National Library of Energy BETA

Sample records for desiccant enhanced evaporative

  1. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect (OSTI)

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way—with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  2. Desiccant Enhanced Evaporative Air Conditioning: Parametric Analysis and Design; Preprint

    SciTech Connect (OSTI)

    Woods, J.; Kozubal, E.

    2012-10-01

    This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.

  3. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect (OSTI)

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  4. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  5. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  6. Field Test of Combined Desiccant-Evaporator Cycle Providing Lower Dew Points and Enhanced Dehumidification 

    E-Print Network [OSTI]

    Cromer, C. J.

    2006-01-01

    sometimes referred to as the Cromer cycle. The use of the desiccant provides the AC unit with enhanced moisture removal and a control mechanism whereby the moisture removal of the evaporator coil can be adjusted on the fly down to SHRs below 50... humidity control is added, the industry normally resorts to a “cold coil” strategy, that is, the air is overcooled by the machine to remove the humidity, and then reheated to get it back into the comfort zone. This process is inefficient, adding extra...

  7. Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning

    Office of Energy Efficiency and Renewable Energy (EERE)

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way — with heat.

  8. Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification

    DOE Patents [OSTI]

    Kozubal, Eric Joseph; Slayzak, Steven Joseph

    2014-07-08

    An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.

  9. Desiccant-Enhanced Evaporative Air Conditioning: Parametric Analysis and Design

    SciTech Connect (OSTI)

    J. Woods and E. Kozubal

    2012-10-01

    Presented at the Second International Conference on Building Energy and Environment (COBEE2012); Boulder, Colorado; August 1-4-, 2012

  10. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  11. Evaporative cooling enhanced cold storage system

    DOE Patents [OSTI]

    Carr, Peter (Cary, NC)

    1991-01-01

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  12. Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes NREL's work on a desiccant enhanced evaporative air conditioner (DEVap) that uses 90% less electricity than traditional air conditioning units.

  13. Investigations on Vapour Compression Air Conditioner with Direct Contact Desiccant Loop over Condenser and Evaporator 

    E-Print Network [OSTI]

    Maiya, M. P.; Ravi, J.; Tiwari, S.

    2010-01-01

    (low humidity). Operation of such a novel system is explained, elucidating the operational feasibility. The results presented consider the characteristics of such a system with respect to changes in the evaporator inlet air temperature and humidity...

  14. Indirect evaporative coolers with enhanced heat transfer

    DOE Patents [OSTI]

    Kozubal, Eric; Woods, Jason; Judkoff, Ron

    2015-09-22

    A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.

  15. Controlling bubble motion over heated surface through evaporation momentum force to enhance pool boiling heat transfer

    E-Print Network [OSTI]

    Kandlikar, Satish

    Controlling bubble motion over heated surface through evaporation momentum force to enhance pool://apl.aip.org/about/rights_and_permissions #12;Controlling bubble motion over heated surface through evaporation momentum force to enhance pool on the basis of this hypothesis to control the bubble trajectory for (i) enhancing the heat transfer

  16. Desiccant dehumidification analysis

    E-Print Network [OSTI]

    Xing, Hai-Yun Helen, 1976-

    2000-01-01

    Desiccant dehumidification has been given increasing interest in the air conditioning industry. Compared with conventional vapor compression air conditioning systems, desiccant dehumidification saves energy by separating ...

  17. Cromer Cycle Air Conditioner: A Unique Air-Conditioner Desiccant Cycle to Enhance Dehumidification and Save Energy 

    E-Print Network [OSTI]

    Cromer, C. J.

    2000-01-01

    The Cromer cycle uses a desiccant to move moisture from the saturated air leaving an air conditioning (AC) cooling coil to the air returning to the AC unit from the conditioned space. This has the thermodynamic effect of reducing the overall energy...

  18. Active Humidity Control Through Gas-Fired Desiccant Humidity Pump 

    E-Print Network [OSTI]

    Novosel, D.; Griffiths, W. C.

    1988-01-01

    to new or existing conventional air-conditioning system via a duct. It consists of a triple integrated heat-exchanger combining (liquid) desiccant dehumidification with indirect evaporative cooling, a brine interchanger, and a gas-fired brine heater...

  19. I TVI7M * -TOE. ^ / Desiccant Dehumidification

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    I TVI7M * -TOE. ^ / Desiccant Dehumidification Enhancement of Electric Air Conditioning Units Final of |I Electric Air Conditioning Units FINAL REPORT October 1993 By ~~~~~I ~Florida Solar Energy Center

  20. Thesis proposal CSF Brazil 2014 Enhanced evaporator for power electronics cooling

    E-Print Network [OSTI]

    Bordenave, Charles

    Thesis proposal CSF Brazil 2014 Title: Enhanced evaporator for power electronics cooling Thesis prototype is already available at LAPLACE. Subject description: The two-phase cooling systems (heat pipes an interface with an imposed temperature in the vicinity of the wall to be cooled . When this interface

  1. Low density molded desiccant

    SciTech Connect (OSTI)

    Lula, J.W.

    1982-01-01

    A formulation for low density syntactic foam desiccant, using a polyimide resin binder, glass microbubble filler, and molecular sieve desiccant powder has been developed. The formulation may be modified easily to meet specific part requirements such as density and desired moisture pickup. Some parts can be molded to size.

  2. Using liquid desiccant as a regenerable filter for capturing and deactivating contaminants

    DOE Patents [OSTI]

    Slayzak, Steven J. (Denver, CO); Anderson, Ren S. (Broomfield, CO); Judkoff, Ronald D. (Golden, CO); Blake, Daniel M. (Golden, CO); Vinzant, Todd B. (Golden, CO); Ryan, Joseph P. (Golden, CO)

    2007-12-11

    A method, and systems for implementing such method, for purifying and conditioning air of weaponized contaminants. The method includes wetting a filter packing media with a salt-based liquid desiccant, such as water with a high concentration of lithium chloride. Air is passed through the wetted filter packing media and the contaminants in are captured with the liquid desiccant while the liquid desiccant dehumidifies the air. The captured contaminants are then deactivated in the liquid desiccant, which may include heating the liquid desiccant. The liquid desiccant is regenerated by applying heat to the liquid desiccant and then removing moisture. The method includes repeating the wetting with the regenerated liquid desiccant which provides a regenerable filtering process that captures and deactivates contaminants on an ongoing basis while also conditioning the air. The method may include filtration effectiveness enhancement by electrostatic or inertial means.

  3. Desiccant Cooling Systems - A Review 

    E-Print Network [OSTI]

    Kettleborough, C. F.; Ullah, M. R.; Waugaman, D. G.

    1986-01-01

    Desiccant cooling systems have been investigated extensively during the past decade as alternatives to electrically driven vapor compression systems because regeneration temperatures of the desiccant - about 160°F, can be achieved using natural gas...

  4. Simulation and study of thermal performance of liquid desiccant cooling cycle configurations 

    E-Print Network [OSTI]

    Dhir, Rajesh

    1995-01-01

    evaporative cooler(s), liquid desiccant packed dehumidifying tower, and air-to-air heat exchanger. Constant effectiveness of 0.85 and 0.9 were assumed for the direct evaporative cooler and air-to-air heat exchanger respectively. The performance of these five...

  5. Composite desiccant structure

    DOE Patents [OSTI]

    Fraioli, A.V.; Schertz, W.W.

    1984-06-06

    This patent discloses a composite formed of small desiccant particles retained in a dark matrix composed of a porous binder containing a transition metal oxide with pores to provide moisture transport with respect to the particles, and metallic fibers to remove the heat of condensation during dehumidification and provide heat for the removal of moisture during regeneration. The moisture absorbing properties of the composite may be regenerated by exposure of the dark matrix to solar radiation with dehumidification occurring at night.

  6. Composite desiccant structure

    DOE Patents [OSTI]

    Fraioli, Anthony V. (Hawthorn Woods, IL); Schertz, William W. (Batavia, IL)

    1987-01-01

    A composite formed of small desiccant particles retained in a dark matrix composed of a porous binder containing a transition metal oxide with pores to provide moisture transport with respect to the particles, and metallic fibers to remove the heat of condensation during dehumidification and provide heat for the removal of moisture during regeneration. The moisture absorbing properties of the composite may be regenerated by exposure of the dark matrix to solar radiation with dehumidification occurring at night.

  7. Heat transfer of R-134a in single-tube spray evaporation including lubricant effects and enhanced surface results

    SciTech Connect (OSTI)

    Moeykens, S.A.; Huebsch, W.W.; Pate, M.B.

    1995-08-01

    Single-tube spray evaporation experimental tests were conducted in order to evaluate the average wall heat transfer coefficients for seven different commercially available tubes. Liquid film supply rates were held constant in order to evaluate the effects of the enhancement on shell-side heat transfer under similar conditions. Because the spray evaporation phenomenon is so different from pool boiling, both condensation-type and evaporation-type enhanced surfaces were evaluated. A comparison of the results for all of the tubes showed that the enhanced condensation surfaces performed better than the enhanced boiling surfaces. In addition, the 26-fpi surface tested marginally better than the 40-fpi surface. Small concentrations of a polyol-ester lubricant cause a foaming effect that increases the heat transfer performance. This tendency was seen with both 32-cs and 68-cs polyol-ester oils. The 68-cs lubricant was tested at concentrations of 0.0, 0.5, 1.0, 3.0, and 5.0 with the W-40 fpi and Tu-Cii surfaces. Results with this lubricant show the performance continues to increase through the 3% concentration for most of the heat flux range tested At the upper end of the range tested, the 1.0% mass fraction yielded the best performance. The 32-cs lubricant generated trends similar to those of the 68-cs lubricant. Lubricant concentrations of 1.0%, 2.0%, and 3.0% were evaluated with plain, W-40 fpi, and Tu-Cii surfaces. The 2.0% concentration, not the 1.0 %, generated the best performance at the highest heat flux tested. This difference must be attributed to the difference in the lubricant viscosity.

  8. Control methods and systems for indirect evaporative coolers

    DOE Patents [OSTI]

    Woods, Jason; Kozubal, Erik

    2015-09-22

    A control method for operating an indirect evaporative cooler to control temperature and humidity. The method includes operating an airflow control device to provide supply air at a flow rate to a liquid desiccant dehumidifier. The supply air flows through the dehumidifier and an indirect evaporative cooler prior to exiting an outlet into a space. The method includes operating a pump to provide liquid desiccant to the liquid desiccant dehumidifier and sensing a temperature of an airstream at the outlet of the indirect evaporative cooler. The method includes comparing the temperature of the airstream at the outlet to a setpoint temperature at the outlet and controlling the pump to set the flow rate of the liquid desiccant. The method includes sensing space temperature, comparing the space temperature with a setpoint temperature, and controlling the airflow control device to set the flow rate of the supply air based on the comparison.

  9. Nanoparticle enhanced evaporation of liquids: A case study of silicone oil Wenbin Zhang, Rong Shen, Kunquan Lu, Ailing Ji, and Zexian Cao

    E-Print Network [OSTI]

    Zexian, Cao

    Nanoparticle enhanced evaporation of liquids: A case study of silicone oil and water Wenbin Zhang probability of D2O-water on ice: Isotope effects and the influence of vibrational excitation J. Chem. Phys of silicone oil and water Wenbin Zhang, Rong Shen, Kunquan Lu, Ailing Ji, and Zexian Caoa Institute of Physics

  10. A Preliminary Evaluation of Alternative Liquid Desiccants for a Hybrid Desiccant Air Conditioner 

    E-Print Network [OSTI]

    Studak, J. W.; Peterson, J. L.

    1988-01-01

    and the condenser of a vapor-compression air conditioner. The liquid desiccants studied were lithium chloride, lithium bromide, calcium chloride, and triethylene glycol. Each candidate desiccant was subjected to a screening process which weighed the merits...

  11. Optimized Bose-Einstein-condensate production in a dipole trap based on a 1070-nm multifrequency laser: Influence of enhanced two-body loss on the evaporation process

    E-Print Network [OSTI]

    Thomas Lauber; Johannes Kueber; Oliver Wille; Gerhard Birkl

    2011-10-24

    We present an optimized strategy for the production of tightly confined Bose-Einstein condensates (BEC) of 87Rb in a crossed dipole trap with direct loading from a magneto-optical trap. The dipole trap is created with light of a multifrequency fiber laser with a center wavelength of 1070nm. Evaporative cooling is performed by ramping down the laser power only. A comparison of the resulting atom number in an almost pure BEC to the initial atom number and the value for the gain in phase space density per atom lost confirm that this straightforward strategy is very efficient. We observe that the temporal characteristics of evaporation sequence are strongly influenced by power-dependent two-body losses resulting from enhanced optical pumping to the higher-energy hyperfine state. We characterize these losses and compare them to results obtained with a single-frequency laser at 1030nm.

  12. Optimized Bose-Einstein-condensate production in a dipole trap based on a 1070-nm multifrequency laser: Influence of enhanced two-body loss on the evaporation process

    E-Print Network [OSTI]

    Lauber, Thomas; Wille, Oliver; Birkl, Gerhard

    2011-01-01

    We present an optimized strategy for the production of tightly confined Bose-Einstein condensates (BEC) of 87Rb in a crossed dipole trap with direct loading from a magneto-optical trap. The dipole trap is created with light of a multifrequency fiber laser with a center wavelength of 1070nm. Evaporative cooling is performed by ramping down the laser power only. A comparison of the resulting atom number in an almost pure BEC to the initial atom number and the value for the gain in phase space density per atom lost confirm that this straightforward strategy is very efficient. We observe that the temporal characteristics of evaporation sequence are strongly influenced by power-dependent two-body losses resulting from enhanced optical pumping to the higher-energy hyperfine state. We characterize these losses and compare them to results obtained with a single-frequency laser at 1030nm.

  13. Screening Tool for Desiccant Dehumidification Applications 

    E-Print Network [OSTI]

    Czachorski, M.; Worek, W. M.

    1998-01-01

    (from a library of typical systems) and compares performance of a conventional system to an alternative electric system supplemented with a commercially available desiccant dehumidifier providing the required air-conditioning performance. The screening...

  14. Effect of Desiccation Cracks on Earth Embankments 

    E-Print Network [OSTI]

    Khandelwal, Siddharth

    2012-07-11

    Levees are earth structures used for flood protection. Due to their easy availability and low permeability, clays are the most common material used for the construction of levees. Clays are susceptible to desiccation cracks ...

  15. Desiccants: Benefits for the Second Century of Air-Conditioning 

    E-Print Network [OSTI]

    McGahey, K.; Harriman, L.

    1996-01-01

    to equalize this pressure differential. Lew Harriman Consultant Mason-Grant Company Box 6547 Portsmouth, NH 03802 With desiccants, moisture removal occurs in the vapor phase. Consequently, desiccant dehumidification can continue even when the dew...

  16. October 1992 * NREL/TP-254-4147 Desiccant Coolint

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    October 1992 * NREL/TP-254-4147 Desiccant Coolint State-of-the-Art Aessment Ahmad A. Pesaran Terry Renewable Energy Laboratory's (NREL's) unique desiccant test facilities and their typical outputs

  17. Advanced Open-Cycle Desiccant Cooling System 

    E-Print Network [OSTI]

    Ko, Y. J.; Charoensupaya, D.; Lavan, Z.

    1989-01-01

    of moisture in the desiccnnt dehumidifier includes both the gas-side (film) and solid-side resistances for heat and mass transports. The moisture diffusion in the desiccant material is expressed by gas-phase diffusion and surface diffusion. Effects of several...

  18. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    15] O. A. Hamed, "THERMAL PERFORMANCE OF MULTISTAGE FLASHdesa4.aspx. [18] Encon, "Thermal Evaporators," June 2013. [http://www.evaporator.com/thermal-evaporator. [19] Y. Tian

  19. Desiccant cooling: State-of-the-art assessment

    SciTech Connect (OSTI)

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    1992-10-01

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R&D) program history (focusing on DOE`s funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R&D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory`s unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

  20. Desiccant cooling: State-of-the-art assessment

    SciTech Connect (OSTI)

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    1992-10-01

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R D) program history (focusing on DOE's funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory's unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

  1. Desiccant-based dehumidification system and method

    DOE Patents [OSTI]

    Fischer, John C.

    2004-06-22

    The present invention provides an apparatus for dehumidifying air supplied to an enclosed space by an air conditioning unit. The apparatus includes a partition separating the interior of the housing into a supply portion and a regeneration portion. The supply portion has an inlet for receiving supply air from the air conditioning unit and an outlet for supplying air to the enclosed space. A regeneration fan creates the regeneration air stream. The apparatus includes an active desiccant wheel positioned such that a portion of the wheel extends into the supply portion and a portion of the wheel extends into the regeneration portion, so that the wheel can rotate through the supply air stream and the regeneration air stream to dehumidify the supply air stream. A heater warms the regeneration air stream as necessary to regenerate the desiccant wheel. The invention also comprises a hybrid system that combines air conditioning and dehumidifying components into a single integrated unit.

  2. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    SciTech Connect (OSTI)

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  3. CLIMATE CHANGE, DESERTIFICATION AND DESICCATION, AND THE CASE

    E-Print Network [OSTI]

    Bateman, Ian J.

    CLIMATE CHANGE, DESERTIFICATION AND DESICCATION, AND THE CASE OF THE AFRICAN SAHEL BY MIKE HULME AND MICK KELLY CSERGE WORKING PAPER GEC 93-17 #12;CLIMATE CHANGE, DESERTIFICATION AND DESICCATION precarious, has now become even more difficult for the still-expanding poplulation. Why has desertification

  4. Developing a Standard Method of Test for Packaged, Solid-Desiccant Based Dehumidification Systems

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    components that may be included to complement a desiccant-based dehumidifier system. The MOT also does-based dehumidifier systems that incorporate a thermally-regenerated desiccant material for dehumidification. This MOT is intended to function as the "system" testing and rating compliment to the desiccant "component" (desiccant

  5. Analysis of a Fabric/Desiccant Window Cavity Dehumidifier 

    E-Print Network [OSTI]

    Hunn, B. D.; Grasso, M. M.; Vadlamani, V.

    1994-01-01

    This paper presents the results of an exploratory study of a fabric/desiccant window cavity dehumidifier system for possible use in commercial buildings. The objective was to evaluate fabrics commonly used in buildings, and system concepts...

  6. Apparatus and method for evaporator defrosting

    DOE Patents [OSTI]

    Mei, Viung C. (Oak Ridge, TN); Chen, Fang C. (Knoxville, TN); Domitrovic, Ronald E. (Knoxville, TN)

    2001-01-01

    An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.

  7. Desiccant Moisture Exchange for Dehumidification Enhancement of Air Conditioners 

    E-Print Network [OSTI]

    Cromer, C. J.

    1988-01-01

    amling mil. Bqe surfam is needed to accomplish the heat ex&ange, so lamberenthian anl wrnpted surfaces have been used. Ihe of heat is ~Wlled by duct* & bypaseirq varying armnrts of air 8ud-1 that all air does not casrtact all the heat exdmqe...

  8. Advanced Development and Market Penetration of Desiccant-Based Air-Conditioning Systems

    SciTech Connect (OSTI)

    Vineyard, E A; Sand, J R; Linkous, R L; Baskin, E; Mason, D

    1998-01-01

    Desiccant Air Conditioning Systems can be used as alternatives for conventional air conditioning equipment in any commercial or residential building.

  9. Measurement uncertainty of adsorption testing of desiccant materials

    SciTech Connect (OSTI)

    Bingham, C E; Pesaran, A A

    1988-12-01

    The technique of measurement uncertainty analysis as described in the current ANSI/ASME standard is applied to the testing of desiccant materials in SERI`s Sorption Test Facility. This paper estimates the elemental precision and systematic errors in these tests and propagates them separately to obtain the resulting uncertainty of the test parameters, including relative humidity ({plus_minus}.03) and sorption capacity ({plus_minus}.002 g/g). Errors generated by instrument calibration, data acquisition, and data reduction are considered. Measurement parameters that would improve the uncertainty of the results are identified. Using the uncertainty in the moisture capacity of a desiccant, the design engineer can estimate the uncertainty in performance of a dehumidifier for desiccant cooling systems with confidence. 6 refs., 2 figs., 8 tabs.

  10. Moving Advanced Desiccant Materials into Mainstream Non-CFC Cooling Products

    SciTech Connect (OSTI)

    Sand, J R; Grossman, G; Rice, C K; Fairchild, P D; Gross, I L

    1994-01-01

    Desiccant air-conditioning systems can be used as alternatives for conventional air-conditioning equipment in any commercial or residential building. Recent breakthroughs in desiccant materials technology and the creation of new markets by Indoor Air Quality issues make desiccant-based air-conditioning equipment practical for many space-conditioning applications.

  11. 242-A evaporator safety analysis report

    SciTech Connect (OSTI)

    CAMPBELL, T.A.

    1999-05-17

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  12. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Johnson, Timothy C.; Johnson, Christian D.; Clayton, Ray E.; Chronister, Glen B.

    2013-09-01

    A field test of desiccation is being conducted as an element of the deep vadose zone treatability test program. Desiccation technology relies on removal of water from a portion of the subsurface such that the resultant low moisture conditions inhibit downward movement of water and dissolved contaminants. Previously, a field test report (Truex et al. 2012a) was prepared describing the active desiccation portion of the test and initial post-desiccation monitoring data. Additional monitoring data have been collected at the field test site during the post-desiccation period and is reported herein along with interpretation with respect to desiccation performance. This is an interim report including about 2 years of post-desiccation monitoring data.

  13. Measure Guideline: Evaporative Condensers

    SciTech Connect (OSTI)

    German, A; Dakin, B.; Hoeschele, M.

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  14. Evaporative Coolers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an evaporative cooler adds fresh air to your home. < In low-humidity areas, evaporating water into the air provides a natural and energy-efficient means of cooling. Evaporative...

  15. Enhancement of lanthanide evaporation by complexation: Dysprosium tri-iodide mixed with indium iodide and thulium tri-iodide mixed with thallium iodide

    SciTech Connect (OSTI)

    Curry, J. J.; Henins, A.; Hardis, J. E.; Estupiñán, E. G.; Lapatovich, W. P.; Shastri, S. D.

    2013-09-28

    The vapors in equilibrium with condensates of DyI{sub 3}, DyI{sub 3}/InI, TmI{sub 3}, and TmI{sub 3}/TlI were observed over the temperature range from 900 K to 1400 K using x-ray induced fluorescence. The total densities of each element (Dy, Tm, In, Tl, and I) in the vapor, summed over all atomic and molecular species, were determined. Dramatic enhancements in the total vapor densities of Dy and Tm were observed in the vapors over DyI{sub 3}/InI and TmI{sub 3}/TlI as compared to the vapors over pure DyI{sub 3} and pure TmI{sub 3}, respectively. An enhancement factor exceeding 10 was observed for Dy at T? 1020 K, decreasing to 0 at T? 1250 K. An enhancement factor exceeding 20 was observed for Tm at T? 1040 K, decreasing to 0 at T? 1300 K. Such enhancements are expected from the formation of the vapor-phase hetero-complexes DyInI{sub 4} and TmTlI{sub 4}. Numerical simulations of the thermo-chemical equilibrium suggest the importance of additional complexes in liquid phases. A description of the measurement technique is given. Improvements in the absolute calibration lead to an approximately 40% correction to previously reported preliminary results [J. J. Curry et al., Chem. Phys. Lett. 507, 52 (2011); Appl. Phys. Lett. 100, 083505 (2012)].

  16. Evaporation/ Solution Droplet

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Solvent Evaporation/ Reactions Precursor Solution Droplet Product Densification Product Collection Production of Nano-Materials microporous shell internal macropores Hierarchically Porous Carbons Brandon Ito (20 ppm) Formaldehyde (20 ppm) Control (50% RH) Maryam SayyahKaty Filson Wei Jiang Mechanoluminescence

  17. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    required to evaporate water to the energy needed to overcomeproduce fresh water at the cost of energy and produce afrom sea water requires 3.5 kJ of energy per kilogram of

  18. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Evaporator Powered By Solar Thermal Energy 10:00 AM 10:00 AMaided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  19. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"Solar infrastructure should include analysis of thermal storage.storage equipment, the evaporator can be integrated into the current solar

  20. Mixed feed evaporator

    DOE Patents [OSTI]

    Vakil, Himanshu B. (Schenectady, NY); Kosky, Philip G. (Ballston Lake, NY)

    1982-01-01

    In the preparation of the gaseous reactant feed to undergo a chemical reaction requiring the presence of steam, the efficiency of overall power utilization is improved by premixing the gaseous reactant feed with water and then heating to evaporate the water in the presence of the gaseous reactant feed, the heating fluid utilized being at a temperature below the boiling point of water at the pressure in the volume where the evaporation occurs.

  1. Measure Guideline: Evaporative Condensers

    SciTech Connect (OSTI)

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  2. Method and composition for molding low density desiccant syntactic foam articles

    DOE Patents [OSTI]

    Lula, James W. (Bonner Springs, KS); Schicker, James R. (Lee's Summit, MO)

    1984-01-01

    A method and a composition are provided for molding low density desiccant syntactic foam articles. A low density molded desiccant article may be made as a syntactic foam by blending a thermosetting resin, microspheres and molecular sieve desiccant powder, molding and curing. Such articles have densities of 0.2-0.9 g/cc, moisture capacities of 1-12% by weight, and can serve as light weight structural supports.

  3. Method and composition for molding low density desiccant syntactic foam articles

    SciTech Connect (OSTI)

    Lula, J.W.; Schicker, J.R.

    1984-05-08

    A method and a composition are provided for molding low density desiccant syntactic foam articles. A low density molded desiccant article may be made as a syntactic foam by blending a thermosetting resin, microspheres and molecular sieve desiccant powder, molding and curing. Such articles have densities of 0.2-0.9 g/cc, moisture capacities of 1-12% by weight, and can serve as light weight structural supports.

  4. The Experimentation System Design and Experimental Study of the Air-Conditioning by Desiccant Type Using Solar Energy 

    E-Print Network [OSTI]

    Zhuo, X.; Ding, J.; Yang, X.; Chen, S.; Yang, J.

    2006-01-01

    Using a special solar air heater to gain heat power for regenerating an adsorption desiccant wheel made by composite silica gel, a desiccant air-conditioning experimentation system was designed and manufactured. Combining ...

  5. Evaporation of extrasolar planets

    E-Print Network [OSTI]

    David Ehrenreich

    2008-07-11

    Atomic hydrogen escaping from the extrasolar giant planet HD209458b provides the largest observational signature ever detected for an extrasolar planet atmosphere. In fact, the upper atmosphere of this planet is evaporating. Observational evidences and interpretations coming from various models are reviewed. Implications for exoplanetology are discussed.

  6. DESICCATION PROTECTION AND DISRUPTION: A TRADE-OFF FOR AN INTERTIDAL MARINE ALGA1

    E-Print Network [OSTI]

    Denny, Mark

    DESICCATION PROTECTION AND DISRUPTION: A TRADE-OFF FOR AN INTERTIDAL MARINE ALGA1 Luke J. H. Hunt2, California 93950, USA For marine algae, the benefits of drying out are often overshadowed by the stresses of desiccation in the intertidal turf alga Endocladia muricata (Endlichter) J. Agardh. Laboratory experiments

  7. Forty-five years of observed soil moisture in the Ukraine: No summer desiccation (yet)

    E-Print Network [OSTI]

    Robock, Alan

    Forty-five years of observed soil moisture in the Ukraine: No summer desiccation (yet) Alan Robock­October for 141 stations from fields with either winter or spring cereals from the Ukraine for 1958­2002. We-five years of observed soil moisture in the Ukraine: No summer desiccation (yet), Geophys. Res. Lett., 32, L

  8. Vertical counterflow evaporative cooler

    DOE Patents [OSTI]

    Bourne, Richard C.; Lee, Brian Eric; Callaway, Duncan

    2005-01-25

    An evaporative heat exchanger having parallel plates that define alternating dry and wet passages. A water reservoir is located below the plates and is connected to a water distribution system. Water from the water distribution system flows through the wet passages and wets the surfaces of the plates that form the wet passages. Air flows through the dry passages, mixes with air below the plates, and flows into the wet passages before exiting through the top of the wet passages.

  9. Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners

    E-Print Network [OSTI]

    Shah, Nihar

    2014-01-01

    86 Figure A-4: (a) Physical DEVap concept; (b)Illustration of DEVap air conditioningcontrolled ventilation DEVap Desiccant-enhanced evaporative

  10. Method and apparatus for extracting water from air using a desiccant

    DOE Patents [OSTI]

    Spletzer, Barry L. (Albuquerque, NM); Callow, Diane Schafer (Albuquerque, NM)

    2003-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method can be considered as four phases: (1) adsorbing water from air into a desiccant, (2) isolating the water-laden desiccant from the air source, (3) desorbing water as vapor from the desiccant into a chamber, and (4) isolating the desiccant from the chamber, and compressing the vapor in the chamber to form liquid condensate. The liquid condensate can be removed for use. Careful design of the dead volumes and pressure balances can minimize the energy required. The dried air can be exchanged for fresh moist air and the process repeated. An apparatus comprises a first chamber in fluid communication with a desiccant, and having ports to intake moist air and exhaust dried air. The apparatus also comprises a second chamber in fluid communication with the desiccant. The second chamber allows variable internal pressure, and has a port for removal of liquid condensate. Each chamber can be configured to be isolated or in communication with the desiccant. The first chamber can be configured to be isolated or in communication with a course of moist air. Various arrangements of valves, pistons, and chambers are described.

  11. Laboratory and Modeling Evaluations in Support of Field Testing for Desiccation at the Hanford Site

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Freedman, Vicky L.; Strickland, Christopher E.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Ward, Anderson L.

    2011-02-23

    The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau includes testing of the desiccation technology as a potential technology to be used in conjunction with surface infiltration control to limit the flux of technetium and other contaminants in the vadose zone to the groundwater. Laboratory and modeling efforts were conducted to investigate technical uncertainties related to the desiccation process and its impact on contaminant transport. This information is intended to support planning, operation, and interpretation of a field test for desiccation in the Hanford Central Plateau.

  12. Desiccant-Based Combined Systems: Integrated Active Desiccant Rooftop Hybrid System Development and Testing Final Report- Phase 4

    SciTech Connect (OSTI)

    Fischer, J

    2005-05-06

    This report summarizes the results of a research and development (R&D) program to design and optimize an active desiccant-vapor compression hybrid rooftop system. The primary objective was to combine the strengths of both technologies to produce a compact, high-performing, energy-efficient system that could accommodate any percentage of outdoor air and deliver essentially any required combination of temperature and humidity, or sensible heat ratio (SHR). In doing so, such a product would address the significant challenges imposed on the performance capabilities of conventional packaged rooftop equipment by standards 62 and 90.1 of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. The body of work completed as part of this program built upon previous R&D efforts supported by the U.S. Department of Energy and summarized by the Phase 3b report ''Active Desiccant Dehumidification Module Integration with Rooftop Packaged HVAC Units'' (Fischer and Sand 2002), in addition to Fischer, Hallstrom, and Sand 2000; Fischer 2000; and Fischer and Sand 2004. All initial design objectives established for this development program were successfully achieved. The performance flexibility desired was accomplished by a down-sized active desiccant wheel that processes only a portion of the supply airflow, which is pre-conditioned by a novel vapor compression cycle. Variable-speed compressors are used to deliver the capacity control required by a system handling a high percentage of outdoor air. An integrated direct digital control system allows for control capabilities not generally offered by conventional packaged rooftop systems. A 3000-cfm prototype system was constructed and tested in the SEMCO engineering test laboratory in Columbia, MO, and was found to operate in an energy-efficient fashion relative to more conventional systems. Most important, the system offered the capability to independently control the supply air temperature and humidity content to provide individual sensible and latent loads required by an occupied space without over-cooling and reheating air. The product was developed using a housing construction similar to that of a conventional packaged rooftop unit. The resulting integrated active desiccant rooftop (IADR) is similar in size to a currently available conventional rooftop unit sized to provide an equivalent total cooling capacity. Unlike a conventional rooftop unit, the IADR can be operated as a dedicated outdoor air system processing 100% outdoor air, as well as a total conditioning system capable of handling any ratio of return air to outdoor air. As part of this R&D program, a detailed investigation compared the first cost and operating cost of the IADR with costs for a conventional packaged approach for an office building located in Jefferson City, MO. The results of this comparison suggest that the IADR approach, once commercialized, could be cost-competitive with existing technology--exhibiting a one-year to two-year payback period--while simultaneously offering improved humidity control, indoor air quality, and energy efficiency.

  13. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    SciTech Connect (OSTI)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  14. Experimental and Numerical Investigations of Soil Desiccation for Vadose Zone Remediation: Report for Fiscal Year 2007

    SciTech Connect (OSTI)

    Ward, Andy L.; Oostrom, Mart; Bacon, Diana H.

    2008-02-04

    Apart from source excavation, the options available for the remediation of vadose zone metal and radionuclide contaminants beyond the practical excavation depth (0 to 15 m) are quite limited. Of the available technologies, very few are applicable to the deep vadose zone with the top-ranked candidate being soil desiccation. An expert panel review of the work on infiltration control and supplemental technologies identified a number of knowledge gaps that would need to be overcome before soil desiccation could be deployed. The report documents some of the research conducted in the last year to fill these knowledge gaps. This work included 1) performing intermediate-scale laboratory flow cell experiments to demonstrate the desiccation process, 2) implementing a scalable version of Subsurface Transport Over Multiple Phases–Water-Air-Energy (STOMP-WAE), and 3) performing numerical experiments to identify the factors controlling the performance of a desiccation system.

  15. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Soil Desiccation Pilot Test Results

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Johnson, Timothy C.; Freedman, Vicky L.; Johnson, Christian D.; Greenwood, William J.; Ward, Anderson L.; Clayton, Ray E.; Lindberg, Michael J.; Peterson, John E.; Hubbard, Susan; Chronister, Glen B.; Benecke, Mark W.

    2012-05-01

    This report describes results of a pilot test of soil desiccation conducted as part of the Deep Vadose Zone Treatability Test program. The report is written in CERCLA treatabilty test report format.

  16. Effects of chemical desiccation and early harvesting on Sorghum [Sorghum bicolor (L.) Moench] seed germination 

    E-Print Network [OSTI]

    Gouveia, Sergio

    1994-01-01

    EFFECTS OF CHEMICAL DESICCATION AND EARLY HARVESTING ON SORGHUM [Sorgltum bicolor (L. ) MOENCH] SEED GERMINATION A Thesis by SERGIO GOUVEIA Submitted to Texas ASM University in partial fulfillment of the requirments for the degree of MASTER... ABSTRACT Effect of Chemical Desiccation and Early Harvesting on Sorghum [Sorghum bicolor (L. ) Moench. ] Seed Germination. (May 1994) Sergio Gouveia, B. S. , Universidade Eduardo Mondlane (Mozambique) Chair of Advisory Committee: Dr. Frederick R. Miller...

  17. Method and composition for molding low-density desiccant syntactic-foam articles

    DOE Patents [OSTI]

    Not Available

    1981-12-07

    These and other objects of the invention are achieved by a process for molding to size a desiccant syntactic foam article having a density of 0.2 to 0.9 g/cc and a moisture capacity of 1 to 12% by weight, comprising the steps of: charging a mold with a powdery mixture of an activated desiccant, microspheres and a thermosetting resin, the amount of the desiccant being sufficient to provide the required moisture capacity, and the amounts of the microspheres and resin being such that the microspheres/desiccant volume fraction exceeds the packing factor by an amount sufficient to substantially avoid shrinkage without causing excessively high molding pressures; covering the mold and heating the covered mold to a temperature and for an amount of time sufficient to melt the resin; and tightly closing the mold and heating the closed mold to a temperature and for an amount of time sufficient to cure the resin, and removing the resultant desiccant syntactic foam article from the mold. In a composition of matter aspect, the present invention provides desiccant syntactic foam articles, and a composition of matter for use in molding the same.

  18. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect (OSTI)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  19. Vacuum flash evaporated polymer composites

    DOE Patents [OSTI]

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  20. Vacuum flash evaporated polymer composites

    DOE Patents [OSTI]

    Affinito, John D. (Kennewick, WA); Gross, Mark E. (Pasco, WA)

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  1. Analytical and experimental study of a liquid desiccant heat and mass exchanger operating near water freezing temperature

    E-Print Network [OSTI]

    Pineda Vargas, Sergio Manuel

    2009-01-01

    Xia. Desiccant cooling air conditioning: a review. Renewableof an energy efficient air conditioning system using liquidformulations for use in air conditioning equipment design.

