National Library of Energy BETA

Sample records for design cooling water

  1. Designing a 'Near Optimum' Cooling-Water System 

    E-Print Network [OSTI]

    Crozier, R. A., Jr.

    1981-01-01

    developed similar procedures for designing and optimizing a cooling-water once through-exchanger system. This article attempts to fill the void by presenting a design basis that will produce a 'near optimum' system. A cooling-water system consists of four...

  2. Critical review of water based radiant cooling system design methods

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Bauman, Fred; Schiavon, Stefano

    2014-01-01

    buildings CRITICAL REVIEW OF WATER BASED RADIANT COOLINGare two primary types of water-based radiant systems: (1)cooling/heating output, water supply temperatures Notes NA

  3. Critical review of water based radiant cooling system design methods

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Bauman, Fred; Schiavon, Stefano

    2014-01-01

    shown that radiant system cooling capacity could be enhancedof trends regarding radiant system cooling load analysis andEmbedded Radiant Heating and Cooling Systems, International

  4. The design and evaluation of a water delivery system for evaporative cooling of a proton exchange membrane fuel cell 

    E-Print Network [OSTI]

    Al-Asad, Dawood Khaled Abdullah

    2009-06-02

    An investigation was performed to demonstrate system design for the delivery of water required for evaporative cooling of a proton exchange membrane fuel cell (PEMFC). The water delivery system uses spray nozzles capable of injecting water directly...

  5. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard (Pittsburgh, PA)

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  6. Cooling Water System Optimization 

    E-Print Network [OSTI]

    Aegerter, R.

    2005-01-01

    During summer months, many manufacturing plants have to cut back in rates because the cooling water system is not providing sufficient cooling to support higher production rates. There are many low/no-cost techniques available to improve tower...

  7. Thermoelectrically cooled water trap

    DOE Patents [OSTI]

    Micheels, Ronald H. (Concord, MA)

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  8. Design of 95 GHz gyrotron based on continuous operation copper solenoid with water cooling

    SciTech Connect (OSTI)

    Borodin, Dmitri; Ben-Moshe, Roey; Einat, Moshe

    2014-07-15

    The design work for 2nd harmonic 95 GHz, 50 kW gyrotron based on continuous operation copper solenoid is presented. Thermionic magnetron injection gun specifications were calculated according to the linear trade off equation, and simulated with CST program. Numerical code is used for cavity design using the non-uniform string equation as well as particle motion in the “cold” cavity field. The mode TE02 with low Ohmic losses in the cavity walls was chosen as the operating mode. The Solenoid is designed to induce magnetic field of 1.8 T over a length of 40 mm in the interaction region with homogeneity of ±0.34%. The solenoid has six concentric cylindrical segments (and two correction segments) of copper foil windings separated by water channels for cooling. The predicted temperature in continuous operation is below 93?°C. The parameters of the design together with simulation results of the electromagnetic cavity field, magnetic field, electron trajectories, and thermal analyses are presented.

  9. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01

    C: DIRECT LIQUID AND AIR COOLING COMPONENT TCASE FORECASTGRAPHICS Direct Liquid Cooling Thermal Components andThermal Design Margins Air Cooling Thermal Components and

  10. Optimization of Cooling Water 

    E-Print Network [OSTI]

    Matson, J.

    1985-01-01

    A cooling water system can be optimized by operation at the highest possible cycles of concentration without risking sealing and fouling on heat exchanger surfaces. The way to optimize will be shown, with a number of examples of new systems....

  11. Engineered design of SSC cooling ponds

    SciTech Connect (OSTI)

    Bear, J.B.

    1993-05-01

    The cooling requirements of the SSC are significant and adequate cooling water systems to meet these requirements are critical to the project`s successful operation. The use of adequately designed cooling ponds will provide reliable cooling for operation while also meeting environmental goals of the project to maintain streamflow and flood peaks to preconstruction levels as well as other streamflow and water quality requirements of the Texas Water Commission and the Environmental Protection Agency.

  12. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  13. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, Jr., Edward P. (Idaho Falls, ID)

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  14. Ground Water Cooling System 

    E-Print Network [OSTI]

    Greaves, K.; Chave, G. H.

    1984-01-01

    has a total shop area of 128,000 square feet and the majority of the machine tools are equipped with computerized numerical controls. The cooling system was designed around five (5) floor mounted, 50,000 CFM, air handling units which had been...

  15. Cooling load design tool for UFAD systems.

    E-Print Network [OSTI]

    Bauman, Fred; Schiavon, Stefano; Webster, Tom; Lee, Kwang Ho

    2010-01-01

    De- velopment of a Simplified Cooling Load Design Tool forand C. Benedek. 2007. “Cooling airflow design calculationscalculation method for design cooling loads in underfloor

  16. The design and performance of a water cooling system for a prototype coupled cavity linear particle accelerator for the spallation neutron source

    SciTech Connect (OSTI)

    Bernardin, J. D. (John D.); Ammerman, C. N. (Curtt N.); Hopkins, S. M. (Steve M.)

    2002-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. The SNS will generate and employ neutrons as a research tool in a variety of disciplines including biology, material science, superconductivity, chemistry, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of, in part, a multi-cell copper structure termed a coupled cavity linac (CCL). The CCL is responsible for accelerating the protons from an energy of 87 MeV, to 185 MeV. Acceleration of the charged protons is achieved by the use of large electrical field gradients established within specially designed contoured cavities of the CCL. While a large amount of the electrical energy is used to accelerate the protons, approximately 60-80% of this electrical energy is dissipated in the CCL's copper structure. To maintain an acceptable operating temperature, as well as minimize thermal stresses and maintain desired contours of the accelerator cavities, the electrical waste heat must be removed from the CCL structure. This is done using specially designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by a complex water cooling and temperature control system. This paper discusses the design, analysis, and testing of a water cooling system for a prototype CCL. First, the design concept and method of water temperature control is discussed. Second, the layout of the prototype water cooling system, including the selection of plumbing components, instrumentation, as well as controller hardware and software is presented. Next, the development of a numerical network model used to size the pump, heat exchanger, and plumbing equipment, is discussed. Finally, empirical pressure, flow rate, and temperature data from the prototype CCL water cooling tests are used to assess water cooling system performance and numerical modeling accuracy.

  17. Cooling airflow design calculations for UFAD

    E-Print Network [OSTI]

    Bauman, Fred; Webster, Tom; Benedek, Corinne

    2007-01-01

    written permission. Cooling Airflow Design Calculations form) height. Table 2: Design cooling airflow performance fortool predictions of UFAD cooling airflow rates and associ-

  18. DESIGN AND ANALYSIS OF THE SNS CCL HOT MODEL WATER COOLING SYSTEM USING THE SINDA/FLUINT NETWORK MODELING TOOL

    SciTech Connect (OSTI)

    C. AMMERMAN; J. BERNARDIN

    1999-11-01

    This report presents results for design and analysis of the hot model water cooling system for the Spallation Neutron Source (SNS) coupled-cavity linac (CCL). The hot model, when completed, will include segments for both the CCL and coupled-cavity drift-tube linac (CCDTL). The scope of this report encompasses the modeling effort for the CCL portion of the hot model. This modeling effort employed the SINDA/FLUINT network modeling tool. This report begins with an introduction of the SNS hot model and network modeling using SINDA/FLUINT. Next, the development and operation of the SINDA/FLUINT model are discussed. Finally, the results of the SINDA/FLUINT modeling effort are presented and discussed.

  19. Engineering Design Cooling flow design

    E-Print Network [OSTI]

    McDonald, Kirk

    · Moderators 2 x H2O (0.5 L) Gd poison + Boral decoupler CH4 (0.5 L) Gd poison + Boral decoupler H2 (0.8 L) no poison + Boral decoupler · Reflector - Rods of Beryllium (D2O cooled) · 17 Neutron Beam lines Upgrade

  20. An Improved Simple Chilled Water Cooling Coil Model

    E-Print Network [OSTI]

    Wang, Liping

    2014-01-01

    design and control of chilled water systems, Ph.D. Thesis,Dynamic modeling of chilled water cooling coils. PhD thesis,of the ratio of the water-side to the air-side conductance

  1. Passive containment cooling water distribution device

    DOE Patents [OSTI]

    Conway, Lawrence E. (Hookstown, PA); Fanto, Susan V. (Plum Borough, PA)

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using a series of radial guide elements and cascading weir boxes to collect and then distribute the cooling water into a series of distribution areas through a plurality of cascading weirs. The cooling water is then uniformly distributed over the curved surface by a plurality of weir notches in the face plate of the weir box.

  2. Water Management for Evaporatively Cooled Condensers

    E-Print Network [OSTI]

    California at Davis, University of

    Water Management for Evaporatively Cooled Condensers Theresa Pistochini May 23rd, 2012 ResearchAirCapacity,tons Gallons of Water Continuous Test - Outdoor Air 110-115 Deg F Cyclic Test - Outdoor Air 110-115 Deg F #12 AverageWaterHardness(ppm) Cooling Degree Days (60°F Reference) 20% Population 70% Population 10

  3. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01

    be removed from the datacenter efficiently. The transitionone half of an air-cooled datacenter's energy consumption isof time if desired by the datacenter owner. If the building

  4. "Hot" for Warm Water Cooling

    SciTech Connect (OSTI)

    IBM Corporation; Energy Efficient HPC Working Group; Hewlett Packard Corporation; SGI; Cray Inc.; Intel Corporation; U.S. Army Engineer Research Development Center; Coles, Henry; Ellsworth, Michael; Martinez, David J.; Bailey, Anna-Maria; Banisadr, Farhad; Bates, Natalie; Coghlan, Susan; Cowley, David E.; Dube, Nicholas; Fields, Parks; Greenberg, Steve; Iyengar, Madhusudan; Kulesza, Peter R.; Loncaric, Josip; McCann, Tim; Pautsch, Greg; Patterson, Michael K.; Rivera, Richard G.; Rottman, Greg K.; Sartor, Dale; Tschudi, William; Vinson, Wade; Wescott, Ralph

    2011-08-26

    Liquid cooling is key to reducing energy consumption for this generation of supercomputers and remains on the roadmap for the foreseeable future. This is because the heat capacity of liquids is orders of magnitude larger than that of air and once heat has been transferred to a liquid, it can be removed from the datacenter efficiently. The transition from air to liquid cooling is an inflection point providing an opportunity to work collectively to set guidelines for facilitating the energy efficiency of liquid-cooled High Performance Computing (HPC) facilities and systems. The vision is to use non-compressor-based cooling, to facilitate heat re-use, and thereby build solutions that are more energy-efficient, less carbon intensive and more cost effective than their air-cooled predecessors. The Energy Efficient HPC Working Group is developing guidelines for warmer liquid-cooling temperatures in order to standardize facility and HPC equipment, and provide more opportunity for reuse of waste heat. This report describes the development of those guidelines.

  5. Stability analysis of supercritical water cooled reactors

    E-Print Network [OSTI]

    Zhao, Jiyun, Ph. D. Massachusetts Institute of Technology

    2005-01-01

    The Supercritical Water-Cooled Reactor (SCWR) is a concept for an advanced reactor that will operate at high pressure (25MPa) and high temperature (500°C average core exit). The high coolant temperature as it leaves the ...

  6. Optimized Design of a Furnace Cooling System 

    E-Print Network [OSTI]

    Morelli, F.; Bretschneider, R.; Dauzat, J.; Guymon, M.; Studebaker, J.; Rasmussen, B. P.

    2013-01-01

    This paper presents a case study of manufacturing furnace optimized re-design. The bottleneck in the production process is the cooling of heat treatment furnaces. These ovens are on an approximate 24-hour cycle, heating for 12 hours and cooling...

  7. Air and water cooled modulator

    DOE Patents [OSTI]

    Birx, Daniel L. (Oakley, CA); Arnold, Phillip A. (Livermore, CA); Ball, Don G. (Livermore, CA); Cook, Edward G. (Livermore, CA)

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  8. Air and water cooled modulator

    DOE Patents [OSTI]

    Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

    1995-09-05

    A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

  9. Yahoo! Compute Coop Next Generation Passive Cooling Design for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yahoo Compute Coop Next Generation Passive Cooling Design for Data Centers Yahoo Compute Coop Next Generation Passive Cooling Design for Data Centers yahoopassivecooling.pdf...

  10. Covered Product Category: Water-Cooled Electric Chillers

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including water-cooled electric chillers, which is a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  11. A Free Cooling Based Chilled Water System at Kingston 

    E-Print Network [OSTI]

    Jansen, P. R.

    1984-01-01

    In efforts to reduce operating costs, the IBM site at Kingston, New York incorporated the energy saving concept of 'free cooling' (direct cooling of chilled water with condenser water) with the expansion of the site chilled water system. Free...

  12. Water Cooling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit HistoryWastes HazardousWater

  13. Landscape Design & Water Quality

    E-Print Network [OSTI]

    Ishida, Yuko

    drainage lines to allow water to filter into surrounding soils. Install gravel sumps or other percolationLandscape Design & Water Quality Landscape Design & Water Quality Create a landscape design that reduces pesticide and fertilizer runoff and conserves water. Good plant choices, proper site preparation

  14. Covered Product Category: Water-Cooled Ice Machines

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Federal Energy Management Program (FEMP) provides acquisition guidance and federal efficiency requirements for water-cooled ice machines.

  15. Muon Beam Helical Cooling Channel Design

    SciTech Connect (OSTI)

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G.; Kazakevich, G.M.; Marhauser, Frank; Neubauer, Michael; Roberts, T.; Yoshikawa, C.; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V.S.; Lopes, Mattlock; Tollestrup, A.; Yonehara, Katsuya; Zloblin, A.

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  16. Aalborg Universitet Water cooling of high power light emitting diode

    E-Print Network [OSTI]

    Berning, Torsten

    Aalborg Universitet Water cooling of high power light emitting diode Sørensen, Henrik Published in Citation for published version (APA): Sørensen, H. (2012). Water cooling of high power light emitting diode from vbn.aau.dk on: juli 07, 2015 #12;Water Cooling of High Power Light Emitting Diode Henrik Sørensen

  17. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.

  18. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    SciTech Connect (OSTI)

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard; Waterman, Dave; Caletka, Dave; Steadman, Paul; Dhesi, Sarnjeet

    2007-01-19

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Element Analysis of the system are presented.

  19. Air-to-air turbocharged air cooling versus air-to-water turbocharged air cooling

    SciTech Connect (OSTI)

    Moranne, J.-P.; Lukas, J.J.

    1984-01-01

    In Europe, turbocharged air in diesel engines used in on-road vehicles is cooled only by air. It is expected that by 1990, ten to twelve percent of European heavy trucks with diesel engines will cool turbocharged air by water. Air-to-air turbocharges air cooling is reviewed and the evolution of air-to-water turbocharged air cooling presented before the two systems are compared.

  20. Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger Rack Cooling Device

    E-Print Network [OSTI]

    Greenberg, Steve

    2014-01-01

    LBNL-XXXXX Data Center Economizer Cooling with Tower Water;included a water- side economizer. This model estimated theand without a water-side economizer and including or not

  1. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    SciTech Connect (OSTI)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  2. No Chemical, Zero Bleed Cooling Tower Water Treatment Process 

    E-Print Network [OSTI]

    Coke, A. L.

    1992-01-01

    BLEED COOLING TOWER WATER TREATMENT PROCESS ALDEN L. COKE, CWS IV, PRESIDENT, AQUA-FLO, INC., BALTIMORE, MARYLAND ABSTRACT This paper describes a process to treat cooling tower water by means of a fully automated and chemical free mechanical water... treatment process. This is an alternative to conventional chemical treatment. Beginning with a suction pump to draw water out of the tower sump, water goes through a permanent magnetic descaler to increase the water solubility and begin the scale...

  3. Forced cooling of underground electric power transmission lines : design manual

    E-Print Network [OSTI]

    Brown, Jay A.

    1978-01-01

    The methodology utilized for the design of a forced-cooled pipe-type underground transmission system is presented. The material is divided into three major parts: (1) The Forced-cooled Pipe-Type Underground Transmission ...

  4. Covered Product Category: Water-Cooled Electric Chillers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Chillers Covered Product Category: Water-Cooled Electric Chillers The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency...

  5. Candidate Materials Evaluation for Supercritical Water-Cooled Reactor

    SciTech Connect (OSTI)

    T. R. Allen and G. S. Was

    2008-12-12

    Final technical report on the corrosion, stress corrosion cracking, and radiation response of candidate materials for the supercritical water-cooled reactor concept.

  6. Design and Construction of the NSTX Bakeout, Cooling and Vacuum Systems L. E. Dudek, W. Blanchard, M. Kalish, R. Gernhardt and R. F. Parsells

    E-Print Network [OSTI]

    Design and Construction of the NSTX Bakeout, Cooling and Vacuum Systems L. E. Dudek, W. Blanchard operation of the NSTX bakeout, water cooling and vacuum systems. The bakeout system is designed for two the external vessel is cooled to 150 °C. The second mode cools the first wall to 150 °C and the external vessel

  7. CALIFORNIA ENERGY COMMISSION STAFF COOLING WATER MANAGEMENT

    E-Print Network [OSTI]

    are usually associated with building heating, ventilating, and air conditioning (HVAC) systems to be due to Legionella growth in the plant's cooling system (34). The American Society of Heating GUIDELINES For Wet and Hybrid Cooling Towers at Power Plants MAY 17, 2004 DRAFTGUIDELINES NOVEMBER 2005 CEC

  8. Cooling system early-stage design tool for naval applications

    E-Print Network [OSTI]

    Fiedel, Ethan R

    2011-01-01

    This thesis utilizes concepts taken from the NAVSEA Design Practices and Criteria Manualfor Surface Ship Freshwater Systems and other references to create a Cooling System Design Tool (CSDT). With the development of new ...

  9. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    Radiant Heating and Cooling Systems, in, 2012. [15] F.Gain on Radiant Floor Cooling System Design. Proceedings ofof radiant floor cooling systems and their associated air

  10. Data Center Economizer Cooling with Tower Water; Demonstration of a

    E-Print Network [OSTI]

    LBNL-6660E Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger heat exchangers was demonstrated to illustrate an energy efficient cooling capability. This unique. A model of the heat exchangers' performance was developed and used with an industry standard energy

  11. Heat Transfer Performance and Piping Strategy Study for Chilled Water Systems at Low Cooling Loads 

    E-Print Network [OSTI]

    Li, Nanxi 1986-

    2012-12-05

    studied in this thesis is the chilled water system at the Dallas/Fort Worth International Airport (DFW Airport). This system has the problem of low delta-T under low cooling loads. When the chilled water flow is much lower than the design conditions at low...

  12. Purification of water from cooling towers and other heat exchange systems

    DOE Patents [OSTI]

    Sullivan; Enid J. (Los Alamos, NM), Carlson; Bryan J. (Ojo Caliente, NM), Wingo; Robert M. (Los Alamos, NM), Robison; Thomas W. (Stilwell, KS)

    2012-08-07

    The amount of silica in cooling tower water is reduced by passing cooling tower water through a column of silica gel.

  13. Development of Materials for Supercritical-Water-Cooled Reactor

    Office of Energy Efficiency and Renewable Energy (EERE)

    Supercritical-Water-Cooled Reactor (SCWR) was selected as one of the promising candidates in Generation IV reactors for its prominent advantages; those are the high thermal efficiency, the system...

  14. Evaluation of models for predicting evaporative water loss in cooling impoundments

    E-Print Network [OSTI]

    Helfrich, Karl Richard

    1982-01-01

    Cooling impoundments can offer a number of advantages over cooling towers for condenser water cooling at steam electric power plants. However, a major disadvantage of cooling ponds is a lack of confidence in the ability ...

  15. DUSEL Facility Cooling Water Scaling Issues

    SciTech Connect (OSTI)

    Daily, W D

    2011-04-05

    Precipitation (crystal growth) in supersaturated solutions is governed by both kenetic and thermodynamic processes. This is an important and evolving field of research, especially for the petroleum industry. There are several types of precipitates including sulfate compounds (ie. barium sulfate) and calcium compounds (ie. calcium carbonate). The chemical makeup of the mine water has relatively large concentrations of sulfate as compared to calcium, so we may expect that sulfate type reactions. The kinetics of calcium sulfate dihydrate (CaSO4 {center_dot} 2H20, gypsum) scale formation on heat exchanger surfaces from aqueous solutions has been studied by a highly reproducible technique. It has been found that gypsum scale formation takes place directly on the surface of the heat exchanger without any bulk or spontaneous precipitation in the reaction cell. The kinetic data also indicate that the rate of scale formation is a function of surface area and the metallurgy of the heat exchanger. As we don't have detailed information about the heat exchanger, we can only infer that this will be an issue for us. Supersaturations of various compounds are affected differently by temperature, pressure and pH. Pressure has only a slight affect on the solubility, whereas temperature is a much more sensitive parameter (Figure 1). The affect of temperature is reversed for calcium carbonate and barium sulfate solubilities. As temperature increases, barium sulfate solubility concentrations increase and scaling decreases. For calcium carbonate, the scaling tendencies increase with increasing temperature. This is all relative, as the temperatures and pressures of the referenced experiments range from 122 to 356 F. Their pressures range from 200 to 4000 psi. Because the cooling water system isn't likely to see pressures above 200 psi, it's unclear if this pressure/scaling relationship will be significant or even apparent. The most common scale minerals found in the oilfield include calcium carbonates (CaCO3, mainly calcite) and alkaline-earth metal sulfates (barite BaSO4, celestite SrSO4, anhydrite CaSO4, hemihydrate CaSO4 1/2H2O, and gypsum CaSO4 2H2O or calcium sulfate). The cause of scaling can be difficult to identify in real oil and gas wells. However, pressure and temperature changes during the flow of fluids are primary reasons for the formation of carbonate scales, because the escape of CO2 and/or H2S gases out of the brine solution, as pressure is lowered, tends to elevate the pH of the brine and result in super-saturation with respect to carbonates. Concerning sulfate scales, the common cause is commingling of different sources of brines either due to breakthrough of injected incompatible waters or mixing of two different brines from different zones of the reservoir formation. A decrease in temperature tends to cause barite to precipitate, opposite of calcite. In addition, pressure drops tend to cause all scale minerals to precipitate due to the pressure dependence of the solubility product. And we can expect that there will be a pressure drop across the heat exchanger. Weather or not this will be offset by the rise in pressure remains to be seen. It's typically left to field testing to prove out. Progress has been made toward the control and treatment of the scale deposits, although most of the reaction mechanisms are still not well understood. Often the most efficient and economic treatment for scale formation is to apply threshold chemical inhibitors. Threshold scale inhibitors are like catalysts and have inhibition efficiency at very low concentrations (commonly less than a few mg/L), far below the stoichiometric concentrations of the crystal lattice ions in solution. There are many chemical classes of inhibitors and even more brands on the market. Based on the water chemistry it is anticipated that there is a high likelihood for sulfate compound precipitation and scaling. This may be dependent on the temperature and pressure, which vary throughout the system. Therefore, various types and amounts of scaling may occur at different

  16. Design Considerations for Economically Competitive Sodium Cooled Fast Reactors

    SciTech Connect (OSTI)

    Hongbin Zhang; Haihua Zhao

    2009-05-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phénix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design.

  17. A Semi-Passive Containment Cooling System Conceptual Design

    E-Print Network [OSTI]

    Liu, H.

    The objective of this project was to investigate a passive containment cooling system (PCCS) for the double concrete containment of the Korean Next Generation Reactor (KNGR). Two conceptual PCCS designs: the thermosyphon ...

  18. Reactor physics design of supercritical CO?-cooled fast reactors

    E-Print Network [OSTI]

    Pope, Michael A. (Michael Alexander)

    2004-01-01

    Gas-Cooled Fast Reactors (GFRs) are among the GEN-IV designs proposed for future deployment. Driven by anticipated plant cost reduction, the use of supercritical CO? (S-CO?) as a Brayton cycle working fluid in a direct ...

  19. Cooling airflow design calculations for UFAD

    E-Print Network [OSTI]

    Bauman, Fred; Webster, Tom; Benedek, Corinne

    2007-01-01

    Diffuser design ratio (DDR) = (actual diffuser airflow)/(the concept of a diffuser design ratio (DDR) is introduced.DDR is defined as the ratio of actual airflow to design

  20. Use of reclaimed water for power plant cooling.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2007-10-16

    Freshwater demands are steadily increasing throughout the United States. As its population increases, more water is needed for domestic use (drinking, cooking, cleaning, etc.) and to supply power and food. In arid parts of the country, existing freshwater supplies are not able to meet the increasing demands for water. New water users are often forced to look to alternative sources of water to meet their needs. Over the past few years, utilities in many locations, including parts of the country not traditionally water-poor (e.g., Georgia, Maryland, Massachusetts, New York, and North Carolina) have needed to reevaluate the availability of water to meet their cooling needs. This trend will only become more extreme with time. Other trends are likely to increase pressure on freshwater supplies, too. For example, as populations increase, they will require more food. This in turn will likely increase demands for water by the agricultural sector. Another example is the recent increased interest in producing biofuels. Additional water will be required to grow more crops to serve as the raw materials for biofuels and to process the raw materials into biofuels. This report provides information about an opportunity to reuse an abundant water source -- treated municipal wastewater, also known as 'reclaimed water' -- for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Innovations for Existing Plants research program (Feeley 2005). This program initiated an energy-water research effort in 2003 that includes the availability and use of 'nontraditional sources' of water for use at power plants. This report represents a unique reference for information on the use of reclaimed water for power plant cooling. In particular, the database of reclaimed water user facilities described in Chapter 2 is the first comprehensive national effort to identify and catalog those plants that are using reclaimed water for cooling.

  1. Water Network Design by MINLP

    E-Print Network [OSTI]

    2008-02-12

    We propose a solution method for a water-network optimization problem using a ... The optimal design of a WDN (Water Distribution Network) consists, in its ...

  2. Air-cooled condensers eliminate plant water use

    SciTech Connect (OSTI)

    Wurtz, W.; Peltier, R. [SPX Cooling Technologies Inc. (United States)

    2008-09-15

    River or ocean water has been the mainstay for condensing turbine exhaust steam since the first steam turbine began generating electricity. A primary challenge facing today's plant developers, especially in drought-prone regions, is incorporating processes that reduce plant water use and consumption. One solution is to shed the conventional mindset that once-through cooling is the only option and adopt dry cooling technologies that reduce plant water use from a flood to a few sips. A case study at the Astoria Energy plant, New York City is described. 14 figs.

  3. Designing Water Smart Landscapes Activity

    E-Print Network [OSTI]

    Designing Water Smart Landscapes Activity Objective: Create a water smart home landscape. Materials://aggie-horticulture.tamu.edu/plantanswers/publications/publications.html Draw the plants, using tracing paper. Citizenship Activity Develop a water smart plan for a non

  4. An Improved Simple Chilled Water Cooling Coil Model

    E-Print Network [OSTI]

    Wang, Liping

    2014-01-01

    in HVAC systems couple air and water (or refrigerant) loops.UA int for typical design air and water speeds derived fromthe ratio of the water-side to the air-side conductance at

  5. Coherent electron cooling proof of principle instrumentation design

    SciTech Connect (OSTI)

    Gassner D. M.; Litvinenko, V.; Michnoff, R.; Miller, T.; Minty, M.; Pinayev, I.

    2012-04-15

    The goal of the Coherent Electron Cooling Proof-of-Principle (CeC PoP) experiment being designed at RHIC is to demonstrate longitudinal (energy spread) cooling before the expected CD-2 for eRHIC. The scope of the experiment is to longitudinally cool a single bunch of 40 GeV/u gold ions in RHIC. This paper will describe the instrumentation systems proposed to meet the diagnostics challenges. These include measurements of beam intensity, emittance, energy spread, bunch length, position, orbit stability, and transverse and temporal alignment of electron and ion beams.

  6. The Full Water Disposal Ways and Study on Central Air-conditioning Circulation Cooling Water System 

    E-Print Network [OSTI]

    Zhang, J.

    2006-01-01

    This paper has been made the further study about the water quality issue of the central air-conditioning circulation cooling water. Based on the comparison of the existing common adopted disposal ways, put forward the new ways of combination...

  7. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    SciTech Connect (OSTI)

    Apfelbaum, Steven; Duvall, Kenneth; Nelson, Theresa; Mensing, Douglas; Bengtson, Harlan; Eppich, John; Penhallegon, Clayton; Thompson, Ry

    2013-09-30

    Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric power plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant positive ancillary socio-economic, ecosystem, and water treatment/polishing benefits when used to complement water resources at thermoelectric power plants. Through the Phase II pilot study segment of the contract, the project team partnered with Progress Energy Florida (now Duke Energy Florida) to quantify the wetland water cooling benefits at their Hines Energy Complex in Bartow, Florida. The project was designed to test the wetland’s ability to cool and cleanse power plant cooling pond water while providing wildlife habitat and water harvesting benefits. Data collected during the monitoring period was used to calibrate a STELLA model developed for the site. It was also used to inform management recommendations for the demonstration site, and to provide guidance on the use of cooling wetlands for other power plants around the country. As a part of the pilot study, Duke Energy is scaling up the demonstration project to a larger, commercial scale wetland instrumented with monitoring equipment. Construction is expected to be finalized in early 2014.

  8. Chemical Treatment Fosters Zero Discharge by Making Cooling Water Reusable 

    E-Print Network [OSTI]

    Boffardi, B. P.

    1996-01-01

    controlled by adding sulfuric acid to convert the scale to calcium sulfate, which is more soluble. Because fluctuations in the acid feed rate can produce variability in pH levels, which can accelerate corrosion, close control of feed is essential. More... blowdown. Foulants Foulants are water-borne deposits that can settle on heat-transfer equipment and interfere with cooling water flow, as well as stimulate corrosion. They include such diverse substances as particulate matter scrubbed from air...

  9. Cooling rate, heating rate and aging effects in glassy water

    E-Print Network [OSTI]

    Nicolas Giovambattista; H. Eugene Stanley; Francesco Sciortino

    2004-03-03

    We report a molecular dynamics simulation study of the properties of the potential energy landscape sampled by a system of water molecules during the process of generating a glass by cooling, and during the process of regenerating the equilibrium liquid by heating the glass. We study the dependence of these processes on the cooling/heating rates as well as on the role of aging (the time elapsed in the glass state). We compare the properties of the potential energy landscape sampled during these processes with the corresponding properties sampled in the liquid equilibrium state to elucidate under which conditions glass configurations can be associated with equilibrium liquid configurations.

  10. Risk-informed design changes for a passive cooling system

    E-Print Network [OSTI]

    Patalano, Giovanbattista

    2007-01-01

    The failure probability of a passive decay heat removal system after a LOCA is evaluated as part of a risk-informed design process for a helium-cooled fast reactor. The system was modeled using RELAP5-3D. The epistemic ...

  11. Water Panel Discussion: Federal Reduction Update & Cooling Water...

    Energy Savers [EERE]

    Houston, TX November 3, 2015 Francis Wheeler Water Savers, LLC (713) 504-6684 fwheeler@watersaversllc.com Don Hofmann Hofmann Water Technologies (800) 289-1833 hofmann@hwt.com...

