Sample records for desiccant salt solutions

  1. Electrochromic salts, solutions, and devices

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky,7,064,212 T. Mark (Los Alamos, NM)

    2006-06-20T23:59:59.000Z

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  2. Electrochromic Salts, Solutions, and Devices

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky, T. Mark (Los Alamos, NM)

    2008-10-14T23:59:59.000Z

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  3. Electrochromic Salts, Solutions, and Devices

    SciTech Connect (OSTI)

    Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky, T. Mark (Los Alamos, NM)

    2008-11-11T23:59:59.000Z

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  4. Method for preparing salt solutions having desired properties

    DOE Patents [OSTI]

    Ally, Moonis R. (Oak Ridge, TN); Braunstein, Jerry (Clinton, TN)

    1994-01-01T23:59:59.000Z

    The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.

  5. Testing of novel desiccant materials and dehumidifier matrices for desiccant cooling applications

    SciTech Connect (OSTI)

    Pesaran, A.A.; Bingham, C.E.

    1989-03-01T23:59:59.000Z

    This paper presents the results of testing of desiccant materials and dehumidifier matrices for desiccant cooling and dehumidification applications. In testing desiccant materials, we used a gravimetric technique to measure the moisture capacity of four desiccant materials. These materials were microporous silica gel powder, macroporous silica gel powder, polystyrene sulfonic acid sodium salt, and a silica-gel/epoxy composite. The microporous silica gel powder had the most desirable moisture capacity properties of the four materials tested for desiccant cooling applications. The polystyrene sulfonic acid sodium salt showed some promise. Our testing of dehumidifier matrices included measuring the pressure drop and heat- and mass-transfer rate characteristics of a silica-gel/corrugated dehumidifier matrix under conditions typical of desiccant cooling systems. The matrix is a section of a commercial dehumidifier. The transient dehumidification capacity of the matrix was calculated from the tests and compared with previously tested matrices. 9 refs., 10 figs., 2 tabs.

  6. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water

    SciTech Connect (OSTI)

    Kobayashi, Kazuya; Liang, Yunfeng, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Matsuoka, Toshifumi, E-mail: y-liang@earth.kumst.kyoto-u.ac.jp, E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp [Environment and Resource System Engineering, Kyoto University, Kyoto 615-8540 (Japan)] [Environment and Resource System Engineering, Kyoto University, Kyoto 615-8540 (Japan); Sakka, Tetsuo [Department of Energy and Hydrocarbon Chemistry, Kyoto University, Kyoto 615-8510 (Japan)] [Department of Energy and Hydrocarbon Chemistry, Kyoto University, Kyoto 615-8510 (Japan)

    2014-04-14T23:59:59.000Z

    The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.

  7. Fundamental Desiccants

    E-Print Network [OSTI]

    Krebs, M. E.

    1990-01-01T23:59:59.000Z

    FUNDAMENTAL DESICCANTS MARK E. KREBS Gas Utllizatlon Engineer Southern Unlon Gas Company Austln. Texas ABSTRACT The purpose of this paper is to familiarize the mainstream HVAC and facility management community with the technical concepts... for traditional HVAC (heating, ventilation and air conditioning) systems. Control air impurity level required for health and/or process requirements Dust. pollen, bacteria, viruses and radon gas are naturally occurring impurities in the air we breath. Air may...

  8. Desiccant dehumidification analysis

    E-Print Network [OSTI]

    Xing, Hai-Yun Helen, 1976-

    2000-01-01T23:59:59.000Z

    Desiccant dehumidification has been given increasing interest in the air conditioning industry. Compared with conventional vapor compression air conditioning systems, desiccant dehumidification saves energy by separating ...

  9. Adding salt to an aqueous solution of t-butanol: Is hydrophobic association enhanced or reduced?

    E-Print Network [OSTI]

    Suter, Dieter

    Adding salt to an aqueous solution of t-butanol: Is hydrophobic association enhanced or reduced experiments on aqueous salt solutions of amphiphilic t-butanol by Bowron and Finney Phys. Rev. Lett. 89 in the presence of salt, as it would be expected for purely hydrophobic solutes. T. Ghosh et al., J. Phys. Chem. B

  10. Desiccant-Based Combined Systems

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    .4 Regeneration and Parasitic Energy Optimization .........................................................22 5Desiccant-Based Combined Systems: Integrated Active Desiccant Rooftop Hybrid System Development;ORNL/SUB/01/4000010402 Desiccant-Based Combined Systems: Integrated Active Desiccant Rooftop Hybrid

  11. Salt-stabilized globular protein structure in 7 M aqueous urea solution

    E-Print Network [OSTI]

    Wider, Gerhard

    1 Salt-stabilized globular protein structure in 7 M aqueous urea solution V. Dötsch,1 G. Wider, G Hochschule- Hönggerberg, CH-8093 Zürich, Switzerland Keywords Protein folding; Urea denaturation; Salt changing the solution conditions. In this paper we describe the influence of various salts or non

  12. Blending Of Radioactive Salt Solutions In Million Gallon Tanks

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2012-12-10T23:59:59.000Z

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

  13. Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002

    SciTech Connect (OSTI)

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R. [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)] [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)

    2013-07-01T23:59:59.000Z

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

  14. acid salt solutions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  15. alkaline salt solution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  16. alkaline salt solutions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  17. Using liquid desiccant as a regenerable filter for capturing and deactivating contaminants

    DOE Patents [OSTI]

    Slayzak, Steven J. (Denver, CO); Anderson, Ren S. (Broomfield, CO); Judkoff, Ronald D. (Golden, CO); Blake, Daniel M. (Golden, CO); Vinzant, Todd B. (Golden, CO); Ryan, Joseph P. (Golden, CO)

    2007-12-11T23:59:59.000Z

    A method, and systems for implementing such method, for purifying and conditioning air of weaponized contaminants. The method includes wetting a filter packing media with a salt-based liquid desiccant, such as water with a high concentration of lithium chloride. Air is passed through the wetted filter packing media and the contaminants in are captured with the liquid desiccant while the liquid desiccant dehumidifies the air. The captured contaminants are then deactivated in the liquid desiccant, which may include heating the liquid desiccant. The liquid desiccant is regenerated by applying heat to the liquid desiccant and then removing moisture. The method includes repeating the wetting with the regenerated liquid desiccant which provides a regenerable filtering process that captures and deactivates contaminants on an ongoing basis while also conditioning the air. The method may include filtration effectiveness enhancement by electrostatic or inertial means.

  18. Viscosity and Diffusion: Crowding and Salt Effects in Protein Solutions

    E-Print Network [OSTI]

    Marco Heinen; Fabio Zanini; Felix Roosen-Runge; Diana Fedunová; Fajun Zhang; Marcus Hennig; Tilo Seydel; Ralf Schweins; Michael Sztucki; Marián Antalík; Frank Schreiber; Gerhard Nägele

    2011-09-14T23:59:59.000Z

    We report on a joint experimental-theoretical study of collective diffusion in, and static shear viscosity of solutions of bovine serum albumin (BSA) proteins, focusing on the dependence on protein and salt concentration. Data obtained from dynamic light scattering and rheometric measurements are compared to theoretical calculations based on an analytically treatable spheroid model of BSA with isotropic screened Coulomb plus hard-sphere interactions. The only input to the dynamics calculations is the static structure factor obtained from a consistent theoretical fit to a concentration series of small-angle X-ray scattering (SAXS) data. This fit is based on an integral equation scheme that combines high accuracy with low computational cost. All experimentally probed dynamic and static properties are reproduced theoretically with an at least semi-quantitative accuracy. For lower protein concentration and low salinity, both theory and experiment show a maximum in the reduced viscosity, caused by the electrostatic repulsion of proteins. The validity range of a generalized Stokes-Einstein (GSE) relation connecting viscosity, collective diffusion coefficient, and osmotic compressibility, proposed by Kholodenko and Douglas [PRE 51, 1081 (1995)] is examined. Significant violation of the GSE relation is found, both in experimental data and in theoretical models, in semi-dilute systems at physiological salinity, and under low-salt conditions for arbitrary protein concentrations.

  19. A Study of Novel Hexavalent Phosphazene Salts as Draw Solutes in Forward Osmosis

    SciTech Connect (OSTI)

    Mark L. Stone; Aaron D. Wilson; Mason K. Harrup; Frederick F. Stewart

    2013-03-01T23:59:59.000Z

    Two novel multi-valent salts based on phosphazene chemistry have been synthesized and characterized as forward osmosis (FO) draw solutes. Commercially obtained hexachlorocyclotriphosphazene was reacted with the sodium salt of 4-ethylhydroxybenzoate to yield hexa(4-ethylcarboxylatophenoxy)phosphazene. Hydrolysis, followed by and neutralization with NaOH or LiOH, of the resulting acidic moieties yielded water soluble sodium and lithium phosphazene salts, respectively. Degrees of dissociation were determined through osmometry over the range of 0.05-0.5 m, giving degrees of 3.08-4.95 per mole, suggesting a high osmotic potential. The Li salt was found to be more ionized in solution than the sodium salt, and this was reflected in FO experiments where the Li salt gave higher initial fluxes (~ 7 L/m2h) as compared to the sodium salt (~6 L/m2h) at identical 0.07 m draw solution concentrations at 30 °C. Longer term experiments revealed no detectable degradation of the salts; however some hydrolysis of the cellulose acetate membrane was observed, presumably due to the pH of the phosphazene salt draw solution (pH = ~8).

  20. Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning...

    Broader source: Energy.gov (indexed) [DOE]

    Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant...

  1. ISOPAR L RELEASE RATES FROM SALTSTONE USING SIMULATED SALT SOLUTIONS

    SciTech Connect (OSTI)

    Zamecnik, J; Michael Bronikowski, M; Alex Cozzi, A; Russell Eibling, R; Charles Nash, C

    2008-07-31T23:59:59.000Z

    The Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) and the Salt Waste Processing Facility (SWPF) will produce a Decontaminated Salt Solution (DSS) that will go to the Saltstone Production Facility (SPF). Recent information indicates that solvent entrainment in the DSS is larger than expected. The main concern is with Isopar{reg_sign} L, the diluent in the solvent mixture, and its flammability in the saltstone vault. If it is assumed that all the Isopar{reg_sign} L is released instantaneously into the vault from the curing grout before each subsequent pour, the Isopar{reg_sign} L in the vault headspace is well mixed, and each pour displaces an equivalent volume of headspace, the maximum concentration of Isopar{reg_sign} L in the DSS to assure 25% of the lower flammable limit is not exceeded has been determined to be about 4 ppm. The amount allowed would be higher if the release from grout were significantly less. The Savannah River National Laboratory was tasked with determining the release of Isopar{reg_sign} L from saltstone prepared with a simulated DSS with Isopar{reg_sign} L concentrations ranging from 50 to 200 mg/L in the salt fraction and with test temperatures ranging from ambient to 95 C. The results from the curing of the saltstone showed that the amount of Isopar{reg_sign} L released versus time can be treated as a percentage of initial amount present; there was no statistically significant dependence of the release rate on the initial concentration. The majority of the Isopar{reg_sign} L that was released over the test duration was released in the first few days. The release of Isopar{reg_sign} L begins immediately and the rate of release decreases over time. At higher temperatures the immediate release rate is larger than at lower temperatures. Initial curing temperature was found to be very important as slight variations during the first few hours or days had a significant effect on the amount of Isopar{reg_sign} L released. Short scoping tests at 95 C with solvent containing all components (Isopar{reg_sign} L, suppressor trioctylamine (TOA), and modifier Cs-7SB) except the BOBCalixC6 extractant released less Isopar{reg_sign} L than the tests run with Isopar{reg_sign} L/TOA. Based on these scoping tests, the Isopar{reg_sign} L releases reported herein are conservative. Isopar{reg_sign} L release was studied for a two-month period and average cumulative release rates were determined from three sets of tests each at 95 and 75 C and at ambient conditions. The overall average releases at were estimated for each temperature. For the 95 and 75 C data, at a 5% significance level, the hypothesis that the three test sets at each temperature had the same average percent release can be rejected, suggesting that there was a statistically significant difference among the three averages seen in the three experimental tests conducted. An upper confidence limit on the mean percent release required incorporation of variation from two sources: test-to-test variation as well as the variation within a test. An analysis of variance that relies on a random effects model was used to estimate the two variance components. The test-to-test variance and the within test (or residual) variance were both calculated. There is no indication of a statistically significant linear correlation between the percent Isopar{reg_sign} L release and the Isopar{reg_sign} L initial concentration. From the analysis of variance, upper confidence limits at confidences of 80-95% were calculated for the data at 95 and 75 C. The mean Isopar{reg_sign} L percent releases were 67.33% and 13.17% at 95 and 75 C, respectively.

  2. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization (Desiccant Technologies), January 2004 Distributed Energy Technology Characterization (Desiccant Technologies), January 2004 The purpose of this report is to...

  3. Polymers as advanced materials for desiccant applications, 1988

    SciTech Connect (OSTI)

    Czanderna, A.W.; Neidlinger, H.H.

    1990-09-01T23:59:59.000Z

    This report documents work to identify a next-generation, low-cost material with which solar energy or heat from another low-cost energy source can be used for regenerating the water vapor sorption activity of the desiccant. The objective of the work is to determine how the desired sorption performance of advanced desiccant materials can be predicted by understanding the role of the material modifications and material surfaces. The work concentrates on solid materials to be used for desiccant cooling systems and which process water vapor in an atmosphere to produce cooling. The work involved preparing modifications of polystyrene sulfonic acid sodium salt, synthesizing a hydrogel, and evaluating the sorption performances of these and similar commercially available polymeric materials; all materials were studied for their potential application in solid commercial desiccant cooling systems. Background information is also provided on desiccant cooling systems and the role of a desiccant material within such a system, and it includes the use of polymers as desiccant materials. 31 refs., 16 figs., 5 tabs.

  4. Polymers as advanced materials for desiccant applications

    SciTech Connect (OSTI)

    Czanderna, A.W.

    1990-12-01T23:59:59.000Z

    This research is concerned with solid materials used as desiccants for desiccant cooling systems (DCSs) that process water vapor in an atmosphere to produce cooling. Background information includes an introduction to DCSs and the role of the desiccant as a system component. The water vapor sorption performance criteria used for screening the modified polymers prepared include the water sorption capacity from 5% to 80% relative humidity (R.H.), isotherm shape, and rate of adsorption and desorption. Measurements are presented for the sorption performance of modified polymeric advanced desiccant materials with the quartz crystal microbalance. Isotherms of polystyrene sulfonic acid (PSSA) taken over a 5-month period show that the material has a dramatic loss in capacity and that the isotherm shape is time dependent. The adsorption and desorption kinetics for PSSA and all the ionic salts of it studied are easily fast enough for commercial DCS applications with a wheel rotation speed of 6 min per revolution. Future activities for the project are addressed, and a 5-year summary of the project is included as Appendix A. 34 refs., 20 figs., 3 tabs.

  5. Materials and methods for stabilizing nanoparticles in salt solutions

    DOE Patents [OSTI]

    Robinson, David Bruce; Zuckermann, Ronald; Buffleben, George M.

    2013-06-11T23:59:59.000Z

    Sequence-specific polymers are proving to be a powerful approach to assembly and manipulation of matter on the nanometer scale. Ligands that are peptoids, or sequence-specific N-functional glycine oligomers, allow precise and flexible control over the arrangement of binding groups, steric spacers, charge, and other functionality. We have synthesized short peptoids that can prevent the aggregation of gold nanoparticles in high-salt environments including divalent salt, and allow co-adsorption of a single DNA molecule. This degree of precision and versatility is likely to prove essential in bottom-up assembly of nanostructures and in biomedical applications of nanomaterials.

  6. Ion aggregation in high salt solutions: Ion network versus ion cluster

    SciTech Connect (OSTI)

    Kim, Seongheun; Kim, Heejae; Choi, Jun-Ho; Cho, Minhaeng, E-mail: mcho@korea.ac.kr [Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of)

    2014-09-28T23:59:59.000Z

    The critical aggregation phenomena are ubiquitous in many self-assembling systems. Ions in high salt solutions could also spontaneously form larger ion aggregates, but their effects on hydrogen-bond structures in water have long been controversial. Here, carrying out molecular dynamics (MD) simulation studies of high salt solutions and comparing the MD simulation results with infrared absorption and pump-probe spectroscopy of O–D stretch mode of HDO in highly concentrated salt solutions and {sup 13}C-NMR chemical shift of S{sup 13}CN{sup ?} in KSCN solutions, we find evidence on the onset of ion aggregate and large-scale ion-ion network formation that concomitantly breaks water hydrogen-bond structure in certain salt solutions. Despite that these experimental results cannot provide direct evidence on the three-dimensional morphological structures of ion aggregates, they serve as reference data for verifying MD simulation methods. The MD results suggest that disrupted water hydrogen-bond network is intricately intertwined with ion-ion network. This further shows morphological variation of ion aggregate structures from ion cluster to ion network in high salt solutions that are interrelated to the onset of macroscopic aggregate formation and the water hydrogen-bond structure making and breaking processes induced by Hofmeister ions.

  7. A route to explain water anomalies from results on an aqueous solution of salt

    E-Print Network [OSTI]

    D. Corradini; M. Rovere; P. Gallo

    2010-03-26T23:59:59.000Z

    In this paper we investigate the possibility to detect the hypothesized liquid-liquid critical point of water in supercooled aqueous solutions of salts. Molecular dynamics computer simulations are conducted on bulk TIP4P water and on an aqueous solution of sodium chloride in TIP4P water, with concentration c = 0.67 mol/kg. The liquid-liquid critical point is found both in the bulk and in the solution. Its position in the thermodynamic plane shifts to higher temperature and lower pressure for the solution. Comparison with available experimental data allowed us to produce the phase diagrams of both bulk water and the aqueous solution as measurable in experiments. Given the position of the liquid-liquid critical point in the solution as obtained from our simulations, the experimental determination of the hypothesized liquid-liquid critical point of water in aqueous solutions of salts appears possible.

  8. The Effect of Salt Stoichiometry on Protein-Salt Interactions Determined by Ternary Diffusion in Aqueous Solutions

    E-Print Network [OSTI]

    Annunziata, Onofrio

    The Effect of Salt Stoichiometry on Protein-Salt Interactions Determined by Ternary Diffusion of salt stoichiometry on the transport properties of lysozyme-salt aqueous mixtures. We find that the two cross-diffusion coefficients are very sensitive to salt stoichiometry. One of the cross

  9. An empirical correlation between the enthalpy of solution of aqueous salts and their ability to form hydrates

    SciTech Connect (OSTI)

    Pandelov, S.; Werhahn, Jasper C.; Pilles, Bert M.; Xantheas, Sotiris S.; Iglev, H.

    2010-09-30T23:59:59.000Z

    The ability of aqueous salt solutions to form hydrates by cooling them at ambient pressure is probed by infrared (IR) spectroscopy by examining the structure of the spectra in the hydrogen-bonding region (3,000 - 3,800 cm-1). A collection of 75 organic and inorganic salts in saturated solutions are examined. We have found a correlation between the enthalpy of solution of the salt and its ability to form a hydrate, namely that the salt’s enthalpy of solution is lower than the standard enthalpy of fusion of ice (6 kJ/mol). This observation can serve as an empirical rule that determines whether a salt will form a hydrate upon cooling from its aqueous solution.

  10. Composite desiccant structure

    DOE Patents [OSTI]

    Fraioli, Anthony V. (Hawthorn Woods, IL); Schertz, William W. (Batavia, IL)

    1987-01-01T23:59:59.000Z

    A composite formed of small desiccant particles retained in a dark matrix composed of a porous binder containing a transition metal oxide with pores to provide moisture transport with respect to the particles, and metallic fibers to remove the heat of condensation during dehumidification and provide heat for the removal of moisture during regeneration. The moisture absorbing properties of the composite may be regenerated by exposure of the dark matrix to solar radiation with dehumidification occurring at night.

  11. Composite desiccant structure

    DOE Patents [OSTI]

    Fraioli, A.V.; Schertz, W.W.

    1984-06-06T23:59:59.000Z

    This patent discloses a composite formed of small desiccant particles retained in a dark matrix composed of a porous binder containing a transition metal oxide with pores to provide moisture transport with respect to the particles, and metallic fibers to remove the heat of condensation during dehumidification and provide heat for the removal of moisture during regeneration. The moisture absorbing properties of the composite may be regenerated by exposure of the dark matrix to solar radiation with dehumidification occurring at night.

  12. Water Dynamics in Salt Solutions Studied with Ultrafast Two-Dimensional Infrared (2D IR)

    E-Print Network [OSTI]

    Fayer, Michael D.

    Water Dynamics in Salt Solutions Studied with Ultrafast Two-Dimensional Infrared (2D IR RECEIVED ON FEBRUARY 3, 2009 C O N S P E C T U S Water is ubiquitous in nature, but it exists as pure water infrequently. From the ocean to biology, water molecules interact with a wide variety of dissolved species

  13. Results of Analysis of Macrobatch 3 Decontaminated Salt Solution Coalescer from May 2010

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-18T23:59:59.000Z

    SRNL analyzed the Decontamination Salt Solution (DSS) coalescer from MCU by several analytical methods. This unit was removed from service in May 2010. The results of these analyses indicate that there is very little evidence of fouling via excessive solids, either from the leaching studies or X-Ray Diffraction (XRD) analysis.

  14. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    SciTech Connect (OSTI)

    Morgan, Dane; Eapen, Jacob

    2013-10-01T23:59:59.000Z

    Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt at the eutectic composition (58 mol% LiCl, 42 mol% KCl), which is used for treating spent EBR-II fuel. The same process being used for EBRII fuel is currently being studied for widespread international implementation. The methods will focus on first-principles and first- principles derived interatomic potential based simulations, primarily using molecular dynamics. Results will be validated against existing literature and parallel ongoing experimental efforts. The simulation results will be of value for interpreting experimental results, validating analytical models, and for optimizing waste separation by potentially developing new salt configurations and operating conditions.

  15. Electrochemical Recovery of Sodium Hydroxide from Alkaline Salt Solution

    SciTech Connect (OSTI)

    Hobbs, D.T. [Westinghouse Savannah River Company, AIKEN, SC (United States); Edwards, T.B.

    1996-10-01T23:59:59.000Z

    A statistically designed set of tests determined the effects of current density, temperature, and the concentrations of nitrate/nitrite, hydroxide and aluminate on the recovery of sodium as sodium hydroxide (caustic) from solutions simulating those produced from the Savannah River Site (SRS) In-Tank Precipitation process. These tests included low nitrate and nitrite concentrations which would be produced by electrolytic nitrate/nitrite destruction. The tests used a two compartment electrochemical cell with a Nafion Type 324 ion-exchange membrane. Caustic was successfully recovered from the waste solutions. Evaluation of the testing results indicated that the transport of sodium across the membrane was not significantly affected by any of the varied parameters. The observed variance in the sodium flux is attributed to experimental errors and variations in the performance characteristics of individual pieces of the organic-based Nafion membrane.Additional testing is recommended to determine the maximum current density, to evaluate the chemical durability of the organic membrane as a function of current density and to compare the durability and performance characteristics of the organic-based Nafion membrane with that of other commercially available organic membranes and the inorganic class of membranes under development by Ceramatec and PNNL.

  16. Hydration structure of salt solutions from ab initio molecular dynamics

    SciTech Connect (OSTI)

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L. [Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2013-01-07T23:59:59.000Z

    The solvation structures of Na{sup +}, K{sup +}, and Cl{sup -} ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  17. Aqueous Biphasic Systems Based on Salting-Out Polyethylene Glycol or Ionic Solutions: Strategies for Actinide or Fission Product Separations

    SciTech Connect (OSTI)

    Rogers, Robin D.; Gutowski, Keith E.; Griffin, Scott T.; Holbrey, John D.

    2004-03-29T23:59:59.000Z

    Aqueous biphasic systems can be formed by salting-out (with kosmotropic, waterstructuring salts) water soluble polymers (e.g., polyethylene glycol) or aqueous solutions of a wide range of hydrophilic ionic liquids based on imidazolium, pyridinium, phosphonium and ammonium cations. The use of these novel liquid/liquid biphases for separation of actinides or other fission products associated with nuclear wastes (e.g., pertechnetate salts) has been demonstrated and will be described in this presentation.

  18. Adding Salt to an Aqueous Solution of t-Butanol: Is Hydrophobic Association Enhanced or Reduced?

    E-Print Network [OSTI]

    Dietmar Paschek; Alfons Geiger; Momo Jeufack Herve; Dieter Suter

    2006-01-16T23:59:59.000Z

    Recent neutron scattering experiments on aqueous salt solutions of amphiphilic t-butanol by Bowron and Finney [Phys. Rev. Lett. {\\bf 89}, 215508 (2002); J. Chem. Phys. {\\bf 118}, 8357 (2003)] suggest the formation of t-butanol pairs, bridged by a chloride ion via ${O}-{H}...{Cl}^-$ hydrogen-bonds, and leading to a reduced number of intermolecular hydrophobic butanol-butanol contacts. Here we present a joint experimental/theoretical study on the same system, using a combination of molecular dynamics simulations and nuclear magnetic relaxation measurements. Both theory and experiment clearly support the more intuitive scenario of an enhanced number of hydrophobic contacts in the presence of the salt, as it would be expected for purely hydrophobic solutes [J. Phys. Chem. B {\\bf 107}, 612 (2003)]. Although our conclusions arrive at a structurally completely distinct scenario, the molecular dynamics simulation results are within the experimental errorbars of the Bowron and Finney work.

  19. Underground physics without underground labs: large detectors in solution-mined salt caverns

    E-Print Network [OSTI]

    Benjamin Monreal

    2014-09-30T23:59:59.000Z

    A number of current physics topics, including long-baseline neutrino physics, proton decay searches, and supernova neutrino searches, hope to someday construct huge (50 kiloton to megaton) particle detectors in shielded, underground sites. With today's practices, this requires the costly excavation and stabilization of large rooms in mines. In this paper, we propose utilizing the caverns created by the solution mining of salt. The challenge is that such caverns must be filled with pressurized fluid and do not admit human access. We sketch some possible methods of installing familiar detector technologies in a salt cavern under these constraints. Some of the detectors discussed are also suitable for deep-sea experiments, discussed briefly. These sketches appear challenging but feasible, and appear to force few major compromises on detector capabilities. This scheme offers avenues for enormous cost savings on future detector megaprojects.

  20. RESULTS OF ANALYSES OF MACROBATCH 3 DECONTAMINATED SALT SOLUTION (DSS) COALESCER AND PRE-FILTERS

    SciTech Connect (OSTI)

    Peters, T.; Fondeur, F.; Fink, S.

    2012-06-13T23:59:59.000Z

    SRNL analyzed the pre-filter and Decontamination Salt Solution (DSS) coalescer from MCU by several analytical methods. The results of these analyses indicate that overall there is light to moderate solids fouling of both the coalescer and pre-filter elements. The majority of the solids contain aluminum, sodium, silicon, and titanium, in oxide and/or hydroxide forms that we have noted before. The titanium is presumably precipitated from leached, dissolved monosodium titanate (MST) or fines from MST at ARP, and the quantity we find is significantly greater than in the past. A parallel report discusses potential causes for the increased leaching rate of MST, showing that increases in free hydroxide concentration of the feed solutions and of chemical cleaning solutions lead to faster leaching of titanium.

  1. Effect of salt identity on the phase diagram for a globular protein in aqueous electrolyte solution

    E-Print Network [OSTI]

    Bostrom, Mathias; Tavares, Frederico W.; Ninham, Barry W.; Prausnitz, John M.

    2006-01-01T23:59:59.000Z

    or NaSCN. For all cases, salt concentration is 0.2 M. StableEFFECT OF SALT IDENTITY ON THE PHASE DIAGRAM FOR A GLOBULARcannot account for the effect of salt identity on the phase

  2. Advanced Open-Cycle Desiccant Cooling System

    E-Print Network [OSTI]

    Ko, Y. J.; Charoensupaya, D.; Lavan, Z.

    1989-01-01T23:59:59.000Z

    The concept of staged regeneration as means of improving the desiccant cooling system performance is the subject of investigation in this study. In the staged regeneration, the regeneration section of desiccant dehumidifier is divided into two parts...

  3. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect (OSTI)

    Kozubal, E.

    2013-02-01T23:59:59.000Z

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  4. Desiccant Cooling Systems - A Review 

    E-Print Network [OSTI]

    Kettleborough, C. F.; Ullah, M. R.; Waugaman, D. G.

    1986-01-01T23:59:59.000Z

    or by solar systems. Comfort is achieved by reducing the moisture content of air by a solid or liquid desiccant and then reducing the temperature in an evaporative cooler (direct or indirect). Another system is one where the dehumidifier removes enough...

  5. Desiccant Cooling Systems - A Review

    E-Print Network [OSTI]

    Kettleborough, C. F.; Ullah, M. R.; Waugaman, D. G.

    1986-01-01T23:59:59.000Z

    or by solar systems. Comfort is achieved by reducing the moisture content of air by a solid or liquid desiccant and then reducing the temperature in an evaporative cooler (direct or indirect). Another system is one where the dehumidifier removes enough...

  6. The Effect of Salt on Protein Chemical Potential Determined by Ternary Diffusion in Aqueous Solutions

    E-Print Network [OSTI]

    Annunziata, Onofrio

    The Effect of Salt on Protein Chemical Potential Determined by Ternary Diffusion in Aqueous as a function of salt concentration, (b) compare the behavior of the protein chemical potential for the three salts, which we found to be consistent with the Hofmeister series, and (c) discuss our thermodynamic

  7. A Preliminary Evaluation of Alternative Liquid Desiccants for a Hybrid Desiccant Air Conditioner

    E-Print Network [OSTI]

    Studak, J. W.; Peterson, J. L.

    1988-01-01T23:59:59.000Z

    and the condenser of a vapor-compression air conditioner. The liquid desiccants studied were lithium chloride, lithium bromide, calcium chloride, and triethylene glycol. Each candidate desiccant was subjected to a screening process which weighed the merits...

  8. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12T23:59:59.000Z

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

  9. Solar desiccant cooling: an evolving technology

    SciTech Connect (OSTI)

    Haas, S.A.

    1982-06-01T23:59:59.000Z

    The potential for improved solar cooling economics has not been realized. The absorption cycle, and heat activated Rankine engine suffer from low efficiency. Desiccant cooling is simple and can acheive a Coefficient of Performance (COP) double that of the other systems. The basic desiccant system technology is described. This has been integrated with solar collecter regeneration to demonstrate feasibility. A performance analysis shows that desiccant cooling can be competitive, but that the capital cost penalty of solar-desiccant systems was the most serious detriment to economic competitiveness. Tax incentives are recommended.

  10. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    SciTech Connect (OSTI)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01T23:59:59.000Z

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  11. Protein-salt binding data from potentiometric titrations of lysozyme in aqueous solutions containing KCl

    SciTech Connect (OSTI)

    Engmann, J.; Blanch, H.W.; Prausnitz, J.M. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley National Lab., CA (United States). Chemical Sciences Div.

    1997-03-01T23:59:59.000Z

    An existing method for potentiometric titrations of proteins was improved, tested and applied to titrations of the enzyme hen-egg-white lysozyme in aqueous solutions containing KCl at ionic strengths from 0.1 M to 2.0 M at 25 C. Information about the protein`s net charge dependence on pH and ionic strength were obtained and salt binding numbers for the system were calculated using a linkage concept. For the pH range 2.5--11.5, the net charge slightly but distinctly increases with increasing ionic strength between 0.1 M and 2.0 M. The differences are most distinct in the pH region below 5. Above pH 11.35, the net charge decreases with increasing ionic strength. Preliminary calculation of binding numbers from titration curves at 0.1 M and 1.0 M showed selective association of chloride anions and expulsion of potassium ions at low pH. Ion-binding numbers from this work will be used to evaluate thermodynamic properties and to correlate crystallization or precipitation phase-equilibrium data in terms of a model based on the integral-equation theory of fluids which is currently under development.

  12. Thermally Activated Desiccant Technology for Heat Recovery and Comfort

    SciTech Connect (OSTI)

    Jalalzadeh, A. A.

    2005-11-01T23:59:59.000Z

    Desiccant cooling is an important part of the diverse portfolio of Thermally Activated Technologies (TAT) designed for conversion of heat for the purpose of indoor air quality control. Thermally activated desiccant cooling incorporates a desiccant material that undergoes a cyclic process involving direct dehumidification of moist air and thermal regeneration. Desiccants fall into two categories: liquid and solid desiccants. Regardless of the type, solid or liquid, the governing principles of desiccant dehumidification systems are the same. In the dehumidification process, the vapor pressure of the moist air is higher than that of the desiccant, leading to transfer of moisture from the air to the desiccant material. By heating the desiccant, the vapor pressure differential is reversed in the regeneration process that drives the moisture from the desiccant. Figure 1 illustrates a rotary solid-desiccant dehumidifier. A burner or a thermally compatible source of waste heat can provide the required heat for regeneration.

  13. Screening Tool for Desiccant Dehumidification Applications

    E-Print Network [OSTI]

    Czachorski, M.; Worek, W. M.

    1998-01-01T23:59:59.000Z

    A state-of-the-art software tool that calculates the benefits of desiccant-based air-treatment equipment is described. The software, a Desiccant Systems Application Screening Tool, is written in the WindowsTM environment to promote user...

  14. Water purification using organic salts

    DOE Patents [OSTI]

    Currier, Robert P.

    2004-11-23T23:59:59.000Z

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  15. Improved germination of pansy seed at high temperatures by priming with salt solutions

    E-Print Network [OSTI]

    Yoon, Beyoung-Han

    1995-01-01T23:59:59.000Z

    and nonprimed seeds. Pansy seeds (Viola x wittrockiana 'Majestic Giant Blue Shade' and 'Crystal Bowl Sky Blue') were primed with several salts and PEG 15,000 at - 1.0 and - 2.0 MPa, for 3, 6, or 9 days at 23 C. Total percent germination (G) of nonprimed seeds...

  16. Results Of Routine Strip Effluent Hold Tank And Decontaminated Salt Solution Hold Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 5 Operations

    SciTech Connect (OSTI)

    Peters, T. B.; Fondeur, F. F.

    2013-04-30T23:59:59.000Z

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the ''microbatches'' of Integrated Salt Disposition Project (ISDP) Salt Batch (''Macrobatch'') 5 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 4 samples indicate generally consistent operations. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in the Actinide Removal process (ARP).

  17. Desiccants: Benefits for the Second Century of Air-Conditioning

    E-Print Network [OSTI]

    McGahey, K.; Harriman, L.

    1996-01-01T23:59:59.000Z

    Desiccant technology now stands where mechanical cooling stood in the 1930's. Desiccant systems have been used by industrial engineers to achieve productivity and energy benefits which far outweigh their installed cost. Now, with lower cost...

  18. Finite-Width Bundle is Most Stable in a Solution with Salt

    E-Print Network [OSTI]

    Takuya Saito; Kenichi Yoshikawa

    2010-04-21T23:59:59.000Z

    We applied the mean-field approach to a columnar bundle assembled by the parallel arrangement of stiff polyelectrolyte rods in a salt bath. The electrostatic potential can be divided into two regions: inside the bundle for condensed counter-ions, and outside the bundle for free small ions. To determine the distribution of condensed counter-ions inside the bundle, we use a local self-consistent condition that depends on the charge density, the electrostatic potential, and the net polarization. The results showed that, upon bundle formation, the electric charge of polyelectrolytes, even those inside the bundle, tend to survive in an inhomogeneous manner, and thus their width remains finite under thermal equilibrium because of the long-range effect of charge instability.

  19. Concentrating aqueous volatile fatty acid salt solutions using a tertiary amine mixture

    E-Print Network [OSTI]

    Gaskin, David J

    1997-01-01T23:59:59.000Z

    Lee (1993) has shown that tertiary amines are able to hics. extract water from low-concentration calcium acetate and sodium acetate solutions. This thesis extends the previous work to include calcium propionate and butyrate. Amine extraction may...

  20. The Breeding Blanket Interface (BBI): Recent results for the solid breeder and the aqueous salt solution blanket concepts

    SciTech Connect (OSTI)

    Clemmer, R.G.; Finn, P.A.; Greenwood, L.R.; Sze, D.K.; Bartlit, J.R.; Sherman, R.; Anderson, J.L.; Yoshida, H.; Naruse, Y.; Enoeda, M.; Okuno, K. (Argonne National Lab., IL (USA); Los Alamos National Lab., NM (USA); Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan))

    1989-10-01T23:59:59.000Z

    The Tritium Systems Test Assembly (TSTA) at Los Alamos is a full-scale facility dedicated to testing tritium processing for fusion reactors. We are involved in a study of adding a Breeder Blanket Interface (BBI) to the TSTA. The BBI is to test the processing required for the tritium output streams for the various fusion reactor breeder blankets. In the current phase of the study, we are evaluating the characteristics of the output from various breeding blankets types. Emphasis is placed on defining the output stream with respect to H/T ratio, impurity content, and radionuclide content. Reported herein is an assessment for two blanket concepts: solid breeder blanket (ceramic, Li{sub 2}O), and aqueous salt solution. 24 refs., 2 figs., 2 tabs.