  2. Evaporative Cooling Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an...

  3. SOIL DESICCATION TECHNIQUES STRATEGIES FOR IMMOBILIZATION OF DEEP VADOSE CONTAMINANTS AT THE HANFORD CENTRAL PLATEAU

    SciTech Connect (OSTI)

    BENECKE MW; CHRONISTER GB; TRUEX MJ

    2012-01-30

    Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site where processes and technologies are being developed and tested for use in the on-going effort to remediate mobile contamination in the deep vadose zone, the area deep beneath the surface. Historically, contaminants were discharged to the soil along with significant amounts of water, which continues to drive contaminants deeper in the vadose zone toward groundwater. Soil desiccation is a potential in situ remedial technology well suited for the arid conditions and the thick vadose zone at the Hanford Site. Desiccation techniques could reduce the advance of contaminants by removing the pore water to slow the rate of contaminants movement toward groundwater. Desiccation technologies have the potential to halt or slow the advance of contaminants in unsaturated systems, as well as aid in reduction of contaminants from these same areas. Besides reducing the water flux, desiccation also establishes capillary breaks that would require extensive rewetting to resume pore water transport. More importantly, these techniques have widespread application, whether the need is to isolate radio nuclides or address chemical contaminant issues. Three different desiccation techniques are currently being studied at Hanford.

  4. Dual manifold heat pipe evaporator

    DOE Patents [OSTI]

    Adkins, Douglas R. (Albuquerque, NM); Rawlinson, K. Scott (Albuquerque, NM)

    1994-01-01

    An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

  5. Dual manifold heat pipe evaporator

    DOE Patents [OSTI]

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  6. Solar Roof Cooling by Evaporation 

    E-Print Network [OSTI]

    Patterson, G. V.

    1981-01-01

    dampened. A presentation was made at the 1940 semi-annual meeting of the American Society of Heating and Ventilating Engineers entitled 'Summer Cooling Load as Affected by Heat Gain Through Dry, Sprinkled and Water Covered Roofs.' Solar evaporative roof...

  7. Evaporative Cooling for Energy Conservation 

    E-Print Network [OSTI]

    Meyer, J. R.

    1983-01-01

    The evaporative cooling principle applies to all equipment that exchanges sensible heat for latent heat. Equipment of this type falls into two general categories: (1) equipment for heat rejection, such as cooling towers and (2) equipment for air...

  8. Method and apparatus for flash evaporation of liquids

    DOE Patents [OSTI]

    Bharathan, D.

    1984-01-01

    A vertical tube flash evaporator for introducing a super-heated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  9. Method and apparatus for flash evaporation of liquids

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO)

    1984-01-01

    A vertical tube flash evaporator for introducing a superheated liquid into a flash evaporation chamber includes a vertical inlet tube with a flared diffuser portion at its upper outlet end. A plurality of annular screens are positioned in axially spaced-apart relation to each other around the periphery of the vertical tube and below the diffuser portion thereof. The screens are preferably curved upward in a cup-shaped configuration. These flash evaporators are shown in an ocean thermal energy conversion unit designed for generating electric power from differential temperature gradients in ocean water. The method of use of the flash evaporators of this invention includes flowing liquid upwardly through the vertical tube into the diffuser where initial expansion and boiling occurs quite violently and explosively. Unvaporized liquid sheets and drops collide with each other to enhance surface renewal and evaporation properties, and liquid flowing over the outlet end of the diffuser falls onto the curved screens for further surface renewal and evaporation.

  10. Evaporation of multicomponent drop arrays

    SciTech Connect (OSTI)

    Annamalai, K.; Ryan, W.; Chandra, S. (Texas A M Univ., College Station, TX (United States))

    1993-08-01

    The present paper deals with the evaporation of multicomponent fuel droplets in an array using the recently developed point source method (PSM). First, the quasisteady (QS) evaporation of an isolated, multicomponent droplet is briefly analyzed. The resultant governing equations, along with Raoult's law and the Cox-Antoine relation, constitute the set of equations needed to arrive at the solutions for: (1) the droplet surface temperature, (2) the evaporation rate of each species, and (3) the vapor mass fraction of each species at the droplet surface. The PSM, which treats the droplet as a point mass source and heat sink, is then adopted to obtain an analytic expression for the evaporation rate of a multicomponent droplet in an array of liquid droplets. Defining the correction factor ([eta]) as a ratio of the evaporation of a drop in an array to the evaporation rate of a similar isolated multicomponent drop, an expression for the correction factor is obtained. The results of the point source method (PSM) are then compared with those obtained elsewhere for a three-drop array that uses the method of images (MOI). Excellent agreement is obtained. The treatment is then extended to a binary drop array to study the effect of interdrop spacing on vaporization. 20 refs., 11 figs., 4 tabs.

  11. Tolerance of resting cells of freshwater and terrestrial benthic diatoms to experimental desiccation and freezing is habitat-dependent

    E-Print Network [OSTI]

    desiccation and freezing is habitat-dependent CAROLINE SOUFFREAU, PIETER VANORMELINGEN, KOEN SABBE AND WIM of freshwater and terrestrial benthic diatoms to experimental desiccation and freezing is habitat, except for strains of some terrestrial taxa, freezing. In contrast, resting cells of several

  12. Impact of porous medium desiccation during anhydrous CO2 injection in deep saline aquifers: up scaling from experimental

    E-Print Network [OSTI]

    Boyer, Edmond

    flow rate and capillary properties on the desiccation mechanisms. Keywords: supercritical CO2, dryingImpact of porous medium desiccation during anhydrous CO2 injection in deep saline aquifers: up - France Abstract Injection of CO2 in geological reservoirs or deep aquifers is nowadays studied

  13. Designing for Humidity Control in the Operating Rooms: Desiccant Dehumidification Case Study for HEALTHSOUTH Medical Center 

    E-Print Network [OSTI]

    Nunnelly, R. M.

    2004-01-01

    and is impregnated onto the substrate material of the rotor (or wheel). This desiccant rotor removes moisture in the vapor stage from the ?process? airstream by adsorption. This is the airstream that is to be dehumidified, whether it is all outside air or a... is that below the dewpoint of the coils. For example, in this case for the HEALTHSOUTH unit, the cooling coils dehumidify the ventilation air down to about 50F dewpoint (50.8F drybulb and 54.2 gr/#) and then the desiccant rotor dries the air further...

  14. Effects of temperature on desiccant catalysis of refrigerant and lubricant decomposition. Final report

    SciTech Connect (OSTI)

    Rohatgi, N.D.T.

    1998-06-01

    Accelerated aging at high temperatures (149 C) for short aging times (28 days) is effective in screening the compatibility of different materials in refrigeration systems. However, in actual applications temperatures are usually lower and operating times much longer. Therefore plots to allow for interpolation or extrapolation of experimental data to actual operating conditions are needed. In the current study, aging of refrigerant/lubricant/desiccant/metal systems was conducted at five different temperatures, and for each temperature at four different aging times. The data collected from this study provided plots relating refrigerant or lubricant decomposition to aging time, aging temperature, and type of desiccant, which can be used for interpolation or extrapolation.

  15. Surfactant-driven flow transitions in evaporating droplets

    E-Print Network [OSTI]

    Marin, Alvaro; Rossi, Massimiliano; Kähler, Christian J

    2015-01-01

    An evaporating droplet is a dynamic system in which flow is spontaneously generated to minimize the surface energy, dragging particles to the borders and ultimately resulting in the so-called "coffee-stain effect". The situation becomes more complex at the droplet's surface, where surface tension gradients of different nature can compete with each other yielding different scenarios. With careful experiments and with the aid of 3D particle tracking techniques, we are able to show that different types of surfactants turn the droplet's surface either rigid or elastic, which alters the evaporating fluid flow, either enhancing the classical coffee-stain effect or leading to a total flow inversion. Our measurements lead to unprecedented and detailed measurements of the surface tension difference along an evaporating droplet's surface with good temporal and spatial resolution.

  16. Forty Five Years of Observed Soil Moisture in the Ukraine: No Summer Desiccation (Yet)

    E-Print Network [OSTI]

    Robock, Alan

    Forty Five Years of Observed Soil Moisture in the Ukraine: No Summer Desiccation (Yet) Alan Robock of Maryland, College Park 4 Ukrainian Research Institute for Environment and Resources, Kiev, Ukraine 5 Agrometeorology Department, Ukrainian Hydrometeorological Centre, Kiev, Ukraine Submitted to Geophysical Research

  17. Experimental Investigation on the Operation Performance of a Liquid Desiccant Air-conditioning System 

    E-Print Network [OSTI]

    Liu, J.; Wang, J.; Wu, Z.; Gu, W.; Zhang, G.

    2006-01-01

    that are energy- saving and environment-friendly. A liquid desiccant air conditioning system is among them, as it has a tremendous ability for power storage and low requirements for heat resources. Heat with low temperatures, such as excess heat, waste heat...

  18. Solar Roof Cooling by Evaporation 

    E-Print Network [OSTI]

    Patterson, G. V.

    1982-01-01

    Evaporation is nature's way of cooling. By the application of a thin film of water, in the form of a mist, on the roof of the building, roof temperatures can be reduced from as high as 165o to a cool 86oF. Thus, under-roof ...

  19. Solar Roof Cooling by Evaporation 

    E-Print Network [OSTI]

    Patterson, G. V.

    1980-01-01

    payback of 18 to 24 months. As one prominence in recent years, due to the energy plant manager said, "I pay more than that shortage and the increased cost of electricity each year, just to sweep my floors." -- Solar Roof Cooling by Evaporation....

  20. OPERATING PLAN TAILINGS CELLS AND EVAPORATION PONDS

    E-Print Network [OSTI]

    OPERATING PLAN TAILINGS CELLS AND EVAPORATION PONDS PIÑON RIDGE MILL Energy Fuels Resources Appendix A Tailings and Evaporation Pond Delivery and Return Piping Conceptual Plan AC..........................................................................................................1 2.0 TAILINGS CELL DESIGN

  1. Can Photo-Evaporation Trigger Planetesimal Formation?

    E-Print Network [OSTI]

    Throop, Henry

    Can Photo-Evaporation Trigger Planetesimal Formation? Henry Throop John Bally SWRI Univ.Colorado / CASA DPS 12-Oct-2004 #12;Orion Nebula Photo-evaporation by extr 4 O/B stars, UV-bright, 105 solar luminosities 2000 solar-type stars with disks Photo-evaporation (PE) by external O/B stars removes disks on 105

  2. Retrofitting of Conditioning Systems for Existing Small Commercial Buildings - Analysis and Design of Liquid Desiccant - Vapor Compression Hybrid 

    E-Print Network [OSTI]

    Arnas, O. A.; McQueen, T. M.

    1984-01-01

    conditioning system was combined with a desiccant air-conditioning unit with a waste heat and solar heat reclaim component. While this retrofit system is feasible, a number of questions remain to be considered regarding the design, installation and operation...

  3. Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living Space in Summer

    E-Print Network [OSTI]

    Miyashita, Yasushi

    Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living and total heat exchanger in terms of both energy conservation and thermal comfort in summer. 1. COP

  4. Diffusion-Controlled Evaporating Completely Wetting Meniscus in a Channel

    E-Print Network [OSTI]

    Njante, Jean-Pierre

    2012-01-01

    coefficient of grooved heat pipe evaporator walls. ’ Int. J.ranging from micro heat pipes to grooved evaporators. In

  5. Impact-driven planetary desiccation: The origin of the dry Venus

    E-Print Network [OSTI]

    Kurosawa, Kosuke

    2015-01-01

    The fate of surface water on Venus is one of the most important outstanding problems in comparative planetology. Here a new concept is proposed to explain water removal on a steam-covered proto Venus, referred to as impact-driven planetary desiccation. Since a steam atmosphere is photochemically unstable, water vapor dissociates into hydrogen and oxygen. Then, hydrogen escapes easily into space through hydrodynamic escape driven by strong extreme ultraviolet radiation from the young Sun. The focus is on the intense impact bombardment during the terminal stage of planetary accretion as generators of a significant amount of reducing agent. The fine-grained ejecta remove the residual oxygen, the counter part of escaped hydrogen, via the oxidation of iron-bearing rocks in a hot atmosphere. Thus, hypervelocity impacts cause net desiccation of the planetary surface. I constructed a stochastic cratering model using a Monte Carlo approach to investigate the cumulative mass of nonoxidized, ejected rocks due to the int...

  6. Moving Advanced Desiccant Materials into Mainstream Non-CFC Cooling Products

    SciTech Connect (OSTI)

    Sand, J. R.; Grossman, T.; Rice, C. K.; Fairchild, P. D.; Gross, I. L.

    2004-12-30

    Desiccant dehumidification technology is emerging as a technically viable alternative for comfort conditioning in many commercial and institutional buildings. Attempts to improve the indoor air quality of buildings has resulted in increasingly stringent guidelines for occupant outdoor air ventilation rates. Additionally, revised building heating, ventilating, and air-conditioning (HVAC) design criteria based on regional peak dew point data highlight the important of the latent (moisture removal) building load relative to the sensible (temperature) building load.

  7. Introduction to Black Hole Evaporation

    E-Print Network [OSTI]

    Pierre-Henry Lambert

    2014-01-16

    These lecture notes are an elementary and pedagogical introduction to the black hole evaporation, based on a lecture given by the author at the Ninth Modave Summer School in Mathematical Physics and are intended for PhD students. First, quantum field theory in curved spacetime is studied and tools needed for the remaining of the course are introduced. Then, quantum field theory in Rindler spacetime in 1+1 dimensions and in the spacetime of a spherically collapsing star are considered, leading to Unruh and Hawking effects, respectively. Finally, some consequences such as thermodynamics of black holes and information loss paradox are discussed.

  8. Water Evaporation Studies in Texas. 

    E-Print Network [OSTI]

    Patterson, R. E. (Raleigh Elwood); Bloodgood, Dean W.; Smith, R. L.

    1954-01-01

    AN Dimamnion * . brood width of a 2 x 4 lopprox. 3 M-) A standard installation of the Weather Bureau type of evaporation pan at one of the cooperating stations. The anemometer is supported on a wooden platform in the northwest corner and the center... Beeville Bee 225 28' 27' 97' 42' 5 mi. E of Beeville Big Spring Howard 2,528 32' 15' 101' 27' 1 mi. N of Big Spring Blacklands Expt. Watershed McLennan 450 31' 2Y 96' 53' 1 mi. E of Riesel Buchanan Dam (1) Travis 1,025 30' 44' 98' 25' 10 mi. W of Burnet...

  9. Evaporative Coolers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative Coolers Jump to: navigation, search

  10. Evaporative Cooling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative Coolers Jump to: navigation,

  11. Design, Installation, and Field Verification of Integrated Active Desiccant Hybrid Rooftop Systems Combined with a Natural Gas Driven Cogeneration Package, 2008

    Broader source: Energy.gov [DOE]

    Report summary of a research/demonstration project involving a custom 230 kW cogeneration package with four integrated active desiccant rooftop (IADR) systems

  12. Portable brine evaporator unit, process, and system

    DOE Patents [OSTI]

    Hart, Paul John (Indiana, PA); Miller, Bruce G. (State College, PA); Wincek, Ronald T. (State College, PA); Decker, Glenn E. (Bellefonte, PA); Johnson, David K. (Port Matilda, PA)

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  13. TimeVariable Photo-Evaporation of

    E-Print Network [OSTI]

    Throop, Henry

    TimeVariable Photo-Evaporation of Protoplanetary Disks Henry Throop (SwRI) John Bally (U. Colorado) #12;Takeaway: Photo-evaporation alters the disk structure in essentially unpredictable ways, because for disks formed at the same time in the same cluster. #12;30 Doradus: 100+ O/B stars Photo

  14. TimeVariable Photo-Evaporation of

    E-Print Network [OSTI]

    Throop, Henry

    TimeVariable Photo-Evaporation of Protoplanetary Disks Henry Throop (PSI) DDA Meeting Mt. Hood clusters. #12;Work we have done involves ... ­ UV photo-evaporation from massive stars ­ Interaction; Moeckel & Throop 2009; Throop & Bally 2010; Pichardo et al 2010; Throop 2011. #12;Photo

  15. Water Evaporation: A Transition Path Sampling Study

    E-Print Network [OSTI]

    Patrick Varilly; David Chandler

    2012-12-12

    We use transition path sampling to study evaporation in the SPC/E model of liquid water. Based on thousands of evaporation trajectories, we characterize the members of the transition state ensemble (TSE), which exhibit a liquid-vapor interface with predominantly negative mean curvature at the site of evaporation. We also find that after evaporation is complete, the distributions of translational and angular momenta of the evaporated water are Maxwellian with a temperature equal to that of the liquid. To characterize the evaporation trajectories in their entirety, we find that it suffices to project them onto just two coordinates: the distance of the evaporating molecule to the instantaneous liquid-vapor interface, and the velocity of the water along the average interface normal. In this projected space, we find that the TSE is well-captured by a simple model of ballistic escape from a deep potential well, with no additional barrier to evaporation beyond the cohesive strength of the liquid. Equivalently, they are consistent with a near-unity probability for a water molecule impinging upon a liquid droplet to condense. These results agree with previous simulations and with some, but not all, recent experiments.

  16. Tank 26 Evaporator Feed Pump Transfer Analysis

    SciTech Connect (OSTI)

    Tamburello, David; Dimenna, Richard; Lee, Si

    2009-02-11

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.

  17. Addressing Water Consumption of Evaporative Coolers with Greywater

    E-Print Network [OSTI]

    Sahai, Rashmi

    2013-01-01

    Refrigeration and Air Conditioning Engineers, Inc. 2009.1999. Evaporative Air-Conditioning: Applications forDirect Evaporative Air Conditioning, Final Report . Davis,

  18. Conductive Thermal Interaction in Evaporative Cooling Process 

    E-Print Network [OSTI]

    Kim, B. S.; Degelman, L. O.

    1990-01-01

    between water and entering air for thermal comfort. This hybrid system outperforms the two-stage evaporative cooler without employing a complicated heat exchanger (indirect system), if the temperature of underground water is lower than the ambient wet...

  19. Large-Eddy Simulation of Evaporatively Driven Entrainment in Cloud-Topped Mixed Layers

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Large-Eddy Simulation of Evaporatively Driven Entrainment in Cloud-Topped Mixed Layers TAKANOBU, Colorado (Manuscript received 1 March 2007, in final form 19 July 2007) ABSTRACT Cloud-top entrainment instability (CTEI) is a hypothesized positive feedback between cloud-top entrain- ment and enhanced turbulence

  20. A quantitative analysis of the desiccation and re-filling of the Mediterranean during the Messinian Salinity Crisis

    E-Print Network [OSTI]

    Utrecht, Universiteit

    budget. The fast rate of desiccation and re-filling imply that temporal differences in the onset of salt a dominantly tectonic (and/or astronomic) 0012-821X/$ - see front matter D 2005 Elsevier B.V. All rights

  1. TANK 26 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect (OSTI)

    Tamburello, D; Si Lee, S; Richard Dimenna, R

    2008-09-30

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.05 and 0.1 wt% sludge solids weight fraction into the eductor, respectively. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth.

  2. TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect (OSTI)

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2009-01-27

    The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tank toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.

  3. Fundamental Desiccants 

    E-Print Network [OSTI]

    Krebs, M. E.

    1990-01-01

    -dioxide, and impuritics, such as dust, pollen, viruses, hydrocarbon emissions and other "rare" gases, such as radon. These impurities can and do become major health risks when they exceed quantified limits. WHAT SHOULD AIR CONDITIONING ACCOMPLISH? Provide adequate... for traditional HVAC (heating, ventilation and air conditioning) systems. Control air impurity level required for health and/or process requirements Dust. pollen, bacteria, viruses and radon gas are naturally occurring impurities in the air we breath. Air may...

  4. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results, Fiscal Year 2014

    SciTech Connect (OSTI)

    Truex, Michael J.; Strickland, Christopher E.; Johnson, Christian D.; Johnson, Timothy C.; Clayton, Ray E.; Chronister, Glen B.

    2014-09-01

    Over decades of operation, the U.S. Department of Energy (DOE) and its predecessors have released nearly 2 trillion L (450 billion gal.) of liquid into the vadose zone at the Hanford Site. Much of this discharge of liquid waste into the vadose zone occurred in the Central Plateau, a 200 km2 (75 mi2) area that includes approximately 800 waste sites. Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths below the limit of direct exposure pathways, but may need to be remediated to protect groundwater. The Tri-Party Agencies (DOE, U.S. Environmental Protection Agency, and Washington State Department of Ecology) established Milestone M 015 50, which directed DOE to submit a treatability test plan for remediation of technetium-99 (Tc-99) and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment and have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. Testing technologies for remediating Tc-99 and uranium will also provide information relevant for remediating other contaminants in the vadose zone. A field test of desiccation is being conducted as an element of the DOE test plan published in March 2008 to meet Milestone M 015 50. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 3 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  5. New findings about the complementary relationship-based evaporation estimation methods

    E-Print Network [OSTI]

    Szilagyi, Jozsef

    KEYWORDS Complementary relationship; Advection­Aridity model; Areal evaporation; Potential evaporation; Apparent potential evaporation; Wet environment evaporation; Evapotranspiration Summary A novel approach of long- term mean evaporation (E) estimation of the Advection­Aridity (AA) model when vali- dated

  6. Ball feeder for replenishing evaporator feed

    DOE Patents [OSTI]

    Felde, David K. (Oak Ridge, TN); McKoon, Robert H. (San Ramon, CA)

    1993-01-01

    Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

  7. Ball feeder for replenishing evaporator feed

    DOE Patents [OSTI]

    Felde, D.K.; McKoon, R.H.

    1993-03-23

    Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

  8. Numerical Analysis of Black Hole Evaporation

    E-Print Network [OSTI]

    Tsvi Piran; Andrew Strominger

    1993-04-28

    Black hole formation/evaporation in two-dimensional dilaton gravity can be described, in the limit where the number $N$ of matter fields becomes large, by a set of second-order partial differential equations. In this paper we solve these equations numerically. It is shown that, contrary to some previous suggestions, black holes evaporate completely a finite time after formation. A boundary condition is required to evolve the system beyond the naked singularity at the evaporation endpoint. It is argued that this may be naturally chosen so as to restore the system to the vacuum. The analysis also applies to the low-energy scattering of $S$-wave fermions by four-dimensional extremal, magnetic, dilatonic black holes.

  9. Hot air drum evaporator. [Patent application

    DOE Patents [OSTI]

    Black, R.L.

    1980-11-12

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  10. Rate of Water Evaporation in Texas. 

    E-Print Network [OSTI]

    Karper, R. E. (Robert Earl)

    1933-01-01

    are available Length 1 re, Jan. 1 I?. March 1 April 1 May 1 June 1 July Aug. I Sept. Oct. ) No.. 1 Dec. Annual years I Nacogdoches Evaporation, inches I 18 Precipitation, inches 20 Mean max. temp. Mean min. temp. Mean mean temp. Av. rel. humidity.... Mean mean temp. Av. rel. humidity Wind run, miles Iowa Park: Evaporation, inches Precipitation, inches Mean max. temp. Mean min. temp. Mean mean temp. Av. rel. humidity Wind run, miles March April 1 May 1 June July / Aug. / Sept. Oct. I Nov...

  11. Direct Evaporative Precooling Model and Analysis

    SciTech Connect (OSTI)

    Shen, Bo [ORNL; Ally, Moonis Raza [ORNL; Rice, C Keith [ORNL; Craddick, William G [ORNL

    2011-01-01

    Evaporative condenser pre-cooling expands the availability of energy saving, cost-effective technology options (market engagement) and serves to expedite the range of options in upcoming codes and equipment standards (impacting regulation). Commercially available evaporative pre-coolers provide a low cost retrofit for existing packaged rooftop units, commercial unitary split systems, and air cooled chillers. We map the impact of energy savings and peak energy reduction in the 3 building types (medium office, secondary school, and supermarket) in 16 locations for three building types with four pad effectivenesses and show the effect for HVAC systems using either refrigerants R22 or R410A

  12. Optimization Control Strategy for an Air Handling Unit with Dedicated Rotary Desiccant Dehumidification Wheel in Hot and Humid Climate 

    E-Print Network [OSTI]

    Watt, J.

    2013-01-01

    STRATEGY FOR AN AIR HANDLING UNIT WITH DEDICATED ROTARY DESICCANT DEHUMIDIFICATION WHEEL IN HOT & HUMID CLIMATE Jim Watt Montr?al, Qu?bec October 8, 2013 Outline ? Background ? Introduction?of?desiccant?dehumidification? process ? Mathematical...?Sorption?Process Model?calibration HCU1 HCU2 DB(?F) WB(?F) DB(?F) WB(?F) Inlet 52 52 50 50 Design?outlet 70 54.9 69 53.2 Model?outlet 70.7 55.1 69.7 53.5 Error 0.94% 0.42% 1.03% 0.47% DESCRIPTION?OF?DEDICATED?HUMIDITY? CONTROL?UNITS?(HCU) Run#?1?DESIGN R A W B C...

  13. Effects of the local structure dependence of evaporation fields on field evaporation behavior

    E-Print Network [OSTI]

    Yao, Lan; Restrepo, Oscar D; Windl, Wolfgang; Marquis, Emmanuelle A

    2015-01-01

    Accurate three dimensional reconstructions of atomic positions, and full quantification of the information contained in atom probe tomography data relies on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe tomography has remained qualitative at best. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This new model reproduces key features observed experimentally in terms of sequence of evaporation, desorption maps, and depth resolution, and provides insights into the physical limit for spatial resolution.

  14. Water Management for Evaporatively Cooled Condensers

    E-Print Network [OSTI]

    California at Davis, University of

    Water Management for Evaporatively Cooled Condensers Theresa Pistochini May 23rd, 2012 ResearchAirCapacity,tons Gallons of Water Continuous Test - Outdoor Air 110-115 Deg F Cyclic Test - Outdoor Air 110-115 Deg F #12 AverageWaterHardness(ppm) Cooling Degree Days (60°F Reference) 20% Population 70% Population 10

  15. Selection for increased desiccation resistance in Drosophila melanogaster: Additive genetic control and correlated responses for other stresses

    SciTech Connect (OSTI)

    Hoffmann, A.A.; Parsons, P.A. )

    1989-08-01

    Previously we found that Drosophila melanogaster lines selected for increased desiccation resistance have lowered metabolic rate and behavioral activity levels, and show correlated responses for resistance to starvation and a toxic ethanol level. These results were consistent with a prediction that increased resistance to many environmental stresses may be genetically correlated because of a reduction in metabolic energy expenditure. Here we present experiments on the genetic basis of the selection response and extend the study of correlated responses to other stresses. The response to selection was not sex-specific and involved X-linked and autosomal genes acting additively. Activity differences contributed little to differences in desiccation resistance between selected and control lines. Selected lines had lower metabolic rates than controls in darkness when activity was inhibited. Adults from selected lines showed increased resistance to a heat shock, {sup 60}Co-gamma-radiation, and acute ethanol and acetic acid stress. The desiccation, ethanol and starvation resistance of isofemale lines set up from the F2s of a cross between one of the selected and one of the control lines were correlated. Selected and control lines did not differ in ether-extractable lipid content or in resistance to acetone, ether or a cold shock.

  16. Tank 26F-2F Evaporator Study

    SciTech Connect (OSTI)

    Adu-Wusu, K.

    2012-12-19

    Tank 26F supernate sample was sent by Savannah River Remediation to Savannah River National Laboratory for evaporation test to help understand the underlying cause of the recent gravity drain line (GDL) pluggage during operation of the 2F Evaporator system. The supernate sample was characterized prior to the evaporation test. The evaporation test involved boiling the supernate in an open beaker until the density of the concentrate (evaporation product) was between 1.4 to 1.5 g/mL. It was followed by filtering and washing of the precipitated solids with deionized water. The concentrate supernate (or concentrate filtrate), the damp unwashed precipitated solids, and the wash filtrates were characterized. All the precipitated solids dissolved during water washing. A semi-quantitative X-ray diffraction (XRD) analysis on the unwashed precipitated solids revealed their composition. All the compounds with the exception of silica (silicon oxide) are known to be readily soluble in water. Hence, their dissolution during water washing is not unexpected. Even though silica is a sparingly water-soluble compound, its dissolution is also not surprising. This stems from its small fraction in the solids as a whole and also its relative freshness. Assuming similar supernate characteristics, flushing the GDL with water (preferably warm) should facilitate dissolution and removal of future pluggage events as long as build up/aging of the sparingly soluble constituent (silica) is limited. On the other hand, since the amount of silica formed is relatively small, it is quite possible dissolution of the more soluble larger fraction will cause disintegration or fragmentation of the sparingly soluble smaller fraction (that may be embedded in the larger soluble solid mass) and allow its removal via suspension in the flushing water.

  17. Evaporation Duct Estimation from Clutter Using Meteorological Statistics

    E-Print Network [OSTI]

    Gerstoft, Peter

    Evaporation Duct Estimation from Clutter Using Meteorological Statistics Caglar Yardim*, Peter under duct- ing conditions. Electromagnetic ducts result in non-standard electromagnetic prop- agation addresses how to incorporate meteo- rological statistics into evaporative duct estimation within a Bayesian

  18. Rain on the Roof-Evaporative Spray Roof Cooling 

    E-Print Network [OSTI]

    Bachman, L. R.

    1985-01-01

    This paper describes evaporative spray roof cooling systems, their components, performance and applications in various climates and building types. The evolution of this indirect evaporative cooling technique is discussed. Psychrometric and sol...

  19. Chemical Potential Jump during Evaporation of a Quantum Bose Gas

    E-Print Network [OSTI]

    E. A. Bedrikova; A. V. Latyshev

    2013-01-07

    The dependence of the chemical potential jump coefficient on the evaporation coefficient is analyzed for the case in which the evaporating component is a Bose gas. The concentration of the evaporating component is assumed to be much lower than the concentration of the carrier gas. The expression for the chemical potential jump is derived from the analytic solution of the problem for the case in which the collision frequency of molecules of the evaporating component is constant.

  20. Evaporative Hydrochloric Acid Recovery: Something Old, Something New... 

    E-Print Network [OSTI]

    Cullivan, B.

    1994-01-01

    This paper describes the new application of an old teclmology, evaporative recovery, to recover spent hydrochloric acid.

  1. Zero Energy Communities with Central Solar Plants using Liquid Desiccants and Local Storage: Preprint

    SciTech Connect (OSTI)

    Burch, J.; Woods, J.; Kozubal, E.; Boranian, A.

    2012-08-01

    The zero energy community considered here consists of tens to tens-of-thousands of residences coupled to a central solar plant that produces all the community's electrical and thermal needs. A distribution network carries fluids to meet the heating and cooling loads. Large central solar systems can significantly reduce cost of energy vs. single family systems, and they enable economical seasonal heat storage. However, the thermal distribution system is costly. Conventional district heating/cooling systems use a water/glycol solution to deliver sensible energy. Piping is sized to meet the peak instantaneous load. A new district system introduced here differs in two key ways: (i) it continuously distributes a hot liquid desiccant (LD) solution to LD-based heating and cooling equipment in each home; and (ii) it uses central and local storage of both LD and heat to reduce flow rates to meet average loads. Results for piping sizes in conventional and LD thermal communities show that the LD zero energy community reduces distribution piping diameters meeting heating loads by {approx}5X and meeting cooling loads by {approx}8X for cooling, depending on climate.

  2. Evaporation Cooling Concept, EVOLVE APEX Interim Report November, 1999

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Evaporation Cooling Concept, EVOLVE APEX Interim Report November, 1999 10-1 CHAPTER 10: EVAPORATION COOLING CONCEPT, EVOLVE Contributors Lead Author: Rich Mattas S. Malang H. Khater S. Majumdar E. Mogahed B. Nelson M. Sawan D.K. Sze #12;Evaporation Cooling Concept, EVOLVE APEX Interim Report November, 1999 10

  3. The Analysis of a Coating Flow with Evaporation

    E-Print Network [OSTI]

    The Analysis of a Coating Flow with Evaporation Jurgen Socolowsky Abstract. This work is concerned with a plane steady-state coating ow problem including evaporation e ects. The motion is governed by a free-Stokes equations. Key Words. Coating ow, evaporation, free boundary problems, Navier- Stokes equations, Stefan

  4. The dark matter self-interaction and its impact on the critical mass for dark matter evaporations inside the sun

    E-Print Network [OSTI]

    Chian-Shu Chen; Fei-Fan Lee; Guey-Lin Lin; Yen-Hsun Lin

    2014-12-21

    We study the capture, annihilation and evaporation of dark matter (DM) inside the Sun. It has been shown that the DM self-interaction can increase the DM number inside the Sun. We demonstrate that this enhancement becomes more significant in the regime of small DM mass, given a fixed DM self-interaction cross section. This leads to the enhancement of neutrino flux from DM annihilation. On the other hand, for DM mass as low as as a few GeVs, not only the DM-nuclei scatterings can cause the DM evaporation, DM self-interaction also provides non-negligible contributions to this effect. Consequently, the critical mass for DM evaporation (typically 3 ~ 4 GeV without the DM self-interaction) can be slightly increased. We discuss the prospect of detecting DM self-interaction in IceCube- PINGU using the annihilation channels $\\chi\\chi\\rightarrow\

  5. Flash evaporation of liquid monomer particle mixture

    DOE Patents [OSTI]

    Affinito, J.D.; Darab, J.G.; Gross, M.E.

    1999-05-11

    The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer. 3 figs.

  6. Nuclear evaporation process with simultaneous multiparticle emission

    E-Print Network [OSTI]

    Leonardo P. G. De Assis; Sergio B. Duarte; Bianca M. Santos

    2012-08-07

    The nuclear evaporation process is reformulated by taking into account simultaneous multiparticle emission from a hot compound nucleus appearing as an intermediate state in many nuclear reaction mechanisms. The simultaneous emission of many particles is particularly relevant for high excitation energy of the compound nucleus.These channels are effectively open in competition with the single particle emissions and fission in this energy regime. Indeed, the inclusion of these channels along the decay evaporating chain shows that the yield of charged particles and occurrence of fission are affected by these multiparticle emission processes of the compounded nucleus, when compared to the single sequential emission results. The effect also shows a qualitative change in the neutron multiplicity of different heavy compound nucleus considered. This should be an important aspect for the study of spallation reaction in Acceleration Driven System (ADS) reactors. The majority of neutrons generated in these reactions come from the evaporation stage of the reaction, the source of neutron for the system. A Monte Carlo simulation is employed to determine the effect of these channels on the particle yield and fission process. The relevance of the simultaneous particle emission with the increasing of excitation energy of the compound nucleus is explicitly shown.

  7. Disk-Evaporation Fed Corona: Structure and Evaporation Feature with Magnetic Field

    E-Print Network [OSTI]

    Lei Qian; B. F. Liu; Xue-Bing Wu

    2007-07-03

    The disk-corona evaporation model naturally interprets many observational phenomena in black hole X-ray binaries, such as the truncation of an accretion disk and the spectral state transitions. On the other hand, magnetic field is known to play an important role in transporting angular momentum and producing viscosity in accretion flows. In this work, we explicitly take the magnetic field in the accretion disk corona into account and numerically calculate the coronal structure on the basis of our two-temperature evaporation code. We show that the magnetic field influences the coronal structure by its contribution to the pressure, energy and radiative cooling in the corona and by decreasing the vertical heat conduction. We found that the maximal evaporation rate keeps more or less constant ($\\sim 0.03$ Eddington rate) while the strength of magnetic fields changes, but that the radius corresponding to the maximal evaporation rate decreases with increasing magnetic field. This predicts that the spectral state transition always occurs at a few percent of Eddington accretion rate, while the inner edge of thin disk can be at $\\sim 100 R_{\\rm S} $ or even less in the hard state before the transition to the soft state. These results alleviate the problem that previous evaporation models predict too large a truncation radius, and are in better agreement with the observational results of several black hole X-ray binaries, though discrepancies remain.

  8. Dehumidification Enhancement of Direct Expansion Systems Through Component Augmentation of the Cooling Coil 

    E-Print Network [OSTI]

    Kosar, D.; Swami, M.; Shirey, D.; Raustad, R.; Basarkar, M.

    2006-01-01

    performance spreadsheet models for single path, mixed air packaged systems compare a conventional “off the shelf” direct expansion (DX) cooling system and its performance to systems that augment the DX coil with enhanced dehumidification components... spreadsheet models combine available algorithms from the EnergyPlus TM simulation program for DX coils and heat exchangers with newly developed algorithms for desiccant dehumidifiers. All the models and their algorithms are applied in EnergyPlus TM...

  9. Radion clouds around evaporating black holes

    E-Print Network [OSTI]

    J. R. Morris

    2009-09-03

    A Kaluza-Klein model, with a matter source associated with Hawking radiation from an evaporating black hole, is used to obtain a simple form for the radion effective potential. The environmental effect generally causes a matter-induced shift of the radion vacuum, resulting in the formation of a radion cloud around the hole. There is an albedo due to the radion cloud, with an energy dependent reflection coefficient that depends upon the size of the extra dimensions and the temperature of the hole.

  10. Treatment of evaporator condensates by pervaporation

    DOE Patents [OSTI]

    Blume, Ingo (Hengelq, NL); Baker, Richard W. (Palo Alto, CA)

    1990-01-01

    A pervaporation process for separating organic contaminants from evaporator condensate streams is disclosed. The process employs a permselective membrane that is selectively permeable to an organic component of the condensate. The process involves contacting the feed side of the membrane with a liquid condensate stream, and withdrawing from the permeate side a vapor enriched in the organic component. The driving force for the process is the in vapor pressure across the membrane. This difference may be provided for instance by maintaining a vacuum on the permeate side, or by condensing the permeate. The process offers a simple, economic alternative to other separation techniques.