  12. Design and Construction of the NSTX Bakeout, Cooling and Vacuum Systems

    SciTech Connect (OSTI)

    L.E. Dudek; M. Kalish; R. Gernhardt; R.F. Parsells; W. Blanchard

    1999-11-01

    This paper will describe the design, construction and initial operation of the NSTX bakeout, water cooling and vacuum systems. The bakeout system is designed for two modes of operation. The first mode allows heating of the first wall components to 350 degrees C while the external vessel is cooled to 150 degrees C. The second mode cools the first wall to 150 degrees C and the external vessel to 50 degrees C. The system uses a low viscosity heat transfer oil which is capable of high temperature low pressure operation. The NSTX Torus Vacuum Pumping System (TVPS) is designed to achieve a base pressure of approximately 1x10 (superscript -8) Torr and to evacuate the plasma fuel gas loads in less than 5 minutes between discharges. The vacuum pumping system is capable of a pumping speed of approximately 3400 l/s for deuterium. The hardware consists of two turbo molecular pumps (TMPs) and a mechanical pump set consisting of a mechanical and a Roots blower pump. A PLC is used as the control system to provide remote monitoring, control and software interlock capability. The NSTX cooling water provides chilled, de ionized water for heat removal in the TF, OH and PF, power supplies, bus bar systems, and various diagnostics. The system provides flow monitoring via a PLC to prevent damage due to loss of flow.

  13. The Binary Cooling Tower Process: An Energy Conserving Water Reuse Technology 

    E-Print Network [OSTI]

    Lancaster, R. L.; Sanderson, W. G.; Cooke, R. L., Jr.

    1981-01-01

    cooling water loop. No eva9O"a "'fred througn the medium to the cooHng loop. evaporates cooling water can be held to a selected quality. Evaporatton waste water which in tum cools the plant cooling water. Waste occurs in the BCT cooling loop onty.... tion occurs in the plant coo~ng water loop, therefore. the plant water used tlr productive waste heat rejectk>n is recirculated and concentrated to 12C.OOO mglliter TOS. The extensive re use of water in the BCT substantialty reduces blowdown. Figure...

  14. USE of mine pool water for power plant cooling.

    SciTech Connect (OSTI)

    Veil, J. A.; Kupar, J. M .; Puder, M. G.

    2006-11-27

    Water and energy production issues intersect in numerous ways. Water is produced along with oil and gas, water runs off of or accumulates in coal mines, and water is needed to operate steam electric power plants and hydropower generating facilities. However, water and energy are often not in the proper balance. For example, even if water is available in sufficient quantities, it may not have the physical and chemical characteristics suitable for energy or other uses. This report provides preliminary information about an opportunity to reuse an overabundant water source--ground water accumulated in underground coal mines--for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), which has implemented a water/energy research program (Feeley and Ramezan 2003). Among the topics studied under that program is the availability and use of ''non-traditional sources'' of water for use at power plants. This report supports NETL's water/energy research program.

  15. PH adjustment of power plant cooling water with flue gas/fly...

    Office of Scientific and Technical Information (OSTI)

    Patent: PH adjustment of power plant cooling water with flue gasfly ash Citation Details In-Document Search Title: PH adjustment of power plant cooling water with flue gasfly ash...

  16. PH adjustment of power plant cooling water with flue gas/fly...

    Office of Scientific and Technical Information (OSTI)

    PH adjustment of power plant cooling water with flue gasfly ash Citation Details In-Document Search Title: PH adjustment of power plant cooling water with flue gasfly ash A...

  17. The ultra-high lime with aluminum process for removing chloride from recirculating cooling water 

    E-Print Network [OSTI]

    Abdel-wahab, Ahmed Ibraheem Ali

    2004-09-30

    Chloride is a deleterious ionic species in cooling water systems because it is important in promoting corrosion. Chloride can be removed from cooling water by precipitation as calcium chloroaluminate using ultra-high lime with aluminum process (UHLA...

  18. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    SciTech Connect (OSTI)

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water system cost estimates were then compared to the base-case river source estimate. We found that the use of net-alkaline mine water would under current economic conditions be competitive with a river-source in a comparable-size water cooling system. On the other hand, utilization of net acidic water would be higher in operating cost than the river system by 12 percent. This does not account for any environmental benefits that would accrue due to the treatment of acid mine drainage, in many locations an existing public liability. We also found it likely that widespread adoption of mine-water utilization for power plant cooling will require resolution of potential liability and mine-water ownership issues. In summary, Type A mine-water utilization for power plant cooling is considered a strong option for meeting water needs of new plant in selected areas. Analysis of the thermal and water handling requirements for a 600 megawatt power plant indicated that Type B earth coupled cooling would not be feasible for a power plant of this size. It was determined that Type B cooling would be possible, under the right conditions, for power plants of 200 megawatts or less. Based on this finding the feasibility of a 200 megawatt facility was evaluated. A series of mines were identified where a Type B earth-coupled 200 megawatt power plant cooling system might be feasible. Two water handling scenarios were designed to distribute heated power-plant water throughout the mines. Costs were developed for two different pumping scenarios employing a once-through power-plant cooling circuit. Thermal and groundwater flow simulation models were used to simulate the effect of hot water injection into the mine under both pumping strategies and to calculate the return-water temperature over the design life of a plant. Based on these models, staged increases in required mine-water pumping rates are projected to be part of the design, due to gradual heating and loss of heat-sink efficiency of the rock sequence above the mines. Utilizing pumping strategy No.1 (two mines) capital costs were 25 percent lower a

  19. Design and Control of Hydronic Radiant Cooling Systems

    E-Print Network [OSTI]

    Feng, Jingjuan

    2014-01-01

    embedded heating and cooling systems. Brussels, Belgium,radiant heating and cooling systems. Proceedings of Climaradiant heating and cooling systems: integration with a

  20. Design and Control of Hydronic Radiant Cooling Systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove

    2014-01-01

    embedded heating and cooling systems. Brussels, Belgium,radiant heating and cooling systems. Proceedings of Climaof Slab Heating and Cooling Systems Studied by Dynamic

  1. Design and Control of Hydronic Radiant Cooling Systems

    E-Print Network [OSTI]

    Feng, Jingjuan Dove

    2014-01-01

    installed to block solar gain, ISO 11855 cooling capacityinstalled to block solar gain, ISO 11855 cooling capacity

  2. Handbook of experiences in the design and installation of solar heating and cooling systems

    SciTech Connect (OSTI)

    Ward, D.S.; Oberoi, H.S.

    1980-07-01

    A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

  3. High-Temperature Air-Cooled Power Electronics Thermal Design (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-06-01

    This presentation discusses the status of research at NREL on high temperature air-cooled power electronics thermal design.

  4. Cooling rate, heating rate, and aging effects in glassy water Nicolas Giovambattista,1

    E-Print Network [OSTI]

    Sciortino, Francesco

    Cooling rate, heating rate, and aging effects in glassy water Nicolas Giovambattista,1 H. Eugene of water molecules during the process of generating a glass by cooling, and during the process on the cooling/heating rates as well as on the role of aging (the time elapsed in the glass state). We compare

  5. Increase Energy Efficiency by Analyzing Cooling Water Systems 

    E-Print Network [OSTI]

    Phelps, P.

    2015-01-01

    ) causes hydraulic imbalance as they foul and the ?p’s fluctuate 9 ESL-IE-15-06-37 Proceedings of the Thrity-Seventh Industrial Energy Technology Conference New Orleans, LA. June 2-4, 2015 Case Study: Vacuum Tower vs. Overhead and Jet Condensers Cooling... water is critical to the efficient operation of the vacuum tower and overall energy efficiency of the refinery. 10 ESL-IE-15-06-37 Proceedings of the Thrity-Seventh Industrial Energy Technology Conference New Orleans, LA. June 2-4, 2015 11 Typical...

  6. One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes

    E-Print Network [OSTI]

    California at Davis, University of

    One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Dakin, Davis Energy Group Michael Koenig, American Honda Motor Company ABSTRACT The evolution of heat-pump design uses multiple systems and fuels to provide thermal services, the emerging generation of heat-pump

  7. Beyond-Design-Basis-Accidents Passive Containment-Cooling Spray System

    SciTech Connect (OSTI)

    Karameldin, Aly; Temraz, Hassan M. Elsawy; Ibrahim, Nady Attia [Atomic Energy Authority (Egypt)

    2001-10-15

    The proposed safety feature considered in this study aims to increase the safety margins of nuclear power plants by proposed water tanks located inside or outside the upper zone of the containment to be utilized for (a) residual heat removal of the reactor in case of station blackout or in case of normal reactor shutdown and (b) beyond-design-basis accidents, in which core melt and debris-concrete interaction take place, associated with accumulative containment pressure increase and partial loss of the active systems. The proposed passive containment system can be implemented by a special mechanism, which can allow the pressurization of the water in the tanks and therefore can enable an additional spray system to start in case of increasing the containment pressure over a certain value just below the design pressure. A conservative case study is that of a Westinghouse 3411-MW(thermal) power station, where the proposed passive containment cooling spray system (PCCSS) will start at a pressure of 6 bars and terminate at a pressure of 3 bars. A one-dimensional lumped model is postulated to describe the thermal and hydraulic process behavior inside the containment after a beyond-design-basis accident. The considered parameters are the spray mass flow rate, the initial droplet diameters, fuel-cooling time, and the ultimate containment pressure. The overall heat and mass balance inside the containment are carried out, during both the containment depressurization (by the spraying system) and pressurization (by the residual energies). The results show that the design of the PCCSS is viable and has a capability to maintain the containment below the design pressure passively for the required grace period of 72 h. Design curves of the proposed PCCSS indicate the effect of the spray flow rate and cooling time on the total sprayed volume during the grace period of 72 h. From these curves it can be concluded that for the grace period of 72 h, the required tank volumes are 3800 and 4700 m{sup 3}, corresponding to fuel-cooling times (time after shutdown) of two weeks and one week, respectively. This large quantity of water serves as an ultimate heat sink available for the residual heat removal in the case of station blackout. The optimal spraying droplet diameter, travel, and mass flow rate are 3 mm, 30 m, and 100 to 125 kg/s, respectively.

  8. Improving the Water Efficiency of Cooling Production System 

    E-Print Network [OSTI]

    Maheshwari, G.; Al-Hadban, Y.; Al-Taqi, H. H.; Alasseri, R.

    2010-01-01

    For most of the time, cooling towers (CTs) of cooling systems operate under partial load conditions and by regulating the air circulation with a variable frequency drive (VFD), significant reduction in the fan power can be achieved. In Kuwait...

  9. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    SciTech Connect (OSTI)

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27

    Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and dissolved solids. Makeup water is withdrawn, usually from surface water bodies, to replace the lost water. The volume of makeup water is many times smaller than the volume needed to operate a once-through system. Although neither the final new facility rule nor the proposed existing facility rule require dry cooling towers as the national best technology available, the environmental community and several States have supported the use of dry-cooling technology as the appropriate technology for addressing adverse environmental impacts. It is possible that the requirements included in the new facility rule and the ongoing push for dry cooling systems by some stakeholders may have a role in shaping the rule for existing facilities. The temperature of the cooling water entering the condenser affects the performance of the turbine--the cooler the temperature, the better the performance. This is because the cooling water temperature affects the level of vacuum at the discharge of the steam turbine. As cooling water temperatures decrease, a higher vacuum can be produced and additional energy can be extracted. On an annual average, once-through cooling water has a lower temperature than recirculated water from a cooling tower. By switching a once-through cooling system to a cooling tower, less energy can be generated by the power plant from the same amount of fuel. This reduction in energy output is known as the energy penalty. If a switch away from once-through cooling is broadly implemented through a final 316(b) rule or other regulatory initiatives, the energy penalty could result in adverse effects on energy supplies. Therefore, in accordance with the recommendations of the Report of the National Energy Policy Development Group (better known as the May 2001 National Energy Policy), the U.S. Department of Energy (DOE), through its Office of Fossil Energy, National Energy Technology Laboratory (NETL), and Argonne National Laboratory (ANL), has studied the energy penalty resulting from converting plants with once-through cooling to wet towers or indirect-dry towers. Five l

  10. Design analyses of self-cooled liquid metal blankets

    SciTech Connect (OSTI)

    Gohar, Y.

    1986-12-01

    A trade-off study of liquid metal self-cooled blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main parameters considered during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the lithium-6 enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, a study was carried out to assess the impact of different reactor design choices on the reactor performance parameters. The design choices include the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, and the coolant choice for the nonbreeding inboard blanket. In addition, tritium breeding benchmark calculations were performed using different transport codes and nuclear data libraries. The importance of the TBR in the blanket design motivated the benchmark calculations.

  11. User-friendly and intuitive graphical approach to the design of thermoelectric cooling systems

    E-Print Network [OSTI]

    User-friendly and intuitive graphical approach to the design of thermoelectric cooling systems)-based active cooling system, including the heatsink role. The method is simple and intuitive and provides com- prehensive information about the cooling system such as its feasibility, required heatsink, the TEC current

  12. A Simple and Intuitive Graphical Approach to the Design of Thermoelectric Cooling Systems

    E-Print Network [OSTI]

    A Simple and Intuitive Graphical Approach to the Design of Thermoelectric Cooling Systems Simon, thermoelectric active cooling systems can help maintain electronic devices at a desired temperature condition for calculating the steady-state operational point of a TEC based active cooling system, including the heatsink

  13. Integrated Analysis for the Design of Reusable TPS based on Variable Transpiration Cooling for Hypersonic Cruise

    E-Print Network [OSTI]

    Texas at Arlington, University of

    1 Integrated Analysis for the Design of Reusable TPS based on Variable Transpiration Cooling transpiration strategy. An equal amount of coolant usage has been imposed in order to compare the cooling the vehicle surfaces (variable transpiration) allows to selectively cool down the structure in the regions

  14. Design Windows for a He Cooled Fusion Reactor* Dai-Kai Sze and Ahmed Hassanein

    E-Print Network [OSTI]

    Harilal, S. S.

    Design Windows for a He Cooled Fusion Reactor* Dai-Kai Sze and Ahmed Hassanein Argonne National Laboratory 9700 South Cass Avenue, Argonne, IL 60439 EQUATIONDERIVATION ABSTRACT A design window concept is developed for a He-cooled fusion reactor blanket and divertor design. This concept allows study

  15. DESIGN OPTIMIZATION OF HIGH-PERFORMANCE HELIUM-COOLED DIVERTOR PLATE CONCEPT

    E-Print Network [OSTI]

    Raffray, A. René

    DESIGN OPTIMIZATION OF HIGH-PERFORMANCE HELIUM-COOLED DIVERTOR PLATE CONCEPT X.R. Wanga , S Consulting, Fliederweg 3, 76351 Linkenheim, Germany A helium-cooled plate-type divertor design concept has of the concept in the high heat flux zone. This paper describes the design optimization of the helium

  16. COMPACT THERMAL MODEL FOR THE TRANSIENT TEMPERATURE PREDICTION OF A WATER-COOLED

    E-Print Network [OSTI]

    Daraio, Chiara

    heating application (process indus- try, district heating, etc.). After this, the resulting lower cooled with a heat sink, exploring the concept of hot water cooled electronics as a strategy to reduce as the heat sink outlet water tem- peratures during transient heat loads. The model is validated

  17. State waste discharge permit application for cooling water and condensate discharges

    SciTech Connect (OSTI)

    Haggard, R.D.

    1996-08-12

    The following presents the Categorical State Waste Discharge Permit (SWDP) Application for the Cooling Water and Condensate Discharges on the Hanford Site. This application is intended to cover existing cooling water and condensate discharges as well as similar future discharges meeting the criteria set forth in this document.

  18. Comparative Study Between Air-Cooled and Water-Cooled Condensers of the Air-Conditioning Systems 

    E-Print Network [OSTI]

    Maheshwari, G. P.; Mulla Ali, A. A.

    2004-01-01

    The weather in Kuwait is very dry where the dry-bulb temperature exceeds the wet-bulb temperature more than 20oC in most of the summer months. Thus, the air-conditioning (A/C) system with the water-cooled (WC) condensers is expected to perform more...

  19. Cooling Water Systems - Energy Savings/Lower Costs By Reusing Cooling Tower Blowdown 

    E-Print Network [OSTI]

    Puckorius, P. R.

    1981-01-01

    down for reuse into the cooling tower system. Several plants have been built and operated with considerable difficulty regarding effective operation of the softener due to improper chemical selection. However, other plants have utilized the proper...

  20. Design of passive decay heat removal system for the lead cooled flexible conversion ratio fast reactor

    E-Print Network [OSTI]

    Whitman, Joshua (Joshua J.)

    2007-01-01

    The lead-cooled flexible conversion ratio fast reactor shows many benefits over other fast-reactor designs; however, the higher power rating and denser primary coolant present difficulties for the design of a passive decay ...

  1. Thermal hydraulic design of a salt-cooled highly efficient environmentally friendly reactor

    E-Print Network [OSTI]

    Whitman, Joshua (Joshua J.)

    2009-01-01

    A 1 OOOMWth liquid-salt cooled thermal spectrum reactor was designed with a long fuel cycle, and high core exit temperature. These features are desirable in a reactor designed to provide process heat applications such as ...

  2. Solar heating and cooling of residential buildings: design of systems, 1980 edition

    SciTech Connect (OSTI)

    1980-09-01

    This manual was prepared primarily for use in conducting a practical training course on the design of solar heating and cooling systems for residential and small office buildings, but may also be useful as a general reference text. The content level is appropriate for persons with different and varied backgrounds, although it is assumed that readers possess a basic understanding of heating, ventilating, and air-conditioning systems of conventional (non-solar) types. This edition is a revision of the manual with the same title, first printed and distributed by the US Government Printing Office in October 1977. The manual has been reorganized, new material has been added, and outdated information has been deleted. Only active solar systems are described. Liquid and air-heating solar systems for combined space and service water heating or service water heating are included. Furthermore, only systems with proven experience are discussed to any extent.

  3. District cooling engineering & design program. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    Phoenix, Arizona is located in the Sonoran desert. Daytime temperatures typically rise to over 100 F during the three summer months. Average and peak temperatures have tended to rise over recent decades. This is generally attributed to what is known as the heat island effect, due to an increase in heat absorbing concrete and a decrease in irrigated farmland in the area. Phoenix is the eighth largest city in the US with a population of just over one million (1,000,000). The metropolitan area is one of the fastest growing in the nation. Over the last ten years its population has increased by over 40%. It is not an exaggeration to say the general availability of refrigerated air conditioning, both for buildings and automobiles has been an important factor enabling growth. The cost of operating public buildings has risen significantly in the last decade. In fiscal year 92/93 the City of Phoenix had energy expenses of over thirty four million dollars ($34,000,000). Because the City was planning a major new construction project, a new high-rise City Hall, it was decided to study and then optimize the design and selection of building systems to minimize long term owning and operating costs. The City Hall was to be constructed in downtown Phoenix. Phoenix presently owns other buildings in the area. A number of large cooling systems serving groups of buildings are currently operating in the Phoenix area. The City requested that the design consultants analyze the available options and present recommendations to the City`s engineering staff.

  4. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOE Patents [OSTI]

    Hill, Paul R. (Tucson, AZ)

    1994-01-01

    A boiling water reactor having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit.

  5. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    DOE Patents [OSTI]

    Hill, P.R.

    1994-12-27

    A boiling water reactor is described having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit. 4 figures.

  6. Proposal to negotiate two contracts, without competitive tendering, for the supply and upgrade of cooling water pumps for the LHC

    E-Print Network [OSTI]

    2012-01-01

    Proposal to negotiate two contracts, without competitive tendering, for the supply and upgrade of cooling water pumps for the LHC

  7. Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger Rack Cooling Device

    E-Print Network [OSTI]

    Greenberg, Steve

    2014-01-01

    rates of each fluid (water and air) to be known for eachcontained two separate air-to-water heat exchangers, rathercontained two, larger air-to-water heat exchangers, compared

  8. Data Center Economizer Cooling with Tower Water; Demonstration of a Dual Heat Exchanger Rack Cooling Device

    E-Print Network [OSTI]

    Greenberg, Steve

    2014-01-01

    to the unmixed fluid (water): 3 Cmax = Cmixed; the C valuethan the C value for the water. E = 1 – exp(-Tau * (C max /= Cunmixed; the C value for the water is higher than the C

  9. Applying a Domestic Water-cooled Air-conditioner in Subtropical Cities 

    E-Print Network [OSTI]

    Lee, W.; Chen, H.

    2006-01-01

    fluid. The indoor unit includes a capillary tube and a DX evaporator with copper tubes and aluminium fins. The outdoor unit includes a high performance tube-in-tube water-cooled condenser connected to a hermetic rotary compressor. The cooling tower...

  10. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC technology could cool process water at cycles of concentration considered highly scale forming for mechanical draft cooling towers. At the completion of testing, there was no visible scale on the heat transfer surfaces and cooling was sustained throughout the test period. The application of the WARMF decision framework to the San Juan Basis showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry) and lead to critical shortages. WARMF-ZeroNet, as part of the integrated ZeroNet decision support system, offers stakeholders an integrated approach to long-term water management that balances competing needs of existing water users and economic growth under the constraints of limited supply and potential climate change.

  11. Questions About Your Cooling Water System That You Need To Ask 

    E-Print Network [OSTI]

    Matson, J. V.

    1984-01-01

    Many operators of cooling water systems do not have sufficient comprehension to be able to formulate the questions they should be asking their vendors and suppliers. The objective of this paper is to not only ask the most important questions...

  12. Conservation of Energy Through The Use of a Predictive Performance Simulator of Operating Cooling Water Systems 

    E-Print Network [OSTI]

    Schell, C. J.

    1981-01-01

    Conservation of energy is an important consideration in the operation of cooling water systems. Conserving energy by operating at the most effective cycles of concentration and by keeping heat exchangers clean is contingent upon having the optimum...

  13. Optimization of Chilled Water Flow and Its Distribution in Central Cooling System 

    E-Print Network [OSTI]

    Maheshwari, G. P.; Hajiah, A. E.; ElSherbini, A. I.

    2007-01-01

    This paper analyzes the impact of chilled water flow and its distribution on energy efficiency and comfort quality, using the results of a field study conducted for a central cooling production system during 2006 in Kuwait. The paper identifies...

  14. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

    2010-11-01

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

  15. Physics Basis and Mechanical Design of the Actively Cooled Duct Scraper Protection for the JET Neutral Beam Enhancement

    E-Print Network [OSTI]

    Physics Basis and Mechanical Design of the Actively Cooled Duct Scraper Protection for the JET Neutral Beam Enhancement

  16. Optimization of biological recycling of plant nutrients in livestock waste by utilizing waste heat from cooling water

    SciTech Connect (OSTI)

    Maddox, J.J.; Behrends, L.L.; Burch, D.W.; Kingsley, J.B.; Waddell, E.L. Jr.

    1982-05-01

    Results are presented from a 5-year study to develop aquatic methods which beneficially use condenser cooling water from electric generating power plants. A method is proposed which uses a system for aquatic farming. Livestock waste is used to fertilize planktonic algae production and filter-feeding fish are used to biologically harvest the algae, condenser cooling water (simulated) is used to add waste heat to the system, and emergent aquatic plants are used in a flow through series as a bio-filter to improve the water quality and produce an acceptable discharge. Two modes of operation were tested; one uses untreated swine manure as the source of aquatic fertilizer and the other uses anaerobic digester waste as a means of pretreating the manure to produce an organic fertilizer. A set of operating conditions (temperature, retention time, fish stocking rate, fertilizer rates, land and water requirements, suggested fish and plant species, and facility design) were developed from these results. The integrated system allows continual use of power plant condenser cooling water from plants in the southeastern United States.

  17. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOE Patents [OSTI]

    Jukkola, Walfred W. (Westport, CT); Leon, Albert M. (Mamaroneck, NY); Van Dyk, Jr., Garritt C. (Bethel, CT); McCoy, Daniel E. (Williamsport, PA); Fisher, Barry L. (Montgomery, PA); Saiers, Timothy L. (Williamsport, PA); Karstetter, Marlin E. (Loganton, PA)

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  18. Delivering Tons to the Register: Energy Efficient Design and Operation of Residential Cooling Systems

    E-Print Network [OSTI]

    Delivering Tons to the Register: Energy Efficient Design and Operation of Residential Cooling Systems Jeffrey Siegel, Lawrence Berkeley National Laboratory Iain Walker, Lawrence Berkeley National and air conditioner performance. These parameters included placing the entire air conditioning system

  19. MIT Electric Vehicle Team Porsche designing a cooling system for the AC24 electric motor

    E-Print Network [OSTI]

    Meenen, Jordan N

    2010-01-01

    In this thesis I worked on the design and analysis of a cooling system for the electric motor of the MIT Electric Vehicle Team's Porsche 914 Battery Electric Vehicle. The vehicle's Azure Dynamics AC24 motor tended to ...

  20. A Qualitative Assessment of Thorium-Based Fuels in Supercritical Pressure Water Cooled Reactors

    SciTech Connect (OSTI)

    Weaver, Kevan Dean; Mac Donald, Philip Elsworth

    2002-10-01

    The requirements for the next generation of reactors include better economics and safety, waste minimization (particularly of the long-lived isotopes), and better proliferation resistance (both intrinsic and extrinsic). A supercritical pressure water cooled reactor has been chosen as one of the lead contenders as a Generation IV reactor due to the high thermal efficiency and compact/simplified plant design. In addition, interest in the use of thorium-based fuels for Generation IV reactors has increased based on the abundance of thorium, and the minimization of transuranics in a neutron flux; as plutonium (and thus the minor actinides) is not a by-product in the thorium chain. In order to better understand the possibility of the combination of these concepts to meet the Generation IV goals, the qualitative burnup potential and discharge isotopics of thorium and uranium fuel were studied using pin cell analyses in a supercritical pressure water cooled reactor environment. Each of these fertile materials were used in both nitride and metallic form, with light water reactor grade plutonium and minor actinides added. While the uranium-based fuels achieved burnups that were 1.3 to 2.7 times greater than their thorium-based counterparts, the thorium-based fuels destroyed 2 to 7 times more of the plutonium and minor actinides. The fission-to-capture ratio is much higher in this reactor as compared to PWR’s and BWR’s due to the harder neutron spectrum, thus allowing more efficient destruction of the transuranic elements. However, while the uranium-based fuels do achieve a net depletion of plutonium and minor actinides, the breeding of these isotopes limits this depletion; especially as compared to the thorium-based fuels.

  1. Design, fabrication and measurement of a novel cooling arm for fusion energy source

    E-Print Network [OSTI]

    Jiang, Shui-Dong; Mei, Jia-Bin; Yang, Bin; Yang, Chun-Sheng

    2012-01-01

    The issues of energy and environment are the main constraint of sustainable development in worldwide. Nuclear energy source is one important optional choice for long term sustainable development. The nuclear energy consists of fusion energy and fission energy. Compared with fission, inertial confinement fusion (ICF) is a kind of clean fusion energy and can generate large energy and little environmental pollution. ICF mainly consists of peripheral driver unit and target. The cooling arm is an important component of the target, which cools the hohlraum to maintain the required temperature and positions the thermal-mechanical package (TMP) assembly. This paper mainly investigates the cooling arm, including the structural design, the verticality of sidewall and the mechanical properties. The TMP assembly is uniformly clamped in its radial when using (111) crystal orientation silicon to fabricate cooling arm. The finite element method is used to design the structure of cooling arm with 16 clamping arms, and the ME...

  2. Development of a Water Based, Critical Flow, Non-Vapor Compression cooling Cycle

    SciTech Connect (OSTI)

    Hosni, Mohammad H.

    2014-03-30

    Expansion of a high-pressure liquid refrigerant through the use of a thermostatic expansion valve or other device is commonplace in vapor-compression cycles to regulate the quality and flow rate of the refrigerant entering the evaporator. In vapor-compression systems, as the condensed refrigerant undergoes this expansion, its pressure and temperature drop, and part of the liquid evaporates. We (researchers at Kansas State University) are developing a cooling cycle that instead pumps a high-pressure refrigerant through a supersonic converging-diverging nozzle. As the liquid refrigerant passes through the nozzle, its velocity reaches supersonic (or critical-flow) conditions, substantially decreasing the refrigerant’s pressure. This sharp pressure change vaporizes some of the refrigerant and absorbs heat from the surrounding conditions during this phase change. Due to the design of the nozzle, a shockwave trips the supersonic two-phase refrigerant back to the starting conditions, condensing the remaining vapor. The critical-flow refrigeration cycle would provide space cooling, similar to a chiller, by running a secondary fluid such as water or glycol over one or more nozzles. Rather than utilizing a compressor to raise the pressure of the refrigerant, as in a vapor-cycle system, the critical-flow cycle utilizes a high-pressure pump to drive refrigerant liquid through the cooling cycle. Additionally, the design of the nozzle can be tailored for a given refrigerant, such that environmentally benign substances can act as the working fluid. This refrigeration cycle is still in early-stage development with prototype development several years away. The complex multi-phase flow at supersonic conditions presents numerous challenges to fully understanding and modeling the cycle. With the support of DOE and venture-capital investors, initial research was conducted at PAX Streamline, and later, at Caitin. We (researchers at Kansas State University) have continued development of the cycle and have gained an in-depth understanding of the governing fundamental knowledge, based on the laws of physics and thermodynamics and verified with our testing results. Through this research, we are identifying optimal working fluid and operating conditions to eventually demonstrate the core technology for space cooling or other applications.

  3. DESIGNER WATER Dr. Torleiv Bilstad

    E-Print Network [OSTI]

    Treatment #12;Produced Water: Separation and polishing Choke technology Separator technology Oil Droplet water - Produced by adjusting the ionic composition of the injected seawater thereby modifying = 34500 ppm F2. Produced Water with very high TDS as feed Type NF membrane ­ NANO - BW 4040 #12;Pictures

  4. Fusion Engineering and Design 4950 (2000) 709717 Helium-cooled refractory alloys first wall and blanket

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    2000-01-01

    ersity of California, Los Angeles, CA, USA f Lockheed Martin Idaho Technologies Co., Idaho, USA g ArgonneFusion Engineering and Design 49­50 (2000) 709­717 Helium-cooled refractory alloys first wall.P.C. Wong et al. / Fusion Engineering and Design 49­50 (2000) 709­717710 ket) design options

  5. Feasibility Study of Supercritical Light Water Cooled Reactors for Electrical Power Production, 5th Quarterly Report, October - December 2002

    SciTech Connect (OSTI)

    Philip MacDonald; Jacopo Buongiorno; Cliff Davis; J. Stephen Herring; Kevan Weaver; Ron Latanision; Bryce Mitton; Gary Was; Luca Oriani; Mario Carelli; Dmitry Paramonov; Lawrence Conway

    2003-01-01

    The overall objective of this project is to evaluate the feasibility of supercritical light water cooled reactors for electric power production. The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies for the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR that can also burn actinides. The project is organized into three tasks:

  6. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  7. PH adjustment of power plant cooling water with flue gas/fly ash

    DOE Patents [OSTI]

    Brady, Patrick V.; Krumhansl, James L.

    2015-09-22

    A system including a vessel including a heat source and a flue; a turbine; a condenser; a fluid conduit circuit disposed between the vessel, the turbine and the condenser; and a diverter coupled to the flue to direct a portion of an exhaust from the flue to contact with a cooling medium for the condenser water. A method including diverting a portion of exhaust from a flue of a vessel; modifying the pH of a cooling medium for a condenser with the portion of exhaust; and condensing heated fluid from the vessel with the pH modified cooling medium.