  1. Desiccant cooling using unglazed transpired solar collectors

    SciTech Connect (OSTI)

    Pesaran, A.A. (National Renewable Energy Lab., Golden, CO (United States)); Wipke, K. (Stanford Univ., CA (United States))

    1992-05-01T23:59:59.000Z

    The use of unglazed solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are lower in cost than conventional glazed flat-plate collectors. Using computer models, the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors was obtained. We found that the thermal performance of the unglazed system was lower than the thermal performance of the glazed system because the unglazed system could not take advantage of the heat of adsorption released during the dehumidification process. For a 3-ton cooling system, although the area required for the unglazed collector was 69% more than that required for the glazed collector, the cost of the unglazed collector array was 44% less than the cost of the glazed collector array. The simple payback period of the unglazed system was half of the payback period of the glazed collector when compared to an equivalent gas-fired system. Although the use of unglazed transpired collectors makes economic sense, some practical considerations may limit their use in desiccant regeneration. 8 refs.

  2. Mesoscale phenomena in solutions of 3-methylpyridine, heavy water, and an antagonistic salt

    E-Print Network [OSTI]

    Jan Leys; Deepa Subramanian; Eva Rodezno; Boualem Hammouda; Mikhail A. Anisimov

    2013-08-22T23:59:59.000Z

    We have investigated controversial issues regarding the mesoscale behavior of 3-methylpyridine (3MP), heavy water, and sodium tetraphenylborate (NaBPh4) solutions by combining results obtained from dynamic light scattering (DLS) and small-angle neutron scattering (SANS). We have addressed three questions: (i) what is the origin of the mesoscale inhomogeneities (order of 100 nm in size) manifested by the "slow mode" in DLS? (ii) Is the periodic structure observed from SANS an inherent property of this system? (iii) What is the universality class of critical behavior in this system? Our results confirm that the "slow mode" observed from DLS experiments corresponds to long-lived, highly stable mesoscale droplets (order of 100 nm in size), which occur only when the solute (3MP) is contaminated by hydrophobic impurities. SANS data confirm the presence of a periodic structure with a periodicity of about 10 nm. This periodic structure cannot be eliminated by nanopore filtration and thus is indeed an inherent solution property. The critical behavior of this system, in the range of concentration and temperatures investigated by DLS experiments, indicates that the criticality belongs to the universality class of the 3-dimensional Ising model.

  3. OSMOTIC COEFFICIENTS, SOLUBILITIES, AND DELIQUESCENCE RELATIONS IN MIXED AQUEOUS SALT SOLUTIONS AT ELEVATED TEMPERATURE

    SciTech Connect (OSTI)

    M.S. Gruszkiewicz; D.A. Palmer

    2006-02-22T23:59:59.000Z

    While thermodynamic properties of pure aqueous electrolytes are relatively well known at ambient temperature, there are far fewer data for binary systems extending to elevated temperatures and high concentrations. There is no general theoretically sound basis for prediction of the temperature dependence of ionic activities, and consequently temperature extrapolations based on ambient temperature data and empirical equations are uncertain and require empirical verification. Thermodynamic properties of mixed brines in a wide range of concentrations would enhance the understanding and precise modeling of the effects of deliquescence of initially dry solids in humid air in geological environments and in modeling the composition of waters during heating, cooling, evaporation or condensation processes. These conditions are of interest in the analysis of waters on metal surfaces at the proposed radioactive waste repository at Yucca Mountain, Nevada. The results obtained in this project will be useful for modeling the long-term evolution of the chemical environment, and this in turn is useful for the analysis of the corrosion of waste packages. In particular, there are few reliable experimental data available on the relationship between relative humidity and composition that reveals the eutonic points of the mixtures and the mixture deliquescence RH. The deliquescence RH for multicomponent mixtures is lower than that of pure component or binary solutions, but is not easy to predict quantitatively since the solutions are highly nonideal. In this work we used the ORNL low-temperature and high-temperature isopiestic facilities, capable of precise measurements of vapor pressure between ambient temperature and 250 C for determination of not only osmotic coefficients, but also solubilities and deliquescence points of aqueous mixed solutions in a range of temperatures. In addition to standard solutions of CaCl{sub 2}, LiCl, and NaCl used as references, precise direct-pressure measurements were also made at elevated temperatures. The project included multicomponent mixtures useful for verification of models, and a set of binary solutions with common ions (such as KNO{sub 3} + NaNO{sub 3}, KNO{sub 3} + Ca(NO{sub 3}){sub 2}, NaNO{sub 3} + Na{sub 2}SO{sub 4}, and KNO{sub 3} + K{sub 2}SO{sub 4}) needed for determination of the mixing parameters in the Pitzer ion-interaction model for mixtures. The results are compared with existing experimental results and model predictions.

  4. Process for preparing chemically modified micas for removal of cesium salts from aqueous solution

    DOE Patents [OSTI]

    Yates, Stephen Frederic (1539 S. Kennicott Dr., Arlington Heights, IL 60005); DeFilippi, Irene (208 E. Edgewood La., Palatine, IL 60067); Gaita, Romulus (6646 Davis Rd., Morton Grove, IL 60053); Clearfield, Abraham (Department of Chemistry, Texas A& M University, College Station, TX 77843); Bortun, Lyudmila (Department of Chemistry, Texas A& M University, College Station, TX 77843); Bortun, Anatoly (Department of Chemistry, Texas A& M University, College Station, TX 77843)

    2000-09-05T23:59:59.000Z

    A chemically modified mica composite formed by heating a trioctahedral mica in an aqueous solution of sodium chloride having a concentration of at least 1 mole/liter at a temperature greater than 180 degrees Centigrade for at least 20 hours, thereby replacing exchangeable ions in the mica with sodium. Formation is accomplished at temperatures and pressures which are easily accessed by industrial equipment. The reagent employed is inexpensive and non-hazardous, and generates a precipitate which is readily separated from the modified mica.

  5. Desiccant cooling: State-of-the-art assessment

    SciTech Connect (OSTI)

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    1992-10-01T23:59:59.000Z

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R D) program history (focusing on DOE's funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory's unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

  6. Desiccant cooling: State-of-the-art assessment

    SciTech Connect (OSTI)

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    1992-10-01T23:59:59.000Z

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R&D) program history (focusing on DOE`s funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R&D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory`s unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

  7. Energy and entropy effects of counterions in salt-free colloidal solutions

    E-Print Network [OSTI]

    Chi-Lun Lee

    2012-02-08T23:59:59.000Z

    We use a shell model to study the counterion interactions in a colloidal solution. In this shell model, the counterions are restricted to move inside a spherical region about their host colloidal particle. In particular, we apply Monte Carlo simulations to derive the energy and entropy contributions of the effective colloidal interaction. Our result reveals an attractive electrostatic energy, which is overpowered by the osmotic repulsion among the counterions, as the latter can be well estimated by an ideal-gas approximation. We also provide an optional algorithm that enables counterion mixing between the two counterion clouds even when the clouds do not overlap. The residual mixing entropy of counterions gives a reduction in free energy that is comparable to the thermal fluctuation, suggesting a possible attractive mechanism between the colloidal particles under non-equilibrium condition.

  8. High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water

    E-Print Network [OSTI]

    Vinh, N Q; Allen, S James; George, D K; Rahmani, A J; Plaxco, Kevin W

    2015-01-01T23:59:59.000Z

    Because it is sensitive to fluctuations occurring over femtoseconds to picoseconds, gigahertz-to-terahertz dielectric relaxation spectroscopy can provide a valuable window into water's most rapid intermolecular motions. In response, we have built a vector network analyzer dielectric spectrometer capable of measuring absorbance and index of refraction in this frequency regime with unprecedented precision. Using this to determine the complex dielectric response of water and aqueous salt solutions from 5.9 GHz to 1.12 THz (which we provide in the SI), we have obtained strong new constraints on theories of water's collective dynamics. For example, while the salt-dependencies we observe for water's two slower relaxations (8 and 1 ps) are easily reconciled with suggestions that they arise due to rotations of fully and partially hydrogen bonded molecules, respectively, the salt-dependence of the fastest relaxation (180 fs) appears difficult to reconcile with its prior assignment to liberations of single hydrogen bon...

  9. A new equation of state of salt-free flexible-chain polyelectrolyte solution: phase equilibria and osmotic pressure

    E-Print Network [OSTI]

    Yu. A. Budkov; A. L. Kolesnikov; N. Georgi; E. A. Nogovitsyn; M. G. Kiselev

    2015-01-06T23:59:59.000Z

    We develop a first-principle equation of state of salt-free polyelectrolyte solution in the limit of infinitely long flexible polymer chains in the framework of a field-theoretical formalism beyond the linear Debye-Hueckel theory and predict a liquid-liquid phase separation induced by strong correlation attraction. As a reference system we choose a set of two independent ideal subsystems -- charged macromolecules immersed in a structureless oppositely charged background created by counterions (polymer one component plasma) and couterions immersed in oppositely charged background created by polymer chains (hard-core one component plasma). We calculate the excess free energy of polymer one component plasma in the framework of Modified Random Phase Approximation, whereas a contribution of charge densities fluctuations of neutralizing backgrounds we evaluate at the level of Gaussian approximation. We show that our theory is in a very good agreement with the results of Monte-Carlo and MD simulations for critical parameters of liquid-liquid phase separation and osmotic pressure in a wide range of monomer concentration above the critical point, respectively.

  10. The enhancement of xylose monomer and xylotriose degradation by inorganic salts in aqueous solutions at 180 C

    E-Print Network [OSTI]

    California at Riverside, University of

    compared to treatment with just pressurized hot water at the same temperature. Although the addition, and especially the latter, significantly increased xylose mono- mer and xylotriose degradation in water heated of these inorganic salts produced a significant drop in pH, the degradation rates with salts were much faster than

  11. Energy-efficient regenerative liquid desiccant drying process

    DOE Patents [OSTI]

    Ko, Suk M. (Huntsville, AL); Grodzka, Philomena G. (Huntsville, AL); McCormick, Paul O. (Athens, AL)

    1980-01-01T23:59:59.000Z

    This invention relates to the use of desiccants in conjunction with an open oop drying cycle and a closed loop drying cycle to reclaim the energy expended in vaporizing moisture in harvested crops. In the closed loop cycle, the drying air is brought into contact with a desiccant after it exits the crop drying bin. Water vapor in the moist air is absorbed by the desiccant, thus reducing the relative humidity of the air. The air is then heated by the used desiccant and returned to the crop bin. During the open loop drying cycle the used desiccant is heated (either fossil or solar energy heat sources may be used) and regenerated at high temperature, driving water vapor from the desiccant. This water vapor is condensed and used to preheat the dilute (wet) desiccant before heat is added from the external source (fossil or solar). The latent heat of vaporization of the moisture removed from the desiccant is reclaimed in this manner. The sensible heat of the regenerated desiccant is utilized in the open loop drying cycle. Also, closed cycle operation implies that no net energy is expended in heating drying air.

  12. Effects of Porous Medium Heterogeneity on Vadose Zone Desiccation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gamma system was used to determine water saturations at various times. The multiphase code STOMP was used to simulate the desiccation process. Results show that injected...

  13. Desiccation of unsaturated porous media: Intermediate-scale experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediate-scale experiments and numerical simulation. Abstract: Soil desiccation (drying) is recognized as a potentially robust vadose zone remediation process involving water...

  14. An evaluation of membrane materials for the treatment of highly concentrated suspended salt solutions in reverse osmosis and nanofiltration processes for desalination

    E-Print Network [OSTI]

    Hughes, Trenton Whiting

    2009-05-15T23:59:59.000Z

    of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2006 Major Subject: Civil Engineering AN EVALUATION OF MEMBRANE MATERIALS FOR THE TREATMENT OF HIGHLY... CONCENTRATED SUSPENDED SALT SOLUTIONS IN REVERSE OSMOSIS AND NANOFILTRATION PROCESSES FOR DESALINATION A Thesis by TRENTON WHITING HUGHES Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  15. An assessment of desiccant cooling and dehumidification technology

    SciTech Connect (OSTI)

    Mei, V.C.; Chen, F.C. (Oak Ridge National Lab., TN (United States)); Lavan, Z. (Illinois Inst. of Tech., Chicago, IL (United States)); Collier, R.K. Jr. (Collier Engineering Services, Merritt Island, FL (United States)); Meckler, G. (Gershon Meckler Associates, P.C., Herndon, VA (United States))

    1992-07-01T23:59:59.000Z

    Desiccant systems are heat-actuated cooling and dehumidification technology. With the recent advances in this technology, desiccant systems can now achieve a primary energy coefficient of performance (COP) between 1.3 and 1.5, with potential to go to 1.7 and higher. It is becoming one of the most promising alternatives to conventional cooling systems. Two important and well-known advantages of desiccant cooling systems are that they are CFC free and they can reduce the electricity peak load. Another important but lesser-known advantage of desiccant technology is its potential for energy conservation. The energy impact study in this report indicated that a possible 13% energy saving in residential cooling and 8% in commercial cooling is possible. Great energy saving potential also exists in the industrial sector if industrial waste heat can be used for desiccant regeneration. The latest study on desiccant-integrated building heating, ventilating, and air conditioning (HVAC) systems indicated that the initial cost for the conventional cooling equipment was greatly reduced by using desiccant technology because of downsized compressors, fans, and ductworks. This cost reduction was more than enough to offset the cost of desiccant equipment. Besides, the system operation cost was also reduced. All these indicate that desiccant systems are also cost effective. This study provides an updated state-of-the-art assessment forsiccant technology in the field of desiccant materials, systems, computer models, and theoretical analyses. From this information the technology options were derived and the future research and development needs were identified. Because desiccant technology has already been applied in the commercial building sector with very encouraging results, it is expected that future market breakthroughs will probably start in this sector. A market analysis for the commercial building application is therefore included.

  16. International Congress Refrigeration 2003, Washington, DC ACTIVE DESICCANT INTEGRATION WITH

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    standard. Integration of a rooftop, unitary air conditioner with an active-desiccant module (ADM) allows the use of a standard rooftop air conditioner with a thermally regenerated active desiccant component requirements for fresh air ventilation standards with continuous supply and increased amounts of building

  17. Condensation of Self-assembled Lyotropic Chromonic Liquid Crystal Sunset Yellow in Aqueous Solutions Crowded with Polyethylene glycol and Doped with Salt

    E-Print Network [OSTI]

    Heung-Shik Park; Shin-Woong Kang; Luana Tortora; Satyendra Kumar; Oleg D. Lavrentovich

    2011-04-06T23:59:59.000Z

    We use optical and fluorescence microscopy, densitometry, cryo-transmission electron microscopy (cryo-TEM), spectroscopy, and synchrotron X-ray scattering, to study the phase behavior of the reversible self-assembled chromonic aggregates of an anionic dye Sunset Yellow (SSY) in aqueous solutions crowded with an electrically neutral polymer polyethylene glycol (PEG) and doped with the salt NaCl. PEG causes the isotropic SSY solutions to condense into a liquid-crystalline region with a high concentration of SSY aggregates, coexisting with a PEG-rich isotropic (I) region. PEG added to the homogeneous nematic (N) phase causes separation into the coexisting N and I domains; the SSY concentration in the N domains is higher than the original concentration of PEG-free N phase. Finally, addition of PEG to the highly concentrated homogeneous N phase causes separation into the coexisting columnar hexagonal (C) phase and I phase. This behavior can be qualitatively explained by the depletion (excluded volume) effects that act at two different levels: at the level of aggregate assembly from monomers and short aggregates and at the level of inter-aggregate packing. We also show a strong effect of a monovalent salt NaCl on phase diagrams that is different for high and low concentrations of SSY. Upon the addition of salt, dilute I solutions of SSY show appearance of the condensed N domains, but the highly concentrated C phase transforms into a coexisting I and N domains. We suggest that the salt-induced screening of electric charges at the surface of chromonic aggregates leads to two different effects: (a) increase of the scission energy and the contour length of aggregates, and (b) decrease of the persistence length of SSY aggregates.

  18. Actinide removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C. (Pleasanton, CA); von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01T23:59:59.000Z

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  19. Metals removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C. (Pleasanton, CA); Von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Brummond, William A. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

    2002-01-01T23:59:59.000Z

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  20. Efficacy of a solution-based approach for making sodalite waste forms for an oxide reduction salt utilized in the reprocessing of used uranium oxide fuel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Riley, Brian J.; Pierce, David A.; Frank, Steven M.; Matyáš, Josef; Burns, Carolyne A.

    2015-04-01T23:59:59.000Z

    This paper describes the various approaches attempted to make solution-derived sodalite with a LiCl-Li2O oxide reduction salt used to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol-gel and solutionbased synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3- SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2Omore »and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt but that the incorporation of Li into the sodalite is low.« less

  1. Efficacy of a Solution-Based Approach for Making Sodalite Waste Forms for an Oxide Reduction Salt Used in the Reprocessing of Used Uranium Oxide Fuel

    SciTech Connect (OSTI)

    Brian J. Riley; David A. Pierce; Steven M. Frank; Josef Matyas; Carolyne A. Burns

    2014-09-01T23:59:59.000Z

    This paper describes the various approaches attempted to make solution-derived sodalite with a LiCl-Li2O oxide reduction salt used to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol-gel and solutionbased synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3- SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2O and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt but that the incorporation of Li into the sodalite is low.

  2. Microstructure and corrosion behavior of die-cast AM60B magnesium alloys in a complex salt solution: A slow positron beam study

    SciTech Connect (OSTI)

    Liu, Y.F. [Wuhan University] [Wuhan University; Qin, Q.L. [Wuhan University] [Wuhan University; Yang, W. [Wuhan University] [Wuhan University; Wen, W. [University of Kentucky] [University of Kentucky; Zhai, T. [University of Kentucky] [University of Kentucky; Yu, B. [University of Alberta] [University of Alberta; Liu, D.Y. [University of Alberta] [University of Alberta; Luo, A. [GM Research and Development Center] [GM Research and Development Center; Song, GuangLing [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The microstructure and corrosion behavior of high pressure die-cast (HPDC) and super vacuum die-cast (SVDC) AM60B magnesium alloys were investigated in a complex salt solution using slow positron beam technique and potentiodynamic polarization tests. The experiments revealed that a CaCO3 film was formed on the surface of the alloys and that the rate of CaCO3 formation for the SVDC alloy with immersion time was slower than that of the HPDC alloy. The larger volume fraction of b-phase in the skin layer of the SVDC alloy than that of the HPDC alloy was responsible for the better corrosion resistance.

  3. Electrostatic self-energy of a partially formed spherical shell in salt solution: application to stability of tethered and fluid shells -- viruses and vesicles

    E-Print Network [OSTI]

    Anze Losdorfer Bozic; Antonio Siber; Rudolf Podgornik

    2011-04-24T23:59:59.000Z

    We investigate the electrostatics of a partially formed, charged spherical shell in a salt solution. We solve the problem numerically at the Poisson-Boltzmann level and analytically in the Debye-Huckel regime. From the results on energetics of partially formed shells we examine the stability of tethered (crystalline) and fluid shells towards rupture. We clearly delineate different regimes of stability towards rupture, where, for fluid shells, we also include the effects of bending elasticity of the shells. Our analysis shows how charging of the shell induces its instability towards rupture but also provides insight regarding growth of charged shells.

  4. Ion Partitioning at the liquid/vapor interface of a multi-component alkali halide solution: A model for aqueous sea salt aerosols

    E-Print Network [OSTI]

    Ghosal, Sutapa

    2009-01-01T23:59:59.000Z

    A model for aqueous sea salt aerosols Sutapa Ghosal, 1species associated with sea salt ice and aerosols has beena minor component in sea salt, which has a Br – /Cl – molar

  5. Desiccant Enhanced Evaporative Air Conditioning: Parametric Analysis and Design; Preprint

    SciTech Connect (OSTI)

    Woods, J.; Kozubal, E.

    2012-10-01T23:59:59.000Z

    This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.

  6. Desiccant-based, heat actuated cooling assessment for DHC systems

    SciTech Connect (OSTI)

    DiBella, F.; Patch, K.; Becker, F.

    1989-10-01T23:59:59.000Z

    The goal of the project is to perform a conceptual design, systems analysis and case study evaluation of an application of a desiccant-based, heat actuated cooling system in a District Heating System. The results of this study will encourage the deployment of cooler transport temperatures in District Heating Systems. The proposed concept includes a liquid or solid desiccant-based air cooling and drying system that can be integrated with an existing HVAC system. 3 refs., 6 figs.

  7. Analysis of a Fabric/Desiccant Window Cavity Dehumidifier

    E-Print Network [OSTI]

    Hunn, B. D.; Grasso, M. M.; Vadlamani, V.

    1994-01-01T23:59:59.000Z

    were conducted to a) determine a suitable fabric/desiccant combination for use in the window cavity dehumidifier, and b) to estimate the moisture absorption (regain) capacity of the candidate fabriddesiccant combinations. After examining... the properties of various solid desiccants. we determined that silica gel beads, encapsulated in a fabric pouch, would be the best approach. ?bus, we measured the moisture regain characteristics of several fabrics used to encapsulate silica gel beads...

  8. High Efficiency Liquid-Desiccant Regenerator for Air Conditioning and Industrial Drying

    SciTech Connect (OSTI)

    Andrew Lowenstein

    2005-12-19T23:59:59.000Z

    Over 2 quads of fossil fuels are used each year for moisture removal. This includes industrial and agricultural processes where feedstocks and final products must be dried, as well as comfort conditioning of indoor spaces where the control of humidity is essential to maintaining healthy, productive and comfortable working conditions. Desiccants, materials that have a high affinity for water vapor, can greatly reduce energy use for both drying and dehumidification. An opportunity exists to greatly improve the competitiveness of advanced liquid-desiccant systems by increasing the efficiency of their regenerators. It is common practice within the chemical process industry to use multiple stage boilers to improve the efficiency of thermal separation processes. The energy needed to regenerate a liquid desiccant, which is a thermal separation process, can also be reduced by using a multiple stage boiler. In this project, a two-stage regenerator was developed in which the first stage is a boiler and the second stage is a scavenging-air regenerator. The only energy input to this regenerator is the natural gas that fires the boiler. The steam produced in the boiler provides the thermal energy to run the second-stage scavenging-air regenerator. This two-stage regenerator is referred to as a 1?-effect regenerator. A model of the high-temperature stage of a 1?-effect regenerator for liquid desiccants was designed, built and successfully tested. At nominal operating conditions (i.e., 2.35 gpm of 36% lithium chloride solution, 307,000 Btu/h firing rate), the boiler removed 153 lb/h of water from the desiccant at a gas-based efficiency of 52.9 % (which corresponds to a COP of 0.95 when a scavenging-air regenerator is added). The steam leaving the boiler, when condensed, had a solids concentration of less than 10 ppm. This low level of solids in the condensate places an upper bound of about 6 lb per year for desiccant loss from the regenerator. This low loss will not create maintenance problems nor will it significantly increase operating expenses. An energy balance on the boiler showed that heat loss through the insulated jacket was 10%. This value is much higher than the 2% to 5% that is typical of most boilers and indicates a need to better insulate the unit. With insulation that brings jacket losses down to 5%, a 1?-effect regenerator that uses this boiler as its high-temperature stage will have a gas-based COP of 1.05. The estimated cost to manufacture a 300-lb/h, 1?-effect regenerator at 500 units per year is $17,140. Unfortunately, the very high cost for natural gas that now prevails in the U.S. makes it very difficult for a gas-fired LDAC to compete against an electric vapor-compression air conditioner in HVAC applications. However, there are important industrial markets that need very dry air where the high price of natural gas will encourage the sale of a LDAC with the 1?-effect regenerator since in these markets it competes against less efficient gas-fired desiccant technologies. A manufacturer of industrial dehumidification equipment is now negotiating a sales agreement with us that would include the 1?-effect regenerator.

  9. Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications: Preprint

    SciTech Connect (OSTI)

    Lowenstein, A.; Slayzak, S.; Kozubal, E.

    2006-07-01T23:59:59.000Z

    A novel liquid-desiccant air conditioner that dries and cools building supply air will transform the use of direct-contact liquid-desiccant systems in HVAC applications, improving comfort, air quality, and providing energy-efficient humidity control.

  10. Cooling season study and economic analysis of a desiccant cooling system 

    E-Print Network [OSTI]

    Lee, James Howard

    1992-01-01T23:59:59.000Z

    model is ASME Journal of Solar Energy Engineering. Desiccant cooling offers significant advantages over vapor compression systems: I) Water and air are the only working fluids in desiccant systems so the environmental impact is minimal. 2) Energy...

  11. Investigation of a radiantly heated and cooled office with an integrated desiccant ventilation unit 

    E-Print Network [OSTI]

    Gong, Xiangyang

    2009-05-15T23:59:59.000Z

    desiccant ventilation unit consumes 5.6% more primary energy than a single duct VAV system; it would consumes 11.4% less primary energy when the system is integrated with a presumed passive desiccant ventilation unit....

  12. Measurement uncertainty of adsorption testing of desiccant materials

    SciTech Connect (OSTI)

    Bingham, C E; Pesaran, A A

    1988-12-01T23:59:59.000Z

    The technique of measurement uncertainty analysis as described in the current ANSI/ASME standard is applied to the testing of desiccant materials in SERI`s Sorption Test Facility. This paper estimates the elemental precision and systematic errors in these tests and propagates them separately to obtain the resulting uncertainty of the test parameters, including relative humidity ({plus_minus}.03) and sorption capacity ({plus_minus}.002 g/g). Errors generated by instrument calibration, data acquisition, and data reduction are considered. Measurement parameters that would improve the uncertainty of the results are identified. Using the uncertainty in the moisture capacity of a desiccant, the design engineer can estimate the uncertainty in performance of a dehumidifier for desiccant cooling systems with confidence. 6 refs., 2 figs., 8 tabs.

  13. Precipitation of jarosite-type double salts from spent acid solutions from a chemical coal cleaning process

    SciTech Connect (OSTI)

    Norton, G.

    1990-09-21T23:59:59.000Z

    The precipitation of jarosite compounds to remove Na, K, Fe, and SO{sub 4}{sup 2{minus}} impurities from spent acid solutions from a chemical coal cleaning process was studied. Simple heating of model solutions containing Fe{sub 2}(SO{sub 4}){sub 3}, Na{sub 2}SO{sub 4}, and K{sub 2}SO{sub 4} caused jarosite (KFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}) to form preferentially to natrojarosite (NaFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}). Virtually all of the K, about 90% of the Fe, and about 30% of the SO{sub 4}{sup 2{minus}} could be precipitated from those solutions at 95{degree}C, while little or no Na was removed. However, simple heating of model solutions containing only Fe{sub 2}(SO{sub 4}){sub 3} and Na{sub 2}SO{sub 4} up to 95{degree}C for {le}12 hours produced low yields of jarosite compounds, and the Fe concentration in the solution had to be increased to avoid the formation of undesirable Fe compounds. Precipitate yields could be increased dramatically in model solutions of Na{sub 2}SO{sub 4}/Fe{sub 2}(SO{sub 4}){sub 3} containing excess Fe by using either CaCO{sub 3}, Ca(OH){sub 2}, or ZnO to neutralize H{sub 2}SO{sub 4} released during hydrolysis of the Fe{sub 2}(SO{sub 4}){sub 3} and during the precipitation reactions. Results obtained from the studies with model solutions were applied to spent acids produced during laboratory countercurrent washing of coal which had been leached with a molten NaOH/KOH mixture. Results indicated that jarosite compounds can be precipitated effectively from spent acid solutions by heating for 6 hours at 80{degree}C while maintaining a pH of about 1.5 using CaCO{sub 3}.

  14. Voltammetry and conductivity of a polyether-pyridinium room temperature molten salt electrolyte and of its polymer electrolyte solutions in polydimethylsiloxane

    SciTech Connect (OSTI)

    Pyati, R.; Murray, R.W. [Univ. of North Carolina, Chapel Hill, NC (United States)

    1996-02-01T23:59:59.000Z

    This report describes the synthesis, microelectrode voltammetry, and ionic conductivity of a new room temperature molten salt N-(methoxy(ethoxy){sub 2}ethyl)pyridinium p-toluene sulfonate (abbreviated as[Py(E{sub 3}M){sup +}][Tos{sup {minus}}]) and of its solution in a hydroxy-terminated polydimethylsiloxane. Both ionically conductive liquids (conductivity = 1 {times} 10{sup {minus}4} {Omega}{sup {minus}1} cm{sup {minus}1}) exhibit voltammetric potential windows of about 1.5 V. The negative potential limit is determined by the reduction of the [Py(E{sub 3}M){sup +}] pyridinium species, with subsequent radical coupling to form a voltammetrically observed viologen dimer. The estimated diffusivities of the [Py(E{sub 3}M){sup +}] species, of a diethyleneglycol-tailed ferrocene redox solute studied, and by application of Nernst-Einstein relation to the ionic charge carriers, all lie in the 10{sup {minus}7} to 10{sup {minus}8} cm{sup 2}/s range. Viscosities and glass transition thermal observations are reported as is the fit of the temperature dependencies of ionic conductivity in [Py(E{sub 3}M){sup +}][Tos{sup {minus}}] and in [Py(E{sub 3}M){sup +}][TOS{sup {minus}}]/PDMS mixtures to Vogel-Tamman-Fulcher predictions.

  15. Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks

    E-Print Network [OSTI]

    Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks Geoffrey is usually measured by immersing the membrane in a salt solution at a single, fixed concentration. While salt resistance of the membranes separating different salt concentration solutions has implications for modeling

  16. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Johnson, Timothy C.; Johnson, Christian D.; Clayton, Ray E.; Chronister, Glen B.

    2013-09-01T23:59:59.000Z

    A field test of desiccation is being conducted as an element of the deep vadose zone treatability test program. Desiccation technology relies on removal of water from a portion of the subsurface such that the resultant low moisture conditions inhibit downward movement of water and dissolved contaminants. Previously, a field test report (Truex et al. 2012a) was prepared describing the active desiccation portion of the test and initial post-desiccation monitoring data. Additional monitoring data have been collected at the field test site during the post-desiccation period and is reported herein along with interpretation with respect to desiccation performance. This is an interim report including about 2 years of post-desiccation monitoring data.

  17. Initiation of nuclear reactions under laser irradiation of Au nanoparticles in the aqueous solution of Uranium salt

    E-Print Network [OSTI]

    A. V. Simakin; G. A. Shafeev

    2009-11-29T23:59:59.000Z

    Laser exposure of suspension of either gold or palladium nanoparticles in aqueous solutions of UO2Cl2 of natural isotope abundance was experimentally studied. Picosecond Nd:YAG lasers at peak power from 1011 to 1013 W/cm2 at the wavelength of 1064 and 355 nm were used as well as a visible-range Cu vapor laser at peak power of 1010 W/cm2. The composition of colloidal solutions before and after laser exposure was analyzed using atomic absorption and gamma spectroscopy between 0.06 and 1 MeV range of photon energy. A real-time gamma-spectroscopy was used to characterize the kinetics of nuclear reactions during laser exposure. It was found that laser exposure initiated nuclear reactions involving both 238U and 235U nuclei via different channels in H2O and D2O. The influence of saturation of both the liquid and nanoparticles by gaseous H2 and D2 on the kinetics of nuclear transformations was found. Possible mechanisms of observed processes are discussed.

  18. Original article Effect of desiccation during cold storage on planting

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Effect of desiccation during cold storage on planting stock quality and field, 1.4°C, 87% RH). An additional treatment consisted in a cold storage for 4 weeks in sealed polythene exhibited lower survival and RGP (except in pine) than those lifted in January and March. Cold storage

  19. SOLUTIONS

    E-Print Network [OSTI]

    2012-07-04T23:59:59.000Z

    MA 162 - Quiz 5 (20 minutes). SOLUTIONS. The solutions I present are not necessarily the only solutions. As long as you give a correct method of solving a ...

  20. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect (OSTI)

    Peters, T. B.

    2014-01-02T23:59:59.000Z

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from the Interim Salt Disposition Project (ISDP) Salt Batch (“Macrobatch”) 6 have been analyzed for 238Pu, 90Sr, 137Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The Pu, Sr, and Cs results from the current Macrobatch 6 samples are similar to those from comparable samples in previous Macrobatch 5. In addition the SEHT and DSSHT heel samples (i.e. ‘preliminary’) have been analyzed and reported to meet NGS Demonstration Plan requirements. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous samples. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST has increased in ARP at the higher free hydroxide concentrations in the current feed.

  1. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01T23:59:59.000Z

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  2. Method and composition for molding low density desiccant syntactic foam articles

    DOE Patents [OSTI]

    Lula, James W. (Bonner Springs, KS); Schicker, James R. (Lee's Summit, MO)

    1984-01-01T23:59:59.000Z

    A method and a composition are provided for molding low density desiccant syntactic foam articles. A low density molded desiccant article may be made as a syntactic foam by blending a thermosetting resin, microspheres and molecular sieve desiccant powder, molding and curing. Such articles have densities of 0.2-0.9 g/cc, moisture capacities of 1-12% by weight, and can serve as light weight structural supports.

  3. Fundamental Properties of Salts

    SciTech Connect (OSTI)

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01T23:59:59.000Z

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  4. The Experimentation System Design and Experimental Study of the Air-Conditioning by Desiccant Type Using Solar Energy 

    E-Print Network [OSTI]

    Zhuo, X.; Ding, J.; Yang, X.; Chen, S.; Yang, J.

    2006-01-01T23:59:59.000Z

    Using a special solar air heater to gain heat power for regenerating an adsorption desiccant wheel made by composite silica gel, a desiccant air-conditioning experimentation system was designed and manufactured. Combining the advantage of measure...

  5. Salt Frost Deterioration in Concrete Pavement --Causes and Mitigation

    E-Print Network [OSTI]

    Salt Frost Deterioration in Concrete Pavement --Causes and Mitigation Zhichao Liu, Will Hansen and special effects such as surface tension and osmotic effect (salt solution). ·Below the nucleation the surface contains a salt solution, pore suction attracts surface liquid and additional ice growth may

  6. ORNL/SUB/94-SV044/3B Active Desiccant Dehumidification Module Integration

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;#12;ORNL/SUB/94-SV044/3B Active Desiccant Dehumidification Module Integration with Rooftop.................................................................. 10 3.3 Description and Schematic of the Integrated ADM Packaged Unit ..................................... 11 4. Laboratory Testing of the Active Desiccant Module and Integrated System

  7. DESICCATION PROTECTION AND DISRUPTION: A TRADE-OFF FOR AN INTERTIDAL MARINE ALGA1

    E-Print Network [OSTI]

    Denny, Mark

    DESICCATION PROTECTION AND DISRUPTION: A TRADE-OFF FOR AN INTERTIDAL MARINE ALGA1 Luke J. H. Hunt2, California 93950, USA For marine algae, the benefits of drying out are often overshadowed by the stresses of desiccation in the intertidal turf alga Endocladia muricata (Endlichter) J. Agardh. Laboratory experiments

  8. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations

    SciTech Connect (OSTI)

    Peters, T. B.

    2013-10-01T23:59:59.000Z

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from several of the ''microbatches'' of Integrated Salt Disposition Project (ISDP) Salt Batch (''Macrobatch'') 6 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results from the current microbatch samples are similar to those from comparable samples in Macrobatch 5. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous macrobatch. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST in ARP continues to occur. Both the CST and CWT samples indicate that the target Free OH value of 0.03 has been surpassed. While at this time there is no indication that this has caused an operational problem, the CST should be adjusted into specification. The {sup 137}Cs results from the SRNL as well as F/H lab data indicate a potential decline in cesium decontamination factor. Further samples will be carefully monitored to investigate this.

  9. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, And Caustic Wash Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 4 Operations

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-10-25T23:59:59.000Z

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), and Caustic Wash Tank (CWT) samples from several of the ?microbatches? of Integrated Salt Disposition Project (ISDP) Salt Batch (?Macrobatch?) 4 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by inductively-coupled plasma emission spectroscopy (ICPES). Furthermore, samples from the CWT have been analyzed by a variety of methods to investigate a decline in the decontamination factor (DF) of the cesium observed at MCU. The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 3 samples indicate generally consistent operations. There is no indication of a disruption in plutonium and strontium removal. The average cesium DF and concentration factor (CF) for samples obtained from Macrobatch 4 are slightly lower than for Macrobatch 3, but still well within operating parameters. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in Actinide Removal Process (ARP).