  11. Two stage indirect evaporative cooling system

    DOE Patents [OSTI]

    Bourne, Richard C.; Lee, Brian E.; Callaway, Duncan

    2005-08-23

    A two stage indirect evaporative cooler that moves air from a blower mounted above the unit, vertically downward into dry air passages in an indirect stage and turns the air flow horizontally before leaving the indirect stage. After leaving the dry passages, a major air portion travels into the direct stage and the remainder of the air is induced by a pressure drop in the direct stage to turn 180.degree. and returns horizontally through wet passages in the indirect stage and out of the unit as exhaust air.

  12. Evaporative Cooling Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWind ProjectsEfficiencyPreparedKYAQuarterEvaporative

  13. Optimal Electron Energies for Driving Chromospheric Evaporation in Solar Flares

    E-Print Network [OSTI]

    Reep, Jeffrey; Alexander, David

    2015-01-01

    In the standard model of solar flares, energy deposition by a beam of electrons drives strong chromospheric evaporation leading to a significantly denser corona and much brighter emission across the spectrum. Chromospheric evaporation was examined in great detail by Fisher, Canfield, & McClymont (1985a,b,c), who described a distinction between two different regimes, termed explosive and gentle evaporation. In this work, we examine the importance of electron energy and stopping depths on the two regimes and on the atmospheric response. We find that with explosive evaporation, the atmospheric response does not depend strongly on electron energy. In the case of gentle evaporation, lower energy electrons are significantly more efficient at heating the atmosphere and driving up-flows sooner than higher energy electrons. We also find that the threshold between explosive and gentle evaporation is not fixed at a given beam energy flux, but also depends strongly on the electron energy and duration of heating. Furt...

  14. Simple flash evaporator for making thin films of compounds

    SciTech Connect (OSTI)

    Hemanadhan, M.; Bapanayya, Ch.; Agarwal, S. C. [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

    2010-07-15

    A simple and compact arrangement for flash evaporation is described. It uses a cell phone vibrator for powder dispensing that can be incorporated into a vacuum deposition chamber without any major alterations. The performance of the flash evaporation system is checked by making thin films of the optical memory chalcogenide glass Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Energy dispersive x-ray analysis shows that the flash evaporation preserves the stoichiometry in thin films.

  15. Quantum Cooling Evaporation Process in Regular Black Holes

    E-Print Network [OSTI]

    Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

    2007-09-28

    We investigate a universal behavior of thermodynamics and evaporation process for the regular black holes. We newly observe an important point where the temperature is maximum, the heat capacity is changed from negative infinity to positive infinity, and the free energy is minimum. Furthermore, this point separates the evaporation process into the early stage with negative heat capacity and the late stage with positive heat capacity. The latter represents the quantum cooling evaporation process. As a result, the whole evaporation process could be regarded as the inverse Hawking-Page phase transition.

  16. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    E-Print Network [OSTI]

    Koh, Christine J.

    2013-01-01

    thermal energy from evaporation and the energy imparted by the ionization process.energy imparted into the isolated ion pair upon thermal vaporization and minimizes reactive processes.

  17. Simulation of radiant cooling performance with evaporative cooling sources

    E-Print Network [OSTI]

    Moore, Timothy

    2008-01-01

    ft/min), the pressure drop for the heat exchanger is just 50pressure drop associated with the counter-flow indirect-evaporative heat exchanger

  18. Addressing Water Consumption of Evaporative Coolers with Greywater

    E-Print Network [OSTI]

    Sahai, Rashmi

    2013-01-01

    Refrigeration and Air Conditioning Engineers, Inc. 2009.a novel dew point air conditioning system for China building1999. Evaporative Air-Conditioning: Applications for

  19. Free fall onto evaporating black holes at the quantum limit

    E-Print Network [OSTI]

    Maurice H. P. M. van Putten

    2015-11-11

    Black hole space times evaporate in discrete steps due to remarkably slow Hawking radiation. We here identify evaporation with essentially extremal states at the limit of quantum computation, performing $2.7\\times 10^{79}$ bit calculations per photon emission in a one solar mass black hole. During evaporation, particles in free fall co-evolve satisfying $EM=$constant, where $E$ and $M$ denote the total mass energy-at-infinity of the particle and, respectively, black hole. Particles are hereby increasingly entangled with the black hole space-time over the course of its evaporation.

  20. Chalcogenide nanowires by evaporation-condensation

    SciTech Connect (OSTI)

    Johnson, Bradley R.; Schweiger, Michael J.; Sundaram, S. K.

    2005-02-02

    Chalcogenide (arsenic sulfide) nanowires have been successfully synthesized from As2S3 under near-equilibrium conditions via evaporation-condensation process in evacuated glass ampoules. The as-synthesized nanowires were pure, nearly stoichiometric, and amorphous. The nanowires had diameters ranging from 40 to 140 nm and lengths up to a few millimeters. Distinct joints of the crisscrossing nanowires indicate potential for forming structural networks. They have been characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Raman spectroscopy, and X-ray diffraction (XRD) to determine their structure, composition, and morphology. Selected area diffraction (SAD) in the TEM and XRD confirmed their amorphous nature. The As-S nanowires could make an ideal system for understanding the carrier transport and photonic properties in nanoscale for this family of materials (IV-V compounds). Chalcogenide nanowires show promise for integrated nanoelectronics and biophotonics.

  1. Clutter-Based Evaporation Duct Estimation Performance Using Meteorological Statistics

    E-Print Network [OSTI]

    Gerstoft, Peter

    Clutter-Based Evaporation Duct Estimation Performance Using Meteorological Statistics Caglar Yardim in different regions of the world with varying duct strengths and statistics. The performance of evaporation duct estimation is investigated in littoral zones such as the North Sea, Wallops Island, Coast

  2. Chapter [6.14] Edwards EB3 Electron Beam Evaporator

    E-Print Network [OSTI]

    Healy, Kevin Edward

    , wafer holder, crystal monitor and heat lamp. The door has a magnetic bearing and users should gently-inch wafer. A crystal monitor enables direct read-out in Å/sec resolution for deposition rate and in nm on the metals you are going to evaporate. 4.8 Crystal monitor: monitors the evaporation rate by correlating

  3. Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    AE26 Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1 D. E and preventive maintenance procedures for ventilation, evaporative cooling and heating systems. Ventilation a ventilation system is not operating properly, the results can be pockets of stagnant air, inadequate cooling

  4. Accumulation of Toxic Trace Elements in Evaporites in Agricultural Evaporation Ponds

    E-Print Network [OSTI]

    Tanji, Kenneth K; Dahlgren, Randy A; Ong, Colin; Herbel, Mitchell; Quek, Ann; Gao, Suduan

    1994-01-01

    1988. Investigation of Evaporation Ponds for the Disposal ofAgricultural Evaporation Ponds. P h . D . diss. U n i v e rfor Agricultural Evaporation Ponds and Other Hyper saline

  5. Predicting yearly energy savings using BIN weather data with heat-pipe heat exchangers with indirect evaporative cooling

    SciTech Connect (OSTI)

    Mathur, G.D.

    1998-07-01

    Heat-Pipe Heat-Exchangers (HPHE) are passive systems that have recently seen application in energy recovery (Mathur, 1997). A HPHE consists of individual closed end heat pipe tubes that are charged with a suitable working fluid. In these systems, the working fluid evaporates on one side of the heat exchanger and condenses over the other end of the heat exchanger. The condensed fluid returns back to the evaporator section through the capillary action of the wick. The performance of a HPHE system can be improved by the raising the condenser portion of the heat exchanger which facilitates effective return of the condensate back to the evaporator. HPHE can be used with air conditioning systems as retrofits and in new applications. For retrofit applications, the operating costs are reduced because of the reduction in the energy (kWh) and peak demand (kW) consumptions. For new installations, the heating and cooling equipment can be of smaller capacity which will result in lower equipment and operating costs. During the summer season, indirect evaporative cooling can also be used to further enhance the performance of the air conditioning system. When operated during both the heating and cooling seasons, a HPHE yields four types of savings: (i) Heating equipment savings (ii) Cooling equipment savings (iii) Heating operating savings (iv) Cooling operating savings. Savings in the energy consumption for both heating and cooling were calculated with the HPHE for 30 cities with widely different climactic conditions. The payback periods for most of the cities were less than 1 year. If indirect evaporative cooling is used during the summer season, more energy savings would be realized on an yearly basis along with further reductions in the peak demand. In this paper, the author has simulated the performance of a HPHE with indirect evaporative cooling using the BIN weather data.

  6. Influence of Water Availability during Incubation on Hatchling Size, Body Composition, Desiccation Tolerance, and Terrestrial

    E-Print Network [OSTI]

    Finkler, Michael S.

    714 Influence of Water Availability during Incubation on Hatchling Size, Body Composition The effects of water availability during incubation on the water contents of neonatal snapping turtles in hatchlings with greater water availability dur- ing incubation may enhance survival by increasing the amount

  7. Self-excited hydrothermal waves in evaporating sessile drops 

    E-Print Network [OSTI]

    Sefiane K.; Moffat J.R.; Matar O.K.; Craster R.V.

    2008-08-01

    Pattern formation driven by the spontaneous evaporation of sessile drops of methanol, ethanol, and FC-72 using infrared thermography is observed and, in certain cases, interpreted in terms of hydrothermal waves. Both ...

  8. EVAPORATION OF ICY PLANETESIMALS DUE TO BOW SHOCKS

    SciTech Connect (OSTI)

    Tanaka, Kyoko K.; Yamamoto, Tetsuo; Tanaka, Hidekazu [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan)] [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Miura, Hitoshi [Department of Earth Sciences, Tohoku University, Sendai 980-8578 (Japan)] [Department of Earth Sciences, Tohoku University, Sendai 980-8578 (Japan); Nagasawa, Makiko; Nakamoto, Taishi [Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)] [Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)

    2013-02-20

    We present the novel concept of evaporation of planetesimals as a result of bow shocks associated with planetesimals orbiting with supersonic velocities relative to the gas in a protoplanetary disk. We evaluate the evaporation rates of the planetesimals based on a simple model describing planetesimal heating and evaporation by the bow shock. We find that icy planetesimals with radius {approx}>100 km evaporate efficiently even outside the snow line in the stage of planetary oligarchic growth, where strong bow shocks are produced by gravitational perturbations from protoplanets. The obtained results suggest that the formation of gas giant planets is suppressed owing to insufficient accretion of icy planetesimals onto the protoplanet within the {approx}<5 AU disk region.

  9. Potential of Evaporative Cooling Systems for Buildings in India 

    E-Print Network [OSTI]

    Maiya, M. P.; Vijay, S.

    2010-01-01

    psychrometric chart for different cities in India like Ahmadabad, Jodhpur, Nagpur and New Delhi representing different climatic conditions of India. While satisfactorily comfort can be achieved at cool and dry weather conditions by evaporative cooling system...

  10. Analysis of the diurnal behavior of Evaporative Fraction

    E-Print Network [OSTI]

    Gentine, Pierre

    2006-01-01

    In this thesis, the diurnal behavior of Evaporative Fraction (EF) was examined. EF was shown to exhibit a typical concave-up shape, with a minimum usually reached in the middle of the day. The influence of the vegetation ...

  11. 242-A Evaporator quality assurance plan. Revision 2

    SciTech Connect (OSTI)

    Basra, T.S.

    1995-05-04

    The purpose of this quality assurance project plan (Plan) is to provide requirements for activities pertaining to sampling, shipping, and analyses associated with candidate feed tank samples for the 242-A Evaporator project. The purpose of the 242-A Evaporator project is to reduce the volume of aqueous waste in the Double Shell Tank (DST) System and will result in considerable savings to the disposal of mixed waste. The 242-A Evaporator feed stream originates from DSTs identified as candidate feed tanks. The 242-A Evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending the condensate (called process condensate) to the Liquid Effluent Retention Facility (LEPF) storage basin where it is stored prior to treatment in the Effluent Treatment Facility (ETF). The objective of this quality assurance project plan is to provide the planning, implementation, and assessment of sample collection and analysis, data issuance, and validation activities for the candidate feed tanks.

  12. Thermodynamics and evaporation of the noncommutative black hole

    E-Print Network [OSTI]

    Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

    2007-01-21

    We investigate the thermodynamics of the noncommutative black hole whose static picture is similar to that of the nonsingular black hole known as the de Sitter-Schwarzschild black hole. It turns out that the final remnant of extremal black hole is a thermodynamically stable object. We describe the evaporation process of this black hole by using the noncommutativity-corrected Vaidya metric. It is found that there exists a close relationship between thermodynamic approach and evaporation process.

  13. Superhydrophobic coated apparatus for liquid purification by evaporative condensation

    DOE Patents [OSTI]

    Simpson, John T; McNeany, Steve R; Dinsmore, Thomas V; Hunter, Scott R; Ivanov, Ilia N

    2014-03-11

    Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a first vessel for storing the contaminated fluid. The first vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus simplifying maintenance of the apparatus.

  14. Open cycle liquid desiccant dehumidifier and hybrid solar/electric absorption refrigeration system. Annual report, January 1993--December 1993. Calendar year 1993

    SciTech Connect (OSTI)

    Nimmo, B.G.; Thornbloom, M.D.

    1995-04-01

    This annual report presents work performed during calendar year 1993 by the Florida Solar Energy Center under contract to the US Department of Energy. Two distinctively different solar powered indoor climate control systems were analyzed: the open cycle liquid desiccant dehumidifier, and an improved efficiency absorption system which may be fired by flat plate solar collectors. Both tasks represent new directions relative to prior FSEC research in Solar Cooling and Dehumidification.

  15. Progress in year 1994 1. An analytical model for evaporative cooling

    E-Print Network [OSTI]

    Progress in year 1994 1. An analytical model for evaporative cooling We have developed an analytical model for evaporative cooling [1]. By simulating evaporation as a sequence of discrete steps, we the cloud rethermalizes and ensures efficient evaporative cooling. 2. Elastic collision cross section

  16. On the inherent asymmetric nature of the complementary relationship of evaporation

    E-Print Network [OSTI]

    Szilagyi, Jozsef

    ] in their Advection Aridity (AA) model. [3] The definition of potential evaporation is ambiguous due to what estimations. The parameters of the proposed practical evaporation estimation model are from the Priestley) and potential evaporation rates (LEp) to wet environment evaporation (LEw) LE þ LEp ¼ kLEw ð1Þ where k

  17. Effect of Solvent Evaporation on Fiber Morphology in Rotary Jet Holly McIlwee Golecki,,

    E-Print Network [OSTI]

    Parker, Kevin Kit

    and solvent evaporation enables production of nanoscale polymer fibers. RJS surpasses the electrospinning

  18. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    SciTech Connect (OSTI)

    Boardman, R.D.; Lamb, K.M.; Matejka, L.A.; Nenni, J.A.

    2002-02-27

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5.

  19. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    SciTech Connect (OSTI)

    Boardman, Richard Doin; Lamb, Kenneth Mitchel; Matejka, Leon Anthony; Nenni, Joseph A

    2002-02-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5.

  20. A diagram for the evaporation status of extrasolar planets

    E-Print Network [OSTI]

    Etangs, A L

    2006-01-01

    To describe the evaporation status of the extrasolar planets, we propose to consider an energy diagram in which the potential energy of the planets is plotted versus the energy received by the upper atmosphere. Here we present a basic method to estimate these quantities. For the potential energy, we include the modification of the gravity field by the tidal forces from the parent stars. This description allows a quick estimate of both the escape rate of the atmospheric gas and the lifetime of a planet against the evaporation process. In the energy diagram, we find an evaporation-forbidden region in which a gaseous planet would evaporate in less than 5 billion years. With their observed characteristics, all extrasolar planets are found outside this evaporation-forbidden region. The escape rates are estimated to be in the range 10^5 g/s to 10^{12} g/s, with few cases above 10^{11} g/s. The estimated escape rate for HD209458b is found to be consistent with the lower limit of 10^{10} g/s obtained from interpretat...

  1. Black hole evaporation in a noncommutative charged Vaidya model

    SciTech Connect (OSTI)

    Sharif, M. Javed, W.

    2012-06-15

    We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstroem-like solution of this model, which leads to an exact (t - r)-dependent metric. The behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage of black hole evaporation is a naked singularity.

  2. Development of a Direct Evaporator for the Organic Rankine Cycle

    SciTech Connect (OSTI)

    Donna Post Guillen; Helge Klockow; Matthew Lehar; Sebastian Freund; Jennifer Jackson

    2011-02-01

    This paper describes research and development currently underway to place the evaporator of an Organic Rankine Cycle (ORC) system directly in the path of a hot exhaust stream produced by a gas turbine engine. The main goal of this research effort is to improve cycle efficiency and cost by eliminating the usual secondary heat transfer loop. The project’s technical objective is to eliminate the pumps, heat exchangers and all other added cost and complexity of the secondary loop by developing an evaporator that resides in the waste heat stream, yet virtually eliminates the risk of a working fluid leakage into the gaseous exhaust stream. The research team comprised of Idaho National Laboratory and General Electric Company engineers leverages previous research in advanced ORC technology to develop a new direct evaporator design that will reduce the ORC system cost by up to 15%, enabling the rapid adoption of ORCs for waste heat recovery.

  3. Enhanced two phase flow in heat transfer systems

    DOE Patents [OSTI]

    Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

    2013-12-03

    A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

  4. Evaporation of iodine-containing off-gas scrubber solution

    DOE Patents [OSTI]

    Partridge, J.A.; Bosuego, G.P.

    1980-07-14

    Mercuric nitrate-nitric acid scrub solutions containing radioiodine may be reduced in volume without excessive loss of volatile iodine. The use of concentrated nitric acid during an evaporation process oxidizes the mercury-iodide complex to a less volatile mercuric iodate precipitate.

  5. Analysis of design tradeoffs for diplay case evaporators

    SciTech Connect (OSTI)

    Bullard, CLARK

    2004-08-11

    A model for simulating a display case evaporator under frosting conditions has been developed, using a quasi-steady and finite-volume approach and a Newton-Raphson based solution algorithm. It is capable of simulating evaporators with multiple modules having different geometries, e.g. tube and fin thicknesses and pitch. The model was validated against data taken at two-minute intervals from a well-instrumented medium-temperature vertical display case, for two evaporators having very different configurations. The data from these experiments provided both the input data for the model and also the data to compare the modeling results. The validated model has been used to generate some general guidelines for coil design. Effects of various geometrical parameters were quantified, and compressor performance data were used to express the results in terms of total power consumption. Using these general guidelines, a new prototype evaporator was designed for the subject display case, keeping in mind the current packaging restrictions, tube and fin availabilities. It is an optimum coil for the given external load conditions. Subsequently, the validated model was used in a more extensive analysis to design prototype coils with some of the current tube and fin spacing restrictions removed. A new microchannel based suction line heat exchanger was installed in the display case system. The performance of this suction line heat exchanger is reported.

  6. Evaporatively Driven Convection in a Draining Soap Film

    E-Print Network [OSTI]

    Bush, John W.M.

    Evaporatively Driven Convection in a Draining Soap Film Submitted by Jan M. Skotheim and John W. M. Bush, MIT A soap film was created by dipping a rectangular wire frame of height 3.5 cm and width 15 cm was mounted in a vertical po- sition, and the film drained under the influence of gravity in an unsaturated

  7. Probing Light Dark Matter via Evaporation from the Sun

    E-Print Network [OSTI]

    Chris Kouvaris

    2015-06-13

    Dark matter particles can be captured by the sun with rates that depend on the dark matter mass and the DM-nucleon cross section. However, for masses below $\\sim 3.3$ GeV, the captured dark matter particles evaporate, leading to an equilibrium where the rate of captured particles is equal to the rate of evaporating ones. Unlike dark matter particles from the halo, the evaporating dark matter particles have velocities that are not limited to values below the escape velocity of the galaxy. Despite the fact that high velocities are exponentially suppressed, I demonstrate here that current underground detectors have the possibility to probe/constrain low dark matter parameter space by (not)-observing the high energy tail of the evaporating dark matter particles from the sun. I also show that the functional form of the differential rate of counts with respect to the recoil energy in earth based detectors can identify precisely the mass and the cross section of the dark matter particle in this case.

  8. Usage Policies Notebook for CHA Thermal Metal Evaporator

    E-Print Network [OSTI]

    Mease, Kenneth D.

    ;2 Emergency Plan for CHA Thermal Metal Evaporator Standard Operating Procedures for Emergencies Contact voltage Electrical shock, ignition source Isopropyl alcohol Flammable solvent N2 (nitrogen) gas Asphyxiant smell Shutdown machine at once Contact staff and lab manager. #12;3 Emergency shutdown plan #1

  9. Usage Policies Notebook for Mark 50 Evaporation Revision date

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Usage Policies Notebook for Mark 50 Evaporation Revision date March 2015 #12;Emergency Plan for CHA source N2 (nitrogen) gas Asphyxiant Alarms or indications of danger Alarm type Condition and response Shutdown the machine at once. Contact the staff and the lab manager. Emergency shutdown plan #1

  10. Usage Policies Notebook for CHA Electron Beam One Metal Evaporator

    E-Print Network [OSTI]

    Mease, Kenneth D.

    ;2 Emergency Plan for CHA Electron Beam One Metal Evaporator Standard Operating Procedures for Emergencies (nitrogen) gas Asphyxiant Alarms or indications of danger Alarm type Condition and response Alarm and the lab manager. #12;3 Emergency shutdown plan #1 In the event of an emergency, when there is very little

  11. Nanotube Boiler 1 Abstract--Controlled copper evaporation at attogram

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nanotube Boiler 1 Abstract-- Controlled copper evaporation at attogram level from individual carbon nanotube (CNT) vessels, which we call nanotube boilers, is investigated experimentally, and ionization in these CNT boilers, which can serve as sources for mass transport and deposition in nanofluidic

  12. Micro loop heat pipe evaporator coherent pore structures 

    E-Print Network [OSTI]

    Alexseev, Alexandre Viktorovich

    2005-02-17

    ) delta Liquid film thickness (m) zeta Tabulated coefficient theta Contact angle * 0theta1 Dimensionless centerline temperature ? Absolute viscosity (Pa s) ?v Vapor chemical potential (J/kg molecule) or vapor viscosity (Pa s) nul... difference ..................................................................... 67 4.9. Evaporation rate ratio as a function of the post bottom width ......................... 68 x FIGURE Page 4.10 Pore wall temperature distribution...

  13. Energy and economic assessment of desiccant cooling systems coupled with single glazed air and hybrid PV/thermal solar collectors for applications in hot and humid climate

    SciTech Connect (OSTI)

    Beccali, Marco; Finocchiaro, Pietro; Nocke, Bettina

    2009-10-15

    This paper presents a detailed analysis of the energy and economic performance of desiccant cooling systems (DEC) equipped with both single glazed standard air and hybrid photovoltaic/thermal (PV/t) collectors for applications in hot and humid climates. The use of 'solar cogeneration' by means of PV/t hybrid collectors enables the simultaneous production of electricity and heat, which can be directly used by desiccant air handling units, thereby making it possible to achieve very energy savings. The present work shows the results of detailed simulations conducted for a set of desiccant cooling systems operating without any heat storage. System performance was investigated through hourly simulations for different systems and load combinations. Three configurations of DEC systems were considered: standard DEC, DEC with an integrated heat pump and DEC with an enthalpy wheel. Two kinds of building occupations were considered: office and lecture room. Moreover, three configurations of solar-assisted air handling units (AHU) equipped with desiccant wheels were considered and compared with standard AHUs, focusing on achievable primary energy savings. The relationship between the solar collector's area and the specific primary energy consumption for different system configurations and building occupation patterns is described. For both occupation patterns, sensitivity analysis on system performance was performed for different solar collector areas. Also, this work presents an economic assessment of the systems. The cost of conserved energy and the payback time were calculated, with and without public incentives for solar cooling systems. It is worth noting that the use of photovoltaics, and thus the exploitation of related available incentives in many European countries, could positively influence the spread of solar air cooling technologies (SAC). An outcome of this work is that SAC systems equipped with PV/t collectors are shown to have better performance in terms of primary energy saving than conventional systems fed by vapour compression chillers and coupled with PV cells. All SAC systems present good figures for primary energy consumption. The best performances are seen in systems with integrated heat pumps and small solar collector areas. The economics of these SAC systems at current equipment costs and energy prices are acceptable. They become more interesting in the case of public incentives of up to 30% of the investment cost (Simple Payback Time from 5 to 10 years) and doubled energy prices. (author)

  14. Water-evaporation reduction by duplex films: Application to the human tear film

    E-Print Network [OSTI]

    Cerretani, Colin F; Ho, Nghia H; Radke, C.J.

    2013-01-01

    38:408-17. Langmuir I. Oil lenses on water and the nature ofHVA. The evaporation of water through unimolecular films. JRates of evaporation of water through compressed monolayers

  15. Mathematical modeling of evaporative cooling of moisture bearing epoxy composite plates 

    E-Print Network [OSTI]

    Payette, Gregory Steven

    2006-08-16

    Research is performed to assess the potential of surface moisture evaporative cooling from composite plates as a means of reducing the external temperature of military aircraft. To assess the feasibility of evaporative ...

  16. Effect of surfactant on evaporative heat transfer coefficients in vertical film forced convection 

    E-Print Network [OSTI]

    Shah, Basit Husain

    1972-01-01

    to the present design conditions in desalination evaporators. A commercial surfactant, procter and Gamble 'Joy ' (Ammon1um Lauryl Sulphate + Cl2-C)&-diethanoiamine, 3:1) was used in the present study. The evaporative coefficients were observed to increase... encountered in de- salinationn evaporators (36). The evaporative coeffici ents were determined under the above conditions for pure water as well as for solutions containing 15, 30, and 50 ppm of surfactant (Procter and Gamble 'Joy'). The feed to the boi...

  17. Consecutive Solvent Evaporation and Co-Rolling Techniques for Polymer Multilayer Hollow Fiber

    E-Print Network [OSTI]

    Skorobogatiy, Maksim

    Consecutive Solvent Evaporation and Co-Rolling Techniques for Polymer Multilayer Hollow Fiber, "Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform Layer-by-Layer Solvent Evaporation Process Polymer tube (cladding) Polymer 1 Polymer 2 Drawing Fiber #12

  18. Surface excess properties from energy transport measurements during water evaporation Fei Duan and C. A. Ward*

    E-Print Network [OSTI]

    Ward, Charles A.

    Surface excess properties from energy transport measurements during water evaporation Fei Duan condi- tions, accounts for as little as 50% of the energy required to evaporate water at the measured 2004; revised manuscript received 21 March 2005; published 2 November 2005 When water evaporates

  19. Primordial Black Holes: Observational Characteristics of The Final Evaporation

    E-Print Network [OSTI]

    Ukwatta, T N; Linnemann, J T; MacGibbon, J H; Marinelli, S S; Yapici, T; Tollefson, K

    2015-01-01

    Many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to $10^5$ solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. The final moments of this evaporation phase should be explosive and its description dependent on the particle physics model. In this work we investigate the final few seconds of BH evaporation using the Standard Model of particle physics incorporating the most recent LHC results and calculate energy dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures relevant to very high energy gamma-ray observatories.

  20. Summary of evaporative cooling system for the SSC silicon tracker

    SciTech Connect (OSTI)

    Woloshun, K.; Barber, R.L.; Christensen, W.; Hanlon, J.A.; Keddy, M.D.; Miller, W.O.; Reid, R.S.; Ziock, H.J.

    1994-10-01

    An evaporative cooling system has been developed for the Superconducting Supercollider (SSC) Solenoidal Detector Collaboration (SDC) and the Gamma, Electron and Muon Detector (GEM) silicon tracker electronics. The system operated on the principles of the heat pipe; specifically, evaporation at near vapor-liquid equilibrium without the presence of noncondensible gases, and with a capillary media used to distribute the working fluid. The system used butane as a working fluid for operation at O{degrees}C and 1 atm. pressure. This paper summarizes the evolution of the system design, emphasizing key developments that may be useful for further work. Results of the system performance as of the close-of-effort are presented. A brief summary of results of experiments using a pumped single-phase cooling system are also presented.

  1. Evaporation-based Ge/.sup.68 Ga Separation

    DOE Patents [OSTI]

    Mirzadeh, Saed (Albuquerque, NM); Whipple, Richard E. (Los Alamos, NM); Grant, Patrick M. (Los Alamos, NM); O'Brien, Jr., Harold A. (Los Alamos, NM)

    1981-01-01

    Micro concentrations of .sup.68 Ga in secular equilibrium with .sup.68 Ge in strong aqueous HCl solution may readily be separated in ionic form from the .sup.68 Ge for biomedical use by evaporating the solution to dryness and then leaching the .sup.68 Ga from the container walls with dilute aqueous solutions of HCl or NaCl. The chloro-germanide produced during the evaporation may be quantitatively recovered to be used again as a source of .sup.68 Ga. If the solution is distilled to remove any oxidizing agents which may be present as impurities, the separation factor may easily exceed 10.sup.5. The separation is easily completed and the .sup.68 Ga made available in ionic form in 30 minutes or less.

  2. Axially Tapered And Bilayer Microchannels For Evaporative Cooling Devices

    DOE Patents [OSTI]

    Nilson, Robert (Cardiff, CA); Griffiths, Stewart (Livermore, CA)

    2005-10-04

    The invention consists of an evaporative cooling device comprising one or more microchannels whose cross section is axially reduced to control the maximum capillary pressure differential between liquid and vapor phases. In one embodiment, the evaporation channels have a rectangular cross section that is reduced in width along a flow path. In another embodiment, channels of fixed width are patterned with an array of microfabricated post-like features such that the feature size and spacing are gradually reduced along the flow path. Other embodiments incorporate bilayer channels consisting of an upper cover plate having a pattern of slots or holes of axially decreasing size and a lower fluid flow layer having channel widths substantially greater than the characteristic microscale dimensions of the patterned cover plate. The small dimensions of the cover plate holes afford large capillary pressure differentials while the larger dimensions of the lower region reduce viscous flow resistance.

  3. Documenting the Effectiveness of Cosorption of Airborne Contaminants by a Field-Installed Active Desiccant System: Final Report - Phase 2D

    SciTech Connect (OSTI)

    Fischer, J

    2003-01-23

    The final report for Phase 1 of this research effort (ORNL/SUB/94-SV004/1) concluded that a significant market opportunity would exist for active desiccant systems if it could be demonstrated that they can remove a significant proportion of common airborne contaminants while simultaneously performing the primary function of dehumidifying a stream of outdoor air or recirculated building air. If the engineering community begins to follow the intent of ASHRAE Standard 62, now part of all major building codes, the outdoor air in many major cities may need to be pre-cleaned before it is introduced into occupied spaces. Common air contaminant cosorption capability would provide a solution to three important aspects of the ASHRAE 62-89 standard that have yet to be effectively addressed by heating, ventilation, and air-conditioning (HVAC) equipment manufacturers: (1) The ASHRAE standard defines acceptable outdoor air quality. If the outdoor air contains unacceptable levels of certain common outdoor air contaminants (e.g., sulfur dioxide, ozone), then the standard requires that these contaminants be removed from the outdoor air stream to reach compliance with the acceptable outdoor air quality guidelines. (2) Some engineers prefer to apply a filtration or prescriptive approach rather than a ventilation approach to solving indoor air quality problems. The ASHRAE standard recognizes this approach provided that the filtration technology exists to remove the gaseous contaminants encountered. The performance of current gaseous filtration technologies is not well documented, and they can be costly to maintain because the life of the filter is limited and the cost is high. Moreover, it is not easy to determine when the filters need changing. In such applications, an additional advantage provided by the active desiccant system would be that the same piece of equipment could control space humidity and provide filtration, even during unoccupied periods, if the active desiccant system were operated in a recirculation mode. (3) Almost all major medical, university, and research facilities face the dilemma that the air exhausted from a building exits near the intake of another building. As a result, contaminants exhausted outdoors are pulled back into the same or an adjacent building. The removal of contaminants from outdoor air that an active desiccant system offers would be attractive to applications in such cases. The primary objective of this research project was to quantify the ability of the SEMCO composite desiccant dehumidification wheel to purify outdoor and recirculated air streams by removing gaseous contaminants commonly encountered in actual applications. This contaminant removal is provided simultaneously with dehumidification (removing the latent load) of these air streams at conditions encountered in HVAC applications. This research builds upon initial seed work completed by the Georgia Tech Research Institute (GTRI) during 1993 (Bayer and Downing 1993).

  4. Mesoporous-silica films, fibers, and powders by evaporation

    DOE Patents [OSTI]

    Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun

    2008-05-06

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).

  5. Mesoporous-silica films, fibers, and powders by evaporation

    DOE Patents [OSTI]

    Bruinsma, Paul J. (Kennewick, WA); Baskaran, Suresh (Kennewick, WA); Bontha, Jagannadha R. (Richland, WA); Liu, Jun (West Richland, WA)

    1999-01-01

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).

  6. Chapter 6.16 Technical Engineering Services Thermal Evaporator

    E-Print Network [OSTI]

    Healy, Kevin Edward

    evaporation. Magnetic metals are allowed. No materials with vapor pressure curves lower than silver resonant frequency monitoring #12;tescal Chapter 6.16 5.0 Safety 5.1 Heat 5.1.1 The tescal system heats 26 28 23 Ramp Time 2 mm:ss 1:00 1:30 1:06 1:30 Soak Time 2 mm:ss 0:10 0:10 0:10 1:20 Target Rate A

  7. Theory vs. Practice in Direct Evaporative Roof Spray Cooling 

    E-Print Network [OSTI]

    Smith, J. L.; Smith, J. C.

    1985-01-01

    mechanical air conditioning, roof spray cooling applies it directly to the largest source of external heat on a typical 1-2 story commercial/ industrial facility by spraying the roof with a fine mist of water and allowing the water to evaporate.../O SPRAY ROCCI Y/ SPRAY DIFFERUlCE (-0 ('0 (OF) ELECTRICAL CONPONENTS NANUFACTURING PLAKT, RIO PIEDRAS, PR This test was performed by company employees in order to evaluate the effectiveness of the roof spray cooling system recently installed...

  8. Mesoporous-silica films, fibers, and powders by evaporation

    DOE Patents [OSTI]

    Bruinsma, P.J.; Baskaran, S.; Bontha, J.R.; Liu, J.

    1999-07-13

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s). 24 figs.

  9. Moduli Vacuum Bubbles Produced by Evaporating Black Holes

    E-Print Network [OSTI]

    J. R. Morris

    2007-08-14

    We consider a model with a toroidally compactified extra dimension giving rise to a temperature-dependent 4d effective potential with one-loop contributions due to the Casimir effect, along with a 5d cosmological constant. The forms of the effective potential at low and high temperatures indicates a possibility for the formation of a domain wall bubble, formed by the modulus scalar field, surrounding an evaporating black hole. This is viewed as an example of a recently proposed black hole vacuum bubble arising from matter-sourced moduli fields in the vicinity of an evaporating black hole [D. Green, E. Silverstein, and D. Starr, Phys. Rev. D74, 024004 (2006), arXiv:hep-th/0605047]. The black hole bubble can be highly opaque to lower energy particles and photons, and thereby entrap them within. For high temperature black holes, there may also be a symmetry-breaking black hole bubble of false vacuum of the type previously conjectured by Moss [I.G. Moss, Phys. Rev. D32,1333 (1985)], tending to reflect low energy particles from its wall. A double bubble composed of these two different types of bubble may form around the black hole, altering the hole's emission spectrum that reaches outside observers. Smaller mass black holes that have already evaporated away could have left vacuum bubbles behind that contribute to the dark matter.

  10. Torque on an exoplanet from an anisotropic evaporative wind

    E-Print Network [OSTI]

    Teyssandier, Jean; Adams, Fred C; Quillen, Alice C

    2015-01-01

    Winds from short-period Earth and Neptune mass exoplanets, driven by high energy radiation from a young star, may evaporate a significant fraction of a planet's mass. If the momentum flux from the evaporative wind is not aligned with the planet/star axis, then it can exert a torque on the planet's orbit. Using steady-state one-dimensional evaporative wind models we estimate this torque using a lag angle that depends on the product of the speed of the planet's upper atmosphere and a flow timescale for the wind to reach its sonic radius. We also estimate the momentum flux from time-dependent one-dimensional hydrodynamical simulations. We find that only in a very narrow regime in planet radius, mass and stellar radiation flux is a wind capable of exerting a significant torque on the planet's orbit. Similar to the Yarkovsky effect, the wind causes the planet to drift outward if atmospheric circulation is prograde (super-rotating) and in the opposite direction if the circulation is retrograde. A close-in super Ear...

  11. Evaporation of tiny water aggregation on solid surfaces of different wetting properties

    E-Print Network [OSTI]

    Shen Wang; Yusong Tu; Rongzheng Wan; Haiping Fang

    2012-03-08

    The evaporation of a tiny amount of water on the solid surface with different wettability has been studied by molecular dynamics simulations. We found that, as the surface changed from hydrophobicity to hydrophility, the evaporation speed did not show a monotonically decrease from intuition, but increased first, and then decreased after reached a maximum value. The competition between the number of the water molecules on the water-gas surface from where the water molecules can evaporate and the potential barrier to prevent those water molecules from evaporating results in the unexpected behavior of the evaporation. A theoretical model based on those two factors can fit the simulation data very well. This finding is helpful in understanding the evaporation on the biological surfaces, designing artificial surface of ultra fast water evaporating or preserving water in soil.

