud without any flow communications between two adjacent cells. There are water distribution decks on both sides of the fan shroud. The deck floor has an array of about 25mm size holes through which water droplet falls into the cell region cooled by the ambient air driven by fan and wind, and it is eventually collected in basin area. As shown in Fig. 1, about 0.15-m thick drift eliminator allows ambient air to be humidified through the evaporative cooling process without entrainment of water droplets into the shroud exit. The H-Area cooling tower is about 7.3 m wide, 29.3 m long, and 9.0 m high. Each cell has its own cooling fan and shroud, but each of two corner cells has two panels to shield wind at the bottom of the cells. There is some degree of flow communications between adjacent cells through the 9-in gap at the bottom of the tower cells as shown in Fig. 2. Detailed geometrical dimensions for the H-Area tower configurations are presented in the figure. The model was benchmarked and verified against off-site and on-site test results. The verified model was applied to the investigation of cooling fan and wind effects on water cooling in cells when fans are off and on. This report will discuss the modeling and test results.

  14. Experimental Study of the Circulation Air Volume of Recirculation Evaporative Cooling

    E-Print Network [OSTI]

    Xiong, J.; Liu, Z.; Wang, C.; Chen, G.

    2006-01-01T23:59:59.000Z

    This paper introduces the technology of re-circulation evaporative cooling (REC), which uses a portion of supply air as secondary air to make cool water used to indirectly cool outside air through a heat exchanger. The circulation volume...

  15. Performance Evaluation for Modular, Scalable Cooling Systems with Hot Aisle Containment in Data Centers

    E-Print Network [OSTI]

    Adams, Barbara J

    2009-01-01T23:59:59.000Z

    The supply water temperature to the cooling modules used ininlet supply air temperatures, as was the cooling module’sCooling System 2 be evaluated when operating with higher supply

  16. Design of a Spacer Grid Using Axiomatic Design

    SciTech Connect (OSTI)

    Song, K.N.; Yoon, K.H. [Korea Atomic Energy Research Institute, 150, Dukjin-Dong, Yusong-Gu, Taejon 305-353 (Korea, Republic of); Kang, B.S.; Park, G.J. [Hanyang University, 249-1, Kyomoon-dong, Kuri-si, Kyounggi-do 471-701 (Korea, Republic of); Choi, S.K. [Korea Rolling Stock Corporation, Kyunggi-Do, 437-040 (Korea, Republic of)

    2002-07-01T23:59:59.000Z

    Recently, much attention has been focused on the design of the fuel assemblies in the Pressurized Light Water Reactor (PLWR). The spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water, and maintains geometry from the external impact loads. In this research, a new shape of the spacer grid is designed by the axiomatic approach. The Independence Axiom is utilized for the design. For the conceptual design, functional requirements (FRs) are defined and corresponding design parameters (DPs) are found to satisfy FRs in sequence. Overall configuration and shapes are determined in this process. Detailed design is carried out based on the result of the axiomatic design. For the detailed design, the system performances are evaluated by using linear and nonlinear finite element analysis. The dimensions are determined by optimization. Some commercial codes are utilized for the analysis and design. (authors)

  17. Evaluation of proposed German safety criteria for high-temperature gas-cooled reactors

    SciTech Connect (OSTI)

    Barsell, A.W.

    1980-05-01T23:59:59.000Z

    This work reviews proposed safety criteria prepared by the German Bundesministerium des Innern (BMI) for future licensing of gas-cooled high-temperature reactor (HTR) concepts in the Federal Republic of Germany. Comparison is made with US General Design Criteria (GDCs) in 10CFR50 Appendix A and with German light water reactor (LWR) criteria. Implications for the HTR design relative to the US design and safety approach are indicated. Both inherent characteristics and design features of the steam cycle, gas turbine, and process heat concepts are taken into account as well as generic design options such as a pebble bed or prismatic core.

  18. Cost benefits from applying advanced heat rejection concepts to a wet/dry-cooled binary geothermal plant

    SciTech Connect (OSTI)

    Faletti, D.W.

    1981-03-01T23:59:59.000Z

    Optimized ammonia heat rejection system designs were carried out for three water allocations equivalent to 9, 20, and 31% of that of a 100% wet-cooled plant. The Holt/Procon design of a 50-MWe binary geothermal plant for the Heber site was used as a design basis. The optimization process took into account the penalties for replacement power, gas turbine capital, and lost capacity due to increased heat rejection temperature, as well as added base plant capacity and fuel to provide fan and pump power to the heat rejection system. Descriptions of the three plant designs are presented. For comparison, a wet tower loop was costed out for a 100% wet-cooled plant using the parameters of the Holt/Procon design. Wet/dry cooling was found to increase the cost of electricity by 28% above that of a 100% wet-cooled plant for all three of the water allocations studied (9, 20, and 31%). The application selected for a preconceptual evaluation of the BCT (binary cooling tower) system was the use of agricultural waste water from the New River, located in California's Imperial Valley, to cool a 50-MWe binary geothermal plant. Technical and cost evaluations at the preconceptual level indicated that performance estimates provided by Tower Systems Incorporated (TSI) were reasonable and that TSI's tower cost, although 2 to 19% lower than PNL estimates, was also reasonable. Electrical cost comparisonswere made among the BCT system, a conventional 100% wet system, and a 9% wet/dry ammonia system, all using agricultural waste water with solar pond disposal. The BCT system cost the least, yielding a cost of electricity only 13% above that of a conventional wet system using high quality water and 14% less than either the conventional 100% wet or the 9% wet/dry ammonia system.

  19. Desiccant-based, heat actuated cooling assessment for DHC systems; Quarterly report, August 1, 1989--October 31, 1989

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.; Becker, F.E.

    1989-01-01T23:59:59.000Z

    This is Second Quarterly Report for DOE Project {number_sign} FG01-89CE26593 entitled: ``Desiccant-Based, Heat Actuated Cooling Assessment for DHC Systems.`` The goal of the project is to perform a conceptual design, systems analysis and case study evaluation of a application of a desiccant based cooling design within a district heating and cooling system. This Quarterly Report covers project work conducted from August 1, 1989 to October 31, 1989. The goals of the project have their basis in the desire to lower the operating temperature of the transport medium in a district heating system, but still enable cooling via that transport medium. At this time a district heating and cooling system must use a four-pipe heating ad cooling delivery system -- two pipes for hot water supply and return and two pipes for chilled water supply and return if both heating and cooling are to be provided. Unfortunately, such a four-pipe system is expensive, especially for existing D. H. systems that already have a two-pipe system installed. 1 fig.

  20. Desiccant-based, heat actuated cooling assessment for DHC systems; Quarterly report, November 1, 1989--January 31, 1990

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.; Becker, F.E.

    1990-01-01T23:59:59.000Z

    This is the Third Quarterly Report for DOE Project Number FG01- 89CE26593 entitled: ``Desiccant-Based, Heat Actuated Cooling Assessment for DHC Systems.`` The goal of the project is to perform a conceptual design, systems analysis and case study evaluation of an application of a desiccant based cooling design within a district heating and cooling system. This Quarterly Report covers project work conducted from November 1, 1989 to January 31, 1990. The goals of the project have their basis in the desire to lower the operating temperature of the transport medium in a district heating system, but still enable cooling via that transport medium. At this time a district heating and cooling system must use a four-pipe heating and cooling delivery system -- two pipes for hot water supply and return and two pipes for chilled water supply and return if both heating and cooling are to be provided. Unfortunately, such a four-pipe system is expensive, especially for existing D. H. systems that already have a two-pipe system installed. 36 figs.