  8. Turbine cooling configuration selection and design optimization for the high-reliability gas turbine. Final report

    SciTech Connect (OSTI)

    Smith, M J; Suo, M

    1981-04-01

    The potential of advanced turbine convectively air-cooled concepts for application to the Department of Energy/Electric Power Research Institute (EPRI) Advanced Liquid/Gas-Fueled Engine Program was investigated. Cooling of turbine airfoils is critical technology and significant advances in cooling technology will permit higher efficiency coal-base-fuel gas turbine energy systems. Two new airfoil construction techniques, bonded and wafer, were the principal designs considered. In the bonded construction, two airfoil sections having intricate internal cooling configurations are bonded together to form a complete blade or vane. In the wafer construction, a larger number (50 or more) of wafers having intricate cooling flow passages are bonded together to form a complete blade or vane. Of these two construction techniques, the bonded airfoil is considered to be lower in risk and closer to production readiness. Bonded airfoils are being used in aircraft engines. A variety of industrial materials were evaluated for the turbine airfoils. A columnar grain nickel alloy was selected on the basis of strength and corrosion resistance. Also, cost of electricity and reliability were considered in the final concept evaluation. The bonded airfoil design yielded a 3.5% reduction in cost-of-electricity relative to a baseline Reliable Engine design. A significant conclusion of this study was that the bonded airfoil convectively air-cooled design offers potential for growth to turbine inlet temperatures above 2600/sup 0/F with reasonable development risk.

  9. Cooling Semiconductor Manufacturing Facilities with Chilled Water Storage 

    E-Print Network [OSTI]

    Fiorino, D. P.

    1995-01-01

    2). Recovery of this facility's very large fixed costs caused the high voltage demand charge to increase by 135% (from $5.20/kW to $ 12.20/kW) making daytime electric water chilling a much more! expensive practice than previously. DPIIDMOS5... and pumping horsepower. And, if necessary, valves in the secondary pump suction header permit the "warm" pump to substitute for either of the two "cold" pumps. CHILLED WATER STORAGE Storage Type Stratified chilled water storage was the most cost...

  10. Design, fabrication and measurement of a novel cooling arm for fusion energy source

    E-Print Network [OSTI]

    Shui-Dong Jiang; Jing-Quan Liu; Jia-Bin Mei; Bin Yang; Chun-Sheng Yang

    2012-07-05

    The issues of energy and environment are the main constraint of sustainable development in worldwide. Nuclear energy source is one important optional choice for long term sustainable development. The nuclear energy consists of fusion energy and fission energy. Compared with fission, inertial confinement fusion (ICF) is a kind of clean fusion energy and can generate large energy and little environmental pollution. ICF mainly consists of peripheral driver unit and target. The cooling arm is an important component of the target, which cools the hohlraum to maintain the required temperature and positions the thermal-mechanical package (TMP) assembly. This paper mainly investigates the cooling arm, including the structural design, the verticality of sidewall and the mechanical properties. The TMP assembly is uniformly clamped in its radial when using (111) crystal orientation silicon to fabricate cooling arm. The finite element method is used to design the structure of cooling arm with 16 clamping arms, and the MEMS technologies are employed to fabricate the micro-size cooling arm structure with high vertical sidewall. Finally, the mechanical test of cooling arm is taken, and the result can meet the requirement of positioning TMP assembly.

  11. New Mexico cloud super cooled liquid water survey final report 2009.

    SciTech Connect (OSTI)

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  12. Heat exchanger and water tank arrangement for passive cooling system

    DOE Patents [OSTI]

    Gillett, James E. (Greensburg, PA); Johnson, F. Thomas (Baldwin Boro, PA); Orr, Richard S. (Pittsburgh, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

  13. Design of a 2400MW liquid-salt cooled flexible conversion ratio reactor

    E-Print Network [OSTI]

    Petroski, Robert C

    2008-01-01

    A 2400MWth liquid-salt cooled flexible conversion ratio reactor was designed, utilizing the ternary chloride salt NaCl-KCl-MgCI2 (30%-20%-50%) as coolant. The reference design uses a wire-wrapped, hex lattice core, and is ...

  14. Development of Modeling Capabilities for the Analysis of Supercritical Water-Cooled Reactor Thermal-Hydraulics and Dynamics

    SciTech Connect (OSTI)

    Dr. Michael Z. Podowski

    2009-04-16

    Develop an experimental and theoretical data base for heat transfer in tubes and channels cooled by water and CO2 at supercritical pressures.

  15. Hydronic rooftop cooling systems

    DOE Patents [OSTI]

    Bourne, Richard C. (Davis, CA); Lee, Brian Eric (Monterey, CA); Berman, Mark J. (Davis, CA)

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  16. Heat exchanger and water tank arrangement for passive cooling system

    DOE Patents [OSTI]

    Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

    1993-11-30

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

  17. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    SciTech Connect (OSTI)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir) and type of plant (nuclear vs. fossil fuel). This is accomplished in Chapter 3. In Chapter 4, the nature of any compacts or agreements that give priority to users (i.e., which users must stop withdrawing water first) is examined. This is examined on a regional or watershed basis, specifically for western water rights, and also as a function of federal and state water management programs. Chapter 5 presents the findings and conclusions of this study. In addition to the above, a related intent of this study is to conduct preliminary modeling of how lowered surface water levels could affect generating capacity and other factors at different regional power plants. If utility managers are forced to take some units out of service or reduce plant outputs, the fuel mix at the remaining plants and the resulting carbon dioxide emissions may change. Electricity costs and other factors may also be impacted. Argonne has conducted some modeling based on the information presented in the database described in Chapter 2 of this report. A separate report of the modeling effort has been prepared (Poch et al. 2009). In addition to the U.S. steam electric power plant fleet, this modeling also includes an evaluation of power production of hydroelectric facilities. The focus of this modeling is on those power plants located in the western United States.

  18. Design and development of a cooling device for solid polymer electrolyte fuel cells 

    E-Print Network [OSTI]

    Nandi, Asis

    1991-01-01

    DESIGN AND DEVEI OPMENT OF A COOLING DEVICE FOR SOLID POLYMER ELECTROLYTE FUEL CELLS A Thesis by- ASIS NANDI Submitted to the Office of Graduate Studies of Texas ALA'I Ifniversity in partial fulfillment of the requirements I' or the degree ot...' MASTER OF SCIENCE December 1991 Major Subject: Mechanical Engineering DESIGN AND DEVELOPMENT OF A COOLING DEVICE FOR SOLID POLYMER ELECTROLYTE FUEL CELLS A Thesis ASIS lVAiVDI Approved as to style and content by: q. v, 4~. V. K. Anand (' Chair...

  19. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 14, NO. 2, JUNE 2004 883 Design and Cooling Characteristic Results

    E-Print Network [OSTI]

    Chang, Ho-Myung

    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 14, NO. 2, JUNE 2004 883 Design and Cooling-cooled cryogenic cooling system for 1.2 kV/80 A inductive Superconducting Fault Current Limiter (SFCL was supported by a grant from the Center for Applied Superconductivity Technology of the 21st Century Frontier R

  20. Design and Development of a High Temperature Radiatively Cooled

    E-Print Network [OSTI]

    McDonald, Kirk

    Experiment Beam kinetic energy 8 GeV Beam spot shape Gaussian Beam spot size x = y = 1 mm Main Injector cycle attack? · Beam-induced Thermal Cycling - Can we rule out failure by fatigue? · Support Structure - Can we / manufacturing options are available? #12;Target conceptual design Titanium mounting ring Refractory metal spokes

  1. Cooling Towers: Understanding Key Components of Cooling Towers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve...

  2. EIS-0121: Alternative Cooling Water Systems, Savannah River Plant, Aiken, South Carolina

    Office of Energy Efficiency and Renewable Energy (EERE)

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into the selection and implementation of cooling water systems for thermal discharges from K– and C-Reactors and from a coal-fired powerhouse in the D-Area at the Savannah River Plant (SRP)

  3. Impacts of Water Loop Management on Simultaneous Heating and Cooling in Coupled Control Air Handling Units 

    E-Print Network [OSTI]

    Guan, W.; Liu, M.; Wang, J.

    1998-01-01

    The impacts of the water loop management on the heating and cooling energy consumption are investigated by using model simulation. The simulation results show that the total thermal energy consumption can be increased by 24% for a typical AHU in San...

  4. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  5. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  6. Impact of environmental concerns on cooling-tower design and operation

    SciTech Connect (OSTI)

    Hensley, J.C.

    1981-01-01

    New and sometimes unexpected environmental concerns surface from time to time, and each has its special effect on the selection, pricing, and operation of cooling towers. This paper discusses the following concerns, which are either current or are becoming significant: water conservation, energy conservation, noise, drift, blowdown, visual impact, and construction materials that are environmentally sensitive. 3 refs.

  7. A practical application for the chemical treatment of Southern California`s reclaimed, Title 22 water for use as makeup water for recirculating cooling water systems

    SciTech Connect (OSTI)

    Zakrzewski, J.; Cosulich, J.; Bartling, E.

    1998-12-31

    Pilot cooling water studies conducted at a Southern California landfill/cogeneration station demonstrated a successful chemical treatment program for recirculating cooling water that used unnitrified, reclaimed, Title 22 water as the primary makeup water source. The constituents in the reclaimed water are supplied by variety of residential and waste water sources resulting in a water quality that may vary to a greater degree than domestic water supplies. This water contains high concentrations of orthophosphate, ammonia, chlorides and suspended solids. The impact of which, under cycled conditions is calcium orthophosphate scaling, high corrosion of yellow metal and mild steel, stress cracking of copper alloys and stainless steel and rapidly growing biological activity. A mobile cooling water testing laboratory with two pilot recirculating water systems modeled the cogeneration station`s cooling tower operating conditions and parameters. The tube and shell, tube side cooling heat exchangers were fitted with 443 admiralty, 90/10 copper nickel, 316 stainless steel and 1202 mild steel heat exchanger tubes. Coupons and Corrater electrodes were also installed. A chemical treatment program consisting of 60/40 AA/AMPS copolymer for scale, deposits and dispersion, sodium tolyltriazole for yellow metal corrosion, and a bromination program to control the biological activity was utilized in the pilot systems. Recirculating water orthophosphate concentrations reached levels of 70 mg/L as PO, and ammonia concentrations reached levels of 35 mg/L, as total NH3. The study successfully demonstrated a chemical treatment program to control scale and deposition, minimize admiralty, 90/10 copper nickel and carbon steel corrosion rates, prevent non-heat transfer yellow metal and stainless steel stress cracking, and control the biological activity in this high nutrient water.

  8. Heat Recovery From Arc Furnaces Using Water Cooled Panels 

    E-Print Network [OSTI]

    Darby, D. F.

    1987-01-01

    located on the intake air side of the gas burners. From the heat/vent units, the glycol is re turned via the glycol return piping (GWHR) to the secondary side of the water to glycol heat exchanger HE-I, and then back to the surge tank. The system... stream_source_info ESL-IE-87-09-17.pdf.txt stream_content_type text/plain stream_size 21344 Content-Encoding ISO-8859-1 stream_name ESL-IE-87-09-17.pdf.txt Content-Type text/plain; charset=ISO-8859-1 HEAT RECOVERY FROM...

  9. Covered Product Category: Water-Cooled Electric Chillers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department of Energy Whole-Home Gas Tankless WaterEnergy Electric

  10. Boiling water neutronic reactor incorporating a process inherent safety design

    DOE Patents [OSTI]

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  11. 514 ASHRAE Transactions: Symposia Design cooling load calculation methods are, by the

    E-Print Network [OSTI]

    their energy consumption and life-cycle cost. Accordingly, engi- neers must be able to place a high degree on computer implementation than annual energy calculation codes. For this reason system- atic validation514 ASHRAE Transactions: Symposia ABSTRACT Design cooling load calculation methods are

  12. Safety and core design of large liquid-metal cooled fast breeder reactors

    E-Print Network [OSTI]

    Qvist, Staffan Alexander

    2013-01-01

    A. W. HUNE. “Accelerator Driven Systems for Transmutation:for use in accelerator-driven systems (ADS) as they can beAccelerator-driven B&Bs Terrapower LLC Commercial sodium-cooled SWR designs Figure 2.2: The research history of B&B systems

  13. Core design and reactor physics of a breed and burn gas-cooled fast reactor

    E-Print Network [OSTI]

    Yarsky, Peter

    2005-01-01

    In order to fulfill the goals set forth by the Generation IV International Forum, the current NERI funded research has focused on the design of a Gas-cooled Fast Reactor (GFR) operating in a Breed and Burnm (B&B) fuel cycle ...

  14. Passive decay heat removal system for water-cooled nuclear reactors

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1991-01-01

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  15. Boiling water neutronic reactor incorporating a process inherent safety design

    DOE Patents [OSTI]

    Forsberg, Charles W. (Kingston, TN)

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  16. Design Report for the ½ Scale Air-Cooled RCCS Tests in the Natural convection Shutdown heat removal Test Facility (NSTF)

    SciTech Connect (OSTI)

    Lisowski, D. D.; Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Bremer, N.; Aeschlimann, R. W.

    2014-06-01

    The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m2 to accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.

  17. Preliminary Neutronics Design and Analysis of D2O Cooled High Conversion PWRs

    SciTech Connect (OSTI)

    Hikaru Hiruta; Gilles Youinou

    2012-09-01

    This report presents a neutronics analysis of tight-pitch D2O-cooled PWRs loaded with MOX fuel and focuses essentially on the Pu breeding potential of such reactors as well as on an important safety parameter, the void coefficient, which has to be negative. It is well known that fast reactors have a better neutron economy and are better suited than thermal reactors to breed fissile material from neutron capture in fertile material. Such fast reactors (e.g. sodium-cooled reactors) usually rely on technologies that are very different from those of existing water-cooled reactors and are probably more expensive. This report investigates another possibility to obtain a fast neutron reactor while still relying mostly on a PWR technology by: (1) Tightening the lattice pitch to reduce the water-to-fuel volume ratio compared to that of a standard PWR. Water-to-fuel volume ratios of between 0.45 and 1 have been considered in this study while a value of about 2 is typical of standard PWRs, (2) Using D2O instead of H2O as a coolant. Indeed, because of its different neutron physics properties, the use of D2O hardens the neutron spectrum to an extent impossible with H2O when used in a tight-pitch lattice. The neutron spectra thus obtained are not as fast as those in sodium-cooled reactor but they can still be characterized as fast compared to that of standard PWR neutron spectra. In the phase space investigated in this study we did not find any configurations that would have, at the same time, a positive Pu mass balance (more Pu at the end than at the beginning of the irradiation) and a negative void coefficient. At this stage, the use of radial blankets has only been briefly addressed whereas the impact of axial blankets has been well defined. For example, with a D2O-to-fuel volume ratio of 0.45 and a core driver height of about 60 cm, the fissile Pu mass balance between the fresh fuel and the irradiated fuel (50 GWd/t) would be about -7.5% (i.e. there are 7.5% fewer fissile Pu isotopes at the end than at the beginning of the irradiation) and the void coefficient would be negative. The addition of 1 cm of U-238 blanket at the top and bottom of the fuel would bring the fissile Pu mass balance from -7.5% to -6.5% but would also impact the void coefficient in the wrong way. In fact, it turns out that the void coefficient is so sensitive to the presence of axial blanket that it limits its size to only a few cm for driver fuel height of about 50-60 cm. For reference, the fissile Pu mass balance is about -35% in a standard PWR MOX fuel such as those used in France. In order to reduce the fissile Pu deficit and potentially reach a true breeding regime (i.e. a positive Pu mass balance), it would be necessary to make extensive use of radial blankets, both internal and external. Even though this was not addressed in detail here, it is reasonable to believe that at least as much U-238 blanket subassemblies as MOX driver fuel subassemblies would be necessary to breed enough Pu to compensate for the Pu deficit in the driver fuel. Hence, whereas a relatively simple D2O-cooled PWR core design makes it possible to obtain a near-breeder core, it may be necessary to more than double the mass of heavy metal in the core as well as the mass of heavy metal to reprocess per unit of energy produced in order to breed the few percents of Pu missing to reach a true breeding regime. It may be interesting to quantify these aspects further in the future.

  18. KEY DESIGN REQUIREMENTS FOR THE HIGH TEMPERATURE GAS-COOLED REACTOR NUCLEAR HEAT SUPPLY SYSTEM

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    Key requirements that affect the design of the high temperature gas-cooled reactor nuclear heat supply system (HTGR-NHSS) as the NGNP Project progresses through the design, licensing, construction and testing of the first of a kind HTGR based plant are summarized. These requirements derive from pre-conceptual design development completed to-date by HTGR Suppliers, collaboration with potential end users of the HTGR technology to identify energy needs, evaluation of integration of the HTGR technology with industrial processes and recommendations of the NGNP Project Senior Advisory Group.

  19. State waste discharge permit application 400 Area secondary cooling water. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    This document constitutes the Washington Administrative Code 173-216 State Waste Discharge Permit Application that serves as interim compliance as required by Consent Order DE 91NM-177, for the 400 Area Secondary Cooling Water stream. As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site that affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 of the Washington Administrative Code, the State Waste Discharge Permitting Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order DE 91NM-177. The Consent Order DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. Based upon compositional and flow rate characteristics, liquid effluent streams on the Hanford Site have been categorized into Phase 1, Phase 2, and Miscellaneous streams. This document only addresses the 400 Area Secondary Cooling Water stream, which has been identified as a Phase 2 stream. The 400 Area Secondary Cooling Water stream includes contribution streams from the Fuels and Materials Examination Facility, the Maintenance and Storage Facility, the 481-A pump house, and the Fast Flux Test Facility.

  20. Safety design approach for external events in Japan sodium-cooled fast reactor

    SciTech Connect (OSTI)

    Yamano, H.; Kubo, S. [Japan Atomic Energy Agency, 4002 Narita-cho, O-arai, Ibaraki, 311-1393 (Japan); Tani, A. [Mitsubishi FBR Systems, Inc., 2-34-17, Jingumae, Shibuya-ku, Tokyo, 150-0001 (Japan); Nishino, H.; Sakai, T. [Japan Atomic Energy Agency, 4002 Narita-cho, O-arai, Ibaraki, 311-1393 (Japan)

    2012-07-01

    This paper describes a safety design approach for external events in the design study of Japan sodium-cooled fast reactor. An emphasis is introduction of a design extension external condition (DEEC). In addition to seismic design, other external events such as tsunami, strong wind, abnormal temperature, etc. were addressed in this study. From a wide variety of external events consisting of natural hazards and human-induced ones, a screening method was developed in terms of siting, consequence, frequency to select representative events. Design approaches for these events were categorized on the probabilistic, statistical and deterministic basis. External hazard conditions were considered mainly for DEECs. In the probabilistic approach, the DEECs of earthquake, tsunami and strong wind were defined as 1/10 of exceedance probability of the external design bases. The other representative DEECs were also defined based on statistical or deterministic approaches. (authors)

  1. Prediction of critical heat flux in water-cooled plasma facing components using computational fluid dynamics.

    SciTech Connect (OSTI)

    Bullock, James H.; Youchison, Dennis Lee; Ulrickson, Michael Andrew

    2010-11-01

    Several commercial computational fluid dynamics (CFD) codes now have the capability to analyze Eulerian two-phase flow using the Rohsenow nucleate boiling model. Analysis of boiling due to one-sided heating in plasma facing components (pfcs) is now receiving attention during the design of water-cooled first wall panels for ITER that may encounter heat fluxes as high as 5 MW/m2. Empirical thermalhydraulic design correlations developed for long fission reactor channels are not reliable when applied to pfcs because fully developed flow conditions seldom exist. Star-CCM+ is one of the commercial CFD codes that can model two-phase flows. Like others, it implements the RPI model for nucleate boiling, but it also seamlessly transitions to a volume-of-fluid model for film boiling. By benchmarking the results of our 3d models against recent experiments on critical heat flux for both smooth rectangular channels and hypervapotrons, we determined the six unique input parameters that accurately characterize the boiling physics for ITER flow conditions under a wide range of absorbed heat flux. We can now exploit this capability to predict the onset of critical heat flux in these components. In addition, the results clearly illustrate the production and transport of vapor and its effect on heat transfer in pfcs from nucleate boiling through transition to film boiling. This article describes the boiling physics implemented in CCM+ and compares the computational results to the benchmark experiments carried out independently in the United States and Russia. Temperature distributions agreed to within 10 C for a wide range of heat fluxes from 3 MW/m2 to 10 MW/m2 and flow velocities from 1 m/s to 10 m/s in these devices. Although the analysis is incapable of capturing the stochastic nature of critical heat flux (i.e., time and location may depend on a local materials defect or turbulence phenomenon), it is highly reliable in determining the heat flux where boiling instabilities begin to dominate. Beyond this threshold, higher heat fluxes lead to the boiling crisis and eventual burnout. This predictive capability is essential in determining the critical heat flux margin for the design of complex 3d components.

  2. Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for AHTRs

    SciTech Connect (OSTI)

    Lv, Quiping; Sun, Xiaodong; Chtistensen, Richard; Blue, Thomas; Yoder, Graydon; Wilson, Dane

    2015-05-08

    The principal objective of this research is to test and model the heat transfer performance and reliability of the Direct Reactor Auxiliary Cooling System (DRACS) for AHTRs. In addition, component testing of fluidic diodes is to be performed to examine the performance and viability of several existing fluidic diode designs. An extensive database related to the thermal performance of the heat exchangers involved will be obtained, which will be used to benchmark a computer code for the DRACS design and to evaluate and improve, if needed, existing heat transfer models of interest. The database will also be valuable for assessing the viability of the DRACS concept and benchmarking any related computer codes in the future. The experience of making a liquid fluoride salt test facility available, with lessons learned, will greatly benefit the development of the Fluoride Salt-cooled High-temperature Reactor (FHR) and eventually the AHTR programs.

  3. Re-Engineering Control Systems using Automatic Generation Tools and Process Simulation: the LHC Water Cooling Case

    E-Print Network [OSTI]

    Booth, W; Bradu, B; Gomez Palacin, L; Quilichini, M; Willeman, D

    2014-01-01

    This paper presents the approach used at CERN (European Organization for Nuclear Research) to perform the re-engineering of the control systems dedicated to the LHC (Large Hadron Collider) water cooling systems.

  4. Conceptual design of a lead-bismuth cooled fast reactor with in-vessel direct-contact steam generation

    E-Print Network [OSTI]

    Buongiorno, Jacopo, 1971-

    2001-01-01

    The feasibility of a lead-bismuth (Pb-Bi) cooled fast reactor that eliminates the need for steam generators and coolant pumps was explored. The working steam is generated by direct contact vaporization of water and liquid ...

  5. Conceptual Design of a Lead-Bismuth Cooled Fast Reactor with In-Vessel Direct-Contact Steam Generation

    E-Print Network [OSTI]

    Buongiorno, J.

    The feasibility of a lead-bismuth (Pb-Bi) cooled fast reactor that eliminates the need for steam generators and coolant pumps was explored. The working steam is generated by direct contact vaporization of water and liquid ...

  6. DESIGN GUIDELINE 3.2 ENERGY AND WATER CONSERVATION

    E-Print Network [OSTI]

    Kamat, Vineet R.

    DESIGN GUIDELINE 3.2 ENERGY AND WATER CONSERVATION Summary This Design Guideline applies to new properties. Consider energy and water conservation in all aspects of project design. Incorporate conservation Design Related Documents: Energy and Water Conservation Report Format-Projects $2M to $10M Construction

  7. Mpemba effect and phase transitions in the adiabatic cooling of water before freezing

    E-Print Network [OSTI]

    S. Esposito; R. De Risi; L. Somma

    2007-04-11

    An accurate experimental investigation on the Mpemba effect (that is, the freezing of initially hot water before cold one) is carried out, showing that in the adiabatic cooling of water a relevant role is played by supercooling as well as by phase transitions taking place at 6 +/- 1 oC, 3.5 +/- 0.5 oC and 1.3 +/- 0.6 oC, respectively. The last transition, occurring with a non negligible probability of 0.21, has not been detected earlier. Supported by the experimental results achieved, a thorough theoretical analysis of supercooling and such phase transitions, which are interpreted in terms of different ordering of clusters of molecules in water, is given.

  8. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Michael N. DiFilippo

    2004-08-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Deliverable 2 focuses on transportation--the largest obstacle to produced water reuse in the San Juan Basin (the Basin). Most of the produced water in the Basin is stored in tanks at the well head and must be transported by truck to salt water disposal (SWD) facilities prior to injection. Produced water transportation requirements from the well head to SJGS and the availability of existing infrastructure to transport the water are discussed in this deliverable.

  9. Investigation and design of a secure, transportable fluoride-salt-cooled high-temperature reactor (TFHR) for isolated locations

    E-Print Network [OSTI]

    Macdonald, Ruaridh (Ruaridh R.)

    2014-01-01

    In this work we describe a preliminary design for a transportable fluoride salt cooled high temperature reactor (TFHR) intended for use as a variable output heat and electricity source for off-grid locations. The goals of ...

  10. Property:CoolingTowerWaterUseSummerGross | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergyReportNumber JumpConferenceCoolingTowerWaterUseSummerGross

  11. Property:CoolingTowerWaterUseWinterGross | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergyReportNumberCoolingTowerWaterUseWinterGross Jump to:

  12. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    DOE Patents [OSTI]

    Schilke, Peter W. (4 Hempshire Ct., Scotia, NY 12302); Muth, Myron C. (R.D. #3, Western Ave., Amsterdam, NY 12010); Schilling, William F. (301 Garnsey Rd., Rexford, NY 12148); Rairden, III, John R. (6 Coronet Ct., Schenectady, NY 12309)

    1983-01-01

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  13. ITER's Tokamak Cooling Water System and the the Use of ASME Codes to Comply with French Regulations of Nuclear Pressure Equipment

    SciTech Connect (OSTI)

    Berry, Jan [ORNL] [ORNL; Ferrada, Juan J [ORNL] [ORNL; Curd, Warren [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Dell Orco, Dr. Giovanni [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Barabash, Vladimir [ITER Organization, Saint Paul Lez Durance, France] [ITER Organization, Saint Paul Lez Durance, France; Kim, Seokho H [ORNL] [ORNL

    2011-01-01

    During inductive plasma operation of ITER, fusion power will reach 500 MW with an energy multiplication factor of 10. The heat will be transferred by the Tokamak Cooling Water System (TCWS) to the environment using the secondary cooling system. Plasma operations are inherently safe even under the most severe postulated accident condition a large, in-vessel break that results in a loss-of-coolant accident. A functioning cooling water system is not required to ensure safe shutdown. Even though ITER is inherently safe, TCWS equipment (e.g., heat exchangers, piping, pressurizers) are classified as safety important components. This is because the water is predicted to contain low-levels of radionuclides (e.g., activated corrosion products, tritium) with activity levels high enough to require the design of components to be in accordance with French regulations for nuclear pressure equipment, i.e., the French Order dated 12 December 2005 (ESPN). ESPN has extended the practical application of the methodology established by the Pressure Equipment Directive (97/23/EC) to nuclear pressure equipment, under French Decree 99-1046 dated 13 December 1999, and Order dated 21 December 1999 (ESP). ASME codes and supplementary analyses (e.g., Failure Modes and Effects Analysis) will be used to demonstrate that the TCWS equipment meets these essential safety requirements. TCWS is being designed to provide not only cooling, with a capacity of approximately 1 GW energy removal, but also elevated temperature baking of first-wall/blanket, vacuum vessel, and divertor. Additional TCWS functions include chemical control of water, draining and drying for maintenance, and facilitation of leak detection/localization. The TCWS interfaces with the majority of ITER systems, including the secondary cooling system. U.S. ITER is responsible for design, engineering, and procurement of the TCWS with industry support from an Engineering Services Organization (ESO) (AREVA Federal Services, with support from Northrop Grumman, and OneCIS). ITER International Organization (ITER-IO) is responsible for design oversight and equipment installation in Cadarache, France. TCWS equipment will be fabricated using ASME design codes with quality assurance and oversight by an Agreed Notified Body (approved by the French regulator) that will ensure regulatory compliance. This paper describes the TCWS design and how U.S. ITER and fabricators will use ASME codes to comply with EU Directives and French Orders and Decrees.

  14. An innovative concept for deep water oil production platform design 

    E-Print Network [OSTI]

    Racine, Florian

    1994-01-01

    As more oil and gas are discovered in deep water, the offshore industry has become increasingly interested in the design of deep water offshore production facilities. A new design concept tentatively called FPSOT (Floating Production, Storage...

  15. Passive solar heating and natural cooling of an earth-integrated design

    SciTech Connect (OSTI)

    Barnes, P.R.; Shapira, H.B.

    1980-01-01

    The Joint Institute for Heavy Ion Research is being designed with innovative features that will greatly reduce its energy consumption for heating, cooling, and lighting. A reference design has been studied and the effects of extending the overhang during summer and fall, varying glazing area, employing RIB, and reducing internal heat by natural lighting have been considered. The use of RIB and the extendable overhang increases the optimum window glazing area and the solar heating fraction. A mass-storage wall which will likely be included in the final design has also been considered. A figure of merit for commercial buildings is the total annual energy consumption per unit area of floor space. A highly efficient office building in the Oak Ridge area typically uses 120 to 160 kWhr/m/sup 2/. The Joint Institute reference design with natural lighting, an annual average heat pump coefficient of performance (COP) equal to 1.8, RIB, and the extendable overhang uses 71 kWhr/m/sup 2/. This figure was determined from NBSLD simulations corrected for the saving from RIB. The internal heat energy from lighting and equipment used in the simulation was 1653 kWhrs/month (high natural lighting case) which is much lower than conventional office buildings. This value was adopted because only a portion of the building will be used as office space and efforts will be made to keep internal heat generation low. The mass-storage wall and ambient air cooling will reduce energy consumption still further. The combined savings of the innovative features in the Joint Institute building are expected to result in a very energy efficient design. The building will be instrumented to monitor its performance and the measured data will provide a means of evaluating the energy-saving features. The efficiency of the design will be experimentally verified over the next several years.

  16. Introduction of Heat Recovery Chiller Control and Water System Design 

    E-Print Network [OSTI]

    Jia, J.

    2006-01-01

    The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

  17. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01

    www.Zurn.com PAGE 35 Radiant Cooling Research Scoping Study1988. “Radiant Heating and Cooling, Displacement VentilationHeat Recovery and Storm Water Cooling: An Environmentally

  18. Translating Water Spray Cooling of a Steel Bar Sand Casting Thomas J. Williams, Daniel Galles, and Christoph Beckermann

    E-Print Network [OSTI]

    Beckermann, Christoph

    Translating Water Spray Cooling of a Steel Bar Sand Casting Thomas J. Williams, Daniel Galles, IA 52242 Abstract Ablation casting is a recently introduced process in which the sand mold is ablated, i.e., washed away, from the casting during solidification. The method uses a water-soluble binder

  19. USE OF PRODUCED WATER IN RECIRCULATING COOLING SYSTEMS AT POWER GENERATING FACILITIES

    SciTech Connect (OSTI)

    Kent Zammit; Michael N. DiFilippo

    2005-01-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. Produced water is generated nationally as a byproduct of oil and gas production. Seven states generate 90 percent of the produced water in the continental US. About 37 percent of the sources documented in the US Geological Survey's (USGS) Produced Waters Database have a TDS of less than 30,000 mg/l. This is significant because produced water treatment for reuse in power plants was found to be very costly above 30,000 mg/l TDS. For the purposes of this report, produced water treatment was assessed using the technologies evaluated for the San Juan Generating Station (SJGS) in Deliverable 3, Treatment and Disposal Analysis. Also, a methodology was developed to readily estimate capital and operating costs for produced water treatment. Two examples are presented to show how the cost estimating methodology can be used to evaluate the cost of treatment of produced water at power plants close to oil and gas production.