  10. Solution

    E-Print Network [OSTI]

    2011-09-09T23:59:59.000Z

    Solution: We're looking for the presale cost of the shirt, so let x be the price of ... The sale price is $10 and we've called the presale price x, so we need to solve.

  11. Study of parameters affecting the performance of solar desiccant cooling systems

    SciTech Connect (OSTI)

    Pesaran, A.A.; Hoo, E.A.

    1993-01-01T23:59:59.000Z

    The performance of a solar desiccant cooling system depends on the performance of its components, particularly the desiccant dehumidifier and solar collectors. The desiccant dehumidifier performance is affected by the properties of the desiccant, particularly the shape of the isotherm and the regeneration temperature. The performance of a solar collector, as one would expect, depends on its operating temperature, which is very close to the desiccant regeneration temperature. The purpose of this study was to identify the desiccant isotherm shape (characterized by separation factor) that would result in the optimum performance - based on thermal coefficient of performance and cooling capacity - of a desiccant cooling cycle operating in ventilation mode. Different regeneration temperatures ranging from 65[degree]C to 160[degree]C were investigated to identify the corresponding optimum isotherm shape at each. Thermal COP dictates the required area of the solar collectors, and the cooling capacity is an indication of the size and cost of the cooling equipment. Staged and no-staged regeneration methods were studied.

  12. Study of parameters affecting the performance of solar desiccant cooling systems

    SciTech Connect (OSTI)

    Pesaran, A.A.; Hoo, E.A.

    1993-01-01T23:59:59.000Z

    The performance of a solar desiccant cooling system depends on the performance of its components, particularly the desiccant dehumidifier and solar collectors. The desiccant dehumidifier performance is affected by the properties of the desiccant, particularly the shape of the isotherm and the regeneration temperature. The performance of a solar collector, as one would expect, depends on its operating temperature, which is very close to the desiccant regeneration temperature. The purpose of this study was to identify the desiccant isotherm shape (characterized by separation factor) that would result in the optimum performance - based on thermal coefficient of performance and cooling capacity - of a desiccant cooling cycle operating in ventilation mode. Different regeneration temperatures ranging from 65{degree}C to 160{degree}C were investigated to identify the corresponding optimum isotherm shape at each. Thermal COP dictates the required area of the solar collectors, and the cooling capacity is an indication of the size and cost of the cooling equipment. Staged and no-staged regeneration methods were studied.

  13. Zero Energy Communities with Central Solar Plants using Liquid Desiccants and Local Storage: Preprint

    SciTech Connect (OSTI)

    Burch, J.; Woods, J.; Kozubal, E.; Boranian, A.

    2012-08-01T23:59:59.000Z

    The zero energy community considered here consists of tens to tens-of-thousands of residences coupled to a central solar plant that produces all the community's electrical and thermal needs. A distribution network carries fluids to meet the heating and cooling loads. Large central solar systems can significantly reduce cost of energy vs. single family systems, and they enable economical seasonal heat storage. However, the thermal distribution system is costly. Conventional district heating/cooling systems use a water/glycol solution to deliver sensible energy. Piping is sized to meet the peak instantaneous load. A new district system introduced here differs in two key ways: (i) it continuously distributes a hot liquid desiccant (LD) solution to LD-based heating and cooling equipment in each home; and (ii) it uses central and local storage of both LD and heat to reduce flow rates to meet average loads. Results for piping sizes in conventional and LD thermal communities show that the LD zero energy community reduces distribution piping diameters meeting heating loads by {approx}5X and meeting cooling loads by {approx}8X for cooling, depending on climate.

  14. Laboratory and Modeling Evaluations in Support of Field Testing for Desiccation at the Hanford Site

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Freedman, Vicky L.; Strickland, Christopher E.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Ward, Anderson L.

    2011-02-23T23:59:59.000Z

    The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau includes testing of the desiccation technology as a potential technology to be used in conjunction with surface infiltration control to limit the flux of technetium and other contaminants in the vadose zone to the groundwater. Laboratory and modeling efforts were conducted to investigate technical uncertainties related to the desiccation process and its impact on contaminant transport. This information is intended to support planning, operation, and interpretation of a field test for desiccation in the Hanford Central Plateau.

  15. Heat and mass transfer analysis of a desiccant dehumidifier matrix

    SciTech Connect (OSTI)

    Pesaran, A.A.

    1986-07-01T23:59:59.000Z

    This report documents the SERI Single-Blow Test Facility's design, fabrication, and testing for characterizing desiccant dehumidifiers for solar cooling applications. The first test article, a silica-gel parallel-plate dehumidifier with highly uniform passages, was designed and fabricated. Transient heat and mass transfer data and pressure drop data across the dehumidifier were obtained. Available heat and mass transfer models were extended to the parallel-place geometry, and the experimental data were compared with model predictions. Pressure drop measurements were also compared with model predictions of the fully developed laminar flow theory. The comparisons between the lumped-capacitance model and the experimental data were satisfactory. The pressure drop data compared satisfactorily with the theory (within 15%). A solid-side resistance model that is more detailed and does not assume symmetrical diffusion in particles was recommended for performance. This study has increased our understanding of the heat and mass transfer in silica gel parallel-plate dehumidifiers.

  16. The precipitation response to the desiccation of Lake Chad

    SciTech Connect (OSTI)

    Lauwaet D.; VanWeverberg K.; vanLipzig, N. P. M., Weverberg, K. V., Ridderb, K. D., and Goyens, C.

    2012-04-01T23:59:59.000Z

    Located in the semi-arid African Sahel, Lake Chad has shrunk from a surface area of 25000 km2 in 1960 to about 1350 km2 due to a series of droughts and anthropogenic influences. The disappearance of such a large open-water body can be expected to have a noticeable effect on the meteorology in the surroundings of the lake. The impact could extend even further to the west as westward propagating convective systems pass Lake Chad in the rainfall season. This study examines the sensitivity of the regional hydrology and convective processes to the desiccation of the lake using a regional atmospheric model. Three Lake Chad scenarios are applied reflecting the situation in 1960, the current situation and a potential future scenario in which the lake and the surrounding wetlands have disappeared. The model simulations span the months July-September in 2006, which includes the rainfall season in the Lake Chad area. Total precipitation amounts and the components of the hydrological cycle are found to be hardly affected by the existence of the lake. A filled Lake Chad does, however, increase the precipitation at the east side of the lake. The model results indicate that the boundary layer moisture and temperature are significantly altered downwind of the lake. By investigating a mesoscale convective system (MCS) case, this is found to affect the development and progress of the system. At first, the MCS is intensified by the more unstable boundary layer air but the persistence of the system is altered as the cold pool propagation becomes less effective. The proposed mechanism is able to explain the differences in the rainfall patterns nearby Lake Chad between the scenarios. This highlights the local sensitivity to the desiccation of Lake Chad whereas the large-scale atmospheric processes are not affected.

  17. Effects of chemical desiccation and early harvesting on Sorghum [Sorghum bicolor (L.) Moench] seed germination

    E-Print Network [OSTI]

    Gouveia, Sergio

    1994-01-01T23:59:59.000Z

    Field and laboratory experiments were conducted at two locations over two years in Texas. Objectives of these experiments were to study effects of chemical desiccation and seed maturity at harvest on sorghum seed germination. Sorghum plants were...

  18. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Soil Desiccation Pilot Test Results

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Johnson, Timothy C.; Freedman, Vicky L.; Johnson, Christian D.; Greenwood, William J.; Ward, Anderson L.; Clayton, Ray E.; Lindberg, Michael J.; Peterson, John E.; Hubbard, Susan; Chronister, Glen B.; Benecke, Mark W.

    2012-05-01T23:59:59.000Z

    This report describes results of a pilot test of soil desiccation conducted as part of the Deep Vadose Zone Treatability Test program. The report is written in CERCLA treatabilty test report format.

  19. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    1 Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives...

  20. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect (OSTI)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01T23:59:59.000Z

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  1. Method and composition for molding low-density desiccant syntactic-foam articles

    DOE Patents [OSTI]

    Not Available

    1981-12-07T23:59:59.000Z

    These and other objects of the invention are achieved by a process for molding to size a desiccant syntactic foam article having a density of 0.2 to 0.9 g/cc and a moisture capacity of 1 to 12% by weight, comprising the steps of: charging a mold with a powdery mixture of an activated desiccant, microspheres and a thermosetting resin, the amount of the desiccant being sufficient to provide the required moisture capacity, and the amounts of the microspheres and resin being such that the microspheres/desiccant volume fraction exceeds the packing factor by an amount sufficient to substantially avoid shrinkage without causing excessively high molding pressures; covering the mold and heating the covered mold to a temperature and for an amount of time sufficient to melt the resin; and tightly closing the mold and heating the closed mold to a temperature and for an amount of time sufficient to cure the resin, and removing the resultant desiccant syntactic foam article from the mold. In a composition of matter aspect, the present invention provides desiccant syntactic foam articles, and a composition of matter for use in molding the same.

  2. Performance Assessment of a Desiccant Cooling System in a CHP Application with an IC Engine

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.; Slayzak, S.; Judkoff, R.; Schaffhauser, T.; DeBlasio, R.

    2005-04-01T23:59:59.000Z

    Performance of a desiccant cooling system was evaluated in the context of combined heat and power (CHP). The baseline system incorporated a desiccant dehumidifier, a heat exchanger, an indirect evaporative cooler, and a direct evaporative cooler. The desiccant unit was regenerated through heat recovery from a gas-fired reciprocating internal combustion engine. The system offered sufficient sensible and latent cooling capacities for a wide range of climatic conditions, while allowing influx of outside air in excess of what is typically required for commercial buildings. Energy and water efficiencies of the desiccant cooling system were also evaluated and compared with those of a conventional system. The results of parametric assessments revealed the importance of using a heat exchanger for concurrent desiccant post cooling and regeneration air preheating. These functions resulted in enhancement of both the cooling performance and the thermal efficiency, which are essential for fuel utilization improvement. Two approaches for mixing of the return air and outside air were examined, and their impact on the system cooling performance and thermal efficiency was demonstrated. The scope of the parametric analyses also encompassed the impact of improving the indirect evaporative cooling effectiveness on the overall cooling system performance.

  3. SOIL DESICCATION TECHNIQUES STRATEGIES FOR IMMOBILIZATION OF DEEP VADOSE CONTAMINANTS AT THE HANFORD CENTRAL PLATEAU

    SciTech Connect (OSTI)

    BENECKE MW; CHRONISTER GB; TRUEX MJ

    2012-01-30T23:59:59.000Z

    Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site where processes and technologies are being developed and tested for use in the on-going effort to remediate mobile contamination in the deep vadose zone, the area deep beneath the surface. Historically, contaminants were discharged to the soil along with significant amounts of water, which continues to drive contaminants deeper in the vadose zone toward groundwater. Soil desiccation is a potential in situ remedial technology well suited for the arid conditions and the thick vadose zone at the Hanford Site. Desiccation techniques could reduce the advance of contaminants by removing the pore water to slow the rate of contaminants movement toward groundwater. Desiccation technologies have the potential to halt or slow the advance of contaminants in unsaturated systems, as well as aid in reduction of contaminants from these same areas. Besides reducing the water flux, desiccation also establishes capillary breaks that would require extensive rewetting to resume pore water transport. More importantly, these techniques have widespread application, whether the need is to isolate radio nuclides or address chemical contaminant issues. Three different desiccation techniques are currently being studied at Hanford.

  4. Salt never calls itself sweet.

    E-Print Network [OSTI]

    Baliga, Ragavendra R; Narula, Jagat

    2009-01-01T23:59:59.000Z

    54. 11. Frohlich ED. The role of salt in hypertension: theblockade, diuretics, and salt restriction for the managementa low- sodium high-potassium salt in hypertensive patients

  5. Impact of porous medium desiccation during anhydrous CO2 injection in deep saline aquifers: up scaling from experimental

    E-Print Network [OSTI]

    Boyer, Edmond

    flow rate and capillary properties on the desiccation mechanisms. Keywords: supercritical CO2, dryingImpact of porous medium desiccation during anhydrous CO2 injection in deep saline aquifers: up - France Abstract Injection of CO2 in geological reservoirs or deep aquifers is nowadays studied

  6. Molten salt electrolyte separator

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1996-01-01T23:59:59.000Z

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  7. Retrospective salt tectonics

    SciTech Connect (OSTI)

    Jackson, M.P.A. [Univ. of Texas, Austin, TX (United States)

    1996-12-31T23:59:59.000Z

    The conceptual breakthroughs in understanding salt tectonics can be recognized by reviewing the history of salt tectonics, which divides naturally into three parts: the pioneering era, the fluid era, and the brittle era. The pioneering era (1856-1933) featured the search for a general hypothesis of salt diapirism, initially dominated by bizarre, erroneous notions of igneous activity, residual islands, in situ crystallization, osmotic pressures, and expansive crystallization. Gradually data from oil exploration constrained speculation. The effects of buoyancy versus orogeny were debated, contact relations were characterized, salt glaciers were discovered, and the concepts of downbuilding and differential loading were proposed as diapiric mechanisms. The fluid era (1933-{approximately}1989) was dominated by the view that salt tectonics resulted from Rayleigh-Taylor instabilities in which a dense fluid overburden having negligible yield strength sinks into a less dense fluid salt layer, displacing it upward. Density contrasts, viscosity contrasts, and dominant wavelengths were emphasized, whereas strength and faulting of the overburden were ignored. During this era, palinspastic reconstructions were attempted; salt upwelling below thin overburdens was recognized; internal structures of mined diapirs were discovered; peripheral sinks, turtle structures, and diapir families were comprehended; flow laws for dry salt were formulated; and contractional belts on divergent margins and allochthonous salt sheets were recognized. The 1970s revealed the basic driving force of salt allochthons, intrasalt minibasins, finite strains in diapirs, the possibility of thermal convection in salt, direct measurement of salt glacial flow stimulated by rainfall, and the internal structure of convecting evaporites and salt glaciers. The 1980`s revealed salt rollers, subtle traps, flow laws for damp salt, salt canopies, and mushroom diapirs.

  8. Dependence of DNA persistence length on ionic strength of solutions with monovalent and divalent salts: a joint theory-experiment study

    E-Print Network [OSTI]

    Brunet, Annaël; Salomé, Laurence; Rousseau, Philippe; Destainville, Nicolas; Manghi, Manoel

    2015-01-01T23:59:59.000Z

    Using high-throughput Tethered Particle Motion single molecule experiments, the double-stranded DNA persistence length, $L_p$, is measured in solutions with Na$^+$ and Mg$^{2+}$ ions of various ionic strengths, $I$. Several theoretical equations for $L_p(I)$ are fitted to the experimental data, but no decisive theory is found which fits all the $L_p$ values for the two ion valencies. Properly extracted from the particle trajectory using simulations, $L_p$ varies from 30~nm to 55~nm, and is compared to previous experimental results. For the Na$^+$ only case, $L_p$ is an increasing concave function of $I^{-1}$, well fitted by Manning's electrostatic stretching approach, but not by classical Odjik-Skolnick-Fixman theories with or without counter-ion condensation. With added Mg$^{2+}$ ions, $L_p$ shows a marked decrease at low $I$, interpreted as an ion-ion correlation effect, with an almost linear law in $I^{-1}$, fitted by a proposed variational approach.

  9. Simulation and study of thermal performance of liquid desiccant cooling cycle configurations

    E-Print Network [OSTI]

    Dhir, Rajesh

    1995-01-01T23:59:59.000Z

    evaporative cooler(s), liquid desiccant packed dehumidifying tower, and air-to-air heat exchanger. Constant effectiveness of 0.85 and 0.9 were assumed for the direct evaporative cooler and air-to-air heat exchanger respectively. The performance of these five...

  10. Desiccant-based, heat-actuated cooling assessment for DHC (District Heating and Cooling) systems

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.A.; Becker, F.E.

    1990-07-01T23:59:59.000Z

    An assessment has been completed of the use of desiccant-based, heat-actuated cooling for District Heating and Cooling (DHC) systems, showing that such desiccant-based cooling (DBC) systems are generally applicable to District Heating (DH) systems. Since the DH system only has to supply hot water (or steam) to its customers, systems that were designed as conventional two-pipe DH systems can now be operated as DHC systems without major additional capital expense. Desiccant-based DHC systems can be operated with low-grade DH-supplied heat, at temperatures below 180{degree}F, without significant loss in operating capacity, relative to absorption chillers. During this assessment, a systems analysis was performed, an experimental investigation was conducted, developmental requirements for commercializing DBC systems were examined, and two case studies were conducted. As a result of the case studies, it was found that the operating cost of a DBC system was competitive with or lower than the cost of purchasing DHC-supplied chilled water. However, because of the limited production volume and the current high capital costs of desiccant systems, the payback period is relatively long. In this regard, through the substitution of low-cost components specifically engineered for low-temperature DHC systems, the capital costs should be significantly reduced and overall economics made attractive to future users. 17 figs.

  11. ORNL/SUB/94-SV044/3Report FIELD DEMONSTRATION OF ACTIVE DESICCANT-BASED

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    PRECONDITIONING SYSTEMS Final Report: Phase 3 J. Fischer SEMCO, Inc. J. Sand Oak Ridge National Laboratory July#12;ORNL/SUB/94-SV044/3Report FIELD DEMONSTRATION OF ACTIVE DESICCANT-BASED OUTDOOR AIR by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 #12;iii CONTENTS

  12. Improving Gas-Fired Heat Pump Capacity and Performance by Adding a Desiccant Dehumidification Subsystem

    E-Print Network [OSTI]

    Parsons, B. K.; Pesaran, A. A.; Bharathan, D.; Shelpuk, B. C.

    1990-01-01T23:59:59.000Z

    of absorption and desiccant solar cooling systems." Berkeley, CA: Lawrence Berkeley La- boratory. Kinast, J. A,; Wurm. J.; Zawacki, T. S.: and . Macriss, R. A. 1982. SOLAR-MEC~ development program report. COO-4495-53. Chicago, IL: Institute of Gas...

  13. Optimization Control Strategy for an Air Handling Unit with Dedicated Rotary Desiccant Dehumidification Wheel in Hot and Humid Climate

    E-Print Network [OSTI]

    Watt, J.

    2013-01-01T23:59:59.000Z

    ?Example MATHEMATICAL?MODELING Isopotential lines?(?F1?and?F2) ?1 ? ?2865 ??.??? ? 4.344??.???? ?2 ? ??.??? 6360 ? 1.127??.????? To?account?for?the?wave?front?propagation? through?the?desiccant?matrix.?Howe?[1983]?and? Jurinak [1982].?Two...?potential?functions?(F1,?F2) Ideal?process?of?absorption MATHEMATICAL?MODELING Actual?process?of?desiccant?dehumidificationDesiccant?dehumidification?process?(F1,F2)? The?F1?and?F2?isopotential lines?are?further? modified?for?non?idealities?in?the?system?by? the...

  14. Optimization Control Strategy for an Air Handling Unit with Dedicated Rotary Desiccant Dehumidification Wheel in Hot and Humid Climate 

    E-Print Network [OSTI]

    Watt, J.

    2013-01-01T23:59:59.000Z

    ?Example MATHEMATICAL?MODELING Isopotential lines?(?F1?and?F2) ?1 ? ?2865 ??.??? ? 4.344??.???? ?2 ? ??.??? 6360 ? 1.127??.????? To?account?for?the?wave?front?propagation? through?the?desiccant?matrix.?Howe?[1983]?and? Jurinak [1982].?Two...?potential?functions?(F1,?F2) Ideal?process?of?absorption MATHEMATICAL?MODELING Actual?process?of?desiccant?dehumidificationDesiccant?dehumidification?process?(F1,F2)? The?F1?and?F2?isopotential lines?are?further? modified?for?non?idealities?in?the?system?by? the...

  15. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01T23:59:59.000Z

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  16. Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing

    SciTech Connect (OSTI)

    Lee, Sung Ho; Lee, Hansoo; Kim, In Tae; Kim, Jeong-Guk [Korea Atomic Energy Research Institute, 1045 Daedeok-daaro, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorr - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.

  17. Impact of Salt Purity on Interfacial Water Organization Revealed by Conventional and Heterodyne-Detected Vibrational Sum Frequency

    E-Print Network [OSTI]

    Impact of Salt Purity on Interfacial Water Organization Revealed by Conventional and Heterodyne of the chosen salts and their solutions. This is true not only for the ACS grade salts but also vibrational sum frequency generation (VSFG) and heterodyne-detected VSFG (HD-VSFG) spectroscopy that salt

  18. Le Thorium Molten Salt Reactor : Au del du MSBR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Le Thorium Molten Salt Reactor : Au delà du MSBR L. Mathieu, D. Heuer, A. Billebaud, R. Brissot, C réflexion est menée afin de trou- ver des solutions et ainsi d'aboutir au concept du Thorium Mol- ten Salt optimale du minerai d'uranium ou de thorium, une conception résistante à la prolifération, une meilleur

  19. Dosimetry using silver salts

    DOE Patents [OSTI]

    Warner, Benjamin P. (Los Alamos, NM)

    2003-06-24T23:59:59.000Z

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  20. Field Evaluation of Desiccant-Integrated HVAC Systems: A Review of Case Studies in Multiple Commercial/Institutional Building Types

    E-Print Network [OSTI]

    Yborra, S. C.

    1998-01-01T23:59:59.000Z

    An independent field research effort co-funded by the Gas Research Institute and The U.S. Department of Energy (DOE) Oak Ridge National Laboratory is documenting the performance and energy usage characteristics of active desiccant-integrated HVAC...

  1. Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living Space in Summer

    E-Print Network [OSTI]

    Miyashita, Yasushi

    Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living and total heat exchanger in terms of both energy conservation and thermal comfort in summer. 1. COP

  2. NOVEL SALTS OF GRAPHITE AND A BORON NITRIDE SALT

    E-Print Network [OSTI]

    Bartlett, Neil

    2011-01-01T23:59:59.000Z

    ~ i\\f'{y AND DOCUMENTS SECTION NOVEL SALTS OF GRAPHITE ANDA BORON NITRIDE SALT Neil Bartlett, R. N. Biagioni, B. W.privately owned rights. Novel Salts of Graphite and a Boron

  3. Molecular dynamics simulations of the effects of salts on the aggregation properties of benzene in water.

    SciTech Connect (OSTI)

    Smith, P. E.

    2003-07-16T23:59:59.000Z

    The specific aims of the project were: to provide an atomic level description of the interactions between benzene, water and ions in solutions. To determine the degree of association between two benzene molecules in aqueous and salt solutions. To investigate the structure and dynamics of the interface between benzene and water or salt solution.

  4. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect (OSTI)

    Woolley, Robert D [PPPL; Miller, Laurence F [PPPL

    2014-04-01T23:59:59.000Z

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  5. Fracture of porous materials induced by crystallization of salt

    E-Print Network [OSTI]

    Katzoff, Golda Y

    2006-01-01T23:59:59.000Z

    The penetration of salt into porous materials is known to have deleterious effects, often resulting in fracture. The damage process begins with a saline solution penetrating the porous network by way of capillary action. ...

  6. Molten salt electrolyte separator

    DOE Patents [OSTI]

    Kaun, T.D.

    1996-07-09T23:59:59.000Z

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  7. Unusual Salt Stability in Highly Charged Diblock Co-polypeptide Hydrogels

    E-Print Network [OSTI]

    Breedveld, Victor

    Unusual Salt Stability in Highly Charged Diblock Co-polypeptide Hydrogels Andrew P. Nowak, Victor of poly(L-lysine HBr) or poly(L-glutamic acid sodium salt), and helical, hydrophobic segments of poly as low as 0.25 wt %, stability in salt or buffer solutions was found to be only achieved at moderately

  8. Hydrotropic salt promotes anionic surfactant self-assembly into vesicles and ultralong fibers

    E-Print Network [OSTI]

    Huang, Jianbin

    Hydrotropic salt promotes anionic surfactant self-assembly into vesicles and ultralong fibers November 2011 Available online 6 December 2011 Keywords: Surfactant self-assembly Hydrotropic salt Fiber dodecylbenzene sulfo- nate, SDBS) and a hydrotropic salt (benzylamine hydrochloride, BzCl) in aqueous solution

  9. A LARGE SCALE CONTINUUM-DISCRETE NUMERICAL MODELLING: APPLICATION TO OVERBURDEN DAMAGE OF A SALT CAVERN

    E-Print Network [OSTI]

    Boyer, Edmond

    A LARGE SCALE CONTINUUM-DISCRETE NUMERICAL MODELLING: APPLICATION TO OVERBURDEN DAMAGE OF A SALT damage on top of an underground solution mining, an in-situ experiment is undertaken above a salt cavity in the Lorraine region (NE of France). The overburden overlying the salt cavity is characterized by a competent

  10. Bases, Assumptions, and Results of the Flowsheet Calculations for the Decision Phase Salt Disposition Alternatives

    SciTech Connect (OSTI)

    Elder, H.H.

    2001-07-11T23:59:59.000Z

    The HLW salt waste (salt cake and supernate) now stored at the SRS must be treated to remove insoluble sludge solids and reduce the soluble concentration of radioactive cesium radioactive strontium and transuranic contaminants (principally Pu and Np). These treatments will enable the salt solution to be processed for disposal as saltstone, a solid low-level waste.

  11. Frost Growth CFD Model of an Integrated Active Desiccant Rooftop Unit

    SciTech Connect (OSTI)

    Geoghegan, Patrick J [ORNL; Petrov, Andrei Y [ORNL; Vineyard, Edward Allan [ORNL; Zaltash, Abdolreza [ORNL; Linkous, Randall Lee [ORNL

    2008-01-01T23:59:59.000Z

    A frost growth model is incorporated into a Computational Fluid Dynamics (CFD) simulation of a heat pump by means of a user-defined function in FLUENT, a commercial CFD code. The transient model is applied to the outdoor section of an Integrated Active Desiccant Rooftop (IADR) unit in heating mode. IADR is a hybrid vapor compression and active desiccant unit capable of handling 100% outdoor air (dedicated outdoor air system) or as a total conditioning system, handling both outdoor air and space cooling or heating loads. The predicted increase in flow resistance and loss in heat transfer capacity due to frost build-up are compared to experimental pressure drop readings and thermal imaging. The purpose of this work is to develop a CFD model that is capable of predicting frost growth, an invaluable tool in evaluating the effectiveness of defrost-on-demand cycles.

  12. Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification

    DOE Patents [OSTI]

    Kozubal, Eric Joseph; Slayzak, Steven Joseph

    2014-07-08T23:59:59.000Z

    An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.

  13. Moving Advanced Desiccant Materials into Mainstream Non-CFC Cooling Products

    SciTech Connect (OSTI)

    Sand, J R [ORNL; Grossman, T [ORNL; Rice, C K [ORNL; Fairchild, P D [ORNL; Gross, I L [Engelhard/ICC

    2004-12-30T23:59:59.000Z

    desiccant dehumidification technology is emerging as a technically viable alternative for comfort conditioning in many commercial and institutional buildings. Attempts to improve the indoor air quality of buildings has resulted in increasingly stringent guidelines for occupant outdoor air ventilation rates. Additionally, revised building heating, ventilating, and air-conditioning (HVAC) design criteria based on regional peak dew point data highlight the important of the latent (moisture removal) building load relative to the sensible (temperature) building load.

  14. High performance liquid desiccant cooling system simulation at standard ARI conditions

    E-Print Network [OSTI]

    McDonald, Brian Francis

    1991-01-01T23:59:59.000Z

    of the standard vapor compression system are cryogenic cooling, non fluorocarbon refrigerants and desiccant cooling. Navy scientists have been investigating the use of sound waves for cryogenic cooling. The "cryo-cooler" uses water as the working fluid... and thus eliminates the possibility of fluorocarbon emissions. However, initial research shows that the system requires about the same amount of electricity as contemporary refrigeration models [2]. Non fluorocarbon refrigerants are used as a...

  15. Amine salts of nitroazoles

    DOE Patents [OSTI]

    Kienyin Lee; Stinecipher, M.M.

    1993-10-26T23:59:59.000Z

    Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

  16. Brine flow in heated geologic salt.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01T23:59:59.000Z

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  17. Phase diagram of mechanically stretched DNA: The salt effect

    E-Print Network [OSTI]

    Amar Singh; Navin Singh

    2014-09-05T23:59:59.000Z

    The cations, in form of salt, present in the solution containing DNA play a crucial role in the opening of two strands of DNA. We use a simple non linear model and investigate the role of these cations on the mechanical unzipping of DNA. The Hamiltonian is modified to incoporate the solvent effect and the cations present in the solution. We calculate the melting temperature as well as the critical force that is required to unzip the DNA molecule as a function of salt concentration of the solution. The phase diagrams are found to be in close agreement with the experimental phase diagrams.

  18. Gas releases from salt

    SciTech Connect (OSTI)

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01T23:59:59.000Z

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  19. Controlled black liquor viscosity reduction through salting-in

    SciTech Connect (OSTI)

    Roberts, J.E.; Khan, S.A.; Spontak, R.J. [North Carolina State Univ., Raleigh, NC (United States)] [North Carolina State Univ., Raleigh, NC (United States)

    1996-08-01T23:59:59.000Z

    Black liquor viscosity increases exponentially with solids content and therefore causes processing problems for the paper industry by being a limiting factor in the Kraft pulp process. This study investigates a new approach for achieving viscosity reduction by salting-in black liquor through the addition of thiocyanate salts. These salts generally increase the solubility of the polymer constituents in black liquor, leading to a decrease in its viscosity. Several thiocyanate salts capable of reducing liquor viscosity by more than two orders of magnitude have been identified, with viscosity reduction greatest at high solids content. Salting-in of black liquor depends on the cation paired with the thiocyanate anion, as well as on solution pH and temperature. Comparative studies reveal the most effective viscosity-reducing agent of the series examined and that lignin plays an important role in the viscosity behavior of both unmodified and salted-in black liquor at high solids concentrations. These experimental findings are interpreted in terms of the underlying principles that describe salting-in and how it affects aqueous solution structure.

  20. The Thorium Molten Salt Reactor : Moving on from the MSBR

    E-Print Network [OSTI]

    L. Mathieu; D. Heuer; R. Brissot; C. Le Brun; E. Liatard; J. M. Loiseaux; O. Méplan; E. Merle-Lucotte; A. Nuttin; J. Wilson; C. Garzenne; D. Lecarpentier; E. Walle; the GEDEPEON Collaboration

    2005-06-02T23:59:59.000Z

    A re-evaluation of the Molten Salt Breeder Reactor concept has revealed problems related to its safety and to the complexity of the reprocessing considered. A reflection is carried out anew in view of finding innovative solutions leading to the Thorium Molten Salt Reactor concept. Several main constraints are established and serve as guides to parametric evaluations. These then give an understanding of the influence of important core parameters on the reactor's operation. The aim of this paper is to discuss this vast research domain and to single out the Molten Salt Reactor configurations that deserve further evaluation.

  1. The Estimation of Salt and Molasses in Mixed Feeds

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1931-01-01T23:59:59.000Z

    . THE ESTIMATION OF SALT The method described in Bulletin 271 referred to above, consists briefly in extracting the salt from 5.55 gm. of the feed with about 200 cc. water, purifying the extract by means of carbon black or lead acetate, making up to 200 cc... described in this publication is based upon the method of E. R. Theis, published in the Chemist-Analyst, No. 41, 1924, and consists in extracting the salt with a solution of picric acid, neutral- izing with calcium carbonate, and titrating an aliquot...

  2. The Thorium Molten Salt Reactor Moving on from the MSBR

    E-Print Network [OSTI]

    Mathieu, L; Brissot, R; Le Brun, C; Liatard, E; Loiseaux, J M; Méplan, O; Merle-Lucotte, E; Nuttin, A; Wilson, J; Garzenne, C; Lecarpentier, D; Walle, E

    2006-01-01T23:59:59.000Z

    A re-evaluation of the Molten Salt Breeder Reactor concept has revealed problems related to its safety and to the complexity of the reprocessing considered. A reflection is carried out anew in view of finding innovative solutions leading to the Thorium Molten Salt Reactor concept. Several main constraints are established and serve as guides to parametric evaluations. These then give an understanding of the influence of important core parameters on the reactor's operation. The aim of this paper is to discuss this vast research domain and to single out the Molten Salt Reactor configurations that deserve further evaluation.

  3. RECHARGEABLE MOLTEN-SALT CELLS

    E-Print Network [OSTI]

    Cairns, Elton J.

    2013-01-01T23:59:59.000Z

    KC! /FeS 2 cell lithium-silicon magnesium oxide molten-saltmolten-salt cells Na/Na glass/Na:z.Sn-S cell Na/NazO•xA!Symposium on Molten Salts, Physical Electrochemistry

  4. APPLICATIONS OF SALT IN ELECTROFISHING

    E-Print Network [OSTI]

    APPLICATIONS OF SALT IN ELECTROFISHING iNlarine Biological Laboratory LIB55.A.K.Y WOODS HOLE, MASS OF SALT IN ELECTROFISHING By Robert E . Lennon and Phillip S . Parker Fishery Research Biologists Leetown. Electric fisliliiK. 2. Salt. i. Farker, Phillip Slieridaii, 192t>- .joiut author, ii. Title. ( Series : IT

  5. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    SciTech Connect (OSTI)

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01T23:59:59.000Z

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  6. Cromer Cycle Air Conditioner: A Unique Air-Conditioner Desiccant Cycle to Enhance Dehumidification and Save Energy

    E-Print Network [OSTI]

    Cromer, C. J.

    2000-01-01T23:59:59.000Z

    for the AC system. The desiccant wheel was slid into the duct system and a test run completed. The wheel was then removed from the system, the ducts resealed, and an additional test run completed. By this alternation method, three runs with the wheel...

  7. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results, Fiscal Year 2014

    SciTech Connect (OSTI)

    Truex, Michael J.; Strickland, Christopher E.; Johnson, Christian D.; Johnson, Timothy C.; Clayton, Ray E.; Chronister, Glen B.

    2014-09-01T23:59:59.000Z

    Over decades of operation, the U.S. Department of Energy (DOE) and its predecessors have released nearly 2 trillion L (450 billion gal.) of liquid into the vadose zone at the Hanford Site. Much of this discharge of liquid waste into the vadose zone occurred in the Central Plateau, a 200 km2 (75 mi2) area that includes approximately 800 waste sites. Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths below the limit of direct exposure pathways, but may need to be remediated to protect groundwater. The Tri-Party Agencies (DOE, U.S. Environmental Protection Agency, and Washington State Department of Ecology) established Milestone M 015 50, which directed DOE to submit a treatability test plan for remediation of technetium-99 (Tc-99) and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment and have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. Testing technologies for remediating Tc-99 and uranium will also provide information relevant for remediating other contaminants in the vadose zone. A field test of desiccation is being conducted as an element of the DOE test plan published in March 2008 to meet Milestone M 015 50. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 3 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  8. Predicting viscosities of aqueous salt mixtures

    SciTech Connect (OSTI)

    Zaltash, A.; Ally, M.R.

    1992-01-01T23:59:59.000Z

    Viscosity plays an important role in quantifying heat and mass transfer rates as depicted in theoretical and semi-empirical correlations. In practical problems where extreme temperatures and solute concentrations are encountered, viscosity data is usually unavailable. At these conditions, no dependable correlation appears to exist in the literature. This paper uses the hole type model to predict the viscosity of aqueous electrolytes containing single and mixed salts up to the molten salt regime. This model needs two parameters which can be evaluated from sparse data. For LiBr/water and (Li, K, na) NO[sub 3]/water mixtures, it is shown that the agreement between predicted and experimental values is very good over wide temperature and concentration ranges. The deviation between these two values was found to be less than 9%.

  9. Predicting viscosities of aqueous salt mixtures

    SciTech Connect (OSTI)

    Zaltash, A.; Ally, M.R.

    1992-12-01T23:59:59.000Z

    Viscosity plays an important role in quantifying heat and mass transfer rates as depicted in theoretical and semi-empirical correlations. In practical problems where extreme temperatures and solute concentrations are encountered, viscosity data is usually unavailable. At these conditions, no dependable correlation appears to exist in the literature. This paper uses the hole type model to predict the viscosity of aqueous electrolytes containing single and mixed salts up to the molten salt regime. This model needs two parameters which can be evaluated from sparse data. For LiBr/water and (Li, K, na) NO{sub 3}/water mixtures, it is shown that the agreement between predicted and experimental values is very good over wide temperature and concentration ranges. The deviation between these two values was found to be less than 9%.