  12. Applications of Mechanical Vapor Recompression to Evaporation and Crystallization 

    E-Print Network [OSTI]

    Outland, J. S.

    1995-01-01

    is accomplished using centrifugal, axial-flow, or positive displacement compressors and these compressors can be powered by electricity, steam turbine or a gas turbine. The use of an MVR Evapo rator/Crystallizer provides a comparatively low cost means... Process Equipment Harvey,IL Here it can be seen that the economy or the pounds of water evaporated per pound of heating element is slightly less than 1.0. The vapors leaving the evapo rator flow to a condenser when their latent heat is absorbed...

  13. Evaluation of a Direct Evaporative Roof-Spray Cooling System 

    E-Print Network [OSTI]

    Carrasco, A.; Pittard, R.; Kondepudi, S. N.; Somasundaram, S.

    1987-01-01

    of Evaporative Cooling of Roofs", Project Report, I (1986). JULY 29 * EXP-Wcr + EXP-DRY --- MOO-WET -- MOD-DRY TIME OF DAY IN DECIMAL HOURS Figure 3. Heat Flux Through the Roof - July 29 TIME OF DAY IN DECIMAL HOURS 150- v, W W 140- CC Z: P 130... gunny bags on the temperatures and heat flux at the ceiling surface of thick roofs. They concluded that, in the tropics, for the effect of reduced indoor temper- atures to be more effective, the roofs needed to be treated. They further confirmed...

  14. SERI Desiccant Cooling Test Facility. Status report. Preliminary data on the performance of a rotary parallel-passage silica-gel dehumidifier

    SciTech Connect (OSTI)

    Schultz, K.J.

    1986-04-01

    This report describes the SERI Desiccant Cooling Test Facility. The facility can test bench-scale rotary dehumidifiers over a wide range of controlled conditions. We constructed and installed in the test loop a prototype parallel-passage rotary dehumidifier that has spirally wound polyester tape coated with silica gel. The initial tests gave satisfactory results indicating that approximately 90% of the silica gel was active and the overall Lewis number of the wheel was near unity. The facility has several minor difficulties including an inability to control humidity satisfactorily and nonuniform and highly turbulent inlet velocities. To completely validate the facility requires a range of dehumidifier designs. Several choices are available including constructing a second parallel-passage dehumidifier with the passage spacing more uniform.

  15. Thermal Evaporation of Gas from X-ray Clusters

    E-Print Network [OSTI]

    Abraham Loeb

    2006-09-18

    A fraction of the thermal protons in the outer envelope of an X-ray cluster have velocities that exceed the local escape speed from the cluster gravitational potential. The Coulomb mean-free-path of these protons is larger than the virial radius of the cluster at temperatures >2.5 keV. The resulting leakage of suprathermal particles generates a collisionless shock in neighboring voids and fills them with heat and magnetic fields. The momentum flux of suprathermal particles cannot be confined by magnetic tension at the typical field strength in the periphery of cluster halos (heat is deposited into the gas by cluster mergers, active galactic nuclei or supernovae. Thermal evaporation is not included in existing cosmological simulations since they are based on the fluid approximation. Measurements of the baryon mass fraction in the outer envelopes of hot clusters (through their Sunyaev-Zel'dovich effect or X-ray emission) can be used to empirically constrain their evaporation rate.

  16. Naked and Thunderbolt Singularities in Black Hole Evaporation

    E-Print Network [OSTI]

    S. W. Hawking; J. M. Stewart

    1992-07-30

    If an evaporating black hole does not settle down to a non radiating remnant, a description by a semi classical Lorentz metric must contain either a naked singularity or what we call a thunderbolt, a singularity that spreads out to infinity on a spacelike or null path. We investigate this question in the context of various two dimensional models that have been proposed. We find that if the semi classical equations have an extra symmetry that make them solvable in closed form, they seem to predict naked singularities but numerical calculations indicate that more general semi classical equations, such as the original CGHS ones give rise to thunderbolts. We therefore expect that the semi classical approximation in four dimensions will lead to thunderbolts. We interpret the prediction of thunderbolts as indicating that the semi classical approximation breaks down at the end point of black hole evaporation, and we would expect that a full quantum treatment would replace the thunderbolt with a burst of high energy particles. The energy in such a burst would be too small to account for the observed gamma ray bursts.

  17. On the interface instability during rapid evaporation in microgravity

    SciTech Connect (OSTI)

    Juric, D.

    1997-05-01

    The rapid evaporation of a superheated liquid (vapor explosion) under microgravity conditions is studied by direct numerical simulation. The time-dependent Navier-Stokes and energy equations coupled to the interface dynamics are solved using a two-dimensional finite-difference/front-tracking method. Large interface deformations, topology change, latent heat, surface tension and unequal material properties between the liquid and vapor phases are included in the simulations. A comparison of numerical results to the exact solution of a one-dimensional test problem shows excellent agreement. For the two-dimensional rapid evaporation problem, the vapor volume growth rate and unstable interface dynamics are studied for increasing levels of initial liquid superheat. As the superheat is increased the liquid-vapor interface experiences increasingly unstable energetic growth. These results indicate that heat transfer plays a very important role in the instability mechanism leading to vapor explosions. It is suggested that the Mullins-Sekerka instability could play a role in the instability initiation mechanism.

  18. Glass Development for Treatment of LANL Evaporator Bottoms Waste

    SciTech Connect (OSTI)

    DE Smith; GF Piepel; GW Veazey; JD Vienna; ML Elliott; RK Nakaoka; RP Thimpke

    1998-11-20

    Vitrification is an attractive treatment option for meeting the stabilization and final disposal requirements of many plutonium (Pu) bearing materials and wastes at the Los Alamos National Laboratory (LANL) TA-55 facility, Rocky Flats Environmental Technology Site (RFETS), Hanford, and other Department of Energy (DOE) sites. The Environmental Protection Agency (EPA) has declared that vitrification is the "best demonstrated available technology" for high- level radioactive wastes (HLW) (Federal Register 1990) and has produced a handbook of vitriilcation technologies for treatment of hazardous and radioactive waste (US EPA, 1992). This technology has been demonstrated to convert Pu-containing materials (Kormanos, 1997) into durable (Lutze, 1988) and accountable (Forsberg, 1995) waste. forms with reduced need for safeguarding (McCulhun, 1996). The composition of the Evaporator Bottoms Waste (EVB) at LANL, like that of many other I%-bearing materials, varies widely and is generally unpredictable. The goal of this study is to optimize the composition of glass for EVB waste at LANL, and present the basic techniques and tools for developing optimized glass compositions for other Pu-bearing materials in the complex. This report outlines an approach for glass formulation with fixed property restrictions, using glass property-composition databases. This approach is applicable to waste glass formulation for many variable waste streams and vitrification technologies.. Also reported are the preliminary property data for simulated evaporator bottom glasses, including glass viscosity and glass leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP).

  19. Economic and Technical Tradeoffs Between Open and Closed Cycle Vapor Compression Evaporators 

    E-Print Network [OSTI]

    Timm, M. L.

    1986-01-01

    AND TECHNICAL TRADEOFFS BETWEEN OPEN AND CLOSED CYCLE VAPOR COM~RESSION EVAPORATORS Martin L. Timm, P.E. Bassett Inc. Appleton, WI ABSTRACT Evaporators are used extensively in the chemical, pulp Bnd paper, food and beverage, and related industries.... Mechanical vapor recompression (MVR) evaporators are a type using an open heat pump cycle with steam as the working fluid. The tech nology is widely used and time-proven. Closed cycle vapor compression is an emerging technology. A secondary working fluid...

  20. Use of DOE-2 to Evaluate Evaporative Cooling in Texas Correctional Facilities 

    E-Print Network [OSTI]

    Saman, N.; Heneghan, T.; Bou-Saada, T. E.

    1996-01-01

    weather tapes, one for Kingsville, Texas and one for Abilene, Texas during April, July, and October to resemble neutral, summer and winter weather conditions. The results showed that direct evaporative cooling is applicable in April for Abilene... and October for fingsville. The indirect evaporative cooling is feasible in July for Abilene and April for Kingsville. INTRODUCTION Evaporative cooling provides an energy efficient, environmentally safe, and cost effective alternative to traditional...

  1. Energy savings from indirect evaporative pre-cooling: Control strategies and commissioning

    SciTech Connect (OSTI)

    Felts, D.; Jump, D.A.

    1998-07-01

    Package rooftop air conditioning units (RTU) with evaporative pre-cooling systems were installed at an Agricultural History Museum and conference center in the northern Sacramento Valley in California, a hot and dry summer climate region. The evaporative pre-coolers serve to extend the economizer range of the RTU's. A commissioning team monitored the performance of the RTU evaporative pre-coolers. The purpose of the monitoring was to determine if changes were warranted to optimize the system's energy efficiency. The commissioning process revealed that the RTU evaporative pre-coolers were being controlled by the economizer control cycle. With this control cycle, the evaporative pre-cooler operates when the outdoor air temperature is falling below the space return air temperature. This means that the pre-cooler will never operate at peak load conditions. The conference center is an assembly occupancy. Building codes require significant levels of outdoor air for ventilation. The evaporative pre-cooler system provides the means to significantly offset the energy requirements for cooling down and heating up this ventilation air. A DOE2 energy simulation analysis indicated that the evaporative pre-cooler could cut energy use by over 50% if it were working correctly. Investigation concludes that in buildings with high outdoor air requirements, evaporative pre-cooling, using building exhaust air as the indirect evaporative cooling source, significantly reduce building energy consumption. This evaporative pre-cooling technology works in any climate, regardless of outdoor conditions, since the return air stream exhausted from the building provides a relatively constant temperature and humidity source for evaporative cooling. An added benefit is that the evaporative pre-cooler heat exchanger recovers heat from the exhausted air stream in cold weather.

  2. EMRTC Report RF 10-13: Application to LANL Evaporator Nitrate...

    Office of Environmental Management (EM)

    from evaporator operations at TA55 were packaged (up to around 1991) primarily in plastic bags and ranged in moisture content up to saturation (generator knowledge states the...

  3. No-tillage and high-residue practices reduce soil water evaporation

    E-Print Network [OSTI]

    2012-01-01

    P, Brown L, Hirschi M. 2000. Water erosion. In: Conservationeffects on evaporation, soil water content, and yield offor Computing Crop Water Requirements. FAO Irrigation and

  4. Evaporation-powered Motor and Light | U.S. DOE Office of Science...

    Office of Science (SC) Website

    composites harness energy from evaporation to power locomotion and generate electricity. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo....

  5. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  6. Enhanced Micellar Catalysis LDRD.

    SciTech Connect (OSTI)

    Betty, Rita G.; Tucker, Mark David; Taggart, Gretchen; Kinnan, Mark K.; Glen, Crystal Chanea; Rivera, Danielle; Sanchez, Andres; Alam, Todd Michael

    2012-12-01

    The primary goals of the Enhanced Micellar Catalysis project were to gain an understanding of the micellar environment of DF-200, or similar liquid CBW surfactant-based decontaminants, as well as characterize the aerosolized DF-200 droplet distribution and droplet chemistry under baseline ITW rotary atomization conditions. Micellar characterization of limited surfactant solutions was performed externally through the collection and measurement of Small Angle X-Ray Scattering (SAXS) images and Cryo-Transmission Electron Microscopy (cryo-TEM) images. Micellar characterization was performed externally at the University of Minnesota's Characterization Facility Center, and at the Argonne National Laboratory Advanced Photon Source facility. A micellar diffusion study was conducted internally at Sandia to measure diffusion constants of surfactants over a concentration range, to estimate the effective micelle diameter, to determine the impact of individual components to the micellar environment in solution, and the impact of combined components to surfactant phase behavior. Aerosolized DF-200 sprays were characterized for particle size and distribution and limited chemical composition. Evaporation rates of aerosolized DF-200 sprays were estimated under a set of baseline ITW nozzle test system parameters.

  7. Fixture for forming evaporative pattern (EPC) process patterns

    DOE Patents [OSTI]

    Turner, Paul C. (Albany, OR); Jordan, Ronald R. (Albany, OR); Hansen, Jeffrey S. (Corvallis, OR)

    1993-01-01

    A method of casting metal using evaporative pattern casting process patterns in combination with a fixture for creating and maintaining a desired configuration in flexible patterns. A pattern is constructed and gently bent to the curvature of a suitable fixture. String or thin wire, which burns off during casting, is used to tie the pattern to the fixture. The fixture with pattern is dipped in a commercially available refractory wash to prevent metal adherence and sticking to the fixture. When the refractory wash is dry, the fixture and pattern are placed in a flask, and sand is added and compacted by vibration. The pattern remains in position, restrained by the fixture. Metal that is poured directly into the pattern replaces the pattern exactly but does not contact or weld to the fixture due to the protective refractory layer. When solid, the casting is easily separated from the fixture. The fixture can be cleaned for reuse in conventional casting cleaning equipment.

  8. Addressing Water Consumption of Evaporative Coolers with Greywater

    SciTech Connect (OSTI)

    Sahai, Rashmi; Shah, Nihar; Phadke, Amol

    2012-07-01

    Evaporative coolers (ECs) provide significant gains in energy efficiency compared to vapor compression air conditioners, but simultaneously have significant onsite water demand. This can be a major barrier to deployment in areas of the world with hot and arid climates. To address this concern, this study determined where in the world evaporative cooling is suitable, the water consumption of ECs in these cities, and the potential that greywater can be used reduce the consumption of potable water in ECs. ECs covered 69percent of the cities where room air conditioners are may be deployed, based on comfort conditions alone. The average water consumption due to ECs was found to be 400 L/household/day in the United States and Australia, with the potential for greywater to provide 50percent this amount. In the rest of the world, the average water consumption was 250 L/household/day, with the potential for greywater to supply 80percent of this amount. Home size was the main factor that contributed to this difference. In the Mediterranean, the Middle East, Northern India, and the Midwestern and Southwestern United States alkalinity levels are high and water used for bleeding will likely contribute significantly to EC water consumption. Although technically feasible, upfront costs for household GW systems are currently high. In both developed and developing parts of the world, however, a direct EC and GW system is cost competitive with conventional vapor compression air conditioners. Moreover, in regions of the world that face problems of water scarcity the benefits can substantially outweigh the costs.

  9. Multifragmentation vs. Evaporation vs. Binary-Decay in Fragment Production

    E-Print Network [OSTI]

    S. G. Mashnik; K. K. Gudima; M. I. Baznat

    2006-03-16

    This paper presents part of an internal LANL Progress Report on completion of the "S" and "G" versions of the improved Cascade-Exciton Model (CEM03.01) and the Los Alamos Quark-Gluon String Model (LAQGSM.03.01) codes. The "S" versions consider fragmentation of compound nuclei produced after the preequilibrium stage of reactions for excitation energies above 2A MeV using the Statistical Multifragmentation Model (SMM) by Botvina et al. ("S" stands for SMM), while the "G" versions describe evaporation/fission stages of reactions using the fission-like binary-decay model GEMINI of Charity et al. ("G" stands for GEMINI) instead of using the the Generalized Evaporation Model GEM2 of Furihata incorporated into the standard versions of these codes. We present here an analysis of the recent 660 MeV p + 129I and 3.65 GeV p + 112Sn JINR measurements, of the new COSY data on 1.2 GeV p + (13 nuclei from Al to Th), of the 300 MeV and 1 GeV p + 56Fe data measured at GSI in inverse kinematics, and of the new GSI data on 1 GeV/nucleon 124Xe and 136Xe + Pb. To better understand the mechanisms of fragment production, we discuss several calculated but not-yet-measured kinematic characteristics of products of these reactions, which are predicted to be quite different by SMM, GEMINI, and GEM2. We find these kinematic quantities to be potentially useful in differentiating these reaction mechanisms if they can be measured in future experiments.

  10. Enhancing practice Quality Enhancement Themes

    E-Print Network [OSTI]

    Azzopardi, Leif

    .sparqs.org.uk) a national programme of Enhancement Themes aimed at developing and sharing good practice to enhance of establishing a programme of development activities, which draw on national and international good practice Scotland #12;Contents Acknowledgements 1 1 Outline and scope 2 2 A guide for readers 3 3 Practical

  11. Tracking Atmospheric Ducts Using Radar Clutter: I. Evaporation Duct Tracking Using Kalman Filters

    E-Print Network [OSTI]

    Gerstoft, Peter

    Tracking Atmospheric Ducts Using Radar Clutter: I. Evaporation Duct Tracking Using Kalman Filters 92093­0238, USA Introduction This paper addresses the problem of tracking evaporation ducts in marine-standard electromagnetic propagation due to formation of lower atmospheric sea ducts is a common occurrence in maritime

  12. Evaporative Cooling of Antiprotons to Cryogenic Temperatures G. B. Andresen,1

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Evaporative Cooling of Antiprotons to Cryogenic Temperatures G. B. Andresen,1 M. D. Ashkezari,2 M the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped

  13. Revisiting the parameterization of potential evaporation as a driver of long-term water balance trends

    E-Print Network [OSTI]

    Dai, Aiguo

    /or Runoff. Most regions in the world lie in the continuum between the water and energy limits, reachingRevisiting the parameterization of potential evaporation as a driver of long-term water balance, evaporative flux and runoff simulated by the water balance model underlying the Palmer Drought Severity Index

  14. Vol. 122 (2012) ACTA PHYSICA POLONICA A No. 4 Evaporation of Micro-Droplets

    E-Print Network [OSTI]

    2012-01-01

    -Square-Law Revisited D. Jakubczyk , M. Kolwas, G. Derkachov, K. Kolwas and M. Zientara Institute of Physics, Polish. The continuous- -medium descriptions of evaporation/condensation phe- nomena (see e.g. [3, 4]) cannot grasp valuable information, if they are carefully applied. As far as the evaporation/condensation of droplets

  15. Determination of mass and thermal accommodation coefficients from evolution of evaporating water droplet

    E-Print Network [OSTI]

    droplet M. Zientara, D. Jakubczyk, G. Derkachov, K. Kolwas and M. Kolwas Institute of Physics, Polish of evaporation and condensation are in the very heart of various fields of science. Cloud and aerosol called evaporation (condensation) or mass accommodation coefficient C and thermal conductivity

  16. Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication

    E-Print Network [OSTI]

    Skorobogatiy, Maksim

    Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber photonic fiber preforms were fabricated using consecutive deposition from a solvent phase of two polymers process involved consecutive film deposition by solvent evaporation of polymer solutions on the inside

  17. Large-eddy simulation of evaporating spray in a coaxial combustor

    E-Print Network [OSTI]

    Apte, Sourabh V.

    Large-eddy simulation of evaporating spray in a coaxial combustor Sourabh V. Apte a,*, Krishnan, Stanford, CA 94305, USA Abstract Large-eddy simulation of an evaporating isopropyl alcohol spray Mahesh b , Parviz Moin c a School of Mechanical, Industrial and Manufacturing Engineering, Oregon State

  18. Matrix-assisted pulsed laser evaporation of polymeric materials: a molecular dynamics study

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Matrix-assisted pulsed laser evaporation of polymeric materials: a molecular dynamics study Tatiana Matrix-assisted pulsed laser evaporation (MAPLE) has been recently developed to deposit high-quality thin is modeled as a solution of polymer molecules in a molecular matrix. The breathing sphere model is used

  19. CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER

    E-Print Network [OSTI]

    Kandlikar, Satish

    1 CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER for evaporation heat transfer coefficient of refrigerant R-134a flowing in a plate heat exchanger. Correlation schemes proposed by Yan and Lin (1999b) for modeling the heat transfer coefficient in both a single- phase

  20. Evaluation of the evaporative fraction for parameterization of the surface energy balance

    SciTech Connect (OSTI)

    Nichols, W.E. (Pacific Northwest Lab., Richland, WA (United States)); Cuenca, R.H. (Oregon State Univ., Corvallis (United States))

    1993-11-01

    The evaporative fraction is a ratio of latent heat flux to the sum of latent and sensible heat fluxes. It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on midday remote sensing measurements. The HAPEX-MOBILHY program SAMER system provided surface energy balance data over a range of agricultural crops and soil types. Data from this large-scale field experiment was analyzed to study the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the midday evaporative fraction and the daylight evaporative fraction. Statistical tests, however, rejected the hypothesis that the two quantities were equal. Relations between the evaporative fraction and surface soil moisture as well as soil moisture over the complete root zone were explored, but no correlation was identified. 33 refs., 11 figs., 6 tabs.

  1. Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines

    SciTech Connect (OSTI)

    Gordon H. Holcomb

    2009-01-01

    U.S. Department of Energy’s goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

  2. Steam oxidation and chromia evaporation in ultrasupercritical steam boilers and turbines

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2009-07-01

    The U.S. Department of Energy's goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 {sup o}C and 340 atm, so-called ultrasupercritical conditions. Evaporation of protective chromia scales is a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

  3. Dynamics of evaporative colloidal patterning C. Nadir Kaplan, Ning Wu, Shreyas Mandre, Joanna Aizenberg, and L. Mahadevan

    E-Print Network [OSTI]

    Mahadevan, L.

    Dynamics of evaporative colloidal patterning C. Nadir Kaplan, Ning Wu, Shreyas Mandre, Joanna of evaporative colloidal patterning C. Nadir Kaplan,1 Ning Wu,2 Shreyas Mandre,3 Joanna Aizenberg,1,4,5,6 and L

  4. Effect of argon gas flow rate on properties of film electrodes prepared by thermal vacuum evaporation from synthesized Cu{sub 2}SnSe{sub 3} source

    SciTech Connect (OSTI)

    Sabli, Nordin; Talib, Zainal Abidin; Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang (Malaysia); Zainal, Zulkarnain [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang (Malaysia); Hilal, Hikmat S. [SSERL, Department of Chemistry An-Najah N. University, PO Box 7, Nablus, West Bank (Country Unknown); Fujii, Masatoshi [Department of Molecular Science, School of Medicine, Shimane University, Izumo, Shimane, 693-8501 (Japan)

    2014-03-05

    This work describes a new technique to enhance photoresponse of metal chalcogenide-based semiconductor film electrodes deposited by thermal vacuum evaporation under argon gas flow from synthesized Cu{sub 2}SnSe{sub 3} sources. SnSe formation with Cu-doped was obtained under higher argon gas flow rate (V{sub A} = 25 cm{sup 3}/min). Higher value of photoresponse was observed for films deposited under V{sub A} = 25 cm{sup 3}/min which was 9.1%. This finding indicates that Cu atoms inside the SnSe film were important to increase carrier concentrations that promote higher photoresponse.

  5. Simulated Waste Testing Of Glycolate Impacts On The 2H-Evaporator System

    SciTech Connect (OSTI)

    Martino, C. J.

    2013-08-13

    Glycolic acid is being studied as a total or partial replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste tank farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the tank farm were addressed via a literature review, but several outstanding issues remained. This report documents the non-radioactive simulant tests impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The testing for which non-radioactive simulants could be used involved the following: the partitioning of glycolate into the evaporator condensate, the impacts of glycolate on metal solubility, and the impacts of glycolate on the formation and dissolution of sodium aluminosilicate scale within the evaporator. The following are among the conclusions from this work: Evaporator condensate did not contain appreciable amounts of glycolate anion. Of all tests, the highest glycolate concentration in the evaporator condensate was 0.38 mg/L. A significant portion of the tests had glycolate concentration in the condensate at less than the limit of quantification (0.1 mg/L). At ambient conditions, evaporator testing did not show significant effects of glycolate on the soluble components in the evaporator concentrates. Testing with sodalite solids and silicon containing solutions did not show significant effects of glycolate on sodium aluminosilicate formation or dissolution.

  6. VOL. 7, NO. 2, MARCH-APRIL 1991 J. PROPULSION 213 Computations of Turbulent EvaporatingSprays

    E-Print Network [OSTI]

    Aggarwal, Suresh K.

    VOL. 7, NO. 2, MARCH-APRIL 1991 J. PROPULSION 213 Computations of Turbulent EvaporatingSprays S. K of turbulent evaporating sprays is reported. The major focus is to study the structure of turbulent evaporating sprays and to examine the sensitivity of their vaporization behavior to transient liquid-phase processes

  7. Heat exchanger efficiently operable alternatively as evaporator or condenser

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX)

    1981-01-01

    A heat exchanger adapted for efficient operation alternatively as evaporator or condenser and characterized by flexible outer tube having a plurality of inner conduits and check valves sealingly disposed within the outer tube and connected with respective inlet and outlet master flow conduits and configured so as to define a parallel flow path for a first fluid such as a refrigerant when flowed in one direction and to define a serpentine and series flow path for the first fluid when flowed in the opposite direction. The flexible outer tube has a heat exchange fluid, such as water, flowed therethrough by way of suitable inlet and outlet connections. The inner conduits and check valves form a package that is twistable so as to define a spiral annular flow path within the flexible outer tube for the heat exchange fluid. The inner conduits have thin walls of highly efficient heat transfer material for transferring heat between the first and second fluids. Also disclosed are specific materials and configurations.

  8. A Unitary Model of The Black Hole Evaporation

    E-Print Network [OSTI]

    Yu-Lei Feng; Yi-Xin Chen

    2014-12-16

    A unitary effective field model of the black hole evaporation is proposed to satisfy almost the four postulates of the black hole complementarity (BHC). In this model, we enlarge a black hole-scalar field system by adding an extra radiation detector that couples with the scalar field. After performing a partial trace over the scalar field space, we obtain an effective entanglement between the black hole and the detector (or radiation in it). As the whole system evolves, the S-matrix formula can be constructed formally step by step. Without local quantum measurements, the paradoxes of the information loss and AMPS's firewall can be resolved. However, the information can be lost due to quantum decoherence, as long as some local measurement has been performed on the detector to acquire the information of the radiation in it. But unlike Hawking's completely thermal spectrum, some residual correlations can be found in the radiations. All these considerations can be simplified in a qubit model that provides a \\emph{modified quantum teleportation} to transfer the information via an EPR pairs.

  9. Reduced low frequency noise in electron beam evaporated MgO magnetic tunnel junctions

    SciTech Connect (OSTI)

    Diao, Z.; Feng, J. F.; Kurt, H.; Feng, G.; Coey, J. M. D. [CRANN and School of Physics, Trinity College, Dublin 2 (Ireland)

    2010-05-17

    We compare low frequency noise in magnetic tunnel junctions with MgO barriers prepared by electron-beam evaporation with those prepared by radiofrequency sputtering, both showing a high tunneling magnetoresistance. The normalized noise parameter in the parallel state of junctions with evaporated barriers is at least one order of magnitude lower than that in junctions with sputtered barriers, and exhibits a weaker bias dependence. The lowest normalized noise is in the 10{sup -11} mum{sup 2} range. A lower density of oxygen vacancies acting as charge trap states in the evaporated MgO is responsible for the lower noise.

  10. Field Performance of a Slimline Turbomist Evaporator under Southeastern U. S. Climate Conditions

    SciTech Connect (OSTI)

    Sappington, F.C.

    2003-12-15

    A recent study of evaporation technologies for treating F- and H-area groundwater contaminated with radionuclides and metals (Flach 2002) suggested that spray evaporation might be a viable alternative or supplemental technique for managing tritiated groundwater at the Mixed Waste Management Facility. The particular technology of interest in this study is the Slimline Manufacturing Ltd. Turbo-Mist Evaporator, which uses a powerful blower and high-pressure spray nozzles to propel a fine mist into the air at high air and water flowrates.

  11. Dew Point Evaporative Comfort Cooling: Report and Summary Report

    SciTech Connect (OSTI)

    Dean, J.; Herrmann, L.; Kozubal, E.; Geiger, J.; Eastment, M.; Slayzak, S.

    2012-11-01

    The project objective was to demonstrate the capabilities of the high-performance multi-staged IEC technology and its ability to enhance energy efficiency and interior comfort in dry climates, while substantially reducing electric-peak demand. The project was designed to test 24 cooling units in five commercial building types at Fort Carson Army Base in Colorado Springs, Colorado.

  12. Photoconductivity in reactively evaporated copper indium selenide thin films

    SciTech Connect (OSTI)

    Urmila, K. S., E-mail: urmilaks7@gmail.com; Asokan, T. Namitha, E-mail: urmilaks7@gmail.com; Pradeep, B., E-mail: urmilaks7@gmail.com [Solid State Physics Laboratory, Cochin University of Science and Technology, Kochi, Kerala (India); Jacob, Rajani; Philip, Rachel Reena [Thin Film Research Laboratory, Union Christian College, Aluva, Kerala (India)

    2014-01-28

    Copper indium selenide thin films of composition CuInSe{sub 2} with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10{sup ?5} mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe{sub 2} films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (?) of 10{sup 6} cm{sup ?1} at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe{sub 2} thin films indicate its suitability in photovoltaic applications.

  13. A Study of Mechanisms and Supression of Evaporation of Water from Soils 

    E-Print Network [OSTI]

    Wendt, C. W.

    1971-01-01

    Extensive greenhouse experiments were conducted to evaluate chemicals not previously studied extensively for their potential as evaporation suppressants. Included in the studies were crude oil, anionics, cationics, nonionics, silicones...

  14. The Effect of Reduced Evaporator Air Flow on the Performance of a Residential Central Air Conditioner 

    E-Print Network [OSTI]

    Palani, M.; O'Neal, D.; Haberl, J.

    1992-01-01

    the performance of a residential cooling system operating under degraded conditions such as reduced evaporator air flow. Degraded performance measurements can provide information which could help electric utilities evaluate the potential impact of system...

  15. Experimental Study of the Circulation Air Volume of Recirculation Evaporative Cooling 

    E-Print Network [OSTI]

    Xiong, J.; Liu, Z.; Wang, C.; Chen, G.

    2006-01-01

    This paper introduces the technology of re-circulation evaporative cooling (REC), which uses a portion of supply air as secondary air to make cool water used to indirectly cool outside air through a heat exchanger. The circulation volume...

  16. Mean evaporation and condensation coefficients based on energy dependent condensation probability

    E-Print Network [OSTI]

    Struchtrup, Henning

    Maurice Bond and Henning Struchtrup* Department of Mechanical Engineering, University of Victoria, P. Ward, Phys. Rev. E 59, 419 (1999)]. It is shown that mean condensation and evaporation coefficients

  17. An experimental study of evaporative cooling from liquid droplets impinging on a hot surface

    E-Print Network [OSTI]

    Koveal, Catherine Helene

    2005-01-01

    We have performed a series of experiments to characterize the different regimes observed in drop impacts during evaporative cooling of heated surfaces. We found four regimes which were named splashing, fizzing, flat film, ...

  18. Energy Efficient Design, Retrofit and Control of Evaporative Condensers in Ammonia Refrigeration Systems

    E-Print Network [OSTI]

    Kissock, Kelly

    Energy Efficient Design, Retrofit and Control of Evaporative Condensers in Ammonia Refrigeration ABSTRACT Ammonia refrigeration systems typically offer many energy efficiency opportunities because efficiency of ammonia refrigeration systems. Introduction About 7.5% of the total manufacturing energy

  19. Insight into the molecular mechanism of water evaporation via the finite temperature string method

    E-Print Network [OSTI]

    Musolino, Nicholas

    The process of water's evaporation at its liquid/air interface has proven challenging to study experimentally and, because it constitutes a rare event on molecular time scales, presents a challenge for computer simulations ...

  20. Microscale observables for heat and mass transport in sub-micron scale evaporating thin film 

    E-Print Network [OSTI]

    Wee, Sang-Kwon

    2004-09-30

    A mathematical model is developed to describe the micro/nano-scale fluid flow and heat/mass transfer phenomena in an evaporating extended meniscus, focusing on the transition film region under nonisothermal interfacial conditions. The model...

  1. INLINE HIGH-RATE THERMAL EVAPORATION OF ALUMINUM FOR NOVEL INDUSTRIAL SOLAR CELL METALLIZATION

    E-Print Network [OSTI]

    in the food industry. For the metallization of solar cells Schott Solar AG used a batch evaporation system, seven vacuum chambers and an unloading area and may be used either in a continuous or in an oscillating

  2. A feasibility study of internal evaporative cooling for proton exchange membrane fuel cells 

    E-Print Network [OSTI]

    Snyder, Loren E

    2006-04-12

    An investigation was conducted to determine the feasibility of using the technique of ultrasonic nebulization of water into the anode gas stream for evaporative cooling of a Proton Exchange Membrane (PEM) fuel cell. The basic concept of this form...

  3. Making Record-efficiency SnS Solar Cells by Thermal Evaporation and Atomic Layer Deposition

    E-Print Network [OSTI]

    Jaramillo, Rafael

    Tin sulfide (SnS) is a candidate absorber material for Earth-abundant, non-toxic solar cells. SnS offers easy phase control and rapid growth by congruent thermal evaporation, and it absorbs visible light strongly. However, ...

  4. Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys

    SciTech Connect (OSTI)

    Cunningham, W.A.; Migon, G.V.

    1985-01-01

    The solar updraft and a natural evaporative downdraft tower built onto an existing residence structure and a greenhouse were completed and operating. Performance data for the hottest days of June, July, and August, 1985 are included. (MHR)

  5. Metal-black scattering centers to enhance light harvesting by thin-film solar cells

    E-Print Network [OSTI]

    Peale, Robert E.

    Metal-black scattering centers to enhance light harvesting by thin-film solar cells Deep Panjwania as scattering centers to increase the effective optical thickness of thin-film solar cells. The particular type. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in nitrogen

  6. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    SciTech Connect (OSTI)

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have minor/major impacts are chlorination, pH adjustment, 1st mercury removal, organics removal, 2nd mercury removal, and ion exchange. For minor impacts, the general approach is to use historical process operations data/modeling software like OLI/ESP and/or monitoring/compiled process operations data to resolve any uncertainties with testing as a last resort. For major impacts (i.e., glycolate concentrations > 33 mg/L or 0.44 mM), testing is recommended. No impact is envisaged for the following ETF unit operations regardless of the glycolate concentration - filtration, reverse osmosis, ion exchange resin regeneration, and evaporation.

  7. Calculation of Steady-State Evaporation for an Arbitrary Matric Potential at Ground Surface 

    E-Print Network [OSTI]

    Liu, Xin

    2014-12-15

    . .................... 6 Figure 2: The different contours of Ep/Ks value for N and –a/L in Eq. (9). ..................... 15 Figure 3: Influence of water table depth and matric potential on estimated evaporation rate for the Chino Clay... potential head (-cm) for the Chino Clay. ......................................................................... 29 Figure 7: Influence of water table depth and matric potential on estimated evaporation rate for the clay loam...

  8. Applicability of post-ionization theory to laser-assisted field evaporation of magnetite

    SciTech Connect (OSTI)

    Schreiber, Daniel K.; Chiaramonti, Ann N.; Gordon, Lyle M.; Kruska, Karen

    2014-12-15

    Analysis of the mean Fe ion charge state from laser-assisted field evaporation of magnetite (Fe3O4) reveals unexpected trends as a function of laser pulse energy that break from conventional post-ionization theory for metals. For Fe ions evaporated from magnetite, the effects of post-ionization are partially offset by the increased prevalence of direct evaporation into higher charge states with increasing laser pulse energy. Therefore the final charge state is related to both the field strength and the laser pulse energy, despite those variables themselves being intertwined when analyzing at a constant detection rate. Comparison of data collected at different base temperatures also show that the increased prevalence of Fe2+ at higher laser energies is possibly not a direct thermal effect. Conversely, the ratio of 16O+:16O2+ is well-correlated with field strength and unaffected by laser pulse energy on its own, making it a better overall indicator of the field evaporation conditions than the mean Fe charge state. Plotting the normalized field strength versus laser pulse energy also elucidates a non-linear dependence, in agreement with previous observations on semiconductors, that suggests a field-dependent laser absorption efficiency. Together these observations demonstrate that the field evaporation process for laser-pulsed oxides exhibits fundamental differences from metallic specimens that cannot be completely explained by post-ionization theory. Further theoretical studies, combined with detailed analytical observations, are required to understand fully the field evaporation process of non-metallic samples.

  9. Arabidopsis AtSerpin1, Crystal Structure and in Vivo Interaction with Its Target Protease RESPONSIVE TO DESICCATION-21 (RD21)

    SciTech Connect (OSTI)

    Lampl, Nardy; Budai-Hadrian, Ofra; Davydov, Olga; Joss, Tom V.; Harrop, Stephen J.; Curmi, Paul M.G.; Roberts, Thomas H.; Fluhr, Robert

    2010-05-25

    In animals, protease inhibitors of the serpin family are associated with many physiological processes, including blood coagulation and innate immunity. Serpins feature a reactive center loop (RCL), which displays a protease target sequence as a bait. RCL cleavage results in an irreversible, covalent serpin-protease complex. AtSerpin1 is an Arabidopsis protease inhibitor that is expressed ubiquitously throughout the plant. The x-ray crystal structure of recombinant AtSerpin1 in its native stressed conformation was determined at 2.2 {angstrom}. The electrostatic surface potential below the RCL was found to be highly positive, whereas the breach region critical for RCL insertion is an unusually open structure. AtSerpin1 accumulates in plants as a full-length and a cleaved form. Fractionation of seedling extracts by nonreducing SDS-PAGE revealed the presence of an additional slower migrating complex that was absent when leaves were treated with the specific cysteine protease inhibitor l-trans-epoxysuccinyl-l-leucylamido (4-guanidino)butane. Significantly, RESPONSIVE TO DESICCATION-21 (RD21) was the major protease labeled with the l-trans-epoxysuccinyl-l-leucylamido (4-guanidino)butane derivative DCG-04 in wild type extracts but not in extracts of mutant plants constitutively overexpressing AtSerpin1, indicating competition. Fractionation by nonreducing SDS-PAGE followed by immunoblotting with RD21-specific antibody revealed that the protease accumulated both as a free enzyme and in a complex with AtSerpin1. Importantly, both RD21 and AtSerpin1 knock-out mutants lacked the serpin-protease complex. The results establish that the major Arabidopsis plant serpin interacts with RD21. This is the first report of the structure and in vivo interaction of a plant serpin with its target protease.