  20. How to solve materials and design problems in solar heating and cooling. Energy technology review No. 77

    SciTech Connect (OSTI)

    Ward, D.S.; Oberoi, H.S.; Weinstein, S.D.

    1982-01-01

    A broad range of difficulties encountered in active and passive solar space heating systems and active solar space cooling systems is covered. The problems include design errors, installation mistakes, inadequate durability of materials, unacceptable reliability of components, and wide variations in performance and operation of different solar systems. Feedback from designers and manufacturers involved in the solar market is summarized. The designers' experiences with and criticisms of solar components are presented, followed by the manufacturers' replies to the various problems encountered. Information is presented on the performance and operation of solar heating and cooling systems so as to enable future designs to maximize performance and eliminate costly errors. (LEW)

  1. Technology to Facilitate the Use of Impaired Waters in Cooling Towers

    SciTech Connect (OSTI)

    Colborn, Robert

    2012-04-30

    The project goal was to develop an effective silica removal technology and couple that with existing electro-dialysis reversal (EDR) technology to achieve a cost effective treatment for impaired waters to allow for their use in the cooling towers of coal fired power plants. A quantitative target of the program was a 50% reduction in the fresh water withdrawal at a levelized cost of water of $3.90/Kgal. Over the course of the program, a new molybdenum-modified alumina was developed that significantly outperforms existing alumina materials in silica removal both kinetically and thermodynamically. The Langmuir capacity is 0.11g silica/g adsorbent. Moreover, a low cost recycle/regeneration process was discovered to allow for multiple recycles with minimal loss in activity. On the lab scale, five runs were carried out with no drop in performance between the second and fifth run in ability to absorb the silica from water. The Mo-modified alumina was successfully prepared on a multiple kilogram scale and a bench scale model column was used to remove 100 ppm of silica from 400 liters of simulated impaired water. Significant water savings would result from such a process and the regeneration process could be further optimized to reduce water requirements. Current barriers to implementation are the base cost of the adsorbent material and the fine powder form that would lead to back pressure on a large column. If mesoporous materials become more commonly used in other areas and the price drops from volume and process improvements, then our material would also lower in price because the amount of molybdenum needed is low and no additional processing is required. There may well be engineering solutions to the fine powder issue; in a simple concept experiment, we were able to pelletize our material with Boehmite, but lost performance due to a dramatic decrease in surface area.

  2. A STUDY ON LEGIONELLA PNEUMOPHILA, WATER CHEMISTRY, AND ATMOSPHERIC CONDITIONS IN COOLING TOWERS AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Smith, C.; Brigmon, R.

    2009-10-20

    Legionnaires disease is a pneumonia caused by the inhalation of the bacterium Legionella pneumophila. The majority of illnesses have been associated with cooling towers since these devices can harbor and disseminate the bacterium in the aerosolized mist generated by these systems. Historically, Savannah River Site (SRS) cooling towers have had occurrences of elevated levels of Legionella in all seasons of the year and in patterns that are difficult to predict. Since elevated Legionella in cooling tower water are a potential health concern a question has been raised as to the best control methodology. In this work we analyze available chemical, biological, and atmospheric data to determine the best method or key parameter for control. The SRS 4Q Industrial Hygiene Manual, 4Q-1203, 1 - G Cooling Tower Operation and the SRNL Legionella Sampling Program, states that 'Participation in the SRNL Legionella Sampling Program is MANDATORY for all operating cooling towers'. The resulting reports include L. pneumophila concentration information in cells/L. L. pneumophila concentrations >10{sup 7} cells/L are considered elevated and unsafe so action must be taken to reduce these densities. These remedial actions typically include increase biocide addition or 'shocking'. Sometimes additional actions are required if the problem persists including increase tower maintenance (e.g. cleaning). Evaluation of 14 SRS cooling towers, seven water quality parameters, and five Legionella serogroups over a three-plus year time frame demonstrated that cooling tower water Legionella densities varied widely though out this time period. In fact there was no one common consistent significant variable across all towers. The significant factors that did show up most frequently were related to suspended particulates, conductivity, pH, and dissolved oxygen, not chlorine or bromine as might be expected. Analyses of atmospheric data showed that there were more frequent significant elevated Legionella concentrations when the dew point temperature was high--a summertime occurrence. However, analysis of the three years of Legionella monitoring data of the 14 different SRS Cooling Towers demonstrated that elevated concentrations are observed at all temperatures and seasons. The objective of this study is to evaluate the ecology of L. pneumophila including serogroups and population densities, chemical, and atmospheric data, on cooling towers at SRS to determine whether relationships exist among water chemistry, and atmospheric conditions. The goal is to more fully understand the conditions which inhibit or encourage L. pneumophila growth and supply this data and associated recommendations to SRS Cooling Tower personnel for improved management of operation. Hopefully this information could then be used to help control L. pneumophila growth more effectively in SRS cooling tower water.

  3. Designing Water Smart Landscapes 1 Texas A&M AgriLife Extension Service Designing Water Smart Landscapes

    E-Print Network [OSTI]

    Designing Water Smart Landscapes 1 Texas A&M AgriLife Extension Service Designing Water Smart with concepts like Xeriscape LandscapingTM and Water Smart landscapes. These concepts can save as much as 50, region-specific yards that anyone would be proud to call their own. Water-smart landscapes are not rock

  4. Metrics (and Methodologies) for Evaluating Energy and Water Impacts of Alternative Process Cooling Systems in a Typical Chemical Plant 

    E-Print Network [OSTI]

    Carter, T. P.

    2014-01-01

    ) for Evaluating Energy and Water Impacts of Alternative Process Cooling Systems in a Typical Chemical Plant Presentation to the: May 21, 2014 Thomas P. Carter, P.E. Sr. Program Manager, Heat Rejection Technology Johnson Controls, Building Efficiency thomas... less water consumption? 2. How can you financially evaluate the alternatives? ESL-IE-14-05-19 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 When evaluating the total economic impact of water...

  5. IEEE/NPSS Symposium on Fusion Engineering 2005 (SOFE) Gas-cooled divertor design approach for ARIES-CS

    E-Print Network [OSTI]

    Raffray, A. René

    launched with the goal of developing through physics and engineering optimization an attractive power plant for the ARIES-CS power plant study as a high- temperature (700°C) helium-cooled divertor design fits very well at potentially attractive designs for commercial fusion power plants. Thus, where applicable, it seems reasonable

  6. Kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. Final report

    SciTech Connect (OSTI)

    Haag, W.R.; Lietzke, M.H.

    1981-08-01

    A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking.

  7. Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water 

    E-Print Network [OSTI]

    Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

    2014-01-01

    SEKKEI Research Institute Naoki Takahashi Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water ESL-IC-14-09-19 Proceedings of the 14th International Conference for Enhanced Building... Operations, Beijing, China, September 14-17, 2014 1The heating and cooling system used in Osaka’s Nakanoshima district uses heat pumps and river water to achieve the efficient use of the heat source and mitigate the heat island effect. The system...

  8. The Design of "Smart" Water Market Institutions Using Laboratory Experiments

    E-Print Network [OSTI]

    Murphy, James J.

    The Design of "Smart" Water Market Institutions Using Laboratory Experiments James J. Murphy markets, mechanism design, auctions, laboratory experiments JEL classification: C90, D44, L95, Q25 three months after its submission to the Publisher. #12;The Design of "Smart" Water Market Institutions

  9. Liquid Cooling for a SeaSonde Transmitter Acknowledgements

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Liquid Cooling for a SeaSonde Transmitter Acknowledgements Thanks to Nelson Bednersh and Andy Weinberg at the UCSB College of Engineering Machine Shop Figure 4. The water cooling block with the cover will be monitored. Design Criteria No modification to the stock transmitter ­ cooling block fits between amplifier

  10. Water protection in coke-plant design

    SciTech Connect (OSTI)

    G.I. Alekseev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    Wastewater generation, water consumption, and water management at coke plants are considered. Measures to create runoff-free water-supply and sewer systems are discussed. Filters for water purification, corrosion inhibitors, and biocides are described. An integrated single-phase technology for the removal of phenols, thiocyanides, and ammoniacal nitrogen is outlined.

  11. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    7] B. Borresen, Floor heating and cooling of an atrium, in:thermal performance of floor heating systems, Solar Energy,discussed this issue for floor heating, but not cooling.

  12. Optimized core design of a supercritical carbon dioxide-cooled fast reactor

    E-Print Network [OSTI]

    Handwerk, Christopher S. (Christopher Stanley), 1974-

    2007-01-01

    Spurred by the renewed interest in nuclear power, Gas-cooled Fast Reactors (GFRs) have received increasing attention in the past decade. Motivated by the goals of the Generation-IV International Forum (GIF), a GFR cooled ...

  13. Risk-informed design guidance for a Generation-IV gas-cooled fast reactor emergency core cooling system

    E-Print Network [OSTI]

    Delaney, Michael J. (Michael James), 1979-

    2004-01-01

    Fundamental objectives of sustainability, economics, safety and reliability, and proliferation resistance, physical protection and stakeholder relations must be considered during the design of an advanced reactor. However, ...

  14. Development of an internally cooled annular fuel bundle for pressurized heavy water reactors

    SciTech Connect (OSTI)

    Hamilton, H.; Armstrong, J.; Kittmer, A.; Zhuchkova, A.; Xu, R.; Hyland, B.; King, M.; Nava-Dominguez, A.; Livingstone, S.; Bergeron, A. [Atomic Energy of Canada, Ltd., Chalk River Laboratories, Chalk River, ON (Canada)

    2013-07-01

    A number of preliminary studies have been conducted at Atomic Energy of Canada Limited to explore the potential of using internally cooled annular fuel (ICAF) in CANDU reactors including finite element thermo-mechanical modelling, reactor physics, thermal hydraulics, fabrication and mechanical design. The most compelling argument for this design compared to the conventional solid-rod design is the significant reduction in maximum fuel temperature for equivalent LERs (linear element ratings). This feature presents the potential for power up-rating or higher burnup and a decreased defect probability due to in-core power increases. The thermal-mechanical evaluation confirmed the significant reduction in maximum fuel temperatures for ICAF fuel compared to solid-rod fuel for equivalent LER. The maximum fuel temperature increase as a function of LER increase is also significantly less for ICAF fuel. As a result, the sheath stress induced by an equivalent power increase is approximately six times less for ICAF fuel than solid-rod fuel. This suggests that the power-increase thresholds to failure (due to stress-corrosion cracking) for ICAF fuel should be well above those for solid-rod fuel, providing improvement in operation flexibility and safety.

  15. Design of water-splitting photocatalysts by first principles computations

    E-Print Network [OSTI]

    Wu, Yabi

    2014-01-01

    This thesis focuses on the design of novel inorganic water-splitting photocatalysts for solar applications using first principles computations. Water-splitting photocatalysts are materials that can photo-catalyze the ...

  16. Design fires for tunnel water mist suppression systems 

    E-Print Network [OSTI]

    Carvel, Ricky O

    Water mist systems are unable to suppress or control large fires, therefore the ‘design fire’ for a water mist system in a tunnel should not be specified in terms of peak heat release rate, but rather in terms of the ...

  17. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  18. The effect of water content, cooling rate, and growth temperature on the freezing temperature of 4 Tillandsia species 

    E-Print Network [OSTI]

    Hagar, Christopher Flint

    1990-01-01

    the exotherm initiation temperatures (EIT) of leaf sections. The effect of 2 growth temperatures (5 and 25oC) on the absolute water content and EIT of T. recurvata and T. usneoides was also determined. All p * * pt T. mb'1 ', f o t ld temperatures at 80... minimum winter temperatures of their different northern boundaries. Cooling rate affected the EIT of T. recurvata and T. d* b t t T. b~l' T. o tll . L f t of the former 2 species froze at colder temperatures when cooled at a rate of 25oC per hour than...

  19. Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration

    E-Print Network [OSTI]

    Bahrami, Majid

    ) for vehicle air conditioning and refrigeration (A/C­R) applications. Adsorber beds should be specificallyAssessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration Amir Sharafian, Majid Bahrami n Laboratory for Alternative Energy Conversion

  20. Conceptual Designs for a Spallation Neutron Target Constructed of a Helium-Cooled, Packed Bed of Tungsten Particles

    E-Print Network [OSTI]

    McDonald, Kirk

    foundation a target and blanket system that is driven by a proton accelerator. The subcritical blanket-cooled, packed bed of tungsten particles. Two packed bed target designs for accelerator transmutation of waste/p and improved axial distribution of neutrons. * E-mail: ammerman@lanl.gov I. INTRODUCTION The Accelerator

  1. Design and simulation of a heat pump for simultaneous heating and cooling using HFC or CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Design and simulation of a heat pump for simultaneous heating and cooling using HFC or CO2: +33 2 23 23 42 97 Fax: +33 2 23 23 40 51 ABSTRACT This article presents a Heat Pump for Simultaneous heat pump i in is isentropic mec mechanical nof without frosting o out r refrigerant S sublimation sc

  2. Designing Green Oxidation Catalysts for Purifying Environmental Waters

    E-Print Network [OSTI]

    Blumberg, Bruce

    Designing Green Oxidation Catalysts for Purifying Environmental Waters W. Chadwick Ellis, Camly T J. Collins*, Department of Chemistry, Institute of Green Science, Mellon Institute, Carnegie Mellon,o-NC6H4NCO)2CMe2}(OH2)- ] (2d), which have been designed to be especially suitable for purifying water

  3. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    SciTech Connect (OSTI)

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  4. Simulated performance of CIEE's 'Alternatives to Compressive Cooling' prototype house under design conditions in various California climates

    SciTech Connect (OSTI)

    Huang, Yu Joe

    1999-12-01

    To support the design development of a compressorless house that does not rely on mechanical air-conditioning, the author carried out detailed computer analysis of a prototypical house design to determine the indoor thermal conditions during peak cooling periods for over 170 California locations. The peak cooling periods are five-day sequences at 2{percent} frequency determined through statistical analysis of long-term historical weather data. The DOE-2 program was used to simulate the indoor temperatures of the house under four operating options: windows closed, with mechanical ventilation, evaporatively-cooled mechanical ventilation, or a conventional 1 1/2-ton air conditioner. The study found that with a 1500 CFM mechanical ventilation system, the house design would maintain comfort under peak conditions in the San Francisco Bay Area out to Walnut Creek, but not beyond. In southern California, the same system and house design would maintain adequate comfort only along the coast. With the evaporatively-cooled ventilation system, the applicability of the house design can be extended to Fairfield and Livermore in northern California, but in southern California a larger 3000 CFM system would be needed to maintain comfort conditions over half of the greater Los Angeles area, the southern half of the Inland Empire, and most of San Diego county. With the 1 1/2-ton air conditioner, the proposed house design would perform satisfactorily through most of the state, except in the upper areas of the Central Valley and the hot desert areas in southern California. In terms of energy savings, the simulations showed that the prototypical house design would save from 0.20 to 0.43 in northern California, 0.20 to 0.53 in southern California, and 0.16 to 0.35 in the Central Valley, the energy used by the same house design built to Title-24 requirements.

  5. Optimization of hybrid-water/air-cooled condenser in an enhanced...

    Open Energy Info (EERE)

    Optimization of hybrid-waterair-cooled condenser in an enhanced turbine geothermal ORC system Geothermal Project Jump to: navigation, search Last modified on July 22, 2011....

  6. Best Practice for Energy Efficient Cleanrooms: Cooling tower and condenser water optimization

    E-Print Network [OSTI]

    Xu, Tengfang

    2005-01-01

    LBNL-58634 Best Practices for Energy Efficient Cleanrooms:05CH11231. Best Practice for Energy Efficient Cleanrooms:The cooling tower best practice efficiency based upon energy

  7. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    M. Filippi, B.W. Olesen, Solar radiation and cooling loadY. Chen, The effect of solar radiation on dynamic thermaldependant upon solar radiation, ASHRAE Transactions, (2006)

  8. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-01-01

    The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

  9. Initial Requirements for Gas-Cooled Fast Reactor (GFR) System Design, Performance, and Safety Analysis Models

    SciTech Connect (OSTI)

    Kevan D. Weaver; Thomas Y. C. Wei

    2004-08-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection.

  10. On the Design of Oxide Films, Nanomaterials, and Heterostructures for Solar Water Oxidation Photoanodes

    E-Print Network [OSTI]

    Kronawitter, Coleman

    2012-01-01

    conceptual framework for the design of solar water oxidationpromising tandem designs for solar hydrogen generation. 1,2conceptual framework for the design of solar water oxidation

  11. Water-use efficiency for alternative cooling technologies in arid climates Energy and Buildings, Volume 43, Issues 23, FebruaryMarch 2011, Pages 631-638

    E-Print Network [OSTI]

    California at Davis, University of

    Water-use efficiency for alternative cooling technologies in arid climates Energy and Buildings, Volume 43, Issues 2­3, February­March 2011, Pages 631-638 Theresa Pistochini, Mark Modera 1 Water-site water use and the impact of poor water quality on their performance. While compressor-based systems do

  12. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    SciTech Connect (OSTI)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  13. Effective monitoring of non-chromate chemical treatment programs for refinery cooling systems using sewage water as make-up

    SciTech Connect (OSTI)

    AlMajnouni, A.D.; Jaffer, A.E. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-08-01

    Treated sewage water as make-up to the cooling tower requires novel approaches to control potential cooling water problems common to refineries besides meeting environmental regulations. An intensive field study was conducted to evaluate the effectiveness of non-chromate treatment programs. On-line cleaning of the exchangers occurred prior to instituting the new chemical treatment program. Low carbon steel corrosion rates with minimal deposition was achieved. Microbiological fouling was controlled with chlorination and non-oxidizing biocide program. Field results are presented which compare the efficacy of these proprietary treatments to control corrosion and inhibit scale and fouling. Analytical results which provide a comprehensive performance evaluation of a new non-chromate chemical treatment program are presented.

  14. Decommissioning the Romanian Water-Cooled Water-Moderated Research Reactor: New Environmental Perspective on the Management of Radioactive Waste

    SciTech Connect (OSTI)

    Barariu, G.; Giumanca, R. [Romanian Authority for Nuclear Activity (RAAN), Subsidiary of Technology and Engineering for Nuclear Objectives (SITON), 111 Atomistilor St., Bucuresti-Magurele, Ilfov (Romania)

    2006-07-01

    Pre-feasibility and feasibility studies were performed for decommissioning of the water-cooled water-moderated research reactor (WWER) located in Bucharest - Magurele, Romania. Using these studies as a starting point, the preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as for the rehabilitation of the existing Radioactive Waste Treatment Plant and for the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and ecological reconstruction of the grounds need to be provided for, in accordance with national and international regulations. In accordance with IAEA recommendations at the time, the pre-feasibility study proposed three stages of decommissioning. However, since then new ideas have surfaced with regard to decommissioning. Thus, taking into account the current IAEA ideology, the feasibility study proposes that decommissioning of the WWER be done in one stage to an unrestricted clearance level of the reactor building in an Immediate Dismantling option. Different options and the corresponding derived preferred option for waste management are discussed taking into account safety measures, but also considering technical, logistical and economic factors. For this purpose, possible types of waste created during each decommissioning stage are reviewed. An approximate inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the recommended international basic safety standards identified in the previous phase of the project. The existing Radioactive Waste Treatment Plant (RWTP) from the Horia Hulubei Institute for Nuclear Physics and Engineering (IFIN-HH), which has been in service with no significant upgrade since 1974, will need refurbishing due to deterioration, as well as upgrading in order to ensure the plant complies with current safety standards. This plant will also need to be adapted to treat wastes generated by WWER dismantling. The Baita-Bihor National Radioactive Waste Disposal Facility consists of two galleries in an abandoned uranium mine located in the central-western part of the Bihor Mountains in Transylvania. The galleries lie at a depth of 840 m. The facility requires a considerable overhaul. Several steps recommended for the upgrade of the facility are explored. Environmental concerns have lately become a crucial part of the radioactive waste management strategy. As such, all decisions must be made with great regard for land utilization around nuclear objectives. (authors)

  15. Modeling of the Reactor Core Isolation Cooling Reposnse to Beyond Design Basis Operations - Interim Report

    SciTech Connect (OSTI)

    Ross, Kyle; Cardoni, Jeffrey N.; Wilson, Chisom Shawn; Morrow, Charles; Osborn, Douglas; Gauntt, Randall O.

    2015-12-01

    Efforts are being pursued to develop and qualify a system-level model of a reactor core isolation (RCIC) steam-turbine-driven pump. The model is being developed with the intent of employing it to inform the design of experimental configurations for full-scale RCIC testing. The model is expected to be especially valuable in sizing equipment needed in the testing. An additional intent is to use the model in understanding more fully how RCIC apparently managed to operate far removed from its design envelope in the Fukushima Daiichi Unit 2 accident. RCIC modeling is proceeding along two avenues that are expected to complement each other well. The first avenue is the continued development of the system-level RCIC model that will serve in simulating a full reactor system or full experimental configuration of which a RCIC system is part. The model reasonably represents a RCIC system today, especially given design operating conditions, but lacks specifics that are likely important in representing the off-design conditions a RCIC system might experience in an emergency situation such as a loss of all electrical power. A known specific lacking in the system model, for example, is the efficiency at which a flashing slug of water (as opposed to a concentrated jet of steam) could propel the rotating drive wheel of a RCIC turbine. To address this specific, the second avenue is being pursued wherein computational fluid dynamics (CFD) analyses of such a jet are being carried out. The results of the CFD analyses will thus complement and inform the system modeling. The system modeling will, in turn, complement the CFD analysis by providing the system information needed to impose appropriate boundary conditions on the CFD simulations. The system model will be used to inform the selection of configurations and equipment best suitable of supporting planned RCIC experimental testing. Preliminary investigations with the RCIC model indicate that liquid water ingestion by the turbine decreases the developed turbine torque; the RCIC speed then slows, and thus the pump flow rate to the RPV decreases. Subsequently, RPV water level decreases due to continued boiling and the liquid fraction flowing to the RCIC decreases, thereby accelerating the RCIC and refilling the RPV. The feedback cycle then repeats itself and/or reaches a quasi-steady equilibrium condition. In other words, the water carry-over is limited by cyclic RCIC performance degradation, and hence the system becomes self-regulating. The indications achieved to date with the system model are more qualitative than quantitative. The avenues being pursued to increase the fidelity of the model are expected to add quantitative realism. The end product will be generic in the sense that the RCIC model will be incorporable within the larger reactor coolant system model of any nuclear power plant or experimental configuration. ACKNOWLEDGEMENTS This work is funded through the U.S. Department of Energy - Office of Nuclear Energy's Light Water Reactor Sustainability Program. Clinton Smith of Phoenix Analysis & Design Technologies (PADT) is acknowledged for providing assistance on the FLUENT efforts in this report, as well as modifying the geometry model of the Terry turbine to make it more amenable for FLUENT analysis with rotating reference frames.

  16. A passive cooling design for multifamily residences [sic] in hot, humid climates

    E-Print Network [OSTI]

    Tang, Joseph C

    1983-01-01

    People living in hot, humid climates suffer either from extremely uncomfortable weather conditions or from the great cost of air-conditioning systems for maintaining comfort. Most of the available passive cooling techniques ...

  17. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    a direct comparison of EnergyPlus simulated radiation heatStandards, 1983. [19] DOE, EnergyPlus Engineering Reference,as the ratio of the EnergyPlus simulated radiant cooling

  18. Influence of raised floor on zone design cooling load in commercial buildings.

    E-Print Network [OSTI]

    Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom

    2010-01-01

    Floor and Ceiling Plenum Energy Model Parameters, American Society of Heating,heating and cooling systems were not modelled because the simulation aim was to investigate the influence of the raised floor

  19. Design and Operation of Fluid Beds for Heating, Cooling and Quenching Operations 

    E-Print Network [OSTI]

    Kemp, W. E.

    1981-01-01

    A commercial foundry has been established which makes extensive use of fluid beds in the production of heat treated alloy steel castings. The castings are cooled immediately after solidification by fluidizing the mold sand in which they were cast...

  20. Safety and core design of large liquid-metal cooled fast breeder reactors

    E-Print Network [OSTI]

    Qvist, Staffan Alexander

    2013-01-01

    in particular, in boiling water reactors) there is a strongdirect contact boiling water fast reactor (PBWFR)”. In:

  1. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems (DE-EE0002961)

    SciTech Connect (OSTI)

    Spitler, J.D.; Culling, J.R.; Conjeevaram, K.; Ramesh, M.; Selvakumar, M.

    2012-11-30

    Ground-source heat pump (GSHP) systems are perhaps the most widely used “sustainable” heating and cooling systems, with an estimated 1.7 million installed units with total installed heating capacity on the order of 18 GW. They are widely used in residential, commercial, and institutional buildings. Standing column wells (SCW) are one form of ground heat exchanger that, under the right geological conditions, can provide excellent energy efficiency at a relatively low capital cost. Closed-loop surface water heat pump (SWHP) systems utilize surface water heat exchangers (SWHE) to reject or extract heat from nearby surface water bodies. For building near surface water bodies, these systems also offer a high degree of energy efficiency at a low capital cost. However, there have been few design tools available for properly sizing standing column wells or surface water heat exchangers. Nor have tools for analyzing the energy consumption and supporting economics-based design decisions been available. The main contributions of this project lie in providing new tools that support design and energy analysis. These include a design tool for sizing surface water heat exchangers, a design tool for sizing standing column wells, a new model of surface water heat pump systems implemented in EnergyPlus and a new model of standing column wells implemented in EnergyPlus. These tools will better help engineers design these systems and determine the economic and technical feasibility.

  2. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    SciTech Connect (OSTI)

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica/silicate are two common potential cycle-limiting minerals for using impaired waters. For produced waters, barium sulfate and calcium sulfate are two additional potential cycle-limiting minerals. For reclaimed municipal wastewater effluents, calcium phosphate scaling can be an issue, especially in the co-presence of high silica. Computational assessment, using a vast amount of Nalco's field data from coal fired power plants, showed that the limited use and reuse of impaired waters is due to the formation of deposit caused by the presence of iron, high hardness, high silica and high alkalinity in the water. Appropriate and cost-effective inhibitors were identified and developed - LL99B0 for calcite and gypsum inhibition and TX-15060 for silica inhibition. Nalco's existing dispersants HSP-1 and HSP-2 has excellent efficacy for dispersing Fe and Mn. ED and EDI were bench-scale tested by the CRADA partner Argonne National Laboratory for hardness, alkalinity and silica removal from synthetic make-up water and then cycled cooling water. Both systems showed low power consumption and 98-99% salt removal, however, the EDI system required 25-30% less power for silica removal. For Phase 2, the EDI system's performance was optimized and the length of time between clean-in-place (CIP) increased by varying the wafer composition and membrane configuration. The enhanced EDI system could remove 88% of the hardness and 99% of the alkalinity with a processing flux of 19.2 gal/hr/m{sup 2} and a power consumption of 0.54 kWh/100 gal water. Bench tests to screen alternative silica/silicate scale inhibitor chemistries have begun. The silica/silicate control approaches using chemical inhibitors include inhibition of silicic acid polymerization and dispersion of silica/silicate crystals. Tests were conducted with an initial silica concentration of 290-300 mg/L as SiO{sub 2} at pH 7 and room temperature. A proprietary new chemistry was found to be promising, compared with a current commercial product commonly used for silica/silicate control. Additional pilot cooling tower testing confirmed

  3. Strategic planning for and implementation of reclaimed municipal waste water as make-up to a refinery cooling system

    SciTech Connect (OSTI)

    Francis, W.R.; Mazur, J.J.; Rao, N.M.

    1996-08-01

    This paper discusses the successful use of treated municipal plant waste water effluent (Title 22) in a refinery cooling water system. Conversion from well water to this make-up water source was preceded by developing a carefully crafted transition plan. Steps were taken to identify key system performance indicators, establish desired performance goals, and implement stringent monitoring and control protocols. In addition, all possible contingencies were considered and solutions developed. Treating Title 22 waters is very challenging and entails risks not associated with normal makeup waters. Several novel on-line monitoring and control tools are available which help minimize these risks while enhancing tower operation. Performance monitoring of critical system parameters is essential in order to provide early warning of problems so that corrective measures can be implemented. In addition, a high level of system automation enhances reliable operation. Corrosion, scaling and microbiological performance of the system with Title 22 water is discussed in comparison to previous well water make-up.

  4. Impact of Solar Heat Gain on Radiant Floor Cooling System Design

    E-Print Network [OSTI]

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    load and capacity; solar heat gain; Radiant design standardssignificance of solar radiation in the design process andthe magnitude of solar impacts under various design/control

  5. Internet Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at America's Coal-Fired Power Plants

    SciTech Connect (OSTI)

    J. Daniel Arthur

    2011-09-30

    In recent years, rising populations and regional droughts have caused coal-fired power plants to temporarily curtail or cease production due to a lack of available water for cooling. In addition, concerns about the availability of adequate supplies of cooling water have resulted in cancellation of plans to build much-needed new power plants. These issues, coupled with concern over the possible impacts of global climate change, have caused industry and community planners to seek alternate sources of water to supplement or replace existing supplies. The Department of Energy, through the National Energy Technology Laboratory (NETL) is researching ways to reduce the water demands of coal-fired power plants. As part of the NETL Program, ALL Consulting developed an internet-based Catalog of potential alternative sources of cooling water. The Catalog identifies alternative sources of water, such as mine discharge water, oil and gas produced water, saline aquifers, and publicly owned treatment works (POTWs), which could be used to supplement or replace existing surface water sources. This report provides an overview of the Catalog, and examines the benefits and challenges of using these alternative water sources for cooling water.

  6. Daylighting Design Tools in Atria for Minimum Cooling Loads in Atrium Buildings 

    E-Print Network [OSTI]

    Atif, M. R.; Boyer, L. L.; Degelman, L. O.; Claridge, D. E.

    1992-01-01

    floor, so that the cooling loads could be minimized. Illumination measurements were collected in physical scale models of two and four-story atria in a sky simulator. The two key variables of the study were: a) horizontal and vertical south-facing top-glazing...

  7. Expansion and user study of CoolVent : inclusion of thermal comfort models in an early-design natural ventilation tool

    E-Print Network [OSTI]

    Rich, Rebecca E. (Rebecca Eileen)

    2011-01-01

    CoolVent, a software design tool for architects, has been improved. The work of Maria- Alejandra Menchaca-B. and colleagues has been improved to include a more robust and intuitive building and window dimensioning scheme, ...

  8. Earth coupled cooling techniques

    SciTech Connect (OSTI)

    Grondzik, W.T.; Boyer, L.L.; Johnston, T.L.

    1981-01-01

    Earth coupled cooling is an important consideration for residential and commercial designers, owners, and builders in many regions of the country. The potential benefits which can be expected from passive earth contact cooling are reviewed. Recommendations for the design of earth sheltered structures incorporating earth coupled cooling strategies are also presented.