  10. A theory for heat exchangers with liquid-desiccant-wetted surfaces

    SciTech Connect (OSTI)

    Otterbein, R.T. [Otterbein Engineering, Phoenix, AZ (United States)

    1995-08-01T23:59:59.000Z

    The following theory extends the wet surface model of Maclaine-cross and Banks (1981) to include heat exchangers that heat or cool moist air with liquid-desiccant-wetted surfaces. The theory uses a wall boundary condition that forces the moist air to be at an arbitrary relative humidity that is less than totally saturated. The theory defines a new temperature scale (brine-bulb temperature) for which the wet-bulb temperature is a special case. Brine-bulb heat capacitance and heat transfer coefficient are defined. By using an analogy to the dry surface heat exchanger theory, the performance of these heat exchangers can then be estimated from the performance of geometrically identical heat exchangers with a dry surface. Charts to utilize the theory at various elevations are shown.

  11. Electrolyte salts for nonaqueous electrolytes

    DOE Patents [OSTI]

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09T23:59:59.000Z

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  12. Water Dynamics in Divalent and Monovalent Concentrated Salt Chiara H. Giammanco, Daryl B. Wong, and Michael D. Fayer*

    E-Print Network [OSTI]

    Fayer, Michael D.

    Water Dynamics in Divalent and Monovalent Concentrated Salt Solutions Chiara H. Giammanco, Daryl B, United States ABSTRACT: Water hydrogen bond dynamics in concentrated salt solutions are studied using causes a shift in absorption frequency relative to that of the OD stretch absorption in bulk pure water

  13. Batteries using molten salt electrolyte

    DOE Patents [OSTI]

    Guidotti, Ronald A. (Albuquerque, NM)

    2003-04-08T23:59:59.000Z

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  14. Influence of Permian salt dissolution on distribution of shallow Niobrara gas fields, eastern Colorado

    SciTech Connect (OSTI)

    Oldham, D.W.; Smosna, R.A. [West Virginia Univ., Morgantown, WV (United States)

    1996-06-01T23:59:59.000Z

    Subsurface analysis of Permian salt and related strata in the shallow Niobrara gas area on the eastern flank of the Denver basin reveals that the location of faulted anticlines which produce gas from porous chalk is related to the occurrence of six Nippewalla Group (Leonardian) salt zones. Salt distribution is controlled by the configuration of evaporate basins during the Leonardian, truncation at a sub-Jurassic unconformity (which has completely removed Guadalupian salts), and post-Jurassic subsurface dissolution. Significant dissolution took place in response to Laramide orogeny and subsequent eastward regional groundwater flow within the Lyons (Cedar Hills) Sandstone aquifer. Initially, dissolution occurred along a regional facies change from sandstone to salt. Solution collapse allowed for cross-formational flow and removal of younger salts. Shallow Niobrara gas fields are situated above salt outliers or along regionally updip salt edges. No significant Niobrara production exists in areas where salt is absent. Structural relief across fields is related to Leonardian thickness variations, rather than subsalt offset. Seismic data reveal abrupt Leonardian thinning at the regionally updip limit of Eckley field, which has produced over 33 BCFG. Thickness of residual salt may be important in controlling the amount of gas trapped within the Niobrara. Where thick salts are preserved, structural relief is greater, the gas-water transition zone is thicker, and gas saturation is higher at the crests of faulted anticlines.

  15. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18T23:59:59.000Z

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  16. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

    1982-02-09T23:59:59.000Z

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  17. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

    1983-01-01T23:59:59.000Z

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  18. Salt Repository Research,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton6 th US/German Workshop on Salt

  19. Salt Selected (FINAL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR EMaterialsSafety,andWHY SALT

  20. A microfluidic platform for pharmaceutical salt screening Michael R. Thorson,a

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    A microfluidic platform for pharmaceutical salt screening Michael R. Thorson,a Sachit Goyal platform comprised of 48 wells to screen for pharmaceutical salts. Solutions of pharmaceutical parent spectra. Two drugs, naproxen (acid) and ephedrine (base), were used for validation of the platform

  1. Sandia National Laboratories: Molten Salt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    receiver technology is attractive because it can cost-effectively capture and store heat at higher ... Molten Nitrate Salt Initial Flow Testing is a Tremendous Success On...

  2. Salt-induced collapse and reexpansion of highly charged flexible polyelectrolytes

    E-Print Network [OSTI]

    Pai-Yi Hsiao; Erik Luijten

    2006-10-05T23:59:59.000Z

    We study the salt-dependent conformations of dilute flexible polyelectrolytes in solution via computer simulations. Low concentrations of multivalent salt induce the known conformational collapse of individual polyelectrolyte chains, but as the salt concentration is increased further this is followed by a reexpansion. We explicitly demonstrate that multivalent counterions can overcompensate the bare charge of the chain in the reexpansion regime. Both the degree of reexpansion and the occurrence of overcharging sensitively depend on ion size. Our findings are relevant for a wide range of salt-induced complexation phenomena.

  3. EIS-0082-S2: Savannah River Site Salt Processing, Savannah River Site, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    This SEIS evaluates the potential environmental impacts of alternatives for separating the high-activity fraction from the low-activity fraction of the high-level radioactive waste salt solutions...

  4. Damage in porous media due to salt crystallization

    E-Print Network [OSTI]

    Noushine Shahidzadeh-Bonn; Julie Desarnaud; François Bertrand; Xavier Chateau; Daniel Bonn

    2010-07-13T23:59:59.000Z

    We investigate the origins of salt damage in sandstones for the two most common salts: sodium chloride and sulfate. The results show that the observed difference in damage between the two salts is directly related to the kinetics of crystallization and the interfacial properties of the salt solutions and crystals with respect to the stone. We show that, for sodium sulfate, the existence of hydrated and anhydrous crystals and specifically their dissolution and crystallization kinetics are responsible for the damage. Using magnetic resonance imaging and optical microscopy we show that when water imbibes sodium sulfate contaminated sandstones, followed by drying at room temperature, large damage occurs in regions where pores are fully filled with salts. After partial dissolution, anhydrous sodium sulfate salt present in these regions gives rise to a very rapid growth of the hydrated phase of sulfate in the form of clusters that form on or close to the remaining anhydrous microcrystals. The rapid growth of these clusters generates stresses in excess of the tensile strength of the stone leading to the damage. Sodium chloride only forms anhydrous crystals that consequently do not cause damage in the experiments.

  5. Plant salt-tolerance mechanisms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01T23:59:59.000Z

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore »and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  6. Plant salt-tolerance mechanisms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01T23:59:59.000Z

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  7. Characterization of bedded salt for storage caverns -- A case study from the Midland Basin, Texas

    SciTech Connect (OSTI)

    Hovorka, Susan D.; Nava, Robin

    2000-06-13T23:59:59.000Z

    The geometry of Permian bedding salt in the Midland Basin is a product of interaction between depositional facies and postdepositional modification by salt dissolution. Mapping high-frequency cycle patterns in cross section and map view using wireline logs documents the salt geometry. Geologically based interpretation of depositional and dissolution processes provides a powerful tool for mapping and geometry of salt to assess the suitability of sites for development of solution-mined storage caverns. In addition, this process-based description of salt geometry complements existing data about the evolution of one of the best-known sedimentary basins in the world, and can serve as a genetic model to assist in interpreting other salts.

  8. Independent Oversight Assessment, Salt Waste Processing Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department...

  9. Sandia National Laboratories: molten salt test loop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molten salt test loop Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy...

  10. Topology of desiccation crack patterns in clay and invariance of crack interface area with thickness

    E-Print Network [OSTI]

    Tajkera Khatun; Tapati Dutta; Sujata Tarafdar

    2014-12-09T23:59:59.000Z

    We study the crack patterns developed on desiccating films of an aqueous colloidal suspension of bentonite on a glass substrate. Varying the thickness of the layer $h$ gives the following new and interesting results: (i)We identify a critical thickness $h_{c}$, above which isolated cracks join each other to form a fully connected network. A topological analysis of the crack network shows that the Euler number falls to a minimum at $h_{c}$. (ii) We find further, that the total vertical surface area of the clay $A_v$, which has opened up due to cracking, is a constant independent of the layer thickness for $h \\geq h_c$. (iii) The total area of the glass substrate $A_s$, exposed by the hierarchical sequence of cracks is also a constant for $h \\geq h_c$. These results are shown to be consistent with a simple energy conservation argument, neglecting dissipative losses. (iv) Finally we show that if the crack pattern is viewed at successively finer resolution, the total cumulative area of cracks visible at a certain resolution, scales with the layer thickness. A suspension of Laponite in methanol is found to exhibit similar salient features (i)-(iv), though in this case the crack initiation process for very thin layers is quite different.

  11. BYU Salt Lake Center Financial Aid Program

    E-Print Network [OSTI]

    Martinez, Tony R.

    BYU Salt Lake Center Financial Aid Program 2011 A financial aid program of the Brigham Young University Division of Continuing Education BYU Salt Lake Center 345 West North Temple Street 3 Triad Center Salt Lake City, UT 84180 Fax: (801) 933­9456 Email: slc@byu.edu #12;BYU Salt Lake Center Financial Aid

  12. BYU Salt Lake Center Financial Aid Program

    E-Print Network [OSTI]

    Olsen Jr., Dan R.

    BYU Salt Lake Center Financial Aid Program 2013 A financial aid program of the Brigham Young University Division of Continuing Education BYU Salt Lake Center 345 West North Temple Street 3 Triad Center Salt Lake City, UT 84180 Fax: (801) 933­9456 Email: slc@byu.edu #12;BYU Salt Lake Center Financial Aid

  13. BYU Salt Lake Center Financial Aid Program

    E-Print Network [OSTI]

    Hart, Gus

    BYU Salt Lake Center Financial Aid Program 2014 A financial aid program of the Brigham Young University Division of Continuing Education BYU Salt Lake Center 345 West North Temple Street 3 Triad Center Salt Lake City, UT 84180 Fax: (801) 933­9456 Email: slc@byu.edu #12;BYU Salt Lake Center Financial Aid

  14. BYU Salt Lake Center Financial Aid Program

    E-Print Network [OSTI]

    Hart, Gus

    BYU Salt Lake Center Financial Aid Program 2012 A financial aid program of the Brigham Young University Division of Continuing Education BYU Salt Lake Center 345 West North Temple Street 3 Triad Center Salt Lake City, UT 84180 Fax: (801) 933­9456 Email: slc@byu.edu #12;BYU Salt Lake Center Financial Aid

  15. NAME: Salt Creek Estuary Restoration LOCATION: Salt Creek Watershed, Clallam County, Washington

    E-Print Network [OSTI]

    US Army Corps of Engineers

    NAME: Salt Creek Estuary Restoration LOCATION: Salt Creek Watershed, Clallam County, Washington Federal funds $0 PROJECT DESCRIPTION: The Salt Creek Estuary Reconnection project will significantly enhance tidal and fluvial hydrology to 22.5 acres of salt marsh, which will return the salt marsh to its

  16. LIFE Materails: Molten-Salt Fuels Volume 8

    SciTech Connect (OSTI)

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11T23:59:59.000Z

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  17. Cite this: DOI: 10.1039/c3lc41271g A Microfluidic Platform for Evaporation-based Salt

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Cite this: DOI: 10.1039/c3lc41271g A Microfluidic Platform for Evaporation-based Salt Screening,b Yuchuan Gong*b and Paul J. A. Kenis*a We describe a microfluidic platform to screen for salt forms of PC and salt former solutions in a 24-well array (y200 nL/well), which is a drastic reduction

  18. Solvent wash solution

    DOE Patents [OSTI]

    Neace, J.C.

    1984-03-13T23:59:59.000Z

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  19. Solvent wash solution

    DOE Patents [OSTI]

    Neace, James C. (Blackville, SC)

    1986-01-01T23:59:59.000Z

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  20. Fracture and Healing of Rock Salt Related to Salt Caverns

    SciTech Connect (OSTI)

    Chan, K.S.; Fossum, A.F.; Munson, D.E.

    1999-03-01T23:59:59.000Z

    In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in cavern sealing and operation. The MDCF model is used in three simulations of field experiments in which indirect measures were obtained of the generation of damage. The results of the simulations help to verify the model and suggest that the model captures the correct fracture behavior of rock salt. The model is used in this work to estimate the generation and location of damage around a cylindrical storage cavern. The results are interesting because stress conditions around the cylindrical cavern do not lead to large amounts of damage. Moreover, the damage is such that general failure can not readily occur, nor does the extent of the damage suggest possible increased permeation when the surrounding salt is impermeable.

  1. Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs

    SciTech Connect (OSTI)

    Veil, J.A. [Argonne National Lab., Washington, DC (United States). Water Policy Program

    1997-10-01T23:59:59.000Z

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  2. Natural gas storage in bedded salt formations

    SciTech Connect (OSTI)

    Macha, G.

    1996-09-01T23:59:59.000Z

    In 1990 Western Resources Inc. (WRI) identified the need for additional natural gas storage capacity for its intrastate natural gas system operated in the state of Kansas. Western Resources primary need was identified as peak day deliverability with annual storage balancing a secondary objective. Consequently, an underground bedded salt storage facility, Yaggy Storage Field, was developed and placed in operation in November 1993. The current working capacity of the new field is 2.1 BCF. Seventy individual caverns are in service on the 300 acre site. The caverns vary in size from 310,000 CF to 2,600,000 CF. Additional capacity can be added on the existing acreage by increasing the size of some of the smaller existing caverns by further solution mining and by development of an additional 30 potential well sites on the property.

  3. Salt Stress in Desulfovibrio vulgaris Hildenborough: An integrated genomics approach

    E-Print Network [OSTI]

    Mukhopadhyay, Aindrila

    2010-01-01T23:59:59.000Z

    machinery against salt-induced damage in Synechococcus.Lactobacillus plantarum to salt and nonelectrolyte stress. Jregulation of acid, heat, and salt tolerance in Escherichia

  4. Salt Dynamics in Non-Riparian Freshwater Wetlands

    E-Print Network [OSTI]

    Stacey, Mark T

    2007-01-01T23:59:59.000Z

    Resources Center Project “Salt Dynamics in Non-RiparianTechnical Completion Report “Salt Dynamics in Non-Riparianindicate that the flux of salt between the soil and water

  5. Production of chlorine from chloride salts

    DOE Patents [OSTI]

    Rohrmann, Charles A. (Kennewick, WA)

    1981-01-01T23:59:59.000Z

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  6. Desiccant-based, heat actuated cooling assessment for DHC systems; Quarterly report, August 1, 1989--October 31, 1989

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.; Becker, F.E.

    1989-01-01T23:59:59.000Z

    This is Second Quarterly Report for DOE Project {number_sign} FG01-89CE26593 entitled: ``Desiccant-Based, Heat Actuated Cooling Assessment for DHC Systems.`` The goal of the project is to perform a conceptual design, systems analysis and case study evaluation of a application of a desiccant based cooling design within a district heating and cooling system. This Quarterly Report covers project work conducted from August 1, 1989 to October 31, 1989. The goals of the project have their basis in the desire to lower the operating temperature of the transport medium in a district heating system, but still enable cooling via that transport medium. At this time a district heating and cooling system must use a four-pipe heating ad cooling delivery system -- two pipes for hot water supply and return and two pipes for chilled water supply and return if both heating and cooling are to be provided. Unfortunately, such a four-pipe system is expensive, especially for existing D. H. systems that already have a two-pipe system installed. 1 fig.

  7. Desiccant-based, heat actuated cooling assessment for DHC systems; Quarterly report, November 1, 1989--January 31, 1990

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.; Becker, F.E.

    1990-01-01T23:59:59.000Z

    This is the Third Quarterly Report for DOE Project Number FG01- 89CE26593 entitled: ``Desiccant-Based, Heat Actuated Cooling Assessment for DHC Systems.`` The goal of the project is to perform a conceptual design, systems analysis and case study evaluation of an application of a desiccant based cooling design within a district heating and cooling system. This Quarterly Report covers project work conducted from November 1, 1989 to January 31, 1990. The goals of the project have their basis in the desire to lower the operating temperature of the transport medium in a district heating system, but still enable cooling via that transport medium. At this time a district heating and cooling system must use a four-pipe heating and cooling delivery system -- two pipes for hot water supply and return and two pipes for chilled water supply and return if both heating and cooling are to be provided. Unfortunately, such a four-pipe system is expensive, especially for existing D. H. systems that already have a two-pipe system installed. 36 figs.

  8. Field Demonstration of Active Desiccant Modules Designed to Integrate with Standard Unitary Rooftop Package Equipment - Final Report: Phase 3

    SciTech Connect (OSTI)

    Fischer, J

    2004-03-15T23:59:59.000Z

    This report summarizes the investigation of two active desiccant module (ADM) pilot site installations initiated in 2001. Both pilot installations were retrofits at existing facilities served by conventional heating, ventilating, and air-conditioning (HVAC) systems that had encountered frequent humidity control, indoor air quality (IAQ), and other operational problems. Each installation involved combining a SEMCO, Inc., ADM (as described in Fischer and Sand 2002) with a standard packaged rooftop unit built by the Trane Company. A direct digital control (DDC) system integral to the ADM performed the dual function of controlling the ADM/rooftop combination and facilitating data collection, trending, and remote performance monitoring. The first installation involved providing preconditioned outdoor air to replace air exhausted from the large kitchen hood and bathrooms of a Hooters restaurant located in Rome, Georgia. This facility had previously added an additional rooftop unit in an attempt to achieve occupant comfort without success. The second involved conditioning the outdoor air delivered to each room of a wing of the Mountain Creek Inn at the Callaway Gardens resort. This hotel, designed in the ''motor lodge'' format with each room opening to the outdoors, is located in southwest Georgia. Controlling the space humidity always presented a serious challenge. Uncomfortable conditions and musty odors had caused many guests to request to move to other areas within the resort. This is the first field demonstration performed by Oak Ridge National Laboratory where significant energy savings, operating cost savings, and dramatically improved indoor environmental conditions can all be claimed as the results of a retrofit desiccant equipment field installation. The ADM/rooftop combination installed at the restaurant resulted in a reduction of about 34% in the electricity used by the building's air-conditioning system. This represents a reduction of approximately 15% in overall electrical energy consumption and a 12.5-kW reduction in peak demand. The cost of gas used for regeneration of the desiccant wheel over this period of time is estimated to be only $740, using a gas cost of $0.50 per therm--the summer rate in 2001. The estimated net savings is $5400 annually, resulting in a 1-2 year payback. It is likely that similar energy/cost savings were realized at the Callaway Gardens hotel. In this installation, however, a central plant supplied the chilled water serving fan coil units in the hotel wing retrofitted with the ADM, so it was not metered separately. Consequently, the owner could not provide actual energy consumption data specific to the facility. The energy and operating cost savings at both sites are directly attributable to higher cooling-season thermostat settings and decreased conventional system run times. These field installations were selected as an immediate and appropriate response to correct indoor humidity and fresh air ventilation problems being experienced by building occupants and owners, so no rigorous baseline-building vs. test-building energy use/operating cost savings results can be presented. The report presents several simulated comparisons between the ADM/roof HVAC approach and other equipment combinations, where both desiccant and conventional systems are modeled to provide comparable fresh air ventilation rates and indoor humidity levels. The results obtained from these simulations demonstrate convincingly the energy and operating cost savings obtainable with this hybrid desiccant/vapor-compression technology, verifying those actually seen at the pilot installations. The ADM approach is less expensive than conventional alternatives providing similar performance and indoor air quality and provides a very favorable payback (1 year or so) compared with oversized rooftop units that cannot be operated effectively with the necessary high outdoor air percentages.

  9. Transient nature of salt movement with wetting front in an unsaturated soil

    E-Print Network [OSTI]

    Soman, Vishwas Vinayak

    1992-01-01T23:59:59.000Z

    from unit area of soil (me/sq. m), () is moisture content of the soil layer at time of extraction for salt (cc/cc), Co is initial average salt concentration in the soil solution at moisture content 8 (me/liter) and C1 is average concentration...TRANSIENT NATURE OF SALT MOVEMENT WITH WETTING FRONT IN AN UNSATURATED SOIL A Thesis bY VISHWAS VINAYAK SOMAN Submitted to the Office of Graduate Studies of Texas A&M UniversitY in partial fulfillment of the requirements for the degree...

  10. Salt dome discoveries mounting in Mississippi

    SciTech Connect (OSTI)

    Ericksen, R.L. [Mississippi Office of Geology, Jackson, MS (United States)

    1996-06-17T23:59:59.000Z

    Exploratory drilling around piercement salt domes in Mississippi has met with a string of successes in recent months. Exploration of these salt features is reported to have been initiated through the review of non-proprietary, 2D seismic data and subsurface control. This preliminary data and work were then selectively upgraded by the acquisition of additional, generally higher quality, conventional 2D seismic lines. This current flurry of successful exploration and ensuing development drilling by Amerada Hess Corp. on the flanks of salt domes in Mississippi has resulted in a number of significant Hosston discoveries/producers at: Carson salt dome in Jefferson Davis County; Dry Creek salt dome in Covington County, Midway salt dome in lamar County, Monticello salt dome in Lawrence County, and Prentiss salt dome in Jefferson Davis County. The resulting production from these fields is gas and condensate, with wells being completed on 640 acre production units.

  11. Chloride Depletion in Aged Sea Salt Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chloride Depletion in Aged Sea Salt Particles Chloride Depletion in Aged Sea Salt Particles Print Wednesday, 06 February 2013 00:00 Particles or aerosols can be directly released...

  12. Salt index of potassium phosphate fertilizers and its relation to germination and early plant growth of field crops

    E-Print Network [OSTI]

    Freeouf, Jerry Allen

    1975-01-01T23:59:59.000Z

    determined by the displacement of soil solutions that are in equilibrium with applied fertilizer salts. This procedure is time consuming and requires extraction of large quantities of soil in leaching columns to obtain the soil solution. Although... SALT INDEX OF POTASSIUM PHOSPHATE FERTILIZERS AND ITS RELATION TO GERMINATION AND EARLY PLANT GROWTH OF FIELD CROPS A Thesis by JERRY ALLEN FREEOUF Submitted to the Graduate College of Texas A&M University in partial fulfillment...

  13. First Robert Stobie SALT Workshop Science with SALT Workshop Proceedings, Vol. 2, 2004

    E-Print Network [OSTI]

    Bershady, Matthew A.

    First Robert Stobie SALT Workshop Science with SALT Workshop Proceedings, Vol. 2, 2004 D.A.H. Buckley Galaxy Kinematics with SALT M. A. Bershady1, M. A. W. Verheijen2, D. R. Andersen3, R. A. Swaters4-gathering power of SALT coupled with the high-throughput performance of the Prime Focus Imaging Spec- trograph

  14. Disparities in Salt Lake County and Salt Lake City Mortgage Outcomes and

    E-Print Network [OSTI]

    Feschotte, Cedric

    Disparities in Salt Lake County and Salt Lake City Mortgage Outcomes and Lending Practices Darius of lending practices. This article is an adapted excerpt from the Salt Lake County Regional Analysis impediments in the home mortgage application process. The HMDA data from 2006 to 2011 were compiled for Salt

  15. Salt marsh geomorphology: Physical and ecological effects on landform Keywords: salt marsh geomorphology; AGU Chapman Conference

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    Editorial Salt marsh geomorphology: Physical and ecological effects on landform Keywords: salt marsh geomorphology; AGU Chapman Conference Evidence that the three-dimensional structure of salt marsh, and the ratio of marsh edge:marsh interior have all been shown to affect the distribution and density of salt

  16. 8, 7194, 2008 Sea salt aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 71­94, 2008 Sea salt aerosol refractive indices R. Irshad et al. Title Page Abstract Discussions Laboratory measurements of the optical properties of sea salt aerosol R. Irshad 1 , R. G. Grainger salt aerosol refractive indices R. Irshad et al. Title Page Abstract Introduction Conclusions

  17. Petroleum storage potential of the Chacahoula salt dome, Louisiana

    SciTech Connect (OSTI)

    Magorian, T.R. (Magorian (Thomas R.), Amherst, NY (USA)); Neal, J.T. (Sandia National Labs., Albuquerque, NM (USA))

    1990-01-01T23:59:59.000Z

    Chacahoula salt dome, eight miles southwest of Thibodaux, LA, could be solution mined to create caverns for storing as much as 500 million barrels (MMB) of crude oil, should the Strategic Petroleum Reserve (SPR) require additional storage volume. The salt mass geometry is confirmed by more than 50 oil wells, and also from previous exploratory drilling for sulphur. Top of salt occurs at {minus}1100 ft, and some 1300 acres exist within the {minus}2000 ft salt contour. Frasch mining of 1.35 million long tons of sulphur caused the surface to subside about one foot on the northeastern part of the dome. Creep-induced subsidence averaging {approximately}2.7 ft over 30 yrs is estimated for a 200 MMB cavern array, which would require perimeter diking to control localized perennial flooding. Earthquakes approaching intensity MM 6 have occurred nearby and are expected to recur on the order of {approximately}100 yrs but would not affect cavern stability. Additional study of brine disposal methods and hurricane surge probabilities are needed to establish design parameters and cost estimates for storage. 11 refs., 8 figs., 2 tabs.

  18. Solution Package Scope Definition, Report 72, Salt Waste (SP #72) |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transfer toSensorSoftware Helps KentuckyRenewableDepartment of

  19. Dry Creek salt dome, Mississippi Interior Salt basin

    SciTech Connect (OSTI)

    Montgomery, S.L.; Ericksen, R.L.

    1997-03-01T23:59:59.000Z

    Recent drilling of salt dome flanks in the Mississippi Salt basin has resulted in important new discoveries and the opening of a frontier play. This play is focused on gas/condensate reserves in several Cretaceous formations, most notably the Upper Cretaceous Eutaw and lower Tuscaloosa intervals and Lower Cretaceous Paluxy and Hosston formations. As many as eight domes have been drilled thus far; sandstones in the upper Hosston Formation comprise the primary target. Production has been as high as 3-5 Mcf and 500-1200 bbl of condensate per day, with estimated ultimate reserves in the range of 0.2 to 1.5 MBOE (million barrels oil equivalent) per well. As typified by discovery at Dry Creek salt dome, traps are related to faulting, unconformities, and updip loss of permeability. Previous drilling at Dry Creek, and in the basin generally, avoided the flank areas of most domes, due to geologic models that predicted latestage (Tertiary) piercement and breached accumulations. Recent data from Dry Creek and other productive domes suggest that growth was episodic and that piercement of Tertiary strata did not affect deeper reservoirs charged with hydrocarbons in the Late Cretaceous.

  20. Radar investigation of the Hockley salt dome

    E-Print Network [OSTI]

    Hluchanek, James Andrew

    1973-01-01T23:59:59.000Z

    : Geophysics RADAR INVESTIGATION OF THE HOCKLEY SALT DOME A Thesis by UAMES ANDREW HLUCHANEK A'pproved as to style and content by: (Head of Departme t ? Member) May 1. 973 ABSTRACT Radar investigation of the Hockley Salt Dome. . (Nay, 1973) James... Andrew Hluchanek, B. S. , Texas A&M University Directed by: Dr. Robert R. Unterberger Radar probing through salt was accomplished at 17 radar stations established in the United Salt Company mine at Hockley, Texas. The top of the salt dom is mapped...

  1. Thermophysical properties of reconsolidating crushed salt.

    SciTech Connect (OSTI)

    Bauer, Stephen J.; Urquhart, Alexander

    2014-03-01T23:59:59.000Z

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature up to 300oC, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.

  2. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns

    SciTech Connect (OSTI)

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

    1996-06-01T23:59:59.000Z

    Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

  3. Interior cavern conditions and salt fall potential

    SciTech Connect (OSTI)

    Munson, D.E.; Molecke, M.A. [Sandia National Labs., Albuquerque, NM (United States); Myers, R.E. [Strategic Petroleum Reserve, New Orleans, LA (United States)

    1998-03-01T23:59:59.000Z

    A relatively large number of salt caverns are used for fluid hydrocarbon storage, including an extensive set of facilities in the Gulf Coast salt domes for the Strategic Petroleum Reserve (SPR) Program. Attention is focused on the SPR caverns because of available histories that detail events involving loss and damage of the hanging string casing. The total number of events is limited, making the database statistically sparse. The occurrence of the events is not evenly distributed, with some facilities, and some caverns, more susceptible than others. While not all of these events could be attributed to impacts from salt falls, many did show the evidence of such impacts. As a result, a study has been completed to analyze the potential for salt falls in the SPR storage caverns. In this process, it was also possible to deduce some of the cavern interior conditions. Storage caverns are very large systems in which many factors could possibly play a part in casing damage. In this study, all of the potentially important factors such as salt dome geology, operational details, and material characteristics were considered, with all being logically evaluated and most being determined as secondary in nature. As a result of the study, it appears that a principal factor in determining a propensity for casing damage from salt falls is the creep and fracture characteristics of salt in individual caverns. In addition the fracture depends strongly upon the concentration of impurity particles in the salt. Although direct observation of cavern conditions is not possible, the average impurity concentration and the accumulation of salt fall material can be determined. When this is done, there is a reasonable correlation between the propensity for a cavern to show casing damage events and accumulation of salt fall material. The accumulation volumes of salt fall material can be extremely large, indicating that only a few of the salt falls are large enough to cause impact damage.

  4. Molten fluoride fuel salt chemistry

    SciTech Connect (OSTI)

    Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1994-09-01T23:59:59.000Z

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Fission product behavior is described along with processing experience. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior, processing and recycle of the fuel components is a necessary factor if future systems are to be established.

  5. Factors influencing algal biomass in hydrologically dynamic salt ponds in a subtropical salt marsh

    E-Print Network [OSTI]

    Miller, Carrie J.

    2009-05-15T23:59:59.000Z

    by channels and shallow ponds that are subject to flooding by winds, tides, and storm surges. Coastal salt marshes are widely regarded as zones of high macrophyte productivity. However, microalgae may contribute more to salt marsh productivity than previously...

  6. Noncentrosymmetric salt inclusion oxides: Role of salt lattices and counter ions in bulk polarity

    SciTech Connect (OSTI)

    West, J. Palmer [Department of Chemistry, Clemson University, Clemson, SC 29634-0973 (United States)] [Department of Chemistry, Clemson University, Clemson, SC 29634-0973 (United States); Hwu, Shiou-Jyh, E-mail: shwu@clemson.edu [Department of Chemistry, Clemson University, Clemson, SC 29634-0973 (United States)] [Department of Chemistry, Clemson University, Clemson, SC 29634-0973 (United States)

    2012-11-15T23:59:59.000Z

    The synthesis and structural features of a newly emerged class of salt-inclusion solids (SISs) are reviewed. The descriptive chemistry with respect to the role of ionic salt and its correlation with bulk noncentrosymmetricity and polarity of the covalent oxide lattice in question is discussed by means of structure analysis. These unprecedented discoveries have opened doors to novel materials synthesis via the utilities of salt-inclusion chemistry (SIC) that are otherwise known as the molten-salt approach. The result of these investigations prove that the bulk acentricity, or cancellation of which, can be accounted for from the perspective of ionic and/or salt lattices. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of newly emerged salt-inclusion solids are reviewed. Black-Right-Pointing-Pointer Salt lattice and its symmetry correlation with polar framework are discussed. Black-Right-Pointing-Pointer Preservation of acentricity is accounted for from the perspective of ionic and salt lattices.

  7. Solubility of hydrocarbons in salt water

    SciTech Connect (OSTI)

    Yaws, C.L.; Lin, X. (Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering)

    1994-01-01T23:59:59.000Z

    In the design and operation of industrial processes, physical and thermodynamic property data are required. Increasingly stringent regulations are making water solubility of substances even more critical. Water solubility data of naphthenes, or cycloalkanes, is applicable for the complete range of salt concentrations, including water without salt to water saturated with salt. The results are intended for use in initial engineering and environmental applications. Solubility values from the correlation are useful in determining the distribution of a hydrocarbon spill on its contact with sea water. Solubility values at other salt concentrations also may be computed. Results are presented for water solubility of hydrocarbons (naphthenes) as a function of salt concentration (log(S) = A + BX + CX[sup 2]). The correlation constants, A, B and C, are displayed in an easy-to-use tabular format that is applicable for rapid engineering use with the personal computer or hand-held calculator. The results for solubility in salt water are applicable for the complete range of salt concentrations. This range covers water without salt, X = 0, to water saturated with salt, X = 358,700 ppM(wt). Correlation and experimental results are in favorable agreement.

  8. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05T23:59:59.000Z

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  9. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Xu, Wu (Tempe, AZ)

    2008-01-01T23:59:59.000Z

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  10. Granular Salt Summary: Reconsolidation Principles and Applications

    SciTech Connect (OSTI)

    Hansen, Frank; Popp, Till; Wieczorek, Klaus; Stührenberg, Dieter

    2014-07-01T23:59:59.000Z

    The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.

  11. Multiphase Flow and Cavern Abandonment in Salt

    SciTech Connect (OSTI)

    Ehgartner, Brian; Tidwell, Vince

    2001-02-13T23:59:59.000Z

    This report will explore the hypothesis that an underground cavity in gassy salt will eventually be gas filled as is observed on a small scale in some naturally occurring salt inclusions. First, a summary is presented on what is known about gas occurrences, flow mechanisms, and cavern behavior after abandonment. Then, background information is synthesized into theory on how gas can fill a cavern and simultaneously displace cavern fluids into the surrounding salt. Lastly, two-phase (gas and brine) flow visualization experiments are presented that demonstrate some of the associated flow mechanisms and support the theory and hypothesis that a cavity in salt can become gas filled after plugging and abandonment

  12. Orientationally ordered aggregates of stiff polyelectrolytes in the presence of multivalent salt

    E-Print Network [OSTI]

    Sarah Mohammadinejad; Hossein Fazli; Ramin Golestanian

    2009-03-25T23:59:59.000Z

    Aggregation of stiff polyelectrolytes in solution and angle- and distance-dependent potential of mean force between two like-charged rods are studied in the presence of 3-valent salt using molecular dynamics simulations. In the bulk solution, formation of long-lived metastable structures with similarities to the raft-like structures of actin filaments is observed within a range of salt concentration. The system finally goes to a state with lower free energy in which finite-sized bundles of parallel polyelectrolytes form. Preferred angle and interaction type between two like-charged rods at different separations and salt concentrations are also studied, which shed some light on the formation of orientationally ordered structures.

  13. Open cycle liquid desiccant dehumidifier and hybrid solar/electric absorption refrigeration system. Annual report, January 1993--December 1993. Calendar year 1993

    SciTech Connect (OSTI)

    Nimmo, B.G.; Thornbloom, M.D.

    1995-04-01T23:59:59.000Z

    This annual report presents work performed during calendar year 1993 by the Florida Solar Energy Center under contract to the US Department of Energy. Two distinctively different solar powered indoor climate control systems were analyzed: the open cycle liquid desiccant dehumidifier, and an improved efficiency absorption system which may be fired by flat plate solar collectors. Both tasks represent new directions relative to prior FSEC research in Solar Cooling and Dehumidification.

  14. Ketone Production from the Thermal Decomposition of Carboxylate Salts 

    E-Print Network [OSTI]

    Landoll, Michael 1984-

    2012-08-15T23:59:59.000Z

    . Mixtures of calcium carboxylate salts were thermally decomposed at 450 degrees C. Low lime-to-salt ratios (g Ca(OH)2/g salt) of 0.00134 and less had a negligible effect on ketone yield. In contrast, salts with higher lime-to-salt ratios of 0.00461, 0.0190...

  15. District Heating and Cooling Technology Development Program: Phase 2, Investigation of reduced-cost heat-actuated desiccant cooling systems for DHC applications

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.A.; Becker, F.E.

    1992-02-01T23:59:59.000Z

    A detailed assessment has been completed of the use of desiccant-based customer-sited heat-actuated cooling for District Heating and Cooling (DHC) systems, showing that introduction of a reduced-cost desiccant cooling system would result in widespread market penetration. This program consisted of three principal components: a market study of existing and future reduced-cost liquid desiccant cooling (LDC) systems; an examination of the installed costs of these existing and reduced-cost LDC systems; and four detailed case studies. Both the installed cost and equivalent chilled water cost of existing large LDC systems were found to be quite competitive with district chilled water, while the high capital cost of small LDC systems made them more expensive than district chilled water. Potential total system sales in this existing large-scale LDC market are quite low, since most of the market for DHC space conditioning is in smaller equipment sizes. Cost savings realized from producing a reduced-cost LDC system would result in small LDC systems (sized well below 6,000 cfm) becoming competitive with the current range of district chilled water costs.