  10. Effect of lubricant on spray evaporation heat transfer performance of R-134a and R-22 in tube bundles

    SciTech Connect (OSTI)

    Moeykens, S.A.; Pate, M.B.

    1996-11-01

    This study evaluates the effects of lubricant on spray evaporation heat transfer performance. Tests were conducted with refrigerant R-134a and triangular-pitch tube bundles made from enhanced-condensation, enhanced-boiling, low-finned, and plain-surface tubes. A 340-SUS polyol-ester (POE) oil was used for the R-134a testing because this lubricant is being integrated into industry for use with this refrigerant. Refrigerant was sprayed onto the tube bundles with low-pressure-drop, wide-angle nozzles located directly above the bundle. Collector testing was conducted with both R-134a and R-22 to determine the percentage of refrigerant contacting the tue bundle. It was found that small concentrations of the polyol-ester lubricant yielded significant improvement in the heat transfer performance of R-134a. The shell-side heat transfer coefficient was more dependent on lubricant concentration than on film-feed supply rate within the range of the respective parameters evaluated in this study. As expected, pure R-22 results show higher heat transfer coefficients than those obtained with pure R-134a at the same saturation temperature of 2.0 C (35.6 F).

  11. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    SciTech Connect (OSTI)

    Oji, L.

    2014-09-23

    The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent of dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min{sup -1} and 1.07E-03 ± 7.51E-05 min{sup -1}. Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10.8 hours. Based on averaging the two half-lives from the 2H scale acid dissolution in 1.25 and 1.5 M nitric acid solutions, a reasonable half-live for the dissolution of 2H scales in dilute nitric acid is 11.7 ± 1.3 hours. The plant operational time for chemically cleaning (soaking) the 2H evaporator with dilute nitric acid is 32 hours. It therefore may require about 3 half-lives or less to completely dissolve most of the scales in the Evaporator pot which come into contact with the dilute nitric acid solution. On a mass basis, the Al-to-Si ratio for the scale dissolution in 1.5 M nitric acid averaged 1.30 ± 0.20 and averaged 1.18 ± 0.10 for the 2H scale dissolution in 1.25 M nitric acid. These aluminum-to-silicon ratios are in fairly good agreement with ratios from previous studies. Therefore, there is still more aluminum in the 2H evaporator scales than silicon which implies that there are no significant changes in scale properties which will exclude nitric acid as a viable protic solvent for aluminosilicate scale buildup dissolution from the 2H evaporator. Overall, the monitoring of the scale decomposition reaction in 1.25 and 1.5 M nitric acid may be better ascertained through the determination of aluminum concentration in solution than monitoring silicon in solution. Silicon solution chemistry may lead to partial precipitating of silicon with time as the scale and acid solution is heated.

  12. Analysis Of 2H-Evaporator Scale Pot Bottom Sample [HTF-13-11-28H

    SciTech Connect (OSTI)

    Oji, L. N.

    2013-07-15

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material from the 2H evaporator has been performed so that the evaporator can be chemically cleaned beginning July of 2013. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from the bottom cone sections of the 2H-evaporator pot. The sample holder from the 2H-evaporator wall was virtually empty and was not included in the analysis. It is worth noting that after the delivery of these 2H-evaporator scale samples to SRNL for the analyses, the plant customer determined that the 2H evaporator could be operated for additional period prior to requiring cleaning. Therefore, there was no need for expedited sample analysis as was presented in the Technical Task Request. However, a second set of 2H evaporator scale samples were expected in May of 2013, which would need expedited sample analysis. X-ray diffraction analysis (XRD) confirmed the bottom cone section sample from the 2H-evaporator pot consisted of nitrated cancrinite, (a crystalline sodium aluminosilicate solid), clarkeite and uranium oxide. There were also mercury compound XRD peaks which could not be matched and further X-ray fluorescence (XRF) analysis of the sample confirmed the existence of elemental mercury or mercuric oxide. On ''as received'' basis, the scale contained an average of 7.09E+00 wt % total uranium (n = 3; st.dev. = 8.31E-01 wt %) with a U-235 enrichment of 5.80E-01 % (n = 3; st.dev. = 3.96E-02 %). The measured U-238 concentration was 7.05E+00 wt % (n=3, st. dev. = 8.25E-01 wt %). Analyses results for Pu-238 and Pu-239, and Pu-241 are 7.06E-05 {+-} 7.63E-06 wt %, 9.45E-04 {+-} 3.52E-05 wt %, and <2.24E-06 wt %, respectively. These results are provided so that SRR can calculate the equivalent uranium-235 concentrations for the NCSA. Because this 2H evaporator pot bottom scale sample contained a significant amount of elemental mercury (11.7 wt % average), it is recommended that analysis for mercury be included in future Technical Task Requests on 2H evaporator sample analysis at SRNL. Results confirm that the uranium contained in the scale remains depleted with respect to natural uranium. SRNL did not calculate an equivalent U-235 enrichment, which takes into account other fissionable isotopes U-233, Pu-239 and Pu-241.

  13. Lignite Fuel Enhancement

    SciTech Connect (OSTI)

    Charles Bullinger; Nenad Sarunac

    2010-03-31

    Pulverized coal power plants which fire lignites and other low-rank high-moisture coals generally operate with reduced efficiencies and increased stack emissions due to the impacts of high fuel moisture on stack heat loss and pulverizer and fan power. A process that uses plant waste heat sources to evaporate a portion of the fuel moisture from the lignite feedstock in a moving bed fluidized bed dryer (FBD) was developed in the U.S. by a team led by Great River Energy (GRE). The demonstration was conducted with Department of Energy (DOE) funding under DOE Award Number DE-FC26-04NT41763. The objectives of GRE's Lignite Fuel Enhancement project were to demonstrate reduction in lignite moisture content by using heat rejected from the power plant, apply technology at full scale at Coal Creek Station (CCS), and commercialize it. The Coal Creek Project has involved several stages, beginning with lignite drying tests in a laboratory-scale FBD at the Energy Research Center (ERC) and development of theoretical models for predicting dryer performance. Using results from these early stage research efforts, GRE built a 2 ton/hour pilot-scale dryer, and a 75 ton/hour prototype drying system at Coal Creek Station. Operated over a range of drying conditions, the results from the pilot-scale and prototype-scale dryers confirmed the performance of the basic dryer design concept and provided the knowledge base needed to scale the process up to commercial size. Phase 2 of the GRE's Lignite Fuel Enhancement project included design, construction and integration of a full-scale commercial coal drying system (four FBDs per unit) with Coal Creek Units 1 and 2 heat sources and coal handling system. Two series of controlled tests were conducted at Coal Creek Unit 1 with wet and dried lignite to determine effect of dried lignite on unit performance and emissions. Wet lignite was fired during the first, wet baseline, test series conducted in September 2009. The second test series was performed in March/April 2010 after commercial coal drying system was commissioned. Preliminary tests with dried coal were performed in March/April 2010. During the test Unit 2 was in outage and, therefore, test unit (Unit 1) was carrying entire station load and, also, supplying all auxiliary steam extractions. This resulted in higher station service, lower gross power output, and higher turbine cycle heat rate. Although, some of these effects could be corrected out, this would introduce uncertainty in calculated unit performance and effect of dried lignite on unit performance. Baseline tests with dried coal are planned for second half of 2010 when both units at Coal Creek will be in service to establish baseline performance with dried coal and determine effect of coal drying on unit performance. Application of GRE's coal drying technology will significantly enhance the value of lignite as a fuel in electrical power generation power plants. Although existing lignite power plants are designed to burn wet lignite, the reduction in moisture content will increase efficiency, reduce pollution and CO{sub 2} emissions, and improve plant economics. Furthermore, the efficiency of ultra supercritical units burning high-moisture coals will be improved significantly by using dried coal as a fuel. To date, Great River Energy has had 63 confidentiality agreements signed by vendors and suppliers of equipment and 15 utilities. GRE has had agreements signed from companies in Canada, Australia, China, India, Indonesia, and Europe.

  14. Preliminary experimental studies with seawater on OTEC spout evaporator thermal effectiveness and phase transition in upcomer

    SciTech Connect (OSTI)

    Sonwalkar, N.; Larsen-Basse, J.

    1987-01-01

    An experimental open-cycle ocean thermal energy conversion (OC-OTEC) test facility has been erected to perform spout evaporator experiments with seawater. The facility, located at Ke-ahole Point, Kona, Hawaii, consists of a spout evaporator, a spray condenser and an on-line deaerator. Warm seawater at 25-27/sup 0/C from 8 m depth and cold deep seawater at 7-10/sup 0/C from 580 m depth is available throughout the year to the facility. The results of thermal effectiveness tests are reported. The error due to instrumental uncertainties in thermal effectiveness measurements has been estimated to be of the order +-5.5 percent. The effect of design parameters; spout height, spout diameter and liquid loading on thermal effectiveness have been observed and compared with the existing theoretical predictions. A modified thermodynamic approach is proposed to evaluate average heat transfer characteristics of spout evaporators using a three component heat transfer coefficient approach. It adequately describes heat transfer characteristics of the spout evaporator under study. Results essentially agree with data obtained by others for fresh water, but clearly indicate the need for improvement of the existing model to take into account a number of identified factors associated with the real life OC-OTEC conditions, such as the transience in evaporator performance associated with the ocean-generated flow and pressure fluctuations and effects of noncondensable gases.

  15. Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates

    E-Print Network [OSTI]

    Feng, Jingjuan; Bauman, Fred

    2013-01-01

    and high temperature cooling_REHVA Guidebook, Federation ofEvaluation of cooling performance of thermally activatedsystem with evaporative cooling source for typical United

  16. Spallation process with simultaneous multi-particle emission in nuclear evaporation

    SciTech Connect (OSTI)

    Santos, B. M.

    2013-05-06

    High energy probes have been used currently to explore nuclear reaction mechanism and nuclear structure. The spallation process governs the reaction process around 1 GeV energy regime. A new aspect introduced here to describe the nuclear reaction is the in-medium nucleonnucleon collision framework. The nucleon-nucleon scattering is kinematically treated by using an effective mass to represent the nuclear binding. In respect to the evaporation phase of the reaction, we introduce the simultaneous particles emission decay. This process becomes important due to the rise of new channels at high excitation energy regime of the compound nucleus. As results, the particles yields in the rapid and evaporation phases are obtained and compared to experimental data. The effect and relevance of these simultaneous emission processes in the evaporation chain is also discussed.

  17. Observation and numerical modeling of chromospheric evaporation during the impulsive phase of a solar flare

    E-Print Network [OSTI]

    Imada, Shinsuke; Watanabe, Tetsuya

    2015-01-01

    We have studied the chromospheric evaporation flow during the impulsive phase of the flare by using the Hinode/EIS observation and 1D hydrodynamic numerical simulation coupled to the time-dependent ionization. The observation clearly shows that the strong redshift can be observed at the base of the flaring loop only during the impulsive phase. We performed two different numerical simulations to reproduce the strong downflows in FeXII and FeXV during the impulsive phase. By changing the thermal conduction coefficient, we carried out the numerical calculation of chromospheric evaporation in the thermal conduction dominant regime (conductivity coefficient kappa0 = classical value) and the enthalpy flux dominant regime (kappa0 = 0.1 x classical value). The chromospheric evaporation calculation in the enthalpy flux dominant regime could reproduce the strong redshift at the base of the flare during the impulsive phase. This result might indicate that the thermal conduction can be strongly suppressed in some cases o...

  18. A combined field approach for the two-way coupling problem in the liquid evaporation

    E-Print Network [OSTI]

    Xuefeng Xu

    2014-11-23

    During liquid evaporation, the temperature of the liquid determines the saturated vapor pressure above it, which controls the evaporation rate and thus determines the liquid temperature through latent heat. Therefore, the equations for the vapor concentration in the atmosphere and for the temperature in the liquid are coupled and must be solved in an iterative manner. In the present paper, a combined field approach which unifies the coupled fields into one single field and thus makes the iteration unnecessary is proposed. The present work will be useful in scientific and industrial processes involving liquid evaporation and may also have more general applications to coupled field problems in which all the fields have the same governing equation.

  19. Evaporation system and method for gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

    1994-01-01

    A method and apparatus for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases.

  20. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the

  1. Spectral Lags of Gamma-Ray Bursts from Primordial Black Hole (PBH) Evaporations

    E-Print Network [OSTI]

    T. N. Ukwatta; J. H. MacGibbon; W. C. Parke; K. S. Dhuga; A. Eskandarian; N. Gehrels; L. Maximon; D. C. Morris

    2009-08-14

    Primordial Black Holes (PBHs), which may have been created in the early Universe, are predicted to be detectable by their Hawking radiation. PBHs with an initial mass of 5.0 * 10^14 g should be expiring today with a burst of high energy particles. Evaporating PBHs in the solar neighborhood are candidate Gamma-Ray Bursts (GRBs) progenitors. We propose spectral lag, which is the temporal delay between the high energy photon pulse and the low energy photon pulse, as a possible method to detect PBH evaporation events with the Fermi Gamma-ray Space Telescope Observatory.

  2. Demolition of the waste evaporator facility at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Mandry, G.J. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Becker, C.L. [Allied Technology Group, Inc., Oak Ridge, TN (United States)

    1997-08-01

    Lockheed Martin Energy Systems, in conjunction with Allied Technology Group, Inc., successfully executed the decommissioning of a former waste evaporator facility at ONRL. This project was conducted as a non-time critical removal action under CERCLA. The decommissioning alternative selected for the Waste Evaporator Facility was partial dismantlement. This alternative provided for the demolition of all above-grade structures; concrete which did not exceed pre-established radiological levels were eligible for placement in the below-grade portion of the facility. This project demonstrated a coordinated team approach that allowed the successful completion of one of the first full-scale decommissioning projects at ORNL.

  3. Desiccant-Based Combined Systems

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ......................................................................................12 3.3 Energy Analyses and IADR Market Price Determination by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 #12;#12;iii..........................................................................2 1.3 Application Options: DOAS or Total Conditioning, Energy Recovery..........................4 1

  4. Ejection of matrix-polymer clusters in matrix-assisted laser evaporation: Coarse-grained molecular dynamics simulations

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Ejection of matrix-polymer clusters in matrix-assisted laser evaporation: Coarse-grained molecular, as related to the matrix-assisted laser evaporation (MAPLE) technique for polymer film deposition. Coarse- grained description of molecular matrix and polymer molecules is used in the model, allowing for large

  5. Pulsed laser evaporation of boron/carbon pellets: Infrared spectra and quantum chemical structures and frequencies for BCp

    E-Print Network [OSTI]

    Martin, Jan M.L.

    Pulsed laser evaporation of boron/carbon pellets: Infrared spectra and quantum chemical structures March 1993) Pulsed laser evaporation of pellets pressed from boron and graphite powder gave a new 1 decreased with increasing B/C ratio in the pellet and with increasing laser power. Augmented coupled cluster

  6. Evaporative water losses of exercising sheep in neutral and hot climates

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Evaporative water losses of exercising sheep in neutral and hot climates T Othman KG Johnson, DW, Australia Hot climates require an accelerated water loss to allowed for thermoregulation (Rai et al, 1979, Trop Anim Hlth Prod, 11, 51-56). The water losses associated with locomotion should be greater

  7. Thermocapillary transport of energy during water evaporation V. K. Badam,2

    E-Print Network [OSTI]

    Ward, Charles A.

    Thermocapillary transport of energy during water evaporation Fei Duan,1 V. K. Badam,2 F. Durst,2-vapor interface maintained at the circular mouth of a small funnel, studies of the energy transport have indicated 3.5 °C and Marangoni number Ma in the range 100 Ma 22,000, it was found that if energy transport

  8. Upscaling of soil hydraulic properties for steady state evaporation and infiltration

    E-Print Network [OSTI]

    Mohanty, Binayak P.

    Upscaling of soil hydraulic properties for steady state evaporation and infiltration Jianting Zhu September 2002. [1] Estimation of effective/average soil hydraulic properties for large land areas and guidelines for upscaling soil hydraulic properties in an areally heterogeneous field. In this study, we

  9. Gravity-Driven flow of evaporating thin liquid films over substrates with topography

    E-Print Network [OSTI]

    Jimack, Peter

    Gravity-Driven flow of evaporating thin liquid films over substrates with topography Gaskell, P. Abstract This paper considers gravity-driven flow of thin liquid films over substrates with topography of gravity-driven flow of thin liquid films over well defined topography, as indicated in Figure 1, in which

  10. CFD Simulation and Analysis of the Combined Evaporative Cooling and Radiant Ceiling Air-conditioning System 

    E-Print Network [OSTI]

    Xiang, H.; Yinming, L.; Junmei, W.

    2006-01-01

    Due to such disadvantages as large air duct and high energy consumption of the current all- outdoor air evaporative cooling systems used in the dry region of Northwest China, as well as the superiority of the ceiling cooling system in improving...

  11. Results from evaporation tests to support the MWTF heat removal system design

    SciTech Connect (OSTI)

    Crea, B.A.

    1994-12-22

    An experimental tests program was conducted to measure the evaporative heat removal from the surface of a tank of simulated waste. The results contained in this report constitute definition design data for the latest heat removal function of the MWTF primary ventilation system.

  12. Under consideration for publication in J. Fluid Mech. 1 Evaporation and combustion

    E-Print Network [OSTI]

    fluid can be a fire hazard. A leak of liquid fuel at high pressure in industrial applications mayUnder consideration for publication in J. Fluid Mech. 1 Evaporation and combustion of thin films of liquid fuels By J. ARMEND ' AR I Z y AND M. MATALON Engineering Sciences and Applied Mathematics, Mc

  13. LETTER doi:10.1038/nature11718 Evaporative cooling of the dipolar hydroxyl radical

    E-Print Network [OSTI]

    LETTER doi:10.1038/nature11718 Evaporative cooling of the dipolar hydroxyl radical Benjamin K cooling of neutral hydroxyl (OH. ) molecules loaded from a Stark-decelerated beam into an extremely high challenged it23­25 . Hydroxyl (OH. , referred to here as OH) would not, at first glance, seem

  14. Three-dimensional microstructuring of carbon by thermoplastic spacer evaporation during pyrolysis

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    Three-dimensional microstructuring of carbon by thermoplastic spacer evaporation during pyrolysis pyrolysis of an epoxy-based film that coated the spacer and parts of the sub- strate. Fillers were chosen to reduce the shrinkage during pyrolysis and to increase the electrical conductivity. Multiwalled carbon

  15. Temperature corrections in the PriestleyTaylor equation of evaporation Jozsef Szilagyi

    E-Print Network [OSTI]

    Szilagyi, Jozsef

    on the complementary relationship of evaporation (Bouchet, 1963), such as the Advection- Aridity model of Brutsaert. Georgakakos, Editor-in-Chief Keywords: Priestley­Taylor equation Wet-environment surface temperature (PTE) is frequently applied in actual areal evapotranspiration (ET) estima- tion methods for obtaining

  16. Observational Evidences of Electron-driven Evaporation in two Solar Flares

    E-Print Network [OSTI]

    Li, Dong; Zhang, Qingmin

    2015-01-01

    We have explored the relationship between hard X-ray (HXR) emissions and Doppler velocities caused by the chromospheric evaporation in two X1.6 class solar flares on 2014 September 10 and October 22, respectively. Both events display double ribbons and Interface Region Imaging Spectrograph (IRIS) slit is fixed on one of their ribbons from the flare onset. The explosive evaporations are detected in these two flares. The coronal line of Fe XXI 1354.09 A shows blue shifts, but chromospheric line of C I 1354.29 A shows red shifts during the impulsive phase. The chromospheric evaporation tends to appear at the front of flare ribbon. Both Fe XXI and C I display their Doppler velocities with a `increase-peak-decrease' pattern which is well related to the `rising-maximum- decay' phase of HXR emissions. Such anti-correlation between HXR emissions and Fe XXI Doppler shifts, and correlation with C I Doppler shifts indicate the electron-driven evaporation in these two flares.

  17. Temperature Dependence of Evaporation Coefficient for Water Measured in Droplets in Nitrogen under Atmospheric Pressure

    E-Print Network [OSTI]

    Atmospheric Pressure D. JAKUBCZYK, M. ZIENTARA, K. KOLWAS, AND M. KOLWAS Institute of Physics, Polish Academy 277 to 289 K was found to be 0.7 0.2. 1. Introduction The processes of evaporation and condensation (condensation) or mass accommodation coefficient C. Likewise the ther- mal conductivity coefficient must

  18. Evaporation from a reservoir with fluctuating water level: Correcting for limited fetch

    E-Print Network [OSTI]

    Katul, Gabriel

    a significant impact on evaporation. Reservoirs with different water content will also differ in energy (heat area within the footprint of the ECS is of a dual nature, comprising the water surface and surrounding the reservoir energy balance closure and the agreement between measurements and models that primar- ily rely

  19. Complementary relationship of evaporation and the mean annual water-energy balance

    E-Print Network [OSTI]

    Szilagyi, Jozsef

    Complementary relationship of evaporation and the mean annual water-energy balance Jozsef Szilagyi1 and the mean annual water-energy balance, Water Resour. Res., 45, W09201, doi:10.1029/2009WR008129. [2] Gerrits balance necessarily operates at the catchment scale, plus E0 depends predominantly on the available energy

  20. Large-Eddy Simulation of Evaporating Spray in a Coaxial Combustor

    E-Print Network [OSTI]

    Mahesh, Krishnan

    Large-Eddy Simulation of Evaporating Spray in a Coaxial Combustor Sourabh V. Apte School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331 Krishnan Mahesh Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455

  1. Impact of Antarctic Ozone Depletion and Recovery on Southern Hemisphere Precipitation, Evaporation, and Extreme Changes

    E-Print Network [OSTI]

    Son, Seok-Woo

    Impact of Antarctic Ozone Depletion and Recovery on Southern Hemisphere Precipitation, Evaporation) ABSTRACT The possible impact of Antarctic ozone depletion and recovery on Southern Hemisphere (SH) mean- tercomparison Project 3 (CMIP3). By grouping models into four sets, those with and without ozone depletion

  2. The evaporation rate, free energy, and entropy of amorphous water Robin J. Speedy

    E-Print Network [OSTI]

    The evaporation rate, free energy, and entropy of amorphous water at 150 K Robin J. Speedy can be interpreted as giving a measure of their free energy difference, i a G 150 K 1100 100 J of amorphous water (a) and ice (i) near 150 K and suppose that their ratio gives a measure of their free energy

  3. Evaporative Coating of Rb Maser Cells D. F. Phillips, A. Boca and R. L. Walsworth

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    Evaporative Coating of Rb Maser Cells D. F. Phillips, A. Boca and R. L. Walsworth June 3, 1999 1. Long polarization times may be obtained by coating the in- ner surface of the bulb containing from a surface coated with tetracon- tane, C40H82, ­ a component of standard paraffin ­ (table 1

  4. Temperature dependence of volatile organic compound evaporative emissions from motor vehicles

    E-Print Network [OSTI]

    Goldstein, Allen

    Temperature dependence of volatile organic compound evaporative emissions from motor vehicles Juli tailpipe sources to motor vehicle volatile organic compound (VOC) emissions. Contributions were determined in a highway tunnel were used to define the composition of running vehicle emissions. The chemical mass balance

  5. A Simple Analytical Model of Evaporation in the Presence of Roots

    E-Print Network [OSTI]

    Cesare M. Cejas; Larry Hough; Jean-Christophe Castaing; Christian Fretigny; Remi Dreyfus

    2014-06-17

    Root systems can influence the dynamics of evapotranspiration of water out of a porous medium. The coupling of evapotranspiration remains a key aspect affecting overall root behavior. Predicting the evapotranspiration curve in the presence of roots helps keep track of the amount of water that remains in the porous medium. Using a controlled visual set-up of a 2D model soil system consisting of monodisperse glass beads, we first perform experiments on actual roots grown in partially saturated systems under different relative humidity conditions. We record parameters such as the total mass loss in the medium and the resulting position of the receding fronts and use these experimental results to develop a simple analytical model that predicts the position of the evaporating front as a function of time as well as the total amount of water that is lost from the medium due to the combined effects of evaporation and transpiration. The model is based on fundamental principles of evaporation flux and includes empirical assumptions on the quantity of stoma in the leaves and the transition time between regime 1 and regime 2. The model also underscores the importance of a much prolonged root life as long as the root is exposed to a partially saturated zone composed of a mixture of air and water. Comparison between the model and experimental results shows good prediction of the position of the evaporating front as well as the total mass loss from evapotranspiration in the presence of real root systems. These results provide additional understanding of both complex evaporation phenomenon and its influence on root mechanisms.

  6. Enhanced Chemical Cleaning

    Office of Environmental Management (EM)

    Enhanced Chemical Cleaning Renee H. Spires Enhanced Chemical Cleaning Project Manager July 29, 2009 Tank Waste Corporate Board 2 Objective Provide an overview of the ECC process...

  7. Salinity controls on trophic interactions among invertebrates and algae of solar evaporation ponds in the Mojave Desert and relation to shorebird foraging and selenium risk

    E-Print Network [OSTI]

    Herbst, David B

    2006-01-01

    arti?cial salt evaporation ponds of the San Fran- cisco Bayindustrial evaporation ponds. Water Environment Research 71:Hydrobiology of the Alviso salt ponds. Ecol- ogy 38:382–385.

  8. Fan and Pad Greenhouse Evaporative Cooling Systems1 R. A. Bucklin, J. D. Leary, D. B. McConnell, and E. G. Wilkerson2

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    CIR1135 Fan and Pad Greenhouse Evaporative Cooling Systems1 R. A. Bucklin, J. D. Leary, D. B. Mc systems. Such high temperatures reduce crop quality and worker productivity. Evaporative cooling temperatures are important when dealing with evaporative cooling systems ­ dry bulb temperature and wet bulb

  9. Recycling nickel electroplating rinse waters by low temperature evaporation and reverse osmosis

    SciTech Connect (OSTI)

    Lindsey, T.C.; Randall, P.M.

    1993-08-01

    Low temperature evaporation and reverse osmosis systems were each evaluated (on a pilot scale) on their respective ability to process rinse water collected from a nickel electroplating operation. Each system offered advantages under specific operating conditions. The low temperature evaporation system was best suited to processing solutions with relatively high (greater than 4,000 to 5,000 mg/L) nickel concentrations. The reverse osmosis system was best adapted to conditions where the feed solution had a relatively low (less than4,000 to 5,000 mg/L) nickel concentration. In electroplating operations where relatively dilute rinse water solutions must be concentrated to levels acceptable for replacement in the plating bath, a combination of the two technologies might provide the best process alternative.

  10. Co-Evaporated Cu2ZnSnSe4 Films and Devices

    SciTech Connect (OSTI)

    Repins, I.; Beall, C.; Vora, N.; DeHart, C.; Kuciauskas, D.; Dippo, P.; To, B.; Mann, J.; Hsu, W. C.; Goodrich, A.; Noufi, R.

    2012-06-01

    The use of vacuum co-evaporation to produce Cu2ZnSnSe4 photovoltaic devices with 9.15% total-area efficiency is described. These new results suggest that the early success of the atmospheric techniques for kesterite photovoltaics may be related to the ease with which one can control film composition and volatile phases, rather than a fundamental benefit of atmospheric conditions for film properties. The co-evaporation growth recipe is documented, as is the motivation for various features of the recipe. Characteristics of the resulting kesterite films and devices are shown in scanning electron micrographs, including photoluminescence, current-voltage, and quantum efficiency. Current-voltage curves demonstrate low series resistance without the light-dark cross-over seen in many devices in the literature. Band gap indicated by quantum efficiency and photoluminescence is roughly consistent with that expected from first principles calculation.

  11. Green Data Center Cooling: Achieving 90% Reduction: Airside Economization and Unique Indirect Evaporative Cooling

    SciTech Connect (OSTI)

    Weerts, B. A.; Gallaher, D.; Weaver, R.; Van Geet, O.

    2012-01-01

    The Green Data Center Project was a successful effort to significantly reduce the energy use of the National Snow and Ice Data Center (NSIDC). Through a full retrofit of a traditional air conditioning system, the cooling energy required to meet the data center's constant load has been reduced by over 70% for summer months and over 90% for cooler winter months. This significant change is achievable through the use of airside economization and a new indirect evaporative cooling system. One of the goals of this project was to create awareness of simple and effective energy reduction strategies for data centers. This project's geographic location allowed maximizing the positive effects of airside economization and indirect evaporative cooling, but these strategies may also be relevant for many other sites and data centers in the U.S.

  12. Dependence of fluid flows in an evaporating sessile droplet on the characteristics of the substrate

    E-Print Network [OSTI]

    Barash, L Yu

    2014-01-01

    Temperature distributions and the corresponding vortex structures in an evaporating sessile droplet are obtained by performing detailed numerical calculations. A Marangoni convection induced by thermal conduction processes in the drop and the substrate is demonstrated to be able to result not only in a single vortex, but also in two or three vortices, depending on the ratio of substrate to fluid thermal conductivities, on the substrate thickness and the contact angle. The "phase diagrams" containing information on the number, orientation and spatial location of the vortices for quasistationary fluid flows are presented and analysed. The results obtained demonstrate that the fluid flow structure in evaporating droplets can be influenced in a controlled manner by selecting substrates with appropriate properties.

  13. An evaporation-based model of thermal neutron induced ternary fission of plutonium

    E-Print Network [OSTI]

    Lestone, J P

    2007-01-01

    Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~1.2 MeV and ~10^-22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission.

  14. An evaporation-based model of thermal neutron induced ternary fission of plutonium

    E-Print Network [OSTI]

    J. P. Lestone

    2007-03-10

    Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~1.2 MeV and ~10^-22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission.

  15. Fabrication and characterization of silver- and copper-coated Nylon 6 forcespun nanofibers by thermal evaporation

    SciTech Connect (OSTI)

    Mihut, Dorina M., E-mail: dorinamm@yahoo.com; Lozano, Karen [Department of Mechanical Engineering, The University of Texas Pan American, 1201 W University Drive, Edinburg, Texas 78539 (United States); Foltz, Heinrich [Department of Electrical Engineering, The University of Texas Pan American, 1201 W University Drive, Edinburg, Texas 78539 (United States)

    2014-11-01

    Silver and copper nanoparticles were deposited as thin films onto substrates consisting of Nylon 6 nanofibers manufactured using forcespinning{sup ®} equipment. Different rotational speeds were used to obtain continuous nanofibers of various diameters arranged as nonwoven mats. The Nylon 6 nanofibers were collected as successive layers on frames, and a high-vacuum thermal evaporation method was used to deposit the silver and copper thin films on the nanofibers. The structures were investigated using scanning electron microscopy–scanning transmission electron microscopy, atomic force microscopy, x-ray diffraction, and electrical resistance measurements. The results indicate that evaporated silver and copper nanoparticles were successfully deposited on Nylon 6 nanofibers as thin films that adhered well to the polymer substrate while the native morphology of the nanofibers were preserved, and electrically conductive nanostructures were achieved.

  16. A study of heat pump fin staged evaporators under frosting conditions 

    E-Print Network [OSTI]

    Yang, Jianxin

    2004-09-30

    process. Comparisons with the test data indicated that the model could capture the trends iv of the coil capacity, pressure drop, airflow and frost growth. The model also provided a variety of other simulation results including frost mass accumulation... during high airflow at DOE A steady state cooling test condition ??????????? 101 5.1 Flow chart of frosted evaporator model ???????????.??..??. 108 5.2 Tube calculation sequence for two-row coils ?????..???.??.??? 109 5.3 Tube calculation sequence...

  17. Procedure for Applying an Open-Cycle Heat Pump to An Existing Evaporator 

    E-Print Network [OSTI]

    Wagner, J. R.; Brush, F. C.

    1984-01-01

    that this retrofit project would be adopted, since 8 c 0 ?a E ::J . 'C ::J 0 r Electr\\Cil'i = 3? I kWh 6 5 Assumptions: ? MVC Handles Entire Heat Load ? MVC... Product (To Siorage or to Additional Effects) Steam Vapor Condensate Condensate 841073 Fig. 2(a). Multiple Effect Evaporator product liquor to assure adequate heat transfer 1n the heat exchanger. If not known, a value of TA = lOaF can...

  18. Retardation of Particle Evaporation from Excited Nuclear Systems Due to Thermal Expansion

    E-Print Network [OSTI]

    J. Tõke; L. Pie?kowski; M. Houck; W. U. Schröder; L. G. Sobotka

    2005-07-26

    Particle evaporation rates from excited nuclear systems at equilibrium matter density are studied within the Harmonic-Interaction Fermi Gas Model (HIFGM) combined with Weisskopf's detailed balance approach. It is found that thermal expansion of a hot nucleus, as described quantitatively by HIFGM, leads to a significant retardation of particle emission, greatly extending the validity of Weisskopf's approach. The decay of such highly excited nuclei is strongly influenced by surface instabilities.

  19. Characterization Results For The 2013 HTF 3H Evaporator Overhead Samples

    SciTech Connect (OSTI)

    Washington, A. L. II

    2013-12-04

    This report tabulates the radiochemical analysis of the 3H evaporator overhead sample for {sup 137}Cs, {sup 90}Sr, and {sup 129}I to meet the requirements in the Effluent Treatment Project (ETP) Waste Acceptance Criteria (WAC) (rev. 6). This report identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. All data was found to be within the ETP WAC (rev. 6) specification for the Waste Water Collection Tanks (WWCT).

  20. Process control plan for 242-A Evaporator Campaign 94-2

    SciTech Connect (OSTI)

    Le, E.Q.

    1994-09-01

    242-A Evaporator Campaign 94-2 will process approximately 3.42 million gallons of dilute waste from tanks 101-AP, 107-AP, 108AP, 102-AW, and 106-AW. The process control plant describes activities which will occur during Campaign 94-2. This document also addresses compliance with the tank farm waste compatibility program, the 242-A radiological source term, the criticality prevention specifications, and effluent discharge limits.

  1. Effect of Chemical Composition on Enthalpy of Evaporation and Equilibrium Vapor Pressure

    E-Print Network [OSTI]

    Dobruskin, Vladimir Kh

    2010-01-01

    Proceeding from the Clausius-Clapeyron equation, the relation is derived that establishes a correlation between the partial enthalpy of evaporation from binary solutions, concentrations of components, and equilibrium vapor pressures. The difference between enthalpies of evaporation of components from solutions and those from the pure liquids, D(DH), depends on the chemical nature and concentrations, X, of solutions. The effect of concentrations on D(DH) makes different appearances in ideal and non-ideal solutions, although, as a whole, D(DH) increases with the growth of concentration of the second component. A model is introduced, which considers D(DH) as the sum of energetic changes of three sequential stages: passage of molecules from the bulk liquid into the surface layer, exit of the molecules on the outer side of the interface, and the following desorption into the gas phase. In the framework of the model, the main contribution to enthalpy of evaporation comes from the processes in the surface layer. It ...

  2. Effect of Chemical Composition on Enthalpy of Evaporation and Equilibrium Vapor Pressure

    E-Print Network [OSTI]

    Vladimir Kh. Dobruskin

    2010-04-20

    Proceeding from the Clausius-Clapeyron equation, the relation is derived that establishes a correlation between the partial enthalpy of evaporation from binary solutions, concentrations of components, and equilibrium vapor pressures. The difference between enthalpies of evaporation of components from solutions and those from the pure liquids, D(DH), depends on the chemical nature and concentrations, X, of solutions. The effect of concentrations on D(DH) makes different appearances in ideal and non-ideal solutions, although, as a whole, D(DH) increases with the growth of concentration of the second component. A model is introduced, which considers D(DH) as the sum of energetic changes of three sequential stages: passage of molecules from the bulk liquid into the surface layer, exit of the molecules on the outer side of the interface, and the following desorption into the gas phase. In the framework of the model, the main contribution to enthalpy of evaporation comes from the processes in the surface layer. It is suggested that adsorption from solutions, which changes the chemical composition of the surface layer with respect to that of the bulk solution, determines, to great extent, the difference in the forms of the curves D(DH)=f(X) for ideal and non-ideal solutions.