  9. Safety and core design of large liquid-metal cooled fast breeder reactors

    E-Print Network [OSTI]

    Qvist, Staffan Alexander

    2013-01-01

    criteria for FBR/B&B safety systems/designs . . . . . . . . .Safety systems/designs violations of evaluation critera ARC-LL expansion liquid criteria . . . . . . . . . . . .criteria for systems and design-approaches to improve the inherent safety

  10. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01

    Potential Safety Issues – Regulatory Design Criteria3-3 Regulatory design criteria for safety Table 3-4 Input3-4 Regulatory Design Criteria for safety The DRACS system

  11. Design for an invertible water bottle to facilitate cleaning and promote sustainable water bottle usage

    E-Print Network [OSTI]

    Metlitz, Matthew S

    2014-01-01

    The goal of this thesis is to explore the design of a reusable water bottle that can be inverted to expose the inside. Being able to directly touch the entire inside of the product could facilitate cleaning and consequently ...

  12. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth

    2002-09-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

  13. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect (OSTI)

    Yu, W.; France, D. M.; Routbort, J. L.

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  14. Passive containment cooling system

    DOE Patents [OSTI]

    Conway, Lawrence E. (Robinson Township, Allegheny County, PA); Stewart, William A. (Penn Hills Township, Allegheny County, PA)

    1991-01-01

    A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

  15. Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report

    SciTech Connect (OSTI)

    Bloomquist, R.G. [Washington, State Univ., Pullman, WA (United States); Wegman, S. [South Dakota Utilities Commission (United States)

    1998-04-01

    The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for material and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.

  16. Conceptual design phase of a district heating and cooling plant with cogeneration to serve James Madison University and the Harrisonburg Electric Commission

    SciTech Connect (OSTI)

    Belcher, J.B.

    1995-12-31

    A unique opportunity for cooperation and community development exists in Harrisonburg, Virginia. James Madison University, located in Harrisonburg, is undergoing an aggressive growth plan of its academic base which also includes the physical expansion of its campus. The City of Harrisonburg is presently supplying steam to meet a portion of the heating needs of the existing James Madison campus from a city owned and operated waste-to-energy plant. In an effort of cooperation, Harrisonburg and James Madison University have now negotiated an agreement for the city to provide all of the heating and cooling requirements of the new campus expansion. In another unique turn of events, the local electrical power distributor, Harrisonburg Electric Commission, approached the city concerning the inclusion of cogeneration in the project in order to reduce and maintain existing electric rates thus further benefiting the community. Through the cooperation of these three entities, the conceptual design phase of the project has been completed. The plant design developed through this process includes 3,000 tons of chilled water capacity, an additional 64,000 lb/hr of steam capacity and 2.5 MW of cogeneration capacity. This paper describes the conceptual design process for this interesting project.

  17. Optimizing Cooling Tower Performance- Refrigeration Systems, Chemical Plants, and Power Plants all Have A Resource Quietly Awaiting Exploitation-Cold Water!! 

    E-Print Network [OSTI]

    Burger, R.

    1990-01-01

    TOWER PERFORMANCE REFRIGERATION SYSTEMS, CHEMICAL PLANTS, AND POWER PLANTS ALL HAVE A RESOURCE QUIETLY AWAITING EXPLOITATION - COLD WATER!! ROBERT BURGER President Burger and Associates, Inc. Dallas, Texas Cooling towers, because... of their seeming simplicity, are usually orphans of the facilities operation. We are all aware that cooling towers are the step-children of the chemical process plant, electric power generating station, and refrigeration system. While engineers are pretty...

  18. Optimization of hybrid-water/air-cooled condenser in an enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    objective: To improve the efficiency and output variability of geothermal-based ORC power production systems with minimal water consumption by deploying: 1) a hybrid-waterair...

  19. Subtask 1.24 - Optimization of Cooling Water Resources for Power Generation

    SciTech Connect (OSTI)

    Daniel Stepan; Richard Shockey; Bethany Kurz; Wesley Peck

    2009-03-31

    The Energy & Environmental Research Center (EERC) has developed an interactive, Web-based decision support system (DSS{copyright} 2007 EERC Foundation) to provide power generation utilities with an assessment tool to address water supply issues when planning new or modifying existing generation facilities. The Web-based DSS integrates water and wastewater treatment technology and water law information with a geographic information system-based interactive map that links to state and federal water quality and quantity databases for North Dakota, South Dakota, Minnesota, Wyoming, Montana, Nebraska, Wisconsin, and Iowa.

  20. Design of a sodium-cooled epithermal long-term exploration nuclear engine

    E-Print Network [OSTI]

    Yarsky, Peter

    2004-01-01

    To facilitate the mission to Mars initiative, the current work has focused on conceptual designs for transformational and enabling space nuclear reactor technologies. A matrix of design alternatives for both the reactor ...

  1. Thermodynamic formalism of water uptakes on solid porous adsorbents for adsorption cooling applications

    SciTech Connect (OSTI)

    Sun, Baichuan; Chakraborty, Anutosh, E-mail: AChakraborty@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-05-19

    This Letter presents a thermodynamic formulation to calculate the amount of water vapor uptakes on various adsorbents such as zeolites, metal organic frameworks, and silica gel for the development of an advanced adsorption chiller. This formalism is developed from the rigor of the partition distribution function of each water vapor adsorptive site on adsorbents and the condensation approximation of adsorptive water molecules and is validated with experimental data. An interesting and useful finding has been established that the proposed model is thermodynamically connected with the pore structures of adsorbent materials, and the water vapor uptake highly depends on the isosteric heat of adsorption at zero surface coverage and the adsorptive sites of the adsorbent materials. Employing the proposed model, the thermodynamic trends of water vapor uptakes on various adsorbents can be estimated.

  2. Alternative cooling resource for removing the residual heat of reactor

    SciTech Connect (OSTI)

    Park, H. C.; Lee, J. H.; Lee, D. S.; Jung, C. Y.; Choi, K. Y. [Korea Hydro and Nuclear Power Co., Ltd., 260 Naa-ri Yangnam-myeon Gyeongju-si, Gyeonasangbuk-do, 780-815 (Korea, Republic of)

    2012-07-01

    The Recirculated Cooling Water (RCW) system of a Candu reactor is a closed cooling system which delivers demineralized water to coolers and components in the Service Building, the Reactor Building, and the Turbine Building and the recirculated cooling water is designed to be cooled by the Raw Service Water (RSW). During the period of scheduled outage, the RCW system provides cooling water to the heat exchangers of the Shutdown Cooling System (SDCS) in order to remove the residual heat of the reactor, so the RCW heat exchangers have to operate at all times. This makes it very hard to replace the inlet and outlet valves of the RCW heat exchangers because the replacement work requires the isolation of the RCW. A task force was formed to prepare a plan to substitute the recirculated water with the chilled water system in order to cool the SDCS heat exchangers. A verification test conducted in 2007 proved that alternative cooling was possible for the removal of the residual heat of the reactor and in 2008 the replacement of inlet and outlet valves of the RCW heat exchangers for both Wolsong unit 3 and 4 were successfully completed. (authors)

  3. Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling

    SciTech Connect (OSTI)

    Walker, Michael E.; Theregowda, Ranjani B.; Safari, Iman; Abbasian, Javad; Arastoopour, Hamid; Dzombak, David A.; Hsieh, Ming-Kai; Miller, David C.

    2013-10-01

    A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondary-treated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

  4. Water Body Temperature Model for Assessing Climate Change Impacts on Thermal Cooling

    E-Print Network [OSTI]

    Strzepek, K.

    We develop and test a physically based semi-Lagrangian water body temperature model to apply climatological data and thermal pollution from river-based power plants to historical river flow data in order to better understand ...

  5. Apparatus and method of direct water cooling several parallel circuit cards each containing several chip packages

    DOE Patents [OSTI]

    Cipolla, Thomas M. (Katonah, NY); Colgan, Evan George (Chestnut Ridge, NY); Coteus, Paul W. (Yorktown Heights, NY); Hall, Shawn Anthony (Pleasantville, NY); Tian, Shurong (Mount Kisco, NY)

    2011-12-20

    A cooling apparatus, system and like method for an electronic device includes a plurality of heat producing electronic devices affixed to a wiring substrate. A plurality of heat transfer assemblies each include heat spreaders and thermally communicate with the heat producing electronic devices for transferring heat from the heat producing electronic devices to the heat transfer assemblies. The plurality of heat producing electronic devices and respective heat transfer assemblies are positioned on the wiring substrate having the regions overlapping. A heat conduit thermally communicates with the heat transfer assemblies. The heat conduit circulates thermally conductive fluid therethrough in a closed loop for transferring heat to the fluid from the heat transfer assemblies via the heat spreader. A thermally conductive support structure supports the heat conduit and thermally communicates with the heat transfer assemblies via the heat spreader transferring heat to the fluid of the heat conduit from the support structure.

  6. Ground and Water Source Heat Pump Performance and Design for Southern Climates 

    E-Print Network [OSTI]

    Kavanaugh, S.

    1988-01-01

    Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical...

  7. Water, Neighborhoods and Urban Design: Micro-Utilities and the Fifth Infrastructure

    E-Print Network [OSTI]

    Elmer, Vicki; Fraker, Harrison

    2011-01-01

    some include kitchen waste water in the general designationV. (2010). Blue-Green Waste Water Technologies, the Sageworld by 50 to 85%. Gray Waste Water 1 . Reuse of gray water

  8. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production

    SciTech Connect (OSTI)

    Philip MacDonald; Jacopo Buongiorno; James Sterbentz; Cliff Davis; Robert Witt; Gary Was; J. McKinley; S. Teysseyre; Luca Oriani; Vefa Kucukboyaci; Lawrence Conway; N. Jonsson: Bin Liu

    2005-02-13

    The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor.

  9. Safety and core design of large liquid-metal cooled fast breeder reactors

    E-Print Network [OSTI]

    Qvist, Staffan Alexander

    2013-01-01

    of conventional LWR systems (PWR & BWRs), partly due to thethe margin to boiling in a PWR is ?15 ? C, while the coolantprimary heat exhangers of a PWR, in which borated water is

  10. Design and Operation of Fan-Coil Units in Using River Water as Chilled Water 

    E-Print Network [OSTI]

    Jiang, A.; Chen, H.; Ma, W.; Zhu, H.

    2006-01-01

    and the properties of indoor-air, and so on. Especially, the temperature of inlet-water can not only make a strong impact on the capacity of the energy afforded by FCUs, but also affect the economic capability of the whole air-conditioning system directly.... As a rule, the designers of A/C systems pay more attention to the design of the inlet-water temperature of FCUs, and many correlative criteria have been established. Generally, considering the economic benefit of an air-conditioning system wholly...

  11. Design of a Low Power, Fast-Spectrum, Liquid-Metal Cooled Surface Reactor System

    SciTech Connect (OSTI)

    Marcille, T. F.; Poston, D. I.; Kapernick, R. J. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Dixon, D. D. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Fischer, G. A. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Doherty, S. P. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Department of Engineering, Trinity College, Hartford, CT 06106 (United States)

    2006-01-20

    In the current 2005 US budget environment, competition for fiscal resources make funding for comprehensive space reactor development programs difficult to justify and accommodate. Simultaneously, the need to develop these systems to provide planetary and deep space-enabling power systems is increasing. Given that environment, designs intended to satisfy reasonable near-term surface missions, using affordable technology-ready materials and processes warrant serious consideration. An initial lunar application design incorporating a stainless structure, 880 K pumped NaK coolant system and a stainless/UO2 fuel system can be designed, fabricated and tested for a fraction of the cost of recent high-profile reactor programs (JIMO, SP-100). Along with the cost reductions associated with the use of qualified materials and processes, this design offers a low-risk, high-reliability implementation associated with mission specific low temperature, low burnup, five year operating lifetime requirements.

  12. Design and implementation of liquid cooling system for ArchiMITes vehicle

    E-Print Network [OSTI]

    Hui, Sam, S.B. Massachusetts Institute of Technology

    2011-01-01

    MIT Vehicle Design Summit is building ArchiMITes, a lightweight hybrid vehicle with a modular auxiliary power unit. For testing purposes, the vehicle platform will first be built as an all-electric vehicle. It will be ...

  13. Design of compact intermediate heat exchangers for gas cooled fast reactors

    E-Print Network [OSTI]

    Gezelius, Knut, 1978-

    2004-01-01

    Two aspects of an intermediate heat exchanger (IHX) for GFR service have been investigated: (1) the intrinsic characteristics of the proposed compact printed circuit heat exchanger (PCHE); and (2) a specific design optimizing ...

  14. Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors

    E-Print Network [OSTI]

    Gibbs, Jonathan Paul

    2008-01-01

    The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

  15. An Ontology Design Pattern for Surface Water Features

    SciTech Connect (OSTI)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E; Feng, Chen-Chieh; Usery, Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  16. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    SciTech Connect (OSTI)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially

  17. Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water 

    E-Print Network [OSTI]

    Cawley, R.

    1992-01-01

    % and that this amounts to the full daily need of 14.4 KW-HR. Table 5 (right column) shows the hour by hour demand' for a standard non-integrated heat pump used in conjunction with a water heater having efficiency of 87%, The draw schedule in Table 5 is the same...

  18. CALCULATION Water cooling process SHEET 1 OF 1 CALCULATION BY Cale Caldwell

    E-Print Network [OSTI]

    McDonald, Kirk

    Assumptions steady state conditions; heat distributed evenly over entire cylinder; no heat lost to surroundings; uniform heat flux Q 2500kW Heat to be removed Coolant is Water c 4180 J kg K Specific heat 998/2in pipe, schedule 10) v 5 m s Velocity of coolant (assumed) As d L1 Surface area n flowrate v

  19. Earth-Coupled Water-Source Heat Pump Research, Design and Applications in Louisiana 

    E-Print Network [OSTI]

    Braud, H. J.; Klimkowski, H.; Baker, F. E.

    1985-01-01

    An earth-coupled water-source heat pump uses the earth as the thermal source and sink for economical, energy efficient, space heating and cooling. Water exiting the heat pump passes through an earth heat exchanger, which is a closed loop of plastic...

  20. Thermal hydraulic design of a 2400 MW t?h? direct supercritical CO?-cooled fast reactor

    E-Print Network [OSTI]

    Pope, Michael A. (Michael Alexander)

    2006-01-01

    The gas cooled fast reactor (GFR) has received new attention as one of the basic concepts selected by the Generation-IV International Forum (GIF) for further investigation. Currently, the reference GFR is a helium-cooled ...

  1. Design of A Conduction-cooled 4T Superconducting Racetrack for Multi-field Coupling Measurement System

    E-Print Network [OSTI]

    Chen, Yuquan; Wu, Wei; Guan, Mingzhi; Wu, Beimin; Mei, Enming; Xin, Canjie

    2015-01-01

    A conduction-cooled superconducting magnet producing a transverse field of 4 Tesla has been designed for the new generation multi-field coupling measurement system, which was used to study the mechanical behavior of superconducting samples at cryogenic temperature and intense magnetic fields. Considering experimental costs and coordinating with system of strain measurements by contactless signals (nonlinear CCD optics system), the racetrack type for the coil winding was chosen in our design, and a compact cryostat with a two-stage GM cryocooler was designed and manufactured for the superconducting magnet. The magnet was composed of a pair of flat racetrack coils wound by NbTi/Cu superconducting composite wires, a copper and stainless steel combinational form and two Bi2Sr2CaCu2Oy superconducting current leads. All the coils were connected in series and can be powered with a single power supply. The maximum central magnetic field is 4 T. In order to support the high stress and uniform thermal distribution in t...

  2. Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating

    SciTech Connect (OSTI)

    None

    2010-09-01

    BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

  3. Sustaining Industrial Energy Efficiency in Process Cooling in a Potentially Water-Short Future 

    E-Print Network [OSTI]

    Ferland, K.

    2014-01-01

    stream_source_info ESL-IE-14-05-18.pdf.txt stream_content_type text/plain stream_size 14223 Content-Encoding UTF-8 stream_name ESL-IE-14-05-18.pdf.txt Content-Type text/plain; charset=UTF-8 Sustaining Industrial Energy... and Management • Water Reuse and Use of Unconventional Sources ESL-IE-14-05-18 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Topic 1: Existing Technology and Operations Strategy: Sustain process...

  4. Covered Product Category: Water-Cooled Ice Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department of Energy Whole-Home Gas Tankless WaterEnergy

  5. Best Management Practice #10: Cooling Tower Management

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cooling towers regulate temperature by dissipating heat from recirculating water used to cool chillers, air-conditioning equipment, or other process equipment. Heat is rejected from the tower...

  6. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth

    2002-06-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  7. Natural Circulation in Water Cooled Nuclear Power Plants Phenomena, models, and methodology for system reliability assessments

    SciTech Connect (OSTI)

    Jose Reyes

    2005-02-14

    In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''.

  8. Self-Sustaining Thorium Boiling Water Reactors

    E-Print Network [OSTI]

    Ganda, Francesco

    A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar ...

  9. Design, operation factors can up coker liquid yields. [Delayed liquid cooling

    SciTech Connect (OSTI)

    Elliott, J.D. (Foster Wheeler Corp., Clinton, NJ (US))

    1991-02-04

    Among refineries with delayed cokers, there is now major incentive to maximize coker fresh feed throughput while producing maximum possible liquid yields. There are design features and operating considerations that can increase liquid yields. Maximizing coke throughput is typically a necessity in overall refinery operations because coker capacity to process the bottom of the barrel can be a bottleneck to the entire refinery crude throughput. The incentive for achieving the maximum liquid yield from a coker is: clean distillates, even cracked distillates, are valuable while fuel grade coke is not. Another way to look at a maximum liquid yield coker operation is as a minimum coke yield operation.

  10. Robot design for leak detection in water-pipe systems

    E-Print Network [OSTI]

    Choi, Changrak

    2012-01-01

    Leaks are major problem that occur in the water pipelines all around the world. Several reports indicate loss of around 20 to 30 percent of water in the distribution of water through water pipe systems. Such loss of water ...

  11. Cooling Towers- Energy Conservation Strategies Understanding Cooling Towers 

    E-Print Network [OSTI]

    Smith, M.

    1991-01-01

    Cooling towers are energy conservation devices that Management, more often than not, historically overlooks in the survey of strategies for plant operating efficiencies. The utilization of the colder water off the cooling tower is the money maker!...

  12. EXPERIMENTAL INVESTIGATIONS AND DESIGN TOOL DEVELOPMENT FOR SURFACE WATER HEAT PUMP

    E-Print Network [OSTI]

    EXPERIMENTAL INVESTIGATIONS AND DESIGN TOOL DEVELOPMENT FOR SURFACE WATER HEAT PUMP SYSTEMS By MATT AND DESIGN TOOL DEVELOPMENT FOR SURFACE WATER HEAT PUMP SYSTEMS Thesis Approved: Jeffrey D. Spitler Thesis Title of Study: EXPERIMENTAL INVESTIGATION AND DESIGN TOOL DE- VELOPMENT FOR SURFACE WATER HEAT PUMP

  13. GENERAL SUPERSTRUCTURE AND GLOBAL OPTIMIZATION FOR THE DESIGN OF INTEGRATED PROCESS WATER NETWORKS

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    ), and Foo (2009). Water pinch technology relies on graphic representations and it is based on an extension.E. Grossmann). #12;2 The two major approaches for the optimal design of water network systems are water pinch1 GENERAL SUPERSTRUCTURE AND GLOBAL OPTIMIZATION FOR THE DESIGN OF INTEGRATED PROCESS WATER

  14. Improvement design study on steam generator of MHR-50/100 aiming higher safety level after water ingress accident

    SciTech Connect (OSTI)

    Oyama, S.; Minatsuki, I.; Shimizu, K.

    2012-07-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has been studying on MHI original High Temperature Gas cooled Reactor (HTGR), namely MHR-50/100, for commercialization with supported by JAEA. In the heat transfer system, steam generator (SG) is one of the most important components because it should be imposed a function of heat transfer from reactor power to steam turbine system and maintaining a nuclear grade boundary. Then we especially focused an effort of a design study on the SG having robustness against water ingress accident based on our design experience of PWR, FBR and HTGR. In this study, we carried out a sensitivity analysis from the view point of economic and plant efficiency. As a result, the SG design parameter of helium inlet/outlet temperature of 750 deg. C/300 deg. C, a side-by-side layout and one unit of SG attached to a reactor were selected. In the next, a design improvement of SG was carried out from the view point of securing the level of inherent safety without reliance on active steam dump system during water ingress accident considering the situation of the Fukushima nuclear power plant disaster on March 11, 2011. Finally, according to above basic design requirement to SG, we performed a conceptual design on adapting themes of SG structure improvement. (authors)

  15. Title: Optimal Design of a Thermoelectric Cooling/Heating for Car Seat Comfort Developed by Dr. HoSung Lee on 10/18/2014

    E-Print Network [OSTI]

    Lee, Ho Sung

    1 Title: Optimal Design of a Thermoelectric Cooling/Heating for Car Seat Comfort Developed by Dr. HoSung Lee on 10/18/2014 Car seat comfort is becoming more and more a competitive issue, moving optional to standard vehicle equipment. From early 1960s, it was shown that aerated car seats improved

  16. Design and Analysis of High-Performance Air-Cooled Heat Exchanger with an Integrated Capillary-Pumped Loop Heat Pipe

    E-Print Network [OSTI]

    McCarthy, Matthew

    We report the design and analysis of a high-power air-cooled heat exchanger capable of dissipating over 1000 W with 33 W of input electrical power and an overall thermal resistance of less than 0.05 K/W. The novelty of the ...

  17. Cooling tower environmental considerations for cogeneration projects

    SciTech Connect (OSTI)

    Weaver, K.L.; Putnam, R.A.; Schott, G.A.

    1994-12-31

    Careful consideration must be given to the potential environmental impacts resulting from cooling tower operations in cogeneration projects. Concerns include visible plumes, fogging and icing of nearby roadways, emissions, water use, aesthetics, and noise. These issues must be properly addressed in order to gain public acceptance and allow for easier permitting of the facility. This paper discusses the various evaporative type cooling tower technologies from an environmental standpoint. In addition, typical concerns and questions raised by the public are presented, along with suggested guidelines for addressing these concerns. The use of modeling to predict the potential environmental impacts from cooling tower operations is sometimes required by regulatory agencies as a condition for obtaining approval for the facility. This paper discusses two of the models that are currently available for predicting cooling tower environmental impacts such as fogging, icing, salt deposition, and visible plumes. The lack of standardized models for cooling tower noise predictions, and the means by which the modeling requirements may be achieved are also addressed. An overview of the characteristics of cooling tower noise, the various measures used for noise control and the interdependency of the control measures and other cooling tower performance parameters are presented. Guidance is provided to design cost effective, low noise installations. The requirements for cooling tower impact assessments to support permitting of a cogeneration facility are also presented.

  18. FEMP Designated Product Assessment for Commercial Gas Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    Water Heaters Appliance Gas storage water heaters Definitionto use for rating gas-fired storage and instantaneous waterefficiency for all gas-fired storage and instantaneous water

  19. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01

    natural circulation solar water heater. Energy Conversionas water circulation in solar water heaters 60 , and passivewater circulation in solar water heaters 60 , and passive

  20. FEMP Designated Product Assessment for Commercial Gas Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    heaters, or hot water supply boilers. Storage water heaterper gallon of stored water. 2 Hot water supply boiler meansa packaged boiler that has an input rating from 300,000 Btu/

  1. Direct-Cooled Power Electronic Substrate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70C standalone cooling loop * Three dimensional inverter packaging and eliminating the heat exchanger volume by directly cooling the DBC result in compact, light weight design...

  2. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Analysis and Concept Design for grey water heat

    E-Print Network [OSTI]

    Design for grey water heat recovery to preheat domestic water supply for multi-unit residential high rise of a project/report". #12;2 Analysis and Concept Design for grey water heat recovery to preheat domestic water

  3. STOCHASTIC COOLING

    E-Print Network [OSTI]

    Bisognano, J.

    2010-01-01

    L. Thorndahl, Stochastic Cooling o f Momentum Spread by F ion Stochastic Cooling i n ICE, IEEE Transaction's in Nucl. Sand S. A. Kheifhets', On Stochastic Cooling, P a r t i c l e

  4. Storm water quantity control has long been a challenge for highway designers. Traditionally, centralized best management practice designs

    E-Print Network [OSTI]

    Fiedler, Fritz R.

    Storm water quantity control has long been a challenge for highway designers. Traditionally applica- tions. The use of existing vegetated rights-of-way as a method of treating storm water, a component of the broader storm water treatment concept more generally referred to as low-impact development

  5. 4-62 The water in a rigid tank is cooled until the vapor starts condensing. The initial pressure in the tank is to be determined.

    E-Print Network [OSTI]

    Bahrami, Majid

    4-32 4-62 The water in a rigid tank is cooled until the vapor starts condensing. The initial pressure in the tank is to be determined. Analysis This is a constant volume process (v = V /m = constant@21 qgvvv (Table A-4) since the vapor starts condensing at 150qC. Then from Table A-6, H2O T1= 250qC P1

  6. The design of water markets when instream flows have value James J. Murphy

    E-Print Network [OSTI]

    Murphy, James J.

    The design of water markets when instream flows have value James J. Murphy (corresponding author markets when instream flows have value Abstract The main objective of this paper is to design and test. This article uses laboratory experiments to test three different water market institutions designed

  7. DESIGN AND DEVELOPMENT TESTING OF AN IMPROVED (1 HIGH-EFFICIENCY WATER HEATER

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;DESIGN AND DEVELOPMENT TESTING OF AN IMPROVED (1 HIGH-EFFICIENCY WATER HEATER (2} (3) (21 which uses a design approach quite different from the conventional center-flue water heater. While high heating. The design and performance of an early prototype is described in a previous paper (Ref. 2

  8. Design and modeling of a high flux cooling device based on thin film evaporation from thin nanoporous membranes

    E-Print Network [OSTI]

    Lu, Zhengmao

    2014-01-01

    Heat dissipation is a limiting factor in the performance of integrated circuits, power electronics and laser diodes. State-of-the-art solutions typically use air-cooled heat sinks, which have limited performance owing to ...

  9. Preventing fuel failure for a beyond design basis accident in a fluoride salt cooled high temperature reactor

    E-Print Network [OSTI]

    Minck, Matthew J. (Matthew Joseph)

    2013-01-01

    The fluoride salt-cooled high-temperature reactor (FHR) combines high-temperature coated-particle fuel with a high-temperature salt coolant for a reactor with unique market and safety characteristics. This combination can ...

  10. The design of a functionally graded composite for service in high temperature lead and lead-bismuth cooled nuclear reactors

    E-Print Network [OSTI]

    Short, Michael Philip

    2010-01-01

    A material that resists lead-bismuth eutectic (LBE) attack and retains its strength at 700°C would be an enabling technology for LBE-cooled reactors. No single alloy currently exists that can economically meet the required ...

  11. "Improving access to clean water and energy through the design of advanced

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    "Improving access to clean water and energy through the design of advanced polymer membrane Engineering for Membrane Separations, Clean Water, and Energy Providing sustainable supplies of purified water and clean energy is a critical global challenge for the future. Water and energy are inherently linked since

  12. Assessment of innovative fuel designs for high performance light water reactors

    E-Print Network [OSTI]

    Carpenter, David Michael

    2006-01-01

    To increase the power density and maximum allowable fuel burnup in light water reactors, new fuel rod designs are investigated. Such fuel is desirable for improving the economic performance light water reactors loaded with ...

  13. Designing a low cost XY stage for abrasive water jet cutting

    E-Print Network [OSTI]

    Abu Ibrahim, Fadi, 1980-

    2004-01-01

    This thesis guides the reader through the design of an inexpensive XY stage for abrasive water jet cutting machine starting with a set of functional requirements and ending with a product. Abrasive water jet cutting allows ...

  14. Department of Energy's team's analyses of Soviet designed VVERs (water-cooled water-moderated atomic energy reactors)

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    This document contains apprendices A through P of this report. Topics discussed are: a cronyms and technical terms, accident analyses reactivity control; Soviet safety regulations; radionuclide inventory; decay heat; operations and maintenance; steam supply system; concrete and concrete structures; seismicity; site information; neutronic parameters; loss of electric power; diesel generator reliability; Soviet codes and standards; and comparisons of PWR and VVER features. (FI)

  15. Experimental Validation of Passive Safety System Models: Application to Design and Optimization of Fluoride-Salt-Cooled, High-Temperature Reactors

    E-Print Network [OSTI]

    Zweibaum, Nicolas

    2015-01-01

    test SFR – Sodium-cooled fast reactor SWU – Separative workvalues than sodium-cooled fast reactors ( SFRs) and HTGRs.

  16. Proposal for the Award of a Contract for the Supply of the Hydraulic Links connecting the various Components of the LEP Collider to the demineralized-water cooling circuits

    E-Print Network [OSTI]

    1986-01-01

    Proposal for the Award of a Contract for the Supply of the Hydraulic Links connecting the various Components of the LEP Collider to the demineralized-water cooling circuits

  17. The Long Baseline Neutrino Experiment (LBNE) Water Cherenkov Detector (WCD) Conceptual Design Report (CDR)

    E-Print Network [OSTI]

    The LBNE Collaboration

    2012-04-10

    Conceptual Design Report developed for the Water Cherenkov Detector (WCD) option for the far detector of the Long Baseline Neutrino Experiment.

  18. Improved Design Tools for Surface Water and Standing Column Well Heat Pump Systems

    Broader source: Energy.gov [DOE]

    This project will improve the capability of engineers to design heat pump systems that utilize surface water or standing column wells (SCW) as their heat sources and sinks.

  19. Procedure for developing biological input for the design, location, or modification of water-intake structures

    SciTech Connect (OSTI)

    Neitzel, D.A.; McKenzie, D.H.

    1981-12-01

    To minimize adverse impact on aquatic ecosystems resulting from the operation of water intake structures, design engineers must have relevant information on the behavior, physiology and ecology of local fish and shellfish. Identification of stimulus/response relationships and the environmental factors that influence them is the first step in incorporating biological information in the design, location or modification of water intake structures. A procedure is presented in this document for providing biological input to engineers who are designing, locating or modifying a water intake structure. The authors discuss sources of stimuli at water intakes, historical approaches in assessing potential/actual impact and review biological information needed for intake design.

  20. Safety problems of water-development works designed for land reclamation

    SciTech Connect (OSTI)

    Shchedrin, V. N.; Kosichenko, Yu. M.

    2011-11-15

    A safety declaration is a fundamental document assuring the safety of water-development works, their correspondence to safety criteria, the design, and active technical regulations and rules.

  1. Conceptual design of an annular-fueled superheat boiling water reactor

    E-Print Network [OSTI]

    Ko, Yu-Chih, Ph. D. Massachusetts Institute of Technology

    2011-01-01

    The conceptual design of an annular-fueled superheat boiling water reactor (ASBWR) is outlined. The proposed design, ASBWR, combines the boiler and superheater regions into one fuel assembly. This ensures good neutron ...

  2. THE MECHANICAL DESIGN AND FABRICATION OF A CONVECTIVELY COOLED ION ACCELERATOR FOR CONTINUOUSLY OPERATING NEUTRAL BEAM SYSTEMS

    E-Print Network [OSTI]

    Paterson, J.A.

    2012-01-01

    13-16, 1979 THE MECHANICAL DESIGN AND FABRICATION OF AVosen, et al. , "Mechanical Design Criteria for ContinuouslyCalifornia. LBL~10095 THE MECHANICAL DESIGN AND FABRICATION

  3. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01

    protection. SDCs are safety design criteria. For FHRs, thereand on meeting the FHR safety design criteria (SDCs). When9 Proposed FHR Safety Design Criteria (

  4. Design Construction and Operation of a Supercritical Carbon Dioxide (sCO2) Loop for Investigation of Dry Cooling and Natural Circulation Potential for Use in Advanced Small Modular Reactors Utilizing sCO2 Power Conversion Cycles.