  16. Mining Induced Seismicity -Monitoring of a Large Scale Salt Cavern Collapse

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Mining Induced Seismicity - Monitoring of a Large Scale Salt Cavern Collapse E. Klein* (Ineris), I ground failure phenomenon induced by old underground mining works, a field experiment was undertaken in collaboration with the SOLVAY mining company: a solution mine was instrumented in 2004 previously to its

  17. Field Test and Performance Verification: Integrated Active Desiccant Rooftop Hybrid System Installed in a School - Final Report: Phase 4A

    SciTech Connect (OSTI)

    Fischer, J

    2005-12-21T23:59:59.000Z

    This report summarizes the results of a field verification pilot site investigation that involved the installation of a hybrid integrated active desiccant/vapor-compression rooftop heating, ventilation, and air-conditioning (HVAC) unit at an elementary school in the Atlanta Georgia area. For years, the school had experienced serious humidity and indoor air quality (IAQ) problems that had resulted in occupant complaints and microbial (mold) remediation. The outdoor air louvers of the original HVAC units had been closed in an attempt to improve humidity control within the space. The existing vapor compression variable air volume system was replaced by the integrated active desiccant rooftop (IADR) system that was described in detail in an Oak Ridge National Laboratory (ORNL) report published in 2004 (Fischer and Sand 2004). The IADR system and all space conditions have been monitored remotely for more than a year. The hybrid system was able to maintain both the space temperature and humidity as desired while delivering the outdoor air ventilation rate required by American Society of Heating, Refrigerating and Air-Conditioning Engineers Standard 62. The performance level of the IADR unit and the overall system energy efficiency was measured and found to be very high. A comprehensive IAQ investigation was completed by the Georgia Tech Research Institute before and after the system retrofit. Before-and-after data resulting from this investigation confirmed a significant improvement in IAQ, humidity control, and occupant comfort. These observations were reported by building occupants and are echoed in a letter to ORNL from the school district energy manager. The IADR system was easily retrofitted in place of the original rooftop system using a custom curb adapter. All work was completed in-house by the school's maintenance staff over one weekend. A subsequent cost analysis completed for the school district by the design engineer of record concluded that the IADR system being investigated was actually less expensive to install than other less-efficient options, most of which were unable to deliver the required ventilation while maintaining the desired space humidity levels.

  18. Metal salt catalysts for enhancing hydrogen spillover

    DOE Patents [OSTI]

    Yang, Ralph T; Wang, Yuhe

    2013-04-23T23:59:59.000Z

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  19. Modeling of Porous Electrodes in Molten-Salt Systems

    E-Print Network [OSTI]

    Newman, John

    1986-01-01T23:59:59.000Z

    of Porous Electrodes in Molten-Salt Systems^ John Newmanon High-Temperature Molten Salt B a t - teries, Argonneby the modeling of molten-salt cells, including some

  20. THE MECHANISM OF INTRAGRANULAR MIGRATION OF BRINE INCLUSIONS IN SALT

    E-Print Network [OSTI]

    Machiels, A.J.

    2010-01-01T23:59:59.000Z

    of Brine Inclusions in a Salt Repository", ORM. -5526 (JulyOF BRINE INCLUSIONS IN SALT A.J. Machiels, S. Yagnik, D.R.OF BRINE INCLUSIONS IN SALT by A.J. Machiels S. Yagnik D.R.

  1. Neutrinoless Double Beta Decay in Light of SNO Salt Data

    E-Print Network [OSTI]

    Murayama, Hitoshi

    2009-01-01T23:59:59.000Z

    Beta Decay in Light of SNO Salt Data Hitoshi Murayama andBeta Decay in Light of SNO Salt Data Hitoshi Murayama ? andIn the SNO data from its salt run, probably the most signi?

  2. THERMAL GRADIENT MIGRATION OF BRINE INCLUSIONS IN SALT

    E-Print Network [OSTI]

    Yagnik, S.K.

    2010-01-01T23:59:59.000Z

    OF BRINE INCLUSIONS IN SALT Suresh K. Yagnik February 1982 TOF BRINE INCLUSIONS IN SALT by Suresh K. Yagnik Materialsb u i l t in future. The salt deposits, however, are known

  3. Advances in alleviating growth limitations of maize under salt stress

    E-Print Network [OSTI]

    Schubert, Sven

    2009-01-01T23:59:59.000Z

    during the first phase of salt stress. J. Appl. Bot. 2004;during the first phase of salt stress. J. Plant Nutr. SoilC, Hartung W, Schubert S. Salt resistance is determined by

  4. Salt glacier and composite sediment-salt glacier models for the emplacement and early burial of allochthonous salt sheets

    SciTech Connect (OSTI)

    Fletcher, R.C.; Hudec, M.R.; Watson, I.A. [Exxon Production Research Company, Houston, TX (United States)

    1996-12-31T23:59:59.000Z

    Allochthonous salt sheets in the northern Gulf of Mexico were emplaced as extrusive {open_quotes}salt glaciers{close_quotes} at the sediment-water interface. Massive dissolution was suppressed by a thin carapace of pelagic sediments. During emplacement, several hundred meters of bathymetric relief restricted rapid sedimentation to outside the glacial margins. The glaciers acted as sediment dams, influencing the transport and deposition of sediment from an upslope source. Because of contemporaneous sedimentation, the base of the glaciers climbed upward in all directions away from their feeder stocks, and successive sedimentary horizons were truncated against it. The local slope at the base of the sheets is equal to the local rate of sedimentation divided by the local rate of salt advance. Alternating episodes of slow and rapid sedimentation gave rise to a basal salt surface of alternating flats and ramps, which are preserved. Many salt sheets have nearly circular map patterns but are strongly asymmetric. Feeder stocks occur near upslope edges, and base-of-salt slopes are greater updip of the feeder. The asymmetry is due to more rapid sedimentation at the upslope edge and to slower advance induced by the smaller hydraulic head between the salt fountain and the upslope edge compared to the downslope edge. Rapid emplacement of the Mickey salt sheet (Mitchell dome) from a preexisting salt stock took {approximately}4 m.y, as {approximately}1 km of sediment was deposited. A three-dimensional geomechanical model for the rapid salt emplacement yields the following relationship for the diapir`s downdip radius versus time: R(t) {approx} Mt{sup q} {approx} B[({rho} - {rho}{sub w})gK{sup 3} / {eta}]{sup 1/8}t{sup q}, where M, q, b, and K are constants related to salt supply into the sheet, {rho} and {rho}{sub w} are the densities of salt water, g is the acceleration of gravity, {eta} is salt viscosity, and t is a model time extrapolated back to zero sheet volume at t = 0.

  5. Black liquor viscosity reduction through salt additives: A novel environmentally benign processing alternative

    SciTech Connect (OSTI)

    Roberts, J.E.; Khan, S.A.; Spontak, R.J. [North Carolina State Univ., Raleigh, NC (United States)

    1996-10-01T23:59:59.000Z

    Processing black liquor at high solids would reduce SO{sub x} emissions, facilitate the use of non-chlorine bleaching techniques and enhance the energy efficiency of the pulping process. However, black liquor exhibits and exponential increase in viscosity as its solids content rises, thus hindering its processability in the composition range of interest (>70% solids). In this study, we present a new approach for controlling viscosity at high solids content by {open_quotes}salting in{close_quotes} black liquor through addition of thiocyanate salts. These salts increases the solubility of the polymer constituents in black liquor leading to a decrease in its viscosity. Several salts capable of viscosity reduction by as much as two orders of magnitude have been identified. The effects of cation size, solution pH and temperature on viscosity reduction is presented and interpreted in terms of the underlying principles of {open_quotes}salting in{close_quotes} and how it affects aqueous solution structure.

  6. Pore-scale dynamics of salt transport and distribution in drying porous media

    SciTech Connect (OSTI)

    Shokri, Nima, E-mail: nima.shokri@manchester.ac.uk [School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL (United Kingdom)] [School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-01-15T23:59:59.000Z

    Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, water quality, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI{sub 2} solution (5% concentration by mass) with a spatial and temporal resolution of 12 ?m and 30 min, respectively. Every time the drying sand column was set to be imaged, two different images were recorded using distinct synchrotron x-rays energies immediately above and below the K-edge value of Iodine. Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI{sub 2} concentration at pore scale. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow acting as evaporating spots. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. Higher salt concentration was observed close to the evaporating surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray tomography as an effective tool to investigate the dynamics of salt transport in porous media at high spatial and temporal resolution.

  7. Solar Policy Environment: Salt Lake

    Broader source: Energy.gov [DOE]

    The overall objective of the “Solar Salt Lake” (SSL) team is to develop a fully-scoped city and county-level implementation plan that will facilitate at least an additional ten megawatts of solar photovoltaic (PV) installations in the government, commercial, industrial, and residential sectors by 2015. To achieve this aggressive goal, the program strategy includes a combination of barrier identification, research, and policy analysis that utilizes the input of various stakeholders. Coupled with these activities will be the development and implementation of pilot installations in the government and residential sectors, and broad outreach to builders and potential practitioners of solar energy products in the process. In this way, while creating mechanisms to enable a demand for solar, SSL will also facilitate capacity building for suppliers, thereby helping to ensure long-term sustainability for the regional market.

  8. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc....

  9. Sandia National Laboratories: molten salt energy storage demonstration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molten salt energy storage demonstration Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power,...

  10. Enterprise Assessments Review of the Savannah River Site Salt...

    Energy Savers [EERE]

    the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans - June 2015 Enterprise Assessments Review of the Savannah River Site Salt Waste...

  11. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Broader source: Energy.gov (indexed) [DOE]

    of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants, seeks to determine whether the inorganic fluids (molten salts) offer a sufficient...

  12. Development Wells At Salt Wells Area (Nevada Bureau of Mines...

    Open Energy Info (EERE)

    Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Salt Wells Area...

  13. Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes...

  14. New lithium-based ionic liquid electrolytes that resist salt...

    Energy Savers [EERE]

    lithium-based ionic liquid electrolytes that resist salt concentration polarization New lithium-based ionic liquid electrolytes that resist salt concentration polarization...

  15. Effects of Carbonate Solvents and Lithium Salts on Morphology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode. Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic...

  16. Compound and Elemental Analysis At Salt Wells Area (Shevenell...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells...

  17. Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance...

    Open Energy Info (EERE)

    Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance To The Hydrocarbon Exploration In The Tuz Golu (Salt Lake) Basin, Central Anatolia, Turkey Jump to: navigation,...

  18. DOE - Office of Legacy Management -- Penn Salt Manufacturing...

    Office of Legacy Management (LM)

    Salt Manufacturing Co Whitemarsh Research Laboratories - PA 20 FUSRAP Considered Sites Site: PENN SALT MANUFACTURING CO., WHITEMARSH RESEARCH LABORATORIES (PA.20) Eliminated from...

  19. Characterization of Organic Coatings on Hygroscopic Salt Particles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Coatings on Hygroscopic Salt Particles and their Atmospheric Impacts. Characterization of Organic Coatings on Hygroscopic Salt Particles and their Atmospheric Impacts....

  20. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...

    Office of Environmental Management (EM)

    Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility October...

  1. asse ii salt: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  2. arutlus salt lake: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  3. avery island salt: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  4. awra salt lake: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  5. alkyl ammonium salts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  6. alkali salt deposition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  7. aluminium salt cakes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  8. aminodifluorosulfinium tetrafluoroborate salts: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  9. aqueous salt systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  10. aromatic diazonium salts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  11. alkyl ester salts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  12. allylic silanolate salts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  13. alternative salt processing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  14. Energy Department Completes Salt Coolant Material Transfer to...

    Office of Environmental Management (EM)

    Completes Salt Coolant Material Transfer to Czech Republic for Advanced Reactor Research Energy Department Completes Salt Coolant Material Transfer to Czech Republic for Advanced...

  15. Voluntary Protection Program Onsite Review, Salt Waste Processing...

    Broader source: Energy.gov (indexed) [DOE]

    Salt Waste Processing Facility Construction Project - February 2013 Voluntary Protection Program Onsite Review, Salt Waste Processing Facility Construction Project - February 2013...

  16. Voluntary Protection Program Onsite Review, Parsons Corp., Salt...

    Office of Environmental Management (EM)

    Parsons Corp., Salt Waste Processing Facility Construction Project - May 2014 Voluntary Protection Program Onsite Review, Parsons Corp., Salt Waste Processing Facility Construction...

  17. Correlation of Creep Behavior of Domal Salts

    SciTech Connect (OSTI)

    Munson, D.E.

    1999-02-16T23:59:59.000Z

    The experimentally determined creep responses of a number of domal salts have been reported in, the literature. Some of these creep results were obtained using standard (conventional) creep tests. However, more typically, the creep data have come from multistage creep tests, where the number of specimens available for testing was small. An incremental test uses abrupt changes in stress and temperature to produce several time increments (stages) of different creep conditions. Clearly, the ability to analyze these limited data and to correlate them with each other could be of considerable potential value in establishing the mechanical characteristics of salt domes, both generally and specifically. In any analysis, it is necessary to have a framework of rules to provide consistency. The basis for the framework is the Multimechanism-Deformation (M-D) constitutive model. This model utilizes considerable general knowledge of material creep deformation to supplement specific knowledge of the material response of salt. Because the creep of salt is controlled by just a few micromechanical mechanisms, regardless of the origin of the salt, certain of the material parameters are values that can be considered universal to salt. Actual data analysis utilizes the methodology developed for the Waste Isolation Pilot Plant (WIPP) program, and the response of a bedded pure WIPP salt as the baseline for comparison of the domal salts. Creep data from Weeks Island, Bryan Mound, West Hackberry, Bayou Choctaw, and Big Hill salt domes, which are all sites of Strategic Petroleum Reserve (SPR) storage caverns, were analyzed, as were data from the Avery Island, Moss Bluff, and Jennings salt domes. The analysis permits the parameter value sets for the domal salts to be determined in terms of the M-D model with various degrees of completeness. In turn this permits detailed numerical calculations simulating cavern response. Where the set is incomplete because of the sparse database, reasonable assumptions permit the set to be completed. From the analysis, two distinct response groups were evident, with the salts of one group measurably more creep resistant than the other group. Interestingly, these groups correspond well with the indirectly determined creep closure of the SPR storage caverns, a correlation that probably should be expected. Certainly, the results suggest a simple laboratory determination of the creep characteristics of a salt material from a dome site can indicate the relative behavior of any potential cavern placed within that dome.

  18. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

  19. Advanced heat exchanger development for molten salts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01T23:59:59.000Z

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet materialmore »in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically « less

  20. Salt Lake City- High Performance Buildings Requirement

    Broader source: Energy.gov [DOE]

    Salt Lake City's mayor issued an executive order in July 2005 requiring that all public buildings owned and controlled by the city be built or renovated to meet the requirements of LEED "silver"...

  1. Novel coordination geometries in fluoroaluminate salts

    SciTech Connect (OSTI)

    Herron, N.; Harlow, R.L.; Thorn, D.L. (E.I. du Pont de Nemours and Comp., Wilmington, DE (United States))

    1993-07-07T23:59:59.000Z

    Two tetramethylammonium salts of new fluoroaluminate species have been crystallographically characterized and reveal structural motifs previously unknown for such species. The elusive tetrahedral [AlF[sub 4][sup [minus

  2. Molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Pruneda, Cesar O. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  3. Molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

    1995-07-18T23:59:59.000Z

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

  4. Reversible electro-optic device employing aprotic molten salts and method

    DOE Patents [OSTI]

    Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM); Hall, Simon B. (Palmerston North, NZ)

    2008-01-08T23:59:59.000Z

    A single-compartment reversible mirror device having a solution of aprotic molten salt, at least one soluble metal-containing species comprising metal capable of being electrodeposited, and at least one anodic compound capable of being oxidized was prepared. The aprotic molten salt is liquid at room temperature and includes lithium and/or quaternary ammonium cations, and anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). A method for preparing substantially pure molten salts is also described.

  5. Reversible Electro-Optic Device Employing Aprotic Molten Salts And Method

    DOE Patents [OSTI]

    Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM); Hall, Simon B. (Palmerston North, NZ)

    2005-03-01T23:59:59.000Z

    A single-compartment reversible mirror device having a solution of aprotic molten salt, at least one soluble metal-containing species comprising metal capable of being electrodeposited, and at least one anodic compound capable of being oxidized was prepared. The aprotic molten salt is liquid at room temperature and includes lithium and/or quaternary ammonium cations, and anions selected from trifluoromethylsulfonate (CF.sub.3 SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3 SO.sub.2).sub.2 N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3 CF.sub.2 SO.sub.2).sub.2 N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3 SO.sub.2).sub.3 C.sup.-). A method for preparing substantially pure molten salts is also described.

  6. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    SciTech Connect (OSTI)

    Moore, David T.; Sai, Hiroaki; Wee Tan, Kwan; Estroff, Lara A.; Wiesner, Ulrich, E-mail: ubw1@cornell.edu [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States)

    2014-08-01T23:59:59.000Z

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films.

  7. SALT---Structured Assertion Language for Temporal Logic

    E-Print Network [OSTI]

    Leucker, Martin

    SALT---Structured Assertion Language for Temporal Logic Andreas Bauer, Martin Leucker,leucker,streit}@informatik.tu­muenchen.de Abstract. This paper presents Salt. Salt is a general purpose speci­ fication and assertion language other formalisms used for temporal specification of properties, Salt does not target a specific domain

  8. SALT--Structured Assertion Language for Temporal Logic

    E-Print Network [OSTI]

    SALT--Structured Assertion Language for Temporal Logic Andreas Bauer, Martin Leucker , and Jonathan,leucker,streit}@informatik.tu-muenchen.de Abstract. This paper presents Salt. Salt is a general purpose speci- fication and assertion language other formalisms used for temporal specification of properties, Salt does not target a specific domain

  9. SALT CREEK ROADWI-80North STADIUMDRIVE

    E-Print Network [OSTI]

    Powers, Robert

    thSt. 0thSt. 1thSt. 2thSt. 3thSt. 4thSt. . t. 10 SALT CREEK ROADWI-80North 10THSTREET 14THSTREET W STADIUM DRIVE PARKING GARAGE 9thSt. 10thSt. 11thSt. 12thSt. 13thSt. 14thSt. 16thSt. 10thSt. SALT CREEK

  10. Salt tolerance of grasses for range seeding

    E-Print Network [OSTI]

    Hartmann, Francis Stephen

    1973-01-01T23:59:59.000Z

    . 0 bars with polyethylene glycol. Emergence and rate of growth were measured for caryopses planted in an artificially salinized soil where the osmotic tensions of the saturated extract were the same as those of the salt solu- tions during..., chloride, and sulfate i n the saturated extract were measured by ti tration (Richards et al. , 1954). The mechanical analyses were taken from unpublished data of the Fanning et al. , 1965. Movement of salts was studied in Catarina, Montell...

  11. Salt Tolerance of Guayule (Parthenium argentatum).

    E-Print Network [OSTI]

    Miyamoto, S.; Davis, J.; Madrid, L.

    1990-01-01T23:59:59.000Z

    TDOC Z TA245 .7 8873 NO.1651 ---- Salt Tolerance of yUayu{e ~" y r , B -1651 The Texas Agricultural Experiment Station? Charles J. Arntzen, Director? The Texas A&M University System? College Station, Texas (Blank Pille In Origblll...BUUetlal? . "! . . . " k ? ..... . . - ... Salt Tolerance of Guayule (Parthenium argentatum) by s. Miyamoto J. Davis L. Madrid 1 1 Professor, former research technician, and graduate assistant, respectively, Texas A&M University Agricultural Research Center at EI...

  12. The Effect of Salt Water on Rice.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1909-01-01T23:59:59.000Z

    ERIME .-- - --- - -- BULLETIN NO. izz. June, 1909. THE EFFECT OF SALT WATE ON RICE, LAPS, Che Postoffice College Station, 1 --- Texas. TEXAS AGRICULTURAL EXPERIMENT S I'ATIONS. OFFICERS. GOVERNING BOARD. (Board of Directors A. and M... is Col- lege Station, Texas. Reports and bulletins are sent upon application to the Director. The Effect of Salt Water on Rice. . ...... By G. S. FRAPS. At some of the rice farms located near the coast, the amount of water lxml~etl is sometimes...

  13. Manning free counterions fraction for a rod-like polyion - short DNA fragments in very low salt

    E-Print Network [OSTI]

    Tomislav Vuletic; Sanja Dolanski Babic; Danijel Grgicin; Damir Aumiler; Joachim Raedler; Francoise Livolant; Silvia Tomic

    2011-01-05T23:59:59.000Z

    We quantified the Manning free (uncondensed) counterions fraction $\\theta$ for dilute solutions of rod-like polyions - 150bp DNA fragments, in very low salt $salt environment, with the decrease in DNA concentration itself. The extremes of the experimental $\\theta(c)$ range occur towards the highest, above 1 mM and the lowest, below 0.05 mM, DNA concentrations, and correspond to the theoretical $\\theta$ values for dsDNA and ssDNA, respectively. Therefore, we confirmed Manning condensation and conductivity models to be valuable in description of dilute solutions of rod-like polyions.

  14. Thermal Characterization of Molten Salt Systems

    SciTech Connect (OSTI)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01T23:59:59.000Z

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  15. Thermal Analysis of Surrogate Simulated Molten Salts with Metal Chloride Impurities for Electrorefining Used Nuclear Fuel

    SciTech Connect (OSTI)

    Toni Y. Gutknecht; Guy L. Fredrickson; Vivek Utgikar

    2012-04-01T23:59:59.000Z

    This project is a fundamental study to measure thermal properties (liquidus, solidus, phase transformation, and enthalpy) of molten salt systems of interest to electrorefining operations, which are used in both the fuel cycle research & development mission and the spent fuel treatment mission of the Department of Energy. During electrorefining operations the electrolyte accumulates elements more active than uranium (transuranics, fission products and bond sodium). The accumulation needs to be closely monitored because the thermal properties of the electrolyte will change as the concentration of the impurities increases. During electrorefining (processing techniques used at the Idaho National Laboratory to separate uranium from spent nuclear fuel) it is important for the electrolyte to remain in a homogeneous liquid phase for operational safeguard and criticality reasons. The phase stability of molten salts in an electrorefiner may be adversely affected by the buildup of fission products in the electrolyte. Potential situations that need to be avoided are: (i) build up of fissile elements in the salt approaching the criticality limits specified for the vessel (ii) freezing of the salts due to change in the liquidus temperature and (iii) phase separation (non-homogenous solution) of elements. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This work describes the experimental results of typical salts compositions, consisting of chlorides of strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium (as a surrogate for both uranium and plutonium), used in the processing of used nuclear fuels. Differential scanning calorimetry was used to analyze numerous salt samples providing results on the thermal properties. The property of most interest to pyroprocessing is the liquidus temperature. It was previously known the liquidus temperature of the molten salt would change as spent fuel is processed through the Mk-IV electrorefiner. However, the extent of the increase in liquidus temperature was not known. This work is first of its kind in determining thermodynamic properties of a molten salt electrolyte containing transuranics, fission products and bond sodium. Experimental data concluded that the melting temperature of the electrolyte will become greater than the operating temperature of the Mk-IV ER during current fuel processing campaigns. Collected data also helps predict when the molten salt electrolyte will no longer be able to support electrorefining operations.

  16. Salt as non-food 1 Salt as a `non-food': to what extent do gustatory perceptions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Salt as non-food 1 Salt as a `non-food': to what extent do gustatory perceptions determine non chloride. In the same vein, the present utilisation of salt in cooked foods throughout the world led several scientists to consider that salt is a basic and compulsory part of the human diet and that our

  17. Low temperature oxidation using support molten salt catalysts

    DOE Patents [OSTI]

    Weimer, Alan W.; Czerpak, Peter J.; Hilbert, Patrick M.

    2003-05-20T23:59:59.000Z

    Molten salt reactions are performed by supporting the molten salt on a particulate support and forming a fluidized bed of the supported salt particles. The method is particularly suitable for combusting hydrocarbon fuels at reduced temperatures, so that the formation NO.sub.x species is reduced. When certain preferred salts are used, such as alkali metal carbonates, sulfur and halide species can be captured by the molten salt, thereby reducing SO.sub.x and HCl emissions.

  18. Disposal of oil field wastes and NORM wastes into salt caverns.

    SciTech Connect (OSTI)

    Veil, J. A.

    1999-01-27T23:59:59.000Z

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM), the risk to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne's research indicates that disposal of NOW into salt caverns is feasible and, in most cases, would not be prohibited by state agencies (although those agencies may need to revise their wastes management regulations). A risk analysis of several cavern leakage scenarios suggests that the risk from cavern disposal of NOW and NORM wastes is below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  19. THE IMPACT OF DISSOLVED SALTS ON PASTES CONTAINING FLY ASH, CEMENT AND SLAG

    SciTech Connect (OSTI)

    Harbour, J.; Edwards, T.; Williams, V.

    2009-09-21T23:59:59.000Z

    The degree of hydration of a mixture of cementitious materials (Class F fly ash, blast furnace slag and portland cement) in highly concentrated alkaline salt solutions is enhanced by the addition of aluminate to the salt solution. This increase in the degree of hydration, as monitored with isothermal calorimetry, leads to higher values of dynamic Young's modulus and compressive strength and lower values of total porosity. This enhancement in performance properties of these cementitious waste forms by increased hydration is beneficial to the retention of the radionuclides that are also present in the salt solution. The aluminate ions in the solution act first to retard the set time of the mix but then enhance the hydration reactions following the induction period. In fact, the aluminate ions increase the degree of hydration by {approx}35% over the degree of hydration for the same mix with a lower aluminate concentration. An increase in the blast furnace slag concentration and a decrease in the water to cementitious materials ratio produced mixes with higher values of Young's modulus and lower values of total porosity. Therefore, these operational factors can be fine tuned to enhance performance properties of cementitious waste form. Empirical models for Young modulus, heat of hydration and total porosity were developed to predict the values of these properties. These linear models used only statistically significant compositional and operational factors and provided insight into those factors that control these properties.

  20. Chemistry control and corrosion mitigation of heat transfer salts for the fluoride salt reactor (FHR)

    SciTech Connect (OSTI)

    Kelleher, B. C.; Sellers, S. R.; Anderson, M. H.; Sridharan, K.; Scheele, R. D. [Dept. of Engineering Physics, Univ.of Wisconsin - Madison, 1500 Engineering Drive, Madison, WI 53706 (United States)

    2012-07-01T23:59:59.000Z

    The Molten Salt Reactor Experiment (MSRE) was a prototype nuclear reactor which operated from 1965 to 1969 at Oak Ridge National Laboratory. The MSRE used liquid fluoride salts as a heat transfer fluid and solvent for fluoride based {sup 235}U and {sup 233}U fuel. Extensive research was performed in order to optimize the removal of oxide and metal impurities from the reactor's heat transfer salt, 2LiF-BeF{sub 2} (FLiBe). This was done by sparging a mixture of anhydrous hydrofluoric acid and hydrogen gas through the FLiBe at elevated temperatures. The hydrofluoric acid reacted with oxides and hydroxides, fluorinating them while simultaneously releasing water vapor. Metal impurities such as iron and chromium were reduced by hydrogen gas and filtered out of the salt. By removing these impurities, the corrosion of reactor components was minimized. The Univ. of Wisconsin - Madison is currently researching a new chemical purification process for fluoride salts that make use of a less dangerous cleaning gas, nitrogen trifluoride. Nitrogen trifluoride has been predicted as a superior fluorinating agent for fluoride salts. These purified salts will subsequently be used for static and loop corrosion tests on a variety of reactor materials to ensure materials compatibility for the new FHR designs. Demonstration of chemistry control methodologies along with potential reduction in corrosion is essential for the use of a fluoride salts in a next generator nuclear reactor system. (authors)

  1. Anomalous zones in Gulf Coast Salt domes with special reference to Big Hill, TX, and Weeks Island, LA

    SciTech Connect (OSTI)

    Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States); Magorian, T.R. [Magorian (Thomas R.), Amherst, NY (United States); Thoms, R.L. [AGM, Inc., College Station, TX (United States); Autin, W.J.; McCulloh, R.P. [Louisiana Geological Survey, Baton Rouge, LA (United States); Denzler, S.; Byrne, K.O. [Acres International Corp., Amherst, NY (United States)

    1993-07-01T23:59:59.000Z

    Anomalous features in Gulf Coast Salt domes exhibit deviations from normally pure salt and vary widely in form from one dome to the next, ranging considerably in length and width. They have affected both conventional and solution mining in several ways. Gas outbursts, insolubles, and potash (especially carnallite) have led to the breakage of tubing in a number of caverns, and caused irregular shapes of many caverns through preferential leaching. Such anomalous features essentially have limited the lateral extent of conventional mining at several salt mines, and led to accidents and even the closing of several other mines. Such anomalous features, are often aligned in anomalous zones, and appear to be related to diapiric processes of salt dome development. Evidence indicates that anomalous zones are found between salt spines, where the differential salt intrusion accumulates other materials: Anhydrite bands which are relatively strong, and other, weaker impurities. Shear zones and fault displacement detected at Big Hill and Weeks Island domes have not yet had any known adverse impacts on SPR oil storage, but new caverns at these sites conceivably may encounter some potentially adverse conditions. Seismic reflection profiles at Big Hill dome have shown numerous fractures and faults in the caprock, and verified the earlier recognition of a major shear zone transecting the entire salt stock and forming a graben in the overlying caprock. Casing that is placed in such zones can be at risk. Knowledge of these zones should create awareness of possible effects rather than preclude the future emplacement of caverns. To the extent possible, major anomalous zones and salt stock boundaries should be avoided. Shear zones along overhangs may be particularly hazardous, and otherwise unknown valleys in the top of salt may occur along shear zones. These zones often can be mapped geophysically, especially with high-resolution seismic techniques.

  2. The solubilities of significant organic compounds in HLW tank supernate solutions -- FY 1995 progress report

    SciTech Connect (OSTI)

    Barney, G.S.

    1996-04-26T23:59:59.000Z

    At the Hanford Site organic compounds were measured in tank supernate simulant solutions during FY 1995. This solubility information will be used to determine if these organic salts could exist in solid phases (saltcake or sludges) in the waste where they might react violently with the nitrate or nitrite salts present in the tanks. Solubilities of sodium glycolate, succinate, and caproate salts; iron and aluminum and butylphosphate salts; and aluminum oxalate were measured in simulated waste supernate solutions at 25 {degree}C, 30 {degree}C, 40 {degree}C, and 50 {degree}C. The organic compounds were selected because they are expected to exist in relatively high concentrations in the tanks. The solubilities of sodium glycolate, succinate, caproate, and butylphosphate in HLW tank supernate solutions were high over the temperature and sodium hydroxide concentration ranges expected in the tanks. High solubilities will prevent solid sodium salts of these organic acids from precipitating from tank supernate solutions. The total organic carbon concentrations (YOC) of actual tank supernates are generally much lower than the TOC ranges for simulated supernate solutions saturated (at the solubility limit) with the organic salts. This is so even if all the dissolved carbon in a given tank and supernate is due to only one of these eight soluble compounds (an unlikely situation). Metal ion complexes of and butylphosphate and oxalate in supernate solutions were not stable in the presence of the hydroxide concentrations expected in most tanks. Iron and aluminum dibutylphosphate compounds reacted with hydroxide to form soluble sodium dibutylphosphate and precipitated iron and aluminum hydroxides. Aluminum oxalate complexes were also not stable in the basic simulated supernate solutions. Solubilities of all the organic salts decrease with increasing sodium hydroxide concentration because of the common ion effect of Na+. Increasing temperatures raised the solubilities of the organic salts, especially the succinate and caproate salts.

  3. Borehole locations on seven interior salt domes

    SciTech Connect (OSTI)

    Simcox, A.C.; Wampler, S.L.

    1982-08-01T23:59:59.000Z

    This report is designed as an inventory of all wells known to have been drilled within a five-mile radius of each of seven salt domes within the Interior Salt Basin in east Texas, northern Louisiana and Mississippi. There are 72 boreholes that entered salt above an elevation of -3000 feet mean sea level. For these, details of location, drilling dates, depth of casing and cement, elevation of top of caprock and salt, etc., are given on tables in the appendix. Of the seven domes, Oakwood has the largest number of boreholes, thirty-eight (including two sidetracked wells) that enter the salt stock above -3000 feet mean sea level; another dome in northeast Texas, Keechi, has eight; in northern Louisiana, Rayburn's has four and Vacherie has five; in southern Mississippi, Cypress Creek has seven, Lampton has one, and Richton has nine. In addition, all wells known outside the supra-domal area, but within a five-mile radius of the center of the 7 domes are separately catalogued.

  4. Disposition of the fluoride fuel and flush salts from the Molten Salt Reactor experiment at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Peretz, F.J.

    1996-03-01T23:59:59.000Z

    The Molten Salt Reactor Experiment (MSRE) is an 8 MW reactor that was operated at Oak Ridge National Laboratory (ORNL) from 1965 through 1969. The reactor used a unique liquid salt fuel, composed of a mixture of LIF, BeF{sub 2}, ZrF{sub 4}, and UF{sub 4}, and operated at temperatures above 600{degrees}C. The primary fuel salt circulation system consisted of the reactor vessel, a single fuel salt pump, and a single primary heat exchanger. Heat was transferred from the fuel salt to a coolant salt circuit in the primary heat exchanger. The coolant salt was similar to the fuel salt, except that it contains only LiF (66%) and BeF, (34%). The coolant salt passed from the primary heat exchanger to an air-cooled radiator and a coolant salt pump, and then returned to the primary heat exchanger. Each of the salt loops was provided with drain tanks, located such that the salt could be drained out of either circuit by gravity. A single drain tank was provided for the non-radioactive coolant salt. Two drain tanks were provided for the fuel salt. Since the fuel salt contained radioactive fuel, fission products, and activation products, and since the reactor was designed such that the fuel salt could be drained immediately into the drain tanks in the event of a problem in the fuel salt loop, the fuel salt drain tanks were provided with a system to remove the heat generated by radioactive decay. A third drain tank connected to the fuel salt loop was provided for a batch of flush salt. This batch of salt, similar in composition to the coolant salt, was used to condition the fuel salt loop after it had been exposed to air and to flush the fuel salt loop of residual fuel salt prior to accessing the reactor circuit for maintenance or experimental activities. This report discusses the disposition of the fluoride fuel and flush salt.

  5. Osmotic Pressure of Aqueous Chondroitin Sulfate Solution: A Molecular Modeling Investigation

    E-Print Network [OSTI]

    Bathe, Mark

    The osmotic pressure of chondroitin sulfate (CS) solution in contact with an aqueous 1:1 salt reservoir of fixed ionic strength is studied using a recently developed coarse-grained molecular model. The effects of sulfation ...

  6. Transient Analysis for the Multimechanism-Deformation Parameters of Several Domal Salts

    SciTech Connect (OSTI)

    Munson, Darrell E.

    1999-08-16T23:59:59.000Z

    Use of Gulf Coast salt domes for construction of very large storage caverns by solution mining has grown significantly in the last several decades. In fact, a nationally important Strategic Petroleum Reserve (SPR) storage occurs in large cavern arrays in some of these domes. Although caverns have been operated economically for these many years, these caverns have a range of relatively poorly understood behaviors, involving creep closure fluid loss and damage from salt falls. It is certainly possible to postulate that many of these behaviors stem from geomechanical or deformational aspects of the salt response. As a result, a method of correlating the cavern response to mechanical creep behavior as determined in the laboratory could be of considerable importance. Recently, detailed study of the creep response of domal salts has cast some insight into the influence of different salt origins on cavern behavior. The study used a simple graphical analysis of the limited non-steady state data to give a bound, or an approach to steady state, as an estimate of the steady state behavior of a given domal salt. This permitted the analysis of sparse creep databases for domal salts. It appears that a shortcoming of the steady state analysis was in masking some of the salt material differences. In an attempt to overcome the steady state analysis shortcomings, a method was developed based on the integration of the Multimechanism-Deformation (M-D) creep constitutive model to fit the transient response. This integration process essentially permits definition of the material sensitive parameters of the model, while those parameters that are either constants or material insensitive parameters are fixed independently. The transient analysis method has proven more sensitive to differences in the creep characteristics and has provided a way of defining different behaviors within a given dome. Creep characteristics, as defined by the transient analysis of the creep rate, are related quantitatively to the volume loss creep rate of the caverns. This type of understanding of the domal material creep response already has pointed to the possibility of establishing various distinct material spines within a given dome. Furthermore, if the creep databases for domal salts can be expanded, one could expect additional definition of domal geology and structure.