  3. Charged particle decay of hot and rotating $^{88}$Mo nuclei in fusion-evaporation reactions

    E-Print Network [OSTI]

    S. Valdré; S. Piantelli; G. Casini; S. Barlini; S. Carboni; M. Ciema?a; M. Kmiecik; A. Maj; K. Mazurek; M. Cinausero; F. Gramegna; V. L. Kravchuk; L. Morelli; T. Marchi; G. Baiocco; L. Bardelli; P. Bednarczyk; G. Benzoni; M. Bini; N. Blasi; A. Bracco; S. Brambilla; M. Bruno; F. Camera; A. Chbihi; A. Corsi; F. C. L. Crespi; M. D'Agostino; M. Degerlier; D. Fabris; B. Fornal; A. Giaz; M. Krzysiek; S. Leoni; M. Matejska-Minda; I. Mazumdar; W. M?czy?ski; B. Million; D. Montanari; S. Myalski; R. Nicolini; A. Olmi; G. Pasquali; G. Prete; O. J. Roberts; J. Stycze?; B. Szpak; B. Wasilewska; O. Wieland; J. P. Wieleczko; M. Zi?bli?ski

    2015-09-10

    A study of fusion-evaporation and (partly) fusion-fission channels for the $^{88}$Mo compound nucleus, produced at different excitation energies in the reaction $^{48}$Ti + $^{40}$Ca at 300, 450 and 600 MeV beam energies, is presented. Fusion-evaporation and fusion-fission cross sections have been extracted and compared with the existing systematics. Experimental data concerning light charged particles have been compared with the prediction of the statistical model in its implementation in the Gemini++ code, well suited even for high spin systems, in order to tune the main model parameters in a mass region not abundantly covered by exclusive experimental data. Multiplicities for light charged particles emitted in fusion evaporation events are also presented. Some discrepancies with respect to the prediction of the statistical model have been found for forward emitted $\\alpha$-particles; they may be due both to pre-equilibrium emission and to reaction channels (such as Deep Inelastic Collisions, QuasiFission/QuasiFusion) different from the compound nucleus formation.

  4. Evaporation system and method for gas jet deposition of thin film materials

    DOE Patents [OSTI]

    Schmitt, J.J.; Halpern, B.L.

    1994-10-18

    A method and apparatus are disclosed for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases. 8 figs.

  5. Evaporation of Microscopic Black Holes in String Theory and the Bound on Species

    E-Print Network [OSTI]

    Dvali, Gia; 10.1002/prop.201000008

    2010-01-01

    We address the question how string compactifications with D-branes are consistent with the black hole bound, which arises in any theory with number of particle species to which the black holes can evaporate. For the Kaluza-Klein particles, both longitudinal and transversal to the D-branes, it is relatively easy to see that the black hole bound is saturated, and the geometric relations can be understood in the language of species-counting. We next address the question of the black hole evaporation into the higher string states and discover, that contrary to the naive intuition, the exponentially growing number of Regge states does not preclude the existence of semi-classical black holes of sub-stringy size. Our analysis indicates that the effective number of string resonances to which such micro black holes evaporate is not exponentially large but is bounded by N = 1/g_s^2, which suggests the interpretation of the well-known relation between the Planck and string scales as the saturation of the black hole boun...

  6. A simple model of chromospheric evaporation and condensation driven conductively in a solar flare

    SciTech Connect (OSTI)

    Longcope, D. W.

    2014-11-01

    Magnetic energy released in the corona by solar flares reaches the chromosphere where it drives characteristic upflows and downflows known as evaporation and condensation. These flows are studied here for the case where energy is transported to the chromosphere by thermal conduction. An analytic model is used to develop relations by which the density and velocity of each flow can be predicted from coronal parameters including the flare's energy flux F. These relations are explored and refined using a series of numerical investigations in which the transition region (TR) is represented by a simplified density jump. The maximum evaporation velocity, for example, is well approximated by v{sub e} ? 0.38(F/?{sub co,} {sub 0}){sup 1/3}, where ?{sub co,} {sub 0} is the mass density of the pre-flare corona. This and the other relations are found to fit simulations using more realistic models of the TR both performed in this work, and taken from a variety of previously published investigations. These relations offer a novel and efficient means of simulating coronal reconnection without neglecting entirely the effects of evaporation.

  7. Evaluation of thermal evaporation conditions used in coating aluminum on near-field fiber-optic probes

    E-Print Network [OSTI]

    Hollars, Christopher W.; Dunn, Robert C.

    1998-01-01

    The effects that the thermal evaporation conditions have on the roughness of aluminum-coated near-field fiber-optic probes were investigated using the high-resolution capabilities of atomic force microscopy. The coating ...

  8. Monitoring the Performance of a Residential Central Air Conditioner under Reduced Evaporator Air Flow on a Test Bench 

    E-Print Network [OSTI]

    Palani, Manivannan

    1992-01-01

    This report presents results from degraded performance measurements of a residential air conditioning system operating under reduced evaporator air flow. Experiments were conducted using a R-22 three-ton split-type cooling system with a short...

  9. The design and evaluation of a water delivery system for evaporative cooling of a proton exchange membrane fuel cell 

    E-Print Network [OSTI]

    Al-Asad, Dawood Khaled Abdullah

    2009-06-02

    An investigation was performed to demonstrate system design for the delivery of water required for evaporative cooling of a proton exchange membrane fuel cell (PEMFC). The water delivery system uses spray nozzles capable of injecting water directly...

  10. Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys. Progress report, March 1985--September 1985

    SciTech Connect (OSTI)

    Cunningham, W.A.; Migon, G.V.

    1985-12-31

    The solar updraft and a natural evaporative downdraft tower built onto an existing residence structure and a greenhouse were completed and operating. Performance data for the hottest days of June, July, and August, 1985 are included. (MHR)

  11. Spatially resolved temperature and heat flux measurements for slow evaporating droplets heated by a microfabricated heater array 

    E-Print Network [OSTI]

    Paik, Sokwon

    2006-08-16

    The evaporation phenomenon of a liquid droplet was investigated by using microfabricated heaters. All 32 microheaters were designed to have the same resistance. Gold microheaters worked both as temperature indicators and as heaters. The first...

  12. Effects of system cycling, evaporator airflow, and condenser coil fouling on the performance of residential split-system air conditioners 

    E-Print Network [OSTI]

    Dooley, Jeffrey Brandon

    2005-02-17

    -1 EFFECTS OF SYSTEM CYCLING, EVAPORATOR AIRFLOW, AND CONDENSER COIL FOULING ON THE PERFORMANCE OF RESIDENTIAL SPLIT-SYSTEM AIR CONDITIONERS A Thesis by JEFFREY BRANDON DOOLEY Submitted to the Office of Graduate Studies of Texas... A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2004 Major Subject: Mechanical Engineering EFFECTS OF SYSTEM CYCLING, EVAPORATOR AIRFLOW, AND CONDENSER...

  13. Preliminary evaluation of the performance, water use, and current application trends of evaporative coolers in California climates

    SciTech Connect (OSTI)

    Huang, Y.J.; Hanford, J.W.; Wu, H.F.

    1992-09-01

    This paper describes the latest results of an ongoing analysis investigating the potential for evaporative cooling as an energy-efficient alternative to standard air-conditioning in California residences. In particular, the study uses detailed numerical models of evaporative coolers linked with the DOE-2 building energy simulation program to study the issues of indoor comfort, energy and peak demand savings with and without supplemental air-conditioning and consumptive water use. In addition, limited surveys are used to assess the current market availability of evaporative cooling in California, typical contractor practices and costs, and general acceptance of the technology among engineers, contractors, and manufacturers. The results show that evaporative coolers can provide significant energy and peak demand savings in California residences, but the impact of the increased indoor humidity on human comfort remains an unanswered question that requires further research and clarification. Evaluated against ASHRAE comfort standards developed primarily for air-conditioning both direct and two-stage evaporative coolers would not maintain comfort at peak cooling conditions due to excessive humidity. However, using bioclimatic charts that place human comfort at the 80% relative humidity line, the study suggests that direct evaporative coolers will work in mild coastal climates, while two-stage models should provide adequate comfort in Title 24 houses throughout California, except in the Imperial Valley. The study also shows that evaporative coolers will increase household water consumption by less than 6% on an annual basis, and as much as 23% during peak cooling months, and that the increases in water cost are minimal compared to the electricity savings. Lastly, a survey of engineers and contractors revealed generally positive experiences with evaporative coolers, with operational cost savings, improved comfort, unproved air quality as the primary benefits in their use.

  14. APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD

    SciTech Connect (OSTI)

    TEDESCHI AR; WILSON RA

    2010-01-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  15. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    SciTech Connect (OSTI)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong E-mail: suo@seas.harvard.edu; Chen, Baohong; Zhou, Jinxiong; Suo, Zhigang E-mail: suo@seas.harvard.edu

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  16. Enhancement Annual Report

    E-Print Network [OSTI]

    Emmons, Scott

    family. Regards, Yvette Yvette Calderon, M.D., M.S., ACEP Associate Dean--Office of Diversity Enhancement

  17. The Hawking evaporation process of rapidly-rotating black holes: An almost continuous cascade of gravitons

    E-Print Network [OSTI]

    Shahar Hod

    2015-06-17

    It is shown that rapidly-rotating Kerr black holes are characterized by the dimensionless ratio $\\tau_{\\text{gap}}/\\tau_{\\text{emission}}=O(1)$, where $\\tau_{\\text{gap}}$ is the average time gap between the emission of successive Hawking quanta and $\\tau_{\\text{emission}}$ is the characteristic timescale required for an individual Hawking quantum to be emitted from the black hole. This relation implies that the Hawking cascade from rapidly-rotating black holes has an almost continuous character. Our results correct some inaccurate claims that recently appeared in the literature regarding the nature of the Hawking black-hole evaporation process.

  18. The Hawking evaporation process of rapidly-rotating black holes: An almost continuous cascade of gravitons

    E-Print Network [OSTI]

    Hod, Shahar

    2015-01-01

    It is shown that rapidly-rotating Kerr black holes are characterized by the dimensionless ratio $\\tau_{\\text{gap}}/\\tau_{\\text{emission}}=O(1)$, where $\\tau_{\\text{gap}}$ is the average time gap between the emission of successive Hawking quanta and $\\tau_{\\text{emission}}$ is the characteristic timescale required for an individual Hawking quantum to be emitted from the black hole. This relation implies that the Hawking cascade from rapidly-rotating black holes has an almost continuous character. Our results correct some inaccurate claims that recently appeared in the literature regarding the nature of the Hawking black-hole evaporation process.

  19. Non Evaporable Getter (NEG) Pumps: a Route to UHV-XHV

    SciTech Connect (OSTI)

    Manini, Paolo [SAES Getters SpA, Viale Italia 77, 20010 Lainate (Italy)

    2009-08-04

    Non Evaporable Getter (NEG) technology has been developed in the 1970's and since then adopted by industry, R and D labs, research centres and in large physics projects like accelerators, synchrotrons and fusion reactors. NEG pumps are very compact and vibration-free devices able to deliver very high pumping with minimal power requirement and electromagnetic interference. In the present paper, main features and performances of getter pumps are reviewed and discussed with a special focus to photocathode gun application, where UHV or XHV conditions are mandatory to ensure adequate gun life. NEG coating and future challenges for NEG technology are also discussed.

  20. Tank 30 and 37 Supernatant Sample Cross-Check and Evaporator Feed Qualification Analysis-2012

    SciTech Connect (OSTI)

    Oji, L. N.

    2013-03-07

    This report summarizes the analytical data reported by the F/H and Savannah River National Laboratories for the 2012 cross-check analysis for high level waste supernatant liquid samples from SRS Tanks 30 and 37. The intent of this Tank 30 and 37 sample analyses was to perform cross-checks against routine F/H Laboratory analyses (corrosion and evaporator feed qualification programs) using samples collected at the same time from both tanks as well as split samples from the tanks.

  1. Sensitivity of the FERMI Detectors to Gamma-Ray Bursts from Evaporating Primordial Black Holes (PBHs)

    E-Print Network [OSTI]

    T. N. Ukwatta; Jane H. MacGibbon; W. C. Parke; K. S. Dhuga; S. Rhodes; A. Eskandarian; N. Gehrels; L. Maximon; D. C. Morris

    2010-03-23

    Primordial Black Holes (PBHs), which may have been created in the early Universe, are predicted to be detectable by their Hawking radiation. The Fermi Gamma-ray Space Telescope observatory offers increased sensitivity to the gamma-ray bursts produced by PBHs with an initial mass of $\\sim 5\\times 10^{14}$ g expiring today. PBHs are candidate progenitors of unidentified Gamma-Ray Bursts (GRBs) that lack X-ray afterglow. We propose spectral lag, which is the temporal delay between the high and low energy pulses, as an efficient method to identify PBH evaporation events with the Fermi Large Area Telescope (LAT).

  2. Imaging the condensation and evaporation of molecularly thin ethanol films with surface forces apparatus

    SciTech Connect (OSTI)

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Zhang, Di; Ni, Zhonghua E-mail: yunfeichen@seu.edu.cn; Yi, Hong; Chen, Yunfei E-mail: yunfeichen@seu.edu.cn

    2014-01-15

    A new method for imaging condensation and evaporation of molecularly thin ethanol films is reported. It is found that the first adsorbed layer of ethanol film on mica surface behaves as solid like structure that cannot flow freely. With the increase of exposure time, more ethanol molecules condense over the mica surface in the saturated ethanol vapor condition. The first layer of adsorbed ethanol film is about 3.8 Å thick measured from the surface forces apparatus, which is believed to be the average diameter of ethanol molecules while they are confined in between two atomically smooth mica surfaces.

  3. Equation of motion for incompressible mixed fluid driven by evaporation and its application to online rankings

    E-Print Network [OSTI]

    Kumiko Hattori; Tetsuya Hattori

    2008-05-17

    We give a unique classical solution to initial value problem for a system of partial differential equations for the densities of components of one dimensional incompressible fluid mixture driven by evaporation. Motivated by the known fact that the solution appears as an infinite particle limit of stochastic ranking processes, which is a simple stochastic model of time evolutions of e.g., Amazon Sales Ranks, we collected data from the web and performed statistical fits to our formula. The results suggest that the fluid equations and solutions may have an application in the analysis of online rankings.

  4. A Remote Absorption Process for Disposal of Evaporate and Reverse Osmosis Concentrates

    SciTech Connect (OSTI)

    Brunsell, D.A.

    2008-07-01

    Many commercial nuclear plants and DOE facilities generate secondary waste streams consisting of evaporator bottoms and reverse osmosis (RO) concentrate. Since liquids are not permitted in disposal facilities, these waste streams must be converted to dry solids, either by evaporation to dried solids or by solidification to liquid-free solids. Evaporation of the liquid wastes reduces their volume, but requires costly energy and capital equipment. In some cases, concentration of the contaminants during drying can cause the waste to exceed Class A waste for nuclear utilities or exceed DOE transuranic limits. This means that disposal costs will be increased, or that, when the Barnwell, SC disposal site closes to waste outside of the Atlantic Compact in July 2008, the waste will be precluded from disposal for the foreseeable future). Solidification with cement agents requires less energy and equipment than drying, but results in a volume increase of 50-100%. The doubling or tripling of waste weight, along with the increased volume, sharply increases shipping and disposal costs. Confronted with these unattractive alternatives, Diversified Technologies Services (DTS), in conjunction with selected nuclear utilities and D and D operations at Rocky Flats, undertook an exploratory effort to convert this liquid wastewater to a solid without using cement. This would avoid the bulking effect of cement, and permit the waste to be disposed of the Energy Solutions facility in Utah as well as some DOE facilities. To address the need for an attractive alternative to drying and cement solidification, a test program was developed using a polymer absorbent media to convert the concentrate streams to a liquid-free waste form that meets the waste acceptance criteria of the pertinent burial sites. Two approaches for mixing the polymer with the liquid were tested: mechanical mixing and in-situ incorporation. As part of this test program, a process control program (PCP) was developed that is 100% scalable from a concentrate test sample as small as 50 grams to full-scale processing of 100 cubic foot containers or larger. In summary: The absorption process offers utilities a viable and less costly alternative to on-site drying or solidification of concentrates. The absorption process can be completed by site personnel or by a vendor as a turnkey service. The process is suitable for multiple types of waste, including RO and evaporator concentrates, sludges, and other difficult to process waters and wet solids. (author)

  5. High latitude gas in the Beta Pictoris system. A possible origin related to Falling Evaporating Bodies

    E-Print Network [OSTI]

    Beust, Hervé

    2015-01-01

    The presence of off-plane Ca II ions in the Beta Pictoris disk, and the non-detection of off-plane Na I atoms, can be explained as a consequence of the evaporation process of Falling Evaporating Bodies (FEBs). In the star-grazing regime, the FEBs are subject to inclination oscillations up to 30 - 40 degrees that causes most metallic species released by sublimation to move off plane The ions are be stopped at about 100 AU from the star. We show that collisions with a neutral medium can stop the ions. The required H I column density is reduced to 10^17 cm^-2, one order of magnitude below present detection limits. We also investigate the possibility that the ions are slowed down magnetically. While the sole action of a magnetic field of the order of 1 microGauss is not effective, the combined effect of magnetic and collisional deceleration processes lead to an additional lowering of the required H I column density.

  6. Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Zhigang; Kisslinger, Kim

    2015-06-17

    Thin films of hafnium dioxide (HfO2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, we fabricated 31-stage CMOS ring oscillator to test themore »quality of the HfO2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO2 thin film functioned very well as the gate oxide.« less

  7. Milagro limits and HAWC sensitivity for the rate-density of evaporating primordial black holes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abdo, A. A.; Abeysekara, A. U.; Alfaro, R.; Allen, B. T.; Alvarez, C.; Alvarez, J. D.; Arceo, R.; Arteaga-Velazquez, J. C.; Aune, T.; Ayala Solares, H. A.; et al

    2015-04-01

    Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of ~ 5.0 × 10¹? g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV – TeV energy range. The Milagro high energy observatory, which operated from 2000 tomore »2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.« less

  8. Engineering work plan for implementing the Process Condensate Recycle Project at the 242-A evaporator

    SciTech Connect (OSTI)

    Haring, D.S.

    1995-02-02

    The 242-A Evaporator facility is used to reduce the volume of waste stored in the Hanford double shell tanks. This facility uses filtered raw water for cooling, de-entrainment pad sprays, pump seal water, and chemical tank make-up. Some of these uses result in the introduction of filtered raw water into the process, thus increasing the volume of waste requiring evaporation and subsequent treatment by the 200 East Effluent Treatment Facility. The pump seal water and the de-entrainment pad spray systems were identified as candidates for a waste minimization upgrade. This work plan describes the activities associated with the design, installation, testing and initial operation of the process condensate recycle system. Implementation of the process condensate recycle system will permit the use of process condensate in place of raw water for the de-entrainment pad sprays and pump seals. This will reduce the amount of low-level liquid waste and generated during facility operation through source reduction and recycling.

  9. Evaporative CO$_2$ microchannel cooling for the LHCb VELO pixel upgrade

    E-Print Network [OSTI]

    de Aguiar Francisco, Oscar A; Collins, Paula; Dumps, Raphael; John, Malcolm; Mapelli, Alessandro; Romagnoli, Giulia

    2015-01-01

    The LHCb Vertex Detector (VELO) will be upgraded in 2018 to a lightweight pixel detector capable of 40 MHz readout and operation in very close proximity to the LHC beams. The thermal management of the system will be provided by evaporative CO$_2$ circulating in microchannels embedded within thin silicon plates. This solution has been selected due to the excellent thermal efficiency, the absence of thermal expansion mismatch with silicon ASICs and sensors, the radiation hardness of CO$_2$, and very low contribution to the material budget. Although microchannel cooling is gaining considerable attention for applications related to microelectronics, it is still a novel technology for particle physics experiments, in particular when combined with evaporative CO$_2$ cooling. The R&D effort for LHCb is focused on the design and layout of the channels together with a fluidic connector and its attachment which must withstand pressures up to 170 bar. Even distribution of the coolant is ensured by means of the use o...

  10. TANK 26F SUPERNATANT AND 2F EVAPORATOR EDUCTOR PUMP SAMPLE CHARACTERIZATION RESULTS

    SciTech Connect (OSTI)

    King, W.; Hay, M.; Coleman, C.

    2011-08-23

    In an effort to understand the reasons for system plugging problems in the SRS 2F evaporator, supernatant samples were retrieved from the evaporator feed tank (Tank 26F) and solids were collected from the evaporator eductor feed pump for characterization. The variable depth supernatant samples were retrieved from Tank 26F in early December of 2010 and samples were provided to SRNL and the F/H Area laboratories for analysis. Inspection and analysis of the samples at SRNL was initiated in early March of 2011. During the interim period, samples were frequently exposed to temperatures as low as 12 C with daily temperature fluctuations as high as 10 C. The temperature at the time of sample collection from the waste tank was 51 C. Upon opening the supernatant bottles at SRNL, many brown solids were observed in both of the Tank 26F supernatant samples. In contrast, no solids were observed in the supernatant samples sent to the F/H Area laboratories, where the analysis was completed within a few days after receipt. Based on these results, it is believed that the original Tank 26F supernatant samples did not contain solids, but solids formed during the interim period while samples were stored at ambient temperature in the SRNL shielded cells without direct climate control. Many insoluble solids (>11 wt. % for one sample) were observed in the Tank 26F supernatant samples after three months of storage at SRNL which would not dissolve in the supernatant solution in two days at 51 C. Characterization of these solids along with the eductor pump solids revealed the presence of sodium oxalate and clarkeite (uranyl oxyhydroxide) as major crystalline phases. Sodium nitrate was the dominant crystalline phase present in the unwashed Eductor Pump solids. Crystalline sodium nitrate may have formed during the drying of the solids after filtration or may have been formed in the Tank 26F supernatant during storage since the solution was found to be very concentrated (9-12 M Na{sup +}). Concentrated mineral acids and elevated temperature were required to dissolve all of these solids. The refractory nature of some of the solids is consistent with the presence of metal oxides such as aluminosilicates (observed as a minor phase by XRD). Characterization of the water wash solutions and the digested solids confirmed the presence of oxalate salts in both solid samples. Sulfate enrichment was also observed in the Tank 26F solids wash solution, indicating the presence of sulfate precipitates such as burkeite. OLI modeling of the Tank 26F filtered supernatant composition revealed that sodium oxalate has a very low solubility in this solution. The model predicts that the sodium oxalate solubility in the Tank 26F supernatant is only 0.0011 M at 50 C. The results indicate that the highly concentrated nature of the evaporator feed solution and the addition of oxalate anion to the waste stream each contribute to the formation of insoluble solids in the 2F evaporator system.

  11. Level density of $^{56}$Fe and low-energy enhancement of $?$-strength function

    E-Print Network [OSTI]

    A. V. Voinov; S. M. Grimes; U. Agvaanluvsan; E. Algin; T. Belgya; C. R. Brune; M. Guttormsen; M. J. Hornish; T. Massey; G. E. Mitchell; J. Rekstad; A. Schiller; S. Siem

    2006-04-06

    The $^{55}$Mn$(d,n)^{56}$Fe differential cross section is measured at $E_d=7$ MeV\\@. The $^{56}$Fe level density obtained from neutron evaporation spectra is compared to the level density extracted from the $^{57}$Fe$(^3$He,$\\alpha\\gamma)^{56}$Fe reaction by the Oslo-type technique. Good agreement is found between the level densities determined by the two methods. With the level density function obtained from the neutron evaporation spectra, the $^{56}$Fe $\\gamma$-strength function is also determined from the first-generation $\\gamma$ matrix of the Oslo experiment. The good agreement between the past and present results for the $\\gamma$-strength function supports the validity of both methods and is consistent with the low-energy enhancement of the $\\gamma$ strength below $\\sim 4$ MeV first discovered by the Oslo method in iron and molybdenum isotopes.

  12. Salinity controls on trophic interactions among invertebrates and algae of solar evaporation ponds in the Mojave Desert and relation to shorebird foraging and selenium risk

    E-Print Network [OSTI]

    Herbst, David B

    2006-01-01

    AMONG INVERTEBRATES AND ALGAE OF SOLAR EVAPORATION PONDS INplanktonic invertebrates and algae present along with avianof invertebrates and algae, and avian foraging were examined

  13. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    SciTech Connect (OSTI)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2(53:35:12). And for an H2O2 distillation process, the two promising fluids are Trifluoroethanol (TFE) + Triethylene Glycol Dimethyl ether (DMETEG) and Ammonia+ Water. Thermo-physical properties calculated by Aspen+ are reasonably accurate. Documentation of the installation of pilot-plants or full commercial units were not found in the literature for validating thermo-physical properties in an operating unit. Therefore, it is essential to install a pilot-scale unit to verify thermo-physical properties of working fluid pairs and validate the overall efficiency of the thermal heat pump at temperatures typical of distillation processes. For an HO2 process, the ammonia-water heat pump system is more compact and preferable than the TFE-DMETEG heat pump. The ammonia-water heat pump is therefore recommended for the H2O2 process. Based on the complex nature of the heat recovery system, we anticipated that capital costs could make investments financially unattractive where steam costs are low, especially where co-generation is involved. We believe that the enhanced heat transfer equipment has the potential to significantly improve the performance of TEE crystallizers, independent of the absorption heat-pump recovery system. Where steam costs are high, more detailed design/cost engineering will be required to verify the economic viability of the technology. Due to the long payback period estimated for the TEE open system, further studies on the TEE system are not warranted unless there are significant future improvements to heat pump technology. For the H2O2 distillation cycle heat pump waste heat recovery system, there were no significant process constraints and the estimated 5 years payback period is encouraging. We therefore recommend further developments of application of the thermal heat pump in the H2O2 distillation process with the focus on the technical and economic viability of heat exchangers equipped with the state-of-the-art enhancements. This will require additional funding for a prototype unit to validate enhanced thermal performances of heat transfer equipment, evaluat

  14. Credit Enhancement Overview Guide

    SciTech Connect (OSTI)

    Financing Solutions Working Group

    2014-01-01

    Provides considerations for state and local policymakers and energy efficiency program administrators designing and implementing successful credit enhancement strategies for residential and commercial buildings.

  15. Analysis Of 2H-Evaporator Scale Wall [HTF-13-82] And Pot Bottom [HTF-13-77] Samples

    SciTech Connect (OSTI)

    Oji, L. N.

    2013-09-11

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material has been performed so that uranium and plutonium isotopic analysis can be input into a Nuclear Criticality Safety Assessment (NCSA) for scale removal by chemical cleaning. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from two different locations within the evaporator pot; the bottom cone sections of the 2H-evaporator pot [Sample HTF-13-77] and the wall 2H-evaporator [sample HTF-13-82]. X-ray diffraction analysis (XRD) confirmed that both the 2H-evaporator pot scale and the wall samples consist of nitrated cancrinite (a crystalline sodium aluminosilicate solid) and clarkeite (a uranium oxyhydroxide mineral). On ''as received'' basis, the bottom pot section scale sample contained an average of 2.59E+00 {+-} 1.40E-01 wt % total uranium with a U-235 enrichment of 6.12E-01 {+-} 1.48E-02 %, while the wall sample contained an average of 4.03E+00 {+-} 9.79E-01 wt % total uranium with a U-235 enrichment of 6.03E-01% {+-} 1.66E-02 wt %. The bottom pot section scale sample analyses results for Pu-238, Pu-239, and Pu-241 are 3.16E-05 {+-} 5.40E-06 wt %, 3.28E-04 {+-} 1.45E-05 wt %, and <8.80E-07 wt %, respectively. The evaporator wall scale samples analysis values for Pu-238, Pu-239, and Pu-241 averages 3.74E-05 {+-} 6.01E-06 wt %, 4.38E-04 {+-} 5.08E-05 wt %, and <1.38E-06 wt %, respectively. The Pu-241 analyses results, as presented, are upper limit values. For these two evaporator scale samples obtained at two different locations within the evaporator pot the major radioactive components (on a mass basis) in the additional radionuclide analyses were Sr-90, Cs-137 Np-237, Pu-239/240 and Th-232. Small quantities of americium and curium were detected in the blanks used for Am/Cm method for these radionuclides. These trace radionuclide amounts are assumed to come from airborne contamination in the shielded cells drying or digestion oven, which has been replaced. Therefore, the Am/Cm results, as presented, may be higher than the true Am/Cm values for these samples. These results are provided so that SRR can calculate the equivalent uranium-235 concentrations for the NCSA. Results confirm that the uranium contained in the scale remains depleted with respect to natural uranium. SRNL did not calculate an equivalent U-235 enrichment, which takes into account other fissionable isotopes U-233, Pu-239 and Pu-241. The applicable method for calculation of equivalent U-235 will be determined in the NCSA. With a few exceptions, a comparison of select radionuclides measurements from this 2013 2H evaporator scale characterization (pot bottom and wall scale samples) with those measurements for the same radionuclides in the 2010 2H evaporator scale analysis shows that the radionuclide analysis for both years are fairly comparable; the analyses results are about the same order of magnitude.

  16. Spontaneous parametric down conversion with a depleted pump as an analogue for black hole evaporation/particle production

    E-Print Network [OSTI]

    Paul M. Alsing; Michael L. Fanto

    2015-07-02

    We present an analytical formulation of the recent one-shot decoupling model of Br\\`adler and Adami [arXiv:1505.0284] and compute the resulting "Page Information" curves, for the reduced density matrices for the evaporating black hole internal degrees of freedom, and emitted Hawking radiation pairs entangled across the horizon. We argue that black hole evaporation/particle production has a very close analogy to the laboratory process of spontaneous parametric down conversion, when the pump is allowed to deplete.

  17. Silicon dioxide and hafnium dioxide evaporation characteristics from a high-frequency sweep e-beam system

    SciTech Connect (OSTI)

    Chow, R. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States); Tsujimoto, N. [MDC Vacuum Products Corporation, Hayward, California 94545 (United States)

    1996-09-01

    Reactive oxygen evaporation characteristics were determined as a function of the front-panel control parameters provided by a programmable, high-frequency sweep e-beam system. An experimental design strategy used deposition rate, beam speed, pattern, azimuthal rotation speed, and dwell time as the variables. The optimal settings for obtaining a broad thickness distribution, efficient silicon dioxide boule consumption, and minimal hafnium dioxide defect density were generated. The experimental design analysis showed the compromises involved with evaporating these oxides. {copyright} {ital 1996 Optical Society of America.}

  18. Transmission Enhancement Technology Report

    E-Print Network [OSTI]

    a recommendation of the most cost-effective methods and technologies to enhance electricity transmission from a review of methods and technologies with potential to enhance electricity transmission capability-traditional methods and technologies to increase the capacity of the high voltage electric power transmission system

  19. RESULTS OF THE 2H EVAPORATOR ACID CLEANING AND IN-POT NEUTRALIZATION

    SciTech Connect (OSTI)

    Wilmarth, B; Phillip Norris, P; Terry Allen, T

    2007-05-29

    The estimated 200 gallons of sodium aluminosilicate scale (NAS) present in the 242-16H Evaporator pot prior to chemical cleaning was subjected to four batches of 1.5 M (9 wt%) nitric acid. Each batch was neutralized with 19 M (50 wt %) sodium hydroxide (caustic) before transfer to Tank 38. The chemical cleaning process began on November 20, 2006, and was terminated on December 10, 2006. An inspection of the pot's interior was performed and based on data gathered during that inspection; the current volume of scale in the pot is conservatively estimated to be 36.3 gallons, which is well below the 200 gallon limit specified in the Technical Safety Requirements. In addition, the performance during all aspects of cleaning agreed well with the flowsheet developed at the bench and pilot scale. There were some lessons learned during the cleaning outage and are detailed in appendices of this report.

  20. Preparation and characterization of indium zinc oxide thin films by electron beam evaporation technique

    SciTech Connect (OSTI)

    Keshavarzi, Reza [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)] [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Mirkhani, Valiollah, E-mail: mirkhani@sci.ui.ac.ir [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)] [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Moghadam, Majid, E-mail: moghadamm@sci.ui.ac.ir [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of) [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Department of Nanotechnology Engineering, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)] [Chemistry Department, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Fallah, Hamid Reza; Dastjerdi, Mohammad Javad Vahid; Modayemzadeh, Hamed Reza [Department of Physics, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)] [Department of Physics, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2011-04-15

    In this work, the preparation of In{sub 2}O{sub 3}-ZnO thin films by electron beam evaporation technique on glass substrates is reported. Optical and electrical properties of these films were investigated. The effect of dopant amount and annealing temperature on the optical and electrical properties of In{sub 2}O{sub 3}-ZnO thin films was also studied. Different amount of ZnO was used as dopant and the films were annealed at different temperature. The results showed that the most crystalline, transparent and uniform films with lowest resistivity were obtained using 25 wt% of ZnO annealed at 500 {sup o}C.

  1. Simulation of a photovoltaic/thermal heat pump system having a modified collector/evaporator

    SciTech Connect (OSTI)

    Xu, Guoying; Deng, Shiming; Zhang, Xiaosong; Yang, Lei; Zhang, Yuehong

    2009-11-15

    A new photovoltaic/thermal heat pump (PV/T-HP) system having a modified collector/evaporator (C/E) has been developed and numerically studied. Multi-port flat extruded aluminum tubes were used in the modified C/E, as compared to round copper tubes used in a conventional C/E. Simulation results suggested that a better operating performance can be achieved for a PV/T-HP system having such a modified C/E. In addition, using the meteorological data in both Nanjing and Hong Kong, China, the simulation results showed that this new PV/T-HP system could efficiently generate electricity and thermal energy simultaneously in both cities all-year-round. Furthermore, improved operation by using variable speed compressor has been designed and discussed. (author)

  2. Observational Characteristics of the Final Stages of Evaporating Primordial Black Holes

    E-Print Network [OSTI]

    Ukwatta, T N; MacGibbon, J H; Linnemann, J T; Marinelli, S S; Yapici, T; Tollefson, K

    2015-01-01

    Many early universe theories predict the creation of Primordial Black Holes (PBHs). The PBHs could have masses ranging from the Planck mass to 10^5 solar masses or higher depending on the formation scenario. Hawking showed that any Black Hole (BH) has a temperature which is inversely proportional to its mass. Hence a sufficiently small BH will thermodynamically radiate particles at an ever-increasing rate, continually decreasing its mass and raising its temperature. The final moments of this evaporation phase should be explosive. In this work, we investigate the final few seconds of the BH burst using the Standard Model of particle physics and calculate the energy dependent burst time profiles in the GeV/TeV range. We use the HAWC (High Altitude Water Cherenkov) observatory as a case study and calculate PBH burst light curves which would be observed by HAWC.

  3. Evaporative CO2 cooling using microchannels etched in silicon for the future LHCb vertex detector

    E-Print Network [OSTI]

    A. Nomerotski; J. Buytart; P. Collins; R. Dumps; E. Greening; M. John; A. Mapelli; A. Leflat; Y. Li; G. Romagnoli; B. Verlaat

    2013-02-16

    The extreme radiation dose received by vertex detectors at the Large Hadron Collider dictates stringent requirements on their cooling systems. To be robust against radiation damage, sensors should be maintained below -20 degree C and at the same time, the considerable heat load generated in the readout chips and the sensors must be removed. Evaporative CO2 cooling using microchannels etched in a silicon plane in thermal contact with the readout chips is an attractive option. In this paper, we present the first results of microchannel prototypes with circulating, two-phase CO2 and compare them to simulations. We also discuss a practical design of upgraded VELO detector for the LHCb experiment employing this approach.

  4. Cesium Evaporation Rate on Tungsten Photocathodes Ameerah Jabr-Hamdan, Dr. Eric Montgomery, Dr. Patrick O' Shea, Blake Riddick, and Peter Zhigang Pan

    E-Print Network [OSTI]

    Anlage, Steven

    Cesium Evaporation Rate on Tungsten Photocathodes Ameerah Jabr-Hamdan, Dr. Eric Montgomery, Dr into a vacuum chamber. Experimentally found the evaporation rate of Cesium on a Tungsten Photocathode. Motivation A High Power Free Electron Laser. High QE and decent lifetime Photocathode. (Cesium Dispenser

  5. Effect of refrigerant charge, duct leakage, and evaporator air flow on the high temerature performance of air conditioners and heat pumps 

    E-Print Network [OSTI]

    Rodriguez, Angel Gerardo

    1995-01-01

    evaporator airflow, and return air leakage from hot attic spaces. There were five sets of tests used for this research: two of them for the charging tests, two for the reduced evaporator airflow, and one for the return air leakage tests. For the charging...