    SciTech Connect (OSTI)

    Middleton, Bobby D.; Rodriguez, Salvador B.; Carlson, Matthew David

    2015-11-01

    This report outlines the work completed for a Laboratory Directed Research and Development project at Sandia National Laboratories from October 2012 through September 2015. An experimental supercritical carbon dioxide (sCO 2 ) loop was designed, built, and o perated. The experimental work demonstrated that sCO 2 can be uti lized as the working fluid in an air - cooled, natural circulation configuration to transfer heat from a source to the ultimate heat sink, which is the surrounding ambient environment in most ca ses. The loop was also operated in an induction - heated, water - cooled configuration that allows for measurements of physical parameters that are difficult to isolate in the air - cooled configuration. Analysis included the development of two computational flu id dynamics models. Future work is anticipated to answer questions that were not covered in this project.

  5. Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building 

    E-Print Network [OSTI]

    Zhu, N.

    2014-01-01

    source heat pump system integrated with phase change cooling storage tank in an office building Dr. Na Zhu Department of Building Environment and Energy Engineering Huazhong University of Science & Technology, Wuhan, China 2014-09-14 ESL-IC-14-09-18a...-conditioning system: ?Splitting air-conditioner for cooling and coal fired boiler for heating. • Problems: a)Energy efficiency is low b)This system is not environmental friendly 2014/11/11 New energy saving technology ESL-IC-14-09-18a Proceedings of the 14th...

  6. Water management studies in PEM fuel cells, Part I: Fuel cell design and in situ water distributions

    E-Print Network [OSTI]

    Kandlikar, Satish

    Water management studies in PEM fuel cells, Part I: Fuel cell design and in situ water. Trabolda, * a General Motors Fuel Cell Laboratory, 10 Carriage Street, Honeoye Falls, New York, USA b Accepted 23 December 2008 Available online 23 February 2009 Keywords: PEM fuel cell Two-phase flow Neutron

  7. Radiant cooling research scoping study

    E-Print Network [OSTI]

    Moore, Timothy; Bauman, Fred; Huizenga, Charlie

    2006-01-01

    recognition of ground-source heat pumps as an option? DesignOmicron A ground source heat pump & radiant heating cooling

  8. Monitoring peak power and cooling energy savings of shade trees and white surfaces in the Sacramento Municipal Utility District (SMUD) service area: Project design and preliminary results

    SciTech Connect (OSTI)

    Akbari, H.; Bretz, S.; Hanford, J.; Rosenfeld, A.; Sailor, D.; Taha, H. [Lawrence Berkeley Lab., CA (United States); Bos, W. [Sacramento Municipal Utility District, CA (United States)

    1992-12-01

    Urban areas in warm climates create summer heat islands of daily average intensity of 3--5{degrees}C, adding to discomfort and increasing air-conditioning loads. Two important factors contributing to urban heat islands are reductions in albedo (lower overall city reflectance) and loss of vegetation (less evapotranspiration). Reducing summer heat islands by planting vegetation (shade trees) and increasing surface albedos, saves cooling energy, allows down-sizing of air conditioners, lowers air-conditioning peak demand, and reduces the emission of CO{sub 2} and other pollutants from electric power plants. The focus of this multi-year project, jointly sponsored by SMUD and the California Institute for Energy Efficiency (CIEE), was to measure the direct cooling effects of trees and white surfaces (mainly roofs) in a few buildings in Sacramento. The first-year project was to design the experiment and obtain base case data. We also obtained limited post retrofit data for some sites. This report provides an overview of the project activities during the first year at six sites. The measurement period for some of the sites was limited to September and October, which are transitional cooling months in Sacramento and hence the interpretation of results only apply to this period. In one house, recoating the dark roof with a high-albedo coating rendered air conditioning unnecessary for the month of September (possible savings of up to 10 kWh per day and 2 kW of non-coincidental peak power). Savings of 50% relative to an identical base case bungalow were achieved when a school bungalow`s roof and southeast wall were coated with a high-albedo coating during the same period. Our measured data for the vegetation sites do not indicate conclusive results because shade trees were small and the cooling period was almost over. We need to collect more data over a longer cooling season in order to demonstrate savings conclusively.

  9. Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops

    Broader source: Energy.gov [DOE]

    Project objectives: Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School and Middle School.; Provide jobs; and reduce requirements of funds for the capital budget of the School District; and thus give relief to taxpayers in this rural region during a period of economic recession.

  10. DESIGN AND FABRICATION OF A RECTANGULAR HE-COOLED REFRACTORY FOAM HX-CHANNEL FOR DIVERTOR APPLICATIONS

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    .williams@ultramet.com A rectangular single channel low pressure drop helium-cooled refractory metal heat exchanger (HX) tube the path of helium flow through foam to about 11 mm and thus the pressure drop through the porous media surfaces, such as a flat-plate divertor, without substantially increasing the coolant pressure losses. We

  11. Numerical simulation of air/water multiphase flows for ceramic sanitary ware design by multiple GPUs

    E-Print Network [OSTI]

    8 Numerical simulation of air/water multiphase flows for ceramic sanitary ware design by multiple and manufacturing of plumbing products such as ceramic sanitary wares. In order to re-produce the complex/water multiphase flows for ceramic sanitary ware design by multiple GPUs Being a world-wide leading company, TOTO

  12. MEIC electron cooling program

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 1034 cm-2s-1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); the other is amore »high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.« less

  13. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ice thermal storage systems can effectively reduce the efficiency loss and water consumption during hot weather so that new LWRs could be considered in regions without enough cooling water. \\ This paper presents the feasibility study of using ice thermal storage systems for LWR supplemental cooling and peak power shifting. LWR cooling issues and ITS application status will be reviewed. Two ITS application case studies will be presented and compared with alternative options: one for once-through cooling without enough cooling for short time, and the other with dry cooling. Because capital cost, especially the ice storage structure/building cost, is the major cost for ITS, two different cost estimation models are developed: one based on scaling method, and the other based on a preliminary design using Building Information Modeling (BIM), an emerging technology in Architecture/Engineering/Construction, which enables design options, performance analysis and cost estimating in the early design stage.

  14. Temporal and spatial distribution of fishes in the upper Galveston Bay System with particular reference to the cooling water system of Cedar Bayou Generating Station 

    E-Print Network [OSTI]

    Holt, Scott Allen

    1976-01-01

    1I:MPORAL AND SPATIAL DISTRIBUTION OF FISHES IN THE UPPER GALVESTON BAY SYSTEM WITH PARTICULAR REFERENCE TO THE COOLING WATER SYSTEM OF CEDAR BAYOU GENERATING STATION A Thesis by SCOTT ALLEN HOLT Submitted to the Graduate College of Texas A... This research was made possible by a grant from Hou-ton Lighting 6 Power Company to the Department of Wildlife and Fisheries Scier. es and the Texas Agricultural Experiment Station (Project 1869-2781) . I would like to express my appreciation to Dr. Kirk...

  15. Using Simulation Models for District Chilled Water Distribution Systems Design 

    E-Print Network [OSTI]

    Chen, Q.; Xu, C.; Deng, S.; Claridge, D. E.; Turner, W. D.

    2004-01-01

    the design. The focus of this paper is to demonstrate how the using of the computerized simulation model can give the engineer the ability to explore many more alternative design scenarios and to identify more cost-effective and robust designs. The University...

  16. DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01

    Definitions Space Heating Space Cooling Hot Water . .in Passive Solar Heating and Cooling Section C: Program GoalSpace Heating Space Cooling Section G: Task Classifications

  17. Design and experimental testing of the performance of an outdoor LiBr/H{sub 2}O solar thermal absorption cooling system with a cold store

    SciTech Connect (OSTI)

    Agyenim, Francis; Knight, Ian; Rhodes, Michael

    2010-05-15

    A domestic-scale prototype experimental solar cooling system has been developed based on a LiBr/H{sub 2}O absorption system and tested during the 2007 summer and autumn months in Cardiff University, UK. The system consisted of a 12 m{sup 2} vacuum tube solar collector, a 4.5 kW LiBr/H{sub 2}O absorption chiller, a 1000 l cold storage tank and a 6 kW fan coil. The system performance, as well as the performances of the individual components in the system, were evaluated based on the physical measurements of the daily solar radiation, ambient temperature, inlet and outlet fluid temperatures, mass flow rates and electrical consumption by component. The average coefficient of thermal performance (COP) of the system was 0.58, based on the thermal cooling power output per unit of available thermal solar energy from the 12 m{sup 2} Thermomax DF100 vacuum tube collector on a hot sunny day with average peak insolation of 800 W/m{sup 2} (between 11 and 13.30 h) and ambient temperature of 24 C. The system produced an electrical COP of 3.6. Experimental results prove the feasibility of the new concept of cold store at this scale, with chilled water temperatures as low as 7.4 C, demonstrating its potential use in cooling domestic scale buildings. (author)

  18. Superfast Cooling

    E-Print Network [OSTI]

    S. Machnes; M. B. Plenio; B. Reznik; A. M. Steane; A. Retzker

    2010-01-15

    Currently laser cooling schemes are fundamentally based on the weak coupling regime. This requirement sets the trap frequency as an upper bound to the cooling rate. In this work we present a numerical study that shows the feasibility of cooling in the strong coupling regime which then allows cooling rates that are faster than the trap frequency with state of the art experimental parameters. The scheme we present can work for trapped atoms or ions as well as mechanical oscillators. It can also cool medium size ions chains close to the ground state.

  19. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect (OSTI)

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  20. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01

    safety design criteria separate effects test steam generators small modular reactor San Onofre Nuclear

  1. Design Method for the Heating/Cooling Coil in the AHU Based on Fuzzy Logic - Part Two: Design of the Minimum Heat-Exchanging Unit 

    E-Print Network [OSTI]

    Zhang, J.; Chen, Y.; Liang, Z.

    2006-01-01

    Considering a heating/cooling coil with adjustable heat-exchange area, an unequal type is put forward in this paper. Aiming at the application of such heat exchanger in an air-handling unit, restriction conditions are given for the minimum heat...

  2. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Progress Report for Work Through September 2003, 2nd Annual/8th Quarterly Report

    SciTech Connect (OSTI)

    Philip E. MacDonald

    2003-09-01

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation-IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% vs. about 33% efficiency for current Light Water Reactors, LWRs) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus the need for recirculation and jet pumps, a pressurizer, steam generators, steam separators and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies, LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which is also in use around the world.

  3. Site design for urban water management in Mexico City

    E-Print Network [OSTI]

    Rivera, José Pablo (Rivera De la Mora), 1967-

    2001-01-01

    As the world becomes aware of the scarcity of water resources and cities struggle to meet a growing demand, we face the challenge of finding more efficient ways to manage this vital resource. Cities in developing countries ...

  4. FEMP Designated Product Assessment for Commercial Gas Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    and hot water supply boilers is ANSI Z21.10.3–1998. 67 Note the CFR references a specific year of ANSI.ANSI standards are updated every 5 years. The standard being

  5. Growth and mortality of the oyster, Crassostrea virginica (Gmelin) in an electric generating station cooling lake receiving heated discharge water 

    E-Print Network [OSTI]

    Oja, Robert Kenneth

    1974-01-01

    on the amount of fouling organisms attached I o irner shell surfaces of the dead oysters. Fresh boxes show littl if any fouling unless the inner surfaces become silted over shortly after death of the oyster. 22 RESULTS Hydrology Skat r temperature... of the Oyster, Cram. . ostrea virginica (Cmel'n) 'n -n Flcctric Generating Station Cooling Lake Receiving Heated Discharge Hater. (Augu t 1974) I!o'&art Ke!!neth Oja, B. S. , U. S. Coast Guarc Academy Chai sTian of Advisory Co!n!aittee! Dr. Sammy FI. Ray...

  6. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01

    reprocessing to recover fissionable material, FHR fuel handling systems must be designed to facilitate the application of IAEA safeguards.

  7. Innovative fuel designs for high power density pressurized water reactor

    E-Print Network [OSTI]

    Feng, Dandong, Ph. D. Massachusetts Institute of Technology

    2006-01-01

    One of the ways to lower the cost of nuclear energy is to increase the power density of the reactor core. Features of fuel design that enhance the potential for high power density are derived based on characteristics of ...

  8. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    SciTech Connect (OSTI)

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik; Aziz, Ferhat; Sekimoto, Hiroshi

    2014-02-12

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  9. Evaporative Cooling Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an...

  10. Cooling Towers--Energy Conservation Strategies 

    E-Print Network [OSTI]

    Matson, J.

    1991-01-01

    A cooling water system can be optimized by operating the cooling tower at the highest possible cycles of concentration without risking sealing and fouling of heat exchanger surfaces, tube bundles, refrigeration equipment, overhead condensers...

  11. Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers

    SciTech Connect (OSTI)

    Lekov, Alex; Franco, Victor; Meyers, Steve; Thompson, Lisa; Letschert, Virginie

    2010-11-24

    The U.S. Department of Energy (DOE) recently completed a rulemaking process in which it amended the existing energy efficiency standards for residential water heaters. A key factor in DOE?s consideration of new standards is the economic impacts on consumers. Determining such impacts requires a comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This paper describes the method used to conduct the life-cycle cost (LCC) and payback period analysis for gas and electric storage water heaters. It presents the estimated change in LCC associated with more energy-efficient equipment, including heat pump electric water heaters and condensing gas water heaters, for a representative sample of U.S. homes. The study included a detailed accounting of installation costs for the considered design options, with a focus on approaches for accommodating the larger dimensions of more efficient water heaters. For heat pump water heaters, the study also considered airflow requirements, venting issues, and the impact of these products on the indoor environment. The results indicate that efficiency improvement relative to the baseline design reduces the LCC in the majority of homes for both gas and electric storage water heaters, and heat pump electric water heaters and condensing gas water heaters provide a lower LCC for homes with large rated volume water heaters.

  12. Flexible design : an innovative approach for planning water infrastructure systems under uncertainty

    E-Print Network [OSTI]

    Wong, Melanie Kathleen

    2013-01-01

    This thesis develops a framework for a flexible design approach to support decision-making in water supply infrastructure planning. It contrasts with a conventional, deterministic planning approach that uses past data or ...

  13. Application of Genetic Algorithm to Optimal Design of Central Air-Conditioning Water System 

    E-Print Network [OSTI]

    Feng, X.; Zou, Y.; Long, W.

    2006-01-01

    algorithm (GA ) has special advantages in tackling this problem based on its inherent characteristics.Genetic algorithm (GA) is adopted and applied in the optimal design of air-conditioning water system in this study. A mathematical model and constrained...

  14. Improving the Efficiency of Your Process Cooling System 

    E-Print Network [OSTI]

    Baker, R.

    2005-01-01

    Many industries require process cooling to achieve desired outcomes of specific processes. This cooling may come from cooling towers, once-through water, mechanical refrigeration, or cryogenic sources such as liquid nitrogen or dry ice. This paper...

  15. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    SciTech Connect (OSTI)

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  16. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01

    Design. (U.S. Nuclear Regulatory Commission, NUREG-1793,analysis. (U.S. Nuclear Regulatory Commission, 1991, NUREG/Main Report. (Nuclear Regulatory Commission, 2007, NUREG/CR-

  17. Comparison of advanced cooling technologies efficiency depending on outside temperature

    SciTech Connect (OSTI)

    Blaise Hamanaka; Haihua Zhao; Phil Sharpe

    2009-09-01

    In some areas, water availability is a serious problem during the summer and could disrupt the normal operation of thermal power plants which needs large amount of water to operate. Moreover, when water quantities are sufficient, there can still be problem created by the waste heat rejected into the water which is regulated in order to limit the impact of thermal pollution on the environment. All these factors can lead to a decrease of electricity production during the summer and during peak hours, when electricity is the most needed. In order to deal with these problems, advanced cooling technologies have been developed and implemented to reduce water consumption and withdrawals but with an effect in the plant efficiency. This report aims at analyzing the efficiency of several cooling technologies with a fixed power plant design and so to produce a reference to be able to compare them.

  18. Study Design And Realization Of Solar Water Heater

    SciTech Connect (OSTI)

    Lounis, M.; Boudjemaa, F.; Akil, S. Kouider

    2011-01-17

    Solar is one of the most easily exploitable energy, it is moreover inexhaustible. His applications are many and are varied. The heating of the domestic water is one of the most immediate, simplest and also of most widespread exploitation of the solar energy. Algeria, from its geographical situation, it deposits one of the largest high sun surface expositions in the world. The exposition duration of the almost territory exceeds 2000 hours annually and can reach the 3900 hours (high plateaus and Sahara). By knowing the daily energy received by 1 m{sup 2} of a horizontal surface of the solar thermal panel is nearly around 1700 KWh/m{sup 2} a year in the north and 2263 KWh/m{sup 2} a year in the south of the country, we release the most important and strategic place of the solar technologies in the present and in the future for Algeria. This work consists to study, conceive and manufacture solar water heating with the available local materials so, this type of the energy will be profitable for all, particularly the poor countries. If we consider the illumination duration of the panel around 6 hours a day, the water heat panel manufactured in our laboratory produce an equivalent energy of 11.615 KWh a day so, 4239 KWh a year. These values of energy can be easily increased with performing the panel manufacture.

  19. A domain-specific analysis system for examining nuclear reactor simulation data for light-water and sodium-cooled fast reactors

    E-Print Network [OSTI]

    Billings, Jay Jay; Hull, S Forest; Lingerfelt, Eric J; Wojtowicz, Anna

    2014-01-01

    Building a new generation of fission reactors in the United States presents many technical and regulatory challenges. One important challenge is the need to share and present results from new high-fidelity, high-performance simulations in an easily usable way. Since modern multiscale, multi-physics simulations can generate petabytes of data, they will require the development of new techniques and methods to reduce the data to familiar quantities of interest (e.g., pin powers, temperatures) with a more reasonable resolution and size. Furthermore, some of the results from these simulations may be new quantities for which visualization and analysis techniques are not immediately available in the community and need to be developed. This paper describes a new system for managing high-performance simulation results in a domain-specific way that naturally exposes quantities of interest for light water and sodium-cooled fast reactors. It describes requirements to build such a system and the technical challenges faced...

  20. Solar Roof Cooling by Evaporation 

    E-Print Network [OSTI]

    Patterson, G. V.

    1982-01-01

    Evaporation is nature's way of cooling. By the application of a thin film of water, in the form of a mist, on the roof of the building, roof temperatures can be reduced from as high as 165o to a cool 86oF. Thus, under-roof ...

  1. Optimization of biological recycling of plant nutrients in livestock waste by utilizing waste heat from cooling water. Final report May 75-Sep 81

    SciTech Connect (OSTI)

    Maddox, J.J.; Behrends, L.L.; Burch, D.W.; Kingsley, J.B.; Waddell, E.L. Jr

    1982-05-01

    The report summarizes a 5-year study of the beneficial uses of waste heat from condenser cooling water from steam-electric generating plants. The major effort addressed the recovery of plant nutrients in swine manure by aquatic farming of selected fish and Chinese waterchestnuts. Another effort included biogas production from swine manure in an anaerobic digester and the use of the digester waste to fertilize the aquatic farming system. Optimum recovery of plant nutrients resulted from operation of an integrated fish and waterchestnut system. Flowing water systems were 30-50% more productive than static systems. Annual fish yields of 5000-7000 lb/acre are projected for a properly stocked system over a 150-180 day growing period. Similarly, waterchestnut yields of nearly 17.8 tons/acre and dry hay yields of 6.7 tons/acre from sand-bed filters would be expected when fed wastewater from the fish system. The quality of the water leaving the sand beds would meet tertiary wastewater treatment standards during the growing season. An estimated 2000-head swine facility with a $400,000 investment would annually produce a 20% rate of return, save 360,000 bbl of oil through waste heat utilization, and produce biogas equivalent to 3000 bbl of oil.

  2. Preliminary design report for the K basins integrated water treatment system

    SciTech Connect (OSTI)

    Pauly, T.R., Westinghouse Hanford

    1996-08-12

    This Preliminary Design Report (PDR) provides a revised concept for the K Basins Integrated Water Treatment Systems (IWTS). This PDR incorporates the 11 recommendations made in a May 1996 Value Engineering session into the Conceptual Design, and provides new flow diagrams, hazard category assessment, cost estimate, and schedule for the IWTS Subproject.

  3. Cooled railplug

    DOE Patents [OSTI]

    Weldon, William F. (Austin, TX)

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  4. Plant Design and Cost Assessment of Forced Circulation Lead-Bismuth Cooled Reactor with Conventional Power Conversion Cycles

    E-Print Network [OSTI]

    Dostal, Vaclav

    Cost of electricity is the key factor that determines competitiveness of a power plant. Thus the proper selection, design and optimization of the electric power generating cycle is of main importance. This report makes an ...

  5. Design of an experimental loop for post-LOCA heat transfer regimes in a Gas-cooled Fast Reactor

    E-Print Network [OSTI]

    Cochran, Peter A. (Peter Andrew)

    2005-01-01

    The goal of this thesis is to design an experimental thermal-hydraulic loop capable of generating accurate, reliable data in various convection heat transfer regimes for use in the formulation of a comprehensive convection ...

  6. Towards a Design of a Complete Solar Water Splitting System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnologyTel:FebruaryEIA's Today8TopoTowards a Design of a

  7. Design of a rural water provision system to decrease arsenic exposure in Bangladesh

    E-Print Network [OSTI]

    Mathieu, Johanna

    2009-01-01

    Water . . . . . . . . . . . . . . . . . . . . . . . . . . .Arsenic Standards for Drinking Water . . . . . . . . . .Water Storage before

  8. Solar Roof Cooling by Evaporation 

    E-Print Network [OSTI]

    Patterson, G. V.

    1981-01-01

    dampened. A presentation was made at the 1940 semi-annual meeting of the American Society of Heating and Ventilating Engineers entitled 'Summer Cooling Load as Affected by Heat Gain Through Dry, Sprinkled and Water Covered Roofs.' Solar evaporative roof...

  9. Cooling Towers, Energy Conservation Machines 

    E-Print Network [OSTI]

    Burger, R.

    1980-01-01

    Cooling towers, in all too many industrial plants, are often the neglected units of the process chain which are hidden bonanzas for energy conservation and dollar savings. By lowering the entire systems temperature by the use of colder water...

  10. Ventilative cooling

    E-Print Network [OSTI]

    Graça, Guilherme Carrilho da, 1972-

    1999-01-01

    This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

  11. Fusion Engineering and Design 41 (1998) 561567 Combination of a self-cooled liquid metal breeder blanket with

    E-Print Network [OSTI]

    1998-01-01

    . Breeding blan- kets have a decisive influence on the attractiveness of a fusion power plant as they can blanket with a gas turbine power conversion system S. Malang a, *, H. Schnauder a , M.S. Tillack b loop is usually required between the primary lithium loop and the steam/water loop of the Rankine cycle

  12. Measurement of Temperature Profile in the Reactor Cavity Cooling System 

    E-Print Network [OSTI]

    Alhashimi, Tariq Yaqoob Sayed

    2014-12-02

    -cooled Reactor Cavity Cooling System (RCCS) based on General Electric Modular High Temperature Gas Cooled Reactor (MHTGR) design to study the thermal hydraulic phenomena occurring in the upper plenum. The facility consists of four vertical parallel riser ducts...

  13. Tips: Passive Solar Heating and Cooling | Department of Energy

    Office of Environmental Management (EM)

    Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling July 27, 2014 - 4:18pm Addthis Tips: Passive Solar Heating and Cooling Using passive solar design to heat...

  14. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo

    2002-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

  15. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

    2001-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

  16. The Thermodynamic and Cost Benefits of Floating Cooling Systems 

    E-Print Network [OSTI]

    Svoboda, K. J.; Klooster, H. J.; Johnnie, D. H., Jr.

    1983-01-01

    Historically, a fixed cooling concept is used in the design of evaporative heat rejection systems for process and power plants. In the fixed cooling mode, a plant is designed for maximum output at the design summer wet bulb temperature...

  17. Optimizing Cooling Tower Performance Refrigeration Systems, Chemical Plants, and Power Plants All Have A Resource Quietly Awaiting Exploitation-Cold Water!! 

    E-Print Network [OSTI]

    Burger, R.

    1991-01-01

    Cooling towers, because of their seeming simplicity, are usually orphans of the facilities operation. We are all aware that cooling towers are the step-children of the chemical process plant, electric power generating station, and refrigeration...

  18. Measure Guideline: Ventilation Cooling

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  19. Modification and Validation of a Universal Thermodynamic Chiller Model Used to Evaluate the Performance of Water-Cooled Centrifugal Chillers 

    E-Print Network [OSTI]

    Figueroa, I. E.; Cathey, M.; Medina, M. A.; Nutter, D. W.

    1998-01-01

    at the condenser. The model was developed as a tool for analyzing chiller performance. It was designed to predict the coefficient of performance (COP) and the total electrical energy consumed by the compressor. The input parameters included time-series values...

  20. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J. (Knoxville, TN)

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  1. NASA's Marshall Space Flight Center Improves Cooling System Performance

    Broader source: Energy.gov [DOE]

    Case study details Marshall Space Flight Center's innovative technologies to improve water efficiency and cooling performance for one of its problematic cooling systems. The program saved the facility more than 800,000 gallons of water in eight months.

  2. Cogeneration of Electricity and Potable Water Using The International Reactor Innovative And Secure (IRIS) Design

    SciTech Connect (OSTI)

    Ingersoll, D.T.; Binder, J.L.; Kostin, V.I.; Panov, Y.K.; Polunichev, V.; Ricotti, M.E.; Conti, D.; Alonso, G.

    2004-10-06

    The worldwide demand for potable water has been steadily growing and is projected to accelerate, driven by a continued population growth and industrialization of emerging countries. This growth is reflected in a recent market survey by the World Resources Institute, which shows a doubling in the installed capacity of seawater desalination plants every ten years. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh/m3 of produced desalted water. At current U.S. water use rates, a dedicated 1000 MW power plant for every one million people would be required to meet our water needs with desalted water. Nuclear energy plants are attractive for large scale desalination application. The thermal energy produced in a nuclear plant can provide both electricity and desalted water without the production of greenhouse gases. A particularly attractive option for nuclear desalination is to couple a desalination plant with an advanced, modular, passively safe reactor design. The use of small-to-medium sized nuclear power plants allows for countries with smaller electrical grid needs and infrastructure to add new electrical and water capacity in more appropriate increments and allows countries to consider siting plants at a broader number of distributed locations. To meet these needs, a modified version of the International Reactor Innovative and Secure (IRIS) nuclear power plant design has been developed for the cogeneration of electricity and desalted water. The modular, passively safe features of IRIS make it especially well adapted for this application. Furthermore, several design features of the IRIS reactor will ensure a safe and reliable source of energy and water even for countries with limited nuclear power experience and infrastructure. The IRIS-D design utilizes low-quality steam extracted from the low-pressure turbine to boil seawater in a multi-effect distillation desalination plant. The desalination plant is based on the horizontal tube film evaporation design used successfully with the BN-350 nuclear plant in Aktau, Kazakhstan. Parametric studies have been performed to optimize the balance of plant design. Also, an economic analysis has been performed, which shows that IRIS-D should be able to provide electricity and clean water at highly competitive costs.

  3. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Nuclear Energy Research Initiative Project 2001-001, Westinghouse Electric Co. Grant Number: DE-FG07-02SF22533, Final Report

    SciTech Connect (OSTI)

    Philip E. MacDonald

    2005-01-01

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% versus about 33% efficiency for current Light Water Reactors [LWRs]) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus, the need for a pressurizer, steam generators, steam separators, and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies: LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which are also in use around the world. The reference SCWR design for the U.S. program is a direct cycle system operating at 25.0 MPa, with core inlet and outlet temperatures of 280 and 500 C, respectively. The coolant density decreases from about 760 kg/m3 at the core inlet to about 90 kg/m3 at the core outlet. The inlet flow splits with about 10% of the inlet flow going down the space between the core barrel and the reactor pressure vessel (the downcomer) and about 90% of the inlet flow going to the plenum at the top of the rector pressure vessel, to then flow down through the core in special water rods to the inlet plenum. Here it mixes with the feedwater from the downcomer and flows upward to remove the heat in the fuel channels. This strategy is employed to provide good moderation at the top of the core. The coolant is heated to about 500 C and delivered to the turbine. The purpose of this NERI project was to assess the reference U.S. Generation IV SCWR design and explore alternatives to determine feasibility. The project was organized into three tasks: Task 1. Fuel-cycle Neutronic Analysis and Reactor Core Design Task 2. Fuel Cladding and Structural Material Corrosion and Stress Corrosion Cracking Task 3. Plant Engineering and Reactor Safety Analysis. moderator rods. materials.

  4. Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners

    E-Print Network [OSTI]

    Shah, Nihar

    2014-01-01

    use, the water-side economizer and the air-side economizer.The air-side economizer takes advantage of the cool outdoorair is cool enough to provide total cooling. The water-side economizer

  5. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  6. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, Peter (Cary, NC)

    1991-01-01

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  7. Cooled railplug

    DOE Patents [OSTI]

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  8. Relap5-3d model validation and benchmark exercises for advanced gas cooled reactor application 

    E-Print Network [OSTI]

    Moore, Eugene James Thomas

    2006-08-16

    HTTR High Temperature engineering Test Reactor INET Institute of Nuclear Energy Technology LWR Light Water Reactor OKBM Test Design Bureau for Machine Building ORNL Oak Ridge National Laboratory RCCS Reactor Cavity Cooling System.... This code used a card-based input deck and was designed to simulate transients in light water reactors (LWR) including, but not limited to, a loss of coolant accident or a station blackout. In the thirty years since, the code has been continuously...

  9. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production Progress Report for Year 1, Quarter 2 (January - March 2002)

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-03-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  10. Case Study of Stratified Chilled Water Storage Utilization for Comfort and Process Cooling in a Hot, Humid Climate 

    E-Print Network [OSTI]

    Bahnfleth, W. P.; Musser, A.

    1998-01-01

    , the nominal tank storage capacity is 60,500 ton-hr (2 13,000 kwh) and the instantaneous output at the maximum discharge flow rate is 5,600 tons (19,700 kW). The tank can discharge at this rate for nearly 11 hours. At design flow rates, the inlet Froude... on-peak hours that run from noon to 8 p.m. Controls are configured to obtain maximum efficiency from refrigerant equipment on- line by maintaining each on-line chiller at its peak capacity. During the on-peak period the tank is discharged...

  11. Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

  12. Design and Testing of Vacuum Breaker Check Valve for Simplified Boiling Water Reactor

    SciTech Connect (OSTI)

    Ishii, M.; Xu, Y.; Revankar, S.T.