  7. Multimechanism-Deformation Parameters of Domal Salts Using Transient Creep Analysis

    SciTech Connect (OSTI)

    MUNSON, DARRELL E

    1999-09-01T23:59:59.000Z

    Use of Gulf Coast salt domes for construction of very large storage caverns by solution mining has grown significantly in the last several decades. In fact, among the largest developers of storage caverns along the Gulf Coast is the Strategic Petroleum Reserve (SPR) which has purchased or constructed 62 crude oil storage caverns in four storage sites (domes). Although SPR and commercial caverns have been operated economically for many years, the caverns still exhibit some relatively poorly understood behaviors, especially involving creep closure volume loss and hanging string damage from salt falls. Since it is possible to postulate that some of these behaviors stem from geomechanical or reformational aspects of the salt, a method of correlating the cavern response to mechanical creep behavior as determined in the laboratory could be of considerable value. Recently, detailed study of the creep response of domal salts has cast some insight into the influence of different salt origins on cavern behavior. The study used a simple graphical analysis of limited non-steady state data to establish an approach or bound to steady state, as an estimate of the steady state behavior of a given salt. This permitted analysis of sparse creep databases for domal salts. It appears that a shortcoming of this steady state analysis method is that it obscures some critical differences of the salt material behavior. In an attempt to overcome the steady state analysis shortcomings, a method was developed based on integration of the Multimechanism-Deformation (M-D) creep constitutive model to obtain fits to the transient response. This integration process permits definition of all the material sensitive parameters of the model, while those parameters that are constants or material insensitive parameters are fixed independently. The transient analysis method has proven more sensitive to differences in the creep characteristics and has provided a way of defining different behaviors within a given dome. Characteristics defined by the transient analysis are related quantitatively to the volume loss creep rate of the SPR caverns. This increase in understanding of the domal material creep response already has pointed to the possibility y of delineating the existence of material spines within a specific dome. Further definition of the domal geology and structure seems possible only through expansion of the creep databases for domal salts.

  8. Method for cleaning solution used in nuclear fuel reprocessing

    DOE Patents [OSTI]

    Tallent, O.K.; Crouse, D.J.; Mailen, J.C.

    1980-12-17T23:59:59.000Z

    Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

  9. Molecular-Based Mechanisms of Mendelian Forms of Salt-Dependent Hypertension: Questioning the Prevailing Theory.

    E-Print Network [OSTI]

    Kurtz, TW; Dominiczak, AF; DiCarlo, SE; Pravenec, M; Morris, RC

    2015-01-01T23:59:59.000Z

    Inherited disorders of renal salt homeostasis: Insights fromof Mendelian Forms of Salt-Dependent Hypertension:AC. Hypertension caused by salt loading in the dog. 3. Onset

  10. Effect of Salt Stress on Purslane and Potential Health Benefits: Oxalic Acid and Fatty Acids Profile

    E-Print Network [OSTI]

    Carvalho, Isabel S.; Teixeira, Mónica; Brodelius, Maria

    2009-01-01T23:59:59.000Z

    IS. 2009. Effects of salt stress on purslane (Portulacaacid concentration occurs when the salt stress concentrationfor higher concentration of salt in both purslanes. In GL

  11. Control of Soluble Salts in Farming and Gardening.

    E-Print Network [OSTI]

    Longenecker, D. E.; Lyerly, P. J.

    1974-01-01T23:59:59.000Z

    waters pass through beds of salt, dissolving appreciable quantities before they emerge and enter the rivers. Ocean waters, much too salty for irrigation, contain about 3 percent salt, or about 40 tons of salt per acre-foot of water... ater are applied each year are shown in Table 2. Salts I (.in ilrcnmulate very rapidly. The water containing 1 ton of jdt per acre-foot is generally considered to be good ,I~,~lit\\* water, yet in 2 years enough salt could accumu- I,ltr to harm salt...

  12. Method for using salt deposits for storage

    SciTech Connect (OSTI)

    Hooper, M. W.; Voorhees, E. J.

    1984-12-18T23:59:59.000Z

    A method for developing, evacuating, using, sealing, and re-entering multiple stacked cavities which are created from a single well in salt deposits. The cavities are created in a salt deposit by circulating raw water through concentric casing strings in the well. Each of the cavities is evacuated of liquids prior to use. After storage material is injected into a cavity, the cavity is sealed by setting a plug in the well bore above the top of the cavity. The cavities may be re-entered by drilling out the plug or by drilling a directional well directly into the cavity.

  13. The Effect of Salt Water on Rice.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1927-01-01T23:59:59.000Z

    mq A QTF *'. ' . - - . 1 bC1 r*. .. r * - .=.-ksl-, G v $. THE EFFECT OF SALT WATER ON RICE AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS T. 0. WALTON, President \\ STATION ,,,bfINISTRATION: *B. YOUNGBLOOD, M. S., Ph. D.,, Director A B CONNER... of Agriculture. ****In cooperation with the School of Agriculture. SYNOPSIS Rice farmers sometimes have trouble with salt in the water used for irrigation. Varying conditions, such as character of soil, amount of water already on the land, stage of growth...

  14. Order of wetting transitions in electrolyte solutions

    SciTech Connect (OSTI)

    Ibagon, Ingrid, E-mail: ingrid@is.mpg.de; Bier, Markus, E-mail: bier@is.mpg.de; Dietrich, S. [Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)] [Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

    2014-05-07T23:59:59.000Z

    For wetting films in dilute electrolyte solutions close to charged walls we present analytic expressions for their effective interface potentials. The analysis of these expressions renders the conditions under which corresponding wetting transitions can be first- or second-order. Within mean field theory we consider two models, one with short- and one with long-ranged solvent-solvent and solvent-wall interactions. The analytic results reveal in a transparent way that wetting transitions in electrolyte solutions, which occur far away from their critical point (i.e., the bulk correlation length is less than half of the Debye length) are always first-order if the solvent-solvent and solvent-wall interactions are short-ranged. In contrast, wetting transitions close to the bulk critical point of the solvent (i.e., the bulk correlation length is larger than the Debye length) exhibit the same wetting behavior as the pure, i.e., salt-free, solvent. If the salt-free solvent is governed by long-ranged solvent-solvent as well as long-ranged solvent-wall interactions and exhibits critical wetting, adding salt can cause the occurrence of an ion-induced first-order thin-thick transition which precedes the subsequent continuous wetting as for the salt-free solvent.

  15. MATH 302 Differential Equations (Bueler) 28 February 2009 Solutions to Midterm Exam #1

    E-Print Network [OSTI]

    Bueler, Ed

    .1 + 0.1(0.1 + 1.1) = 1.1 + 0.12 = 1.22 y(0.2). 3. A brine solution of salt flows at a constant rate of 8 L/min into a large tank that initially held 100 L of brine solution in which was dissolved 0.5 kg. If the concentration of salt in the brine entering the tank is 0.05 kg/L, determine the mass of salt in the tank after

  16. Tank 41-H salt level fill history 1985 to 1987

    SciTech Connect (OSTI)

    Ross, R.H.

    1996-05-16T23:59:59.000Z

    The fill rate of the evaporator drop waste tank (i.e., salt tank) at Savannah River Site contained in the Waste Management Technology (WMT) monthly data record is based upon a simple formula that apportioned 10 percent of the evaporator output concentrate to the salt fill volume. Periodically, the liquid level of the salt tank would be decanted below the salt level surface and a visual inspection of the salt profile would be accomplished. The salt volume of the drop tank would then be corrected, if necessary, based upon the visual elevation of the salt formation. This correction can erroneously indicate an excess amount of salt fill occurred in a short time period. This report established the correct fill history for Tank 41H.

  17. Thorium Molten Salt Reactor : from high breeding to simplified reprocessing

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Thorium Molten Salt Reactor : from high breeding to simplified reprocessing L. Mathieu, D. Heuer, A- ceptable. The Thorium Molten Salt Reactor (TMSR) may contribute to solve these problems. The thorium cycle

  18. Spatial and Temporal Dynamics of Salt Marsh Vegetation across Scales

    E-Print Network [OSTI]

    Kim, Daehyun

    2010-10-12T23:59:59.000Z

    Biogeographic patterns across a landscape are developed by the interplay of environmental processes operating at different spatial and temporal scales. This research investigated dynamics of salt marsh vegetation on the Skallingen salt marsh...

  19. Corrosion Studies in High-Temperature Molten Salt Systems for...

    Broader source: Energy.gov (indexed) [DOE]

    Corrosion Studies in High-Temperature Molten Salt Systems for CSP Applications - FY13 Q1 Corrosion Studies in High-Temperature Molten Salt Systems for CSP Applications - FY13 Q1...

  20. Fundamental Corrosion Studies in High-Temperature Molten Salt...

    Broader source: Energy.gov (indexed) [DOE]

    Fundamental Corrosion Studies in High-Temperature Molten Salt Systems for Next-Generation CSP Systems - FY13 Q2 Fundamental Corrosion Studies in High-Temperature Molten Salt...

  1. Accident Investigation of the February 5, 2014, Underground Salt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire at the...

  2. EM Completes Salt Waste Disposal Units $8 Million under Budget...

    Office of Environmental Management (EM)

    EM Completes Salt Waste Disposal Units 8 Million under Budget at Savannah River Site EM Completes Salt Waste Disposal Units 8 Million under Budget at Savannah River Site February...

  3. Ketone Production from the Thermal Decomposition of Carboxylate Salts

    E-Print Network [OSTI]

    Landoll, Michael 1984-

    2012-08-15T23:59:59.000Z

    The MixAlco process uses an anaerobic, mixed-culture fermentation to convert lignocellulosic biomass to carboxylate salts. The fermentation broth must be clarified so that only carboxylate salts, water, and minimal impurities remain. Carboxylate...

  4. Colloidal stability of magnetic nanoparticles in molten salts

    E-Print Network [OSTI]

    Somani, Vaibhav (Vaibhav Basantkumar)

    2010-01-01T23:59:59.000Z

    Molten salts are important heat transfer fluids used in nuclear, solar and other high temperature engineering systems. Dispersing nanoparticles in molten salts can enhance the heat transfer capabilities of the fluid. High ...

  5. Salt repository project closeout status report

    SciTech Connect (OSTI)

    NONE

    1988-06-01T23:59:59.000Z

    This report provides an overview of the scope and status of the US Department of Energy (DOE`s) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs.

  6. Nuclear salt-in-crude monitor

    SciTech Connect (OSTI)

    Sheikh, S.; Richter, A.P.

    1983-05-01T23:59:59.000Z

    The Arabian American Oil Co. (ARAMCO) recently installed a nuclear salt-in-crude monitor (SICM) that continuously measures the salt content of a flowing stream of crude oil. This device was developed by Texaco Inc.'s Bellaire (TX) Research Laboratory. The monitor consists of two parts: a counting chamber and an instrument console. The counting chamber is a length of 24-in.-diameter pipe containing a long-life neutron source and a gamma ray detector, both mounted in cross pipes so that there is no direct contact with the flowing crude. Neutrons from the source are absorbed by chloride ions in the stream, which in turn emit gamma rays. The intensity of the gamma rays is proportional to the amount of chlorine in the crude. The gamma ray detector is electrically connected to the instrument console, which is located in a control room. The console contains the necessary instrumentation to process the data from the detector, to compute the salt concentration, and to provide a continuous printed record of the salt per thousand barrels (PTB).

  7. Geothermal studies of seven interior salt domes

    SciTech Connect (OSTI)

    Not Available

    1983-06-01T23:59:59.000Z

    This report defines and compares the geothermal environments of eight selected Gulf Coast salt domes. The thermal regimes in and around Gulf Coast salt domes are not well documented. The data base used for this study is an accumulation of bottom-hole temperature readings from oil and gas exploration wells and temperature logs run for the National Waste Terminal Storage (NWTS) program. The bottom-hole tempreatures were corrected in order to estimate the actual geothermal environments. Prior thermal studies and models indicate temperatures in and around salt domes are elevated above the norm by 1/sup 0/F to 25/sup 0/F. Using existing geothermal data and accepted theory, geothermal gradients for the selected domes and surrounding sediments were estimated. This study concludes that salt domes within a given basin have similar geothermal gradients, but that the basins differ in average geothermal gradients. This relationship is probably controlled by deep basement structural trends. No evidence of residual heat of emplacement was found associated with any of the selected domes.

  8. The Salt or Sodium Chloride Content of Feeds

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach); Lomanitz, S. (Sebastian)

    1920-01-01T23:59:59.000Z

    1 EXAS AGRICULTURAL EXPERIMENT STATION AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS W. B. BIZZELL, Preeident BULLETIN NO. 271 OCTOBER, 1920 DIVISION OF CHEMISTRY THE SALT OR SODIUM CHLORIDE CONTENT OF FEEDS B. YOUNGBLOOD, DIRECTOK COLLEGE.... ............... Salt content of feecls.. ......... Salt content of mixed feeds.. ................... Summary ancl conclusions. Page. l1 [Blank Page in Original Bulletin] BULLETIN XO. 271. OCTOBE- '"On THE SALT OR SODIUM CHLORIDE CONTENT OF FEI The Texas feed...

  9. Seismic stratigraphy and salt tectonics of the Alaminos Canyon area, Gulf of Mexico.

    E-Print Network [OSTI]

    Mechler, Suzanne Marie

    1994-01-01T23:59:59.000Z

    morphology, salt structure, and suprasalt sediments indicate the majority of the slope is covered by a shallow salt canopy. The salt structure map indicates that the Alaminos Canyon study area represents a transition from a semi-continuous salt sheet...

  10. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect (OSTI)

    Barnett, Kimberly

    2012-04-30T23:59:59.000Z

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

  11. Removal of uranium and salt from the Molten Salt Reactor Experiment

    SciTech Connect (OSTI)

    Peretz, F.J.; Rushton, J.E.; Faulkner, R.L.; Walker, K.L.; Del Cul, G.D.

    1998-06-01T23:59:59.000Z

    In 1994, migration of {sup 233}U was discovered to have occurred at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). This paper describes the actions now underway to remove uranium from the off-gas piping and the charcoal bed, to remove and stabilize the salts, and to convert the uranium to a stable oxide for long-term storage.

  12. Production of carboxylic acid and salt co-products

    DOE Patents [OSTI]

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09T23:59:59.000Z

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  13. Influence of Salt Purity on Na+ and Palmitic Acid Interactions

    E-Print Network [OSTI]

    Influence of Salt Purity on Na+ and Palmitic Acid Interactions Zishuai Huang, Wei Hua, Dominique of salt purity on the interactions between Na+ ions and the carboxylate (COO- ) head group of palmitic frequency generation (VSFG) spectroscopy. Ultrapure (UP) and ACS grade NaCl salts are used for aqueous

  14. Molten Salt Synthesis of Calcium Hydroxyapatite Whiskers A. Cuneyt Tas*,

    E-Print Network [OSTI]

    Tas, A. Cuneyt

    Molten Salt Synthesis of Calcium Hydroxyapatite Whiskers A. Cu¨neyt Tas¸*, Department hydroxyapatite (HA) whiskers and crystals were produced by the route of molten salt synthesis. The effects. A tentative X-ray diffraction pattern was proposed for the HA whiskers. Molten salt synthesis with a K2SO4

  15. Developing salt-tolerant crop plants: challenges and opportunities

    E-Print Network [OSTI]

    Blumwald, Eduardo

    Developing salt-tolerant crop plants: challenges and opportunities Toshio Yamaguchi and Eduardo areas of the world; the need to produce salt-tolerant crops is evident. Two main approaches are being used to improve salt tolerance: (i) the exploitation of natural genetic variations, either through

  16. SALT-flSH INPUSTRIES FISHERY LEAFLET 240

    E-Print Network [OSTI]

    SALT-flSH INPUSTRIES FISHERY LEAFLET 240 FISH AND WILDLIFE SERVICE UNITED STATES DEPARTMENT, Albert M. Day, Director #12;THE VENEZUKLAN SALT-FISH INDUSTRIES CONTE^fTS Part II Potential Productive and Craft 29 Development of Unused or Underutilized Species 29 Development of New Areas 35 Salt 35 Studies

  17. Simulation of salt migrations in density dependent groundwater flow

    E-Print Network [OSTI]

    Vuik, Kees

    Simulation of salt migrations in density dependent groundwater flow E.S. van Baaren Master's Thesis for the salt migration in the groundwater underneath the polders near the coast. The problem description of this thesis is to investigate the possibilities of modelling salt migrations in density dependent groundwater

  18. Structural restoration of Louann Salt and overlying sediments, De Soto Canyon Salt Basin, northeastern Gulf of Mexico

    E-Print Network [OSTI]

    Guo, Mengdong

    1997-01-01T23:59:59.000Z

    The continental margin of the northeastern Gulf of Mexico is suited for seismic stratigraphic analysis and salt tectonism analysis. Jurassic strata include the Louann Salt on the continental shelf and upper slope of the Destin Dome OCS area...

  19. Destruction of LP XM46 using the molten salt destruction process. Revision 1

    SciTech Connect (OSTI)

    Upadhye, R.S.; Watkins, B.E.

    1994-04-01T23:59:59.000Z

    The preliminary experimental work done on the destruction of the liquid gun propellant LP XM46 (the new designation for LGP-1846) using the Molten Salt Destruction (MSD) Process at the Lawrence Livermore National Laboratory (LLNL) for the US Army is described in this report. A series of 18 continuous experimental runs were made wherein a solution of LP XM46 and water was injected into a bed of molten salt comprising the carbonates of sodium, potassium and lithium, along with air. The purpose of these initial Phase 1 runs was to collect information on the applicability of the Molten Salt Destruction Process for the destruction of LP XM46, identify the key technical uncertainties, and to plan future runs. The tentative results from these experiments, described in detail in the main body of this report, indicate that: (1) LP XM46 can be safely and completely destroyed in a bed of molten salt at temperatures well below those needed for incineration; and (2) under optimum operating conditions, less than 1% of the chemically bound nitrogen in the LP XM46 is converted to NOx, and less than 1% carbon is converted to CO.

  20. Economic comparison of CAES designs employing hardrock, salt, and aquifer storage reservoirs

    SciTech Connect (OSTI)

    Reilly, R.W.; Schainker, R.B.

    1981-01-01T23:59:59.000Z

    The economic performance of three CAES designs is briefly examined. Each design was developed by a different A and E under different assumptions and constraints, and each employed a different type of air storage facility: a hardrock-mined cavity, a solution-mined salt deposit, and an aquifer. The results indicate that aquifer and salt storage facilities cost roughly 60 to 70% of the equivalent hardrock-mined cavern. In this comparison the aquifer storage facility was somewhat less expensive than the salt cavity, but this difference could be reversed with different salt and/or aquifer characteristics. For instance, if the aquifer had been less permeable, then more wells would have been required for the same power level, and total storage cost would have been higher. The major difference between the plant cost estimates lies not in the cost of storage facilities, but rather in vendor estimates of turbomachinery cost. And, since turbomachinery contributes about half of total plant cost, this difference could be critical to the decision to build a CAES plant.

  1. Radar investigation of the Cote Blanche salt dome

    E-Print Network [OSTI]

    Stewart, Robert Donald

    1974-01-01T23:59:59.000Z

    THE COTE BLANCHE SALT DOME. Geology of the Cote Blanche Salt-Dome Azea. . Economic History of the Cote BLanche Salt-Dome Azea, Salt. . Oil and gas. III. ELECTROMAGNETIC WAVE PROPAGATION. . . Radar Speed in Air and in Salt. . . Velocity...' zznd i'r. mzznz 1959) . The east, south, end west flanks are nearly vertical. However, the north side oi the dome is characterised by a massive overhang. A well drilled by Shell Oil Company, Caffrey No. 1, confirmed the presence of a minimum of 3300...

  2. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect (OSTI)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01T23:59:59.000Z

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  3. Adsorption, encapsulated solute leakage and microflow of giant vesicles during anhydrobiotic preservation in trehalose solutions

    E-Print Network [OSTI]

    Adams, Dana R. (Dana Renée)

    2007-01-01T23:59:59.000Z

    Inspired by the variety of organisms that are naturally desiccation tolerant, anhydrobiotic preservation potentially furnishes a means of processing and storing mammalian cells in a state of "suspended animation" at ambient ...

  4. Cementitious Stabilization of Mixed Wastes with High Salt Loadings

    SciTech Connect (OSTI)

    Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

    1999-04-01T23:59:59.000Z

    Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt.

  5. Polymeric salt bridges for conducting electric current in microfluidic devices

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA); Tichenor, Mark S. (San Diego, CA); Artau, Alexander (Humacao, PR)

    2009-11-17T23:59:59.000Z

    A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

  6. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOE Patents [OSTI]

    Mullins, L.J.; Christensen, D.C.

    1982-09-20T23:59:59.000Z

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  7. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOE Patents [OSTI]

    Mullins, Lawrence J. (Los Alamos, NM); Christensen, Dana C. (Los Alamos, NM)

    1984-01-01T23:59:59.000Z

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  8. Molten salts database for energy applications

    E-Print Network [OSTI]

    Serrano-López, Roberto; Cuesta-López, Santiago

    2013-01-01T23:59:59.000Z

    The growing interest in energy applications of molten salts is justified by several of their properties. Their possibilities of usage as a coolant, heat transfer fluid or heat storage substrate, require thermo-hydrodynamic refined calculations. Many researchers are using simulation techniques, such as Computational Fluid Dynamics (CFD) for their projects or conceptual designs. The aim of this work is providing a review of basic properties (density, viscosity, thermal conductivity and heat capacity) of the most common and referred salt mixtures. After checking data, tabulated and graphical outputs are given in order to offer the most suitable available values to be used as input parameters for other calculations or simulations. The reviewed values show a general scattering in characterization, mainly in thermal properties. This disagreement suggests that, in several cases, new studies must be started (and even new measurement techniques should be developed) to obtain accurate values.

  9. Dense QCD: a Holographic Dyonic Salt

    E-Print Network [OSTI]

    Mannque Rho; Sang-Jin Sin; Ismail Zahed

    2009-10-23T23:59:59.000Z

    Dense QCD at zero temperature with a large number of colors is a crystal. We show that in the holographic dual description, the crystal is made out of pairs of dyons with $e=g=\\pm 1$ charges in a salt-like arrangement. We argue that with increasing density the dyon masses and topological charges equalize, turning the salt-like configuration to a bcc of half-instantons. The latter is dual to a cubic crystal of half-skyrmions. We estimate the transition from an fcc crystal of instantons to a bcc crystal of dyons to about 3 times nuclear matter density with a dyon binding energy of about 180 MeV.

  10. Stationary phase deposition based on onium salts

    DOE Patents [OSTI]

    Wheeler, David R. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM); Dirk, Shawn M. (Albuquerque, NM); Trudell, Daniel E. (Albuquerque, NM)

    2008-01-01T23:59:59.000Z

    Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.

  11. Reference repository design concept for bedded salt

    SciTech Connect (OSTI)

    Carpenter, D.W.; Martin, R.W.

    1980-10-08T23:59:59.000Z

    A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

  12. Waste Isolation Pilot Plant Salt Decontamination Testing

    SciTech Connect (OSTI)

    Rick Demmer; Stephen Reese

    2014-09-01T23:59:59.000Z

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  13. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    SciTech Connect (OSTI)

    Grogan, Dylan C. P.

    2013-08-15T23:59:59.000Z

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50¢/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12¢/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

  14. Salt disposal of heat-generating nuclear waste.

    SciTech Connect (OSTI)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01T23:59:59.000Z

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

  15. Tank 37H Salt Removal Batch Process and Salt Dissolution Mixing Study

    SciTech Connect (OSTI)

    Kwon, K.C.

    2001-09-18T23:59:59.000Z

    Tank 30H is the receipt tank for concentrate from the 3H Evaporator. Tank 30H has had problems, such as cooling coil failure, which limit its ability to receive concentrate from the 3H Evaporator. SRS High Level Waste wishes to use Tank 37H as the receipt tank for the 3H Evaporator concentrate. Prior to using Tank 37H as the 3H Evaporator concentrate receipt tank, HLW must remove 50 inches of salt cake from the tank. They requested SRTC to evaluate various salt removal methods for Tank 37H. These methods include slurry pumps, Flygt mixers, the modified density gradient method, and molecular diffusion.

  16. District Heating and Cooling Technology Development Program: Phase 2, Investigation of reduced-cost heat-actuated desiccant cooling systems for DHC applications. Final report, August 20, 1990--January 1, 1992

    SciTech Connect (OSTI)

    Patch, K.D.; DiBella, F.A.; Becker, F.E.

    1992-02-01T23:59:59.000Z

    A detailed assessment has been completed of the use of desiccant-based customer-sited heat-actuated cooling for District Heating and Cooling (DHC) systems, showing that introduction of a reduced-cost desiccant cooling system would result in widespread market penetration. This program consisted of three principal components: a market study of existing and future reduced-cost liquid desiccant cooling (LDC) systems; an examination of the installed costs of these existing and reduced-cost LDC systems; and four detailed case studies. Both the installed cost and equivalent chilled water cost of existing large LDC systems were found to be quite competitive with district chilled water, while the high capital cost of small LDC systems made them more expensive than district chilled water. Potential total system sales in this existing large-scale LDC market are quite low, since most of the market for DHC space conditioning is in smaller equipment sizes. Cost savings realized from producing a reduced-cost LDC system would result in small LDC systems (sized well below 6,000 cfm) becoming competitive with the current range of district chilled water costs.

  17. Origin and paleogeography of an immense, nonmarine Miocene salt deposit in the Basin and Ranges (Western USA)

    E-Print Network [OSTI]

    Faulds, James; Schreiber, Charlotte; Reynolds, Stephen; Gonzá lez, Luis; Okaya, David

    1997-01-01T23:59:59.000Z

    on the west flank of the Cerbat Range just outside of the present catchment area of the basin. The halite in the Hualapai basin originated primarily through intrasedimentary displacive growth in desiccated pans (playa mudflats), to­ gether with intervals... subsequent desiccation and develop­ ment of dissolution surfaces and puffy halite crusts in sporadically exposed mudflats may have obliter­ ated much of the typical, original chevron pattern of fluid inclusions (e.g., Shearman 1970). The ex­ treme thickness...

  18. Metrological characteristics of the multiparameter method of analysis of multicomponent solutions

    SciTech Connect (OSTI)

    Mikhailov, V.A.

    1986-02-01T23:59:59.000Z

    On the basis of previously obtained results of the study of nitrate solutions and the parameters of chloride solutions in the homogenous region for acid-salt-water systems, the authors have investigated the conditions and possibilities of the multiparameter method. The authors, having studied the density, viscosity, and electrical conductivity of three acid-salt-water chloride systems as a function of the composition of the solution, obtained equations relative to the measured values of the density, viscosity, and electrical conductivity for determination of the acid and salt contents for solutions of nitrate and chloride systems. The authors estimated the detection limits, the ranges of measurable contents, the standard deviations of the analysis results, the allowable contents of other components, and the requirements imposed on the accuracy in the measurement of the density, viscosity, electrical conductivity and temperature.

  19. Delivery system for molten salt oxidation of solid waste

    DOE Patents [OSTI]

    Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

    2002-01-01T23:59:59.000Z

    The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

  20. The Salt Industry at Sterling, Kansas

    E-Print Network [OSTI]

    Horner, Robert Messenger

    1914-01-01T23:59:59.000Z

    work more cheaply than coal and the rail~ road. For such reasons the snlt industry of Oreat Britain has dwindled steadily for some years. In twenty-two years her exports shrunk one half. She has no effective sunlight and all her salt plants...^r prepared in con- tact with a metal kills the plants. Addition of Kg CI and Mg SO to the above -2 4 mixture enabled the plants to live practically as long as in sea-water. Although Ca CI added 2 singly to Ha CI inhibits the poisonous effect of Na CI...

  1. Acoustic probing of salt using sonar

    E-Print Network [OSTI]

    Butler, Kenneth Bryan

    1977-01-01T23:59:59.000Z

    , glycerine, and s1li cone oil provi ded satisfactory performance. In spite of these results, Gupta did not develop a workable means of us1ng 11quid coupl1ng media under mine condit1ons. In his field tests, Gupta used dental impression plaster (a coupling... acoustic pulses which are coupled 1nto the salt via a castor oil coupling medium. The acoustic source signa'i is a square-enveloped pulse of compress1onal waves; a pulse duration of e1ther 0. 3 ms or 1. 1 ms is used. The ranges to discontinuities...

  2. Salt dome gas storage solves curtailment threat

    SciTech Connect (OSTI)

    Watts, J.

    1982-04-01T23:59:59.000Z

    In November 1981, Valero Transmission Co. (San Antonio, TX) opened two salt-dome storage caverns with a combined capacity of 5 billion CF (1.5 billion of cushion gas, 3.5 of working gas). The facility's maximum deliverability is 400 million CF/day for 9 days; when two more caverns are finished in late 1982, the $55 million complex will be able to sustain that level for 18 days, making Valero less dependent on linepacking and spot sales to avoid curtailing deliveries to its customers.

  3. Safe actinide disposition in molten salt reactors

    SciTech Connect (OSTI)

    Gat, U.

    1997-03-01T23:59:59.000Z

    Safe molten salt reactors (MSR) can readily accommodate the burning of all fissile actinides. Only minor compromises associated with plutonium are required. The MSRs can dispose safely of actinides and long lived isotopes to result in safer and simpler waste. Disposing of actinides in MSRs does increase the source term of a safety optimized MSR. It is concluded that the burning and transmutation of actinides in MSRs can be done in a safe manner. Development is needed for the processing to handle and separate the actinides. Calculations are needed to establish the neutron economy and the fuel management. 9 refs.

  4. Experimental studies of actinides in molten salts

    SciTech Connect (OSTI)

    Reavis, J.G.

    1985-06-01T23:59:59.000Z

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  5. Salt River Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:Energysource History ViewJumpSaintSalmonSalt

  6. Salt Wells Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY) JumpLandSRTHelena:Sakti3RiverSalt Wells

  7. The Salt Defense Disposal Investigations (SDDI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2Dand WaterThe FutureRiskSalt Defense Disposal

  8. Waste Isolation Pilot Plant's Excavated Salt Agreement Supports...

    Energy Savers [EERE]

    for about 600 elementary-age students. WIPP's nuclear waste disposal repository mining operations result in large volumes of excavated salt. Seeking an innovative...

  9. Salt River Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Salt River Electric serves as the rural electric provider in Kentucky's Bullitt, Nelson, Spencer, and Washington counties. Residential customers are eligible for a variety of cash incentives for...

  10. Project Profile: Deep Eutectic Salt Formulations Suitable as...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as Advanced Heat Transfer Fluids Halotechnics logo Halotechnics, under the Thermal Storage FOA, is conducting high-throughput, combinatorial research and development of salt...

  11. Method for the production of uranium chloride salt

    DOE Patents [OSTI]

    Westphal, Brian R.; Mariani, Robert D.

    2013-07-02T23:59:59.000Z

    A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

  12. Molten salt bath circulation design for an electrolytic cell

    DOE Patents [OSTI]

    Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

    1999-08-17T23:59:59.000Z

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

  13. Salt Lake City, Utah: Solar in Action (Brochure), Solar America...

    Broader source: Energy.gov (indexed) [DOE]

    a lack of understanding about solar contributed to preventing the widespread adoption of solar energy in all markets. Salt Lake City's prior solar successes with support from...

  14. alternative salt transfer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dish concentrator Renewable Energy Websites Summary: the receiver is dominated by the solar irradiance profile over the cavity surface; with the heat exchangeMolten salt as heat...

  15. administration salt lake: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gsa2005AMfinalprogramabstract96987.htm 2005 Salt Lake City Annual Meeting (October 1619, 2005) Geosciences Websites Summary: http:gsa.confex.comgsa2005AM...

  16. Molten salt bath circulation design for an electrolytic cell

    DOE Patents [OSTI]

    Dawless, Robert K. (Monroeville, PA); LaCamera, Alfred F. (Trafford, PA); Troup, R. Lee (Murrysville, PA); Ray, Siba P. (Murrysville, PA); Hosler, Robert B. (Sarver, PA)

    1999-01-01T23:59:59.000Z

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

  17. Independent Oversight Review, Savannah River Site Salt Waste...

    Broader source: Energy.gov (indexed) [DOE]

    August 2013 Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development. This report documents the results of an independent oversight...

  18. avoid salt induced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multidisciplinary Databases and Resources Websites Summary: thermal gradients around the waste depository. Natural occurring salt formations contain small quantities is directed...

  19. Surface Indicators of Geothermal Activity at Salt Wells, Nevada...

    Open Energy Info (EERE)

    Activity at Salt Wells, Nevada, USA, Including Warm Ground, Borate Deposits, and Siliceous Alteration Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  20. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    SciTech Connect (OSTI)

    Hsu, P.C.

    1997-11-01T23:59:59.000Z

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

  1. Method for regeneration of electroless nickel plating solution

    DOE Patents [OSTI]

    Eisenmann, Erhard T. (5423 Vista Sandia, NE., Albuquerque, NM 87111)

    1997-01-01T23:59:59.000Z

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorous acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution.

  2. Method for regeneration of electroless nickel plating solution

    DOE Patents [OSTI]

    Eisenmann, E.T.

    1997-03-11T23:59:59.000Z

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorus acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution. 1 fig.

  3. Salt Screening and Selection: New Challenges and Considerations in the Modern

    E-Print Network [OSTI]

    Tipple, Brett

    Salt Screening and Selection: New Challenges and Considerations in the Modern Pharmaceutical R · Introduction · Theoretical Considerations · pH-solubility profiles, pKa and salt formation · Prediction of salt solubility · Solubility product and in situ salt screening · Solubility/dissolution rate of salts

  4. Solving the structure of disordered mixed salts

    SciTech Connect (OSTI)

    Frenkel, A. (School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978 (Israel)); Stern, E.A. (Department of Physics FM-15, University of Washington, Seattle, Washington 98195 (United States)); Voronel, A. (School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978 (Israel)); Qian, M. (Princeton Materials Institute, Princeton University, Princeton, New Jersey 08540 (United States)); Newville, M. (Department of Physics FM-15, University of Washington, Seattle, Washington 98195 (United States))

    1994-05-01T23:59:59.000Z

    A detailed x-ray-absorption fine-structure (XAFS) investigation of two mixed alkali halides Rb[sub 0.76]K[sub 0.24]Br and RbBr[sub 0.62]Cl[sub 0.38] was performed. The concentrations of the mixtures had been chosen to produce a single homogeneous phase for each, and it was checked by XAFS that the salts were randomly mixed on the atomic level. Detailed analysis of the data including multiple-scattering contributions revealed an rms buckling angular deviation of both mixtures from the average NaCl collinear structure of 7--9[degree]. The angles are defined by three atomic positions determined through double- and triple-scattering paths. These angles are new parameters which should be added to characterize the buckled crystals. Adding to diffraction results the parameters determined from XAFS as input into a molecular-dynamics simulation the structures of the mixed salts with their fluctuations about the NaCL structure are solved and displayed.

  5. Lead and other metals distribution in local cooking salt from the Fofi salt- spring in Akwana, Middle Benue Trough, Nigeria

    SciTech Connect (OSTI)

    Dim, L.A.; Kinyua, A.M.; Munyithya, J.M.; Adetunji, J. (Centre for Nuclear Science Techniques, Faculty of Engineering, University of Nairobi (Kenya))

    1991-06-01T23:59:59.000Z

    Energy Dispersive X-ray Fluorescence (EDXRF) technique has been used to determine the concentrations of lead(Pb) and other heavy metals in local cooking salts (LCS) from Akwana village, Middle Benue Trough, Nigeria. The comparison of the distribution of these metals in LCS, fake salt (FS) and the usual common salts (CS) are given. Lead was found to be enriched in LCS by factor exceeding 200 times compared to the other salts. The origin of Pb contamination in the LCS is examined and its effects on the inhabitants of the village are considered.

  6. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    SciTech Connect (OSTI)

    Wan, Shun [ORNL; Jiang, Xueguang [ORNL; Guo, Bingkun [ORNL; Dai, Sheng [ORNL; Sun, Xiao-Guang [ORNL

    2015-01-01T23:59:59.000Z

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  7. Propagation of coleus under intermittent mist containing high levels of soluble salts

    E-Print Network [OSTI]

    Allen, Samuel Dean

    1986-01-01T23:59:59.000Z

    of 1 mM CaS04 to tap water mist reduced the detrimental effects of tap water on rooting and foliage quality in growth chamber studies, but could not be repeated with NazS04 or KzS04 under greenhouse conditions. ACKNOWLEDGENENTS I would like... overcome by the addition of CaS04 to the solution. Excessive salts in mist water have been shown to influence rooting of chrysanthemum (59, 61). Raabe and Vlamis (61) determined that a rooting problem in chrysanthemums, believed to be a disease known...