  6. Mesoscale Patterns Formed by Evaporation of a Polymer Solution in the Proximity of a Sphere on a Smooth Substrate: Molecular Weight

    E-Print Network [OSTI]

    Lin, Zhiqun

    Mesoscale Patterns Formed by Evaporation of a Polymer Solution in the Proximity of a Sphere evaporation as a simple, lithography- and external-field- free route to well-ordered mesoscale structures weight (MW) effect on the mesoscale polymer patterns formed by drying a drop of polymer solution

  7. Chemistry of Silicate Atmospheres of Evaporating Super-Recommended short title: Silicate Atmospheres of Super-Earths

    E-Print Network [OSTI]

    - 1 - Chemistry of Silicate Atmospheres of Evaporating Super- Earths Recommended short title: Silicate Atmospheres of Super-Earths Laura Schaefer1,2 Bruce Fegley, Jr.1,3 1 Planetary Chemistry through currently available methods. Keywords: atmosphere, silicate, exoplanet, chemistry #12;- 4 - 1

  8. Grain Formation Modulated by Molecular Hydrogen Evaporation in the Interstellar K. S. Kostov, and R. S. Berry*

    E-Print Network [OSTI]

    Berry, R. Stephen

    Grain Formation Modulated by Molecular Hydrogen Evaporation in the Interstellar Medium A. Reber, KVersity of Chicago, Chicago, Illinois 60637 ReceiVed: May 17, 2009; ReVised Manuscript ReceiVed: July 30, 2009 A mechanism for grain growth and formation in the interstellar medium is proposed. In this mechanism, hydrogen

  9. Determination of the crystalline structure of scale solids from the 16H evaporator gravity drain line to tank 38H

    SciTech Connect (OSTI)

    Oji, L. N.

    2015-10-01

    August 2015, scale solids from the 16H Evaporator Gravity Drain Line (GDL) to the Tank 38H were delivered to SRNL for analysis. The desired analytical goal was to identify and confirm the crystalline structure of the scale material and determine if the form of the aluminosilicate mineral was consistent with previous analysis of the scale material from the GDL.

  10. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

  11. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    SciTech Connect (OSTI)

    TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

  12. Controlling the Texture and Crystallinity of Evaporated Lead Phthalocyanine Thin Films for Near-Infrared Sensitive Solar Cells

    E-Print Network [OSTI]

    Schreiber, Frank

    Controlling the Texture and Crystallinity of Evaporated Lead Phthalocyanine Thin Films for Near-Infrared Sensitive Solar Cells Karolien Vasseur,, Katharina Broch,§ Alexander L. Ayzner, Barry P. Rand, David Cheyns: To achieve organic solar cells with a broadened spectral absorption, we aim to promote the growth of the near

  13. LIGNITE FUEL ENHANCEMENT

    SciTech Connect (OSTI)

    Charles Bullinger

    2005-06-07

    This 3rd quarterly Technical Progress Report for the Lignite Fuel Enhancement Project summarizes activities from January 1st through March 31st of 2005. It also summarizes the subsequent purchasing activity and final dryer/process design.

  14. Laser preheat enhanced ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM)

    1999-01-01

    A method for enhancing fuel ignition performance by preheating the fuel with laser light at a wavelength that is absorbable by the fuel prior to ignition with a second laser is provided.

  15. Laser preheat enhanced ignition

    DOE Patents [OSTI]

    Early, J.W.

    1999-03-02

    A method for enhancing fuel ignition performance by preheating the fuel with laser light at a wavelength that is absorbable by the fuel prior to ignition with a second laser is provided. 11 figs.

  16. A simple technique to reduce evaporation of crystallization droplets by using plate lids with apertures for adding liquids

    SciTech Connect (OSTI)

    Zipper, Lauren E.; Aristide, Xavier; Bishop, Dylan P.; Joshi, Ishita; Kharzeev, Julia; Patel, Krishna B.; Santiago, Brianna M.; Joshi, Karan; Dorsinvil, Kahille; Sweet, Robert M.; Soares, Alexei S.

    2014-11-28

    This article describes the use of evaporation control lids that are fitted to crystallization plates to improve the reproducibility of trials using as little as 5 nl. The plate lids contain apertures which are large enough for the transfer of protein containing droplets, but small enough to greatly reduce the rate of evaporation during the time needed to prepare the plate. A method is described for using plate lids to reduce evaporation in low-volume vapor-diffusion crystallization experiments. The plate lids contain apertures through which the protein and precipitants were added to different crystallization microplates (the reservoir was filled before fitting the lids). Plate lids were designed for each of these commonly used crystallization microplates. This system minimizes the dehydration of crystallization droplets containing just a few nanolitres of protein and precipitant, and results in more reproducible diffraction from the crystals. For each lid design, changes in the weight of the plates were used to deduce the rate of evaporation under different conditions of temperature, air movement, droplet size and precipitant. For comparison, the state of dehydration was also visually assessed throughout the experiment. Finally, X-ray diffraction methods were used to compare the diffraction of protein crystals that were conventionally prepared against those that were prepared on plates with plate lids. The measurements revealed that the plate lids reduced the rate of evaporation by 63–82%. Crystals grown in 5 nl drops that were set up with plate lids diffracted to higher resolution than similar crystals from drops that were set up without plate lids. The results demonstrate that plate lids can be instrumental for improving few-nanolitre crystallizations.

  17. Enhanced metabolite generation

    SciTech Connect (OSTI)

    Chidambaram, Devicharan

    2012-03-27

    The present invention relates to the enhanced production of metabolites by a process whereby a carbon source is oxidized with a fermentative microbe in a compartment having a portal. An electron acceptor is added to the compartment to assist the microbe in the removal of excess electrons. The electron acceptor accepts electrons from the microbe after oxidation of the carbon source. Other transfers of electrons can take place to enhance the production of the metabolite, such as acids, biofuels or brewed beverages.

  18. Research on Convective Heat Transfer and Mass Transfer of the Evaporator in Micro/Mini-Channel 

    E-Print Network [OSTI]

    Su, J.; Li, J.

    2006-01-01

    on the reviewers on the present household air conditioners, the potential requirements for new heat transfer enhancement used for household air conditioners are discussed. Investigations on condensation and boiling of refrigerants in mini/micro channels have...

  19. Fluid-evaporation records preserved in salt assemblages in Meridiani rocks

    SciTech Connect (OSTI)

    Rao, M.N.; Nyquist, L.E.; Sutton, S.R.; Dreibus, G.; Garrison, D.H.; Herrin, J.

    2009-09-25

    We studied the inter-relationships between the major anions (SO{sub 3}, Cl, and Br) and cations (FeO, CaO and MgO) using elemental abundances determined by APXS in salt assemblages of RATted (abraded) rocks at Meridiani to characterize the behavior of fluids that infiltrated into this region on Mars. A plot of SO{sub 3} versus Cl for the abraded rocks yielded an unusual pattern, whereas the SO{sub 3}/Cl ratios versus Cl for the same rocks showed a monotonically decreasing trend represented by a hyperbola. The systematic behavior of the SO{sub 3} and Cl data in the documented rocks at Meridiani suggests that these anions behaved conservatively during fluid-rock interactions. These results further indicate that two kinds of fluids, referred to as SOL-I and SOL-II, infiltrated into Endurance/Eagle/Fram craters, where they underwent progressive evaporative concentration. SOL-I is a low pH fluid consisting of high SO{sub 3} and low Cl and high Br, (this fluid infiltrated all the way to the crater-top region), whereas SOL-II fluid of high pH with low SO{sub 3} and high Cl and low Br reached only an intermediary level known as the Whatanga contact at Endurance. Based on the FeO/MgO as well as CaO/MgO versus SO{sub 3}/Cl diagram for rocks above the Whatanga contact, the cation and anion relationships in this system suggest that the Fe{sup 2+}/SO{sub 4} and Ca{sup 2+}/SO{sub 4} ratios in SOL-I fluids at Meridiani were > 1 before the onset of evaporation based on the 'chemical divide' considerations. Below the Whatanga contact, relatively dilute SOL-II fluids seem to have infiltrated and dissolved/flushed away the easily soluble Mg-sulfate/chloride phases (along with Br) without significantly altering the SO{sub 3}/Cl ratios in the residual salt assemblages. Further, Cl/Br versus Br in rocks above the Whatanga contact show a hyperbolic trend suggesting that Cl and Br behaved conservatively similar to SO{sub 3} and Cl in the SOL-1 fluids at Meridiani. Our results are consistent with a scenario involving two episodes (SOL-I and SOL-II) of groundwater recharge at Meridiani Planum.

  20. THE USE OF DI WATER TO MITIGATE DUSTING FOR ADDITION OF DWPF FRIT TO THE SLURRY MIX EVAPORATOR

    SciTech Connect (OSTI)

    Hansen, E.

    2010-07-21

    The Defense Waste Processing Facility (DPWF) presently is in the process to determine means to reduce water utilization in the Slurry Mix Evaporator (SME) process, thus reducing effluent and processing times. The frit slurry addition system mixes the dry frit with water, yielding approximately a 50 weight percent slurry containing frit and the other fraction water. This slurry is discharged into the SME and excess water is removed via boiling. To reduce this water load to the SME, DWPF has proposed using a pneumatic system in conveying the frit to the SME, in essence a dry delivery system. The problem associated with utilizing a dry delivery system with the existing frit is the generation of dust when discharged into the SME. The use of water has been shown to be effective in the mining industry as well in the DOE complex to mitigate dusting. The method employed by SRNL to determine the quantity of water to mitigate dusting in dry powders was effective, between a lab and bench scale tests. In those tests, it was shown that as high as five weight percent (wt%) of water addition was required to mitigate dust from batches of glass forming minerals used by the Waste Treatment Plant at Hanford, Washington. The same method used to determine the quantity of water to mitigate dusting was used in this task to determine the quantity of water to mitigate this dusting using as-received frit. The ability for water to mitigate dusting is due to its adhesive properties as shown in Figure 1-1. Wetting the frit particles allows for the smaller frit particles (including dust) to adhere to the larger frit particles or to agglomerate into large particles. Fluids other than water can also be used, but their adhesive properties are different than water and the quantity required to mitigate dusting is different, as was observed in reference 1. Excessive water, a few weight percentages greater than that required to mitigate dusting can cause the resulting material not to flow. The primary objective of this task is to perform bench scale testing on various frits that have been used at DWPF or in test programs at SRNL to determine the quantity of de-ionized (DI) water required to mitigate dusting per mass basis of frit. The quantity of DI water required was determined visually by observing the effluent port of the mixer, and DI water addition was made to the point where no visible dust was observed leaving the effluent port. A total of eight different frits were selected for testing. Secondary objectives in this task include the following: (1) Video taping of the de-dusting procedure, (2) Particle size distribution analyses of the dry and wetted frits at the weight fraction of water required for de-dusting, (3) Plate flow tests to determine angle of flow and quantity of material remaining on plate at 90 degrees, (4) Microscopy of dry and wetted frit, and (5) Effect of excess water for selected frits on plate flow. The above analyses were performed within one hour of water addition, to minimize the effect of evaporative water losses. To better understand the size of dust particles, perform settling tests on selected frits and capture the fines. Analyze the fines for particle size distribution. Finally, it is expected that the surface area of frit is an important parameter in the quantity of water required for dust mitigation. An analysis of particle size distribution (PSD) data of as-received frit analyzed by SRNL over the past two to three years will be performed to determine the variation in the distribution of as-received frit. The following objectives were stated in the Technical Task Request4 as objectives that given adequate time would provide insight in helping DWPF in assessing equipment or processes for de-dusting and processing of dry frit. Due to time constraints, commercial methods for dedusting are provided. These results are detailed in section 3.7. Obtain design information from Hanford with respective to equipment used for dedusting. Suggestions on enhanced design features, such as flush water, pipe air purges, humidified compresse

  1. ANALYSIS OF 2H-EVAPORATOR SCALE WALL [HTF-13-82] AND POT BOTTOM [HTF-13-77] SAMPLES

    SciTech Connect (OSTI)

    Oji, L.

    2013-06-21

    Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material has been performed so that uranium and plutonium isotopic analysis can be input into a Nuclear Criticality Safety Assessment (NCSA) for scale removal by chemical cleaning. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2Hevaporator pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from the bottom cone sections of the 2H-evaporator pot [Sample HTF-13-77] and the wall 2H-evaporator [sample HTF-13-82]. X-ray diffraction analysis (XRD) confirmed that both the 2H-evaporator pot scale and the wall samples consist of nitrated cancrinite (a crystalline sodium aluminosilicate solid) and clarkeite (a uranium oxy-hydroxide mineral). On “as received” basis, the bottom pot section scale sample contained an average of 2.59E+00 ± 1.40E-01 wt % total uranium with a U-235 enrichment of 6.12E-01 ± 1.48E-02 %, while the wall sample contained an average of 4.03E+00 ± 9.79E-01 wt % total uranium with a U-235 enrichment of 6.03E-01% ± 1.66E-02 wt %. The bottom pot section scale sample analyses results for Pu-238, Pu-239, and Pu-241 are 3.16E- 05 ± 5.40E-06 wt %, 3.28E-04 ± 1.45E-05 wt %, and <8.80E-07 wt %, respectively. The evaporator wall scale samples analysis values for Pu-238, Pu-239, and Pu-241 averages 3.74E-05 ± 6.01E-06 wt %, 4.38E-04 ± 5.08E-05 wt %, and <1.38E-06 wt %, respectively. The Pu-241 analyses results, as presented, are upper limit values. These results are provided so that SRR can calculate the equivalent uranium-235 concentrations for the NCSA. Results confirm that the uranium contained in the scale remains depleted with respect to natural uranium. SRNL did not calculate an equivalent U-235 enrichment, which takes into account other fissionable isotopes U-233, Pu-239 and Pu-241. The applicable method for calculation of equivalent U-235 will be determined in the NCSA.

  2. On the partner particles for moving mirror radiation and black hole evaporation

    E-Print Network [OSTI]

    M. Hotta; R. Schützhold; W. G. Unruh

    2015-04-21

    The partner mode with respect to a vacuum state for a given mode (like that corresponding to one of the thermal particles emitted by a black hole) is defined and calculated. The partner modes are explicitly calculated for a number of cases, in particular for the modes corresponding to a particle detector being excited by turn-on/turn-off transients, or with the thermal particles emitted by the accelerated mirror model for black hole evaporation. One of the key results is that the partner mode in general is just a vacuum fluctuation, and one can have the partner mode be located in a region where the state cannot be distinguished from the vacuum state by any series of local measurements, including the energy density. I.e., "information" (the correlations with the thermal emissions) need not be associated with any energy transport. The idea that black holes emit huge amounts of energy in their last stages because of all the information which must be emitted under the assumption of black-hole unitarity is found not necessarily to be the case.

  3. ANALYSES AND COMPARISON OF BULK AND COIL SURFACE SAMPLES FROM THE DWPF SLURRY MIX EVAPORATOR

    SciTech Connect (OSTI)

    Hay, M.; Nash, C.; Stone, M.

    2012-02-17

    Sludge samples from the DWPF Slurry Mix Evaporator (SME) heating coil frame and coil surface were characterized to identify differences that might help identify heat transfer fouling materials. The SME steam coils have seen increased fouling leading to lower boil-up rates. Samples of the sludge were taken from the coil frame somewhat distant from the coil (bulk tank material) and from the coil surface (coil surface sample). The results of the analysis indicate the composition of the two SME samples are very similar with the exception that the coil surface sample shows {approx}5-10X higher mercury concentration than the bulk tank sample. Elemental analyses and x-ray diffraction results did not indicate notable differences between the two samples. The ICP-MS and Cs-137 data indicate no significant differences in the radionuclide composition of the two SME samples. Semi-volatile organic analysis revealed numerous organic molecules, these likely result from antifoaming additives. The compositions of the two SME samples also match well with the analyzed composition of the SME batch with the exception of significantly higher silicon, lithium, and boron content in the batch sample indicating the coil samples are deficient in frit relative to the SME batch composition.

  4. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOE Patents [OSTI]

    Britten, Jerald A. (Oakley, CA)

    1997-01-01

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.

  5. Selective evaporation of focusing fluid in two-fluid hydrodynamic print head.

    SciTech Connect (OSTI)

    Keicher, David M.; Cook, Adam W.

    2014-09-01

    The work performed in this project has demonstrated the feasibility to use hydrodynamic focusing of two fluid steams to create a novel micro printing technology for electronics and other high performance applications. Initial efforts focused solely on selective evaporation of the sheath fluid from print stream provided insight in developing a unique print head geometry allowing excess sheath fluid to be separated from the print flow stream for recycling/reuse. Fluid flow models suggest that more than 81 percent of the sheath fluid can be removed without affecting the print stream. Further development and optimization is required to demonstrate this capability in operation. Print results using two-fluid hydrodynamic focusing yielded a 30 micrometers wide by 0.5 micrometers tall line that suggests that the cross-section of the printed feature from the print head was approximately 2 micrometers in diameter. Printing results also demonstrated that complete removal of the sheath fluid is not necessary for all material systems. The two-fluid printing technology could enable printing of insulated conductors and clad optical interconnects. Further development of this concept should be pursued.

  6. Use of non evaporable getter pumps to ensure long term performances of high quantum efficiency photocathodes

    SciTech Connect (OSTI)

    Sertore, Daniele Michelato, Paolo; Monaco, Laura; Manini, Paolo; Siviero, Fabrizio

    2014-05-15

    High quantum efficiency photocathodes are routinely used as laser triggered emitters in the advanced high brightness electron sources based on radio frequency guns. The sensitivity of “semiconductor” type photocathodes to vacuum levels and gas composition requires special care during preparation and handling. This paper will discuss the results obtained using a novel pumping approach based on coupling a 20?l s{sup ?1} sputter ion getter pump with a CapaciTorr® D100 non evaporable getter (NEG) pump. A pressure of 8?10{sup ?8}?Pa was achieved using only a sputter ion pump after a 6?day bake-out. With the addition of a NEG pump, a pressure of 2?10{sup ?9}?Pa was achieved after a 2?day bake-out. These pressure values were maintained without power due to the ability of the NEG to pump gases by chemical reaction. Long term monitoring of cathodes quantum efficiencies was also carried out at different photon wavelengths for more than two years, showing no degradation of the photoemissive film properties.

  7. Preparation of transparent conducting B-doped ZnO films by vacuum arc plasma evaporation

    SciTech Connect (OSTI)

    Miyata, Toshihiro; Honma, Yasunori; Minami, Tadatsugu

    2007-07-15

    Highly transparent and conductive B-doped ZnO (BZO) thin films have been prepared by a newly developed vacuum arc plasma evaporation method that provided high-rate film depositions using sintered BZO pellets and fragments. The obtained electrical and optical properties of the deposited BZO thin films were considerably affected by the deposition conditions as well as the preparation method of the BZO pellets and fragments used. The lowest thin film resistivity was obtained with a B doping content [B/(B+Zn) atomic ratio] of approximately 1 at. %. A resistivity as low as 5x10{sup -4} {omega} cm and an average transmittance above about 80% in the wavelength range of 400-1300 nm were obtained in BZO films prepared with a thickness above approximately 400 nm at a substrate temperature of 200 deg. C. In addition, a low resistivity of 7.97x10{sup -4} {omega} cm and average transmittances above about 80% in the visible wavelength range were obtained in a BZO film prepared at a substrate temperature of 100 deg. C and an O{sub 2} gas flow rate of 10 SCCM (SCCM denotes cubic centimeter per minute at STP). The deposition rate of BZO films was typically 170 nm/min with a cathode plasma power of 4.5 kW.

  8. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    SciTech Connect (OSTI)

    Tripathy, Sumanta K.; Rajeswari, V. P. [Centre for Nano Science and Technology, GVP College of Engineering (Autonomous), Visakhapatnam- 530048 (India)

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  9. Milagro Limits and HAWC Sensitivity for the Rate-Density of Evaporating Primordial Black Holes

    E-Print Network [OSTI]

    Abdo, A A; Alfaro, R; Allen, B T; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Aune, T; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Gonzalez, J Becerra; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Carramiñana, A; Castillo, M; Chen, C; Christopher, G E; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Diaz-Cruz, L; Díaz-Vélez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; Fiorino, D W; Fraija, N; Galindo, A; Garfias, F; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Harding, J P; Hays, E; Hoffman, C M; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kolterman, B E; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-GarcIa, R; MacGibbon, J H; Marinelli, A; Marinelli, S S; Martinez, H; Martinez, O; Martínez-Castro, J; Matthews, J A J; McEnery, J; Torres, E Mendoza; Mincer, A I; Miranda-Romagnoli, P; Moreno, E; Morgan, T; Mostafá, M; Nellen, L; Nemethy, P; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivière, C; Rosa-González, D; Ruiz-Velasco, E; Ryan, J; Salazar, H; Salesa, F; Sandoval, A; Parkinson, P M Saz; Schneider, M; Shoup, A; Silich, S; Sinnis, G; Smith, A J; Stump, D; Woodle, K Sparks; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Vasileiou, V; Villaseñor, L; Walker, G P; Weisgarber, T; Westerhoff, S; Williams, D A; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2014-01-01

    Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and can emit all species of fundamental particles thermally. PBHs with initial masses of ~5.0 x 10^14 g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV - TeV energy range, making them candidate Gamma-ray Burst (GRB) progenitors. The Milagro high energy observatory, which operated from 2000 to 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma-rays, the Milagro observatory is well suited for a direct search of PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a...

  10. Temporal evolution of multiple evaporating ribbon sources in a solar flare

    E-Print Network [OSTI]

    Graham, D R

    2015-01-01

    We present new results from the Interface Region Imaging Spectrograph showing the dynamic evolution of chromospheric evaporation and condensation in a flare ribbon, with the highest temporal and spatial resolution to date. IRIS observed the entire impulsive phase of the X-class flare SOL2014-09-10T17:45 using a 9.4 second cadence `sit-and-stare' mode. As the ribbon brightened successively at new positions along the slit, a unique impulsive phase evolution was observed for many tens of individual pixels in both coronal and chromospheric lines. Each activation of a new footpoint displays the same initial coronal up-flows of up to ~300 km/s, and chromospheric downflows up to 40 km/s. Although the coronal flows can be delayed by over 1 minute with respect to those in the chromosphere, the temporal evolution of flows is strikingly similar between all pixels, and consistent with predictions from hydrodynamic flare models. Given the large sample of independent footpoints, we conclude that each flaring pixel can be c...

  11. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  12. Design, fabrication, and testing of a sodium evaporator for the STM4-120 kinematic Stirling engine

    SciTech Connect (OSTI)

    Rawlinson, K.S.; Adkins, D.R.

    1995-05-01

    This report describes the development and testing of a compact heat-pipe heat exchanger kW(e) designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW(e) Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases. The liquid metal then condenses on the heater tubes of a Stirling engine, where energy is transferred to the engine`s helium working fluid. Tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15 kW(t) of energy at an operating vapor temperature of 760 C. Four of these prototype units were eventually used to power a 25-kW(e) Stirling engine system. Design details and test results from the prototype unit are presented in this report.

  13. HAZWOPER project documents for demolition of the Waste Evaporator Facility, Building 3506, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    This document, in support of the Waste Evaporator Facility (WEF) demolition project and contains the Project Work Plan and the Project Health and Safety Plan for demolition and partial remediation actions by ATG at the Waste Evaporator Facility, Building 3506. Various activities will be conducted during the course of demolition, and this plan provides details on the work steps involved, the identification of hazards, and the health and safety practices necessary to mitigate these hazards. The objective of this document is to develop an approach for implementing demolition activities at the WEF. This approach is based on prior site characterization information and takes into account all of the known hazards at this facility. The Project Work Plan provides instructions and requirements for identified work steps that will be utilized during the performance of demolition, while the Health and Safety Plan addresses the radiological, hazardous material exposure, and industrial safety concerns that will be encountered.

  14. Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium

    DOE Patents [OSTI]

    Albin, David S.; Noufi, Rommel

    2015-06-09

    Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium are provided. In one embodiment, a method for fabricating a thin film device comprises: providing a semiconductor film comprising indium (In) and selenium (Se) upon a substrate; heating the substrate and the semiconductor film to a desired temperature; and performing a mass transport through vapor transport of a copper chloride vapor and se vapor to the semiconductor film within a reaction chamber.

  15. Cite this: DOI: 10.1039/c3lc41271g A Microfluidic Platform for Evaporation-based Salt

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Cite this: DOI: 10.1039/c3lc41271g A Microfluidic Platform for Evaporation-based Salt Screening,b Yuchuan Gong*b and Paul J. A. Kenis*a We describe a microfluidic platform to screen for salt forms of PC and salt former solutions in a 24-well array (y200 nL/well), which is a drastic reduction

  16. A novel approach to prepare optically active ion doped luminescent materials via electron beam evaporation into ionic liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Richter, K.; Lorbeer, C.; Mudring, A. -V.

    2014-11-10

    A novel approach to prepare luminescent materials via electron-beam evaporation into ionic liquids is presented which even allows doping of host lattices with ions that have a strong size mismatch. Thus, to prove this, MgF2 nanoparticles doped with Eu3+ were fabricated. The obtained nanoparticles featured an unusually high luminescence lifetime and the obtained material showed a high potential for application.

  17. Sheath expansion and plasma dynamics in the presence of electrode evaporation: Application to a vacuum circuit breaker

    SciTech Connect (OSTI)

    Sarrailh, P.; Garrigues, L.; Hagelaar, G. J. M.; Boeuf, J. P.; Sandolache, G.; Rowe, S.

    2009-09-01

    During the postarc dielectric recovery phase in a vacuum circuit breaker, a cathode sheath forms and expels the plasma from the electrode gap. The success or failure of current breaking depends on how efficiently the plasma is expelled from the electrode gap. The sheath expansion in the postarc phase can be compared to sheath expansion in plasma immersion ion implantation except that collisions between charged particles and atoms generated by electrode evaporation may become important in a vacuum circuit breaker. In this paper, we show that electrode evaporation plays a significant role in the dynamics of the sheath expansion in this context not only because charged particle transport is no longer collisionless but also because the neutral flow due to evaporation and temperature gradients may push the plasma toward one of the electrodes. Using a hybrid model of the nonequilibrium postarc plasma and cathode sheath coupled with a direct simulation Monte Carlo method to describe collisions between heavy species, we present a parametric study of the sheath and plasma dynamics and of the time needed for the sheath to expel the plasma from the gap for different values of plasma density and electrode temperatures at the beginning of the postarc phase. This work constitutes a preliminary step toward understanding and quantifying the risk of current breaking failure of a vacuum arc.

  18. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jebrail, Mais J.; Renzi, Ronald F.; Sinha, Anupama; Van De Vreugde, Jim; Gondhalekar, Carmen; Ambriz, Cesar; Meagher, Robert J.; Branda, Steven S.

    2014-10-01

    Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate thatmore »this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4–95 °C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. As a result, this simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.« less

  19. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices

    SciTech Connect (OSTI)

    Jebrail, Mais J.; Renzi, Ronald F.; Sinha, Anupama; Van De Vreugde, Jim; Gondhalekar, Carmen; Ambriz, Cesar; Meagher, Robert J.; Branda, Steven S.

    2014-10-01

    Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate that this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4–95 °C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. As a result, this simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.

  20. Effects of hydrophilic surface treatment on evaporation heat transfer at the outside wall of horizontal tubes

    E-Print Network [OSTI]

    Kim, Ho-Young

    transfer between fluids, and many types of heat exchangers are used to enhance the heat transfer efficiency.elsevier.com/locate/apthermeng #12;shell-and-tube heat exchanger is generally used for its relatively low pressure drop in the system far, to promote the heat transfer in heat exchangers of the system, either the heat transfer area

  1. Analysis of tank 4 (FTF-4-15-22, 23) surface and subsurface supernatant samples in support of enrichment control, corrosion control and evaporator feed qualification programs

    SciTech Connect (OSTI)

    Oji, L. N.

    2015-09-09

    This report provides the results of analyses on Savannah River Site Tank 4 surface and subsurface supernatant liquid samples in support of the Enrichment Control Program (ECP), the Corrosion Control Program (CCP) and the Evaporator Feed Qualification (EFQ) Program. The purpose of the ECP sample taken from Tank 4 in August 2015 was to determine if the supernatant liquid would be “acceptable feed” to the 2H and 3H evaporator systems.

  2. Enhanced coalbed methane recovery

    SciTech Connect (OSTI)

    Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

    2009-01-15

    The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

  3. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Environmental Management (EM)

    technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. This technology characterization is intended to provide...

  4. Experimental Results on Advanced Rotary Desiccant Dehumidifiers 

    E-Print Network [OSTI]

    Barathan, D.; Parsons, J. M.; MaClaine-Cross, I.

    1986-01-01

    and mass exchange, respectively. A mean Nusselt number Nu was derived as where and The results are plotted as the measured Nusselt number Nu versus a Craetz number Cr defined as in Figure 8. The Eigure indicates effective Nusselt number values oE Nul... = 4.5 (for test arti- cle I) and NuZ = 4.9 (for test article 2). The earlier data on presure drop indicate that given the assumed probability distributions for passage gap nonuniformity, the experimentally measured val- ues of Nul and Nu2...

  5. Application of Desiccant Drying in Plastic Molding 

    E-Print Network [OSTI]

    Brown, M.; Connors, G.; Moore, D.

    1993-01-01

    blowmolding process by reducing the number of defects and allowing an increase in line speed. The environmental impact of the operation improved because electrical usage did not increase incrementally and CFC usage did not change. A comparison...

  6. Distributed Energy Technology Characterization (Desiccant Technologies),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy2EM's CleanupPowerJanuary 2004 |

  7. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    SciTech Connect (OSTI)

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  8. Pulse enhanced fluidized bed combustion

    SciTech Connect (OSTI)

    Mueller, B.

    1996-12-31

    Information is outlined on pulse enhanced fluidized bed combustion. The following topics are discussed: what is pulse enhanced fluidized bed combustion?; pulse combustors; pulsed atmospheric fluidized bed combustor (PAFBC); advantages of PAFBC; performance advantages; PAFBC facts; and PAFBC contact points.

  9. FRACTURE STIMULATION IN ENHANCED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    FRACTURE STIMULATION IN ENHANCED GEOTHERMAL SYSTEMS A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY (Principal Advisor) #12;#12;v Abstract Enhanced Geothermal Systems (EGS) are geothermal reservoirs formed

  10. Automotive Component Product Development Enhancement

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Automotive Component Product Development Enhancement Through Multi-Attribute System Design Engineering Systems Division #12;Automotive Component Product Development Enhancement Through Multi of Science in Engineering and Management February 2005 ABSTRACT Automotive industry is facing a tough period

  11. Probabilistic Methods for Enhanced Marine

    E-Print Network [OSTI]

    Oxford, University of

    Probabilistic Methods for Enhanced Marine Situational Awareness ¡ Charles Bibby Worcester College equipment in the marine environment. My dad's craftsmanship and practical abilities have proved invaluable present a system that uses probabilistic methods for enhanced situational aware- ness in marine

  12. Content-Aware Image enhancement

    E-Print Network [OSTI]

    Schettini, Raimondo

    1 Content-Aware Image enhancement R. Schettini www.ivl.disco.unimib.it 8 Faculties, 61 Degree Recognition Content-based retrieval Quality Assessment Content-Aware Image Enhancement Presentation Outline Processing Content aware image enhancement We focus here on image based features. And show how to exploit

  13. Content-Aware Image enhancement

    E-Print Network [OSTI]

    Schettini, Raimondo

    Content-Aware Image enhancement R. Schettini www.ivl.disco.unimib.it #12;8 Faculties, 61 Degree Recognition Content-based retrieval Quality Assessment #12;Content-Aware Image Enhancement Presentation Image Processing Content aware image enhancement We focus here on image based features. And show how

  14. Midair collisions enhance saltation

    E-Print Network [OSTI]

    Marcus V. Carneiro; Nuno A. M. Araújo; Thomas Pähtz; Hans J. Herrmann

    2015-08-21

    Here we address the old question in Aeolian particle transport about the role of midair collisions. We find that, surprisingly, these collisions do enhance the overall flux substantially. The effect depends strongly on restitution coefficient and wind speed. We can explain this observation as a consequence of a soft-bed of grains which floats above the ground and reflects the highest flying particles. We make the unexpected observation that the flux is maximized at an intermediate restitution coefficient of about 0.7, which is comparable to values experimentally measured for collisions between sand grains.

  15. Universal threshold enhancement

    E-Print Network [OSTI]

    Patkós, András; Szépfalusy, P; Szep, Zs.

    2003-01-01

    By assuming certain analytic properties of the propagator, it is shown that universal features of the spectral function including threshold enhancement arise if a pole describing a particle at high temperature approaches in the complex energy plane the threshold position of its two-body decay with the variation of T. The case is considered, when one can disregard any other decay processes. The quality of the proposed description is demonstrated by comparing it with the detailed large N solution of the linear sigma model around the pole-threshold coincidence.

  16. THE ROLE OF CORE MASS IN CONTROLLING EVAPORATION: THE KEPLER RADIUS DISTRIBUTION AND THE KEPLER-36 DENSITY DICHOTOMY

    SciTech Connect (OSTI)

    Lopez, Eric D.; Fortney, Jonathan J.

    2013-10-10

    We use models of coupled thermal evolution and photo-evaporative mass loss to understand the formation and evolution of the Kepler-36 system. We show that the large contrast in mean planetary density observed by Carter et al. can be explained as a natural consequence of photo-evaporation from planets that formed with similar initial compositions. However, rather than being due to differences in XUV irradiation between the planets, we find that this contrast is due to the difference in the masses of the planets' rock/iron cores and the impact that this has on mass-loss evolution. We explore in detail how our coupled models depend on irradiation, mass, age, composition, and the efficiency of mass loss. Based on fits to large numbers of coupled evolution and mass-loss runs, we provide analytic fits to understand threshold XUV fluxes for significant atmospheric loss, as a function of core mass and mass-loss efficiency. Finally we discuss these results in the context of recent studies of the radius distribution of Kepler candidates. Using our parameter study, we make testable predictions for the frequency of sub-Neptune-sized planets. We show that 1.8-4.0 R{sub ?} planets should become significantly less common on orbits within 10 days and discuss the possibility of a narrow 'occurrence valley' in the radius-flux distribution. Moreover, we describe how photo-evaporation provides a natural explanation for the recent observations of Ciardi et al. that inner planets are preferentially smaller within the systems.

  17. Energy and environmental research emphasizing low-rank coal: Task 5.7, Coal char fuel evaporation canister sorbent

    SciTech Connect (OSTI)

    Aulich, T.R.; Grisanti, A.A.; Knudson, C.L.

    1995-08-01

    Atomobile evaporative emission canisters contain activated carbon sorbents that trap and store fuel vapors emitted from automobile fuel tanks during periods of hot ambient temperatures and after engine operation. When a vehicle is started, combustion air is pulled through the canister, and adsorbed vapors are removed from the sorbent and routed to the intake manifold for combustion along with fuel from the tank. The two primary requirements of an effective canister sorbent are that (1) it must be a strong enough adsorbent to hold on to the fuel vapors that contact it and (2) it must be a weak enough adsorbent to release the captured vapors in the presence of the airflow required by the engine for fuel combustion. Most currently available commercial canister sorbents are made from wood, which is reacted with phosphoric acid and heat to yield an activated carbon with optimum pore size for gasoline vapor adsorption. The objectives of Task 5.7 were to (1) design and construct a test system for evaluating the performance of different sorbents in trapping and releasing butane, gasoline, and other organic vapors; (2) investigate the use of lignite char as an automobile fuel evaporation canister sorbent; (3) compare the adsorbing and desorbing characteristics of lignite chars with those of several commercial sorbents; and (4) investigate whether the presence of ethanol in fuel vapors affects sorbent performance in any way. Tests with two different sorbents (a wood-derived activated carbon and a lignite char) showed that with both sorbents, ethanol vapor breakthrough took about twice as long as hydrocarbon vapor breakthrough. Possible reasons for this, including an increased sorbent affinity for ethanol vapors, will be investigated. If this effect is real (i.e., reproducible over an extensive series of tests under varying conditions), it may help explain why ethanol vapor concentrations in SHED test evaporative emissions are often lower than would be expected.

  18. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01

    The deep EGS (Enhanced Geothermal System) project at Soultz-associated with enhanced geothermal systems. Geothermalfor a long-lived enhanced geothermal system (EGS) in the

  19. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    SciTech Connect (OSTI)

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X.; Wang, S.

    2014-01-29

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction.

  20. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative cooling stage, in which the incoming air is in thermal contact with a moistened surface that evaporates the water into a separate air stream. As the evaporation cools the moistened surface, it draws heat from the incoming air without adding humidity to it. A number of cooling cycles have been developed that employ indirect evaporative cooling, but DEVAP achieves a superior efficiency relative to its technological siblings.

  1. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect (OSTI)

    Donna Post Guillen

    2013-09-01

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  2. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Microscopy and Field Evaporation Simulation

    SciTech Connect (OSTI)

    Devaraj, Arun; Colby, Robert J.; Vurpillot, F.; Thevuthasan, Suntharampillai

    2014-03-26

    Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositional errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.

  3. Final characterization and safety screen report of double shell tank 241-AP-105 for evaporator campaign 97-1

    SciTech Connect (OSTI)

    Miller, G.L.

    1997-01-20

    Evaporator candidate feed from tank 241-AP-105 (hereafter referred to as AP-105) was characterized for physical, inorganic, organic and radiochemical parameters by the 222-S Laboratory as directed by the Tank Sample and Analysis Plan (TSAP), References 1 through 4, and Engineering Change Notice, number 635332, Reference 5. This data package satisfies the requirement for a format IV, final report as described in Reference 1. This data package is also a follow-up to the 45-Day safety screen results for tank AP-105, Reference 8, which was issued on November 5, 1996, and is attached as Section II to this report. Preliminary data in the form of summary analytical tables were provided to the project in advance of this final report to enable early estimation of evaporator operational parameters, using the Predict modeling program. Analyses were performed at the 222-S Laboratory as defined and specified in the TSAP and the Laboratory's Quality Assurance P1an, References 6 and 7. Any deviations from the instructions documented in the TSAP are discussed in this narrative and are supported with additional documentation.