    2002-07-01

    A new design of the vacuum breaker check valve was developed to replace the mechanical valve in a simplified boiling water reactor. Scaling and design calculations were performed to obtain the geometry of new passive hydraulic vacuum breaker check valve. In order to check the valve performance, a RELAP5 model of the simplified boiling water reactor system with the new valve was developed. The valve was implemented in an integral facility, PUMA and was tested for large break loss of coolant accident. (authors)

  13. DOE/NNSA perspective safeguard by design: GEN III/III+ light water reactors and beyond

    SciTech Connect (OSTI)

    Pan, Paul Y

    2010-12-10

    An overview of key issues relevant to safeguards by design (SBD) for GEN III/IV nuclear reactors is provided. Lessons learned from construction of typical GEN III+ water reactors with respect to SBD are highlighted. Details of SBD for safeguards guidance development for GEN III/III+ light water reactors are developed and reported. This paper also identifies technical challenges to extend SBD including proliferation resistance methodologies to other GEN III/III+ reactors (except HWRs) and GEN IV reactors because of their immaturity in designs.

  14. Cool Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsClusterInformationContract Management Princeton16,558.1Cool Links Cool

  15. Design criteria for an independent spent fuel storage installation (water pool type)

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This standard is intended to be used by those involved in the ownership and operation of an Independent Spent Fuel Storage Installation (ISFSI) in specifying the design requirements and by the designer in meeting the minimum design requirements of such installations. This standard continues the set of American National Standards on spent fuel storage design. Similar standards are: Design Objectives for Light Water Reactor Spent Fuel Storage Facilities at Nuclear Power Stations, N210-1976 (ANS-57.2); Design Objectives for Highly Radioactive Solid Material Handling and Storage Facilities in a Reprocessing Plant, ANSI N305-1975; and Guidelines for Evaluating Site-Related Parameters for an Independent Spent Fuel Storage Installation, ANSI/ANS-2.19-1981.

  16. The Design and Evaluation of Prototype Eco-Feedback Displays for Fixture-Level Water Usage Data

    E-Print Network [OSTI]

    Daume III, Hal

    The Design and Evaluation of Prototype Eco-Feedback Displays for Fixture-Level Water Usage Data ABSTRACT Few means currently exist for home occupants to learn about their water consumption: e.g., where water use occurs, whether such use is excessive and what steps can be taken to conserve. Emerging water

  17. A water balance study of four landfill cover designs varying in slope for semiarid regions

    SciTech Connect (OSTI)

    Nyhan, J.W.; Schofield, T.G.; Salazar, J.A.

    1997-02-01

    The goal of disposing of radioactive and hazardous waste in shallow landfills is to reduce risk to human health and to the environment by isolating contaminants until they no longer pose a hazard. In order to achieve this, the performance of a landfill cover design without an engineered barrier (Conventional Design) was compared with three designs containing either a hydraulic barrier (EPA Design) or a capillary barrier (Loam and Clay Loam Capillary Barrier Designs). Water balance parameters were measured since 1991 at six-hour intervals for four different landfill cover designs in 1.0- by 10.0-m plots with downhill slopes of 5, 10, 15, and 25%. Whereas runoff generally accounted for only 2-3% of the precipitation losses on these designs, similar values for evapotranspiration ranged from 86% to 91%, with increased evapotranspiration occurring with increases in slope. Consequently, interflow and seepage usually decreased with increasing slope for each landfill cover design. Seepage consisted of up to 10% of the precipitation on the Conventional Design, whereas the hydraulic barrier in the EPA Design effectively controlled seepage at all slopes, and both of the capillary designs worked effectively to eliminate seepage at the higher slopes.

  18. Towards the systematic design of actuation for process systems

    E-Print Network [OSTI]

    Van den Hof, Paul

    to controllability. The last point boils down to optimization. How is actuation designed? In order to answer. Consider the continuous stirred tank reactor shown in figure 1, left. In the reactor an exothermic reaction takes place. By adding a cooling mantle and a control valve in the cooling water line, heat transfer

  19. Water Network Optimization with Wastewater Regeneration Models Linlin Yang

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    . The primary water uses are process water, cooling water, and boiler feed water, with each use being emphasized

  20. Berkeley Lab's Cool Your School Program

    ScienceCinema (OSTI)

    Ivan Berry

    2013-06-24

    Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

  1. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    paper describing produced water from production of crudeEmerging Issues Paper: Mine Water Pollution. Dep. Environ.40. Vine G. 2010. Cooling water issues and opportunities at

  2. Long-Baseline Neutrino Experiment (LBNE)Conceptual Design ReportThe LBNE Water Cherenkov DetectorApril 13 2012

    SciTech Connect (OSTI)

    Kettell S. H.; Bishai, M.; Brown, R.; Chen, H.; Diwan, M.; Dolph, J., Geronimo, G.; Gill, R.; Hackenburg, R.; Hahn, R.; Hans, S.; Isvan, Z.; Jaffe, D.; Junnarkar, S.; Kettell, S.H.; Lanni,F.; Li, Y.; Ling, J.; Littenberg, L.; Makowiecki, D.; Marciano, W.; Morse, W.; Parsa, Z.; Radeka, V.; Rescia, S.; Samios, N.; Sharma, R.; Simos, N.; Sondericker, J.; Stewart, J.; Tanaka, H.; Themann, H.; Thorn, C.; Viren, B., White, S.; Worcester, E.; Yeh, M.; Yu, B.; Zhang, C.

    2012-04-13

    Conceptual Design Report (CDR) developed for the Water Cherekov Detector (WCD) option for the far detector of the Long Baseline Neutrino Experiment (LBNE)

  3. DESIGN OF A RURAL WATER PROVISION SYSTEM TO DECREASE ARSENIC EXPOSURE IN BANGLADESH

    E-Print Network [OSTI]

    Agogino, Alice M.

    DESIGN OF A RURAL WATER PROVISION SYSTEM TO DECREASE ARSENIC EXPOSURE IN BANGLADESH Johanna Louise in South Asia. During fieldwork in four sub-districts of Bangladesh, ARUBA reduced groundwater arsenic concentrations as high as 680 ppb to below the Bangladesh standard of 50 ppb. Key results from three trips

  4. Stormwater BMPs for Trout Waters Coldwater Stream Design Guidance for Stormwater Wetlands,

    E-Print Network [OSTI]

    Hunt, William F.

    Stormwater BMPs for Trout Waters Coldwater Stream Design Guidance for Stormwater Wetlands, Wet that the effects of stormwater runoff and urbanization are detrimental to organisms living in streams and rivers. To reduce these negative impacts, a variety of stormwater best management practices (BMPs) have been

  5. Natural vs. mechanical ventilation and cooling.

    E-Print Network [OSTI]

    Brager, Gail; Alspach, Peter; Nall, Daniel H.

    2011-01-01

    and Americas Region Mechanical and Building Physics Skillsmixed mode, and low-energy mechanical design. w w w.rsesjouruse associated with mechanical ventila- tion and cooling,

  6. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    E-Print Network [OSTI]

    Cisneros, Anselmo Tomas

    2013-01-01

    average   density   criteria   (design   sequence   1).  design  space,  design  criteria,  and  results  of  their  though  the  design   criteria-­?   and   optimization  

  7. Mixed-mode cooling.

    E-Print Network [OSTI]

    Brager, Gail

    2006-01-01

    ASHRAE’s permission. Mixed-Mode Cooling Photo Credit: Paulnatural ventilation for cooling. Buildings typically had1950s of large-scale mechanical cooling, along with other

  8. Methods of Beam Cooling

    E-Print Network [OSTI]

    Sessler, A. M.

    2008-01-01

    of Optical Stochastic Cooling", presented at PAC, (1995).1991). Hangst, J. , "Laser Cooling of a Stored Ion Beam - ATheorem and Phase Space Cooling", Proceedings of the

  9. Cooling system design tool for rapid development and analysis of chilled water systems aboard U.S. Navy surface ships

    E-Print Network [OSTI]

    Sanfiorenzo, Amiel B. (Amiel Benjamin)

    2013-01-01

    Over the last several decades, there has been a dramatic increase in the complexity and power requirements of radars and other combat systems equipment aboard naval combatants and this trend is expected to continue for the ...

  10. Design and installation of continuous flow and water qualitymonitoring stations to improve water quality forecasting in the lower SanJoaquin River

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.

    2007-01-20

    This project deliverable describes a number ofstate-of-the-art, telemetered, flow and water quality monitoring stationsthat were designed, instrumented and installed in cooperation with localirrigation water districts to improve water quality simulation models ofthe lower San Joaquin River, California. This work supports amulti-disciplinary, multi-agency research endeavor to develop ascience-based Total Maximum Daily Load for dissolved oxygen in the SanJoaquin River and Stockton Deep Water Ship Channel.

  11. Radiation Shielding Design and Orientation Considerations for a 1 kWe Heat Pipe Cooled Reactor Utilized to Bore Through the Ice Caps of Mars

    SciTech Connect (OSTI)

    Fensin, Michael L.; Elliott, John O.; Lipinski, Ronald J.; Poston, David I.

    2006-01-20

    The goal in designing any space power system is to develop a system able to meet the mission requirements for success while minimizing the overall costs. The mission requirements for the this study was to develop a reactor (with Stirling engine power conversion) and shielding configuration able to fit, along with all the other necessary science equipment, in a Cryobot 3 m high with {approx}0.5 m diameter hull, produce 1 kWe for 5yrs, and not adversely affect the mission science by keeping the total integrated dose to the science equipment below 150 krad. Since in most space power missions the overall system mass dictates the mission cost, the shielding designs in this study incorporated Martian water extracted at the startup site in order to minimize the tungsten and LiH mass loading at launch. Different reliability and mass minimization concerns led to three design configuration evolutions. With the help of implementing Martian water and configuring the reactor as far from the science equipment as possible, the needed tungsten and LiH shield mass was minimized. This study further characterizes the startup dose and the necessary mission requirements in order to ensure integrity of the surface equipment during reactor startup phase.

  12. Achieving High Chilled Water Delta T Without Blending Station 

    E-Print Network [OSTI]

    Wang, Z.; Wang, G.; Xu, K.; Yu, Y.; Liu, M.

    2007-01-01

    Typically a blending station is designed to ensure that its user is able to avoid low chilled water return temperature in the district cooling system. When the chilled water return temperature drops to a low limit, building return water is blended...

  13. My trip to Cameroon culminated two semesters' worth of design work on an Engineers Without Borders water project. I had the special opportunity to see those designs finally

    E-Print Network [OSTI]

    Jacobs, Laurence J.

    design, which encompassed a concrete water storage tank, 500 m of pipelines, and stand tap placements worked on a real project and was then able to see my own calculations and designs be put togetherMy trip to Cameroon culminated two semesters' worth of design work on an Engineers Without Borders

  14. Designing a water leasing market for the Mimbres River, New Mexico.

    SciTech Connect (OSTI)

    Reno-Trujillo, Marissa Devan; Tidwell, Vincent Carroll; Broadbent, Craig; Brookshire, David; Coursey, Don; Jackson, Charles.; Polley, Adam; Stevenson, Bryan

    2013-04-01

    The objective of this study is to develop a conceptual framework for establishing water leasing markets in New Mexico using the Mimbres River as a test case. Given the past and growing stress over water in New Mexico and the Mimbres River in particular, this work will develop a mechanism for the short term, efficient, temporary transfer of water from one user to another while avoiding adverse effects on any user not directly involved in the transaction (i.e., third party effects). Toward establishing a water leasing market, five basic tasks were performed, (1) a series of stakeholder meetings were conducted to identify and address concerns and interests of basin residents, (2) several gauges were installed on irrigation ditches to aid in the monitoring and management of water resources in the basin, (3) the hydrologic/market model and decision support interface was extended to include the Middle and Lower reaches of the Mimbres River, (4) experiments were conducted to aid in design of the water leasing market, and (5) a set of rules governing a water leasing market was drafted for future adoption by basin residents and the New Mexico Office of the State Engineer.

  15. Field Test Design Simulations of Pore-Water Extraction for the SX Tank Farm

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus

    2013-09-01

    A proof of principle test of pore water extraction is being performed by Washington River Protection Solutions for the U.S. Department of Energy, Office of River Protection. This test is being conducted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989) Milestone M 045-20, and is described in RPP-PLAN-53808, 200 West Area Tank Farms Interim Measures Investigation Work Plan. To support design of this test, numerical simulations were conducted to help define equipment and operational parameters. The modeling effort builds from information collected in laboratory studies and from field characterization information collected at the test site near the Hanford Site 241-SX Tank Farm. Numerical simulations were used to evaluate pore-water extraction performance as a function of the test site properties and for the type of extraction well configuration that can be constructed using the direct-push installation technique. Output of simulations included rates of water and soil-gas production as a function of operational conditions for use in supporting field equipment design. The simulations also investigated the impact of subsurface heterogeneities in sediment properties and moisture distribution on pore-water extraction performance. Phenomena near the extraction well were also investigated because of their importance for pore-water extraction performance.

  16. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    SciTech Connect (OSTI)

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team indicates that the proposed solutions to the investigated operating cycle length barriers are both feasible and consistent with sound design practice.

  17. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    SciTech Connect (OSTI)

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.

  18. Model Based Building Chilled Water Loop Delta-T Fault Diagnosis 

    E-Print Network [OSTI]

    Wang, L.; Watt, J.; Zhao, J.

    2012-01-01

    -thirds of design at low loads (Taylor, 2002) due to various causes, such as air entering and leaving temperatures, chilled water supply temperature, type and effectiveness of flow control valves, tertiary connection configuration types and operation, coil cooling...

  19. "Hot" for Warm Water Cooling

    E-Print Network [OSTI]

    Coles, Henry

    2012-01-01

    3. A plate and frame type heat exchanger is commonly used.use plate and frame type heat exchangers. In some cases the

  20. Sensitivity of Low Sloped Roofs Designs to Initial Water and Air Leakage 

    E-Print Network [OSTI]

    Karagiozis, A.; Desjarlais, A.; Salonvaara, M.

    2002-01-01

    , Espoo, Finland Andre Desjarlais. B.Sc.E Program Manager, Oak Ridge National Laboratory 1 Bethel Valley Rd, Oak Ridge TN, 37831-6070 ABSTRACT Liquid water in low sloped roofs almost always causes problems. Roofs are designed only... in Finland (area varying from 200 m2 up to 5 000 m2). A laboratory hot box apparatus (Kouhia and Nieminen, 1999) was also used to further quantify the performance of the grooved roof ventilation system and to show the thermal consequences...

  1. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect (OSTI)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  2. Cool and Save: Cooling Aware Dynamic Workload Scheduling in Multi-socket CPU Systems

    E-Print Network [OSTI]

    Simunic, Tajana

    Cool and Save: Cooling Aware Dynamic Workload Scheduling in Multi-socket CPU Systems Raid Ayoub, dissipating the high temper- ature requires a large and energy hungry cooling system which increases the cost and fan control in multi-socket systems have been designed sep- arately leading to less efficient

  3. Design of a rural water provision system to decrease arsenic exposure in Bangladesh

    SciTech Connect (OSTI)

    Mathieu, Johanna

    2009-01-07

    Researchers at the Lawrence Berkeley National Laboratory have invented ARUBA (Arsenic Removal Using Bottom Ash) a material that effectively and affordably removes high concentrations of arsenic from contaminated groundwater. The technology is cost-effective because the substrate?bottom ash from coal fired power plants?is a waste material readily available in South Asia. During fieldwork in four sub-districts ofBangladesh, ARUBA reduced groundwater arsenic concentrations as high as 680 ppb to below the Bangladesh standard of 50 ppb. Key results from three trips in Bangladesh and one trip to Cambodia include (1) ARUBA removes more than half of the arsenic from contaminated water within the first five minutes of contact, andcontinues removing arsenic for 2-3 days; (2) ARUBA?s arsenic removal efficiency can be improved through fractionated dosing (adding a given amount of ARUBA in fractions versus all at once); (3) allowing water to first stand for two to three days followed by treatment with ARUBA produced final arsenic concentrations ten times lower than treating water directly out of the well; and (4) the amount of arsenic removed per gram of ARUBA is linearly related to the initial arsenic concentrationof the water. Through analysis of existing studies, observations, and informal interviews in Bangladesh, eight design strategies have been developed and used in the design of a low-cost, community-scale water treatment system that uses ARUBA to remove arsenic from drinking water. We have constructed, tested, and analyzed a scale version of the system. Experiments have shown that the system is capable of reducing high levels of arsenic (nearly 600 ppb) to below 50 ppb, while remaining affordable to people living on less than $2 per day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.

  4. Design Method for the Heating/Cooling Coil in the AHU Based on Fuzzy Logic - Part One: Basic Structure and Characteristics Analysis 

    E-Print Network [OSTI]

    Zhang, J.; Chen, Y.; Liang, Z.

    2006-01-01

    An AHU's energy performance is greatly influenced by its heating/cooling coil energy performance, which is also greatly influenced by the different kinds of control methodologies such as PID control and fuzzy logic control. The conventional...

  5. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    SciTech Connect (OSTI)

    Hassan, Yassin; Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  6. Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for designing a surveillance program for monitoring the radiation-induced changes in the mechanical properties of ferritic materials in light-water moderated nuclear power reactor vessels. This practice includes the minimum requirements for the design of a surveillance program, selection of vessel material to be included, and the initial schedule for evaluation of materials. 1.2 This practice was developed for all light-water moderated nuclear power reactor vessels for which the predicted maximum fast neutron fluence (E > 1 MeV) at the end of license (EOL) exceeds 1 × 1021 neutrons/m2 (1 × 1017 n/cm2) at the inside surface of the reactor vessel. 1.3 This practice applies only to the planning and design of surveillance programs for reactor vessels designed and built after the effective date of this practice. Previous versions of Practice E185 apply to earlier reactor vessels. 1.4 This practice does not provide specific procedures for monitoring the radiation induced cha...

  7. Designer organisms for photosynthetic production of ethanol from carbon dioxide and water

    DOE Patents [OSTI]

    Lee, James Weifu (Knoxville, TN)

    2011-07-05

    The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

  8. MEIC Electron Cooling Simulation Using Betacool

    SciTech Connect (OSTI)

    Zhang, He [JLAB; Zhang, Yuhong [JLAB

    2013-12-01

    Electron cooling of ion beams is the most critical R&D issue in Jefferson Lab's MEIC design. In the ion collider ring, a bunched electron beam driven by an energy-recovery SRF linac assisted by a circulate ring will be employed to cool protons or ions with energies up to 100 GeV/u, a parameter regime that electron cooling has never been applied. It is essential to understand how efficient the electron cooling is, particularly in the high energy range, to confirm the feasibility of the design. Electron cooling is also important in LEIC design although the ion energy is 25 GeV/u, lower than MEIC. In this paper, we will present first results of the simulation studies of electron cooling processes in the collider ring of both MEIC and LEIC using BETACOOL code.

  9. Method and system for simulating heat and mass transfer in cooling towers

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Hassani, A. Vahab (Golden, CO)

    1997-01-01

    The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

  10. Simulation and analysis of district-heating and -cooling systems

    SciTech Connect (OSTI)

    Bloomster, C.H.; Fassbender, L.L.

    1983-03-01

    A computer simulation model, GEOCITY, was developed to study the design and economics of district heating and cooling systems. GEOCITY calculates the cost of district heating based on climate, population, energy source, and financing conditions. The principal input variables are minimum temperature, heating degree-days, population size and density, energy supply temperature and distance from load center, and the interest rate. For district cooling, maximum temperature and cooling degree-hours are required. From this input data the model designs the fluid transport and district heating systems. From this design, GEOCITY calculates the capital and operating costs for the entire system. GEOCITY was originally developed to simulate geothermal district heating systems and thus, in addition to the fluid transport and distribution models, it includes a reservoir model to simulate the production of geothermal energy from geothermal reservoirs. The reservoir model can be adapted to simulate the supply of hot water from any other energy source. GEOCITY has been used extensively and has been validated against other design and cost studies. GEOCITY designs the fluid transport and distribution facilities and then calculates the capital and operating costs for the entire system. GEOCITY can simulate nearly any financial and tax structure through varying the rates of return on equity and debt, the debt-equity ratios, and tax rates. Both private and municipal utility systems can be simulated.

  11. Technical Evaluation of Side Stream Filtration for Cooling Towers

    SciTech Connect (OSTI)

    2012-10-01

    Cooling towers are an integral component of many refrigeration systems, providing comfort or process cooling across a broad range of applications. Cooling towers represent the point in a cooling system where heat is dissipated to the atmosphere through evaporation. Cooling towers are commonly used in industrial applications and in large commercial buildings to release waste heat extracted from a process or building system through evaporation of water.

  12. Coolerado 5 Ton RTU Performance: Western Cooling Challenge Results (Revised)

    SciTech Connect (OSTI)

    Kozubal, E.; Slayzak, S.

    2010-11-01

    The Western Cooling Efficiency Center (WCEC) developed a set of criteria for test conditions, minimum energy, and water use performance for prototype cooling equipment and identified these conditions as indicative of western state climates.

  13. Experimental optimization of cooling-tower-fan control based on field data. Master's thesis

    SciTech Connect (OSTI)

    Herman, D.L.

    1991-04-01

    Energy costs continue to play an important role in the decision-making process for building design and operation. Since the chiller, cooling tower fans, and associated pumps consume the largest fraction of energy in a heating, ventilating, and air-conditioning (HVAC) system, the control of these components is of major importance in determining building energy use. A significant control parameter for the chilled water system is the minimum entering condenser water set point temperature at which the cooling tower fans are cycled on and off, several studies have attempted to determine the optimum value for this minimum set point temperature, but direct measurements are not available to validate these studies. The purpose of this study was to experimentally determine the optimum minimum entering condenser water set point temperature from field data based on minimum energy consumption and to validate a chilled water system analytical model previously developed in earlier work. The total chiller system electrical consumption (chiller and cooling tower fan energy) was measured for four entering condensor water set point temperatures (70, 75, 80, and 85 deg F). The field results were compared to results obtained using an analytical model previously developed in a thesis entitled Optimized Design of a Commercial Building Chiller/Cooling Tower System, written by Joyce.

  14. Experimental Study of the Circulation Air Volume of Recirculation Evaporative Cooling 

    E-Print Network [OSTI]

    Xiong, J.; Liu, Z.; Wang, C.; Chen, G.

    2006-01-01

    This paper introduces the technology of re-circulation evaporative cooling (REC), which uses a portion of supply air as secondary air to make cool water used to indirectly cool outside air through a heat exchanger. The circulation volume...

  15. Cooling Towers, The Neglected Energy Resource 

    E-Print Network [OSTI]

    Burger, R.

    1987-01-01

    -effective rapid dollar return for cooling tower upgrading expenditures. Whether it be heat rejection from compressors, electric motor, or chemical . process equipment, the cost of "hotter" cooling water is expensive in requiring additional energy to run... elements of the typical types of cooling towers currently used, delineates their functions and shows how to upgrade them in the real world for energy savings and profitability of operation. Hard before and after statistics of costs and profits...

  16. Energy Efficient Electronics Cooling Project

    SciTech Connect (OSTI)

    Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  17. MODULAR AND FULL SIZE SIMPLIFIED BOILING WATER REACTOR DESIGN WITH FULLY PASSIVE SAFETY SYSTEMS

    SciTech Connect (OSTI)

    M. Ishii; S. T. Revankar; T. Downar; Y. Xu, H. J. Yoon; D. Tinkler; U. S. Rohatgi

    2003-06-16

    OAK B204 The overall goal of this three-year research project was to develop a new scientific design of a compact modular 200 MWe and a full size 1200 MWe simplified boiling water reactors (SBWR). Specific objectives of this research were: (1) to perform scientific designs of the core neutronics and core thermal-hydraulics for a small capacity and full size simplified boiling water reactor, (2) to develop a passive safety system design, (3) improve and validate safety analysis code, (4) demonstrate experimentally and analytically all design functions of the safety systems for the design basis accidents (DBA) and (5) to develop the final scientific design of both SBWR systems, 200 MWe (SBWR-200) and 1200 MWe (SBWR-1200). The SBWR combines the advantages of design simplicity and completely passive safety systems. These advantages fit well within the objectives of NERI and the Department of Energy's focus on the development of Generation III and IV nuclear power. The 3-year research program was structured around seven tasks. Task 1 was to perform the preliminary thermal-hydraulic design. Task 2 was to perform the core neutronic design analysis. Task 3 was to perform a detailed scaling study and obtain corresponding PUMA conditions from an integral test. Task 4 was to perform integral tests and code evaluation for the DBA. Task 5 was to perform a safety analysis for the DBA. Task 6 was to perform a BWR stability analysis. Task 7 was to perform a final scientific design of the compact modular SBWR-200 and the full size SBWR-1200. A no cost extension for the third year was requested and the request was granted and all the project tasks were completed by April 2003. The design activities in tasks 1, 2, and 3 were completed as planned. The existing thermal-hydraulic information, core physics, and fuel lattice information was collected on the existing design of the simplified boiling water reactor. The thermal-hydraulic design were developed. Based on a detailed integral system scaling analysis, design parameters were obtained and designs of the compact modular 200 MWe SBWR and the full size 1200 MWe SBWR were developed. These reactors are provided with passive safety systems. A new passive vacuum breaker check valve was designed to replace the mechanical vacuum beaker check valve. The new vacuum breaker check valve was based on a hydrostatic head, and was fail safe. The performance of this new valve was evaluated both by the thermal-hydraulic code RELAP5 and by the experiments in a scaled SBWR facility, PUMA. In the core neutronic design a core depletion model was implemented to PARCS code. A lattice design for the SBWR fuel assemblies was performed. Design improvements were made to the neutronics/thermal-hydraulics models of SBWR-200 and SBWR-1200, and design analyses of these reactors were performed. The design base accident analysis and evaluation of all the passive safety systems were completed as scheduled in tasks 4 and 5. Initial conditions for the small break loss of coolant accidents (LOCA) and large break LOCA using REALP5 code were obtained. Small and large break LOCA tests were performed and the data was analyzed. An anticipated transient with scram was simulated using the RELAP5 code for SBWR-200. The transient considered was an accidental closure of the main steam isolation valve (MSIV), which was considered to be the most significant transient. The evaluation of the RELAP5 code against experimental data for SBWR-1200 was completed. In task 6, the instability analysis for the three SBWR designs (SBWR-1200, SBWR-600 and SBWR-200) were simulated for start-up transients and the results were similar. Neither the geysering instability, nor the loop type instability was predicted by RAMONA-4B in the startup simulation following the recommended procedure by GE. The density wave oscillation was not observed at all because the power level used in the simulation was not high enough. A study was made of the potential instabilities by imposing an unrealistically high power ramp in a short time period, as suggested by GE. RAMON

  18. Apparatus and method to control atmospheric water vapor composition and concentration during dynamic cooling of biological tissues in conjunction with laser irradiations

    DOE Patents [OSTI]

    Nelson, J. Stuart (Laguna Niguel, CA); Anvari, Bahman (Houston, TX); Tanenbaum, B. Samuel (Irvine, CA); Milner, Thomas E. (Austin, TX)

    1999-01-01

    Cryogen spray cooling of skin surface with millisecond cryogen spurts is an effective method for establishing a controlled temperature distribution in tissue and protecting the epidermis from nonspecific thermal injury during laser mediated dermatological procedures. Control of humidity level, spraying distance and cryogen boiling point is material to the resulting surface temperature. Decreasing the ambient humidity level results in less ice formation on the skin surface without altering the surface temperature during the cryogen spurt. For a particular delivery nozzle, increasing the spraying distance to 85 millimeters lowers the surface temperature. The methodology comprises establishing a controlled humidity level in the theater of operation of the irradiation site of the biological tissues before and/or during the cryogenic spray cooling of the biological tissue. At cold temperatures calibration was achieved by mounting a thermistor on a thermoelectric cooler. The thermal electric cooler was cooled from from 20.degree. C. to about -20.degree. C. while measuring its infrared emission.

  19. Shading and Cooling: Impacts of Solar Control and Windows on Indoor Airflow

    E-Print Network [OSTI]

    Hildebrand, Penapa Wankaeo

    2012-01-01

    1994.  Passive and low energy cooling of buildings.  New used passive cooling  strategy in  building design.  Today, 

  20. Program Design Analysis using BEopt Building Energy Optimization Software: Defining a Technology Pathway Leading to New Homes with Zero Peak Cooling Demand; Preprint

    SciTech Connect (OSTI)

    Anderson, R.; Christensen, C.; Horowitz, S.

    2006-08-01

    An optimization method based on the evaluation of a broad range of different combinations of specific energy efficiency and renewable-energy options is used to determine the least-cost pathway to the development of new homes with zero peak cooling demand. The optimization approach conducts a sequential search of a large number of possible option combinations and uses the most cost-effective alternatives to generate a least-cost curve to achieve home-performance levels ranging from a Title 24-compliant home to a home that uses zero net source energy on an annual basis. By evaluating peak cooling load reductions on the least-cost curve, it is then possible to determine the most cost-effective combination of energy efficiency and renewable-energy options that both maximize annual energy savings and minimize peak-cooling demand.

  1. Direct Liquid Cooling for Electronic Equipment

    SciTech Connect (OSTI)

    Coles, Henry; Greenberg, Steve

    2014-03-01

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used with data center energy use modeling software to estimate overall site energy use. These estimates show that an overall data center energy savings of approximately 20 percent can be expected if a center is retrofitted as specified in the models used. Increasing the portion of heat captured by this technology is an area suggested for further development.

  2. Redesigning Process Cooling Systems in the Plastics Industry 

    E-Print Network [OSTI]

    Anderson, G. R.

    2006-01-01

    systems were designed with one thing in mind – ensuring adequate capacity. Energy consumption was a much lower priority with their process cooling systems, resulting in inefficient chillers, oversized pumps, undersized cooling towers, and poorly... sequenced operations. Lifetime decided to step back and evaluate their entire cooling system for opportunities to reduce energy use after they recognized the potential for “free cooling” from the chiller’s cooling towers during the winter. Lifetime’s...

  3. Development of an ArcGIS interface and design of a geodatabase for the soil and water assessment tool 

    E-Print Network [OSTI]

    Valenzuela Zapata, Milver Alfredo

    2004-09-30

    This project presents the development and design of a comprehensive interface coupled with a geodatabase (ArcGISwat 2003), for the Soil and Water Assessment Tool (SWAT). SWAT is a hydrologically distributed, lumped parameter model that runs on a...

  4. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, Mark P. (Knoxville, TN); Kedl, Robert J. (Oak Ridge, TN)

    1985-01-01

    This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

  5. Natural Cooling Retrofit 

    E-Print Network [OSTI]

    Fenster, L. C.; Grantier, A. J.

    1981-01-01

    bulb teMperature drops below a predeterMined point, usually 45 - 50 degrees F. Since --"--'~---~--'-------------~------------the??? c:litl1e-i"-i-~:;-n ()'r -op,~r a t inq ~_. elit.~I'" g'y is" sa ved -and ch :i.l1ei' "'11 fe'---'i t~-'ex:';:' tended... ambient wet bulb can be achieved on a 48 degree F dry bulb day with l~n% relative humidity or a 72 rlegree F dry bulb with 1n% relative humidity. Oesign Considerations The design of a heat exchanger system of Nat ural Cool ing is straight forward...

  6. RADIATIVE AND PASSIVE COOLING

    E-Print Network [OSTI]

    Martin, M.

    2011-01-01

    Ext. 6782 Radiative and Passive Cooling Marlo Martin andof the Second Nation- al Passive Solar Conference (owned rights. ,I I RADIATIVE AND PASSIVE COOLING* LAIVRENCE

  7. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    a solar-thermal-assisted HVAC system, Energy and Buildings,thermal absorption cooling system with a cold store, Solar energy,thermal cooling and heating system for a building: Experimental and model based performance analysis and design, Solar energy,

  8. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    of a solar-thermal-assisted HVAC system, Energy andsolar thermal absorption cooling system with a cold store, Solar energy,solar thermal cooling and heating system for a building: Experimental and model based performance analysis and design, Solar energy,

  9. Design of a boiling water reactor equilibrium core using thorium-uranium fuel

    SciTech Connect (OSTI)

    Francois, J-L.; Nunez-Carrera, A.; Espinosa-Paredes, G.; Martin-del-Campo, C.