  8. Laboratory investigation of crushed salt consolidation and fracture healing

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    A laboratory test program was conducted to investigate the consolidation behavior of crushed salt and fracture healing in natural and artificial salt. Crushed salt is proposed for use as backfill in a nuclear waste repository in salt. Artificial block salt is proposed for use in sealing a repository. Four consolidation tests were conducted in a hydrostatic pressure vessel at a maximum pressure of 2500 psi (17.2 MPa) and at room temperature. Three 1-month tests were conducted on salt obtained from the Waste Isolation Pilot Plant and one 2-month test was conducted on salt from Avery Island. Permeability was obtained using argon and either a steady-state or transient method. Initial porosities ranged from 0.26 to 0.36 and initial permeabilities from 2000 to 50,000 md. Final porosities and permeabilities ranged from 0.05 to 0.19 and from <10/sup -5/ md to 110 md, respectively. The lowest final porosity (0.05) and permeability (<10/sup -5/ md) were obtained in a 1-month test in which 2.3% moisture was added to the salt at the beginning of the test. The consolidation rate was much more rapid than in any of the dry salt tests. The fracture healing program included 20 permeability tests conducted on fractured and unfractured samples. The tests were conducted in a Hoek cell at hydrostatic pressures up to 3000 psi (20.6 MPa) with durations up to 8 days. For the natural rock salt tested, permeability was strongly dependent on confining pressure and time. The effect of confining pressure was much weaker in the artificial salt. In most cases the combined effects of time and pressure were to reduce the permeability of fractured samples to the same order of magnitude (or less) as the permeability measured prior to fracturing.

  9. Can nonhazardous oil field wastes be disposed of in salt caverns?

    SciTech Connect (OSTI)

    Veil, J.A.

    1996-10-01T23:59:59.000Z

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal -of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  10. Risk analyses for disposing nonhazardous oil field wastes in salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.; Caudle, D.

    1997-12-01T23:59:59.000Z

    Salt caverns have been used for several decades to store various hydrocarbon products. In the past few years, four facilities in the US have been permitted to dispose nonhazardous oil field wastes in salt caverns. Several other disposal caverns have been permitted in Canada and Europe. This report evaluates the possibility that adverse human health effects could result from exposure to contaminants released from the caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls during the post-closure phase of operation. In this assessment, several steps were followed to identify possible human health risks. At the broadest level, these steps include identifying a reasonable set of contaminants of possible concern, identifying how humans could be exposed to these contaminants, assessing the toxicities of these contaminants, estimating their intakes, and characterizing their associated human health risks. The contaminants of concern for the assessment are benzene, cadmium, arsenic, and chromium. These were selected as being components of oil field waste and having a likelihood to remain in solution for a long enough time to reach a human receptor.

  11. New information on disposal of oil field wastes in salt caverns

    SciTech Connect (OSTI)

    Veil, J.A.

    1996-10-01T23:59:59.000Z

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build-up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build-up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  12. Considerations of Alloy N for Fluoride Salt-Cooled High-Temperature Reactor Applications

    SciTech Connect (OSTI)

    Ren, Weiju [ORNL; Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Holcomb, David Eugene [ORNL

    2011-01-01T23:59:59.000Z

    Fluoride Salt-Cooled High-Temperature Reactors (FHRs) are a promising new class of thermal-spectrum nuclear reactors. The reactor structural materials must possess high-temperature strength and chemical compatibility with the liquid fluoride salt as well as with a power cycle fluid such as supercritical water while remaining resistant to residual air within the containment. Alloy N was developed for use with liquid fluoride salts and it possesses adequate strength and chemical compatibility up to about 700 C. A distinctive property of FHRs is that their maximum allowable coolant temperature is restricted by their structural alloy maximum service temperature. As the reactor thermal efficiency directly increases with the maximum coolant temperature, higher temperature resistant alloys are strongly desired. This paper reviews the current status of Alloy N and its relevance to FHRs including its design principles, development history, high temperature strength, environmental resistance, metallurgical stability, component manufacturability, ASME codification status, and reactor service requirements. The review will identify issues and provide guidance for improving the alloy properties or implementing engineering solutions.

  13. Salt plays an important role in our daily lives. True, salt makes our food tastier, but perhaps its most significant role is as an ingredient in

    E-Print Network [OSTI]

    Waliser, Duane E.

    Salt plays an important role in our daily lives. True, salt makes our food tastier, but perhaps its, or the concentration of salt at the ocean's surface, gives scientists vital information on global ocean circulation changes, so does salinity! Ocean salinity is affected by the water cycle. As salt water evaporates

  14. ANALYSIS OF THE SALT FEED TANK CORE SAMPLE

    SciTech Connect (OSTI)

    Reigel, M.; Cheng, W.

    2012-01-26T23:59:59.000Z

    The Saltstone Production Facility (SPF) immobilizes and disposes of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site (SRS). Low-level waste (LLW) streams from processes at SRS are stored in Tank 50 until the LLW can be transferred to the SPF for treatment and disposal. The Salt Feed Tank (SFT) at the Saltstone Production Facility (SPF) holds approximately 6500 gallons of low level waste from Tank 50 as well as drain water returned from the Saltstone Disposal Facility (SDF) vaults. Over the past several years, Saltstone Engineering has noted the accumulation of solids in the SFT. The solids are causing issues with pump performance, agitator performance, density/level monitoring, as well as taking up volume in the tank. The tank has been sounded at the same location multiple times to determine the level of the solids. The readings have been 12, 25 and 15 inches. The SFT is 8.5 feet high and 12 feet in diameter, therefore the solids account for approximately 10 % of the tank volume. Saltstone Engineering has unsuccessfully attempted to obtain scrape samples of the solids for analysis. As a result, Savannah River National Laboratory (SRNL) was tasked with developing a soft core sampler to obtain a sample of the solids and to analyze the core sample to aid in determining a path forward for removing the solids from the SFT. The source of the material in the SFT is the drain water return system where excess liquid from the Saltstone disposal vaults is pumped back to the SFT for reprocessing. It has been shown that fresh grout from the vault enter the drain water system piping. Once these grout solids return to the SFT, they settle in the tank, set up, and can't be reprocessed, causing buildup in the tank over time. The composition of the material indicates that it is potentially toxic for chromium and mercury and the primary radionuclide is cesium-137. Qualitative measurements show that the material is not cohesive and will break apart with some force.

  15. SALT DAMAGE CRITERION PROOF-OF-CONCEPT RESEARCH

    SciTech Connect (OSTI)

    Kerry L. DeVries; Kirby D. Mellegard; Gary D. Callahan

    2002-11-01T23:59:59.000Z

    The purpose of this study was to conduct a field-scale application demonstrating the use of continuum damage mechanics to determine the minimum allowable operating pressure of compressed natural gas storage caverns in salt formations. A geomechanical study was performed of two natural gas storage caverns (one existing and one planned) utilizing state-of-the-art salt mechanics to assess the potential for cavern instability and collapse. The geomechanical study consisted primarily of laboratory testing, theoretical development, and analytical/numerical tasks. A total of 50 laboratory tests was performed on salt specimens to aid in the development and definition of the material model used to predict the behavior of rock salt. Material model refinement was performed that improved the predictive capability of modeling salt during damage healing, recovery of work-hardened salt, and the behavior of salt at stress states other than triaxial compression. Results of this study showed that the working gas capacity of the existing cavern could be increased by 18 percent and the planned cavern could be increased by 8 percent using the proposed method compared to a conventional stress-based method. Further refinement of the continuum damage model is recommended to account for known behavior of salt at stress conditions other than triaxial compression that is not characterized accurately by the existing model.

  16. Laboratory Measurements of Sea Salt Aerosol Refractive Index

    E-Print Network [OSTI]

    Oxford, University of

    . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 Complex Refractive Index . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Size Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.5 Coagulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 Sea Salt AerosolsLaboratory Measurements of Sea Salt Aerosol Refractive Index Thesis submitted for the degree

  17. Leucobacter salsicius sp. nov., from a salt-fermented food

    E-Print Network [OSTI]

    Bae, Jin-Woo

    contained 2,4-diaminobutyric acid, glutamic acid, alanine, glycine and c-aminobutyric acid. The majorLeucobacter salsicius sp. nov., from a salt- fermented food Ji-Hyun Yun,1 Seong Woon Roh,1,2 Min, Daejeon 305-806, Republic of Korea Strain M1-8T was isolated from jeotgal, a Korean salt-fermented food

  18. Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Washington, A. L. II

    2013-08-08T23:59:59.000Z

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 7 for the Interim Salt Disposition Program (ISDP). An ARP and several ESS tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP/MCU. No issues with the projected Salt Batch 7 strategy are identified, other than the presence of visible quantities of dark colored solids. A demonstration of the monosodium titanate (0.2 g/L) removal of strontium and actinides provided acceptable 4 hour average decontamination factors for Pu and Sr of 3.22 and 18.4, respectively. The Four ESS tests also showed acceptable behavior with distribution ratios (D(Cs)) values of 15.96, 57.1, 58.6, and 65.6 for the MCU, cold blend, hot blend, and Next Generation Solvent (NGS), respectively. The predicted value for the MCU solvent was 13.2. Currently, there are no models that would allow a prediction of extraction behavior for the other three solvents. SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed. While no outstanding issues were noted, the presence of solids in the samples should be investigated in future work. It is possible that the solids may represent a potential reservoir of material (such as potassium) that could have an impact on MCU performance if they were to dissolve back into the feed solution. This salt batch is intended to be the first batch to be processed through MCU entirely using the new NGS-MCU solvent.

  19. E-Print Network 3.0 - attributes saturated salt Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: attributes saturated salt Page: << < 1 2 3 4 5 > >> 1 This thesis focuses on the restoration of salt marshes in north-west Europe. Salt marshes are important habitats that...

  20. Metals concentration in salt marshes plants and kelp around San Diego: A window to environment quality

    E-Print Network [OSTI]

    Deheyn, Dimitri

    2009-01-01T23:59:59.000Z

    in salt marshes plants and kelp around San Diego: A windowassessing levels of metals in kelp and salt marsh plants inmetals levels found in kelp and salt marsh plants reflect

  1. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    E-Print Network [OSTI]

    Suo, Zhigang

    Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt 2014; published online 14 October 2014) Polyacrylamide hydrogels containing salt as electrolyte have of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced

  2. PEP-carboxylase activity supports organic acid metabolism of maize (Zea mays) under salt stress

    E-Print Network [OSTI]

    Hatzig, Sarah Vanessa; Kumar, Ashwani; Neubert, Anja; Schubert, Sven

    2009-01-01T23:59:59.000Z

    physical basis for improving salt resistance in maize. Inand their expression under salt stress. J. Plant Physiol.may have a function for the salt resistance of maize during

  3. Salt stress affects polyamine concentrations and plasma membrane H+-ATPase proton pumping in maize

    E-Print Network [OSTI]

    Ingold, Mariko; Hanstein, Stefan; Schubert, Sven

    2009-01-01T23:59:59.000Z

    during the first phase of salt stress? J. Plant Nutr. SoilH + -ATPase in roots, is lowered by salt treatment.synthesis of polyamines under salt stress may contribute to

  4. Does jasmonic acid control the maize shoot growth during the first phase of salt stress?

    E-Print Network [OSTI]

    Shahzad, Ahmad Naeem; Pollmann, Stephan; Schubert, Sven

    2009-01-01T23:59:59.000Z

    Introduction Salt stress affects plant growth in twohormones, pH) in response to salt/drought stress is notin response to osmotic/salt stress (Creelman and Mullet

  5. MONITORING OF SALT-INDUCED DEFORMATIONS IN POROUS SYSTEMS BY MICROSCOPIC SPECKLE PATTERN INTERFEROMETRY

    E-Print Network [OSTI]

    Hinsch, Klaus

    MONITORING OF SALT-INDUCED DEFORMATIONS IN POROUS SYSTEMS BY MICROSCOPIC SPECKLE PATTERN porosity distribution, and its negligible humidity expansion. The glass sam- ples, soaked with salt: electronic speckle pattern interferometry, deformation measurement, salt crys- tallization, phase transition

  6. Invasive Spartina densiflora Brongn. Reduces Primary Productivity in a Northern California Salt Marsh

    E-Print Network [OSTI]

    Lagarde, Luc A.

    2012-01-01T23:59:59.000Z

    and Distichlis spicata in salt marshes at Humboldt Bay,Carolina Spartina alterniflora salt marsh. Estuaries 4:97-die-off of southern U.S. salt marshes. Science 310:1803-

  7. Temperature dependent mechanical property testing of nitrate thermal storage salts.

    SciTech Connect (OSTI)

    Iverson, Brian DeVon; Broome, Scott Thomas; Siegel, Nathan Phillip

    2010-08-01T23:59:59.000Z

    Three salt compositions for potential use in trough-based solar collectors were tested to determine their mechanical properties as a function of temperature. The mechanical properties determined were unconfined compressive strength, Young's modulus, Poisson's ratio, and indirect tensile strength. Seventeen uniaxial compression and indirect tension tests were completed. It was found that as test temperature increases, unconfined compressive strength and Young's modulus decreased for all salt types. Empirical relationships were developed quantifying the aforementioned behaviors. Poisson's ratio tends to increase with increasing temperature except for one salt type where there is no obvious trend. The variability in measured indirect tensile strength is large, but not atypical for this index test. The average tensile strength for all salt types tested is substantially higher than the upper range of tensile strengths for naturally occurring rock salts.

  8. Molten-Salt Depleted-Uranium Reactor

    E-Print Network [OSTI]

    Dong, Bao-Guo; Gu, Ji-Yuan

    2015-01-01T23:59:59.000Z

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

  9. Disposal of NORM waste in salt caverns

    SciTech Connect (OSTI)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01T23:59:59.000Z

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  10. Technical review of Molten Salt Oxidation

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The process was reviewed for destruction of mixed low-level radioactive waste. Results: extensive development work and scaleup has been documented on coal gasification and hazardous waste which forms a strong experience base for this MSO process; it is clearly applicable to DOE wastes such as organic liquids and low-ash wastes. It also has potential for processing difficult-to-treat wastes such as nuclear grade graphite and TBP, and it may be suitable for other problem waste streams such as sodium metal. MSO operating systems may be constructed in relatively small units for small quantity generators. Public perceptions could be favorable if acceptable performance data are presented fairly; MSO will likely require compliance with regulations for incineration. Use of MSO for offgas treatment may be complicated by salt carryover. Figs, tabs, refs.

  11. Analysis of Multistage and Other Creep Data for Domal Salts

    SciTech Connect (OSTI)

    Munson, D.E.

    1998-10-01T23:59:59.000Z

    There have existed for some time relatively sparse creep databases for a number of domal salts. Although all of these data were analyzed at the time they were reported, to date there has not been a comprehensive, overall evaluation within the same analysis framework. Such an evaluation may prove of value. The analysis methodology is based on the Multimechanism Deformation (M-D) description of salt creep and the corresponding model parameters determined from conventional creep tests. The constitutive model of creep wss formulated through application of principles involved in micromechanical modeling. It was possible, at minimum, to obtain the steady state parameters of the creep model from the data on the domal salts. When this was done, the creep of the domal salts, as compared to the well-defined Waste Isolation Pilot Plant (WIPP) bedded clean salt, was either essentially identical to, or significantly harder (more creep resistant) than WIPP salt. Interestingly, the domal salts form two distinct groups, either sofl or hard, where the difference is roughly a factor often in creep rate between the twcl groups. As might be expected, this classification corresponds quite well to the differences in magnitude of effective creep volume losses of the Strategic Petroleum Reserve (SPR) caverns as determined by the CAVEMAN cavern pressure history analysis, depending upon the specific dome or region within the dome. Creep response shoulcl also correlate to interior cavern conditions that produce salt falls. WMle, in general, the caverns in hard sah have a noticeably greater propensity for salt falls, a smaller number of similar events are exhibited even in the caverns in soft salt.

  12. 1 | De-icing salt damage to trees | November 2011 Pathology Advisory Note

    E-Print Network [OSTI]

    1 | De-icing salt damage to trees | November 2011 Pathology Advisory Note (No. 11) De-icing salt damage to trees De-icing Salt Damage to Trees Joan F Webber, David R Rose, Martin C Dobson #12;2 | De-icing salt damage to trees | November 2011 S a l t D a m a g e De-icing Salt Damage Introduction Rock salt

  13. Invasive Spartina densiflora Brongn. Reduces Primary Productivity in a Northern California Salt Marsh

    E-Print Network [OSTI]

    Lagarde, Luc A.

    2012-01-01T23:59:59.000Z

    alterniflora and benthic microalgae in salt marsh food webs:dynamics of benthic microalgae in salt marshes. Pages 81-106primary productivity of microalgae and cyanobacteria (Geider

  14. Levels of metals from salt marsh plants from Southern California, USA

    E-Print Network [OSTI]

    Hoyt, Kimberly Ann

    2009-01-01T23:59:59.000Z

    alterniflora and benthic microalgae in salt marsh foodalterniflora and benthic microalgae in salt marsh foodSpartina, but feed on microalgae (Currin,1990). Isotope

  15. Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Salt Wells Area...

  16. anion heavy-atom salt: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  17. aluminum-molten salt contactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

  18. Elucidation of Mechanisms of Salinity Tolerance in Zoysia matrella Cultivars: A Study of Structure and Function of Salt Glands

    E-Print Network [OSTI]

    Rao, Sheetal

    2012-07-16T23:59:59.000Z

    Salt glands are important structural adaptations in some plant and animal species that are involved in the excretion of excess salts. Zoysia matrella is a highly salt tolerant turf grass that has salt glands. Two cultivars of Z. matrella, ‘Diamond...

  19. Refractive indexes of aqueous LiBr solutions

    SciTech Connect (OSTI)

    Zaltash, A.; Ally, M.R. (Energy Div., Oak Ridge National Lab., Oak Ridge, TN (US))

    1992-01-01T23:59:59.000Z

    This paper reports that the refractive indexes of water-lithium bromide solutions were measured in the temperature range from 5.0 to 80.0 {degrees}C and in the range of salt concentrations from 0.00 (deionized water) to 58.90 mass %. An electrolyte solution of LlBr in water was chosen for study because of its wide use as an absorption chiller fluid. The concentration of LlBr aqueous solution was determined by argentimetric titration using tetrabromofluoresceln (Eosin) as an adsorption indicator and was checked at a few discrete concentrations (10.06, 20.30, and 58.90 mass % LlBr) against the values obtained by gravimetric analysis. The deviation between values obtained using these two techniques was found to be less than 0.27 mass %. The refractive indexes are shown to represent a reliable and convenient way of measuring the concentration of salt (or water) in LlBr solutions with accuracies of {plus minus}0.3 mass % salt.

  20. Permeability of WIPP Salt During Damage Evolution and Healing

    SciTech Connect (OSTI)

    BODNER,SOL R.; CHAN,KWAI S.; MUNSON,DARRELL E.

    1999-12-03T23:59:59.000Z

    The presence of damage in the form of microcracks can increase the permeability of salt. In this paper, an analytical formulation of the permeability of damaged rock salt is presented for both initially intact and porous conditions. The analysis shows that permeability is related to the connected (i.e., gas accessible) volumetric strain and porosity according to two different power-laws, which may be summed to give the overall behavior of a porous salt with damage. This relationship was incorporated into a constitutive model, known as the Multimechanism Deformation Coupled Fracture (MDCF) model, which has been formulated to describe the inelastic flow behavior of rock salt due to coupled creep, damage, and healing. The extended model was used to calculate the permeability of rock salt from the Waste Isolation Pilot Plant (WIPP) site under conditions where damage evolved with stress over a time period. Permeability changes resulting from both damage development under deviatoric stresses and damage healing under hydrostatic pressures were considered. The calculated results were compared against experimental data from the literature, which indicated that permeability in damaged intact WIPP salt depends on the magnitude of the gas accessible volumetric strain and not on the total volumetric strain. Consequently, the permeability of WIPP salt is significantly affected by the kinetics of crack closure, but shows little dependence on the kinetics of crack removal by sintering.

  1. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    SciTech Connect (OSTI)

    Harwell,, M. A.; Brandstetter,, A.; Benson,, G. L.; Bradley,, D. J.; Serne,, R. J.; Soldat, J. K; Cole,, C. R.; Deutsch,, W. J.; Gupta,, S. K.; Harwell,, C. C.; Napier,, B. A.; Reisenauer,, A. E.; Prater,, L. S.; Simmons,, C. S.; Strenge,, D. L.; Washburn,, J. F.; Zellmer,, J. T.

    1982-06-01T23:59:59.000Z

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario resulted in the delivery of radionuclidecontaminated brine to the surface, where a portion was diverted to culinary salt for direct ingestion by the existing population. Consequence analyses indicated calculated human doses that would be highly deleterious. Additional analyses indicated that doses well above background would occur from such a scenario t even if it occurred a million years into the future. The way to preclude such an intrusion is for continued control over the repository sitet either through direct institutional control or through the effective passive transfer of information. A secondary aspect of the specific human intrusion scenario involved a breach through the side of the salt dome t through which radionuclides migrated via the ground-water system to the accessible environment. This provided a demonstration of the geotransport methodology that AEGIS can use in actual site evaluations, as well as the WRIT program's capabilities with respect to defining the source term and retardation rates of the radionuclides in the repository. This reference site analysis was initially published as a Working Document in December 1979. That version was distributed for a formal peer review by individuals and organizations not involved in its development. The present report represents a revisiont based in part on the responses received from the external reviewers. Summaries of the comments from the reviewers and responses to these comments by the AEGIS staff are presented. The exercise of the AEGIS methodology was successful in demonstrating the methodologyt and thus t in providing a basis for substantive peer review, in terms of further development of the AEGIS site-applications capability and in terms of providing insight into the potential for consequential human intrusion into a salt dome repository.

  2. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    SciTech Connect (OSTI)

    Harwell,, M. A.; Brandstetter,, A.; Benson,, G. L.; Raymond,, J. R.; Brandley,, D. J.; Serne,, R. J.; Soldat,, J. K.; Cole,, C. R.; Deutsch,, W. J.; Gupta,, S. K.; Harwell,, C. C.; Napier,, B. A.; Reisenauer,, A. E.; Prater,, L. S.; Simmons,, C. S.; Strenge,, D. L.; Washburn,, J. F.; Zellmer,, J. T.

    1982-06-01T23:59:59.000Z

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario resulted in the delivery of radionuclidecontaminated brine to the surface, where a portion was diverted to culinary salt for direct ingestion by the existing population. Consequence analyses indicated calculated human doses that would be highly deleterious. Additional analyses indicated that doses well above background would occur from such a scenario t even if it occurred a million years into the future. The way to preclude such an intrusion is for continued control over the repository sitet either through direct institutional control or through the effective passive transfer of information. A secondary aspect of the specific human intrusion scenario involved a breach through the side of the salt dome t through which radionuclides migrated via the ground-water system to the accessible environment. This provided a demonstration of the geotransport methodology that AEGIS can use in actual site evaluations, as well as the WRIT program's capabilities with respect to defining the source term and retardation rates of the radionuclides in the repository. This reference site analysis was initially published as a Working Document in December 1979. That version was distributed for a formal peer review by individuals and organizations not involved in its development. The present report represents a revisiont based in part on the responses received from the external reviewers. Summaries of the comments from the reviewers and responses to these comments by the AEGIS staff are presented. The exercise of the AEGIS methodology was sUGcessful in demonstrating the methodologyt and thus t in providing a basis for substantive peer review, in terms of further development of the AEGIS site-applications capability and in terms of providing insight into the potential for consequential human intrusion into a salt dome repository.

  3. A mechanical model of early salt dome growth 

    E-Print Network [OSTI]

    Irwin, Frank Albert

    1988-01-01T23:59:59.000Z

    salt and the upper layer representing the overlying sediment, is used to study the mechanics of growth in the early stages of salt dome formation. Three cases of this model, each representing a particular rate of removal of the surface topography..., are examined to determine which case best fits observations of salt domes in East Texas, Northwest Germany, and the North Sea. These observations include the spacing and growth rate of the dome and the amount of deformation of the sediments above the dome...

  4. Electrolyte materials containing highly dissociated metal ion salts

    DOE Patents [OSTI]

    Lee, Hung-Sui (East Setauket, NY); Geng, Lin (Coram, NY); Skotheim, Terje A. (Shoreham, NY)

    1996-07-23T23:59:59.000Z

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity.

  5. Electrolyte materials containing highly dissociated metal ion salts

    DOE Patents [OSTI]

    Lee, H.S.; Geng, L.; Skotheim, T.A.

    1996-07-23T23:59:59.000Z

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

  6. Comparison of linear and nonlinear acoustic probing of rock salt

    E-Print Network [OSTI]

    Wang, Albert Min-Hao

    1980-01-01T23:59:59.000Z

    equation (2) (3) where A = oo ~ = '0'0 0 (4) with c being the sound speed for 1nfin1tesimal-amplitude wave propa- 0 gation. The rat1o 8/A is the nonlinear ity parameter of liquids. It can be written as: where T 1s the absolute temperature c... equipment, Butler (1977) encountered difficulty in obtaining a narrow beam in salt. The sound speed i n salt is higher than the sound speed in the coupling fluid (castor oil or glycerin). Therefore, coupling sound energy into salt, with a coupling fluid...

  7. Experimental Investigation of Two-Phase Flow in Rock Salt

    SciTech Connect (OSTI)

    Malama, Bwalya; Howard, Clifford L.

    2014-07-01T23:59:59.000Z

    This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.

  8. Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

    2009-09-30T23:59:59.000Z

    This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material - There are likely multiple phases of material in the salt (metal or compound), either suspended through the salt matrix, layered in the bottom of the tank, or both. These phases may contribute to plugging during any planned transfer. There is not enough data to know for sure. (4) Probe heat trace - The alternate transfer method does not include heat tracing of the bottom of the probe. There is a concern that this may cool the salt and other phases of materials present enough to block the flow of salt. (5) Stress-corrosion cracking - Additionally, there is a concern regarding moisture that may have been introduced into the tanks. Due to time constraints, this concern was not validated. However, if moisture was introduced into the tanks and not removed during heating the tanks before HF and F2 sparging, there would be an additional concern regarding the potential for stress-corrosion cracking of the tank walls.

  9. Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating

    SciTech Connect (OSTI)

    Sridharan, Kumar; Anderson, Mark; Allen, Todd; Corradini, Michael

    2012-01-30T23:59:59.000Z

    The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850��������C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys���¢�������� weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation on Cr-carbide on the graphite surface. Ni-electroplating dramatically reduced corrosion of alloys, although some diffusion of Fe and Cr were observed occur through the Ni plating. A pyrolytic carbon and SiC (PyC/SiC) CVD coating was also investigated and found to be effective in mitigating corrosion. The KCl-MgCl2 molten salt was less corrosive than FLiNaK fluoride salts for corrosion tests performed at 850oC. Cr dissolution in the molten chloride salt was still observed and consequently Ni-201 and Hastelloy N exhibited the least depth of attack. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (as measured by weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. Because Cr dissolution is an important mechanism of corrosion, molten salt electrochemistry experiments were initiated. These experiments were performed using anodic stripping voltammetry (ASV). Using this technique, the reduction potential of Cr was determined against a Pt quasi-reference electrode as well as against a Ni(II)-Ni reference electrode in molten FLiNaK at 650 oC. The integrated current increased linearly with Cr-content in the salt, providing for a direct assessment of the Cr concentration in a given salt of unknown Cr concentration. To study heat transfer mechanisms in these molten salts over the forced and mixed convection regimes, a forced convective loop was constructed to measure heat transfer coefficients, friction factors and corrosion rates in different diameter tubes in a vertical up flow configuration in the laminar flow regime. Equipment and instrumentation for the forced convective loop was designed, constructed, and tested. These include a high temperature centrifugal pump, mass flow meter, and differential pressure sensing capabilities to an uncertainty of < 2 Pa. The heat transfer coefficient for the KCl-MgCl2 salt was measured in t

  10. Critical Droplet Theory Explains the Glass Formability of Aqueous Solutions Matthew Warkentin,* James P. Sethna, and Robert E. Thorne*

    E-Print Network [OSTI]

    Sethna, James P.

    to atmospheric physics. Ice is a key issue in cryopreservation of cells and tissues [1] and in cryocooling (see Fig. 1), including a salt (sodium chloride), simple alcohols (methanol, ethanol), sugars (dextrose using thermocouples threaded down the tube center. For each tubing diameter, solutions with solute

  11. Determining the extragalactic extinction law with SALT

    E-Print Network [OSTI]

    Ido Finkelman; Noah Brosch; Alexei Y. Kniazev; David Buckley; Darragh O'Donoghue; Yas Hashimoto; Nicola Loaring; Encarni Romero; Martin Still; Petri Vaisanen

    2008-08-05T23:59:59.000Z

    We present CCD imaging observations of early-type galaxies with dark lanes obtained with the Southern African Large Telescope (SALT) during its performance-verification phase. We derive the extinction law by the extragalactic dust in the dark lanes in the spectral range 1.11mu m^{-1} < lambda^{-1} < 2.94 mu m^{-1} by fitting model galaxies to the unextinguished parts of the image, and subtracting from these the actual images. We find that the extinction curves run parallel to the Galactic extinction curve, which implies that the properties of dust in the extragalactic enviroment are similar to those of the Milky Way. The ratio of the total V band extinction to the selective extinction between the V and B bands is derived for each galaxy with an average of 2.82+-0.38, compared to a canonical value of 3.1 for the Milky Way. The similar values imply that galaxies with well-defined dark lanes have characteristic dust grain sizes similar to those of Galactic dust.

  12. EM Gains Insight from Germany on Salt-Based Repositories

    Broader source: Energy.gov [DOE]

    KARLSRUHE and PEINE, Germany – EM officials recently took part in workshops in Germany to benefit from the exchange of research and experience operating salt-based repositories for radioactive waste.

  13. Independent Oversight Review, Savannah River Site Salt Waste...

    Office of Environmental Management (EM)

    2014 April 2014 Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Fire Protection Systems The U.S. Department of Energy (DOE) Office of...

  14. Apparatus and method for making metal chloride salt product

    DOE Patents [OSTI]

    Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Homer Glen, IL); Richmann, Michael K. (Carlsbad, NM)

    2007-05-15T23:59:59.000Z

    A method of producing metal chlorides is disclosed in which chlorine gas is introduced into liquid Cd. CdCl.sub.2 salt is floating on the liquid Cd and as more liquid CdCl.sub.2 is formed it separates from the liquid Cd metal and dissolves in the salt. The salt with the CdCl.sub.2 dissolved therein contacts a metal which reacts with CdCl.sub.2 to form a metal chloride, forming a mixture of metal chloride and CdCl.sub.2. After separation of bulk Cd from the salt, by gravitational means, the metal chloride is obtained by distillation which removes CdCl.sub.2 and any Cd dissolved in the metal chloride.

  15. Salt Lake City Area Integrated Projects Power Sales Rate History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Salt Lake City Area Integrated Projects Power Sales Rate History Updated: 9112013 Rate Schedule Effective Dates Energy (MillskWh) Capacity (kW-mo.) Combined (MillskWh) 1...

  16. Salt Fog Testing Iron-Based Amorphous Alloys

    SciTech Connect (OSTI)

    Rebak, Raul B. [Chemistry and Materials Science, Lawrence Livermore National Laboratory, 7000 East Ave, L- 631, Livermore, CA, 94550 (United States); Aprigliano, Louis F. [Consultant, Berlin, MD, 21811 (United States); Day, S. Daniel; Farmer, Joseph C. [LLNL, Livermore, CA, 94550 (United States)

    2007-07-01T23:59:59.000Z

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  17. Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...

    Open Energy Info (EERE)

    Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program...

  18. Molten salt electrolyte battery cell with overcharge tolerance

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL); Nelson, Paul A. (Wheaton, IL)

    1989-01-01T23:59:59.000Z

    A molten salt electrolyte battery having an increased overcharge tolerance employs a negative electrode with two lithium alloy phases of different electrochemical potential, one of which allows self-discharge rates which permits battery cell equalization.

  19. Salt Tolerance of Landscape Plants Common to the Southwest

    E-Print Network [OSTI]

    Miyamoto, S.

    With sharply increasing costs of providing potable water, many communities in the Southwest are attempting to utilize non-potable saline water for irrigating large landscapes. This publication provides the information related to salt effects...

  20. Continuous Commissioning of Salt Lake Community College South City Campus

    E-Print Network [OSTI]

    Deng, S.; Turner, W. D.; Hood, J.

    2004-01-01T23:59:59.000Z

    The State of Utah's Department of Natural Resources funded two projects in Salt Lake City to demonstrate the feasibility of the Continuous Commissioning® (CC®)1 process. The two sites selected were a modern state building, the Matheson Courthouse [1...

  1. Polyimide amic acid salts and polyimide membranes formed therefrom

    DOE Patents [OSTI]

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz; Macheras, James Timothy

    2004-04-06T23:59:59.000Z

    The invention relates to preparation and uses of novel polymeric materials, polyimide amic acid salts (PIAAS). The use of these materials for the fabrication of fluid separation membranes is further disclosed.

  2. Regional Gravity Survey of the Northern Great Salt Lake Desert...

    Open Energy Info (EERE)

    Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Regional Gravity...

  3. Salt-induced changes of colloidal interactions in critical mixtures

    E-Print Network [OSTI]

    Ursula Nellen; Julian Dietrich; Laurent Helden; Shirish Chodankar; Kim Nygard; J. Friso van der Veen; Clemens Bechinger

    2011-04-28T23:59:59.000Z

    We report on salt-dependent interaction potentials of a single charged particle suspended in a binary liquid mixture above a charged wall. For symmetric boundary conditions (BC) we observe attractive particle-wall interaction forces which are similar to critical Casimir forces previously observed in salt-free mixtures. However, in case of antisymmetric BC we find a temperature-dependent crossover from attractive to repulsive forces which is in strong contrast to salt-free conditions. Additionally performed small-angle x-ray scattering experiments demonstrate that the bulk critical fluctuations are not affected by the addition of salt. This suggests that the observed crossover can not be attributed alone to critical Casimir forces. Instead our experiments point towards a possible coupling between the ionic distributions and the concentration profiles in the binary mixture which then affects the interaction potentials in such systems.

  4. System Requirements Document for the Molten Salt Reactor Experiment

    SciTech Connect (OSTI)

    Aigner, R.D.

    2000-04-01T23:59:59.000Z

    The purpose of the conversion process is to convert the {sup 233}U fluoride compounds that are being extracted from the Molten Salt Reactor Experiment (MSRE) equipment to a stable oxide for long-term storage at Bldg. 3019.

  5. Conversion of carboxylate salts to carboxylic acids via reactive distillation 

    E-Print Network [OSTI]

    Williamson, Shelly Ann

    2000-01-01T23:59:59.000Z

    , municipal solid wastes, sewage sludge, and industrial biosludge. Using a proprietary technology owned by Texas A&M University the wastes are first treated with lime to enhance reactivity. Then they are converted to calcium carboxylate salts using a mixed...

  6. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    SciTech Connect (OSTI)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11T23:59:59.000Z

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a small scale prototype system. This includes investigations of plugging issues, heat transfer, pressure drop, and the corrosion and erosion of materials in the flowing system.

  7. Salt tectonics driven by differential sediment loading: Stability analysis and finite element experiments

    E-Print Network [OSTI]

    Beaumont, Christopher

    1 Salt tectonics driven by differential sediment loading: Stability analysis and finite element University of Leeds Leeds LS2 9JT United Kingdom e-mail: lykke@earth.leeds.ac.uk Short running title: Salt salt layer drives salt deformation and has a significant impact on the structural evolution

  8. Salt Bridge Formation, Rev 9.1.99 Warner Instrument Corporation1

    E-Print Network [OSTI]

    Movileanu, Liviu

    Salt Bridge Formation, Rev 9.1.99 Warner Instrument Corporation1 A procedure for the formation of agar salt bridges. The purpose of an agar salt bridge is to provide an electrical connection the following procedure to create salt bridges. This procedure involves: 1) formation of bridges 2) preparing

  9. Development of Salt Marsh Monitoring Methodology Using Remote Sensing and GIS

    E-Print Network [OSTI]

    Wang, Y.Q. "Yeqiao"

    Development of Salt Marsh Monitoring Methodology Using Remote Sensing and GIS Y.Q. Wang, PI://www.ltrs.uri.edu #12;New Satellite Data in Salt Marsh Change Monitoring Given that salt marsh monitoring requires update the salt marsh maps are necessary. Recent development of high spatial resolution satellite remote

  10. Ion Secretion by Salt Glands of Desert Iguanas (Dipsosaurus dorsalis) Lisa C. Hazard*

    E-Print Network [OSTI]

    Hazard, Lisa C.