  4. RESULTS OF GROUNDWATER MONITORING FOR THE 183-H SOLAR EVAPORATION BASINS AND 300 AREA PROCESS TRENCHES JANUARY-JUNE 2010

    SciTech Connect (OSTI)

    WEEKES, D. C.

    2010-11-07

    This is one of a series of reports on Resource Conservation and Recovery Act of 1976 monitoring at the 183-H Solar Evaporation Basins and the 300 Area Process Trenches. It fulfills the requirement of Washington Administrative Code (WAC) 173-303-645(11) to report twice each year on the effectiveness of the corrective action program. This report covers the period from January through June 2010. The concentrations of 183-H Solar Evaporation Basins contaminants remained below applicable concentration limits during the reporting period. The most recent exceedance of a concentration limit was May 2007. The overall concentration of uranium in 300 Area Process Trenches wells remained above the 20 {micro}g/L concentration limit in the three downgradient wells screened at the water table. Fluctuations of uranium concentration are caused by changes in river stage. The concentration of cis-l ,2-dichloroethene remained above the 70 {micro}g/L concentration limit in one deep well (399-1-16B). Concentrations are relatively steady at this well and are not affected by river stage. Trichloroethene concentrations were below detection limits in all wells during the reporting period.

  5. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

  6. Enhanced oil recovery system

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  7. Photon enhanced thermionic emission

    DOE Patents [OSTI]

    Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

    2014-10-07

    Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

  8. Enhanced Geothermal Systems Technologies

    Broader source: Energy.gov [DOE]

    Geothermal Energy an?d the Enhanced Geothermal Systems Concept The Navy 1 geothermal power plant near Coso Hot Springs, California, is applying EGS technology. Heat is naturally present everywhere in the earth. For all intents and purposes, heat from the earth is inexhaustible. Water is not nearly as ubiquitous in the earth as heat. Most aqueous fluids are derived from surface waters that have percolated into the earth along permeable pathways such as faults. Permeability is a measure of the ease of fluid flow through rock. The permeability of rock results from pores, fractures, joints, faults, and other openings which allow fluids to move. High permeability implies that fluids can flow rapidly through the rock. Permeability and, subsequently, the amount of fluids tend to decrease with depth as openings in the rocks compress from the weight of the overburden.

  9. Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Jeanloz, R.; Stone, H.

    2013-12-31

    DOE, through the Geothermal Technologies Office (GTO) within the Office of Energy Efficiency and Renewable Energy, requested this study, identifying a focus on: i) assessment of technologies and approaches for subsurface imaging and characterization so as to be able to validate EGS opportunities, and ii) assessment of approaches toward creating sites for EGS, including science and engineering to enhance permeability and increase the recovery factor. Two days of briefings provided in-depth discussion of a wide range of themes and challenges in EGS, and represented perspectives from industry, government laboratories and university researchers. JASON also contacted colleagues from universities, government labs and industry in further conversations to learn the state of the field and potential technologies relevant to EGS.

  10. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Safety Enhancing Railroad Hazardous Materials Transportation Safety Presented by Kevin R. Blackwell, Radioactive Materials Program Manager. Enhancing Railroad Hazardous Materials...

  11. Enhancer evolution across twenty mammals

    E-Print Network [OSTI]

    Villar, Diego; Berthelot, Camille; Aldridge, Sarah; Rayner, Tim F.; Lukk, Margus; Pignatelli, Miguel; Park, Thomas J.; Deaville, Robert; Erichsen, Jonathan T.; Jasinska, Anna J.; Turner, James M.A.; Bertelsen, Mads F.; Murchison, Elizabeth P.; Flicek, Paul; Odom, Duncan T.

    2014-12-15

    and within pre- dicted enhancer elements, most of which could be validated experimentally. Over 20 sequenced mammalian genomes have been inte- grated into inter-species alignments within Ensembl (Flicek et al., 2014). Exploiting this computational... , and are associated with ubiquitous cellular functions; highly conserved enhancers are much less common, and are found near liver-specific genes. Remarkably, almost half of 20,000–25,000 active enhancers in each species have rapidly evolved in a lineage- or species...

  12. 36 AUGUST | 2011 EnhancEd TurbinE

    E-Print Network [OSTI]

    Kusiak, Andrew

    36 AUGUST | 2011 EnhancEd TurbinE PErformancE moniToring comPonEnTs of wind TurbinEs are affected by asymmetric loads, variable wind speeds, and se- vere weather conditions which cause wind turbines to change their states. A typical wind turbine under- goes various states during its daily operations. The wind turbine

  13. Distribution of the 83Rb/83mKr activity on vacuum evaporated samples examined with the Timepix position sensitive detector

    E-Print Network [OSTI]

    D. Venos; J. Jakubek; O. Dragoun; S. Pospisil

    2007-12-22

    Properties of vacuum evaporated 83Rb/83mKr sources of low-energy conversion electrons, which are under development for monitoring the energy scale stability of the Karlsruhe Tritium Neutrino experiment KATRIN, were examined by the Timepix pixel detector exhibiting the position resolution of at least 55 microm. No distinct local inhomogeneities in the surface distribution of 83Rb/83mKr were observed. The source diameter derived from the recorded image agrees within 5 % with that expected from evaporation geometry. More precise determination of the actual source diameter is complicated by Compton scattered electrons caused by 83Rb gamma-rays.

  14. Radiological Characterization Issues and Success Stories for the Melton Valley Scrap Yard and Homogeneous Reactor Experiment Evaporator Response Actions

    SciTech Connect (OSTI)

    Patterson, J.E.; Goldsmith, W.A.; Mitchell, K.G. [Strata-G, LLC, Knoxville, TN (United States); Gilpin, J.K. [Bechtel Jacobs Company, LLC, Oak Ridge, TN (United States)

    2007-07-01

    Proper characterization is essential for assuring that wastes meet any treatment or disposal site waste acceptance criteria (WAC). In addition characterization is vital for proper preparation of shipping papers for transporting the waste for treatment or disposal. Process knowledge was inadequate for characterization of legacy waste items from two sites involved in the Melton Valley Decontamination and Decommissioning (MVD and D) project at the Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL): a scrap yard containing miscellaneous contaminated items, and a liquid waste evaporator used by an experimental nuclear reactor. Waste items at both sites were contaminated with Cs-137/Ba-137 m. Through the use of scaling factors, the gamma radiation associated with this radionuclide pair was used to characterize these items for proper disposal. Application of scaling factors permitted successful remediation of these sites on an accelerated schedule and avoided radiation exposure concerns associated with traditional sampling and analysis. (authors)

  15. Dependence of Recycling and Edge Profiles on Lithium Evaporation in High Triangularity, High Performance NSTX H-mode Discharges

    SciTech Connect (OSTI)

    Maingi, R; Osborne, T H; Bell, M G; Bell, R E; Boyle, D P; Canik, J M; Dialla, A; Kaita, R; Kaye, S M; Kugel, H W; LeBlanc, B P; Sabbagh, S A; Skinner, C H; Soukhanovskii, V A

    2014-04-01

    In this paper, the effects of a pre-discharge lithium evaporation scan on highly shaped discharges in the National Spherical Torus Experiment (NSTX) are documented. Lithium wall conditioning ('dose') was routinely applied onto graphite plasma facing components between discharges in NSTX, partly to reduce recycling. Reduced D[sub]? emission from the lower and upper divertor and center stack was observed, as well as reduced midplane neutral pressure; the magnitude of reduction increased with the pre-discharge lithium dose. Improved energy confinement, both raw ?[sub]E and H-factor normalized to scalings, with increasing lithium dose was also observed. At the highest doses, we also observed elimination of edge-localized modes. The midplane edge plasma profiles were dramatically altered, comparable to lithium dose scans at lower shaping, where the strike point was farther from the lithium deposition centroid. This indicates that the benefits of lithium conditioning should apply to the highly shaped plasmas planned in NSTX-U.

  16. Magnetic and Electronic Structure study of Fe/MgO/Fe/Co Multilayer Stack Deposited by E-Beam Evaporation

    E-Print Network [OSTI]

    Jitendra Pal Singh; Sanjeev Gautam; Braj Bhusan Singh; M. Raju; S. Chaudhary; D. Kabiraj; D. Kanjilal; Jenn-Min Lee; Jin-Ming Chen; K. Asokan; Keun Hwa Chae

    2013-05-13

    Present work investigates the magnetic and electronic structure of MgO/Fe/MgO/Fe/Co/Au multilayer stack grown on Si(100) substrates by electron beam evaporation method. X-ray diffraction study depicts polycrystalline nature of the multilayers. Results obtained from vibrating sample magnetometry (VSM) and near-edge X-ray absorption fine structure spectra (NEXAFS) at Fe & Co L- and Mg & O K-edges are applied to understand the magnetic and electronic properties of this stack and its interface properties. While the spectral features of Fe L-edge spectrum recorded by surface sensitive total electron yield (TEY) mode shows the formation of FeOx at the Fe/MgO interface, the bulk sensitive total fluorescence yield (TFY), shows Fe in metallic nature. Co L-edge spectrum reveals the presence of metallic nature of cobalt in both TEY and TFY modes. Above results are well correlated with X-ray reflectometry.

  17. Hydrogen capacity and absorption rate of the SAES St707 non-evaporable getter at various temperatures.

    SciTech Connect (OSTI)

    Hsu, Irving; Mills, Bernice E.

    2010-08-01

    A prototype of a tritium thermoelectric generator (TTG) is currently being developed at Sandia. In the TTG, a vacuum jacket reduces the amount of heat lost from the high temperature source via convection. However, outgassing presents challenges to maintaining a vacuum for many years. Getters are chemically active substances that scavenge residual gases in a vacuum system. In order to maintain the vacuum jacket at approximately 1.0 x 10{sup -4} torr for decades, nonevaporable getters that can operate from -55 C to 60 C are going to be used. This paper focuses on the hydrogen capacity and absorption rate of the St707{trademark} non-evaporable getter by SAES. Using a getter testing manifold, we have carried out experiments to test these characteristics of the getter over the temperature range of -77 C to 60 C. The results from this study can be used to size the getter appropriately.

  18. Lignite Fuel Enhancement

    SciTech Connect (OSTI)

    Charles Bullinger

    2007-03-31

    This 11th quarterly Technical Progress Report for the Lignite Fuel Enhancement Project summarizes activities from January 1st through March 31st of 2007. It summarizes the completion of the Prototype testing activity and initial full-scale dryer design, Budget Period 2 activity during that time period. The Design Team completed process design and layouts of air, water, and coal systems. Heyl-Patterson completed dryer drawings and has sent RFPs to several fabricators for build and assembly. Several meetings were held with Barr engineers to finalize arrangement of the drying, air jig, and coal handling systems. Honeywell held meetings do discuss the control system logic and hardware location. By the end of March we had processed nearly 300,000 tons of lignite through the dryer. Outage preparation maintenance activities on a coal transfer hopper restricted operation of the dryer in February and March. The Outage began March 17th. We will not dry coal again until early May when the Outage on Unit No.2 completes. The Budget Period 1 (Phase 1) final report was submitted this quarter. Comments were received from NETL and are being reviewed. The Phase 2 Project Management Plan was submitted to NETL in January 2007. This deliverable also included the Financing Plan. An application for R&D 100 award was submitted in February. The project received an award from the Minnesota Professional Engineering Society's Seven Wonders of Engineering Award and Minnesota ACEC Grand Award in January. To further summarize, the focus this quarter has been on finalizing commercial design and the layout of four dryers behind each Unit. The modification to the coal handling facilities at Coal Creek and incorporation of air jigs to further beneficiate the segregated material the dryers will reject 20 to 30 % of the mercury and sulfur is segregated however this modification will recover the carbon in that stream.

  19. Evaluation of the freeze-thaw/evaporation process for the treatment of produced waters. Final report, August 1992--August 1996

    SciTech Connect (OSTI)

    Boysen, J.E.; Walker, K.L.; Mefford, J.L.; Kirsch, J.R. [Resource Technology Corp., Laramie, WY (United States); Harju, J.A. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

    1996-06-01

    The use of freeze-crystallization is becoming increasingly acknowledged as a low-cost, energy-efficient method for purifying contaminated water. The natural freezing process can be coupled with natural evaporative processes to treat oil and gas produced waters year round in regions where subfreezing temperatures seasonally occur. The climates typical of Colorado`s San Juan Basin and eastern slope, as well as the oil and gas producing regions of Wyoming, are well suited for application of these processes in combination. Specifically, the objectives of this research are related to the development of a commercially-economic FTE (freeze-thaw/evaporation) process for the treatment and purification of water produced in conjunction with oil and natural gas. The research required for development of this process consists of three tasks: (1) a literature survey and process modeling and economic analysis; (2) laboratory-scale process evaluation; and (3) field demonstration of the process. Results of research conducted for the completion of these three tasks indicate that produced water treatment and disposal costs for commercial application of the process, would be in the range of $0.20 to $0.30/bbl in the Rocky Mountain region. FTE field demonstration results from northwestern New Mexico during the winter of 1995--96 indicate significant and simultaneous removal of salts, metals, and organics from produced water. Despite the unusually warm winter, process yields demonstrate disposal volume reductions on the order of 80% and confirm the potential for economic production of water suitable for various beneficial uses. The total dissolved solids concentrations of the FTE demonstration streams were 11,600 mg/L (feed), 56,900 mg/L (brine), and 940 mg/L (ice melt).

  20. Excitation enhancement and extraction enhancement with photonic crystals

    DOE Patents [OSTI]

    Shapira, Ofer; Soljacic, Marin; Zhen, Bo; Chua, Song-Liang; Lee, Jeongwon; Joannopoulos, John

    2015-03-03

    Disclosed herein is a system for stimulating emission from at least one an emitter, such as a quantum dot or organic molecule, on the surface of a photonic crystal comprising a patterned dielectric substrate. Embodiments of this system include a laser or other source that illuminates the emitter and the photonic crystal, which is characterized by an energy band structure exhibiting a Fano resonance, from a first angle so as to stimulate the emission from the emitter at a second angle. The coupling between the photonic crystal and the emitter may result in spectral and angular enhancement of the emission through excitation and extraction enhancement. These enhancement mechanisms also reduce the emitter's lasing threshold. For instance, these enhancement mechanisms enable lasing of a 100 nm thick layer of diluted organic molecules solution with reduced threshold intensity. This reduction in lasing threshold enables more efficient organic light emitting devices and more sensitive molecular sensing.

  1. Demonstration of Fusion-Evaporation and Direct-Interaction Nuclear Reactions using High-Intensity Laser-Plasma-Accelerated Ion Beams

    E-Print Network [OSTI]

    Strathclyde, University of

    nuclei'' with the subsequent evaporation of proton, neutron, and alpha particles. Results are compared to date have been limited to Thomson parabola ion spectrometers, which generally sample small solid angles that the ion expansion profile in some situations is influenced by self-generated electric and magnetic fields

  2. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1

    SciTech Connect (OSTI)

    Burt, D.L.

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

  3. Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode

    SciTech Connect (OSTI)

    Jung, Mi, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Mo Yoon, Dang; Kim, Miyoung [Korea Printed Electronics Center, Korea Electronics Technology Institute, Jeollabuk-do, 561-844 (Korea, Republic of); Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lim, Si-Hyung [School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of)

    2014-07-07

    We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

  4. Enhancing network robustness via shielding

    E-Print Network [OSTI]

    Zhang, Jianan, S.M. Massachusetts Institute of Technology

    2014-01-01

    Shielding critical links enhances network robustness and provides a new way of designing robust networks. We first consider shielding critical links to guarantee network connectivity after any failure under geographical ...

  5. Geothermal Permeability Enhancement - Final Report

    SciTech Connect (OSTI)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  6. Energy Savings in Direct Evaporative Cooling: real application in the Madrid metro and simulated application for offices in Sydney 

    E-Print Network [OSTI]

    Simonetti, R.

    2010-01-01

    Building Operations, Kuwait, October 26-28, 2010 ??? ?? %???????% ????? ?( ? ?? ?????????? ? ? ??? ? ? ??????? ? ?????????? ??? ????? ? ????!? ?????? ??????7... of the Tenth International Conference for Enhanced Building Operations, Kuwait, October 26-28, 2010 4? ?6@???????? ???*????? ??? 0????%?4??9? 4...

  7. Evaluation of EHD enhancement and thermoacoustic refrigeration for naval applications. Technical report, Jul-Sep 91

    SciTech Connect (OSTI)

    Memory, S.B.

    1991-12-01

    An evaluation has been made of two different techniques which could prove valuable for Naval refrigeration needs in the future. The first is electrohydrodynamic (EHD) enhancement of pool boiling and condensation heat transfer; this has been shown to provide significant enhancements for both modes of heat transfer under certain conditions and could provide increases in efficiency of present vapor-compression systems. EHD techniques are quite advanced and prototype condenser and evaporator bundles are currently being tested. The second technique is an alternative refrigeration technology called thermoacoustic refrigeration; alternative technologies have become increasingly attractive over recent years due to environmental concerns over CFCs. Thermoacoustic refrigeration uses acoustic power to pump heat from a low temperature source to a high temperature sink. It is still in the early stages of development and can presently accommodate only small thermal loads. However, its general principles of operation have been proven and its resent capacity and efficiency limitations are not seen as a problem in the long term. Electrohydrodynamic Enhancement, Boiling and Condensation, Thermoacoustic Refrigeration.

  8. Seismic stimulation for enhanced oil recovery

    E-Print Network [OSTI]

    Pride, S.R.

    2008-01-01

    aims to enhance oil production by sending seismic wavesbe expected to enhance oil production. INTRODUCTION The hopethe reservoir can cause oil production to increase. Quite

  9. Develop & Evaluate Materials & Additives that Enhance Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse 2011 DOE Hydrogen and Fuel...

  10. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  11. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01

    induced seismicity in geothermal systems. In: Proceedings ofThe deep EGS (Enhanced Geothermal System) project at Soultz-with enhanced geothermal systems. Geothermal Resources

  12. Sandia Energy - Continuous Reliability Enhancement for Wind ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Continuous Reliability Enhancement for Wind (CREW): Project Update Home Renewable Energy Energy News Wind Energy News & Events Systems Analysis Continuous Reliability Enhancement...

  13. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop held March 18-19, 2015. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production More Documents & Publications Enhanced Anaerobic Digestion and Hydrocarbon...

  14. Performance Enhancement of Cathodes with Conductive Polymers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancement of Cathodes with Conductive Polymers Performance Enhancement of Cathodes with Conductive Polymers Presentation from the U.S. DOE Office of Vehicle Technologies "Mega"...

  15. Microhole arrays for improved heat mining from enhanced geothermal systems

    E-Print Network [OSTI]

    Finsterle, S.

    2014-01-01

    from enhanced geothermal systems. Transactions Geothermalapproach to enhanced geothermal systems. Transactionsof the enhanced geothermal system demonstration reservoir in

  16. Microhole arrays for improved heat mining from enhanced geothermal systems

    E-Print Network [OSTI]

    Finsterle, S.

    2014-01-01

    prospects from enhanced geothermal systems. Transactionsapproach to enhanced geothermal systems. Transactionsexperiment of the enhanced geothermal system demonstration

  17. Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators

    DOE Patents [OSTI]

    Daniels, E.J.; Jody, B.J.; Bonsignore, P.V.

    1994-07-19

    A process and system are disclosed for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled. 3 figs.

  18. Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators

    DOE Patents [OSTI]

    Daniels, Edward J. (Oak Lawn, IL); Jody, Bassam J. (Chicago, IL); Bonsignore, Patrick V. (Channahon, IL)

    1994-01-01

    A process and system for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled.

  19. Plus ultra! Or: To enhance, or not to enhance?

    E-Print Network [OSTI]

    Gems, David

    Viagra, for example. Marketed for treating erectile problems, it was soon used in other ways - for one sweetly, and Tour de France cyclists boost their staying power on the sly by upping their blood count enhancement with three eerie properties, superfluity, directionality and #12;2 identity transformation

  20. RHIC Enhanced Luminosity Program Wolfram Fischer

    E-Print Network [OSTI]

    experiments ~ 5% maintenance and access goal 100h/week #12;Wolfram Fischer 9 Enhanced Design Parameters #12;Wolfram Fischer 10 Enhanced Design Parameters (~2008*) Parameter unit Achieved Enhanced design Au1 RHIC Enhanced Luminosity Program Wolfram Fischer Science and Technology Review by the Office

  1. Biological enhancement of hydrocarbon extraction

    DOE Patents [OSTI]

    Brigmon, Robin L. (North Augusta, SC); Berry, Christopher J. (Aiken, SC)

    2009-01-06

    A method of microbial enhanced oil recovery for recovering oil from an oil-bearing rock formation is provided. The methodology uses a consortium of bacteria including a mixture of surfactant producing bacteria and non-surfactant enzyme producing bacteria which may release hydrocarbons from bitumen containing sands. The described bioprocess can work with existing petroleum recovery protocols. The consortium microorganisms are also useful for treatment of above oil sands, ground waste tailings, subsurface oil recovery, and similar materials to enhance remediation and/or recovery of additional hydrocarbons from the materials.

  2. Plasmon-enhanced UV photocatalysis

    SciTech Connect (OSTI)

    Honda, Mitsuhiro; Saito, Yuika Kawata, Satoshi; Kumamoto, Yasuaki; Taguchi, Atsushi

    2014-02-10

    We report plasmonic nanoparticle enhanced photocatalysis on titanium dioxide (TiO{sub 2}) in the deep-UV range. Aluminum (Al) nanoparticles fabricated on TiO{sub 2} film increases the reaction rate of photocatalysis by factors as high as 14 under UV irradiation in the range of 260–340?nm. The reaction efficiency has been determined by measuring the decolorization rate of methylene blue applied on the TiO{sub 2} substrate. The enhancement of photocatalysis shows particle size and excitation wavelength dependence, which can be explained by the surface plasmon resonance of Al nanoparticles.

  3. Biosurfactant and enhanced oil recovery

    DOE Patents [OSTI]

    McInerney, Michael J. (Norman, OK); Jenneman, Gary E. (Norman, OK); Knapp, Roy M. (Norman, OK); Menzie, Donald E. (Norman, OK)

    1985-06-11

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  4. Reflectivematerials enhance `Fuji'apple

    E-Print Network [OSTI]

    Crisosto, Carlos H.

    Reflectivematerials enhance `Fuji'apple color Harry Andris o Carlos H. Crisosto Red color developmentis an important factor for consumer acceptance of California 'Fuji' apples. Several attempts to im not affect fla- vor, it is an important factor for con- sumer acceptance of apples. Cyanidin is the immediate

  5. Dimensional enhancement of kinetic energies

    E-Print Network [OSTI]

    W. P. Schleich; J. P. Dahl

    2002-03-14

    Simple thermodynamics considers kinetic energy to be an extensive variable which is proportional to the number, N, of particles. We present a quantum state of N non-interacting particles for which the kinetic energy increases quadratically with N. This enhancement effect is tied to the quantum centrifugal potential whose strength is quadratic in the number of dimensions of configuration space.

  6. FINDING BALANCE: ENHANCING PHYSICAL, EMOTIONAL,

    E-Print Network [OSTI]

    FINDING BALANCE: ENHANCING PHYSICAL, EMOTIONAL, AND SOCIAL WELL-BEING 3rd Annual Conference for psychologists requesting CE credits TOPICS INCLUDE: How finding "balance" can support our physical, emotional, and social well-being Balance exercises and physical fitness to prevent injuries and cognitive decline

  7. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  8. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  9. CPS Science Laboratory Enhancement Project

    SciTech Connect (OSTI)

    James, Chandra

    2014-12-03

    The lab enhancement initiative was designed to support early implementation efforts of new policy to promote safe learning environments and school labs called the Chemical Safety and Hygiene Plan (CSHP). These efforts included comprehensive inventories and chemical removals at all Chicago Public High Schools, conducted by environmental health and safety consultants, and the development of professional development resources for teachers.

  10. Standard test method for determination of uranium or plutonium isotopic composition or concentration by the total evaporation method using a thermal ionization mass spectrometer

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This method describes the determination of the isotopic composition and/or the concentration of uranium and plutonium as nitrate solutions by the thermal ionization mass spectrometric (TIMS) total evaporation method. Purified uranium or plutonium nitrate solutions are loaded onto a degassed metal filament and placed in the mass spectrometer. Under computer control, ion currents are generated by heating of the filament(s). The ion beams are continually measured until the sample is exhausted. The measured ion currents are integrated over the course of the run, and normalized to a reference isotope ion current to yield isotopic ratios. 1.2 In principle, the total evaporation method should yield isotopic ratios that do not require mass bias correction. In practice, some samples may require this bias correction. When compared to the conventional TIMS method, the total evaporation method is approximately two times faster, improves precision from two to four fold, and utilizes smaller sample sizes. 1.3 The tot...

  11. Plus ultra! To enhance or not to enhance? The strange properties of ontological

    E-Print Network [OSTI]

    Gems, David

    1 Plus ultra! To enhance or not to enhance? The strange properties of ontological enhancement used in other ways - for one, it helps to revive an erection sooner after orgasm. Likewise, plastic of what I call ontological enhancement, a type of profound enhancement with three eerie properties

  12. doi:10.1016/S0016-7037(03)00277-1 CaO-MgO-Al2O3-SiO2 liquids: Chemical and isotopic effects of Mg and Si evaporation in a

    E-Print Network [OSTI]

    the terrestrial planets. Although equilibrium condensation processes in the solar nebula have been investi- gated theoretically in great detail (e.g., Ebel and Grossman, 2000), theoretical treatment of evaporation kinetics is

  13. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and thermal energy storage in solar thermal applications,"aided or powered by solar thermal energy. A section is alsoexhaustive review of solar thermal energy systems has been

  14. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    of solar collectors and thermal energy storage in solaraided or powered by solar thermal energy. A section is alsobesides MVC require thermal energy as their primary energy

  15. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Membranes Addendum: Osmotic Pressure of Sodium Chloride,"02132.pdf&pdf=true. Lenntech, "Osmotic Pressure Calculator,"www.lenntech.com/calculators/osmotic/osmotic-pressure.htm.

  16. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    This requires no thermal storage tanks, but can have athe need for large thermal storage equipment, the evaporatorinclude analysis of thermal storage. A way of keeping the

  17. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    R. P. Allison, "High Water Recovery with Electrodialysis12] GE Power & Water, "Electrodialysis Reversal (EDR)," 02ARABIA," in The Value of Water in the 21st Century, San

  18. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    storage in solar thermal applications," Applied Energy, pp.of Non-Tracking Solar Thermal Technology," 2011. [26] R.C. Y. Zhao, "A review of solar collectors and thermal energy

  19. NISTIR 5873 INTRACYCLE EVAPORATIVE

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    and Technology Energy Efficiency and Renewable Energy Arati Prabhakar, Director 1000 Independence Ave., SW.6% for R407C, and 1.8% for R23/152a. Keywords: air conditioning, building technology, Coefficient ES or' @t4TES of Prepared for: U.S. Department of Commerce U.S. Department of Energy Michael Kantor

  20. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  1. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    tracking and fixed in place. Generally these collectors consist of a solar absorbing surface facing the suntracking. The main difference is the concentrators and often the absorber move to track the sun

  2. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    and maximum reduction," Desalination, pp. 67-73, 2003. [17] "Energy Requirements of Desalination Processes," 19 Augwww.sfgate.com/news/article/Desalination-plants- a-pricey-

  3. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    pp. 67-73, 2003. [17] "Energy Requirements of Desalinationof solar collectors and thermal energy storage in solarapplications," Applied Energy, pp. 538-553, 2013. [20] P. G.

  4. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    Solar Thermal Collectors .is solar energy. Solar thermal collector arrays can be usedon integrating solar thermal collectors with desalination

  5. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01

    C. Y. Zhao, "A review of solar collectors and thermal energya Passive Flat-Plate Solar Collector," International Journalof Flat Plate Solar Collector Equipped with Rectangular Cell

  6. Vibration-enhanced quantum transport

    E-Print Network [OSTI]

    F. L. Semião; K. Furuya; G. J. Milburn

    2010-08-17

    In this paper, we study the role of collective vibrational motion in the phenomenon of electronic energy transfer (EET) along a chain of coupled electronic dipoles with varying excitation frequencies. Previous experimental work on EET in conjugated polymer samples has suggested that the common structural framework of the macromolecule introduces correlations in the energy gap fluctuations which cause coherent EET. Inspired by these results, we present a simple model in which a driven nanomechanical resonator mode modulates the excitation energy of coupled quantum dots and find that this can indeed lead to an enhancement in the transport of excitations across the quantum network. Disorder of the on-site energies is a key requirement for this to occur. We also show that in this solid state system phase information is partially retained in the transfer process, as experimentally demonstrated in conjugated polymer samples. Consequently, this mechanism of vibration enhanced quantum transport might find applications in quantum information transfer of qubit states or entanglement.

  7. Method for enhanced oil recovery

    DOE Patents [OSTI]

    Comberiati, Joseph R. (Morgantown, WV); Locke, Charles D. (Morgantown, WV); Kamath, Krishna I. (Chicago, IL)

    1980-01-01

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  8. Photodetector with enhanced light absorption

    DOE Patents [OSTI]

    Kane, James (Lawrenceville, NJ)

    1985-01-01

    A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

  9. Enhanced heat transfer using nanofluids

    DOE Patents [OSTI]

    Choi, Stephen U. S. (Lisle, IL); Eastman, Jeffrey A. (Naperville, IL)

    2001-01-01

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  10. Design, demonstration and evaluation of a thermal enhanced vapor extraction system

    SciTech Connect (OSTI)

    Phelan, J.; Reavis, B.; Swanson, J.

    1997-08-01

    The Thermal Enhanced Vapor Extraction System (TEVES), which combines powerline frequency heating (PLF) and radio frequency (RF) heating with vacuum soil vapor extraction, was used to effectively remove volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) from a pit in the chemical waste landfill (CWL) at Sandia National Laboratories (SNL) within a two month heating period. Volume average temperatures of 83{degrees}C and 112{degrees}C were reached for the PLF and RF heating periods, respectively, within the 15 ft x 45 ft x 18.5 ft deep treated volume. This resulted in the removal of 243 lb of measured toxic organic compounds (VOCs and SVOCs), 55 gallons of oil, and 11,000 gallons of water from the site. Reductions of up to 99% in total chromatographic organics (TCO) was achieved in the heated zone. Energy balance calculations for the PLF heating period showed that 36.4% of the heat added went to heating the soil, 38.5% went to evaporating water and organics, 4.2% went to sensible heat in the water, 7.1% went to heating the extracted air, and 6.6% was lost. For the RF heating period went to heating the soil, 23.5% went to evaporating water and organics, 2.4% went to sensible heat in the water, 7.5% went to heating extracted air, and 9.7% went to losses. Energy balance closure was 92.8% for the PLF heating and 98% for the RF heating. The energy input requirement per unit soil volume heated per unit temperature increase was 1.63 kWH/yd{sup 3}-{degrees}C for PLF heating and 0.73 kWH/yd{sup 3}{degrees}C for RF heating.

  11. Enhanced Reality Visualization in a Surgical Environment

    E-Print Network [OSTI]

    Mellor, J.P.

    1995-01-01

    Enhanced reality visualization is the process of enhancing an image by adding to it information which is not present in the original image. A wide variety of information can be added to an image ranging from hidden ...

  12. Heat Transfer Enhancement: Second Generation Technology 

    E-Print Network [OSTI]

    Bergles, A. E.; Webb, R. L.

    1984-01-01

    This paper reviews current activity in the field of enhanced heat transfer, with the aim of illustrating the technology and typical applications. Guidelines for application of enhanced surfaces are given, and practical concerns and economics...

  13. Enhanced Geothermal Systems | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Geothermal Systems Enhanced Geothermal Systems EGS 2 Page 1.jpg Steps to Develop Power Production at an EGS Site Step 1: IdentifyCharacterize a Site Develop a geologic...

  14. Spontaneous Emission Rate Enhancement Using Optical Antennas

    E-Print Network [OSTI]

    Kumar, Nikhil

    2013-01-01

    of  Spontaneous  Emission  in  a  Semiconductor  nanoLED,”  emission  rate  enhancement  using  the  Fluorescent  Emission  by  Lattice   Resonances  in  

  15. Electrobiocommodities from Carbon Dioxide: Enhancing Microbial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Electrobiocommodities from Carbon Dioxide:...

  16. Enhancing Transportation Energy Security through Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Security through Advanced Combustion and Fuels Technologies Enhancing Transportation Energy Security through Advanced Combustion and Fuels Technologies 2005...

  17. Data-centric Transformations for Locality Enhancement

    E-Print Network [OSTI]

    Pingali, Keshav K.

    -centric transformations for locality enhancement. We present experimental results on the SGI Octane compar- ingData-centric Transformations for Locality Enhancement Induprakas Kodukula Keshav Pingali September community has developed locality-enhancing program transformations such as loop permutation and tiling

  18. Gasdynamic enhancement of nonpremixed combustion

    SciTech Connect (OSTI)

    Marble, F.E.

    1994-12-31

    To promote efficient performance of very high speed air-breathing propulsion systems, the combustor Mach number must be of the order of six for a flight Mach number of 18. Because of this high gas speed through the combustor, mixing rates of hydrogen fuel with air must be very rapid in order to allow a combustor of reasonable length. It is proposed to enhance the rate of mixing and combustion of hydrogen and air, and thereby reduce combustor length, through the introduction of streamwise vorticity generated by the interaction of a weak oblique shock wave with the density gradient between air and a cylindrical jet of hydrogen. Because of the high Mach number flow in the combustor, the oblique shock traverses the jet at a small angle with respect to the free stream direction, and the principle of slender body theory allows one conceptually to replace the three-dimensional steady flow with a two-dimensional unsteady flow. As a consequence, two-dimensional time-dependent computational studies and an extensive experimental shock tube investigation were employed to assess mixing rates for the steady flow in the combustor. The results indicated that under realistic conditions, adequate mixing could be accomplished within 1 ms, a rate that was technologically interesting. Encouraged by these experiments, a ``practical`` injector, utilizing shock-enhanced mixing, was designed for a combustor having a free stream Mach number of 6.0. A detailed aerodynamic and mixing investigation was carried out in the Mach 6 High Reynolds Number Tunnel at the NASA-Langley Research Center. The results confirmed both the details and the overall effectiveness of the shock-enhanced mixing concept.

  19. Nano-Structured Mesoporous Silica Wires with Intra-Wire Lamellae via Evaporation-Induced Self-Assembly in Space-Confined Channels

    SciTech Connect (OSTI)

    Hu, Michael Z. [ORNL; Shi, Donglu [University of Cincinnati; Blom, Douglas Allen [ORNL

    2014-01-01

    Evaporation-induced self-assembly (EISA) of silica sol-gel ethanol-water solution mixtures with block-copolymer were studied inside uniform micro/nano channels. Nano-structured mesoporous silica wires, with various intra-wire self-assembly structures including lamellae, were prepared via EISA process but in space-confined channels with the diameter ranging from 50 nm to 200 nm. Membranes made of anodized aluminum oxide (AAO) and track-etched polycarbonate (EPC) were utilized as the arrays of space-confined channels (i.e., 50, 100, and 200-nm EPC and 200-nm AAO) for infiltration and drying of mixture solutions; these substrate membranes were submerged in mixture solutions consisting of a silica precursor, a structure-directing agent, ethanol, and water. After the substrate channels were filled with the solution under vacuum impregnation, the membrane was removed from the solution and dried in air. The silica precursor used was tetra-ethyl othosilicate (TEOS), and the structure-directing agent employed was triblock copolymer Pluronic-123 (P123). It was found that the formation of the mesoporous nanostructures in silica wires within uniform channels were significantly affected by the synthesis conditions including (1) pre-assemble TEOS aging time, (2) the evaporation rate during the vacuum impregnation, and (3) the air-dry temperature. The obtained intra-wire structures, including 2D-hexagonal rods and lamellae, were studied by scanning transmission electron microscopy (STEM). A steric hindrance effect seems to explain well the observed polymer-silica mesophase formation tailored by TEOS aging time. The evaporation effect, air-drying effect, and AAO-vs-EPC substrate effect on the mesoporous structure of the formed silica wires were also presented and discussed.

  20. Feedback enhanced plasma spray tool

    DOE Patents [OSTI]

    Gevelber, Michael Alan; Wroblewski, Donald Edward; Fincke, James Russell; Swank, William David; Haggard, Delon C.; Bewley, Randy Lee

    2005-11-22

    An improved automatic feedback control scheme enhances plasma spraying of powdered material through reduction of process variability and providing better ability to engineer coating structure. The present inventors discovered that controlling centroid position of the spatial distribution along with other output parameters, such as particle temperature, particle velocity, and molten mass flux rate, vastly increases control over the sprayed coating structure, including vertical and horizontal cracks, voids, and porosity. It also allows improved control over graded layers or compositionally varying layers of material, reduces variations, including variation in coating thickness, and allows increasing deposition rate. Various measurement and system control schemes are provided.