    2004-10-06

    In this paper the design of a Boiling Water Reactor (BWR) equilibrium core using thorium is presented; a heterogeneous blanket-seed core arrangement concept was adopted. The design was developed in three steps: in the first step two different assemblies were designed based on the integrated blanket-seed concept, they are the blanket-dummy assembly and the blanket-seed assembly. The integrated blanketseed concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned-out in a once-through cycle. In the second step, a core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average 235U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the assembly. In the third step an in-house code was developed to evaluate the thorium equilibrium core under transient conditions. A stability analysis was also performed. Regarding the stability analysis, five operational states were analyzed; four of them define the traditional instability region corner of the power-flow map and the fifth one is the operational state for the full power condition. The frequency and the boiling length were calculated for each operational state. The frequency of the analyzed operational states was similar to that reported for BWRs; these are close to the unstable region that occurs due to the density wave oscillation phenomena in some nuclear power plants. Four transient analyses were also performed: manual SCRAM, recirculation pumps trip, main steam isolation valves closure and loss of feed water. The results of these transients are similar to those obtained with the traditional UO2 nuclear fuel.

  10. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01

    solar heated, boosted, or heated entirely in the auxiliary heater)for the solar-heated hot water. This heater can be seen insolar heating and cooling system, showing plumbing runs containing solenoid valves, auxiliary heater (

  11. Cooling Tower Considerations for Energy Optimizations 

    E-Print Network [OSTI]

    Burger, R.

    1986-01-01

    Energy conservation strategies and production economies involve more than examining the cooling tower fan consumption of horse power. Colder water provides vast potentials for savings. Ask yourself, "What is the dollar and energy utilization value...

  12. Water, Neighborhoods and Urban Design: Micro-Utilities and the Fifth Infrastructure

    E-Print Network [OSTI]

    Elmer, Vicki; Fraker, Harrison

    2011-01-01

    to reduce inputs of water and energy from afar. This concepttried to integrate water, energy and solid waste utilitiesdevelopments which look at water/energy/waste holistically

  13. Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers

    E-Print Network [OSTI]

    Lekov, Alex

    2011-01-01

    76 to 379 liters) for gas storage water heaters and aStorage Water Heaters Gas Storage Water Heaters Electricand PBP Results for Gas Storage Water Heaters LCC Average

  14. Summary report on four foot septifoil cooling experiment

    SciTech Connect (OSTI)

    Randolph, H.W.; Collins, S.L.; Verebelyi, D.T.; Foti, D.J.

    1991-10-01

    Cooling parameters for some of the SRS reactor internal components are computed using the Transient Reactor Analysis Code, TRAC.'' In order to benchmark the code, the Safety Analysis Group of SRL requested an experiment to provide measurements of cooling parameters in a well defined physical system utilizing SRS reactor component(s). The experiment selected included a short length of septifoil with both top and bottom fittings containing five simulated control rods in an unseated'' configuration. Power level to be supplied to the rods was targeted at 2.5 kilowatts per foot. The septifoil segment was to be operated with no forced flow in order to evaluate thermal-hydraulic cooling. Parameters to be measured for comparison with code predictions were basic cooling phenomena, incidence of film boiling, thermal-hydraulic flow rate, pressure rise, and ratio of heat transfer through the wall of the assembly vs heat transfer to axial water flow through the assembly. Experimental apparatus was designed and assembled incorporating five simulated control rods four feet long, joule heated inside a five foot length of type Q'' septifoil. Water at 70 C was fed independently to the bottom inlet and along the outside of the septifoil. Water flowing along the outside of the septifoil was in confined flow and provided calorimetry to measure power flow through the septifoil housing. A shadowgraph technique was developed and used to monitor unforced flow of water pumped thermal-hydraulically through the septifoil. Electrical power of 10,000 to 70,000 watts was fed to the simulated rods from a dc power supply. Computer data acquisition was accomplished using LabView'' software programmed to match the configuration of the experiment along with scanning digital voltmeters and requisite signal sensors. Video camcorders were used to provide video records of six areas of the experiment.

  15. Summary report on four foot septifoil cooling experiment

    SciTech Connect (OSTI)

    Randolph, H.W.; Collins, S.L.; Verebelyi, D.T.; Foti, D.J.

    1991-10-01

    Cooling parameters for some of the SRS reactor internal components are computed using the Transient Reactor Analysis Code, ``TRAC.`` In order to benchmark the code, the Safety Analysis Group of SRL requested an experiment to provide measurements of cooling parameters in a well defined physical system utilizing SRS reactor component(s). The experiment selected included a short length of septifoil with both top and bottom fittings containing five simulated control rods in an ``unseated`` configuration. Power level to be supplied to the rods was targeted at 2.5 kilowatts per foot. The septifoil segment was to be operated with no forced flow in order to evaluate thermal-hydraulic cooling. Parameters to be measured for comparison with code predictions were basic cooling phenomena, incidence of film boiling, thermal-hydraulic flow rate, pressure rise, and ratio of heat transfer through the wall of the assembly vs heat transfer to axial water flow through the assembly. Experimental apparatus was designed and assembled incorporating five simulated control rods four feet long, joule heated inside a five foot length of type ``Q`` septifoil. Water at 70 C was fed independently to the bottom inlet and along the outside of the septifoil. Water flowing along the outside of the septifoil was in confined flow and provided calorimetry to measure power flow through the septifoil housing. A shadowgraph technique was developed and used to monitor unforced flow of water pumped thermal-hydraulically through the septifoil. Electrical power of 10,000 to 70,000 watts was fed to the simulated rods from a dc power supply. Computer data acquisition was accomplished using ``LabView`` software programmed to match the configuration of the experiment along with scanning digital voltmeters and requisite signal sensors. Video camcorders were used to provide video records of six areas of the experiment.

  16. Performance Evaluation for a Modular, Scalable Passive Cooling System in Data Centers

    SciTech Connect (OSTI)

    Xu, TengFang

    2009-05-01

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. In the meanwhile, the trend toward higher power density resulting from current and future generations of servers has created significant opportunities for precision cooling to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected passive, modular localized cooling solution provided by vendor 4. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a passive, modular, scalable liquid cooling system in this study. The scope is to quantify energy performance of the modular cooling unit corresponding to various server loads and inlet air temperatures, under various chilled-water supply temperatures. The information generated from this testing when combined with documented energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  17. Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers

    SciTech Connect (OSTI)

    Xu, TengFang

    2009-05-01

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. In the meanwhile, the trend toward higher power density resulting from current and future generations of servers has created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 3. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable liquid-rack cooling system in this study. The scope is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures, under various chilled-water supply temperatures. The information generated from this testing when combined with documented energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  18. Performance Evaluation for Modular, Scalable Cooling Systems with Hot Aisle Containment in Data Centers

    SciTech Connect (OSTI)

    Adams, Barbara J

    2009-05-01

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. Naturally, the trend toward higher power density resulting from current and future generations of servers has, in the meanwhile, created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 2. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable pair of chilled water cooling modules that were tested in a hot/cold aisle environment with hot aisle containment. The scope of this report is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures. The information generated from this testing when combined with a concurrent research study to document the energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  19. Cedarville School District Retrofit of Heating and Cooling Systems...

    Energy Savers [EERE]

    Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops Cedarville School District Retrofit of Heating and...

  20. Promising Technology: Cool Roofs

    Broader source: Energy.gov [DOE]

    A cool roof increases the solar reflectance of the roof surface. By reflecting more sunlight, the roof surface maintains a cooler temperature. This decrease in temperature leads to less heat transfer through the roof into the building below. During the cooling season, the addition of a cool roof can decrease the cooling load of the building.

  1. 2004 Savannah River Cooling Tower Collection (U)

    SciTech Connect (OSTI)

    Garrett, Alfred [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Parker, Matthew J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Villa-Aleman, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2005-05-01

    The Savannah River National Laboratory (SRNL) collected ground truth in and around the Savannah River Site (SRS) F-Area cooling tower during the spring and summer of 2004. The ground truth data consisted of air temperatures and humidity inside and around the cooling tower, wind speed and direction, cooling water temperatures entering; inside adn leaving the cooling tower, cooling tower fan exhaust velocities and thermal images taken from helicopters. The F-Area cooling tower had six cells, some of which were operated with fans off during long periods of the collection. The operating status (fan on or off) for each of the six cells was derived from operations logbooks and added to the collection database. SRNL collected the F-Area cooling tower data to produce a database suitable for validation of a cooling tower model used by one of SRNL's customer agencies. SRNL considers the data to be accurate enough for use in a model validation effort. Also, the thermal images of the cooling tower decks and throats combined with the temperature measurements inside the tower provide valuable information about the appearance of cooling towers as a function of fan operating status and time of day.

  2. ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1

    E-Print Network [OSTI]

    Carroll, William L.

    2011-01-01

    for the effects of occupant behavior. Annual cumulativechanges in design and occupant behavior. Secondly, the level

  3. Advanced low noise cooling fans

    SciTech Connect (OSTI)

    Spek, H.F. van der; Nelissen, P.J.M.

    1995-02-01

    The results from an intensive research program show that it is possible to reduce the sound power level of cooling fans by 15 dB(A) by altering blade cord width and swept leading and trailing edge lines. Combination with the reduction of the pressure drop can result in a step of 20 dB(A) and a reduction with 25 percent of the absorbed power. Testing was conducted in accordance with recognized international measuring standards and the results will be presented, including consequences for cooling tower and condenser design.

  4. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    performance analysis and design, Solar energy, 84, pp. 166-Design and Development of Low-cost, High-temperature, Solarthesis, the design and performance of a solar cooling system

  5. Performance of evacuated tubular solar collectors in a residential heating and cooling system. Final report, 1 October 1978-30 September 1979

    SciTech Connect (OSTI)

    Duff, W.S.; Loef, G.O.G.

    1981-03-01

    Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season was based on the use of systems comprising an experimental evacuated tubular solar collector, a non-freezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built-up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off-peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. Automatic system control and automatic data acquisition and computation are provided. This system is compared with others evaluated in CSU Solar Houses I, II and III, and with computer predictions based on mathematical models. Of the 69,513 MJ total energy requirement for space heating and hot water during a record cold winter, solar provided 33,281 MJ equivalent to 48 percent. Thirty percent of the incident solar energy was collected and 29 percent was delivered and used for heating and hot water. Of 33,320 MJ required for cooling and hot water during the summer, 79 percent or 26,202 MJ were supplied by solar. Thirty-five percent of the incident solar energy was collected and 26 percent was used for hot water and cooling in the summer. Although not as efficient as the Corning evacuated tube collector previously used, the Philips experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well-insulated heat storage tank. Day time (on-peak) electric auxiliary heating was completely avoided by use of off-peak electric heat storage. A well-designed and operated solar heating and cooling system provided 56 percent of the total energy requirements for heating, cooling, and hot water.

  6. Biosand filtration of high turbidity water : modified filter design and safe filtrate storage

    E-Print Network [OSTI]

    Collin, Clair

    2009-01-01

    Unsafe drinking water is a major cause of water-related diseases that predominantly affect people living in developing countries. The most prevalent water-related disease is diarrhea, estimated to kill 1.8 million children ...

  7. Safe water storage in Kenya's modified clay pot : standardization, tap design, and cost recovery

    E-Print Network [OSTI]

    Young, Suzanne E

    2005-01-01

    One of the main components necessary for providing safe drinking water for users who lack piped water in the home is the ability to safely store it in the home. Users in the Nyanza Province of Kenya frequently carry water ...

  8. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 1: Main report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  9. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 2: Appendices

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  10. Cooling System for the MERIT High-Power Target Experiment

    E-Print Network [OSTI]

    McDonald, Kirk

    Cooling System for the MERIT High-Power Target Experiment Haug F., Pereira H., Silva P., Pezzetti M cryogenic cooling system of novel design permits the transfer of nitrogen by the sole means of differential a free mercury jet inside a normal conducting pulsed 15 T capture solenoid magnet cooled with liquid

  11. Simulation of radiant cooling performance with evaporative cooling sources

    E-Print Network [OSTI]

    Moore, Timothy

    2008-01-01

    2000. “Closed Circuit Cooling Tower Selection Program”S R. Lay, 2003 “Radiant Cooling Systems – A Solution forH. 1994. “Hydronic Radiant Cooling Systems. ” Center for

  12. I. IONIZATION COOLING A. Introduction

    E-Print Network [OSTI]

    McDonald, Kirk

    I. IONIZATION COOLING A. Introduction The muon beam at the end of the decay channel is very intense for beam cooling. Cooling by synchrotron radiation, conventional stochastic cooling and conventional electron cooling are all too slow. Optical stochastic cooling [1], electron cooling in a plasma discharge

  13. Performance Evaluation for Modular, Scalable Overhead Cooling Systems In Data Centers

    SciTech Connect (OSTI)

    Xu, TengFang T.

    2009-05-01

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. Naturally, the trend toward higher power density resulting from current and future generations of servers has, in the meanwhile, created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants' input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 1. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable overhead cooling system. The system was tested in a hot/cold aisle environment without separation, or containment or the hot or cold aisles. The scope of this report is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures. The information generated from this testing when combined with a concurrent research study to document the energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  14. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  15. CoolCab Truck Testing Project Update (Presentation)

    SciTech Connect (OSTI)

    Proc, K.

    2007-10-31

    Presentation describes the CoolCab project, a DOE/NREL initiative to design efficient thermal management systems in heavy trucks to eliminate idling and reduce petroleum consumption.

  16. Guide to Cool Roofs

    Energy Savers [EERE]

    beautify your home. The immediate and long-term benefits of roofs that stay cool in the sun have made cool roofing the fastest growing sector of the building industry. Studies...

  17. Water, Neighborhoods and Urban Design: Micro-Utilities and the Fifth Infrastructure

    E-Print Network [OSTI]

    Elmer, Vicki; Fraker, Harrison

    2011-01-01

    Urban Water Management, IWA Publishing, London, (p. McKinsey & Company (2009). Unlocking Energy Efficiency

  18. Three-Dimensional Laser Cooling

    E-Print Network [OSTI]

    Okamato, H.

    2008-01-01

    Three-Dimensional Laser Cooling H. Okamoto, A.M. Sessler,effective transverse laser cooling simultaneously withlongitudinal laser cooling, two possibilities are

  19. Cooling Dry Cows 

    E-Print Network [OSTI]

    Stokes, Sandra R.

    2000-07-17

    in the summer causes sig- nificant economic losses in the dairy industry. That decrease in production is brought on by heat stress, and studies have documented that cooling lactat- ing cows increases their milk pro- duction. Although little research has been... produc- tion. yeast, etc.). Management consid- erations include installing cool- ing systems. Although much of the diet adjustment is made with a nutritional consultant, it is typ- ically the dairy producer who decides on the cooling system. Cooling...

  20. Data center cooling system

    DOE Patents [OSTI]

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  1. Energy 101: Cool Roofs

    Broader source: Energy.gov [DOE]

    One of Secretary Chu's favorites techniques, cool roofs mean energy savings through use of reflective materials to regulate building temperatures.

  2. Senior Design Projects 2013 Project Title 1 : Monte Carlo Simulations Using a Benchmark Full-Core Pressured Water Rector Model

    E-Print Network [OSTI]

    Danon, Yaron

    -Core Pressured Water Rector Model Advisor: Prof. X. George Xu (JEC 5003; Tel: 518-276-4014; Email: xug2@rpi in the design and analysis of nuclear reactor systems. One of the most desirable modeling and simulation a full-core PWR reactor model for parallel MCNP calculations on the CCNI system 4. Code optimization

  3. Vortex-augmented cooling tower - windmill combination

    DOE Patents [OSTI]

    McAllister, J.E. Jr.

    1982-09-02

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passage to provide power as a by-product.

  4. Cooling system for continuous metal casting machines

    DOE Patents [OSTI]

    Draper, R.; Sumpman, W.C.; Baker, R.J.; Williams, R.S.

    1988-06-07

    A continuous metal caster cooling system is provided in which water is supplied in jets from a large number of small nozzles against the inner surface of rim at a temperature and with sufficient pressure that the velocity of the jets is sufficiently high that the mode of heat transfer is substantially by forced convection, the liquid being returned from the cooling chambers through return pipes distributed interstitially among the nozzles. 9 figs.

  5. Cooling system for continuous metal casting machines

    DOE Patents [OSTI]

    Draper, Robert (Churchill Boro, PA); Sumpman, Wayne C. (North Huntingdon, PA); Baker, Robert J. (Wilkins Township, Allegheny County, PA); Williams, Robert S. (Plum Borough, PA)

    1988-01-01

    A continuous metal caster cooling system is provided in which water is supplied in jets from a large number of small nozzles 19 against the inner surface of rim 13 at a temperature and with sufficient pressure that the velocity of the jets is sufficiently high that the mode of heat transfer is substantially by forced convection, the liquid being returned from the cooling chambers 30 through return pipes 25 distributed interstitially among the nozzles.

  6. Experimental Design and Flow Visualization for the Upper Plenum of a Very High Temperature Gas Cooled for Computer Fluid Dynamics Validation 

    E-Print Network [OSTI]

    Mcvay, Kyle

    2014-08-08

    and allows for other industrial applications. During the design process several studies are performed to develop safety codes for the reactor. One major accident of interest is the Pressurized Conduction Cooldown (PCC) scenario. The PCC scenario involves loss...

  7. The Project The Southern Region Water Quality Regional Coordination Project is designed to promote regional collaboration,

    E-Print Network [OSTI]

    to protect and restore water resources. Effective approaches for watershed management, pollution prevention and Pesticide Management · Pollution Assessment and Prevention · Watershed Management · Water Quantity activities in watershed management and protection and pollution prevention. For example, the Project has

  8. Design of fuel efficient brick kiln for ceramic water filter firing in Ghana

    E-Print Network [OSTI]

    Adjorlolo, Eric (Eric James Kofi)

    2007-01-01

    Ceramic water filters are currently produced in Ghana in order to provide a household solution to contaminated water. These filters, locally branded with the name Kosim filter by originating from Potters for Peace-Nicaragua, ...

  9. Feasibility and design of blast mitigation systems for naval applications using water mist fire suppression systems

    E-Print Network [OSTI]

    Kitchenka, Julie A

    2004-01-01

    The recent trend of using fine water mist systems to replace the legacy HALON- 1301 fire suppression systems warrants further study into other applications of the water mist systems. Preliminary research and investigation ...

  10. Continuous Commissioning of a Central Chilled Water & Hot Water System 

    E-Print Network [OSTI]

    Deng, S.; Turner, W. D.; Batten, T.; Liu, M.

    2000-01-01

    A central chilled water / hot water system provides cooling / heating energy from central utility plants to multiple customers (buildings) through campus distribution loops. To effectively transport the chilled water and hot water to the buildings...

  11. Report on the first VLHC photon stop cryogenic design experiment

    SciTech Connect (OSTI)

    Michael Geynisman et al.

    2003-09-15

    As part of Fermilab's study of a Very Large Hadron Collider, a water-cooled photon stop was proposed as a device to intercept the synchrotron radiation emitted by the high-energy proton beams in the high field superconducting magnets with minimal plug-cooling power. Photon stops are radiation absorbers operating at room temperature that protrude into the beam tube at the end of each bending magnet to scrape the synchrotron light emitted by the beam one magnet up-stream. Among the technological challenges regarding photon stops is their cryo-design. The photon stop is water-cooled and operates in a cryogenic environment. A careful cryo-design is therefore essential to enable operation at minimum heat transfer between the room temperature sections and the cryogenic parts. A photon stop cryo-design was developed and a prototype was built. This paper presents the results of the cryogenic experiments conducted on the first VLHC photon stop prototype.

  12. Helium cooled Flibe blanket

    SciTech Connect (OSTI)

    Moir, R.

    1984-10-01

    The blanket design uses a pressure vessel to contain the 50 atmosphere helium gas. Helium cools the first wall and blanket internals. The internals consist of a bed of beryllium balls nominally 1 cm diameter in which neutrons are multiplied and later captured, breeding adequate (even excess) amounts of tritium and releasing energy in exothermic nuclear reactions. Tritium is bred in the molten flibe salt which flows slowly (0.1m/sec) in steel tubes. The salt is kept reducing by periodic reacting with beryllium so the tritium will be in the T/sub 2/ form, however with somewhat enhanced corrosion rate the salt could be kept oxidizing in which case the tritium would be in the TF form. To prevent the tritium from permitting too much into the helium stream, a tungsten coating on the inside of the tubes is proposed. Tritium is removed from the salt and helium by processing both. Because the solubility of tritium in Flibe is so low, there will be a strong driving force for tritium permeation and this places a great burden on a high integrity tungsten permeation barrier. The tritium in the helium is prevented from permeating excessively into the steam system by jacketing the steel steam generator tubes with a 1 mm aluminum jacket. Clearly, tritium containment and barrier development are the most important feasibility issues for this design.

  13. Cool Roofs | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallenges |1-01ConcentratingDesign » Design for Efficiency » Cool Roofs

  14. Researching power plant water recovery

    SciTech Connect (OSTI)

    NONE

    2008-04-01

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  15. An Investigation on an Ethylene Gylcol/Water Nanofluid for Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Investigation on an Ethylene GylcolWater Nanofluid for Heavy Vehicle Cooling Applications An Investigation on an Ethylene GylcolWater Nanofluid for Heavy Vehicle Cooling...

  16. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01

    Nuclear plants use steam turbines, and cooling water asmajority is used for steam-driven turbines, which generatedelectricity using steam engines, gas turbines, or Stirling

  17. ARIES-ACT1 Safety Design and Analysis

    SciTech Connect (OSTI)

    Humrickhouse, Paul W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, Brad J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-01-01

    ARIES-ACT1 (Advanced and Conservative Tokamak) is a 1000-MW(electric) tokamak design featuring advanced plasma physics and divertor and blanket engineering. Some relevant features include an advanced SiC blanket with PbLi as coolant and breeder; a helium-cooled steel structural ring and tungsten divertors; a thin-walled, helium-cooled vacuum vessel; and a room-temperature, water-cooled shield outside the vacuum vessel. We consider here some safety aspects of the ARIES-ACT1 design and model a series of design-basis and beyond-design-basis accidents with the MELCOR code modified for fusion. The presence of multiple coolants (PbLi, helium, and water) makes possible a variety of such accidents. We consider here a loss-of-flow accident caused by a long-term station blackout (LTSBO), an ex-vessel helium break into the cryostat, and a beyond-design-basis accident in which a LTSBO is aggravated by a loss-of-coolant accident in ARIES-ACT1's ultimate decay heat removal system, the water-cooled shield. In the design-basis accidents, we find that the secondary confinement boundaries are not challenged, and the structural integrity of in-vessel components is not threatened by high temperatures or pressures; decay heat can be passively removed.

  18. Gas turbine cooling system

    DOE Patents [OSTI]

    Bancalari, Eduardo E. (Orlando, FL)

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  19. AP1000{sup R} nuclear power plant safety overview for spent fuel cooling

    SciTech Connect (OSTI)

    Gorgemans, J.; Mulhollem, L.; Glavin, J.; Pfister, A.; Conway, L.; Schulz, T.; Oriani, L.; Cummins, E.; Winters, J. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The AP1000{sup R} plant is an 1100-MWe class pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and costs. The AP1000 design uses passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems such as AC power, component cooling water, service water or HVAC. Furthermore, these passive features 'fail safe' during a non-LOCA event such that DC power and instrumentation are not required. The AP1000 also has simple, active, defense-in-depth systems to support normal plant operations. These active systems provide the first level of defense against more probable events and they provide investment protection, reduce the demands on the passive features and support the probabilistic risk assessment. The AP1000 passive safety approach allows the plant to achieve and maintain safe shutdown in case of an accident for 72 hours without operator action, meeting the expectations provided in the U.S. Utility Requirement Document and the European Utility Requirements for passive plants. Limited operator actions are required to maintain safe conditions in the spent fuel pool via passive means. In line with the AP1000 approach to safety described above, the AP1000 plant design features multiple, diverse lines of defense to ensure spent fuel cooling can be maintained for design-basis events and beyond design-basis accidents. During normal and abnormal conditions, defense-in-depth and other systems provide highly reliable spent fuel pool cooling. They rely on off-site AC power or the on-site standby diesel generators. For unlikely design basis events with an extended loss of AC power (i.e., station blackout) or loss of heat sink or both, spent fuel cooling can still be provided indefinitely: - Passive systems, requiring minimal or no operator actions, are sufficient for at least 72 hours under all possible pool heat load conditions. - After 3 days, several different means are provided to continue spent fuel cooling using installed plant equipment as well as off-site equipment with built-in connections. Even for beyond design basis accidents with postulated pool damage and multiple failures in the passive safety-related systems and in the defense-in-depth active systems, the AP1000 multiple spent fuel pool spray and fill systems provide additional lines of defense to prevent spent fuel damage. (authors)

  20. Design and Optimization of Piped Water Network for Tanker Fed Villages in

    E-Print Network [OSTI]

    Damani, Om P.

    Elevated Storage Reservoir GIS Geographical Information System GP Gram Panchayat LPCD Litres Per Capita per:............................................................................... 4 2. Design Methodology and Design Parameters .......................5 2.1 The Cost Components and Cost Estimation:............................................. 6 2.3 Identification of Source

  1. Design and Optimization of Piped Water Supply Scheme based on Upper Vaitarna

    E-Print Network [OSTI]

    Sohoni, Milind

    Elevated Storage Reservoir GIS Geographical Information System GP Gram Panchayat LPCD Litres Per Capita per:............................................................................... 4 2. Design Methodology and Design Parameters .......................5 2.1 The Cost Components and Cost Estimation:............................................. 6 2.3 Identification of Source

  2. On the Design of Oxide Films, Nanomaterials, and Heterostructures for Solar Water Oxidation Photoanodes

    E-Print Network [OSTI]

    Kronawitter, Coleman

    2012-01-01

    of the design optimization of materials with this bandmaterials is the most promising route, because it enables simultaneous optimization

  3. DESIGN AND DEVELOPMENT OF COST EFFECTIVE SURFACE MOUNTED WATER TURBINES FOR RURAL ELECTRICITY PRODUCTION

    E-Print Network [OSTI]

    Sóbester, András

    model and design of hydro dynamically balanced rotor. Small-scale hydro power is the key source of serving the ever increasing demand of power requirements in the shortest time are driving forces for small/low head hydro power generation. This project intends to design and develop cost effective design

  4. Energy 101: Cool Roofs

    SciTech Connect (OSTI)

    None

    2011-01-01

    This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment.

  5. Energy 101: Cool Roofs

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment.

  6. Energy 101: Cool Roofs

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment.

  7. Jefferson Lab - COOL Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COOL'15 Privacy and Security Notice PREX - Credit:NASA LINKS Welcome International Program Committee Registration Abstract Submission Program Lodging Travel Visa Participants List...

  8. Power electronics cooling apparatus

    DOE Patents [OSTI]

    Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  9. Energy 101: Cool Roofs

    Broader source: Energy.gov [DOE]

    In this edition of Energy 101 we take a look at one of Secretary Chu’s favorite energy efficiency techniques, cool roofs.

  10. Cool Roofs: An Introduction

    Broader source: Energy.gov [DOE]

    I've been hearing a lot about cool roof technologies, so I welcomed the chance to learn more at a recent seminar.

  11. Evolution of cool-roof standards in the United States

    SciTech Connect (OSTI)

    Akbari, Hashem; Akbari, Hashem; Levinson, Ronnen

    2008-07-11

    Roofs that have high solar reflectance and high thermal emittance stay cool in the sun. A roof with lower thermal emittance but exceptionally high solar reflectance can also stay cool in the sun. Substituting a cool roof for a noncool roof decreases cooling-electricity use, cooling-power demand, and cooling-equipment capacity requirements, while slightly increasing heating-energy consumption. Cool roofs can also lower citywide ambient air temperature in summer, slowing ozone formation and increasing human comfort. Provisions for cool roofs in energy-efficiency standards can promote the building- and climate-appropriate use of cool roofing technologies. Cool-roof requirements are designed to reduce building energy use, while energy-neutral cool-roof credits permit the use of less energy-efficient components (e.g., larger windows) in a building that has energy-saving cool roofs. Both types of measures can reduce the life-cycle cost of a building (initial cost plus lifetime energy cost). Since 1999, several widely used building energy-efficiency standards, including ASHRAE 90.1, ASHRAE 90.2, the International Energy Conservation Code, and California's Title 24 have adopted cool-roof credits or requirements. This paper reviews the technical development of cool-roof provisions in the ASHRAE 90.1, ASHRAE 90.2, and California Title 24 standards, and discusses the treatment of cool roofs in other standards and energy-efficiency programs. The techniques used to develop the ASHRAE and Title 24 cool-roof provisions can be used as models to address cool roofs in building energy-efficiency standards worldwide.

  12. Air cooling for Vertex Detectors

    E-Print Network [OSTI]

    Arantza Oyanguren

    2012-02-28

    The vertex detectors are crucial detectors for future linear e+e- colliders since they must give the most accurate location of any outgoing charged particles originating from the interaction point. The DEPFET collaboration is developing a new type of pixel sensors which provide very low noise and high spatial resolution. In order to precisely determine the track and vertex positions, multiple scattering in the detector has to be reduced by minimizing the material in the sensors, cooling, and support structures. A new method of cooling by blowing air over the sensors has been developed and tested. It is applied in the design and construction of the Belle-II detector and may be used in the new generation of vertex detectors for linear colliders.

  13. Liquid metal cooled nuclear reactors with passive cooling system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Fanning, Alan W. (San Jose, CA)

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  14. Studying Professional Software Designers and their Use of Abstraction

    E-Print Network [OSTI]

    Godfrey, Michael W.

    and support beams, and the configurations of rooms; electrical plans map out the electrical circuits the water pipes and locations of faucets and sinks; heating and cooling plans show the layout of air ducts- quent software design or development. Information hiding [4] uses abstraction to support software

  15. Estimating Energy and Water Losses in Residential Hot WaterDistribution Systems

    SciTech Connect (OSTI)

    Lutz, James

    2005-02-26

    Residential single family building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include; the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy needed to reheat water that was already heated once before. Average losses of water are estimated to be 6.35 gallons (24.0 L) per day. (This is water that is rundown the drain without being used while waiting for hot water.) The amount of wasted hot water has been calculated to be 10.9 gallons (41.3L) per day. (This is water that was heated, but either is not used or issued after it has cooled off.) A check on the reasonableness of this estimate is made by showing that total residential hot water use averages about 52.6 gallons (199 L) per day. This indicates about 20 percent of average daily hot water is wasted.

  16. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  17. Reactor water cleanup system

    DOE Patents [OSTI]

    Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  18. Magnets for Muon 6D Cooling Channels

    SciTech Connect (OSTI)

    Johnson, Rolland; Flanagan, Gene

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  19. Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors

    SciTech Connect (OSTI)

    Dawn Scates

    2010-10-01

    A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000ºC in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

  20. Coherent electron cooling

    SciTech Connect (OSTI)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.