    22 Ion Secretion by Salt Glands of Desert Iguanas (Dipsosaurus dorsalis) Lisa C. Hazard* DepartmentCl-secreting salt glands of many birds and reptiles, the nasal salt glands of lizards can secrete potassium as well iguana, Dipsosaurus dorsalis. Lizards were given combinations of ions for several days, and secreted salt

  11. Impact of sheep grazing on juvenile sea bass, Dicentrarchus labrax L., in tidal salt marshes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Impact of sheep grazing on juvenile sea bass, Dicentrarchus labrax L., in tidal salt marshes P L., from sheep grazed and ungrazed tidal salt marshes were com- pared qualitatively. Juvenile sea bass colonise the salt marsh at ¯ood during 43% of the spring tides which inundate the salt

  12. Journal of Marine Research, 69, 5777, 2011 Secondary instability of salt sheets

    E-Print Network [OSTI]

    Smyth, William David

    Journal of Marine Research, 69, 57­77, 2011 Secondary instability of salt sheets by Satoshi Kimura1), the salt-fingering instability is supplanted by the salt-sheet instability. Previous direct numerical simulation (DNS) experiments on salt sheets revealed that flow becomes turbulent via secondary instabilities

  13. A screening technique for salt tolerance in onion

    E-Print Network [OSTI]

    Wannamaker, Mary Jordon

    1985-01-01T23:59:59.000Z

    A SCREENING TECHNIQUE FOR SALT TOLERANCE IN ONION A Thesis by MARY JORDAN WANNAMAKER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1985 Major... Subject: Horticulture A SCREENING TECHNIQUE FOR SALT TOLERANCE IN ONION A Thesis by NARY JORDAN WANNAMAKER Approved as to style and content by: Leonard M. Pike (Chairma f Cp 'ttee) 'eg C. Cobb (Member) Ron Newton (Member) . Grant Vest (Head...

  14. Study of maximizing acoustic energy coupling to salt

    E-Print Network [OSTI]

    Hwang, Yng-Jou

    1979-01-01T23:59:59.000Z

    CHAPTER I INTRODUCTION Statement of the Problem The knowledge of the geologic discontinuities in the salt which lie in front of a mining face is a great value for both economic and safety reasons. This knowledge can be obtained by core drilling... at the transducer/ coupling media and coupling media/salt boundaries can be considered as being separate and mutually independent. The coupling problem would then be treated by evaluating the normal incidence reflection coefficients at the transducer/ coupling...

  15. Quaternary freshwater Ostracoda from the Great Salt Lake Basin

    E-Print Network [OSTI]

    Lister, K. H.

    1975-10-23T23:59:59.000Z

    Dissertation Fellowship. I appreciate loans of type specimens by The Illinois State Geological Survey; The United States National Museum; and the Geological Sur- 5 vey of Canada, Saskatchewan. Specimens of the Great Salt Lake Basin ostracodes studied have been... Dissertation Fellowship. I appreciate loans of type specimens by The Illinois State Geological Survey; The United States National Museum; and the Geological Sur- 5 vey of Canada, Saskatchewan. Specimens of the Great Salt Lake Basin ostracodes studied have been...

  16. Anionic Salt Programs for Close-Up Dry Cows 

    E-Print Network [OSTI]

    Stokes, Sandra R.

    1998-12-17T23:59:59.000Z

    (magnesium sulfate, calcium sulfate, ammonium Using anionic salts to manipulate DCAD Keep these guidelines in mind when using anionic salts to manipulate the dietary cation-anion difference (DCAD): n Know the macromineral (potassium, calcium, sulfur, chlo... Supplement with calcium sulfate, ammonium sulfate, mag- nesium sulfate or a combination until total dietary sulfur reaches 0.4 percent. n Add calcium chloride, magnesium chloride, ammonium chloride or a combination until the DCAD is 10 to 15 milli...

  17. Thermal Stability of LiPF6 Salt and Li-ion Battery ElectrolytesContaining LiPF6

    SciTech Connect (OSTI)

    Yang, Hui; Zhuang, Guorong V.; Ross Jr., Philip N.

    2006-03-08T23:59:59.000Z

    The thermal stability of the neat LiPF6 salt and of 1 molal solutions of LiPF6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line FTIR. Pure LiPF6 salt is thermally stable up to 380 K in a dry inert atmosphere, and its decomposition path is a simple dissociation producing LiF as solid and PF5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF6 and water vapor to form POF3 and HF. No new products were observed in 1 molal solutions of LiPF6 in EC, DMC and EMC by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 358 K for 300 420 hrs. did not produce any significant quantity of new products as well. In particular, noalkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.

  18. SEQUESTERING AGENTS FOR METAL IMMOBILIZATION APPLICATION TO THE DEVELOPMENT OF ACTIVE CAPS IN FRESH AND SALT WATER SEDIMENTS

    SciTech Connect (OSTI)

    Knox, A; Michael Paller, M

    2006-11-17T23:59:59.000Z

    This research evaluated the removal of inorganic contaminants by a variety of amendments and mixtures of amendments in fresh and salt water. A series of removal and retention batch experiments was conducted to identify the best treatment for metal removal. Metal removal by the amendments was evaluated by calculating the partition coefficient and percent removal. Retention of metals by the amendments was evaluated in retention (desorption) studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays (e.g., OCB-750), and the biopolymer, chitosan, are very effective in removal and retention of metals in both fresh and salt water. These amendments are being evaluated further as components in the development of active caps for sediment remediation.

  19. Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification MST Solids Sample

    SciTech Connect (OSTI)

    Washington, A. L. II; Peters, T. B.

    2013-09-19T23:59:59.000Z

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 7 processing. The Marcrobatch 7 material was received with visible fine particulate solids, atypical for these samples. The as received material was allowed to settle for a period greater than 24 hours. The supernatant was then decanted and utilized as our clarified feed material. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test using the clarified feed material. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake after filtration from H-Tank Farm (HTF) feed salt solution. The results of these analyses are reported and are within historical precedent.

  20. CAVERN ROOF STABILITY FOR NATURAL GAS STORAGE IN BEDDED SALT

    SciTech Connect (OSTI)

    DeVries, Kerry L; Mellegard, Kirby D; Callahan, Gary D; Goodman, William M

    2005-06-01T23:59:59.000Z

    This report documents research performed to develop a new stress-based criterion for predicting the onset of damage in salt formations surrounding natural gas storage caverns. Laboratory tests were conducted to investigate the effects of shear stress, mean stress, pore pressure, temperature, and Lode angle on the strength and creep characteristics of salt. The laboratory test data were used in the development of the new criterion. The laboratory results indicate that the strength of salt strongly depends on the mean stress and Lode angle. The strength of the salt does not appear to be sensitive to temperature. Pore pressure effects were not readily apparent until a significant level of damage was induced and the permeability was increased to allow penetration of the liquid permeant. Utilizing the new criterion, numerical simulations were used to estimate the minimum allowable gas pressure for hypothetical storage caverns located in a bedded salt formation. The simulations performed illustrate the influence that cavern roof span, depth, roof salt thickness, shale thickness, and shale stiffness have on the allowable operating pressure range. Interestingly, comparison of predictions using the new criterion with that of a commonly used criterion indicate that lower minimum gas pressures may be allowed for caverns at shallow depths. However, as cavern depth is increased, less conservative estimates for minimum gas pressure were determined by the new criterion.

  1. EIS-0099: Remedial Actions at the Former Vitro Chemical Company Site, South Salt Lake, Salt Lake County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of various scenarios associated with the cleanup of those residues remaining at the abandoned uranium mill tailings site located in South Salt Lake, Utah.

  2. OPERATIONS REVIEW OF THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS - 11327

    SciTech Connect (OSTI)

    Peters, T.; Poirier, M.; Fondeur, F.; Fink, S.; Brown, S.; Geeting, M.

    2011-02-07T23:59:59.000Z

    The Savannah River Site (SRS) is removing liquid radioactive waste from its Tank Farm. To treat waste streams that are low in Cs-137, Sr-90, and actinides, SRS developed the Actinide Removal Process and implemented the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The Actinide Removal Process contacts salt solution with monosodium titanate to sorb strontium and select actinides. After monosodium titanate contact, the resulting slurry is filtered to remove the monosodium titanate (and sorbed strontium and actinides) and entrained sludge. The filtrate is transferred to the MCU for further treatment to remove cesium. The solid particulates removed by the filter are concentrated to {approx} 5 wt %, washed to reduce the sodium concentration, and transferred to the Defense Waste Processing Facility for vitrification. The CSSX process extracts the cesium from the radioactive waste using a customized solvent to produce a Decontaminated Salt Solution (DSS), and strips and concentrates the cesium from the solvent with dilute nitric acid. The DSS is incorporated in grout while the strip acid solution is transferred to the Defense Waste Processing Facility for vitrification. The facilities began radiological processing in April 2008 and started processing of the third campaign ('MarcoBatch 3') of waste in June 2010. Campaigns to date have processed {approx}1.2 million gallons of dissolved saltcake. Savannah River National Laboratory (SRNL) personnel performed tests using actual radioactive samples for each waste batch prior to processing. Testing included monosodium titanate sorption of strontium and actinides followed by CSSX batch contact tests to verify expected cesium mass transfer. This paper describes the tests conducted and compares results from facility operations. The results include strontium, plutonium, and cesium removal, cesium concentration, and organic entrainment and recovery data. Additionally, the poster describes lessons learned during operation of the facility.

  3. TYPOLOGY OF STRATA MOVEMENT RELATED TO OLD SOLUTION MINING OF SALT AT SARRALBE (LORRAINE, FRANCE)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Verneuil-en-Halatte Cedex, - France.; Xavier.Daupley@ineris.fr ; Mehdi.Ghoreychi@ineris.fr 2 SOLVAY, Rue de Ransbeek 310 - 1120 Bruxelles - Belgique. Herve.Cuche@solvay.com RESUME : Dans l'objectif de la fermeture Solvay, l'INERIS a entrepris d'importantes investigations sur le site ainsi que divers forages. Elles ont

  4. Water, salt water and alkaline solution uptake in epoxy thin films

    E-Print Network [OSTI]

    Scott, P.; Lees, Janet M.

    2013-05-10T23:59:59.000Z

    . The most common categories of model used are time-dependent [15][23], concentration-dependent [20], relaxation-dependent [2][9] [12] [15][17][19] methods or methods that assign dual- phases to either the polymer (Jacob-Jones model) [14][15], the moisture... area is in marine environments where conventional steel reinforcement is susceptible to corrosion. But the challenge is to predict how the CFRP reinforcing materials will behave over the coming decades when embedded in concrete and exposed...

  5. Dependence of viscous properties of dilute drag reducing solutions on concentration and salt

    E-Print Network [OSTI]

    Lackey, David Alan

    1988-01-01T23:59:59.000Z

    ? log plot of r vs. I'. The true shear rate is given by: (9) where, d ln r n' = din I' The true apparent viscosity is then obtained from (10) Theses equations may be found in most books on rheometry, e. g. Darby [43]. The viscosity curves were...

  6. Modeling of activity coefficients of aqueous solutions of quaternary ammonium salts with the

    E-Print Network [OSTI]

    Stadtherr, Mark A.

    @nd.edu #12;2 Abstract Ionic liquids (ILs) have been studied recently as potential "green" solvents due

  7. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    E-Print Network [OSTI]

    , which can be regenerated using low-temperature waste heat, can also produce sufficient voltage technologies and waste heat making the MREC a useful method for hydrogen gas production from wastes

  8. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    SciTech Connect (OSTI)

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28T23:59:59.000Z

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  9. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect

    SciTech Connect (OSTI)

    Shi, Ya-Zhou; Wang, Feng-Hua; Wu, Yuan-Yan; Tan, Zhi-Jie, E-mail: zjtan@whu.edu.cn [Department of Physics and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2014-09-14T23:59:59.000Z

    To bridge the gap between the sequences and 3-dimensional (3D) structures of RNAs, some computational models have been proposed for predicting RNA 3D structures. However, the existed models seldom consider the conditions departing from the room/body temperature and high salt (1M NaCl), and thus generally hardly predict the thermodynamics and salt effect. In this study, we propose a coarse-grained model with implicit salt for RNAs to predict 3D structures, stability, and salt effect. Combined with Monte Carlo simulated annealing algorithm and a coarse-grained force field, the model folds 46 tested RNAs (?45 nt) including pseudoknots into their native-like structures from their sequences, with an overall mean RMSD of 3.5 Å and an overall minimum RMSD of 1.9 Å from the experimental structures. For 30 RNA hairpins, the present model also gives the reliable predictions for the stability and salt effect with the mean deviation ? 1.0 °C of melting temperatures, as compared with the extensive experimental data. In addition, the model could provide the ensemble of possible 3D structures for a short RNA at a given temperature/salt condition.

  10. Solvent-free mechanochemical preparation of phosphonium salts, phosphorus ylides, and olefins

    DOE Patents [OSTI]

    Pecharsky, Vitalij K; Balema, Viktor P; Wiench, Jerzy W; Pruski, Marek

    2006-09-12T23:59:59.000Z

    The present invention provides a method of preparing a phosphonium salt of the formula [R.sup.1R.sup.2R.sup.3P--CR.sup.4R.sup.5R.sup.6]X, comprising ball-milling a phosphine of the formula R.sup.1R.sup.2R.sup.3P with a compound of the formula XCR.sup.4R.sup.5R.sup.6; a method of preparing a phosphorus ylide of the formula R.sup.1R.sup.2R.sup.3P.dbd.CR.sup.4R.sup.5, comprising ball-milling a phosphonium salt of the formula [R.sup.1R.sup.2R.sup.3P--HCR.sup.4R.sup.5]X in the presence of a base; and a method of preparing an olefin of the formula R.sup.4R.sup.5C.dbd.CR.sup.7H or R.sup.4R.sup.5C.dbd.CR.sup.7R.sup.8, comprising ball-milling a phosphorus ylide of the formula R.sup.1R.sup.2R.sup.3P.dbd.CR.sup.4R.sup.5 with a compound of the formula R.sup.7C(O)H or R.sup.7C(O)R.sup.8. The inventive method produces phosphonium salts and phosphorus ylides by mechanical processing solid reagents under solvent-free conditions. The advantages of the present invention over conventional solution methods, include: (1) extremely high selectivity; (2) high yields; (3) low processing temperatures; (4) simple and scalable reactions using commercially available equipment; and (5) the complete elimination of solvents from the reaction.

  11. Solvent-free mechanochemical preparation of phosphonium salts, phosphorus ylides, and olefins

    DOE Patents [OSTI]

    Pecharsky, Vitalij K.; Balema, Viktor P.; Wiench, Jerzy W.; Pruski, Marek

    2004-05-04T23:59:59.000Z

    The present invention provides a method of preparing a phosphonium salt of the formula [R.sup.1 R.sup.2 R.sup.3 P--CR.sup.4 R.sup.5 R.sup.6 ]X, comprising ball-milling a phosphine of the formula R.sup.1 R.sup.2 R.sup.3 P with a compound of the formula XCR.sup.4 R.sup.5 R.sup.6 ; a method of preparing a phosphorus ylide of the formula R.sup.1 R.sup.2 R.sup.3 P.dbd.CR.sup.4 R.sup.5, comprising ball-milling a phosphonium salt of the formula [R.sup.1 R.sup.2 R.sup.3 P--HCR.sup.4 R.sup.5 ]X in the presence of a base; and a method of preparing an olefin of the formula R.sup.4 R.sup.5 C.dbd.CR.sup.7 H or R.sup.4 R.sup.5 C.dbd.CR.sup.7 R.sup.8, comprising ball-milling a phosphorus ylide of the formula R.sup.1 R.sup.2 R.sup.3 P.dbd.CR.sup.4 R.sup.5 with a compound of the formula R.sup.7 C(O)H or R.sup.7 C(O)R.sup.8. The inventive method produces phosphonium salts and phosphorus ylides by mechanical processing solid reagents under solvent-free conditions. The advantages of the present invention over conventional solution methods, include: (1) extremely high selectivity; (2) high yields; (3) low processing temperatures; (4) simple and scalable reactions using commercially available equipment; and (5) the complete elimination of solvents from the reaction.

  12. Estimate of the risks of disposing nonhazardous oil field wastes into salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-12-31T23:59:59.000Z

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. Potential human health risks associated with hazardous substances (arsenic, benzene, cadmium, and chromium) in NOW were assessed under four postclosure cavern release scenarios: inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks or leaky interbeds, and a partial collapse of the cavern roof. To estimate potential human health risks for these scenarios, contaminant concentrations at the receptor were calculated using a one-dimensional solution to an advection/dispersion equation that included first order degradation. Assuming a single, generic salt cavern and generic oil-field wastes, the best-estimate excess cancer risks ranged from 1.7 {times} 10{sup {minus}12} to 1.1 {times} 10{sup {minus}8} and hazard indices (referring to noncancer health effects) ranged from 7 {times} 10{sup {minus}9} to 7 {times} 10{sup {minus}4}. Under worse-case conditions in which the probability of cavern failure is 1.0, excess cancer risks ranged from 4.9 {times} 10{sup {minus}9} to 1.7 {times} 10{sup {minus}5} and hazard indices ranged from 7.0 {times} 10{sup {minus}4} to 0.07. Even under worst-case conditions, the risks are within the US Environmental Protection Agency (EPA) target range for acceptable exposure levels. From a human health risk perspective, salt caverns can, therefore, provide an acceptable disposal method for NOW.

  13. Preparation of thin ceramic films via an aqueous solution route

    DOE Patents [OSTI]

    Pederson, Larry R. (Kennewick, WA); Chick, Lawrence A. (Richland, WA); Exarhos, Gregory J. (Richland, WA)

    1989-01-01T23:59:59.000Z

    A new chemical method of forming thin ceramic films has been developed. An aqueous solution of metal nitrates or other soluble metal salts and a low molecular weight amino acid is coated onto a substrate and pyrolyzed. The amino acid serves to prevent precipitation of individual solution components, forming a very viscous, glass-like material as excess water is evaporated. Using metal nitrates and glycine, the method has been demonstrated for zirconia with various levels of yttria stabilization, for lanthanum-strontium chromites, and for yttrium-barium-copper oxide superconductors on various substrates.

  14. Non-monotonic swelling of surface grafted hydrogels induced by pH and/or salt concentration

    SciTech Connect (OSTI)

    Longo, Gabriel S. [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, La Plata (Argentina); Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208 (United States); Olvera de la Cruz, Monica [Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Szleifer, I., E-mail: igal@northwestern.edu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-09-28T23:59:59.000Z

    We use a molecular theory to study the thermodynamics of a weak-polyacid hydrogel film that is chemically grafted to a solid surface. We investigate the response of the material to changes in the pH and salt concentration of the buffer solution. Our results show that the pH-triggered swelling of the hydrogel film has a non-monotonic dependence on the acidity of the bath solution. At most salt concentrations, the thickness of the hydrogel film presents a maximum when the pH of the solution is increased from acidic values. The quantitative details of such swelling behavior, which is not observed when the film is physically deposited on the surface, depend on the molecular architecture of the polymer network. This swelling-deswelling transition is the consequence of the complex interplay between the chemical free energy (acid-base equilibrium), the electrostatic repulsions between charged monomers, which are both modulated by the absorption of ions, and the ability of the polymer network to regulate charge and control its volume (molecular organization). In the absence of such competition, for example, for high salt concentrations, the film swells monotonically with increasing pH. A deswelling-swelling transition is similarly predicted as a function of the salt concentration at intermediate pH values. This reentrant behavior, which is due to the coupling between charge regulation and the two opposing effects triggered by salt concentration (screening electrostatic interactions and charging/discharging the acid groups), is similar to that found in end-grafted weak polyelectrolyte layers. Understanding how to control the response of the material to different stimuli, in terms of its molecular structure and local chemical composition, can help the targeted design of applications with extended functionality. We describe the response of the material to an applied pressure and an electric potential. We present profiles that outline the local chemical composition of the hydrogel, which can be useful information when designing applications that pursue or require the absorption of biomolecules or pH-sensitive molecules within different regions of the film.

  15. Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments -- Issues Identified and Path Forward

    SciTech Connect (OSTI)

    Piyush Sabharwall; Matt Ebner; Manohar Sohal; Phil Sharpe; Thermal Hydraulics Group

    2010-03-01T23:59:59.000Z

    Considerable amount of work is going on regarding the development of high temperature liquid salts technology to meet future process needs of Next Generation Nuclear Plant. This report identifies the important characteristics and concerns of high temperature molten salts (with lesson learned at University of Wisconsin-Madison, Molten Salt Program) and provides some possible recommendation for future work

  16. Risk analyses for disposing of nonhazardous oil field wastes in salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01T23:59:59.000Z

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed of in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing the contaminants` toxicities; estimating contaminant intakes; and, finally, calculating human cancer and noncancer risks. Potential human health risks associated with hazardous substances (arsenic, benzene, cadmium, and chromium) in NOW were assessed under four postclosure cavern release scenarios: inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks or leaky interbeds, and a partial collapse of the cavern roof. To estimate potential human health risks for these scenarios, contaminant concentrations at the receptor were calculated using a one-dimensional solution to an advection/dispersion equation that included first order degradation. Even under worst-case conditions, the risks have been found to be within the US EPA target range for acceptable exposure levels. From a human health risk perspective, salt caverns can provide an acceptable disposal method for NOW.

  17. COMPUTATIONAL THERMODYNAMIC MODELING OF HOT CORROSION OF ALLLOYS HAYNES 242 AND HASTELLOYTMN FOR MOLTEN SALT SERVICE

    SciTech Connect (OSTI)

    Michael V. Glazoff; Piyush Sabharwall; Akira Tokuhiro

    2014-09-01T23:59:59.000Z

    An evaluation of thermodynamic aspects of hot corrosion of the superalloys Haynes 242 and HastelloyTM N in the eutectic mixtures of KF and ZrF4 is carried out for development of Advanced High Temperature Reactor (AHTR). This work models the behavior of several superalloys, potential candidates for the AHTR, using computational thermodynamics tool (ThermoCalc), leading to the development of thermodynamic description of the molten salt eutectic mixtures, and on that basis, mechanistic prediction of hot corrosion. The results from these studies indicated that the principal mechanism of hot corrosion was associated with chromium leaching for all of the superalloys described above. However, HastelloyTM N displayed the best hot corrosion performance. This was not surprising given it was developed originally to withstand the harsh conditions of molten salt environment. However, the results obtained in this study provided confidence in the employed methods of computational thermodynamics and could be further used for future alloy design efforts. Finally, several potential solutions to mitigate hot corrosion were proposed for further exploration, including coating development and controlled scaling of intermediate compounds in the KF-ZrF4 system.

  18. Oil field waste disposal in salt caverns: An information website

    SciTech Connect (OSTI)

    Tomasko, D.; Veil, J. A.

    1999-12-10T23:59:59.000Z

    Argonne National Laboratory has completed the construction of a Website for the US Department of Energy (DOE) that provides detailed information on salt caverns and their use for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM). Specific topics in the Website include the following: descriptions of salt deposits and salt caverns within the US, salt cavern construction methods, potential types of wastes, waste emplacement, regulatory issues, costs, carcinogenic and noncarcinogenic human health risks associated with postulated cavern release scenarios, new information on cavern disposal (e.g., upcoming meetings, regulatory issues, etc.), other studies supported by the National Petroleum Technology Office (NPTO) (e.g., considerations of site location, cavern stability, development issues, and bedded salt characterization in the Midland Basin), and links to other associated Web sites. In addition, the Website allows downloadable access to reports prepared on the topic that were funded by DOE. Because of the large quantities of NOW and NORM wastes generated annually by the oil industry, information presented on this Website is particularly interesting and valuable to project managers, regulators, and concerned citizens.

  19. Vitrification of IFR and MSBR halide salt reprocessing wastes

    SciTech Connect (OSTI)

    Siemer, D.D. [Idaho National Laboratory, 12N 3167E, Idaho Falls, ID 83402 (United States)

    2013-07-01T23:59:59.000Z

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  20. Method for making a uranium chloride salt product

    DOE Patents [OSTI]

    Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Lockport, IL)

    2004-10-05T23:59:59.000Z

    The subject apparatus provides a means to produce UCl.sub.3 in large quantities without incurring corrosion of the containment vessel or associated apparatus. Gaseous Cl is injected into a lower layer of Cd where CdCl.sub.2 is formed. Due to is lower density, the CdCl.sub.2 rises through the Cd layer into a layer of molten LiCl--KCL salt where a rotatable basket containing uranium ingots is suspended. The CdCl.sub.2 reacts with the uranium to form UCl.sub.3 and Cd. Due to density differences, the Cd sinks down to the liquid Cd layer and is reused. The UCl.sub.3 combines with the molten salt. During production the temperature is maintained at about 600.degree. C. while after the uranium has been depleted the salt temperature is lowered, the molten salt is pressure siphoned from the vessel, and the salt product LiCl--KCl-30 mol % UCl.sub.3 is solidified.

  1. Effect of water in salt repositories. Final report

    SciTech Connect (OSTI)

    Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

    1983-09-01T23:59:59.000Z

    Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ..delta..P rather than sigma ..delta..P/sup 2/ (sigma is the uniaxial stress normal to the interface and ..delta..P is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model.

  2. Mechanical modeling of the growth of salt structures

    SciTech Connect (OSTI)

    Alfaro, R.A.M.

    1993-05-01T23:59:59.000Z

    A 2D numerical model for studying the morphology and history of salt structures by way of computer simulations is presented. The model is based on conservation laws for physical systems, a fluid marker equation to keep track of the salt/sediments interface, and two constitutive laws for rocksalt. When buoyancy alone is considered, the fluid-assisted diffusion model predicts evolution of salt structures 2.5 times faster than the power-law creep model. Both rheological laws predict strain rates of the order of 4.0 {times} 10{sup {minus}15}s{sup {minus}1} for similar structural maturity level of salt structures. Equivalent stresses and viscosities predicted by the fluid-assisted diffusion law are 10{sup 2} times smaller than those predicted by the power-law creep rheology. Use of East Texas Basin sedimentation rates and power-law creep rheology indicate that differential loading is an effective mechanism to induce perturbations that amplify and evolve to mature salt structures, similar to those observed under natural geological conditions.

  3. Nuclear waste solutions

    DOE Patents [OSTI]

    Walker, Darrel D. (1684 Partridge Dr., Aiken, SC 29801); Ebra, Martha A. (129 Hasty Rd., Aiken, SC 29801)

    1987-01-01T23:59:59.000Z

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  4. Sample Questions (1) Phosphate buffered saline (PBS) is a buffer solution commonly used in biological research.

    E-Print Network [OSTI]

    California at San Diego, University of

    as (3) with a mammalian cell (e.g. red blood cell (RBC)) (a) Write down the expression-potassium adenosine triphosphatase) is a Na+/K+ ion pump found in all animal cells. The pump moves 3 sodium ions out in biological research. It is a water-based salt solution containing sodium phosphate, sodium chloride and

  5. On the Reliability of Numerical Solutions of Brine Transport in Groundwater: Analysis of In ltration

    E-Print Network [OSTI]

    Bergamaschi, Luca

    On the Reliability of Numerical Solutions of Brine Transport in Groundwater: Analysis of In#12, brine transport List of symbols c normalized salt concentration c k l value of concentration on triangle:37; p.2 #12; Reliability of Numerical Simulations of Brine Transport in Groundwater 3 equivalent

  6. Raman Studies of Solution Polyglycine Conformations Sergei Bykov and Sanford Asher*

    E-Print Network [OSTI]

    Asher, Sanford A.

    containing LiCl and LiClO4. Lithium salts increase the solubility of polygly. Our study indicates of the polygly backbone for the PGII conformation in solution is likely a result of favorable interactions-stabilizing carbonyl-carbonyl electrostatic interactions more favorable. This ability of Li+ to stabilize 31-helix

  7. The Role of Solution Conditions in the Bacteriophage PP7 Capsid Charge Rikkert J. Nap,1

    E-Print Network [OSTI]

    Podgornik, Rudolf

    Article The Role of Solution Conditions in the Bacteriophage PP7 Capsid Charge Regulation Rikkert J of Massachusetts, Amherst, Massachusetts ABSTRACT We investigate and quantify the effects of pH and salt concentration on the charge regulation of the bacteriophage PP7 capsid. These effects are found to be extremely

  8. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Lin, Yuehe (Moscow, ID)

    1998-01-01T23:59:59.000Z

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  9. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-06-23T23:59:59.000Z

    A method is described for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  10. Aggregation kinetics of stiff polyelectrolytes in the presence of multivalent salt

    E-Print Network [OSTI]

    Hossein Fazli; Ramin Golestanian

    2007-09-04T23:59:59.000Z

    Using molecular dynamics simulations, the kinetics of bundle formation for stiff polyelectrolytes such as actin is studied in the solution of multivalent salt. The dominant kinetic mode of aggregation is found to be the case of one end of one rod meeting others at right angle due to electrostatic interactions. The kinetic pathway to bundle formation involves a hierarchical structure of small clusters forming initially and then feeding into larger clusters, which is reminiscent of the flocculation dynamics of colloids. For the first few cluster sizes, the Smoluchowski formula for the time evolution of the cluster size gives a reasonable account for the results of our simulation without a single fitting parameter. The description using Smoluchowski formula provides evidence for the aggregation time scale to be controlled by diffusion, with no appreciable energy barrier to overcome.

  11. Tests of prototype salt stripper system for IFR fuel cycle

    SciTech Connect (OSTI)

    Carls, E.L.; Blaskovitz, R.J.; Johnson, T.R. [Argonne National Lab., IL (United States); Ogata, T. [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1993-09-01T23:59:59.000Z

    One of the waste treatment steps for the on-site reprocessing of spent fuel from the Integral Fast Reactor fuel cycles is stripping of the electrolyte salt used in the electrorefining process. This involves the chemical reduction of the actinides and rare earth chlorides forming metals which then dissolve in a cadmium pool. To develop the equipment for this step, a prototype salt stripper system has been installed in an engineering scale argon-filled glovebox. Pumping trails were successful in transferring 90 kg of LiCl-KCl salt containing uranium and rare earth metal chlorides at 500{degree}C from an electrorefiner to the stripper vessel at a pumping rate of about 5 L/min. The freeze seal solder connectors which were used to join sections of the pump and transfer line performed well. Stripping tests have commenced employing an inverted cup charging device to introduce a Cd-15 wt % Li alloy reductant to the stripper vessel.

  12. Injector nozzle for molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, W.A.; Upadhye, R.S.

    1996-02-13T23:59:59.000Z

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath. 2 figs.

  13. Molten Salt Fuel Cycle Requirements for ADTT Applications

    SciTech Connect (OSTI)

    Del Cul, G.D.; Toth, L.M.; Williams, D.F.

    1999-06-07T23:59:59.000Z

    The operation of an ADT system with the associated nuclear reactions has a profound effect upon the chemistry of the fuel - especially with regards to container compatibility and the chemical separations that may be required. The container can be protected by maintaining the redox chemistry within a relatively narrow, non-corrosive window. Neutron economy as well as other factors require a sophisticated regime of fission product separations. Neither of these control requirements has been demonstrated on the scale or degree of sophistication necessary to support an ADT device. We review the present situation with respect to fluoride salts, and focus on the critical issues in these areas which must be addressed. One requirement for advancement in this area - a supply of suitable materials - will soon be fulfilled by the remediation of ORNL?s Molten Salt Reactor Experiment, and the removal of a total of 11,000 kg of enriched (Li-7 > 99.9%) coolant, flush, and fuel salts.

  14. Injector nozzle for molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA)

    1996-01-01T23:59:59.000Z

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

  15. The role of plasma membrane H+-ATPase and apoplastic pH in adaptation of maize (Zea mays) to salt stress

    E-Print Network [OSTI]

    Pitann, Britta; Mühling, Karl H.

    2009-01-01T23:59:59.000Z

    NaCl is the predominant salt species, whose principleconcept for understanding of salt-induced growth repressionthe purpose of designing salt- resistant crops, the complete

  16. Salt transport extraction of transuranium elements from lwr fuel

    DOE Patents [OSTI]

    Pierce, R. Dean (Naperville, IL); Ackerman, John P. (Downers Grove, IL); Battles, James E. (Oak Forest, IL); Johnson, Terry R. (Wheaton, IL); Miller, William E. (Naperville, IL)

    1992-01-01T23:59:59.000Z

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750.degree. C. to about 850.degree. C. to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including Mg Cl.sub.2 to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy.

  17. Salt transport extraction of transuranium elements from LWR fuel

    DOE Patents [OSTI]

    Pierce, R.D.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.

    1992-11-03T23:59:59.000Z

    A process is described for separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl[sub 2] and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750 C to about 850 C to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl[sub 2] having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO[sub 2]. The Ca metal and CaCl[sub 2] is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including MgCl[sub 2] to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy. 2 figs.

  18. Attenuation of acoustic waves in glacial ice and salt domes

    E-Print Network [OSTI]

    P. B. Price

    2005-06-27T23:59:59.000Z

    Two classes of natural solid media (glacial ice and salt domes) are under consideration as media in which to deploy instruments for detection of neutrinos with energy >1e18 eV. Though insensitive to 1e11 to 1e16 eV neutrinos for which observatories (e.g., AMANDA and IceCube) that utilize optical Cherenkov radiation detectors are designed, radio and acoustic methods are suited for searches for the very low fluxes of neutrinos with energies >1017 eV. This is because, due to the very long attenuation lengths of radio and acoustic waves in ice and salt, detection modules can be spaced very far apart. In this paper, I calculate the absorption and scattering coefficients as a function of frequency and grain size for acoustic waves in glacial ice and salt domes and show that experimental measurements on laboratory samples and in glacial ice and salt domes are consistent with theory. For South Pole ice with grain size 0.2 cm at -51 degrees C, scattering lengths are calculated to be 2000 km and 25 km at 10 kHz and 30 kHz, respectively, and the absorption length is calculated to be 9 km at frequencies above 100 Hz. For NaCl (rock salt) with grain size 0.75 cm, scattering lengths are calculated to be 120 km and 1.4 km at 10 kHz and 30 kHz, and absorption lengths are calculated to be 30,000 km and 3300 km at 10 kHz and 30 kHz. Existing measurements are consistent with theory. For ice, absorption is the limiting factor; for salt, scattering is the limiting factor.

  19. Threat of a sinkhole: A reevaluation of Cavern 4, Bayou Choctaw salt dome, Louisiana

    SciTech Connect (OSTI)

    Neal, J.T.; Todd, J.L.; Linn, J.K. [Sandia National Labs., Albuquerque, NM (United States); Magorian, T.R. [Magorian (Thomas R.), Amherst, NY (United States)

    1993-09-01T23:59:59.000Z

    Cavern Lake at Bayou Choctaw salt dome resulted from the failure of Cavern 7 in 1954. Uncontrolled solutioning of this cavern through the thin caprock had set the stage for overburden to collapse into the cavern below. A similar situation developed with nearby Cavern 4, but with less dissolutioning of the caprock. Because pressure loss was already a problem and because another 800 ft diameter lake would have endangered surface operations, solutioning of Cavern 4 was stopped and the cavern abandoned in 1957 in order to protect the already-small site. In 1978 the Strategic Petroleum Reserve (SPR) acquired a number of caverns at Bayou Choctaw, including Cavern 4, and the possible repeat of the Cavern 7 failure and formation of another lake thus became an issue. The cavern dimensions were re-sonared in 1980 for comparison with 1963 and 1977 surveys. Annual surface leveling between 1982--1992 showed less subsidence occurring than the site average, and a cavern monitoring system, installed in 1984, has revealed no anomalous motion. Repeat sonar surveys in 1992 showed very little, if any, change occurred since 1980 although a small amount of uncertainty exists as a result of changing sonar techniques. We conclude that significant additional solutioning or erosion of the caprock has not occurred and that there is no increased threat to SPR operations.

  20. Features of Bayou Choctaw SPR caverns and internal structure of the salt dome.

    SciTech Connect (OSTI)

    Munson, Darrell E.

    2007-07-01T23:59:59.000Z

    The intent of this study is to examine the internal structure of the Bayou Choctaw salt dome utilizing the information obtained from graphical representations of sonar survey data of the internal cavern surfaces. Many of the Bayou Choctaw caverns have been abandoned. Some existing caverns were purchased by the Strategic Petroleum Reserve (SPR) program and have rather convoluted histories and complex cavern geometries. In fact, these caverns are typically poorly documented and are not particularly constructive to this study. Only two Bayou Choctaw caverns, 101 and 102, which were constructed using well-controlled solutioning methods, are well documented. One of these was constructed by the SPR for their use while the other was constructed and traded for another existing cavern. Consequently, compared to the SPR caverns of the West Hackberry and Big Hill domes, it is more difficult to obtain a general impression of the stratigraphy of the dome. Indeed, caverns of Bayou Choctaw show features significantly different than those encountered in the other two SPR facilities. In the number of abandoned caverns, and some of those existing caverns purchased by the SPR, extremely irregular solutioning has occurred. The two SPR constructed caverns suggest that some sections of the caverns may have undergone very regular solutioning to form uniform cylindrical shapes. Although it is not usually productive to speculate, some suggestions that point to the behavior of the Bayou Choctaw dome are examined. Also the primary differences in the Bayou Choctaw dome and the other SPR domes are noted.